
DEVELOPMENT OF AUTHENTICATION ALGORITHMS FOR IEC 61850 GOOSE

AND SAMPLED VALUE MESSAGES

by

SIKHO AFRICA NDZEKU

Thesis submitted in fulfilment of the requirements for the degree

Master of Engineering: Electrical Engineering

in the Faculty of Engineering and Built Environment

at the Cape Peninsula University of Technology

Supervisor: Doctor Quinton Bart

Bellville Campus

Date submitted August 2023

CPUT copyright information

The dissertation/thesis may not be published either in part (in scholarly, scientific, or technical

journals) or as a whole (as a monograph) unless permission has been obtained from the

University.

i | P a g e

DECLARATION

I, Sikho Africa Ndzeku, declare that the contents of this dissertation/thesis represent my

unaided work and that the dissertation/thesis has not previously been submitted for academic

examination towards any qualification. Furthermore, it represents my own opinions and not

necessarily those of the Cape Peninsula University of Technology.

 01/11/2023

Signed Date

ii | P a g e

ABSTRACT

Before standardising uniform communication networks, protocols such as the

Distributed Network Protocol (DNP3), were used in distributed control systems to

transmit telemetry data. However, these network protocols lacked a standard naming

convention, making their implementation in control systems expensive due to the use

of copper wiring.

The Industrial Internet of Things (IIoT) has contributed to the integration of Information

and Communication Technology (ICT) in power systems. The integration of smart

technology in substation automation has led to the transformation of the Smart Grid

(SG). Over the years, malware and other cyber-attacks have compromised the cyber-

security of industrial networks. Some attacks have successfully hacked the

Supervisory Control and Data Acquisition (SCADA) systems of industrial plants.

Cyber-security is becoming a concern in substation automation and is gaining

attention in power systems. Protecting all information in Substation Automation

Systems (SAS) is of paramount importance for the success of the SG revolution.

The need to standardise communication networks prompted the transition to

networked smart grid systems, reducing costs and engineering time associated with

system implementation. The number of security threats targeting electrical networks

has been increasing rapidly, and several protocols utilised in these environments are

being studied to address these cyber-attacks. The development of security

mechanisms for securing the substation communication network is crucial.

In the realm of Cyber-Physical Systems (CPS), the IEC 61850 standard for

communication networks is attracting significant attention for its potential to

modernise, technologically advance, and make distribution automation effective and

economical. IEC 61850 provides an integrated solution in the power system for

communication between intelligent devices, offering interoperability and reliability, and

incorporating a better form of standardisation as the central smart grid communication

protocol. However, IEC 61850 does not have any safety-related features, and cyber-

security attacks remain a concern in the substation environment. Edition 1 of IEC

iii | P a g e

61850 did not emphasise cybersecurity as a primary focus. The standardisation of

data models and communication protocols were the main objectives of this version.

Furthermore, Edition 2 of IEC 61850 introduced some improvements to the standard.

Although Edition 2 incorporated the enhancement of security features compared to

Edition 1, it did not offer a comprehensive set of cybersecurity capabilities that

addressed all modern security challenges.

The deployment of IEC 62351 has been introduced to address this concern in power

systems. It is crucial to secure communication in the SAS from any cyber-security

attacks. Implementing both IEC 61850 and IEC 62351 standards requires extensive

knowledge in data networking, software modelling, system simulation, and testing

procedures.

Generic Object-Oriented Substation Event (GOOSE) and Sampled Value (SV)

messages are critical for secure operation and have stringent performance

requirements. GOOSE is a model process where data is collected, grouped into a

dataset, and transmitted on a process bus. SV is a publisher and subscriber

communication where information, such as values of power, is transmitted between

the merging units and intelligent electronic devices (IEDs). Compromising GOOSE or

SV messages may cause severe power loss to the system. Manipulating or disrupting

GOOSE communications could compromise the efficient operation of protective

relays, resulting in delayed or incorrect responses under fault events. Tampering with

SV messages may result in false data being fed into the protection and control

systems, causing the protective devices to malfunction or fail. Both situations have the

potential to disrupt the power grid's normal operation, resulting in failures and power

outages that have severe consequences for vital systems and end users. As a result,

securing these communication protocols is critical to ensuring the reliability and

stability of the electrical infrastructure.

This study aims to develop an authentication algorithm for Routable-GOOSE (R-

GOOSE) or Routable-SV (R-SV) and implement it in a real-time software application.

Critical security features must be enabled to support authentication and authorisation.

The EtM algorithm is proposed for maintaining message confidentiality and integrity,

with AES-128 encryption for privacy and MAC algorithms for message authentication.

iv | P a g e

Simulation results indicate that the EtM algorithm can be successfully used for R-SV

messages while meeting the stringent 3 ms latency criteria. The results suggest that

future IEC 62351 security standards can confidently advocate for encryption for R-SV

communication.

v | P a g e

ACKNOWLEDGEMENT

I would like to express my gratitude to the following:

• The Almighty God for the provision of life, health, and energy to be able to fulfil my

dreams to this level.

• Special thanks to my supervisor, Doctor Bart, for guidance and advice. His patience,

wisdom, and advice have helped me a great deal towards completing this thesis.

• To all my friends, both in and out of the department, for your patience and help – a big

thank you.

• To my family for their never-ending support and unremitting belief that I could do this.

vi | P a g e

DEDICATION

This thesis is dedicated to my mother, Nomonde Leticia Ndzeku, and my late fiancé, Azile

Nokwindla Holayi. Further dedication goes to the entire family for all their committed support

and patience. May God continue to bless us!

vii | P a g e

TABLE OF CONTENTS

1. CHAPTER ONE: INTRODUCTION ... 1

1.1 Introduction ... 1

1.2 Overview ... 2

1.2.1 Cyber Security .. 4

1.3 Awareness of Problem.. 6

1.4 Problem Statement .. 7

1.4.1 Ideal Scenario ... 7

1.4.2 The Problem Statement .. 8

1.4.3 Proposed Solution ... 10

1.5 Research Aims and Objectives .. 11

1.5.1 Research Aims .. 11

1.5.2 Research Objectives ... 11

1.6 Hypothesis ... 12

1.7 Delineation of the Research .. 12

1.8 Significance of Research ... 13

1.9 Research Design and Methodology .. 14

1.9.1 Research Design .. 14

1.9.2 Methodology .. 14

1.10 Organisation of the Thesis .. 15

1.11 Journal Papers .. 16

1.12 Artifact... 16

1.13 Conclusion ... 16

2. CHAPTER TWO: LITERATURE REVIEW ... 18

2.1 Introduction ... 18

2.2 Awareness of the Problem in Literature .. 19

2.3 Theoretical Framework – Data Security and Privacy ... 19

2.4 Literature Review – IEC 61850 .. 33

2.4.1 Introduction ... 33

2.4.2 Theoretical Framework ... 39

2.4.3 Application, performance evaluation, and development of IEDs capable of

publishing IEC 61850-8-1 GOOSE messages ... 42

2.4.4 Application, performance evaluation, and development of IEDs capable of

publishing IEC 61850-9-2 SV messages .. 47

2.5 Literature Review – IEC 62351 .. 57

2.5.1 Introduction ... 57

viii | P a g e

2.5.2 Methodology Implementation in Literature ... 62

2.5.3 Synthesis and Analysis of Literature .. 64

2.6 Overview of Raw Socket Programming ... 74

2.7 Conclusion ... 82

3. CHAPTER THREE: THEORETICAL FRAMEWORK ... 90

3.1 Introduction ... 90

3.2 Overview of the IEC 61850 standard ... 91

3.2.1 Part 5 – Communication Requirements ... 91

3.2.2 Part 6 – Substation Automation System Configuration 92

3.2.3 Part 7 – Basic Communication Structure .. 93

3.2.4 Part 8-1 – Mapping to MMS and Ethernet .. 99

3.2.5 Part 9-1 and 9-2 – Sampled Measured Value Mapping. 101

3.3 Application of the IEC 61850 standard in a Substation Automation System . 102

3.3.1 IEC 61850-8-1 standard GOOSE Messages ... 103

3.3.2 IEC 61850-9-2 SV messages according to IEC 61850-9-2LE 109

3.4 Security Risks and Challenges in IEC 61850 .. 115

3.5 Security Requirements for IEC 61850 Messages... 117

3.6 Overview of IEC 62351 .. 119

3.6.1 IEC 62351-6: Security Extensions for GOOSE and SV 121

3.6.2 Replay Protection for GOOSE .. 122

3.6.3 Replay Protection for SV .. 122

3.7 Conclusion ... 123

4. CHAPTER FOUR: CASE STUDY: CONTEXT AND DEVELOPMENT 125

4.1 Introduction ... 125

4.2 TCP Client-Server Socket Programming ... 126

4.2.1 Common Functions used in Socket Programming 128

4.2.2 Implementation of Raw Socket ... 128

4.2.3 Socket Programming – Case Study .. 129

4.3 Plain GOOSE Source Code.. 134

4.4 R-GoSV GOOSE Source Code .. 139

4.5 Conclusion ... 144

5. CHAPTER FIVE: CASE STUDY IMPLEMENTATION: TESTING AND RESULTS

ANALYSIS ... 147

5.1 Introduction ... 147

5.2 Security of Sampled Values .. 148

5.2.1 Potential Threats and Vulnerabilities .. 148

ix | P a g e

5.2.2 Sampled Measured Values .. 149

5.3 Message Authentication Code .. 150

5.3.1 Hash Message Authentication Code (HMAC) ... 150

5.4 Authenticated Encryption .. 152

5.5 Implementation ... 153

5.5.1 Proposed Method for Achieving Confidentiality in SV Messages 154

5.5.2 Implementation and Performance Evaluation .. 156

5.6 ARP MITM attacks using Ettercap and Wireshark... 164

5.7 Comparative Analysis ... 166

5.8 Conclusion ... 172

6. CHAPTER SIX: CONCLUSION AND FUTURE WORK ... 174

6.1 Introduction ... 174

6.2 Problems Solved in this Thesis .. 176

6.2.1 Design-based Problems ... 176

6.2.2 Implementation-based Problems ... 176

6.3 Thesis Deliverables ... 177

6.3.1 Literature Review ... 177

6.3.2 Critical Analysis of IEC 61850 ... 177

6.3.3 Critical Analysis of IEC 62351 ... 177

6.3.4 Design and Development of an Authenticated Encryption Algorithm 178

6.4 Future Work ... 178

6.5 Application of the results from this thesis .. 179

6.6 Conclusion ... 179

REFERENCES ... 180

APPENDICES ... 190

APPENDIX A... 191

TCP Client Source Code ... 191

APPENDIX B... 192

TCP Server Source Code ... 192

APPENDIX C .. 193

Plain GOOSE Source Code ... 193

APPENDIX D .. 201

R-GOOSE Source Code ... 201

APPENDIX E... 212

EtM Sender Source Code ... 212

APPENDIX F ... 231

x | P a g e

EtM Receiver Source Code .. 231

APPENDIX G .. 246

APPENDIX H .. 250

APPENDIX I .. 254

APPENDIX J ... 256

xi | P a g e

LIST OF FIGURES

Figure 1.1: Substation architecture using non-standardised IED (Emmanuel, 2014). 3

Figure 1.2: Simulation Setup .. 13

Figure 2.1: Symmetric Encryption Example (Hamouda, 2020). .. 21

Figure 2.2: Asymmetric Encryption Example (ClickSSL, 2022) .. 22

Figure 2.3: Hybrid Encryption Example (Sontowski, 2016) ... 22

Figure 2.4: Covert channel secure communication (S.A. Fatayer, 2020) 23

Figure 2.5: Illustration of the HMAC Construction (Gupta et al., 2017) 29

Figure 2.6: Standardised substation automation system (Emmanuel, 2014). 34

Figure 2.7: IEC 61850 Communication Service Overview (Committee et al., 2017) 36

Figure 2.8: Logical Interfacing between Station, Bay, and Process Levels (Commission,

2017) .. 37

Figure 2.9: IEDs installed in the IEC 61850 power system (Lei et al., 2014) 38

Figure 2.10: Message communications stack in IEC 61850 (Ali et al., 2016) 43

Figure 2.11: IEC 61850-9-1 standard-based Merging Unit (Ncube, 2012) 50

Figure 2.12: Potential Cyber-attacks in a SAS (Hong et al., 2014) .. 63

Figure 2.13: An example of spoofing attacks for SV messages (Hariri et al., 2019) 66

Figure 2.14: IEC 61850 Communication Model (Kim et al., 2013) ... 71

Figure 2.15: Secure GOOSE Procedure (Hussain et al., 2019) ... 72

Figure 2.16: Generation and Verification of RSA Digital Signature Algorithm (Hussain et al.,

2019) .. 73

Figure 2.17: Sequence of function for client-server communication (Socket programming in c

using TCP/IP - Article world, 2021) ... 75

Figure 2.18: Client-server system structure ... 77

Figure 2.19 Publisher-subscriber communication model (Ozansoy et al., 2007) 78

Figure 3.1: IEC 61850 message types and performance class (Ncube, 2012). 91

Figure 3.2: System Configurator and IED Configurator (Julie, 2014) .. 93

Figure 3.3: Modelling approach (IEC 61850-7-1, 2003) ... 94

Figure 3.4: ASCI Services (IEC 61850-7-1, 2003) .. 95

Figure 3.5: Data model layers (IEC 61850-7-1, 2003) ... 97

Figure 3.6: UML class diagram of the IEC 61850 data model (IEC 61850-7-2, 2003) 99

Figure 3.7: Layered structure of the IEC 61850 standard (Mohagheghi et al., 2011) 100

Figure 3.8: IEC 61850 System Architecture (Zhao, 2012) ... 102

Figure 3.9: An example of the GOOSE Publisher-Subscriber mechanism (IEC 61850-7-2,

2003) .. 104

Figure 3.10: Repetitive transmission of GOOSE messages .. 105

Figure 3.11: GOOSE Message Frame Structure (International Electrotechnical Commission,

2009) .. 108

Figure 3.12: Sampled Value Control Class (IEC 61850-7-2, 2003) ... 110

Figure 3.13: Structure of an IEC 61850-9-2 SV Message (Hariri et al., 2019) 112

Figure 3.14: IEC 61850-9-2LE data model .. 114

Figure 4.1: Client socket ... 130

Figure 4.2: Connect function .. 130

Figure 4.3: Close function ... 130

Figure 4.4: Software output for Client communication ... 131

xii | P a g e

Figure 4.5: Server socket .. 131

Figure 4.6: Receive function ... 132

Figure 4.7: Bind function ... 132

Figure 4.8: Software output for Server communication .. 133

Figure 4.9: GOOSE PDU format (Hussain et al., 2019) ... 135

Figure 4.10: UDP Sending (Zhao, 2012) .. 136

Figure 4.11: Packet capture of unsecure GOOSE message... 137

Figure 4.12: Create socket function .. 138

Figure 4.13: Send function .. 139

Figure 4.14: Session Layers in IEC 61850-90-5 (Ustun, 2021) .. 141

Figure 4.15: Wireshark frame of secure R-GOOSE ... 143

Figure 5.1: EtM security algorithm ... 152

Figure 5.2: EtM algorithm applied to GOOSE or SV PDU (Hussain, Farooq, et al., 2020) .. 155

Figure 5.3: Structure of Extension field (Hussain, Farooq, et al., 2020) 156

Figure 5.4: PC with Kali-Linux and PC with Wireshark Network Analyzer Software and

Ettercap .. 157

Figure 5.5: Packet capture of EtM SV message ... 158

Figure 5.6: Terminal output for publisher device ... 160

Figure 5.7: Packet Capture of Publisher ... 160

Figure 5.8: Terminal output for subscriber device ... 161

Figure 5.9: Packet Capture of Subscriber .. 162

Figure 5.10: Ettercap capture of MITM attack ... 165

Figure 5.11: Wireshark capture of MITM attack .. 165

Figure 5.12: Rejected SV PDU .. 166

Figure 5.13: Wireshark capture of GOOSE PDU with error .. 167

Figure 5.14 Wireshark capture of correct GOOSE PDU .. 170

Figure 5.15 IEC 61850-8-1 GOOSE PDU structure (ASN.1 Encoding) 171

xiii | P a g e

LIST OF TABLES

Table 2.1: Encryption Techniques (Thakkar, 2020) .. 24

Table 2.2: HMAC Algorithm .. 28

Table 2.3: Data security reviewed literature papers. .. 30

Table 2.4: IEC 61850 GOOSE Literature Review ... 44

Table 2.5: IEC 61850 SV Literature Review .. 50

Table 2.6: Summary of IEC 62351 Standard (Cleveland, 2012) .. 58

Table 2.7: Assessment for Significant IEC 62351 Parts(Schlegel et al., 2017b) 60

Table 2.8: Comparison of IEC 62351-6 GOOSE and SV frame security implementation

proposals (Rodriguez et al., 2021) .. 69

Table 2.9: Socket programming reviewed literature papers. ... 78

Table 2.10: IEC 62351 reviewed literature papers .. 82

Table 3.1 Logical Node groups in the IEC 61850-7-1 standard (IEC 61850-7-1, 2003) 97

Table 3.2: GOOSE Control Block Class (International Electrotechnical Commission, 2009)

 .. 106

Table 3.3: SV Control Block Model (IEC 61850-7-2, 2003) ... 111

Table 5.1: Publisher and Subscriber Algorithm ... 159

Table 5.2: Computational time for secure SV security algorithm .. 163

xiv | P a g e

GLOSSARY OF TERMS

• International Electrotechnical Commission

The International Electrotechnical Commission (IEC) prepares and publishes

International Standards for all electrical, electronic, and related technologies.

• IEC-61850

The standard for communications at a substation.

• IEC-62351

The international information security standard for operations in the control of power

systems.

• IEC TC57 WG15:

IEC 62351 requirements for power system security. The communication standard was

initiated to assume the evolution and implementation of cybersecurity standards for

substation automation system communications.

• IED

Intelligent Electronic Device. A microprocessor-based system that performs protection,

measuring, and control functions in the substation automation industry.

• RTDS

Real-Time Digital Simulator for power systems. It can simulate any current substation

system in real-time.

• GOOSE

The Generic Object-Oriented Substation Events protocol is event-based. GOOSE is

specified as a publisher/subscriber type communication to distribute information

exchange between IEDs across a substation network over Ethernet.

• SAMPLED VALUE

Sampled Values (SV) protocol is a publisher/subscriber type communication. SV is

used for information exchange between IEDs in a Substation over the Ethernet. SV is

used for sending digitised values of power system quantities.

xv | P a g e

• Substation Configuration Language

Substation Configuration Language (SCL) reference’s part 6 of the IEC61850

standard. SCL provides a mechanism for defining how substation equipment is

connected to the substation.

1 | P a g e

1. CHAPTER ONE: INTRODUCTION

1.1 Introduction

Power systems have long been a crucial component of infrastructure since they provide

dependable and uninterrupted power to people's homes, workplaces, and factories all around

the world. Cybersecurity is becoming increasingly crucial, not only for these physical systems

but also for the software platforms that operate and maintain them. Cyberattacks are growing

more widespread, sophisticated, and destructive. As a result, power systems are now

vulnerable to similar attacks. Indeed, multiple cyberattacks on electrical systems have been

reported in recent years, with some causing significant damage. Given this risk, both power

systems and the software that supports them must be appropriately secured.

Cyber security in power systems is an important component of the total resilience of the

electrical grid, as digital attacks on such networks can be disastrous for critical infrastructure.

As a result, industry professionals and government institutions must work tirelessly to remain

ahead of harmful attack attempts. Many major victories have been achieved in this regard:

effective security solutions have been developed; protocols have been upgraded to better

protect connected systems from attack; and best practices are periodically examined to assure

regulatory compliance.

Researchers and the electrical sector have paid close attention to authentication algorithms

for IEC 61850 GOOSE and Sampled Value messages (SVM) in recent years. The reason for

the attention: first, these are the two most commonly used communication formats in smart

grids and second, many people are concerned about their security and privacy. Unfortunately,

if these messages are not properly verified, they can be readily compromised. Several sectors

are profiting from the use of IEC 61850 GOOSE and Sampled Value messages, as well as

the implementation of IEC 62351 security measures. GOOSE and Sampled Value messages

are ethernet-based systems and hence introduce a risk of cyber security. Authenticated

communication is essential in many security applications. The number of such applications is

growing, but more efficient and safe authentication procedures are still required. We introduce

a general architecture in this thesis for creating authentication methods for IEC 61850 GOOSE

and Sampled Value messages. We begin by outlining the fundamental structure and elements

of an authentication algorithm. The development of our framework for the authentication

algorithm is then thoroughly described. Finally, using a set of best practices and actual cases,

2 | P a g e

we assess the suggested framework. Also, we conducted simulation tests to assess the

performance and efficiency of our algorithm.

As a result, even though there will always be a chance that power systems' cyber security may

be compromised, taking these preventative measures (implementation of IEC 62351 security

measures) greatly lowers the potential damage. Organisations must act proactively to

safeguard their digital assets given the constantly changing dangers posed by criminal actors.

As a result, a thorough strategy that takes into account organisational and operational factors

in addition to technological ones must be established. Strong authentication and authorisation

mechanisms, encryption of sensitive data in storage and transit, ongoing monitoring of online

behaviour, routine system patching, prompt reaction to new threats and vulnerabilities, and

awareness training for staff are all required as a result. Companies can successfully reduce

risk and improve overall cybersecurity by implementing these actions.

1.2 Overview

For accurate, reliable monitoring and control in the substation, and to ensure quality power in

the electrical network and protection (including security mechanism) of the infrastructure in

case of faults or cyber-attacks, secure Supervisory Control and Data Acquisition (SCADA)

applications were implemented (Ncube, 2012). SCADA operations are critical for data control,

data monitoring, and equipment control for operational maintenance. SCADA systems are

based on communication and many protocols have been deployed in the system to allow for

data exchange. SCADA systems are used to make use of legacy communication protocols

such as DNP3, Modbus, etc. These protocols are regarded as non-standardised legacy

communication protocols. These protocols were either based on RS-232 or RS-485 which

were limited to a data transfer rate of less than 1Mbps, which greatly negatively affects

execution time and data access as information can be easily intercepted when the

transmission of information data is low (Ncube, 2012). Figure 1.1 shows a solution where non-

standardised ethernet-based Intelligent Electronic Devices (IEDs) are implemented. One of

the advantages of ethernet-based systems includes the use of less copper wiring (and hence

the connection time is less), inexpensive cabling cost, and network addressability.

3 | P a g e

Figure 1.1: Substation architecture using non-standardised IED (Emmanuel, 2014).

Cyber security is essential for the safe and efficient operation of the intelligent electrical

network. (Leszczyna, 2018) agrees that standardisation should be applied throughout.

Recently, many new standards have been published to address communication networks and

cyber security within substation automation. In the 21st century substation automation has

become one of the most interesting topics and hence the two standards of IEC 61850 and IEC

62351 in power system networks. Both IEC standards have gained and attracted worldwide

attention as the dominant topics in power systems. As such for this research, the focus will be

on the following applicable standards, IEC 61850, and IEC 62351 which define communication

networks and cyber security requirements for power systems.

At most, the violation of cyber security may result in a business loss in terms of finances and

other major consequences as a result. Cyber-attacks on the smart grid may be harmful having

a disadvantaged impact on the health, safety, or economic situations of the general population.

Securing the smart grid is one of the paramount fundamental procedures that need to be taken

to protect the grid from attacks and this requires multidisciplinary approaches and procedures

that form a combination with various technologies, policies, and standards. The International

Society of Automation (ISA) introduced security standards for the industrial control system.

The security requirements are also well suited for the SCADA and Information Technology

(IT) environment (Karnati, 2020):

1. Access control,

2. Usage control,

3. Data privacy,

4. Data confidentiality,

5. Limit data flow,

6. Timely event response and,

7. Network resource availability.

4 | P a g e

IEC 62351 is the standard for cyber security to help secure IEC 61850 communication.

(Hohlbaum et al., 2010) however, alludes to some challenges of the standard that need to be

addressed. Secure communication in the real-time substation environment must be addressed

per the IEC 61850 real-time specification. This can be achieved by complying with the

technical specifications of IEC 61850 GOOSE and SV messages as specified in IEC 62351-

6.

1.2.1 Cyber Security

Networking applications are increasingly in demand for secure communication. Finding a

method to verify data security transmission over an unstable and insecure medium is a

necessity. The demand for secure data communication has initiated the development of

cryptographic standards and encryption algorithms (Khali et al., 2016). The Hash Message

Authenticated Code (HMAC) is considered a preferred standard for authentication with robust

security features. It is a signed security tag used to secure plaintext employing authentication

(Karnati, 2020). As such, the Secure Hash Algorithm (SHA)-2 hash function was introduced

with improved security levels of the Advanced Encryption Standard (AES). HMAC and digital

signature algorithms (DSA) rely heavily on hash functions. The first secure hash function

algorithm, SHA-1, was released in 1995; and used in numerous network-based applications,

however, is being phased out. SHA-1 is used for message authentication with the shared

secret key. The implementation of HMAC is to provide authentication to both the source of the

message and its integrity achieved by attaching a digital signature to the message (Michail et

al., 2004). Therefore, the receiver of the communication is in a position to determine whether

or not the message has been altered maliciously by the cyber-attacker. Nonetheless, both the

sender and the receiver need to have access to the same secret key to identify any changes

made to the message. Due to the increasing demand for internet technology, essential security

implementation is required. Furthermore, another discussion on high-performance

development in security development and implementation is required.

Daily, the use of the internet is rapidly increasing and as such, it is expected that internet

networking is secured. Internet together with cyber security is an essential, critical, and crucial

subject in today’s information and cyber systems. The transmission of data or information must

be protected against illegal and unauthorised access by providing special security measures.

Digital signatures, which may be used to authenticate a communication (encrypted or not), are

one of the security techniques employed to protect information by examining the original

content of the message that has not been tampered with. One of the advantages of the digital

5 | P a g e

signature is that it cannot be imitated as such, the message is time-stamped and signed. The

process includes initiating the identity of the signatory and the integrity of the message can be

verified (Alajbegović et al., 2006). As such, integrity and authentication cannot be separated

as encryption alone does not provide integrity nor does it provide authentication.

(Oyelade et al., 2015) studies the implementation of secured message transmission using the

Data Encryption Standard (DES) and Rivest Shamir-Adleman (RSA) cryptosystem. In the

past, cryptosystem was used to secure and protect confidential information in the defence

force and important state institutions such as national security. Security methods are

continuously being used to secure critical and confidential data against cyber-attacks. As

mentioned, essential information needs to be protected against any penetration and

tampering; the information must also be transmitted confidentially. (Oyelade et al., 2015) utilise

the encryption and decryption mechanism using an asymmetric algorithm to provide a secure

channel. Furthermore, the transmitted data will be encrypted and decrypted using the

symmetric algorithm. It is critical to maintain the authenticity or security of digital data while it

is being transmitted across a network; encryption is a critical component in maintaining data

integrity and security (Pedamkar, 2023).

The implementation of the cryptosystem is to address authentication, confidentiality, integrity,

and non-repudiation security features. Authentication is a function or process related to the

verification and determination of the source of data, verifying a user’s identity. Confidentiality

ensures the privacy of the data. Only authorised users can possess the contents of the

information. Confidentiality is designed to prevent malicious attacks such as snooping. Data

integrity is designed to protect the contents of the information to ensure that it is not altered

by authorised users. When sending or receiving data, the non-repudiation service protects

against data being retracted by either the sender or the receiver. Non-repudiation is not part

of integrity; it is a security feature that prevents an intruder from denying the validity of their

previous actions and provides evidence that an action occurred.

(Oyelade et al., 2015) further studies the implication of speed and strength of the symmetric

algorithm with the strength and key management capabilities of the asymmetric algorithm. It

is noted that the symmetric algorithm provides a poor key management technique and as such

the implementation of the algorithms is such that the key generation is processed using the

asymmetric encryption technique, RSA algorithm. RSA algorithm technique is known for its

advantages in encryption and authentication when employed. The process used for encrypting

and decrypting the data is symmetric encryption. Successful transmission of the text document

data (using client-server) is concluded using an enhanced encryption algorithm that combines

6 | P a g e

the strengths of both the symmetric and asymmetric key algorithms. The technique was

implemented in Microsoft Visual Basic. NET. It was further found that the combination of these

two key algorithms provides an increase in the encryption speed. As stated on paper, the

technique provides better security when used together.

1.3 Awareness of Problem

The IEC 61850 and IEC 62351 standards are being implemented globally in the substation

automation engineering field for protection, monitoring, and control. The development and

implementation of the standards are well documented in scientific papers. Examples of typical

applications can be found in (Farooq et al., 2019), (Schlegel et al., 2017a), (Hohlbaum et al.,

2010) and (Pal & Dash, 2015). The efficient operation of the power network requires secure,

failsafe, accurate, and reliable mechanisms to ensure that network integrity is maintained for

optimal operation. The implication is that any tool or mechanism utilised to assist with the

reliable operation of the power system should inherently be robust, accurate and effective.

Viruses and cyber-attacks have compromised the cyber-security of industrial networks.

Delivery of messages is delayed as a result of these attacks (Denial-of-Service, Man-in-the-

Middle etc.), and data loss and data security become increasingly important when interacting

with network components. Cybersecurity is a growing concern in substation automation, and

it is important to protect all information in Substation Automation Systems (SAS). However,

IEC 61850 does not have any safety-related features, and the deployment of IEC 62351 is

necessary to address cyber security concerns.

The smart grid and substation automation networks are installed with IEDs which operate on

communication protocols that need to conform to IEC 61850 and the implementation of the

IEC 62351 security standard is also to be prioritised. Information infrastructure that enables

power system protection, monitoring, and control is essential to substation automation.

Previously, communication networks were not vulnerable to security measures as

communication occurred via private networks which implies that they were secured through

Security Through Obscurity (STO). This meant that a system can be secure so long as nobody

outside of its implementation group can find out anything about its internal mechanisms. The

research into the security of communication networks in substation automation has driven the

need for standardisation of power system communication protocol as security and integrity

became a never-lasting concern.

7 | P a g e

With the increasing installation of IEDs in the power system network, it is essential to

implement secure communication for substation equipment. Problems in cyber security can

arise when communication is not secured or unreliable. The power system needs to be

protected against cybersecurity attacks and hence security for IEDs is critical. Security attacks

may come in the form of deliberate attacks launched by disgruntled employees or hackers

who can compromise the substation network. One of the ways to prevent intrusion of systems

is to install the Intrusion Detection System (IDS) and Intrusion Prevention System (IPS). IDS

protects SCADA and substation automation systems against cyber-attacks. IDS detect

uncertified and harmful actions on the substation network and as well identifies problems in

the communication, allowing it to detect malfunctions in the substation. Its unique approach

automatically creates a complete system model of the automation system and the substation.

An intrusion prevention system (IPS) is software that performs all of the functions of an IDS

while additionally attempting to prevent cyberattacks. It not only detects malicious activity, but

it also takes steps to prevent attacks from any suspicious activity. The IPS may drop a packet

from suspicious traffic, automatically terminate a port, or block future network traffic from that

IP address.

Security standards need to be assessed to address vulnerabilities in the smart grid

infrastructure. To protect the Confidentiality, Integrity, and Availability (CIA) of substation

networks, the communication in power systems needs to be safe from cyberattacks.

Confidentiality can be managed by encrypting data and files and requiring multi-factor

authentication. Integrity can be achieved by using cryptography and digital signatures to

securely check and prove the integrity of data. Availability monitoring and maintaining

hardware and software. Security mechanisms in the power system network must be

implemented by achieving a balance in information technology and power system operations.

This study will contribute towards the adoption of the IEC 62351 standard.

1.4 Problem Statement

1.4.1 Ideal Scenario

An accurate security mechanism will ensure that the power system will be efficient, robust,

reliable, and protected from cyber-attacks. One of the most recommended practice steps that

can be considered in a power system environment is to conduct an industrial control system

security risk assessment. However, that might not be enough; the authentication and

8 | P a g e

encryption security control form the basis for most cyber security solutions techniques utilised

in power systems.

The cyber security strategy must protect the assets most critical to an efficient and reliable

power system operation. All communication networks to the power system must be secured

and continually assessed for any changes and new vulnerabilities. Defensive strategies need

to be put in place to detect when a potential vulnerability is exploited. Critical security controls

can reduce the risk of cyber-attacks by great margins.

The industrial environment is to implement and develop a strong security control mechanism

to increase operational efficiency and reduce the risk of attacks through the standardisation of

IEC 61850 and IEC 62351. What typifies a secure power system and hence reliable and

efficient is that implements authentication or encryption security controls conforming to

communication and cyber security standards.

1.4.2 The Problem Statement

There is a need to develop robust authentication algorithms for IEC 61850 GOOSE and SV

messages in modern networked substations to prevent cyberattacks and improve the security

of these systems. Within this standard, a low latency restriction must be met, as well as time-

critical status transfer. Hence a need for high-speed time-critical communications for updating

the status and events in the power system. The development of the thesis will include the

design and implementation phase. The design phase will focus on the code development of

the authentication algorithm adhering to the correct frame structure for GOOSE/SV messages.

The implementation phase is the commissioning of the presented authentication algorithm

using the Kali Linux command line to run the code, Wireshark to collect and analyse data, and

Ettercap to launch man-in-the-middle attacks (MITM) to infect traffic between the publisher-

subscriber devices.

There are many substations across the world and each one of them is critical for achieving

the efficiency and adaptability of the smart grid network. As part of the operation of the smart

grid, information about the consumption and operations is required to be transmitted to a

substation automation system for analysis. This however requires data to be transmitted via

two-way communication; this is achieved by Ethernet and TCP/IP and conforms to the IEC

61850 standard. As such, the communication protocols raise security risks and cyber threats.

The power system communication is also to be secured using IEC 62351 as a reference. The

industrial environment has recognised various security vulnerabilities to which the power

9 | P a g e

system may be susceptible. The substations are critical power systems that require high input

speeds, redundancy and dedicated equipment to meet the operating requirements. The

execution of IEC 62351-6 presents the most computational requirements as far as

implementation is concerned. It must perform the responsibility of authentication security

mechanism of GOOSE and SMV in the required critical transfer time of 3ms. This is paramount

and essential for protecting and safeguarding substation functioning.

One of the recommended security mechanisms is encryption. Encryption is used to achieve

confidentiality in substation communication. IEC 62351, Part 3, and Part 4 propose the use of

TLS for TCP/IP to provide confidentiality. Symmetric key and asymmetric key are the two

methods used for encryption. The symmetric algorithm employs one key to encrypt and

decrypt, while the asymmetric algorithm utilises two separate keys to encrypt and decrypt.

One of the commonly used symmetric block ciphers is Data Encryption Standard (DES),

TripleDES, and Advanced Encryption Standard (AES). One of the most extensively used

methods is DES, however, as a result of concerns regarding the level of security (vulnerable

to brute force attack) it provided, the TripleDES algorithm was presented to the DES to

increase the security level however it presented a slow encryption algorithm (Weerathunga,

Pubudu Eroshan, 2012). AES is the new recommended standard.

The most popular asymmetric cipher is the RSA algorithm. RSA is a cryptographic algorithm

employed for key exchanges and digital signatures. However, it has the disadvantage of being

time-consuming and requires a greater amount of processing power. RSA encryption is also

vulnerable to brute force attacks however with the implementation of complex keys the brute

force attack can be prevented. Another development would be to use Elliptic Curve

Cryptography (ECC) which has a small key size and a computational advantage. Asymmetric

encryption ciphers are cryptographically more secure than symmetric ciphers but their

encryption and decryption speeds are too slow for power system communication protection

(Weerathunga, Pubudu Eroshan, 2012). Therefore, encryption only provides additional CPU

load on the IEDs and increases GOOSE transmission time. The communication system must

be able to meet the timing demands associated with Protection, Automation and Controls

(PAC). A detailed investigation of its behaviour must be taken into account given the time-

constrained nature of SAS applications.

10 | P a g e

1.4.3 Proposed Solution

A secure substation automation control operation is vital due to the critical information system.

Standardised communication is critical in power system automation. The standard IEC 61850

is popular (due to its flexible and robust modelling) because it is set to become the standard

for power system communication. IEC 61850 specifies protocols that are set to address the

problem of compatibility. Of the customs, GOOSE is specifically made to meet the needs of

operations, while being mindful of timing requirements. As the number of critical infrastructures

employing IEC 61850 increases, cybersecurity aspects are also relevant to the study. IEC

62351-6 and IEC 61850 standards work together and address security mechanisms to protect

IEC 61850 messages. These mechanisms must not cause delays in IEC 61850 messages as

GOOSE and SV messages have time-critical requirements. Considering the speed, the Keyed

Hash-Message Authentication Code-Secure Hash Algorithm (HMAC-SHA256) must be

introduced to authenticate GOOSE and SV messages to achieve integrity and authentication

of Message Authentication Code (MAC) based digital signature algorithm.

To address the above problem, this study examines the development of a security algorithm

and evaluates the impact of the security mechanism on IEC 61850 GOOSE and R-SV

communication performance.

Existing cybersecurity features from the open-source code library will be introduced to

incorporate the security algorithm (https://github.com/61850security). By using HMAC

techniques, it secures GOOSE message transmission. The secure GOOSE functions are

created using the C programming language and the OpenSSL library. The proposed security

method was shown to be capable of meeting GOOSE's time requirements by (Hussain et al.,

2019). The literature review demonstrates that increasing research is being done on protecting

GOOSE communication, although applying authentication techniques to SV protocol is still

uncommon. This thesis presents a design-based solution algorithm and analysis for

implementing a secure R-SV message to prove that the enabled security algorithm can secure

SV packets with negligible timing requirements. Most importantly the implementation will

conform to the structure of the SV protocol data unit (PDU). The solution will be tested and

validated with an HMAC algorithm on a software platform.

https://github.com/61850security

11 | P a g e

1.5 Research Aims and Objectives

1.5.1 Research Aims

This project will explore and evaluate the application of standard IEC 61850 and IEC 62351

technology in the automation environment of the substations.

This study aims:

1. To develop, implement, and analyse various encryption algorithms and key

management agreements for GOOSE and R-SV.

1.5.2 Research Objectives

The objectives of this study seek to address:

1. Literature review on the history of substation automation systems.

2. Literature review of data encryption algorithms.

3. Literature review of IEC 61850 and IEC62351 standards.

4. Literature review: To study the IEC 61850 standard methodologies and mapping.

5. Theoretical analysis of data encryption algorithms.

6. Investigation of the effect of messaging propagation delays introduced by the data

encryption algorithm.

7. To enhance the compatibility of data encryption algorithms, tailored to meet the

requirements of IEC61850 standard-based communication in substations through

adaptation and improvisation.

8. Investigation of the performance of the existing and proposed algorithm for various

case studies.

9. Development of an algorithm for data transfer on the Ethernet communications

network.

10. An algorithm is to be synthesised and ported to a software deployment using a Kali-

Linux virtual machine to simulate the algorithm.

11. The development of testing and validation of security algorithm for R-SV message.

12. Analysis of results and conclusion.

12 | P a g e

1.6 Hypothesis

The implemented authenticated encryption algorithm will comply with IEC 61850 and IEC

62351 and the critical time requirements of data transmission are adhered to. An authenticated

encryption algorithm is implemented for maintaining message confidentiality and integrity. The

developed security algorithm is utilised on the SV frame structure. The R-SV messages are

captured using Wireshark to validate the data traffic and Ettercap is used to perform an MITM

attack by spoofing network traffic. Simulation results indicate that the EtM algorithm can be

used for GOOSE/R-SV messages while meeting stringent latency criteria and the future IEC

62351 security standards can advocate encryption for R-SV communication.

The research work will test the following:

1. Integration of the HMAC algorithm with an R-SV message.

2. Ensure that R-SV packet frame structure is conformed to, and protocol complies with

IEC 61850.

3. Ensure that the HMAC algorithm conforms to IEC 62351-6.

4. Prove that the implemented HMAC algorithm meets timing and security requirements.

1.7 Delineation of the Research

This thesis is to develop an authentication algorithm for IEC 61850 GOOSE and R-SV

messages and further evaluate the impact of the security mechanism on IEC 61850

communication performance. The design will be developed and employed on a Kali-Linux

software platform; where the client-server code and security algorithm for R-SV will be tested

and validated. For GOOSE and R-SV communications, an authentication algorithm will be

used to ensure message integrity and authenticity. As such, considerable knowledge is

required for raw socket programming and code development for client-server for GOOSE and

R-SV message structure.

The following tasks form part of the project:

1. Development of methods for IEC 61850 standard implementation.

2. Development of methods for IEC 62351 standard implementation.

3. Development and implementation of an authenticated encryption algorithm for R-SV

messages.

4. A C program running on a personal computer is proposed for the simulation of the R-

SV message. The choice of C-language for simulating IEC 61850 Sampled Value

streams is not mandated by the standard itself but is often made for practical reasons.

13 | P a g e

5. C is a low-level programming language. C allows developers to optimise code for

performance, ensuring that the simulation runs efficiently. C-language is generally

faster and more efficient. It does not increase the payload and the frame structure is

compliant.

6. Wireshark is proposed for the capture and analysis of the data packet of the generated

R-SV messages.

7. Ettercap is proposed for generating the MITM attack.

The design and implementation will be conducted on a simulation setup for the confirmation

of GOOSE and R-SV messages as illustrated in Figure 1.2.

Figure 1.2: Simulation Setup

The thesis studies security mechanism that deploys authentication codes for GOOSE in

particular and R-SV communication.

1.8 Significance of Research

Conformance to the IEC 61850 and IEC 62351 is crucial for the optimal operation of the

substation automation network. IEC 61850 provides mechanisms for developing the best

engineering standard for substation automation systems. Conformance to the IEC 62351

standard is of paramount importance as cyber security is an increasing concern regarding

power systems as industrial plants have been compromised by attacks and viruses. IEC 62351

specifies communication protocols and the security mechanisms suitable for protecting

information in the substation automation network. The development of cyber security

algorithms and techniques for information security to ensure the CIA will contribute to the

evolution of substation automation networks. It is important to develop encryption mechanisms

14 | P a g e

such as algorithms and techniques to ensure the authenticity and integrity security of GOOSE

and SV communication in a power system.

This study will contribute towards the growing knowledge base in substation automation and

cyber security. Furthermore, it will also facilitate the education of technologists and engineers.

1.9 Research Design and Methodology

1.9.1 Research Design

This is an experimental study design that aims to take particular factors into account in

accordance with the hypothesis. A brief description of the research plan is presented

accordingly:

1. Define Objective: Development of an authentication algorithm for IEC 61850

messages.

2. Planning/Designing Process: The development of the thesis will include the design and

implementation phase. The review of the literature and available implemented

solutions is to be studied.

3. Experimentation Procedure: The design phase will focus on the code development of

the authenticated encryption algorithm adhering to the frame structure for GOOSE/R-

SV messages. The implementation phase is the deployment of the presented

authenticated encryption algorithm using the Kali Linux command line to run the code.

4. Analysis/Modelling: Wireshark is used to collect and analyse data, and Ettercap is used

to launch MITM attacks to infect traffic between publisher-subscriber devices.

5. Interpretation of Results: The Wireshark capture will show all the required fields

according to IEC 61850-8 for GOOSE, IEC 61850-9-2 for R-SV and the generated

attacks of the packets are analysed. This will provide a platform that can be easily

reconfigured to test improvisations or updates and amendments to programs.

6. Conclusion: Questions must be resolved. Can authenticated encryption be

successfully implemented with R-SV PDU? Does the implemented security algorithm

meet timing requirements? Was the frame structure for GOOSE/R-SV compliant?

1.9.2 Methodology

15 | P a g e

A review of the literature will be undertaken to ascertain the trend in IEC 61850 and IEC 62351

for GOOSE and SV messages. Attention will be focused on works related to theoretical studies

and practical implementations of proposed security mechanisms for GOOSE and SV

messages. Newly proposed encryption methods will also be a focal point to ascertain

mechanisms for best practice. The article uses an experimental research design to develop

and evaluate authentication algorithms for IEC 61850 GOOSE and R-SV messages in

substation automation systems. The article follows these steps:

1. Review the literature on substation automation systems, communication and cyber

security standards, authentication methods and data encryption algorithms.

2. Analyse the theoretical aspects of authentication methods and data encryption

algorithms and their impact on message propagation delays.

3. Develop an algorithm for data transfer on the Ethernet communications network using

C programming language and OpenSSL library.

4. Simulate the algorithm on a personal computer using Kali-Linux virtual machine,

Wireshark, and Ettercap tools.

5. Test and validate the security algorithm for R-SV messages and evaluate its

performance for various case studies.

6. Conclude with a discussion of the results and future research directions.

1.10 Organisation of the Thesis

The thesis is divided into six chapters detailing the introduction and background into substation

automation systems, problem definition, a literature review into substation automation trends,

a detailed study into IEC 61850 and IEC 62351standard, an investigation into the IEC 61850

GOOSE and Sampled value messaging system, and the results of the software development

of the simulated security algorithm for GOOSE message.

Chapter 1: presents an overview of the substation automation developments, IEC 61850, and

IEC 62351 standards and highlights the problem definition, project aims and objectives, and

research methodologies.

Chapter 2: presents the literature search and literature review into IEC 61850 and IEC 62351

standards. This section also reviews the GOOSE and SV messages. The development of

security mechanisms in substation automation. Various technical papers, journals, and articles

were read and analysed.

16 | P a g e

Chapter 3: discusses comprehensively an overview of the IEC 61850 standard with emphasis

on sampled value messaging and in particular focus on GOOSE messaging.

Chapter 4: presents various authentication codes for GOOSE and discusses the output of

each code. The codes will be compiled using Kali-Linux Virtual Box.

Chapter 5: describes the authentication algorithm development and implementation of the

GOOSE message and provides snippets of the code. The design will conform to the applicable

standards, IEC 61850, and IEC 62351.

Chapter 6: provides a conclusion to this research project and provides expansion prospects

such as real-time implementation for future research projects. Following Chapter 6, the

references and appendices are supplied.

1.11 Journal Papers

A journal paper will be published.

1.12 Artifact

The project will contribute towards an integrated merging unit that can be deployed in a

substation environment.

1.13 Conclusion

This chapter discussed the necessity of developing and implementing cyber security in the

substation automation environment. Traditional communication protocols need to be updated

with security measures that can counteract current security threats. The electricity grid is no

longer contained within its physical structure, which makes security even more difficult. If

security standards are not updated, energy data could become even more exposed since it is

transmitted through and stored in the cloud.

A brief overview of the communication and cyber security standard was discussed.

Furthermore, the introduction to Hash Message Authentication Code (HMAC) was deliberated.

17 | P a g e

This chapter outlines the research project's goals and objectives, problem statements,

methods, and contributions and further includes a chapter outline for this thesis.

The second chapter contains an extensive literature review of research projects on the

development of algorithms for secure GOOSE and R-SV messages. This chapter of the

literature review also covers the introduction of the IEC 61850 standard, the IEC 62351

standard, and raw socket programming. Several papers are reviewed to assess/outline the

research aims and objectives.

18 | P a g e

2. CHAPTER TWO: LITERATURE REVIEW

2.1 Introduction

As the grid gets smarter and more networked, substation automation relies on digital control

and digital communication to secure, control, and monitor the grid's operations. The evolution

of Substation Automation Systems (SAS) has continuously sought advanced technology

integration to deliver power with the protection of operators, power system equipment, and the

end-user. The stability of the grid is vital as electricity is to be delivered continuously without

failures. This motivated the need for quality and reliable electricity supply. The intermittent

interruption of communication in the grid, the growing concerns of standardisation in the

substation automation environment, and cyber security have gained attention to address

stable and reliable communication and cyber security in the power system. Hence, the

necessity for standardisation of communication networks, and substation design, prompted

the rapid development and implementation of technology to networked smart grid systems.

Communication is the fundamental factor in SAS, and virtually the security of the power

system environment must be developed with performance and reliability addressed.

Concerns regarding the security of SAS communication are studied. Also, the development of

various security mechanisms for a secure power system is addressed. The substation is a

critical infrastructure, consisting of critical devices that should be protected against malicious

security attacks. Unsecured, and unprotected communication networks raise various security

issues. IEC 61850 and IEC 62351 are receiving worldwide consideration and as such have

managed to become the substation automation communication and cyber security standard

of the future. The IEC 61850 GOOSE and SV messages are essential for the secure

functioning of the electrical network.

The following is a list of the sections that make up this chapter: Section 2.2 discusses the

awareness of the problem in the literature. A review of relevant literature about cybersecurity

is found in section 2.3. Section 2.4 focuses on IEC 61850-8-1 GOOSE and IEC 61850-9-2

SV messages. Furthermore, it presents a literature review relevant to the mapping, publishing,

evaluation, and application of IEC 61850 communication in a SAS. Section 2.5 deals with the

literature review of the cyber security standard, IEC 62351 and section 2.6 provides an

overview of socket programming. Section 2.7 draws the conclusion.

19 | P a g e

2.2 Awareness of the Problem in Literature

When the internet and the advancement of digitalisation are used to facilitate communication

between literally billions of people and are used as a tool for commerce, social interaction, and

the exchange of an increasing amount of personal information, security has become an

extremely important issue for all internet users to deal with daily. Smart grids can be connected

to substations via the internet (for remote monitoring and control, fault detection, cybersecurity

monitoring, grid optimisation, and advanced metering infrastructure), as well as to other smart

grids. As a result, energy generation may now be dispersed throughout the entire grid, which

is equipped with sensors to assist in monitoring, protecting, and controlling it. Smart grids and

microgrids, in addition to their advantages, have some disadvantages and additional

challenges to overcome, such as concerns about compromised data security and privacy. As

a result of communicating through a network, security must be strengthened to avoid being

targeted by hostile activities and to maintain a stable grid. Data protection professionals are

concerned about the amount of information that can be collected and provided to service

providers, as well as the chance that this information could end up in the hands of malicious

attackers. These data sets may contain significant information on the subject (Sontowski,

2016). Security and privacy are two crucial needs for smart grids, yet they are also important

for traditional grids. Because a grid contains a large number of security-critical systems, it is

vital to ensure their safety and security. When it comes to smart grids, the protocol IEC 61850

is widely employed. However, IEC 61850 does not have any standardised security

procedures. Techniques for ensuring secure communication can be implemented. Therefore,

the communication standard can be used in conjunction with TLS and SSL. These two

protocols are responsible for network communication security (Sontowski, 2016). Part 3 of the

IEC 62351 standard was introduced to address security measures. It was proposed in IEC

62351-3 and IEC 62351-4 that TLS be used for profiles that contain TCP/IP. TLS and IPSec

encrypt data to maintain the security and privacy of communications (Weerathunga, Pubudu

Eroshan, 2012).

2.3 Theoretical Framework – Data Security and Privacy

Inadequate data security costs organisations billions of dollars per year, according to industry

estimates (Bogdanov et al., 2011a). As such, a significant amount of money is spent to

safeguard the systems after they have been compromised. Significantly so, it is now possible

to decrease numerous hazards and improve the security of systems by implementing security

procedures. Security measures must be put in place from the beginning of a project, and they

must be in place throughout the entire process, from design to development to implementation

20 | P a g e

and they must be tested regularly. Taking enhanced security measures and

precautions is critically important. Many issues can be traced back to a lack of proper data

security and data privacy measures in place. Most businesses place a high value on privacy

to maintain their consumers' trust. Privacy, on the other hand, is a considerably broader term.

(Hitachi ABB, n.d.) design the FOX615 multiplexing platform's TEGO1 interface board.

TEGO1 has an integrated IEC 61850 interface that allows it to connect directly to an electrical

substation's IEC 61850 station/process bus. This interface enables the use of GOOSE and

SV messages for line distance and differential protection, as well as new applications like

remote trip and interlocking. TEGO1 is included in IEC 61850. It portrays the distant IED in

the local substation. TEGO1 was created to address one of three major issues: cybersecurity.

Because GOOSE/R-SV messages are based on Ethernet packets and the station bus is

based on an Ethernet Switched network, cyber security aspects such as data integrity and

access limitations must be considered, particularly for important applications needing high

real-time performance. Furthermore, TEGO1 enables GOOSE/SV message authentication for

man-in-the-middle (MITM) attacks and replay protection. Furthermore, crucial features such

as redundancy in the event of a communication breakdown, filtering capabilities, and

translation capabilities are provided. To maintain privacy and security in computing, using

encryption to protect one's data is extremely crucial. Encryption is one of those cyber security

mechanisms that are frequently in the news, especially when it comes to government

agencies. Encryption is at the heart of Internet security and privacy protection (Thakkar, 2020).

Considering the increasing interconnection of computer networks and the sophistication of

cyber-attacks, cryptography is becoming an increasingly important tool for ensuring that data

users can maintain their privacy and confidentiality, while also ensuring authentication,

integrity, availability, and identification (Hamouda, 2020). Cryptography methods are critical in

protecting data from hostile attacks. It is possible to divide and distinguish the encryption

algorithm into two types: symmetric key (private key) and asymmetric key (public key). The

public key is used to encrypt the communication, while the private key is used to decrypt the

message once the message has been encrypted. The encryption process is made feasible

using cryptographic keys in conjunction with encryption methods, which are discussed further

in Table 2.1 (Thakkar, 2020). The algorithms must be designed in such a way that they are

difficult to be cracked by intruders. This list of commonly used encryption algorithms covers

algorithms such as Rivest–Shamir–Adleman (RSA), Elliptic Curve Cryptography (ECC), Triple

Data Encryption Standard (3DES), Advanced Encryption System (AES), and others (Rivest

Cipher). The DES and AES algorithms are the most well-known of these encryption

algorithms. The analysis and construction of these protocols must be done efficiently to ensure

the secrecy of the messages that are being conveyed.

21 | P a g e

An overview of the encryption techniques is presented in Figures 2.1, 2.2, and 2.3 respectively.

Essentially Figure 2.1 presents the symmetric encryption. The key point in symmetric

encryption is that both the sender and receiver share identical keys. The sender wants to

communicate with the recipient by sending a message (plaintext). The sender will take the

secret key that will be used to encrypt the message (ciphertext) and will transfer it across the

internet. The message (ciphertext) will be received by the recipient using the same secret key,

who will decrypt it (plaintext) and be able to read it.

Figure 2.1: Symmetric Encryption Example (Hamouda, 2020).

Asymmetric encryption is presented in Figure 2.2. The public key and the secret key are used

for encryption. The public key is used for encryption and is freely distributable. The secret key

is used to decode the data and is only known to the key pair's owner. In this situation, the

client encrypts the message (plaintext) using the public key. This is critical because it assures

that only the intended recipient with the matching private keys can view the messages, not an

unauthorised user. The server then uses the secret key to decrypt the message (ciphertext).

22 | P a g e

Figure 2.2: Asymmetric Encryption Example (ClickSSL, 2022)

Furthermore, hybrid encryption is a combination of symmetric and asymmetric cryptography.

The goal is for the sender to encrypt the symmetric method's secret key using the asymmetric

method's public key and then deliver this data to the recipient. Both the encrypted symmetric

key and the encrypted data are sent to the receiver. The receiver decrypts the secret

symmetric key, and both parties now have the key for symmetric encryption, allowing the

sender to quickly transfer the remainder of the data.

Figure 2.3: Hybrid Encryption Example (Sontowski, 2016)

When it comes to data security, encryption is a key component of cryptography, which is the

most effective and widely used approach available today (Pedamkar, 2023). Both symmetric

and asymmetric encryption have their own set of advantages, and we cannot choose one over

the other because they are mutually exclusive. Asymmetric encryption, on the other hand, is

unquestionably superior in terms of security because it assures authentication and non-

repudiation. However, performance is a factor that we cannot afford to overlook, which is why

symmetric encryption will continue to be required.

23 | P a g e

Aspects of security and applications abound, ranging from safe commerce and payments to

private communications and the protection of healthcare data, among other things. When it

comes to secure communications, encryption is a critical component of the equation. Although

cryptography is necessary for data security, it is not adequate on its own. Encryption can

provide confidentiality, but it is incapable of providing integrity. To achieve integrity,

authentication must be used in conjunction with encryption technology. Using a covert

channel, the client can transfer data to the server without being detected (S.A. Fatayer, 2020).

Before using the covert channel, both parties must have already shared information. The

confidentiality of pre-agreement information and the detectability of covert channels are the

two most significant issues for covert channels (S.A. Fatayer, 2020). (S.A. Fatayer, 2020)

provides a demonstration of how integrating encryption, authentication, and a covert channel

results in a new covert channel that provides security of data being transmitted while remaining

undetected. The covert channel technique is shown in Figure 2.4. The proposed covert

channel requires shared information between the client and server. The technique needs a

pre-shared table that consists of the original keys and their corresponding fake keys. Each

original key has multiple fake keys. In this case, the most important feature is that the bogus

key is utilised in the communication channel, but the original key is kept confidential on both

sides (client and server). The secrecy of the information between the client and server was

ensured by the use of an encryption algorithm and the HMAC algorithm is used to verify

integrity (S.A. Fatayer, 2020). Covert channels together with encryption and authentication

lead to secure communication.

Figure 2.4: Covert channel secure communication (S.A. Fatayer, 2020)

24 | P a g e

The author further presents the characteristics and properties of the covert channel stating

that for security and more private communication, plausibility, undetectability, and

indispensability need to be achieved. This technique addresses secrecy requirements through

encryption, as well as integrity requirements using an authentication algorithm. A secure

communication channel between the client and the server that allows them to communicate

data safely and to agree on keys that will be used for future communication is established

between them. Table 2.1 discusses the encryption methods.

Table 2.1: Encryption Techniques (Thakkar, 2020)

Type of

Encryption

Method Types Advantages Disadvantages Usage

Symmetric

Encryption

Data is

encrypted and

decrypted with

the help of a

single

cryptographic

key. Ideal for

applications in

which a large

amount of data

needs to be

encrypted

regularly.

Symmetric

encryption is

primarily used

for encryption.

Data Encryption

Standard (DES)

- The simplicity

with which

symmetric

encryption is

implemented is

its most

distinguishing

characteristic.

As such,

symmetric

encryption is

faster, requires

less

computational

power, and does

not dampen

internet speed.

- Low encryption

key length.

- It was cracked

by many

security

researchers; it is

officially no

longer in use

and replaced by

the AES

algorithm.

- SSL/TLS

protocol

(website

security)

Triple Data

Encryption

Standard

(3DES) - 3DES

was created to

address some of

the

shortcomings of

the DES

algorithm.

- 3DES is

significantly

more difficult to

crack than its

predecessor,

DES. Each data

block is

subjected to

three repetitions

of the DES

algorithm.

- According to

Karthikeyan

Bhargavan and

Gatan Leurent

of Inria (Paris),

attacks against

TDEA were

analysed and

implemented in

real-world

applications.

The results

show that the

- SSL/TLS

protocol

(website

security)

25 | P a g e

collision attack

on TDEA

represents a

serious security

vulnerability for

many common

uses of these

protocols,

including the

HTTPS protocol

for secure

Internet

connections.

Furthermore, the

investigation

reveals that

security

vulnerability

continues to be

a severe

concern. After

2023, the use of

3DES will be

phased out in all

new software

applications.

Advanced

Encryption

System (AES) -

It is one of the

most widely

used forms of

encryption

algorithms, and

it was developed

as a

replacement for

the DES

method.

- AES is a

secure, quick,

and versatile

encryption

method.

- AES is a

significantly

faster algorithm.

- The most

significant

benefit is the

longer the keys

are, the more

difficult it is to

crack them.

 - Finding a

weakness in the

algorithm.

- Brute force

search.

- XSL (extended

sparse

linearisation)

attack.

- Wireless

security

-Processor

security and file

encryption

-SSL/TLS

protocol

(website

security)

-Wi-Fi security

-Mobile app

encryption

-Virtual private

network (VPN)

etc.

26 | P a g e

Asymmetric

Encryption

Entails the use

of several keys

for the

encryption and

decryption of

information. An

asymmetric

encryption

scheme consists

of two different

encryption keys

that are

mathematically

related to one

another.

Asymmetric

encryption

provides the

benefits of

encryption,

authentication,

and non-

repudiation all in

one package.

Ron Rivest, Adi

Shamir, and

Leonard

Adleman (RSA)

Encryption

- Data remains

protected

against man-in-

the-middle

(MITM) attacks.

- Provides

authentication.

- Provides

scalability.

Various

encryption key

lengths can be

used.

- Most widely

used

asymmetric

encryption

algorithm

- RSA is a

deterministic

method, it is

possible to

conduct a

passive attack

on it as well. To

prevent these

attacks, a hash

function can be

incorporated into

the encryption

function that

allows the

receiver to

confirm whether

he got a valid

message.

- website

security

- email

encryption

- crypto-

currency

Elliptic Curve

Cryptography

(ECC)

Encryption

- Data remains

protected

against man-in-

the-middle

(MITM) attacks.

- Provides

authentication.

- It’s impossible

to crack as it is a

complex

algorithm.

- Faster

performance

since less

networking load

and computing

power.

- Many server

software has not

added support

for ECC

SSL/TLS

certificates. RSA

continues to be

widely used.

 - website

security

Hybrid

Encryption -

Symmetric +

Asymmetric

Encryption

It combines the

best features of

both symmetric

and asymmetric

encryption

methods,

resulting in a

synergistic effect

that allows for

 - Fast

communication

- Less

computing

power

 - website

security

- web browsers

- E-mail

encryption

27 | P a g e

the development

of resilient

encryption

systems. As

long as both the

public and

private keys are

kept completely

safe, this sort of

encryption is

regarded to be

extremely

secure.

As encryption, HMAC is a fundamental security procedure. Because of the rapid evolution of

communication standards, security has become an increasingly important requirement,

particularly in today's world. It is vital to maintain secrecy however, without authentication, we

are unable to identify and authenticate the persons or parties involved in a transaction.

Encryption and HMAC are critical in addressing security issues. The implementation of these

security techniques needs to be employed in critical infrastructures and provisions developed

in future technologies. HMAC has been established as a standard for robust authentication

with additional security features.

The Message Authentication Code (MAC) is used to ensure the authenticity and integrity of

messages. Most MACs use symmetric key techniques and one-way hash functions. AES-

CBC-MAC employs a symmetric mechanism, whereas HMAC utilises a hash function-based

technique. The first release of the secure hash function algorithm was known as SHA-1. The

second generation of the SHA algorithm, SHA-2, has been created to take advantage of the

enhanced security features of the Advanced Encryption Standard (AES) protocol (AES). Brute

force attacks on the MAC are more challenging to execute than detecting a collision in a hash

function, and the cryptographic strength of AES block cipher encryption is higher as well. The

AES-Cipher Block Chain (CBC)-MAC algorithm is therefore regarded as a safe authentication

method (Weerathunga, Pubudu Eroshan, 2012). The hash algorithm SHA-1 provides the

lowest level of security. SHA-2 hash algorithms are being given more attention as a result of

the increase in the number of security bits associated with digital signature algorithms and

AES and as a result, they are better suited for dealing with recent developments in computer

security.

28 | P a g e

To evaluate HMAC over the message or file, the following expression is required to compute

(Dondossola & Terruggia, 2015).

MAC(text)t = HMAC(K, text)t = H((K0  opad)|| H((K0  ipad) || text))
t

Equation 2.1

HMAC uses the following parameters and symbols (Dondossola & Terruggia, 2015):

“B = Block size (in bytes) e.g., 64 bytes = 512 bits,

H = Approved hash function (SHA-1, SHA-2),

ipad = Inner pad e.g., the byte x36 times repeated B times,

opad = Outer pad e.g., the byte x’5c’ repeated B times,

K = Secret key shared between the sender and the receiver,

Ko = The key K with zeros appended to form a B byte key,

L = Block size (in bytes) of the output of the approved hash function,

T = The number of bytes of MAC,

text = The data on which the HMAC is calculated; the length of the data is n bits,

where the maximum value for n depends on the hash algorithm used.”

The HMAC method is presented in Figure 2.5. Table 2.2 depicts the algorithm's process

operation (Dondossola & Terruggia, 2015).

Table 2.2: HMAC Algorithm

STEPS DESCRIPTION

1. “If the length of K = B, set K0 = K. Go to step 4”

2. “If the length of K > B, hash K to obtain an L byte string: K = H(K).

3. “If the length of K < B, append zeros to the end of K to create a B-byte string K0

(e.g., if K is 20 bytes in length and B = 64, then K will be appended with 44

zero bytes 0x00).”

4. “Exclusive-Or K0 with ipad to produce a B-byte string: K0  ipad.”

5. “Append the stream of data 'text' to the string resulting from step 4:

(K0 ipad) || text”

6. “Apply H to the stream generated in step 5: H((K0 ipad) || text).”

7. “Exclusive-Or K0 with opad: K0  opad.”

29 | P a g e

8. “Append the result from step 6 to step 7:

(K0  opad) || H((K0  ipad) || text).”

9. “Apply H to the result from step 8:

H((K0  opad)|| H((K0  ipad) || text)).”

10. “Select the leftmost t bytes of the result of step 9 as the MAC.”

The hash method and key are used on both the sender and recipient sides to obtain the

matching HMAC value, which is used to verify the authenticity of the data. As mentioned

above, HMAC makes use of a cryptographic hash function that is irreversible; hence, when

we utilise HMAC from the sender side to encrypt a message using the HMAC formula, the

message is encrypted at the sender side (Gupta et al., 2017). The hash function and the key

will be used by the receiver to produce a value that is equal to or greater than the hash. We

decrypt the cyphertext with the help of an authentication key and compute the HMAC on the

plain text. If both values are equivalent, the decryption is accepted; otherwise, the decryption

is rejected.

Figure 2.5: Illustration of the HMAC Construction (Gupta et al., 2017)

30 | P a g e

Known as a cryptographic algorithm, the HMAC provides the maximum level of protection

against security threats. HMACs are used to exchange information between two parties who

are both aware of the secret key used to encrypt the information. A digital signature does not

require the verification of a secret key to be authenticated. In cryptography platforms and other

industries, encryption and hash methods have important applications. Encryption is often used

to protect the confidentiality of data. Only authorised people with the key should be able to

access the data. On the other hand, hashing works well for verification; knowing the actual

data is unnecessary, just whether or not the hashes are the same. Table 2.3 shows reviewed

papers for data security.

Table 2.3: Data security reviewed literature papers.

Paper Research Objectives Method Outcomes

(Bhanot & Hans, 2015) The authors conduct a

comparative analysis

and review of several

encryption techniques.

Different Algorithms are

compared based on

various parameters. The

authors looked at ten

different data encryption

techniques, including

DES, Triple DES, RSA,

AES, ECC, BLOWFISH,

TWOFISH,

THREEFISH, RC5, and

IDEA, amongst other

things.

Each algorithm has its

own set of advantages

that vary depending on

the parameters used.

The strength of each

encryption technique is

determined by the key

management system

used, the type of

cryptography employed,

and the number of keys

used. Even though there

is significant room for

improvement, the

authors propose the

ECC and Blowfish

encryption algorithms.

The authors reiterate

that these encryption

algorithms are leading

when it comes to

security level and

providing faster

encryption speed.

(Alajbegović et al.,

2006)

This paper presents the

DSA security technique.

Mathematica 4.0 will be

used to show the

production and

verification of signatures

using DSA, as

We may utilise the DSA

to generate digital

signatures for any type

of message that we

send out (encrypted or

31 | P a g e

demonstrated by the

authors. It is necessary

to produce a digital

signature as well as a

public key (which

includes the secret key).

DSA is reliant on the

confidentiality of the

private key is

maintained.

not). As a result of its

dependence on the

discrete logarithm

problem, which is

extremely difficult to

solve, this approach has

proven to be extremely

safe.

(Michail et al., 2004) In this research, the

authors describe an

efficient implementation

of the HMAC using the

SHA-1 hash function

that is both fast and

secure in terms of

performance. This

technique, in

conjunction with a

shared secret key, is

used to authenticate

messages sent across

the network.

The proposed system

architecture has been

described in VHDL. The

entire system has been

thoroughly tested and

confirmed using

commercial simulation

tools, and its functioning

has been thoroughly

tested and verified. All

the internal components

in the design were

created using XILINX

FPGA chips, which are

available for purchase

online.

The results of the

simulations, which were

carried out with

commercial tools,

confirmed the efficiency

of the HMAC

implementation in terms

of both performance and

throughput. Special

effort has been taken to

ensure that the

suggested

implementation does not

add additional design

complexity, while at the

same time ensuring that

functionality is

maintained at the

needed levels.

(Chen & Yuan, 2012) In this research, we

introduced a Key

Derivation Function

(KDF) technique based

on the HMAC-SHA-256

cryptographic algorithm

in LTE networks.

The SHA-256 and

HMAC algorithm

overview and

implementation process

are presented.

HMAC-SHA is a hash

function utilised in

communication and

shared key

authentication. It is

capable of effectively

preventing data from

being intercepted and

tampered with during

transmissions;

maintaining data

integrity, dependability,

and security; and

preventing data from

being compromised.

32 | P a g e

(Oyelade et al., 2015) An encryption or

decryption system for

text data has been

developed by the

authors, and it makes

use of both the DES and

the RSA cryptosystems.

It was decided to utilise

the asymmetric method

for the key encryption

and decryption process

since it allows for the

delivery of keys over a

secure channel, whilst

the data to be

communicated will be

encrypted and

decrypted using the

symmetric technique.

This system was

created to achieve a

variety of security

aspects, including

authentication,

confidentiality, integrity,

and non-repudiation of

information. In addition,

we combined the speed

and strength of the

symmetric method with

the robustness and key

management

capabilities of the

asymmetric algorithm,

resulting in a better

encryption algorithm,

and we used text data

as our experimental

data to demonstrate

this.

(Hamouda, 2020) In this article, a

comparative analysis of

various encryption

methods is provided.

The author has

conducted a

performance analysis of

the following encryption

techniques: DES, 3DES,

and AES, and compared

their performance. They

have been evaluated

based on their capacity

to secure data, the time

it takes to encrypt data,

and the amount of

throughput required by

the algorithm.

The findings of the

comparative analysis

demonstrated the

capabilities of each

algorithm. It concluded

that the AES algorithm

outperformed all other

commonly used

encryption algorithms in

terms of performance. It

was decided to consider

security.

(Francis & Monoth,

2018)

A thorough examination

of the numerous hybrid

cryptosystems

presented by various

researchers is carried

out, with the results

being a list of the

characteristics of the

Ultimately, the purpose

of this research is to

investigate and evaluate

the advantages of hybrid

cryptography. It is

critical to ensure the

security of information

exchange through the

internet as well as the

Using the notion of

hybrid cryptography, this

work adds to the

knowledge of

cryptography by

analysing several

algorithms that make

use of the concept. It

may be argued that,

33 | P a g e

algorithms employed in

hybrid cryptography.

local storage of secret

information. Some of the

most important

algorithms used in

hybrid cryptography,

such as the DES, AES,

RSA, ECC, and DSA,

are examined in detail.

despite the increased

computational difficulty,

cryptographic goals

such as secrecy,

integrity, and

authenticity can be

attained using hybrid

cryptographic systems.

Sections 2.4 and 2.5 will review the literature on the use of IEC 61850 and IEC 62351 in

automation systems, as well as study the performance of devices that support GOOSE and

SV.

2.4 Literature Review – IEC 61850

2.4.1 Introduction

Over the years, communication networks have become a crucial part of the substation

automation system (SAS) to provide control and protection in the power system. The

advancement of technology has transformed digital communication to be introduced in Data

Acquisition Systems (DASs) for monitoring and controlling processes (Ncube, 2012).

However, legacy protocols had the disadvantage of limited, and low bandwidth (Sun et al.,

2012). As such, motivation was brought forward to improve the reliability of the DASs by

improving the bandwidth. This motivated the development and implementation of hardware

and software such as microprocessors to enhance control and monitoring procedures. This is

further attributed to the integration of IEDs (Ncube, 2012; Sun et al., 2012). GOOSE

communications are usually small in size and sent as multicast messages. They are intended

for speedy and efficient communication, with relatively minimal bandwidth requirements when

compared to SV messages. SV messages contain sampled values, and the amount of data

generated is determined by the sampling rate and number of measurement points. As a result,

SV may have higher bandwidth requirements than GOOSE. Because GOOSE

communications are small and targeted, they have a low potential to congest the bandwidth.

Congestion can arise when there are a significant number of events or devices communicating

at the same time. SV messages have the potential to cause bandwidth congestion, particularly

in situations when a rapid rate of sampling a large number of measurement points is occurring.

For the transmission of SV data, latency and bandwidth are crucial parameters. (Groat et al.,

2023) examine the communication bandwidth used by GOOSE and SV messages and further

provide recommendations on reducing bandwidth utilisation and using the available bandwidth

34 | P a g e

efficiently. The authors present communication capacity utilisation calculations for common

applications that are scalable for the number of devices, based on Ethernet frame structure

and settable transmission rates. The authors confirm that the sampled value bandwidth

exceeds the GOOSE bandwidth.

An IED is a software-configurable microprocessor-based relay with a combination of functions

to monitor, protect and control. As a result, combining numerous operations into a single

device reduces cost, and time, and increases substation automation levels (Emmanuel, 2014).

Before the introduction of IEC 61850 and microprocessor-based relays, legacy communication

protocols introduced issues where there was no interoperability between devices and no

interchangeability. However, at the time, there was no standard to address such issues.

Therefore, a standard needed to be introduced to implement standardisation and provide

interoperability across various IEDs.

As such, the IEC 61850 standard was released in its initial version to provide interoperability,

a consistent design process (including system setup), and interchangeability. The IEC 61850

standard was first issued in 2002 by Working Group 10 (WG 10) of IEC TC 57. IEC TC 57 is

in charge of the development of international standards in substation automation. The

specification was created to address issues with older traditional legacy communication

protocols. The standard establishes a communication interface between process equipment,

bay level, and station level levels of the power system. Figure 2.6 shows a standardised SAS.

The standardisation of IEC 61850 came as a need as legacy communication interfaces lacked

interoperability, and the deployment and development costs were expensive and high

(Emmanuel, 2014).

Figure 2.6: Standardised substation automation system (Emmanuel, 2014).

35 | P a g e

The IEC 61850 standard takes into account communication requirements within the substation

automation network. The standard defines the interoperability between functions and devices;

the capability of IEDs from various manufacturers to interface with each other for information

exchange and use the information for functions providing protection, monitoring, control, and

automation. Furthermore, the Ethernet-based communication standard brought benefits of

reduced configuration, installation, and commissioning costs and increased power system

stability (Karnati, 2020). Based on protocols and standards, IEC 61850 is the ideal

communication standard for substation automation purposes (Hohlbaum et al., 2010). This

standard aims to establish a level of communication, which supports emerging technologies

and meets operational and performance requirements.

Two groups of communication interfaces are available in the IEC 61850 standard: the client-

server and peer-to-peer architecture. A client-server architecture enables services like

Reporting and Remote Switching. The peer-to-peer architecture supports Generic Substation

Event (GSE) services. GSE is connected with time-critical, rapid and reliable communication

amongst IEDs. GOOSE messages are associated with the GSE service. The use of the

GOOSE message is quite critical in a substation, for the protection of the power system. As

such, the GOOSE message structure is important for detecting and isolating any faults in the

system.

Part 6 of IEC 61850 describes the use of substation automation SCL in configuration tools for

users to configure IEDs. Part 7 of the standard describes the object modelling approach,

logical node and data classification, specific object definitions and descriptions, and abstract

communications service interface (ASCI). Part 8 describes communications across the station

bus, the Local Area Network (LAN) connecting the IEDs and the relay room. Part 9 describes,

among other things, communications across the process bus, the LAN connection to the high

voltage yard for voltage and current sampled readings, power equipment status report, etc.

(Julie, 2014).

One of the key features of IEC 61850 is the separation of the application from the

communication through an abstract communications service interface. As illustrated in Figure

2.7, the stack selected according to the highest development technology comprises of

Manufacturing Message Specification (MMS) connection layer over Transport Control

Protocol/Internet Protocol, TCP/IP. The GOOSE and SV operations run with high-speed

switched Ethernet data frames excluding processing of any middle layers.

36 | P a g e

Fast messages include GOOSE commands such as trip, interlocking, and inter-trip signals.

IEC61850-5 offers multiple performance levels for raw data packets from digital equipment for

SV communications.

Figure 2.7: IEC 61850 Communication Service Overview (Committee et al., 2017)

In substation automation, three levels occur the process, bay, and station level. The process

level contains electrical equipment (power transformers, circuit breakers, switch

disconnectors, etc). These high-voltage devices connected to the bay level are installed below

the process level. Transferred information includes analogue input and output data

incorporating current and voltage transformer outputs, as well as trip signals from protection

relays. Figure 2.8 depicts the logical interface provided by the IEC 61850 standard between

station level, bay level, and process level. The IEC 61850 standard replaces hardwiring

between substation components with communication interfaces, hence simplifying substation

architecture. The new substation communication architecture is enhanced by the replacement

of hardwired communication cables, which decreases deployment and maintenance costs

(Apostolov, 2010).

37 | P a g e

Logical Interfaces as illustrated in Figure 2.8 (Commission, 2017):

1. Protection – bay and station level data transfer between the levels.

2. Protection – bay level and remote protection data transfer between the levels

3. Bay-level data transfer

4. Bay levels current transformer and voltage transformer data transfer between levels

(Sampled Value messages)

5. Control - process and bay level data transfer (measurements, status, and control)

between levels (GOOSE messages)

6. Control - bay and station level data transfer between levels

7. Substation and remote engineer’s workplace data transfer between levels

8. Data exchange amongst the bays (GOOSE messages)

9. Station-level data transfer

10. Control – substation device and control centre data exchange

Figure 2.8: Logical Interfacing between Station, Bay, and Process Levels (Commission,

2017)

As mentioned, the emphasis switched from serial-based legacy substations to ethernet-based

substations where seamless data communication is presented in the architecture between the

substation levels. As depicted in Figure 2.8, the bay level comprises IEDs that communicate

38 | P a g e

with the devices situated at the station level through an MMS communication service in a

client-server architecture (Emmanuel, 2014). MMS is utilised for data retrieval from IEDs as

well as configuration and remote access. The utilisation of the publisher/subscriber

communication services allows for the establishment of inter-communication between IEDs

(Emmanuel, 2014). Furthermore, the process-level devices exchange information with the

bay-level IEDs using the IEC 61850 process bus communication interface to transmit GOOSE

and SV messages. The information is subsequently mapped into GOOSE and SV messages

using ISO 8802-3 ethernet frame (Ncube, 2012). Studying the hierarchical architecture shown

in Figure 2.9; IEDs may be installed in the station, bay, and process level. IEDs installed at

the station level generally serve as Human Machine Interfaces (HMIs) allowing operators to

monitor and observe IED signals installed at the plant or substation. No control may be

conducted via the HMI. It is the bay level IEDs that perform the control, protection, and

measurement functions using GOOSE or SV messages. The process level compromises the

process level IEDs which utilise the process bus to transmit information such as sampled

values of voltage and current measurements.

Figure 2.9: IEDs installed in the IEC 61850 power system (Lei et al., 2014)

A high-speed communication protocol between the process-level devices and the bay-level

devices is provided by the IEC 61850 process bus. For the communication of GOOSE and SV

messages, the process bus protocol uses ISO 8802-3 ethernet protocol. As compared to

serial, hardwired communication, IEC 61850 process bus comes with benefits such as:

39 | P a g e

1. The implementation cost is reduced due to the decrease in the amount of copper

cabling being used.

2. Reduce the wire resistance to prevent saturation in instrument transformers

(Apostolov, 2010).

3. Improves the safety of the substation by preventing open circuits (Apostolov, 2010).

4. Elimination of legacy protocols by employing easy and accessible TCP/IP and Ethernet

technology.

5. Ultimate adaptability and interoperability of the system

Based on the above discussion, IEC 61850 provides a greater advantage than legacy

communication protocols in substation automation systems. Any cyber security technique that

seeks to secure IEC 61850 communication messages must consider these performance class

requirements. The IEC 61850 protocols are transmitted on a process bus as unencrypted

ethernet packets. The IED data can be sniffed and tampered with by an attacker, thereby

weakening the security. The quick response times needed for certain types of communication,

combined with the restricted capacity of some IEDs to process, present a clear challenge.

These challenges need to be studied and see how IEC 62351 addresses them.

2.4.2 Theoretical Framework

Cyber-physical systems (CPS) have security concerns and those challenges need to be

addressed and solved. (Yoo & Shon, 2016), present a paper where they study the IEC 61850-

based challenges and research directions for the heterogeneous cyber-physical system. In

addition, the vulnerabilities, security specifications, and security architecture are addressed.

Security issues are closely examined in the electrical grid in Korea. (Yoo & Shon, 2016), also,

address the standardisation of smart grid communication protocols that correlate to the IEC

61850 standard that is based on substation automation.

The IEC 61850 standard and other smart grid protocols are presented and reviewed. The

analysis of IEC 61850 standardisation and other smart grid protocols will be discussed. (Yoo

& Shon, 2016), briefly discusses the IEC standards and correspondence protocols IEC 61850,

DNP3, IEC 61970, and OPC UA. The original edition of the IEC 61850 standard was released

in 2002, however, the information provided remained restricted to communication within a

substation network (inside). The IEC 61850-7-410 version which described the object model

in the hydropower environment was created in 2007, meaning the application available to the

40 | P a g e

outside of the substation. IEC 61850 is designed to help model and self-describe information

in an object-oriented way. As such, it is stated that the fundamental variations between IEC

61850 and other smart grid communication protocols cause problems in the harmonisation of

protocols and may pose security threats.

The IEC 61850 information model can be mapped or transmitted in three ways: MMS,

GOOSE, and SMV. GOOSE and SMV are transmitted over TCP/IP networks or use Ethernet

for high speed. Furthermore, (Yoo & Shon, 2016) discussed briefly that the safety aspects of

the IEC 61850 standard are laid down in IEC 62351. The IEC 62351 sets out how protocols

based on TCP/IP can be secured via Transport Layer Security (TLS). The standard is revised

for GOOSE / SMV messages based on a message authentication code being generated.

DNP3 is a communication protocol for communication transmission between the control centre

and its power system. In 1993, the DNP3 protocol was developed and in 2010, it was

standardised as IEEE 1815-2010. A study was conducted by the Smart Grid Interoperability

Panel to standardise the DNP3 and IEC 61850 mapping process. The interoperability between

the DNP3 and IEC 61850 is inevitable in this environment. The security mechanism for the

DNP3 messages is specified in IEEE 1815-2010 and IEEE 1815-2012 as Secure

Authentication Versions 2 and 5 (Yoo & Shon, 2016). The IEEE 1815-2012 standard was

subsequently revised to strengthen Secure Authentication to provide application layer

functions to verify the source of the messages, the integrity of the message, and the ability to

update keys remotely using cryptography and security statistics to check events of

authorisation failures.

(Yoo & Shon, 2016) further study IEC 61970, providing a structured framework for the

representation of specific power system objects with object-oriented relationships for these

objects; The IEC 61970 specification is employed in control centres, and together with the IEC

61850 standard, it is a primary standard for the smart grid. Many applications require the

implementation of systems across the smart grid environment; thus, the IEC 62361-102

standard is being developed, which harmonises the IEC 61970 and IEC 61850 specifications.

Lastly, (Yoo & Shon, 2016) reviewed the Open Platform Communication Unified Architecture

(OPC UA). The objective of OPC UA is to boost interoperability by providing a standard

interface for the exchange of messages between Windows-based applications and various

field devices within the industrial network environment. OPC UA provides a platform-

independent environment by introducing a service-oriented architecture concept (Yoo & Shon,

2016). Therefore, the power system in Korea uses a mix of heterogeneous standards such as

41 | P a g e

IEC 61850, DNP3, IEC 61970, and OPC UA for data communication. Communication

standards are interconnected between IEC 61850 and DNP3 and IEC 61850 and IEC 61970.

A mapping approach has to be pre-determined to achieve conversion between different

communication protocols (Yoo & Shon, 2016). When mapping to IEC 61850 and DNP3, a

protocol mapping table can be created using the DNP3 XML file, the Substation Configuration

Description (SCD) file, and the mapping rules as defined within the IEEE 1815 standard.

Furthermore, a configuration tool can be helpful for pre-setting protocol mapping (Yoo & Shon,

2016). The link between the IEC 61850 and IEC 61970 specifications concerns data exchange

services and information models standardised in the substation automation environment.

However, both standards are not mutually compatible and have been designed for different

purposes. The IEC 61850 standard defines the functional elements of the substation's IED as

Logical Nodes (LNs). The IEC 61970 standard defines the power system resources and their

relationship in the Unified Modelling Language (UML). Therefore, the interlink between IEC

61850 and IEC 61970 should be addressed in terms of both the information model and the

data exchange service. Mapping between IEC 61850 and IEC 61970 information models may

be impossible; a unified information model must be developed by incorporating the IEC 61850

information model with the Common Information Model (CIM).

In IEC 60870, protocol mapping refers to the process of transferring information across

multiple communication protocols. The IEC 60870-5 protocol standard provides telecontrol,

teleprotection, and other telecommunication operations for power systems. IEC 60870-5 is an

adopted standard for telecontrol equipment and systems. Protocol mapping is especially

important in the context of IEC 60870-5-104, a companion standard that specifies the usage

of the TCP/IP protocol suite for telecontrol (Lin & Nadjm-Tehrani, 2018). The standard covers

frame structure, information field content, and data transfer processes.

a) Application Layer - The application layer is responsible for the frame structure of the

data to be transmitted. It specifies information objects and application service data

units (ASDUs).

b) Transport Layer - IEC 60870-5-104 utilises the Transmission Control Protocol (TCP)

for reliable data transmission. The ASDUs are incorporated into TCP packets for

transmission between devices.

c) Network Layer - The Internet Protocol (IP) is used to address and route TCP packets.

ASDU data is bundled into IP packets to enable end-to-end network communication

between devices.

42 | P a g e

The IEC-60870-5-104 protocol is widely used in SCADA networks to manage critical

infrastructure. DNP3 and IEC-60870-5-104 were both designed particularly for SCADA

communication beyond the substation level; however, DNP3 has a few advantages over IEC-

60870-5-104. DNP3 is capable of transmitting high data quantities over great distances while

also enabling more rapid transfer of data. To benefit from the effective data transfer and

execution of IEC 61850, IEC-61850 is commonly used for data mapping of IEC-60870-5-104.

(Lin & Nadjm-Tehrani, 2018; Anon, 2021)

2.4.3 Application, performance evaluation, and development of IEDs capable of

publishing IEC 61850-8-1 GOOSE messages

One of the communication interfaces presented in the IEC 61850 standard is the GOOSE

message. The GOOSE interface facilitates communication between IEDs in different levels of

a SAS. The GOOSE message maps data and object models into an ethernet protocol.

GOOSE communication is time-critical messages that are sent timeously when the occurrence

of a certain event in the data and object model changes (Ncube, 2012). Because GOOSE

messages are transmitted regularly, they can be used to transmit analogue and binary data to

the receiving IED. GOOSE message implementation comes with the benefit of reduced wiring

and engineering fees as the ethernet frame or network is used on the process bus. The

process bus communication network should complete communication of GOOSE and SV

messages within 4ms, as these are time-critical messages (Weerathunga, Pubudu Eroshan,

2012). The IEC 61850-5 standard specifies the time it takes for various types and classes of

messages to be transmitted. According to the IEC 61850-5 standard, all devices that comply

must be capable of transmitting messages of unique types or classes within the specified

timing requirements. However, considering that, GOOSE communication is categorised as

GOOSE trip (Type 1A) and GOOSE block messages (Type 1B). GOOSE trip messages are

further classified into two performance classes, P1 and P2/P3, based on the transmission

time. For P1 and P2/P3, the time requirement is 10 ms and 3 ms, respectively (Committee et

al., 2017).

To verify that devices in the design stage meet the timing criteria for IEC 61850-8-1 messages,

(Gonzalez-Redondo et al., 2013) explore strategies for monitoring the GOOSE communication

transmission time. It is possible to measure time using three different techniques: the round-

trip test, the ping-pong test, and the rally test. The IEC 61850-10 standard provides the round-

trip time for calculating the time delay of a subscribed message being retransmitted back to

the sending device. With the ping-pong technique, the Device Under Test (DUT) broadcasts

43 | P a g e

a message to a receiving device. As soon as the message is received by the subscribing

device, it sends out a GOOSE message that is then subscribed to by the DUT. Lastly, a rally

technique is conducted, in which both devices simultaneously issue GOOSE communication,

which is subsequently received by the other device. After the device has received a message,

it will broadcast a new message, which the other device will then subscribe to. As a result,

both devices will be constantly energised. According to the configuration, a client-server

architecture is implemented. Using this practical configuration, the findings indicate that the

greatest round time trip time for a GOOSE message is 1.536 ms, which is less than the time

requirement of 3ms (Gonzalez-Redondo et al., 2013).

Figure 2.10 details the communication stack of the protocol. The fast transmission time of

messages is guaranteed as GOOSE messages are mapped to the second layer of the stack

interface (Hohlbaum et al., 2010). The SV and GOOSE protocols map straight into the ethernet

frame. As specified, the MMS protocol can work via TCP/IP or ISO. Using "Ether-type" or

"802.3", all data is mapped into an Ethernet layer.

Figure 2.10: Message communications stack in IEC 61850 (Ali et al., 2016)

As previously discussed, GOOSE communication can be utilised to transmit data between

IEDs or between process equipment such as transformers or circuit breakers. Analogue

values and or digital signals can be transmitted via GOOSE messaging to IEDs located on the

bay level.

44 | P a g e

GOOSE messages offer numerous advantages over conventional communication protocols.

The benefits of using GOOSE are listed below (Ncube, 2012; Emmanuel, 2014):

1. High-speed transmission between substation IEDs.

2. Reduced point-to-point copper wiring for protection and control networks. (Daboul et

al, 2015) examine the performance and timing of GOOSE messages when used in

conjunction with serial communication in a SAS. Two IEDs were designed to exchange

GOOSE messages via serial communication; the findings indicate that the GOOSE

round-trip duration is roughly 2.5 ms, but the hardwired signals exchange takes 20 ms.

This article demonstrates that GOOSE messaging can be used to exchange

information in SAS without impacting the system's operation.

3. The latest GOOSE messages are regularly available on the process bus as they are

transmitted as a multicast message; as such providing high system availability.

4. The GOOSE protocol does not support message acknowledgements. Hence the

amount of traffic in the process bus is reduced guaranteeing high delivery rates.

5. Flexibility and expandability for protection and control schemes.

6. GOOSE capability to be utilised beyond substations and on different smart grid

applications through Routable GOOSE (R-GOOSE).

GOOSE protocols are adaptable for implementation in a wide range of applications. Table 2.4

shows a catalogue of articles that describe the use of the GOOSE communication protocol in

an IEC 61850 standard-based SAS.

Table 2.4: IEC 61850 GOOSE Literature Review

Paper Research Objectives Method Outcomes

(Apostolov & Vandiver,

2011)

The authors study the

IEC 61850 GOOSE

applications to

protection systems.

The authors study the

need for improved

electric supply by

investigating failures in

the distribution

protection scheme.

Furthermore, a

simulation tool is

proposed to test the

system.

The use of IEC 61850

GOOSE messages

significantly improves

distribution substation

protection by reducing

fault clearing times and

mitigating the effect of

short circuit faults. By

utilising high-speed

messaging, many

hardwired connections

are eliminated.

45 | P a g e

(Gonzalez-Redondo et

al., 2013)

The IEC 61850 GOOSE

strict time requirements

are studied. This

document includes a

brief description of

various performance

tests.

A simple testbed for

evaluation purposes is

presented. A testbed for

doing a first

performance evaluation

of a Commercial Off The

Shelf (COTS) solution

for IEC 61850 devices

was used to

demonstrate a

straightforward

methodology based on

physical transfer time

measurements.

Tests on the GOOSE

message demonstrate

that the system is

appropriate for the most

demanding applications

with a transfer time of

approximately 1.5 ms.

(Omar Hegazi , Eman

Hammad , Abdallah

Farraj, 2017)

This article describes

the modelling and

construction of a

GOOSE traffic generator

in the Riverbed Modeler.

We quantify the extra

processing latency

introduced by the traffic

generator's

implementation in terms

of encoding/decoding.

The generated

generator was

incorporated into the

Riverbed Modeler,

which required the

development of a

customised model to

support IEC-61850 in

Modeler.

The simulation results

demonstrated the

customised models' low

overhead. The primary

contributions of this

work are a full modelling

of the GOOSE message

and a message

generator for extracting

status and value data.

The proposed message

generator can be used

to convey time-sensitive

GOOSE signals quickly

and reliably, as well as

expand research on

cyber-security.

(Harispuru & Schuster,

n.d.)

This article

demonstrates how to

configure and test

GOOSE communication

to achieve maximum

dependability without

losing performance.

The purpose of this

study is to discuss the

tools and approaches

for increasing the

reliability of

communication at the

IED level via GOOSE

messaging.

Numerous diagnostic

methods for GOOSE

signals were described.

Test programs can be

used to validate the

network's data

traffic. These test

programs can verify that

GOOSE messages are

being transmitted

correctly across the

network and that they

match the preset data.

46 | P a g e

(Elbez et al., 2018) The document describes

the design and

implementation of a

software testbed to

study the CPS of IEC

61850-based electrical

substations.

The suggested testbed

provides an appropriate

level of

detail/abstraction for

both the network and

physical components, as

well as their

communication. The

proposed testbed is

unique in that it

integrates the physical

and cyber components

of the power system.

The current testbed was

developed specifically to

analyse the cyber-

physical security of

electrical substations

per IEC 61850.

Additionally, the

proposed testbed will be

utilised to demonstrate

defence mechanisms for

securing the network

connection of modern

electrical substations.

(Fernandes et al., 2014) The paper provides an

overview of the GOOSE

protocol and its benefits.

In this study, the authors

presented a

demonstration of the

use of GOOSE

capabilities in a

protection IED to

demonstrate its

functionality. The results

of two such IEDs being

tested in a laboratory

environment are

discussed.

The IEC61850 GOOSE

connection between the

two devices was

successfully

established, with both

devices able to publish

and receive GOOSE

messages. The

seamless integration of

IEC61850 into the IED

simplifies the process of

developing power

system protection

strategies.

(Bhamare, n.d.) This article discusses

how to implement

several of the new

capabilities included in

IEC 61850,

Communication

Networks and Systems

in Substations.

The article discusses

how to leverage

GOOSE communication

to increase the system's

dependability and

performance between

protection and control

devices. The author

further studies the

network architecture for

GOOSE communication

to better reduce

hardwiring and provide a

more modern and

reliable protection and

control system.

IEC 61850 is a good

investment because of

the cost reductions

associated with

substation design,

installation,

commissioning, and

operation, as well as the

addition of new

capabilities that are not

feasible or cost-viable

using traditional

methodologies. Utilising

IEC 61850 and GOOSE

significantly improves

the performance and

speed. Additionally, the

47 | P a g e

usage of IEC 61850 and

GOOSE increases the

operational reliability of

the protection system.

(Pathan & Asad, 2016) This article discusses in

depth the GOOSE-

based ACSE scheme

logics for power

transformers, as well as

their latency.

The scheme is

optimised for

performance using the

software PCM V2.5,

which eliminates the

need for redesign and

rewiring. The simulation

results indicated the

latencies of GOOSE

messages on a system

setup for an ACSE

scheme.

Automatic changeover

switching equipment

(ACSE) transfer

systems improve the

reliability of a power

system by automatically

switching to a standby

power source when the

primary source

experiences a power

outage. The authors

conclude that the

proposed approach is

reliable since old wiring

can break without

warning.

These previous research studies demonstrate that GOOSE messages can be used to

communicate time-sensitive communications over a low-traffic Ethernet network. As part of

the implementation of an electrical fault protection scheme that uses GOOSE, the system

engineer must ensure that, in the event of an electrical fault, the protection scheme is

operational within a reasonable amount of time. When a fault occurs, there are several

different methods for determining how quickly a protective system responds. The speed and

performance of an IEC 61850 protection application are used to determine whether or not a

system is a suitable solution. Methods for determining the precise GOOSE transfer time have

also been developed. It is critical to ensure that the GOOSE transfer time is within the allowed

time frame because this has a direct impact on the overall response time (Retonda-Modiya,

2012).

2.4.4 Application, performance evaluation, and development of IEDs capable of

publishing IEC 61850-9-2 SV messages

As the IED continues to develop, more and more digital systems are being incorporated into

the power system, and the conventional protection system is being phased out in favour of the

digital system. The testing of traditional protection systems has already been completed, while

the evaluation of digital systems in the power industry is still in the process of being completed.

48 | P a g e

(Engler et al., 2004) conducted several feasibility tests. The tests involved measuring the delay

time of SV across an Ethernet network, as well as the performance of the IEDs when it is

loaded with an SV message. During the evaluation, the accuracy of synchronisation was within

20µs. When using SV, the maximum delay time is 3.520ms. (Engler et al., 2004) confirms that

the real-time requirements are conformed to the substation automation environment. (Engler

et al., 2004) further dictates that modern ethernet equipment should be used to accomplish

reliable operation. (Kanabar & Sidhu, 2011) further simulates a process bus for a substation

using ethernet communication. Communication delays for time-critical packets (such as

process bus communication, which includes GOOSE and SV) are permitted according to IEC

61850, with a maximum of 3ms to 4ms. (Kanabar & Sidhu, 2011), using fibre optic

communication confirms that the delay time of SV is within the required range. The benefit of

employing ethernet-based communication is that it enables the creation of more advanced

communication architectures and integration with the rapidly increasing ethernet-based

communication technologies. Due to the time-critical and high-speed characteristics of today's

Ethernet-based communication technology, it is an ideal communication technology for

automation applications in substations (Abdolkhalig, 2014). Ethernet-based communication

has been proposed for use in substation automation in parts 8 and 9 of the IEC 61850

standard, respectively, at the station and process levels.

The communication network within the substation is organised into three levels: process, bay,

and station. The process is at the lowest level of the network. The switchgear equipment,

actuators, and sensors are all considered to be part of the process level. The process bus is

the Ethernet interface between the IEDs at the process and bay level. Only a few practical

implementations have used the IEC 61850-9-2 process bus standard. Incorporating the

process bus has numerous clear advantages. Comparing the new approach to the previous

approach, there will be a significant reduction in the amount of copper wiring required to

connect the process equipment. Aside from that, automated testing is possible with a

digitalised information system, which makes the installation process simpler (Zhao, 2012).

(Adewole & Tzoneva, 2014a) investigate the effect of the SV process bus on the operational

performance of protective relays. The speed, dependability, and security characteristics of the

sampled value process bus under investigation were among the considerations. (Adewole &

Tzoneva, 2014a) compared the performance of two IEDs in a distance protection scheme by

employing a hardware-in-the loop-solution to a standard hardwired arrangement to see which

was more effective. A Real-Time Digital Simulator (RTDS), an IED, a GPS clock, and an

industrial network switch were used to configure the hardware-in-the-loop SV protection

49 | P a g e

method. To evaluate the protection system's performance, it was subjected to a variety of fault

locations, fault resistance, and fault inceptions with varying Source Impedance Ratios (SIR).

According to (Adewole & Tzoneva, 2014a) to evaluate the security and reliability features of

the IEC 61850-9-2 standard process bus communication network, the delay was introduced

into the network. Due to the similar response and tripping times between the two

communication modes, the findings of laboratory testing suggest that the IEC 61850-9-2

standard process bus can be used in place of conventional hardwired communication between

protection IEDs and instrument transformers. However, when compared to hardwired

systems, the SV process bus offers several advantages, including the removal of parallel

copper wires between instrument transformers and IEDs, as sample values are published onto

an Ethernet network. (Adewole & Tzoneva, 2014a) conducted a test to demonstrate that the

IEC 61850 process bus may be utilised in place of conventional protection schemes without

compromising the security and operation of the system.

Merging Units that comply with the IEC 61850-9-1 standard and the IEC 61850-9-2 standard

communicate SV messages to bay-level IEDs using the serial link and the Ethernet process

bus, respectively, according to the standards. Each of these SV messages contains

instantaneous voltage and current samples of the power system, which are sampled by the

Merging Unit (MU) at a predetermined pace. The MU is a device that allows information to be

exchanged between the electronic current transformer and the bay-level equipment. It is used

for metering and for implementing other protective functions to use the sampled value

messages received by the bay-level IEDs instead of the full value messages. To receive these

published SV messages, bay-level IEDs must subscribe to them using the abstract

communication services provided in the IEC 61850-7-2 and IEC 61850-9-2 standards (Ncube,

2012).

In sensor systems, such as CTs, VTs, or digital input or digital output sharing, sampled

measured value (SMV) is a mechanism that is used to transport measured samples from

sensor systems between IED devices. The MU depicted in Figure 2.11 accepts analogue input

signals from current and voltage transformers via an Analogue to Digital Converter (ADC) and

binary input signals from primary plant equipment through a digital converter. In this case, the

information is mapped onto an IEC 61850-9-1 standard SV frame and then broadcast to bay

controllers through a serial unidirectional multidrop point-to-point communication link. Thus, a

single ethernet-based process bus network may carry a large number of digital signals.

50 | P a g e

Figure 2.11: IEC 61850-9-1 standard-based Merging Unit (Ncube, 2012)

MUs are depicted in Figure 2.11 as devices that are capable of broadcasting sampled value

messages carrying digital information obtained by reading digital inputs per the IEC 61850-9-

1 standard (Ncube, 2012). Aside from the fact that they must continuously supply information

to protection, monitoring, and control devices, sampled values are transmitted at a consistent

rate, as opposed to GOOSE messages. As a result, the sampled values consume a significant

amount of network traffic. Because the SMV and GOOSE messages will be the primary

constraints on network capabilities, it is critical to conduct a thorough examination of these

two protocols under their most extreme operation to ensure system stability.

Table 2.5 provides a literature review of IEC 61850 SV messages for use in substation

automation systems.

Table 2.5: IEC 61850 SV Literature Review

Paper Research Objectives Method Outcomes

(Apostolov, 2010) The study begins by

defining the Process

Bus concept as defined

in IEC 61850 9-2 and

then focuses on the

implementation that

provides interoperability

between merging units

In comparison to

conventional protection

and recording systems,

applications based on

the IEC 61850 provide

several significant

benefits. The study

discusses functional

Improved system

flexibility, reduced CT

saturation problems,

and prevention of open

current circuit

circumstances are only

a few of the major

benefits addressed in

51 | P a g e

and protection devices.

The Merging Unit's

components,

performance

requirements, and

temporal

synchronisation are

discussed.

enhancements in

conjunction with the

realistic elimination of

performance or safety

concerns.

the study. There are

numerous benefits

compared to traditional

protection and control

systems: Cost savings

on wiring, installation,

and commissioning, and

simplicity of adjustment

to different

configurations.

(Adewole & Tzoneva,

2014b)

The objective of the

research is to examine

the movement toward

the usage of the IEC

61850-9-2 Process Bus

in substations. The

impact of the IEC

61850-9-2 standard on

the reliability, security,

and operational speed

of protective IEDs is

discussed.

A lab-scale hardware-in-

the-loop experiment is

implemented and used

for the investigations. It

includes the RTDS, an

IEC 61850-9-2

protection IED with SV

inputs, a conventional

hardwired protection

IED, a GPS satellite

clock, and industrial

network switches. The

studies are designed to

compare the

performance of the two

protection IEDs'

distance protection

functions while exposed

to a variety of fault types

at a variety of fault

locations. Additionally,

the effect of random

noise/delay on the

protection functionalities

of an IEC 61850-9-2

Process Bus-based

protection IED is

examined. It

demonstrated that it

does not affect the

Process Bus IED unless

security and reliability

are compromised.

The results of the

numerous tests

conducted revealed that

both IEDs operate

similarly in terms of

operating time

responsiveness and

tripping times

throughout all protective

zones. Additionally, the

IED's dependability and

security were confirmed.

Integration of Process

Bus-based IED

improves substation

safety, reduces copper

usage, and simplifies

maintenance and

reconfiguration.

52 | P a g e

(Skendzic et al., 2007) The IEC 61850-9-2

standard introduces the

SV Process Bus idea.

This standard proposes

that the outputs of

Current and Voltage

Transformers that are

now hardwired to

various equipment be

converted to digital

signals and transmitted

via an Ethernet network.

This article discusses

the Merging Unit

Concept, examines the

reliability of the

protection system in a

process bus context,

and provides an

alternate way for

successfully deploying

this technology. SV

process bus has several

additional issues that

must be handled, as

well as interoperability

difficulties.

A large reduction in the

amount of low-voltage

cable and its

replacement with logical

connections established

through the process bus

LAN are two key

benefits of the proposed

solution, which promises

to minimise installation

costs. As a result, a

fresh approach is

required. It must be

adaptable, dependable,

and capable of

delivering benefits to its

users.

(Ingram, Schaub,

Taylor, et al., 2013)

The objective of this

article is to examine the

role of a communication

network that is

developed on the IEC

61850 standard. The

information gathered is

used to acquire a better

knowledge of the

properties of the

process bus. The

concept of coherent

transmission, as well as

its implications for

Ethernet switches, are

addressed in detail.

The behaviour of

Ethernet switches with

sampled value traffic is

investigated in detail

using experiments

based on substation

observations. The

authors provide test

methods for determining

a network's adequacy.

Once an Ethernet switch

queue sampled value

frames, future switches

incur minimal additional

delay, as such

communications cabling

can be cut without

impairing operation. A

process bus network's

performance and

reliability have been

proven to be

satisfactory.

(Engler et al., 2004) This document provides

an overview of the

feasibility studies

completed with IEC

61850.

The IEC 61850 standard

makes extensive use of

industry-standard

protocols like TCP/IP

and switched Ethernet.

The advantage of this

approach is that it

enables the employment

of readily available and

acceptable

communication

The feasibility studies

indicate that the

communication solution

presented by IEC 61850

satisfies the control and

protection specifications.

53 | P a g e

components. While the

use of Ethernet for

connection between

stations and at the bay

level looks to be trouble-

free, it is vital to confirm

that the same

technology can be

utilised for time-critical

communication.

(Hodder et al., 2009) This paper discusses

the primary motivations

and expectations for

next-generation

protection and control

systems across today's

utilities. A practical

design is described that

provides both strong

technical performance

and significant cost

reductions to the user,

with cost savings and

resource optimisation

demonstrated through a

simplified business case

study.

A fundamental business

justification for building

IEC 61850-9-2 process

bus architectures must

be to minimise all costs

related to the

installation, operation,

and maintenance of

protection and control

systems, as well as to

optimise project

execution and resource

use.

Recognising the current

cost structure, a

technical solution for

protection, control, and

automation has been

designed that is both

simple and practical,

with a high potential for

quick adoption. The

architecture is focused

on delivering a system

that complies with IEC

61850, is cyber secure,

and provides business

benefits.

(Starck et al., 2013) This article describes

how to optimise

switchgear using IEC

61850-9-2. The paper

further describes how

sampled values can be

used to improve the

reliability and functioning

of a medium-voltage

substation's IEDs.

This article describes a

way to combine station

and process buses into

a common bus,

complete with an

example and availability

analysis. Calculated

findings suggest that

availability,

performance, and

reliability have been

improved.

In comparison to typical

instrument transformers,

the use of non-

conventional instrument

transformers in

conjunction with IEC

61850 real-time

communication provides

more cost-effective

solutions with increased

availability.

(Kumar et al., 2016) The purpose of this

article is to analyse the

efficacy of a smart

protection system in a

zone substation that

This article provides

simulation results for

packet transit delay in

an Ethernet

environment, which may

In conclusion, while old

copper wires linking

relays in a conventional

substation functioned

well at the bay and

54 | P a g e

utilises IEC 61850-9-2

relays.

have a significant

influence on the SAS

network's protection

system. Increasing the

SV's frequency resulted

in increased packet

losses per second

during the performance

simulation.

process level, it is

recommended to

consider the deployment

of the IEC 61850-9-2

process bus design to

save costs and

accelerate project

implementation time.

The ease of wiring and

flexibility of changing

devices without having

to shut down the

secondary system are

the main advantages of

the process bus design.

(Gurusinghe et al.,

2018)

The purpose of this

study is to demonstrate

a methodology for

testing a fully digital

SAS utilising a real-time

power system simulator.

A real-time simulator,

four multi-functional

protection IEDs, a MU,

an amplifier, a GPS

clock, a GPS antenna,

two Ethernet networks,

and a workstation to

execute the essential

software are included in

the suggested test

setup. Such testing

requires a complex

testing infrastructure

and a significant amount

of engineering work.

IEC 61850 SV enables

interoperability, as well

as cost savings

associated with

commissioning and

maintenance. SV

enhances the safety and

dependability of the

substation environment.

Ethernet process bus communication networks that adhere to IEC 61850-9-2 specifications

can provide numerous advantages and benefits. The advantages of ethernet switched

communication, which is specified in IEC 61850-9-2, such as the data speeds, zero-collision,

and flexible design, make it preferable to the serial point-to-point standard links standardised

in IEC 61850-9-1 (Abdolkhalig, 2014). The process bus, which is based on an Ethernet

communication network, was proposed by the IEC 61850 standard to reduce the expense of

engineering and wiring of long copper wires between the process level and the bay level or

control room in the substation. Other than cost savings, the process bus has an architecture

that is simple, flexible, and interoperable, among other characteristics. The IEC 61850-based

process bus, in particular, has several technical difficulties. The latency and loss of time-critical

SMV messages via the ethernet process bus communication network are the most significant

55 | P a g e

technical challenges that have been explored by (Engler et al., 2004, Kanabar & Sidhu, 2011,

Adewole & Tzoneva, 2014, Abdolkhalig, 2014). To successfully implement a protection

application in a substation the communication availability and reliability must be investigated

as well. The IEC 61850-8-1 proposed that the same GOOSE message be sent numerous

times to improve transmission reliability. However, because SV messages are not repeated

during transmission, the reliability of their transmission is reduced. As a result, it is critical to

analyse and research the dynamic behaviour of process bus communication based on IEC

618509-2. The impact of SV loss or delay on substation phasor estimation and digital

protection should be mitigated through the development of appropriate approaches for any

future digital protection and automation systems. Other considerations for the development of

the process bus include time synchronisation and data security. etc., (Abdolkhalig, 2014,

Kasztenny et al., 2005).

Precision Time Protocol (PTP) and time synchronisation are pivotal components of power

utility automation for ensuring precise and synchronised time across multiple devices and

systems. Within the framework of IEC 61850, specifically Part 9-3, there is a dedicated focus

on addressing time synchronisation. This standard describes the utilisation of PTP to

synchronise clocks, ensuring interoperability across various devices. PTP enables highly

accurate time synchronisation by facilitating the exchange of timing information among

networked devices. Numerous power utility applications, such as energy management, fault

logging, and protective relaying, depend on precise time synchronisation. PTP guarantees

that electrical grid devices operate at exact times, improving system efficiency and reliability.

The successful implementation of PTP must take into consideration factors such as network

latency, delay variation, and device clock accuracy.

(Lin & Nadjm-Tehrani, 2018) investigated the application of Precision Time Protocol (PTP) for

synchronising the sampled value Process Bus. The study involved comprehensive tests to

assess the performance of PTP within the Process Bus across varying Ethernet network

loading scenarios. The experimental setup comprised a network switch and a Global

Positioning System (GPS) utilised to emulate merging units (MUs) for imposing network

loading conditions. An external time reference device was incorporated to compare the

synchronisation accuracy between master and slave clocks under diverse loading conditions.

The experimental results indicate that Process Bus traffic has the potential to disrupt PTP

synchronisation due to packet losses, leading to a delay exceeding 1μs in the slave clock

relative to the master clock. Furthermore, the experiments highlight that outcomes are

achieved when there are no merging units (MUs) traffic or when Virtual Local Area Networks

56 | P a g e

(VLANs) are employed, as opposed to sharing the same network for Sampled Value (SV) and

PTP communication.

(Ingram, Schaub, Campbell, et al., 2013) delved into an examination of the effectiveness of

Precision Time Protocol (PTP) components within the context of IEC 61850 sampled value

Process Bus systems. The methodology outlined in this study encompasses a diverse range

of tests that can be employed by system designers for the thorough analysis of timing

components. The authors put forth a synchronisation system that aligns with the

comprehensive functional requirements of the system. As per the findings presented by the

authors, PTP devices engineered for deployment in power systems demonstrate

interoperability, ensuring accurate synchronisation for each grandmaster and slave clock pair.

However, it is imperative to acknowledge the substantial impact of clocks employed within a

substation timing system on its overall performance. The study reveals that the implemented

PTP system successfully adheres to the ±1 μs standards outlined in IEC 61850-9-2 Light

Edition (LE), even when utilising a shared process bus network for both SV communication

and time synchronisation.

(Shrestha et al., 2021) conducted a comprehensive investigation into the consequences of

time synchronisation and network-related issues on protection within digital secondary

systems (DSS). In the context of an IEC 61850-based DSS, synchronisation and SV data

exchange occur via an Ethernet network. Optimal functionality of protection functions

mandates the maintenance of both time sources and an efficient protection network. The

authors present a test case illustrating the impacts of disabling protection function operation

during instances of network congestion. Addressing time synchronisation challenges, potential

issues arise from non-functional GPS signals, uncertain dependability and redundancy of

satellite clocks, and different synchronisation sequences among MUs and protective relays

from different manufacturers. Likewise, inadequately configured Ethernet networks may lead

to packet loss or substantial network delays, causing temporary incapacitation of protection

functions or degradation in overall protection speed. The study advocates for the consolidation

of communications and time synchronisation services over a unified channel within an IEC

61850-based DSS. This approach ensures precise time alignment among all communicating

devices, with clearly defined failure and recovery processes. The overarching objective is to

guarantee synchronised operation among all communicative devices within the DSS,

emphasising that proper functionality is dependent upon accurate time synchronisation. Loss

of synchronisation within a DSS induces an artificial phase shift, potentially leading to

erroneous tripping and detrimental effects on protective function availability.

57 | P a g e

The following section conducts a review of literature on the IEC 62351 standard in detail

focusing on available security techniques that can be employed.

2.5 Literature Review – IEC 62351

2.5.1 Introduction

As the power system becomes more advanced, with the integration of IoT and IT, cyber

security becomes a feature to be considered as the development of technology poses new

security risks. The operation that is managed between IEDs that are connected by

communication networks has a high transmission of information, and the cyber system has

been widely implemented for monitoring, controlling, and protecting, which is why there is a

requirement for security. Data and communication in the power system are to be securely

protected to maintain a safe electricity supply as the energy sector is a critical infrastructure.

However, it must be noted that “no industry can eradicate risk entirely when determining

security strategies against current threats facing the energy sector” (Karnati, 2020).

Implementation of a security standard ensures compliance in performance and

interoperability. Cyber security is important for its critical infrastructure. Integration of cyber

security policies and measures from the planning of a communication network to its

deployment and maintenance are essential to make the network resilient to external attacks

and internal carelessness. The IEC 62351 standard addresses security challenges and

countermeasures in power system communication networks, while the IEC 61850 standard

does not incorporate security elements (Karnati, 2020). Understandably so, cybersecurity was

not an issue when the IEC 61850 standard was first published.

IEC Working Group (WG) 15 of Technical Committee (TC) 57 published IEC 62351 on security

for IEC 61850 because there had been insufficient progress made in the direction of

incorporating security within the communication standard (Nozomi et al., 2019). IEC 62351 is

a cyber security standard (accepted internationally) that is focused on improving and delivering

security to the power system and further developing cyber security measures for GOOSE and

SV communication. The standard seeks to ensure the credibility, reliability, and confidentiality

of the different protocols used in the automation of substations. Cyber security is defined as a

method for securing the transmission of data on a communications network. Det Norske

Veritas Germanischer Lloyd (DNV GL) is one of the companies that offer IEC 62351

verification and conformance testing. These procedures help prove the security level and

58 | P a g e

interoperability of the power system including solving compliance issues. Rigorous testing is

essential to ensure that the infrastructure is secure.

With the 4th Industrial Revolution (4IR), automation has become of paramount importance in

life. Industrial control automation is available in different industries and as such manages

electricity, water, transportation, power stations, etc. These critical infrastructures must be

protected from cyber-attacks, failure, and damage or this may lead to economic destruction

(Schlegel et al., 2017b). Improving security against targeted cyber-attacks and hacker virus

attacks is of paramount importance. Therefore, IEC 62351 addresses the security of

substations and protocols used in power systems. (Schlegel et al., 2017b) puts it that, “like

many of these standards, it is not a revolution, but a careful evolution, to address security

issues without completely breaking backward- compatibility and interoperability with legacy

systems”. The standard is made up of ten different parts, addressing different areas. Table

2.6 provides a summary of the major sections of the standard.

Table 2.6: Summary of IEC 62351 Standard (Cleveland, 2012)

IEC 62351

Parts

Title

Part 1 Communication Network and System Security Introduction to Security

Issues: An overview of the standard is provided and aims are highlighted.

It also provides information on security and security attacks.

Part 2 Glossary of Terms

Part 3 Communication Network and System Security Profiles including TCP/IP:

This standard focuses on TCP/IP-based security protocols. The aim is to

ensure the authenticity and integrity of transport layer data, and preferably

also confidentiality using encryption mechanisms.

Part 4 Profiles including MMS: This section addresses security protection for

profiles such as the MMS.

Part 5 Security for IEC 60870-5 and Derivatives: The fifth section, defines

security protection for IEC 60870-5 protocols, as well as derivatives such

as DNP-3.

59 | P a g e

Part 6 Security for IEC 61850: This section of the standard discusses security

protection for protocols as defined in the related IEC 61850 Standard. This

section suggests an extension for GOOSE and SV messages Protocol

Data Units (PDUs) of IEC 61850.

Part 7 Objects for Network Management: This part of the standard describes the

types of data structures to be used which are unique to power systems.

Part 8 Role-based Access Control: This section describes system-wide role-

based access control for the infrastructure of power systems. It addresses

different access types, such as direct and remote access.

Part 9 Key Management: This section intends to address key management.

Part 10 Security Architecture Guidelines: This IEC 62351 section provides general

guidance on the security architecture of power systems. This offers a

description of the security controls that can be introduced in the power

systems, as well as interface design guidelines on how to develop

communication infrastructure for power systems.

IEC 62351 parts 3, part 4, part 6, and part 10 are significant for the research, and as such an

assessment is provided in Table 2.7. There are other available cybersecurity standards such

as the IEC 62443 standard and National Institute of Standards and Technology (NIST)

cybersecurity framework.

Cybersecurity constitutes a fundamental element within Industrial Control Systems (ICS). The

IEC 62443 series of standards presents a pragmatic and attainable framework for addressing

security risks. Its primary aim is to diminish the vulnerabilities inherent in the establishment

and operation of Industrial Automation Control Systems (IACS). Familiarity with the structural

organisation of IEC 62443 and the associated obligations is conducive to upholding robust

cybersecurity within IACS, which are integral components of smart grids.

IEC 62443 prescribes that IT security professionals typically conduct network and device

scans as part of routine vulnerability assessments and security evaluations, as outlined in IEC

62443-3-1. Additionally, suppliers of software patches are required to conduct vulnerability

assessments in accordance with IEC 62443-2-3. Furthermore, all components of smart grid

60 | P a g e

architecture must undergo compliance testing against the set of standards. (Dolezilek et al.,

2020) emphasized the utilization of Industrial Control Systems (ICS) methods and standards

to develop defense-in-depth cybersecurity measures for digital communications within an

Energy Control System (ECS) network. The ECS communications architecture, being mission-

critical, is structured into various levels, each with distinct requirements and features ranging

from the process level to the control centre. By leveraging these levels, the authors advocate

for the identification of interconnected cyber defense technologies, determining their

deployment levels, and associating them with specific devices, as outlined in IEC 62443 Part

3. This approach contrasts with the broad defense-in-depth strategy of mandating all devices

to incorporate every cyber defense technology, as suggested by IEC 62443 Part 4. (Dolezilek

et al., 2020) underscores the significance of designing system security rather than relying

solely on device security. They argue that adopting a defense-in-depth strategy ensures

comprehensive cybersecurity, unlike the insufficient device-level security measures outlined

in IEC 62351 and IEC 62443 Part 4. Ultimately, they assert that defense in depth is the

appropriate method for effectively securing modern ICSs against both malicious and non-

malicious cyber threats.

The National Institute of Standards and Technology Special Publications (NIST SP) 800-82,

Guide to Industrial Control Systems (ICS) Security, comprehensively addresses the security

of Industrial Control Systems (ICS). NIST SP 800-82 introduces security controls pertaining to

security assessments, including Security Assessment and Authorization procedures, which

validate the proper application and functionality of specific security controls, ensuring the

desired outcomes. Recommendations regarding penetration and vulnerability testing tools are

provided, mindful of instances where the utilization of such tools resulted in disruptions to ICS

operations due to increased traffic and exploits. Thus, it is advisable to meticulously evaluate

the potential impact of these tools on ICS operations beforehand.

Table 2.7: Assessment for Significant IEC 62351 Parts(Schlegel et al., 2017b)

Part Title

Part 3 This part aims to implement message integrity protection and

confidentiality. The standard IEC 62351-3 addresses the need to utilise

Transport Layer Security (TLS) and X.509 certificates to provide

encryption and authentication. Utilising TLS for substation automation is

a suitable and appropriate choice that provides a degree of security. The

standard, however, allows the use of NULL ciphers which do not use

encryption. This is risking incompatible implementation and hence some

61 | P a g e

degree of sufficient security is not provided. Another major issue with

this part of the standard is backward compatibility reducing the security

provided.

Part 4 The standard provides security for application-level security profiles and

for TCP / IP-based profiles. However, differing security mechanisms will

be achieved, depending on whether encryption is used or not. If

encryption is used, part 3 of IEC 62351 must be applied to achieve

authentication, integrity, and 69iality, if not unauthorised access to

information. The main problem is that if IEC 62351-3 is not used with the

standard, then no integrity or confidentiality of the message will be

provided, only initial authentication. The authentication also has a time

stamp, which must be correct. If not accurate, the security profiles at the

application level are open to at least three attacks.

Part 6 Part 6 is an appropriate and suitable standard. However, there is no

provision for time-critical traffic. Many applications need a response time

of 4ms, and IEC 62351-6 does not recommend encryption for such

applications. The use of RSA signatures is recommended for the

authenticity and integrity of extended PDUs. For applications requiring a

4ms response time hash-based message authentication code (HMAC)

can be implemented.

Part 10 Part 10 sets out comprehensive and precise architectural and security

control details.

62 | P a g e

2.5.2 Methodology Implementation in Literature

(Hohlbaum et al., 2010) practically considered the performance evaluation of IEC 62351-6 and

concluded that the potential software (cryptography algorithms) and hardware solutions could

not meet the necessary performance requirements for GOOSE and SV data. As such,

literature will be studied to address symmetric cryptography. (Schlegel et al., 2017b) approves

that the IEC 62351 standard can meaningfully improve security in substation automation and

control systems if applied correctly: providing authentication, integrity, and confidentiality of

data. However, backward compatibility remains a concern because there is some extent of

security loophole. Various mechanisms are paramount to improving the security architecture

of power systems. (Tesfay & Le Boudec, 2018) investigate better performance algorithms such

as the Elliptic Curve Digital Signature Algorithm (ECDSA). The authors proved that the latter

algorithm has features of being faster and requiring lower computational power than RSA.

(Farooq; et al., 2019) further studies various security algorithms for IEC 61850-based

messages to secure GOOSE, Routable-GOOSE, SV, Routable-SV, and MMS. GOOSE and

SV messages sent via IP networks are referred to as “routable” as per IEC 61850-90-5. In

essence, R-GOOSE and R-SV implement the Application Profile and employ routable UDP to

permit data transfer across WAN. Notably,(Karnati, 2020) observes a loop when it comes to

securing SV messages as more research needs to be conducted. (Karnati, 2020) designs

implement, and further conducts a performance analysis of IEC 62351 for providing security

mechanisms for SV by examining the structure of the SV communication protocol. The

platform is tested and validated using Hash-based Message Authentication Code (HMAC) and

Galois MAC (GMAC). IEC 61850 uses ethernet and TCP / IP and therefore firewalls can

protect the perimeter of security and VPN technology can build secure channels to remote

centres. Access to the systems must be secured along with comprehensive logging of all user

accounts by user authentication and authorisation. As follows, Figure 2.12 depicts potential

security attacks in the substation automation environment:

1. A1; a cyber intruder may compromise the user interface (SCADA, HMI). Access control

measures are to be put in place for identification and authentication to prevent

unauthorised access. The remote access points must have suitable security frames

implemented.

2. A2; cyber-attack can disrupt time synchronisation and operators will lose

communication with the power system.

3. A3; compromise station bus.

4. A4; an attacker can gain access to the bay-level devices.

63 | P a g e

5. A5; an intruder can alter the device protection settings by employing a Protection

Setting tempering attack. Protection settings and information in the communication

network are to be confidential and prevent any unapproved disclosure.

6. A6; the transmitted GOOSE message can be captured and modified by employing a

GOOSE Forgery or Spoofing attack. A false message can lead to the failure of the

substation.

7. A7; process bus communication is compromised, and useful information can be used

for cyber-attacks. The configuration of the communication path is to be strictly

controlled as the protection scheme of the substation is critical. Security measures are

to be implemented so that vulnerabilities of the subscriber device are not exploited.

8. A8; sampled values from the merging unit can be changed by employing a Sampled

Value Stream Forgery attack. Data integrity is to be implemented to prevent

unauthorised data exploitation.

9. A9; compromise the firewall and gain access to the power system.

Based on these potential cyber-attacks, the substation environment must be secured against

any security threats. The transmission of false GOOSE messages can cause IED settings to

be modified and hence disrupt field device operations. As such, the operators of IEDs in the

substation need identification and authentication; access must be controlled whether locally

or centrally.

Figure 2.12: Potential Cyber-attacks in a SAS (Hong et al., 2014)

64 | P a g e

2.5.3 Synthesis and Analysis of Literature

The Internet has radically transformed the way we communicate with each other and share

information. While security is a key component of IoT implementation, it is sometimes

overlooked during system development. Designing with security in mind can save time and

effort, as well as financial implications that could cause damage.

The overarching theme is that considering security at the design phase can save not just time

and work later on, but also potential embarrassment and financial loss. Security education is

a rapidly growing field in and of itself. This domain recognises that even the most secure

technologies are only as secure as their users. User education educates individuals on how

to defend themselves against cyber hazards.

Emerging technologies pose new challenges and opportunities for cybersecurity to address

and evolve. Changes in how businesses keep data digitally, the volume of content published

via the web, and the increasing number of linked devices all result in new forms of

vulnerabilities. The amount of data breaches has risen. New technology entails new attack

channels for cyber dangers, as well as implications for physical security. As more industries

migrate to the internet and become a part of the digital world, cybersecurity is becoming a

bigger field. This means that practically every industry requires cybersecurity, in addition to

cybersecurity being an industry in and of itself. Cybersecurity as a field involves a diverse set

of abilities that function in concert. Data and communications must be secured to ensure the

security of essential infrastructure and a stable electricity supply. The IEC 62351 standard

provides a mechanism for achieving that security that is widely recognised. And compliance

with it ensures performance and interoperability, which increases the appeal of systems and

components to network operators. As a result, a comprehensive security model is necessary

for substation communication. IEC Technical Committee (TC) 57 WG 15 produced the IEC

62351 standard, to resolve substation communication security challenges. To implement

cybersecurity measures in IEC 61850-compliant smart grids, a detailed understanding of the

IEC 62351 standard is required. Following that, customised solutions for ensuring secure

communication in various aspects of smart grid operation can be devised (Hussain, Ustun, et

al., 2020).

To ensure the safety of different substation communication services, such as IEC 61850, there

are security requirements included in the IEC 62351 standard. IEC 61850 is becoming one of

the extensively utilised standards for substation automation. As a result, (Hussain, Ustun, et

al., 2020) present a detailed examination of security concerns, cyber threats, and

65 | P a g e

recommendations for IEC 61850 communication. Additionally, extensive study is given to the

security issues specified in IEC 62351 for the protection of several IEC 61850 communications

(GOOSE, SV, R(Routable)-GOOSE, R(Routable)-SV, and MMS). To better understand these

cybersecurity techniques and put them into perspective within the context of substation

automation, a brief overview is provided. Additional information is provided by the authors,

including the review of the cybersecurity techniques defined in the IEC 62351-6:2007 standard

with the IEC 62351-6:2020 standard.

(Yoo & Shon, 2016) makes it clear that the IEC 61850 standard is at the centre of the industrial

control environment. As such, the connections between these heterogeneous protocols are

inevitable. However, there may be an infringement of end-to-end security at connection points

between communication protocols. As such, vulnerabilities are exposed if we rely solely on

existing security requirements for individual protocols. (Yoo & Shon, 2016) studied safety

issues that may arise in the smart grid and provided advice on security measures that can be

taken.

(Harbi et al., 2019) further investigates authentication and key management mechanisms for

securing the transmission of data on the Internet of Things (IoT). The fundamentals of IoT are

agreed on regarding the change it brings into society by allowing various equipment to connect

and access an internet cloud, hence attracting worldwide attention. The challenges of ensuring

security and privacy in network communication in IoT is a fundamental problem. (Harbi et al.,

2019) propose a secure Wireless Sensor Network (WSN) authentication and key management

scheme to secure data transmission. The scheme examined security flaws such as replay

attacks, denial of service (DoS) attacks, impersonation attacks, lack of mutual authentication,

and session key agreement. Once the security flaws are identified, (Harbi et al., 2019) propose

a secure and enhanced scheme to overcome such challenge weaknesses. Various logic and

tools such as the Burrow-Abadi-Needham logic, Automated Validation of Internet Security

Protocols, and Application tools are utilised for verification of the enhanced security scheme.

(Karnati, 2020) further studies and discusses the cyber-attacks initiated on SV as follows:

1. Replay attack: This is a cyber security attack where cybercriminals monitor the

communication network to intercept and delay (playing back) critical information such

as SV packets that contain values of current and voltage.

2. Spoofing: The original SV message was attacked, captured, modified, and injected

with malicious information. Figure 2.13 shows an example of the spoofing attack where

the original SV message is manipulated. The subscribing device discards the original

SV message stream and subscribes to the spoofed message stream. The time

66 | P a g e

synchronisation information and measurement values can be manipulated. Attackers

can also tamper with the operation of the field equipment (Karnati, 2020).

Figure 2.13: An example of spoofing attacks for SV messages (Hariri et al., 2019)

3. Flooding Attack: Attackers identify the critical information of the initial SV messages in

the communication stream. The original message is then manipulated and reproduced,

flooding the process bus with SV messages. The main object of this malicious attack

is to attack the normal SV subscriber function where the protection functions cannot

be processed.

4. High smpCnt Attack: If an SV subscribing device repeatedly gets a high number of SV

messages that contain smpCnt, the device will ignore all other normal SV messages.

The intruder has the potential to interfere with the regular operation of the SV in the

power system. Because of this, in the long run, the usual monitoring that is done on

the measurement function of the subscribing device will be discarded (Karnati, 2020).

IoT has been recognised as a revolutionary technology of the present century. To encrypt the

data being transmitted, the transmission of data over a public network needs to be protected

and thus a secret key should be exchanged between the communication parties. Only the

authorised or involved communicating parties can access the transmitted data hence the

requirement of authentication and key agreements (Harbi et al., 2019).

The convergence of information technology (IT) and operational technology (OT)

environments, which were formerly designed to run separately, has evolved dramatically as

67 | P a g e

digital transformation has accelerated over the last decade. This convergence, fueled by a

rising reliance on cyber-physical systems and technical breakthroughs, has resulted in

indisputable commercial advantages such as increased efficiency, sustainability, and

creativity. However, it has also created new risks and concerns, particularly in cybersecurity.

IT environments have typically focused on managing and processing data, using techniques

like encryption and firewalls to protect confidentiality, whereas OT environments prioritize

managing and controlling physical devices critical to production, prioritizing integrity. As these

previously independent environments merge, efficiency and visibility improve; yet, issues

occur due to differing security needs and unique cyberthreats encountered by IT and OT

systems.

Increased connections between IT and OT systems expand the attack surface for hackers,

demanding specialized security controls and communication between IT and OT teams. IT

and OT systems have significantly distinct security requirements and confront various

cyberthreats, allowing IT and OT operations inside a business to become contaminated.

Traditional IT security solutions may be ineffective for OT assets because they function in real-

time and cannot tolerate the latency associated with IT systems. Incompatibilities in hardware,

software, and communication protocols between IT and OT systems can cause disruptions

with rapid and serious consequences.

In IT/OT convergence, successful cybersecurity frameworks necessitate more collaboration

between IT and OT teams, as well as solutions capable of protecting all important assets

inside the environment. This collaboration protects the security and stability of critical

infrastructure in OT sectors, as well as the protection of sensitive information in IT systems.

As a result, properly protecting convergent environments requires tackling both IT and OT's

distinct security requirements and concerns.

Several authentications and key agreement schemes have been proposed in recent years to

secure sensor networks within the IoT context. (Harbi et al., 2019) studied various schemes

that addressed security flaws some were ineffective, and their protocols were unsafe under

various attacks. In one of the papers presented by (Shen et al., 2018) where they designed

two authentication and key management protocols. Both protocols are based on Elliptic Curve

Cryptography (ECC) and Message Authentication Code (MAC) which generally offer

confidentiality, integrity, and authenticity. However, the ECC and MAC were found by (Harbi

et al., 2019) to be vulnerable to various attacks and the proposed schemes failed to achieve

mutual authentication. (Harbi et al., 2019) further studies an effective WSN network

68 | P a g e

architecture and a robust authentication protocol for the secure transmission of the data

provided by (Amin et al., 2018). The proposed scheme by (Amin et al., 2018) provides

authentication and key management. Yet cost-effectiveness is ineffective. Not limited to the

review of papers, (Harbi et al., 2019) review a paper authored by (Mehmood et al., 2017).

(Mehmood et al., 2017) proposed a secure mechanism called an inter-cluster multiple key

distribution schemes (ICMDS) for WSNs. They focused on key management and

authentication. They employed various key methods of distribution to secure communication

between clusters. The proposed scheme, however, is insecure since it is vulnerable to several

types of attacks.

To secure communication networks it is important to design authentication and key agreement

mechanisms. As discussed, key agreement schemes for authentication and session are

based on ECC and rigid one-way functions. The ECC gives greater security and is suitable for

restricted environments. In the paper, (Harbi et al., 2019) discuss and review the (Mehmood

et al., 2017) scheme and its security weakness issues. An enhanced ECC-based scheme is

being proposed to overcome the security flaws provided by (Mehmood et al., 2017) and

analyse, assess, and evaluate its security and performance.

The Mutual Authentication and Key Agreement (MAKA) is called the enhanced scheme. It

consists of five phases: initialisation, key generation, node registration, authentication of

nodes, and agreement to the session key. (Harbi et al., 2019) conclude informedly that the

proposed authentication and key management scheme for IoT applications are more secure

and effective.

(Rodriguez et al., 2021) further evaluates a fixed latency architecture to secure GOOSE and

SV messages to provide authentication and confidentiality using the AES-GCM algorithm. The

authors implement and test the test to successfully authenticate and encrypt real-time GOOSE

and SV data in less than 7µs. The implemented design complies with IEC 61850 and IEC

62351 respectively where IEC 61850 data is generated, transmitted, and processed in less

than 3ms. Data authentication and encryption can be implemented for GOOSE and SV using

the AES-GCM algorithm that introduces fixed latency. Table 2.8 shows various security

algorithms employed to evaluate and verify compliance with IEC 62351 standard, and time

requirements to secure GOOSE. The proposed algorithm by (Rodriguez et al., 2021) is the

only solution compliant with IEC 62351-6. The RSA algorithm is not compliant because of the

latency time, and the combination of AES & and SHA-256 algorithms is not compliant because

of the format.

69 | P a g e

Table 2.8: Comparison of IEC 62351-6 GOOSE and SV frame security implementation

proposals (Rodriguez et al., 2021)

Algorithm Functionality Implementation Maximum

Latency

(ms)

Delivery

Time

Usage

Maximum

Throughput

Fixed

Latency

IEC

62351-6

Compliant

RSA Authentication Software 4 133% - No No (Time)

RSA Authentication Hardware 1.917 63.9% - Yes No (Time)

RSA Authentication Software 6 200% - No No (Time)

RSASSA-

P

Authentication Software 0.942 31.4% - No No (Time)

KCS1-

v1_5

Authentication Software 3.56 118.7% - No No (Time)

EtM (AES

& SHA-

256)

Authentication

and

Encryption

Software 0.242 8.07% - No No

(Format)

E&M

(AES &

SHA-256)

Authentication

and

Encryption

Software 0.235 7.83% - No No

(Format)

MtE (AES

& SHA-

256)

Authentication

and

Encryption

Software 0.284 9.47% - No No

(Format)

AES-

GCM

Authentication

and

Encryption

Hardware 0.006 0.23% > 1Gbits-1 Yes Yes

Confidentiality has proven to be difficult to implement since using asymmetric cryptography is

a challenge to secure real-time traffic. Encryption is a desirable feature however presents an

additional challenge of computational overheads, which need to be limited to not compromise

the delivery time of the IEC 61850 data. As such (Rodriguez et al., 2021), study the current

security attacks, and further evaluate available cybersecurity solutions. (Hohlbaum et al.,

2010), have studied the RSA algorithm, using a software implementation and the results show

that asymmetric cryptography is a challenge for securing real-time traffic. The minimum time

required to generate the digital signature is 1.5ms to 4ms, which is not compliant. IEC 62351-

70 | P a g e

1 recommends that encryption algorithms not be used with IEDs due to their high processing

times. (Ishchenko & Nuqui, 2018) further confirmed the results using the latest technological

hardware, and the results were still not in compliance. (Farooq et al., 2019) propose an

alternative algorithm for securing real-time traffic. The authors implemented the RSASSA-PSS

digital signature using Python and verification times were calculated. The authors found that

neither RSASSA-PSS digital signature is fast enough and unsuitable to secure critical

operations for securing IEC 61850 data. However, the results show that the RSASSA-PSS

digital signature has better and improved performance than RSA.

The smart grid is a rapidly evolving power system of generation systems, distribution systems,

transmission lines, electrical equipment, and control technology to meet demand in the 21st

century (Kim et al., 2013). The smart grid is an electrical grid comprising controls, computers,

automation, and new technologies that respond digitally to changing electrical demands.

Distributed communication and intelligence capabilities can improve the efficiency and

reliability of the smart grid and other networks. However, if smart grids are not implemented

with sufficient protection controls, they could create new vulnerabilities that would allow

hacking and cyber-attacking of utilities.

Thus, (Kim et al., 2013) evaluate the safety output of the GOOSE, implementing the IEC

62351-6 MAC protocol, applying it to F-IED using the IEC 61850 GOOSE and Hardware

Security Module (HSM), and develop the environment for the security test beds. As the Electric

Power Research Institute (EPRI) reports, one of the major issues confronting the development

of smart grids is the cyber security of networks. According to the EPRI Report, “Cyber security

is a critical issue due to the increasing potential of cyber-attacks and incidents against this

critical sector as it becomes more and more interconnected. Cyber security must address not

only deliberate attacks, such as from disgruntled employees, industrial espionage, and

terrorists, but inadvertent compromises of the information infrastructure due to user errors,

equipment failures, and natural disasters. Vulnerabilities might allow an attacker to penetrate

a network, gain access to control software, and alter load conditions to destabilise the grid in

unpredictable ways.” (National Institute of Standards and Technology, 2012)

IEC 61850 and IEC 62351 are supported by (Kim et al., 2013). However, it must be noted that

IEC 62351 is not only for IEC 61850. It includes cybersecurity for IEC 61850, IEC 60870-5

(101/104 and DNP3), IEC 60870-6 Inter Control Center Protocol (ICCP), and IEC

61968/61970 Common Information Model (CIM). The design and configuration specification

for substation automation is IEC 61850, as shown in Figure 2.14.

71 | P a g e

Figure 2.14: IEC 61850 Communication Model (Kim et al., 2013)

IEC 61850 utilised object-oriented data models to explain the details of various equipment and

automation functions. The IEC 61850 specifies the interface between the IEDs and the

schemes that map them to multiple protocols using TCP / IP and high-speed ethernet. GOOSE

is a protocol intended for use in IEC 61850 for sending critical time messages, such as

substation incidents, commands, and alarms inside the substation network as mentioned by

(Kim et al., 2013). Because GOOSE is designed to transmit time-critical messages; messages

must be sent within 4ms, so security mechanisms that affect transmission rates are

inappropriate. IEC 62351-6 provides security measures for authentication and integrity

measures which include critical timing requirements for digitally signing the messages.

(Kim et al., 2013), used MAC mechanism IEC 62351-6 as illustrated in Figure 2.15. The MAC

mechanism includes hash-value calculations, authentication-value calculations,

authentication-value decryption, and digital signature verification from sender to receiver.

72 | P a g e

Figure 2.15: Secure GOOSE Procedure (Hussain et al., 2019)

(Hussain et al., 2019) agree that IEC 61850 is a very popular standard that is currently being

researched intensively and note that it is also relevant to study aspects of cybersecurity.

(Hussain et al., 2019) develop the S-GoSV (Secure GOOSE and SV) software which

generates GOOSE and SV messages. The software incorporates a security feature to protect

them from cyber-attacks inside a substation. The Secure GOOSE and SV software implement

RSA digital signature algorithms as IEC 62351-6 stipulates. The generation and verification

procedure used for the RSA digital signature algorithm is shown in Figure 2.16. The full

process of generating and verifying digital signatures is described in (Farooq et al., 2019).

However, RSA digital signature algorithms take a long time based on performance studies

and do not comply with critical time requirements as set out in the substation communication

standard IEC 61850. To address this concern (Hussain et al., 2019), a Keyed Hash-Message

Authentication Code - Secure Hash Algorithm (HMAC-SHA256) was developed and

implemented in the S-GoSV message securing software. Furthermore, the authors discuss

GOOSE and SV message structures as stipulated by IEC 61850-8-1 and IEC 61850-9-2, and

demonstration results with Wireshark are provided.

73 | P a g e

Figure 2.16: Generation and Verification of RSA Digital Signature Algorithm (Hussain et al.,

2019)

(Wang et al., 2019) presents a key management security mechanism for substation

automation. The authors clearly outline that the security of encrypted messages, cryptographic

systems, and protection of the keys are a unit and depend on each other. Key management

schemes are based on key generation, key negotiation, key distribution and key updating.

(Wang et al., 2019) implement an invulnerable key management algorithm to ensure the

protection of keys for cryptographic systems and messages. They propose an improved key

management mechanism which has a great advantage in terms of communication. The

proposed key generation algorithm meets the confidentiality requirements of message

security, the stability of the communication network is better, and the real-time performance is

better. Security analysis was presented and different attacks like the MITM attack, replay

attack, and anti-tampering have been experimented with, and each attack has been

prevented.

(Kriger et al., 2013) examined the GOOSE message in a substation that conforms to the IEC

61850 standard and confirmed their results using simulation and a practical experiment was

conducted with IEDs. The IEDs were utilised to generate GOOSE messages and Wireshark

was used for analysis. The authors concluded their results with an actual testbed confirming

the GOOSE PDU as specified in Part 8-1 of the IEC 61850 standard.

74 | P a g e

2.6 Overview of Raw Socket Programming

As previously mentioned above, a socket provides an abstraction layer for the programmer to

send and receive data, either using two processes on the same machine or across the network

to a different device. We can then define socket programming as a method of connecting two

network nodes so that they can communicate with one another. One socket listens on a

specific port at an IP address, and another socket reaches out to the other to establish a

connection. While the client attempts to contact the server, the server creates a listener socket.

(Socket Programming in C/C++ - Geeks for Geeks, 2019)

In this thesis, socket programming will be conducted in C using TCP/IP. A TCP refers to a

connection-oriented communication protocol. In socket programming, a connection between

two processes is referred to as an association. As such, the association can be defined as a

data structure that specifies the two processes and their method of communication. The data

structure includes the protocol, addresses, and processes.

In the OSI model, the protocol is a layer that is included between the application and the

internet protocol layer. TCP is a protocol utilised in networking for sending data packets. It

guarantees that data reaches the intended recipient. Before delivering the data packets, a

connection is thereby established at the source and destination nodes. The connection is then

maintained until the transmission of data is complete. Subsequently, TCP has a

retransmission feature, which means that when a TCP client delivers data to the server, it

expects an acknowledgement in return. If an acknowledgement is not received, the data will

be lost after a given length of time, and TCP will automatically retransmit the data. TCP is a

dependable stream because of the connection notion, which allows faults to be identified and

compensated for by resending failed packets.

75 | P a g e

Figure 2.17: Sequence of function for client-server communication (Socket programming in c

using TCP/IP - Article world, 2021)

In the TCP/IP model, network communication incorporates a client-server topology.

Specifically, communication is initiated, and a connection is established between the client

and the server. Examples of client-server communication will be implemented under Section

4.2. The implementation will specifically follow a sequence of functions for client-server

communication as shown in Figure 2.17. Subsequently, after establishing a connection with a

client, the server will wait for the client to send a message. After receiving the message, the

server will examine it and send an appropriate response in accordance with the message.

Steps to creating client communication using TCP are as follows (Socket programming in c

using TCP/IP – Article world, 2021):

76 | P a g e

1. “Create a socket using the socket () function in c,

2. Initialise the socket address structure as per the server and connect the socket to the

address of the server using the connect (),

3. Receive and send the data using the recv () and send () functions,

4. Close the connection by calling the close () function.”

Steps to creating server communication using TCP are as follows (Socket programming in c

using TCP/IP – Article world, 2021):

1. “Create a socket using the socket () function in c,

2. Initialise the socket address structure and bind the socket to an address using the bind

() function,

3. Listen for connections with the listen () function,

4. Accept a connection with the accept () function system call. This call typically blocks

until a client connects to the server,

5. Receive and send data by using the recv () and send () functions in c,

6. Close the connection by using the close () function.”

The client-server mode is an information-sharing mode that is commonly used in information

systems, such as databases. The most fundamental aspect of client-server setup is the

custom and the server. The term "client" usually refers to a personal computer or a

workstation. It presents the terminal client with a very user-friendly interface, such as Microsoft

Windows and other similar programs. The server offers the client a group of users who are all

using the same service application, which is provided by the server. The database server is

the most widely used type of server. It allows a large number of clients to share the same

access to information sources. (Xue & Zhu, 2009)

Figure 2.18 shows the client-server system structure. Computer systems with a client-server

structure can exchange information and resources across them. For example, files and disk

space can be shared between systems, while processors can collaborate and transmit

messages inexorably amongst numerous processors. Some of the processors are running on

the client side, while the rest are working on the server side of things. The distribution of task-

level applications between client and server lies at the heart of the client-server system's

structure. The software that facilitates communication serves as the foundation of the

exchange. The TCP/IP protocol suite is an example of this type of software. As a result of

supporting this software (communication software and operating system), the primary

77 | P a g e

objective is to create a fundamental structure for distributed applications to operate on. (Xue

& Zhu, 2009)

Figure 2.18: Client-server system structure

When we use TCP protocol to connect a client and a server, we gain several advantages.

For example, TCP is well-suited for applications requiring high reliability, and transmission

time is significantly less critical. Other protocols, such as HTTP, HTTPS, FTP, SMTP, and

Telnet, make use of it. TCP rearranges data packets in the requested order. There is a

100% assurance that the data transfer is complete and arrives in the sequence in which it

was sent. TCP employs Flow Control and necessitates the transmission of the handshake

procedure to establish a connection before sending data.

Henceforth, The IEC 61850 standard specifies communication interfaces that enable

publisher-subscriber and client-server services to be provided. These services help IEC

61850 devices communicate via MMS for client/server applications. GOOSE messaging is

used to provide peer-to-peer communication between publishing and subscribing devices,

while SV messaging is used to distribute measurements. Therefore, IEDs connect with the

HMI via the MMS protocol's messaging capabilities. Inter-IED communication is

accomplished via the GOOSE publisher-subscriber messaging system. Through a publisher-

subscriber arrangement, the process-level devices communicate power system information

(voltage and current measurements, circuit breaker status, alarm notifications etc.) from

switchyard source devices to the bay level.

For decades, communication methods have been utilised to help power systems work better.

By delivering innovative, simple-to-use, durable technology for power system protection,

automation, control, and monitoring, power suppliers aim to increase productivity and make

electric power more reliable, safe, and cost-effective. The strategy's major objective is to

develop acceptable communication technologies and protocols (Ozansoy et al., 2007). It has

78 | P a g e

become practical and justifiable to incorporate station IEDs on a peer-to-peer communication

network as a result of the advent of IEC 61850, which is a standardisation effort.

The standard also allows for peer-to-peer communication for exchanging SV and GOOSE

messages between devices, furthermore, the client-server topology is provided by mapping

to the MMS stack. Figure 2.19 presents the peer-to-peer topology. For IEC 61850, the

critical point to remember about publisher-subscriber communication is that it can occur only

if a client-server architecture has been established previously. When a server is destroyed,

any aspects that are reliant on it are also destroyed.

Figure 2.19 Publisher-subscriber communication model (Ozansoy et al., 2007)

IEC 61850 requires the deployment of a client-server and peer-to-peer communication

architecture to enable the ACSI, one of the critical techniques for ensuring compatibility

between devices manufactured by various manufacturers. Table 2.9 shows reviewed papers

for socket programming. Not many papers were reviewed as the topic is not a focal study.

Table 2.9: Socket programming reviewed literature papers.

Paper Research Objectives Method Outcomes

(Kalita, 2012) The purpose of this

paper is to introduce

sockets and their use in

network programming.

In addition, the paper

discusses socket

programming in Java

over TCP.

In client-server

applications, sockets are

essential. Writing to or

reading from these

sockets allows the client

and server to

communicate with one

another. This paper

teaches network

programming concepts

and elements involved

in constructing network

applications utilising

This paper studies

sockets, ports, and

socket programming

over TCP, and UDP.

Sockets are used in

network programming to

provide interprocess

communication between

hosts, with sockets

serving as the

communication's

endpoint. Because the

Internet protocol is used

79 | P a g e

sockets. Java was

designed to establish

client-server traffic via

sockets, performing

socket functions is one

of the most fundamental

network programming

tasks that a Java

programmer is likely to

confront.

to communicate

between computers,

sockets are also known

as network sockets or

Internet sockets. Java

has outperformed all

other languages in

terms of establishing

connections between

clients and servers.

(Kumar, 2019) The author provides a

detailed study of the

client-server topology,

emphasising core

aspects of development,

implementation, and

research issues. The

purpose of this study is

to raise awareness of

client-server topology

development issues and

to highlight important

principles.

One of the primary goals

of this research is to

identify research

difficulties in the client-

server system. Studying

the performance

evaluation, and the

reliability of the client-

server system. The goal

of performance

evaluation is to give a

fair and comprehensive

conceptual

understanding of the

client-server system.

The client-server system

and its many

components were

explained in this study:

client-server

architecture, physical

and logical components

of client-server

architecture, and

implementation strategy.

We also included some

client-server scenarios.

Performance, reliability,

trusted system design,

and secure system

development are some

of the developing

disciplines for study and

development in the

current environment.

(Xue & Zhu, 2009) The use of the

client/server mode, as

well as the notion and

programming approach

of sockets based on

client-server, are

discussed in this work.

The approach of

software design for

communication between

client and server

processes utilising the

socket mechanism is

primarily examined, and

examples of connection-

oriented service

programs are shown.

The transmission layer

can provide TCP or

UDP.

The client-server mode

is a common information

transfer paradigm in

information systems.

The distribution of task-

level applications

between client and

server lies at the heart

of the client/server

system structure. To

make it easier to put

together an effective

client service program.

On the transport layer,

80 | P a g e

the authors stated that

they require a thorough

understanding of the

TCP and UDP protocols.

(Bertocco et al., 1998) The authors present

real-time communication

with client-server

architecture using the

Secure Shell (SSH)

protocol. As such, we

frequently assume that

Internet communication

is just as reliable as

traditional kinds. We

anticipate that what we

are saying will reach the

intended receiver in its

original form.

Unfortunately, there are

numerous security

issues in distributed

control systems, as well

as numerous methods

for the problem of

transmission security.

The focus of this study

is on a low-cost solution:

TCP communication

tunnelling using the well-

known SSH protocol.

The Network Control

System experimental

framework employed in

this study entails real-

time control of many

plants linked to the

controllers via the

ZigBee network. ZigBee

is a wireless technology

that was developed as

an open global standard

to address the unique

requirements of low-

cost, low-power wireless

sensor networks. The

ZigBee technology was

designed to transfer

data over radio

frequency in difficult

environments. ZigBee

allows for a large range

of wireless network

configurations using

low-cost, low-power

solutions. It increases

the ability to run for

several years on low-

cost batteries for a

variety of testing

applications.

In contrast to private

enterprise solutions, the

SSH client technique

necessitates essentially

no user credentials on

the client system. As a

result, we demonstrate

that the SSH protocol is

more efficient than the

TCP protocol. SSH is a

network communication

protocol that is designed

to be controllable and

cost-effective to adopt.

Client and server SSH

software are available

for practically all

operating systems. The

client in this article is a

computer, and the

server is a Raspberry Pi

board. The SSH client

and server must

establish a stable

connection before any

communication can take

place. This allows them

to share keys,

passwords, and lastly,

any data they send to

one another providing

strong authentication

and firm communication

between client and

server.

(Piantadosi et al., 2015) It has become more

necessary in recent

years in many scientific

disciplines to collect and

analyse large amounts

In the framework of an

image-based medical

diagnostic environment,

the authors created a

case study. This

The authors have

designed a medical

case study to aid in the

discovery of lesion

detection automatically.

81 | P a g e

of data. As a result,

there is a rise in the

study of automated data

management and data

mining to develop

trustworthy ways for

data analysis and

interpretation. The

authors propose a

client-server architecture

for advanced distant

data processing that is

secure, smart, versatile,

and capable of

incorporating pre-

existing local

applications.

enabled us to address

several additional issues

that were also closely

associated with medical

data and the analysis of

that data. The purpose

of this research is to

propose an architecture

for advanced remote

workflow execution in a

secure and versatile

client-server intelligent

environment that can

interact with a wide

range of software

applications and

systems.

This design provides the

radiologist with access

to secure and robust

draughting software.

Tests have shown that

the suggested design

has several advantages,

including an

improvement in system

throughput, ease of

upgradeability,

maintainability, and

scalability, among

others. The authors

conclude that the work

is useful for facilitating

the integration of

intelligent devices into

existing infrastructure.

(Ozansoy et al., 2007) Using the IEC 61850

protocol as an example,

the authors offer a real-

time

publisher/subscriber

communication model

as a means of

addressing the

protocol's unique

behaviour and

communication

requirements. The

authors provide a full

description of the

model's architecture and

implementation, as well

as some noteworthy

performance results, in

their paper.

At the heart of this

strategy is the

development of

appropriate

communication

technologies and

protocols. The authors

began their research on

IEC 61850 by

transforming it into a

real protocol by

implementing its

services and information

models as concrete

programs using

sophisticated object-

oriented programming

techniques. Additionally,

the design and

implementation of a

standard delivery

service were conducted,

which was created

specifically to address

the IEC 61850 protocol's

The paper used

simulations to assess

the performance of the

publisher/subscriber

communication model.

The simulations

revealed that the

designed architecture is

capable of providing the

IEC 61850 protocol with

essential communication

services. It adds a

negligible amount of

overhead to the

underlying protocol

stack, while yet keeping

the overall delay within

acceptable limits.

82 | P a g e

communication

requirements, to support

client/server and

publisher/subscriber

communication models.

2.7 Conclusion

In closing, to achieve interoperability, authentication, integrity, and confidentiality within the

substation automation environment, IEC 61850 and IEC 62351 should be conformed to. With

the above literature, it is found that the challenge of encryption cannot be successfully solved

to meet timing requirements for secure GOOSE. A new authentication scheme must be

developed to meet compliance with cyber security and timing requirements. In 2020, IEC

issued a new version of the security standard, IEC 62351:2020. The standard introduces

Secure Hash Algorithm-256 (SHA-256) and Advanced Encryption Standard (AES) Galois

Message Authentication Code (AES-GMAC) algorithms. The implementation of these two

algorithms is expected to meet compliance for cyber security, and timing requirements to

secure GOOSE and R-SV messages. The standard also includes AES Galois/Counter Mode

(AES-GCM), to allow to provide both confidentiality and integrity. (Hussain, Farooq, et al.,

2020) studies and implements a method of achieving both authentication and encryption by

employing Authenticated Encryption with Associated Data (AEAD). The authors study three

different methods for the AEAD algorithm to achieve encryption and authenticated GOOSE

messages. These are Encrypt-then-MAC (EtM), Encrypt-and-MAC (E&M) and MAC-then-

Encrypt (MtE). It secures GOOSE message communication by employing AES-128 encryption

and HMAC SHA-256 message integrity. (Hussain, Farooq, et al., 2020) conclude that the

AEAD algorithm can be employed successfully to secure GOOSE, meeting the time

requirements of 3ms. Table 2.10 shows reviewed papers for IEC 62351.

Table 2.10: IEC 62351 reviewed literature papers

Paper Research Objectives Method Outcomes

(Yoo & Shon, 2016) Studies the electrical

grid in Korea and further

addresses security

vulnerabilities,

requirements, and

security mechanisms in

power system

Investigating the

integration of the IEC

61850 protocol with

other communication

protocols such as

DNP3, IEC 61970, and

OPC UA.

Security issues that can

occur in a power grid

were noted. Various

security

countermeasures were

proposed. The security

technique was

employed in an IEC

83 | P a g e

61850 – DNP3

environment and

verified.

(Kang et al., 2011) The authors propose

strategies of key

management for data

encryption in SCADA

networks and further

study the issues present

in SCADA networks.

Evaluating the SCADA

network security

problems in the Korean

power grid. Encryption is

employed in the SCADA

system for cyber

security.

Symmetric encryption is

applied to the SCADA

network. However, the

authors found that

symmetric encryption is

more vulnerable to

cyber-attacks than

asymmetric encryption.

The key distribution

period based on the

Quality of Service (QoS)

function is evaluated,

and the authors

conclude it is more

significant for network

performance and

security.

 A cyber security attack

can physically impact

the failure of critical

infrastructure. This

paper studies and

evaluates the most used

security techniques.

A hardware cyber-

physical testbed

including the security

mechanism is

implemented to secure

the substation from

security vulnerabilities.

A substation is

simulated, and the

Anomaly Detection

System (ADS)

successfully captures

the malicious attacks

that have been

detected. ADS is applied

to the testbed to

evaluate the

effectiveness of the

detection capabilities.

(Moreira et al., 2016) A Stuxnet virus is one of

the popular security

attacks that were able to

maliciously intrude on

the SCADA and take

control of its operation in

Iran. Awareness was

raised and the authors

explored available

security techniques and

their applicability to

Cyber security

mechanisms such as

RSA, HMAC-SHA,

ECDSA, and AES

algorithms are studied to

prevent attacks. The

MACsec cryptographic

technique is also

presented as an

alternative as it provides

hop-by-hop integrity and

The paper discusses the

evolution of substation

communication and

further studies how IEC

61850 is integrated with

the power system

environment. Also,

cyber security for the

communication

standard, IEC 61850 is

discussed to evaluate

84 | P a g e

SAS. A MAC-based

security mechanism is

proposed.

authenticity, but not end-

to-end source

authenticity.

the prevention of

unauthorised access to

SAS. The authors

recommend that a

hybrid solution be

developed to include

hop-by-hop group

authentication and

integrity using

symmetric cryptography

and end-to-end

authentication.

(Wang et al., 2019) This paper presents a

key management

method for the smart

substation. The security

of cryptosystems

depends on ensuring

that the key

management is secured

and not compromised.

the authors propose an

improved symmetric

polynomial-based key

management method.

The proposed key

management method is

analysed to verify the

message security and

efficiency to prevent

security attacks.

Simulations are

deployed to test the

various attacks

mentioned and each

security attack is

prevented and resisted.

The symmetric

polynomial key

management scheme

based on symmetric

encryption is

implemented. An

analysis of the security

scheme is presented

through simulation and

the results verify real-

time performance.

(Schlegel et al., 2017a) This article presents a

security evaluation of

the IEC 62351

compliance, examining

several aspects of the

security standard. The

authors further discuss

how the security

standard can improve

security in SAS.

An overview of the ten

parts of the IEC 62351

standard is evaluated.

The standard contains

security measures to

ensure that integrity,

authenticity, and

confidentiality are

implemented in a

substation environment.

The standard addresses

security issues present

in SAS. Also, discuss

the performance related

to backward

compatibility. The

authors are satisfied

with the standard as it

provides a reasonable

amount of security.

However, some of the

cryptographic algorithms

also need to be

considered.

(Hohlbaum et al., 2010) In substation

automation, IEC 61850

standard and IEC 62351

cyber security standard

The performance

requirement of the IEC

62351-6 standard has

been confirmed to not

The authors further look

at the available methods

to secure the SAS.

Since IEC 61850 is

85 | P a g e

need to be

implemented. IEC

62351 is the security

standard for IEC 61850

communication. In this

paper, the challenge of

addressing secure

communication in the

power system in

compliance with the

communication standard

is presented. IEC

62351-6 of the standard

is discussed (in

particular) to address

the performance

requirements for IEC

61850 protocols.

be compliant with IEC

61850 GOOSE and SV

data delivery.

presented which makes

use of ethernet and

TCP/IP, firewalls and

VPN technology can be

used to protect the

security of remote

stations and systems.

Systems and devices

must further use user

authentication and

authorisation.

(Hoyos et al., 2012) The authors

demonstrate a practical

experiment by attacking

the GOOSE protocol on

cyberinfrastructure.

Malware is created to

capture and tamper with

the GOOSE message.

The GOOSE message

is then reinjected into

the power grid to exploit

the network.

Mitigation of the

malware attack was

discussed. Some

mitigation measures

include the introduction

of strict IT techniques to

be put in place. In the

power grid, devices

require security

algorithms to be

implemented. Data

needs to be encrypted

and authenticated. Utility

infrastructure must not

only be secured

physically but also cyber

security techniques are

to be deployed.

(Farooq et al., 2018) The communication

requirements for the

phasor measurement

unit (PMU) are stated in

the IEEE C37.118.2005

and the IEC/TR 61850-

90-5:2012. The standard

establishes data

Due to the number of

attacks on critical

infrastructure, the

implementation of a

security technique is a

critical requirement in

PMU networks. The IEC

61850-90-5 addresses

It's paramount that the

communication network

be secured from any

security attacks. The

implementation of

authentication is critical

to protect devices in the

communication network.

86 | P a g e

communication between

PMUs etc. The transport

data needs to be

compliant with IEC

61850. To secure PMU

communication

networks from MITM

attacks, the paper

presents a certificate-

based authentication

system.

the security issue and

proposes an HMAC

algorithm together with a

key distribution centre

(KDC) for authenticating

and providing encryption

to data. However, the

standard does not

address the impact of

the man-in-the-middle

(MITM) attack during

KDC.

The authors developed

an authentication

method to mitigate

MITM attacks during

KDC key exchange in

PMU networks.

However, the authors

have noted that IEEE

C37.118 does not

address cyber security

concerns and IEC

61850-90-2 only

addresses certain

security techniques,

without detail of

implementation.

(Tebekaemi, 2016) The authors develop

and implement an IEC

61850 compliant

substation testbed

simulation for cyber-

physical security

studies. As previously

noted, current the

substation environment

has evolved in a

revolution of intelligence

introducing information

and communication

technology. As such, to

maintain a secure

operation of the

substation, the various

security concerns must

be assessed to develop

a robust security

solution.

In the paper, the

physical vulnerabilities

and cyber vulnerabilities

are discussed. The

power system is

modelled in

Matlab/Simulink. The

simulation includes the

power model, IED

model, communication

model, and attack

model. The IED must be

IEC 61850 compliant.

The process level

includes the switchgear

devices, bay level, and

station level. The

switchgear devices

communicate with the

bay-level IEDs via

GOOSE messages with

HMAC for security. The

communication model

consists of the process

network and the station

network that supports

GOOSE and SV

protocols. The attack

A simulation testbed is

being used to perform

analysis of the power

grid and security

protocols. It further

provides an overview of

physical attacks on the

grid. The physical

system and

communication network

must support the IEC

61850 standard. The

simulation testbed is

tested against network

attacks at the process

and network LAN. Using

Wireshark, the authors

were able to capture

and manipulate the

GOOSE messages. The

MITM attack was also

deployed to intercept

messages. The authors

clarified that the

simulation was tested

without compliance with

the IEC 62351 standard.

As such, the simulation

87 | P a g e

model can be a physical

attack on the system or

a network attack.

was then performed

introducing IEC 62351

and the attacks were not

successful.

(Hong et al., 2014) The proposed NIDS

uses multicast

messages to monitor

and identify suspicious

activities in substation

automation systems. It

uses a specification-

based algorithm to

detect and prevent

cyber-attacks.

The performance test

was performed for

various scenarios

related to cyber

intrusions. The objective

of the test was to

evaluate the reliability

and correctness of the

proposed intrusion

detection system. The

cyber-attacks were

simulated on a testbed

and the results show

that the proposed

algorithms can identify

anomalies and prevent

attacks in substations.

The experiment was

carried out for various

security attack

scenarios, such as

packet modification,

denial-of-service

attacks, and replay

attacks. This paper

presents an intrusion

detection system that

can identify anomalous

behaviours in real-time

environments. It can

also be used to prevent

the exploitation of the

network by detecting

malicious activities

carried out by multicast

messages.

(Strobel et al., 2016) The authors present the

weakness in the IEC

62351 standard. These

vulnerabilities allow for

the replay of GOOSE

and SV messages. The

other weakness present

in the Simple Network

Time Protocol (SNTP)

protocol also makes the

system vulnerable to

security attacks.

This paper presents the

findings and

recommendations

related to the issues

with IEC 62351. The

authors analyse part

specifications of the IEC

61850 and IEC 62351

standard.

The authors analysed

and discovered the

weaknesses. The

weakness identified is

the replay attack in the

GOOSE message,

cross-receiver replays in

the SV message, and

the attacks on the

SNTP. They reiterate

IEC 62351 needs to be

improved as IEC 61850-

based infrastructure

demands a robust

security technique.

(Wright & Wolthusen,

2016)

This paper discusses

IEC 62351-3 standards

for public-key

management.

An analysis is provided

to clarify that IEC

62351-3 does not align

with the performance

requirements in IEC

61850. The authors

IEC 62351-3

implementation of TLS

and public key

management is

discussed. As stated, for

the TLS algorithm to

88 | P a g e

effectively make it clear

that this may undermine

operations. As such,

operations may be

vulnerable to denial-of-

service attacks. The

data packets

transported using the

TLS protocol are

secured as per

IEC62351-3, but this is

contingent on the

effective deployment of

public key infrastructure.

function, there must be

a public key algorithm to

allow authentication.

Possible problems are

stated regarding the

implementation of the

public key infrastructure.

In the same manner,

possible solutions to

these problems are

addressed.

(Kim & Kim, 2014) An evaluation of the IEC

61850 standard is

conducted. Secure

communication to the

protocol is implemented

using IEC 62351-6 and

IEC 62351-4.

An implementation of

the IEC 62351-6 and

IEC 62351- security

mechanism is employed

on a Smart Distribution

Management System

(SDMS) that uses IEC

61850 communication.

To secure GOOSE, the

MAC-SHA256 security

algorithm and ECDSA

digital signature are

implemented. To secure

MMS, IEC 61850 MMS

stack, ECDH, ECDSA,

AES 256, and SHA

algorithms are used.

(Hong et al., n.d.) Cyber security has

become an issue in the

newest technology used

in SAS. The modernised

network uses enhanced

communication

functionalities. The

authors design a

security algorithm to

provide authentication

and integrity for securing

substation operations.

Malicious GOOSE and

SV communication can

cause the power system

to fail.

A security technique is

developed to ensure

authentication and

integrity. The security

algorithm is to meet the

performance

requirements imposed

by IEC 61850 and IEC

62351. The test is

conducted on a

computer that includes

an embedded system.

The objective is to

prevent spoofing and

replay attacks and

ensure authorised

access.

MAC is utilised to

confirm the authenticity

and integrity of a

message. As an added

feature, key distribution

is employed in peer-

peer communication.

However, adding an

encryption algorithm

increases the message

processing time.

Therefore, encryption is

to be left out unless

confidentiality is

required in the

message. The authors

concluded that the

HMAC technique

outperforms alternative

authentication

mechanisms.

89 | P a g e

According to the analysis of the literature, several research projects are examining the use of

GOOSE and SV messages in substation automation systems. Additionally, data security

approaches are examined to ensure the integrity of IEC 61850 protocols. Security

requirements are identified and factors such as data integrity, authentication, confidentiality,

performance, and compatibility with the IEC 61850 standard are considered. Factors such as

the algorithm's strength and vulnerabilities are assessed, including performance implications.

As a result, this thesis will contribute to the effective transmission of knowledge about the IEC

61850 standard, in particular the R-SV and GOOSE messages, and the IEC 62351 standard.

I researched the various options and determined that Authenticated Encryption is a secure

algorithm. Authenticated Encryption integrates data encryption and authentication into a single

algorithm, giving a comprehensive solution for protecting data integrity and authenticity.

Chapter Three of this thesis delves further into the IEC 61850 standard, focusing on the

information mapping from communication services to GOOSE and SV messages. It further

discusses in detail the GOOSE and SV device models and their message structure.

90 | P a g e

3. CHAPTER THREE: THEORETICAL FRAMEWORK

3.1 Introduction

The IEC 61850 standard is the result of many industry initiatives to standardise communication

in substation automation. Since the early 1990s, non-standard communication mechanisms

have been utilised in SCADA systems, although they lack interoperability and

interchangeability. This was because multiple remote terminal units (RTUs) from different

vendors didn't support the same protocol. With such communication systems, RTUs were

single-purpose devices, making distributed functions difficult. To create a substation

automation system based on the IEC 61850 standard, a thorough examination of the standard

is required. The IEC 61850 standard was created to describe application objects that can be

sent via data communications. Years of development in automation and protection object

modelling followed. In addition to the literature discussed in Chapter 2, we can effectively view

that the IEC 61850 standard was introduced to set out the standardisation of communication

in substation automation systems (SAS), including smart grids. Accordingly, the development

of the IEC 61850 standard has been identified based on various advantages over hardwired

and legacy communication techniques. The advantages include the virtualisation of the

substation automation that is flexible, interoperability between devices, and reduction of

engineering time (Abdolkhalig, 2014). In addition to providing a strong network of

architectures, the IEC 61850 standard sets rigorous testing criteria for substation equipment

such as fast communication and common communication protocol between field devices.

To develop an authentication algorithm for Generic Object-Oriented Substation Event

(GOOSE) and Sampled Value (SV) messages, in-depth knowledge of the IEC 61850 standard

is required. This chapter introduces the IEC 61850 standard for GOOSE and SV

communications and provides an overview of the IEC 62351 standard. This chapter is divided

into three parts: Section 3.2 provides an overview of the IEC 61850 standards that are relevant

to this study. In Section 3.3, the IEC 61850 process bus and mapping data to SV and GOOSE

messages are studied. In Section 3.4 and Section 3.5, we discuss the security challenges and

requirements for IEC 61850, Section 3.6 provides an overview of the IEC 62351 security

standard.

91 | P a g e

3.2 Overview of the IEC 61850 standard

The IEC 61850 standard consists of ten sections where the large sections are further split into

smaller sections resulting in the entire standard comprising a total of fourteen parts. Necessary

for this research, Part 5, Part 6, Part 7, Part 8, and Part 9 will be studied. The IEC 61850

standard describes the requirements for substation automation and establishes a future-proof

architecture for substation automation that enables interoperability, scalability, flexibility, and

maintainability of substation automation systems.

3.2.1 Part 5 – Communication Requirements

The IEC 61850 standard provides performance classes for the various types of messages

required to map data (data objects and attributes) to specified protocols in Part 5. This

standard defines five communication profiles, three of which are for time-critical

communications known as link-layer communication services, while the other two are for non-

time-critical messages. These communication profiles are shown in Figure 3.1.

Figure 3.1: IEC 61850 message types and performance class (Ncube, 2012).

Figure 3.1 depicts three time-critical communication services, each of which is indicated in red

blocks. These are the GOOSE, Generic Substation State Event (GSSE), and SV messages,

among others. Since these communication services are mapped directly to the data-link layer,

protocol overhead is reduced, and performance is increased. The two remaining

communication profiles described in this standard are the device time synchronisation

messages based on the simple network time protocol (SNTP) protocol and the Manufacturing

92 | P a g e

Message Specification (MMS) profile for the management of substation equipment (Ncube,

2012).

The Type 1, Type 1A, and Type 4 time-critical messages, each of which is mapped to a distinct

EtherType, are of special interest to the researchers working on this project. Deliveries times

for different types of messages are established in Part 5 of the standard; thus, all Intelligent

Electronic Devices (IEDs) that are capable of publishing either one or several types of

messages, as defined in this standard, shall conform to the delivery times specified in the

standard. The next section provides a summary of part 6 of the IEC 61850 standard.

3.2.2 Part 6 – Substation Automation System Configuration

Part 6 of the communication standard introduces and discusses the Substation Configuration

Language (SCL). The SCL is a configuration language based on the eXtensible Markup

Language (XML). It enables system engineers to construct abstract models of primary and

secondary substation equipment, communication mechanisms between equipment, and

relationships between equipment. The Unified Modelling Language (UML) serves as the

foundation for the modelling platform for this configuration language (Ncube, 2012; Apostolov,

2010).

This configuration language enables IED configuration and settings to be transmitted to a

system configuration tool or another IED, decreasing the cost and labour by omitting manual

intervention. Part 6 of the standard defines four different types of SCL files (Julie, 2014; Ncube,

2012; Hou & Dolezilek, 2010):

a) Documents describing the System Specific Description (SSD); Functional models

define how automation systems behave when performing a function, such as

protection, automation, or control.

b) Station Configuration Description (SCD); The SCD file has a fully configured

communication section for IEDs or sub-systems. This file contains a list of all the IEDs

located throughout the distribution substation that comprise the automation system.

c) IED Capability Description (ICD); The ICD file defines the IED's default capabilities

before its name and address are configured, whereas the CID file represents a

customised IED.

d) Configured IED Description (CID); The distinction between ICD and CID files is that an

IED has a unique name and address.

93 | P a g e

Figure 3.2 illustrates the system configurator and IED configurator. It begins by gathering all

the data from the SSD file, which includes system-linked data, and the ICD, which includes

IED-linked data and then establishing the SCD file. This file creates the function and

information transfer for each IED and stores it in a database. The IED Configurator then

gathers the SCD file and generates the CID file. Next, the CID file is sent via a communication

connection to a specific IED.

Figure 3.2: System Configurator and IED Configurator (Julie, 2014)

The next section summarises part 7 of the IEC 61850 standard.

3.2.3 Part 7 – Basic Communication Structure

This section of the IEC 61850 standard is subdivided into four portions, which are designated

as Part 7-1, Part 7-2, Part 7-3, and Part 7-4, respectively. Providing the fundamental concepts

and principles of communication amongst substation equipment in an IEC 61850 standard-

based automation system is the primary focus of Part 7-1. The standard takes advantage of

the virtualisation idea to provide a view of some real-world device characteristics that are

critical for information exchange with other devices. Part 7-2 covers the exchange of data

between entities via abstract communication service interfaces. Part 7-3 defines structures for

representing common data qualities for a specific data object, and it is divided into three

sections. Logical node classes and their associated common data classes are defined in Part

94 | P a g e

7-4, and these classes and data classes can be mapped to a specific communication service

mapping to facilitate information sharing between entities (IEC 61850-7-1, 2003).

SASs are primarily responsible for protecting, controlling, and monitoring plant equipment

employed in the substation and its feeders. These functions serve as the foundation for the

IEC 61850 standard's object-oriented physical and logical device information models. The IEC

61850 standard's core is comprised of information models and methodologies for device

modelling. The information models and methods for device modelling are at the heart of the

IEC 61850 standard. As illustrated in Figure 3.3, the models defined in the IEC 61850 standard

enable the virtualisation of physical devices. Objects, classes, attributes, inheritance, and

methods are all common object-oriented concepts covered by the IEC 61850 standard.

Concerning the data view and the communication view, the IEC 61850 employs object-

oriented principles to describe actual physical devices and associated substation functions.

Figure 3.3: Modelling approach (IEC 61850-7-1, 2003)

3.2.3.1 Abstract Communication Services

The Abstract Communication Service Interface (ACSI) is defined in Part 7-2 of the IEC 61850

standard. The standard specifies its application in substation automation when IED

collaboration in real-time is necessary. The ACSI is a critical aspect in determining

95 | P a g e

interoperability. Therefore, The ACSI specifies how data is exchanged between devices in a

substation automation system. Moreover, ACSI is characterised as being independent of the

communication systems (IEC 61850-7-2, 2003). The ACSI consists of two parts that define

two different communication models: client-server and peer-to-peer architecture models as

illustrated in Figure 3.4 (Kriger et al., 2013). Data modelling approaches described in parts 7-

3 and 7-4 of this standard are used in conjunction with these communication services to create

models (IEC 61850-7-2, 2003).

If two devices are connected in a peer-to-peer communication architecture, one is a publisher

(which transmits data) and the other is a subscriber (who listens for information). Client-server

architectures are frequently used for device configuration and remote access, while peer-to-

peer architectures are frequently used for time-critical message exchange. IEC 61850 requires

the deployment of a peer-to-peer or client-server topology to enable the ACSI, one of the

critical techniques for ensuring compatibility between devices. The communication between a

client and a remote server may be for data access, device control, logging of events,

publisher/subscriber, file transfer, etc. (IEC 61850-7-2, 2003).

Figure 3.4: ASCI Services (IEC 61850-7-1, 2003)

To ensure compatibility, Part 9-2 of IEC 61850 specifies a Specific Communication Service

Mapping (SCSM). SCSM is used to map the modelled data to well-known communication

protocols such as TCP/IP, MMS, and ISO 8802-3 Ethernet frames (Mguzulwa, 2018). SCSMs

describe the fundamental communication protocols and standards used between devices for

data transmission using either client-server or peer-to-peer models. Parts 8 and 9 of the IEC

61850 standards define SCSM.

96 | P a g e

The next section discusses the data modelling of substation information.

3.2.3.2 Data Modelling

This is a critical part of the IEC 61850 standard since it permits interoperability across IEDs

and functions. The standard is focused on describing the information models that allow the

IEDs from multiple vendors to transmit information to one another.

The IEC 61850 standard makes use of data models that are representations of analogue

power system equipment. These data models are generated using a process known as

virtualisation. Virtualisation is the technique of presenting an automated system with a view of

the elements of a physical device that are of relevance to it. Not only is virtualisation a

philosophical notion that underpins the IEC 61850 modelling standard, but it is also an

engineering process in which field professionals model actual substation automation

equipment and operations (Retonda-Modiya, 2012).

The IEC 61850 standard permits the virtualisation of a physical power system. Figure 3.3

shows an illustration of a virtualisation process. The initial phase in the IEC 61850 modelling

process that leads to the ACSI is the virtualisation of SAS components and their associated

functionalities. Virtualisation is a procedure that is used to standardise the behaviour of a SAS

device or function using them to facilitate communication between devices. Among the many

prototypes in the IEC 61850-7 of the standard are classes of Logical Node Classes, Data

Classes, and Common Data Classes. In other words, for devices and functions that have

already been standardised, there is no need to go through the entire virtualisation process

again.

With the use of IEDs, it is possible to reduce redundant connections of hardwiring involving

RTUs, programmable logic controllers (PLCs), metering devices, and instrument transformers

in today's architecture of power system automation. This requires an electrical engineer to be

familiar with the IEC 61850 data modelling standard to achieve this goal.

97 | P a g e

Figure 3.5: Data model layers (IEC 61850-7-1, 2003)

Data modelling in IEC 61850 begins by considering Figure 3.5 which contains five layers.

Figure 3.5 depicts an object-oriented representation of the IEC 61850 standard data modelling

technique. According to Figure 3.5, a physical network addressable device is comprised of a

logical device, which in turn has several logical nodes for providing a variety of functionality.

In Figure 3.5, the data model is overlaid with standard names, as follows (Retonda-Modiya,

2012; Mguzulwa, 2018; Emmanuel, 2014; Ncube, 2012):

a) The physical device that is directly connected to the network address is the first layer

of the architecture. The real network addressable device (IED) in an automation

system is identified by the physical device.

b) The second layer is the logical device, the IED. Groups of Logical Nodes that are

connected within a physical device.

c) The third layer is the logical node, which represents abstract data items and the

fundamental components of the IEC 61850 object-oriented virtual model. This is

accomplished using standardised data and data properties. This permits the creation

of a hierarchical class model in which all class information, associated services, and

parameters may be accessible via a communication network.

Table 3.1 Logical Node groups in the IEC 61850-7-1 standard (IEC 61850-7-1, 2003)

Logical Node Groups Group Designator

System Logical Nodes L (3)

Protection functions P (28)

Protection related functions R (10)

Supervisory control C (5)

Generic References G (3)

Interfacing and Archiving I (4)

Automatic Control A (4)

98 | P a g e

Metering and Measurement M (8)

Switchgear X (2)

Instrument Transformer T (2)

Power Transformer Y (4)

Further power system equipment Z (15)

Sensors S (4)

d) The fourth layer is the data class. This is the real data that an automation system

measures, monitors, or controls. Table 3.1 shows how the IEC 61850 standard

classifies SAS functions into logical nodes. The groupings are further broken into 92

distinct Logical Nodes, each of which is built of 355 data classes that have application-

specific meaning.

e) The data is the fifth layer. The 92 data class types are enlarged to a total of 355 data

classes. A data attribute is a feature of the data object that is being monitored or

measured.

The IEC 61850 standard is based on the Unified Modelling Language (UML) and employs

an object-oriented modelling methodology. This configuration language makes use of UML

as a basic modelling platform. After defining a class or function, the user is not required to

redefine the object or function but may create an instance of that class, or object. Figure

3.6 shows the UML class diagram of the IEC 61850 data mode.

99 | P a g e

Figure 3.6: UML class diagram of the IEC 61850 data model (IEC 61850-7-2, 2003)

Part 7 of the IEC 61850 standard covers data communication models, communication

services, and data classes between devices in an IEC 61850 standard-based system. The

IEC 61850 standard further introduces an important factor of standard naming convention for

devices, logical nodes, objects, and data attributes. However, details of the naming convention

are present in this literature. Part 8-1 of the IEC 61850 standard, which defines the precise

communication service mapping of application data to Manufacturing Message Specification

(MMS) and ISO 8802-3 GOOSE messages, is discussed in the following section.

3.2.4 Part 8-1 – Mapping to MMS and Ethernet

It has been defined in the IEC 61850 standard that there are two types of information exchange

systems. Each has its architectural framework: the first is strictly client-server communication,

while the second has additional incorporates functionality based on the publisher-subscriber

communication structure. To facilitate the provision of these services, the IEC 61850 standard

specifies a layered communication structure on top of the OSI model.

100 | P a g e

The IEC 61850-8-1 standard defines the mapping of process level, bay level, and station level

device abstract objects and services to the application layer. Along with mapping to the

application layer, IEC 61850-8-1 defines profiles for the communication stack's data link,

networking, transport, session, and presentation levels. ACSI and information model

mappings to a specific protocol are defined in this section of the IEC 61850 standard.

Figure 3.7 illustrates the IEC 61850 standard's SCSM; defining how the IEC 61850 standard's

part 7 application data is communicated utilising the SCSM. To minimise protocol overhead

and message delivery times, the SCSM provides access to lower layers of the OSI model

where GOOSE and SV messages are directly mapped to the data link layer, while mapping of

data and information to MMS encompasses all seven of the Open System Interconnect (OSI)

stack. Furthermore, the data is routed over an ethernet link layer via the ISO 8802-3 ethernet

frame "EtherType" for GOOSE and SV (International Electrotechnical Commission, 2009).

SCSMs are designated by IEC 61850-8-1, IEC 61850-9-1, and IEC 61850-9-2 standards. IEC

61850-8-1 assigns the MMS responsibility for the majority of ACSI services. Additionally, it

provides mappings between Sampled Values, GOOSE, Time Synchronisation, GSSE and

Ethernet. IEC 61850-8-1 defines the services that are commonly used for exchange

throughout the substation. IEC 61850 defines GOOSE as the standard's core crust because

it enables quick applications that meet the standard's protective performance standards.

The next section introduces the mapping of applications for the SV messages.

Figure 3.7: Layered structure of the IEC 61850 standard (Mohagheghi et al., 2011)

101 | P a g e

3.2.5 Part 9-1 and 9-2 – Sampled Measured Value Mapping.

IEC 61850 standard describes SCSM as a method of transferring current and voltage samples

through a serial point-to-point link or over an Ethernet process bus to bay-level IEDs.

Information is mapped across a traditional multi-drop point-to-point serial configuration in Part

9-1 of the specification; information is mapped onto an ISO 8802-3 Ethernet frame in Part 9-2

of the specification. The advantages of Ethernet switched communication, as defined in Part

9-2 of the specification, such as data speeds, zero-collision, and a flexible design, made it

preferable to serial point-to-point connection. Furthermore, reducing the expense of costly and

lengthy copper wiring between a substation and the control centre.

As with GOOSE messages, mapping voltage and current samples to an ISO 8802-3 Ethernet

frame generates SV messages, a time-critical peer-to-peer communication protocol. There

are differences between Part 9-1 of the IEC 61850 standard and Part 9-2 of the same standard

not only in terms of the underlying interface but also in terms of the information that is shared.

Digital inputs and voltage and current measurements are both contained in Part 9-1 of the IEC

61850 standard. Part 9-2 permits only voltage and current measurements within the defined

frame, as GOOSE messages for digital status transmission are already present.

Contrary to Part 9-1 of the IEC 61850 standard, Part 9-2 restricts the transmission of SV

packets without binary input statuses. The dataset is customisable in the framework of the IEC

6180-9-2 standard via the SCL. The digitisation of signals from instrument transformers is

specified in Part 9-1, and the mapping of these signals into SMV frames that are transmitted

via an Ethernet data link protocol is defined in Part 9-2. According to Part 9-2, an Ethernet-

based network has been proposed for communication in substations to send and receive

protection and automation signals between devices. The digitised signals (using Merging

Units) are distributed via the Ethernet-based process bus to the bay-level protection and

control IEDs. The Merging Unit is a critical component of the IEC 61850 process bus.

IEC 61850-9-2 Ethernet communication networks based on process-bus can provide

numerous benefits, including a flexible architecture, and interoperability. For time-critical

messages, such as SMV, it is crucially important that the feasibility and reliability of substation

protection systems operating over an Ethernet-switched Process-Bus network be thoroughly

investigated, even though the Part 9-2-based process bus has proven to be a promising

technology for protection systems (Abdolkhalig, 2014).

102 | P a g e

3.3 Application of the IEC 61850 standard in a Substation Automation System

As utilities worldwide embrace the IEC 61850 digital substation standard, completely

automated techniques of power system monitoring will eventually replace traditional

strategies. While emerging techniques improve efficiency and controllability, they require

thorough evaluation and analysis before being widely used.

Standardisation of communication systems in a distribution substation automation system has

been achieved through the introduction of the IEC 61850 standard. Throughout history,

communication has always been important in the operation and automation of the power

system. As a result, the communication standard was created to interface with modern

technology and provide features that were previously unavailable through legacy

communications protocols. When compared to a legacy method, IEC 61850 allows for

advances in the power system that would otherwise be impossible. These distinguishing

qualities of the new communication standard for IEDs have a significant effect on the costs

associated with the design, construction, installation, commissioning, and operation of power

systems, among other things. As described previously, the process bus is composed of two

real-time data transfer protocols: the GOOSE and SV messages defined in Parts 8-1 and 9-2,

respectively. Per the IEC 61850 standard, a SAS is divided into three distinct levels, which are

represented by stations, bay, and process levels, as indicated in Figure 3.8.

Figure 3.8: IEC 61850 System Architecture (Zhao, 2012)

103 | P a g e

The introduction of the IEC 61850 standard defined communication for substation automation

systems. The introduction of the IEC 61850 standard has brought about several benefits for

the Substation Automation System (SAS) environment. The requirement for interoperability

among relevant devices from various vendors is a requirement for ensuring that utilities derive

value from their investments. Interoperability, according to the IEC 61850 systems, is a

significant advantage in the Substation Automation System (SAS) context (Mguzulwa, 2018).

To successfully implement interoperable systems in the SAS environment, thorough testing

and a careful selection of vendors are required. This entails thorough testing to ensure that

the SAS meets the standards of a certain SAS. Interoperability implementation and testing

techniques in a SAS must be created and extensively validated with multiple situations of

interoperability to be considered successful (Mguzulwa, 2018).

The subsequent sections, 3.3.1 and 3.3.2, elaborate on the GOOSE and SV message

structures, respectively.

3.3.1 IEC 61850-8-1 standard GOOSE Messages

GOOSE messaging refers to the time-critical messaging sent between IEDs in a peer-to-peer

fashion; these messages can be multicast to many IEDs or directed to a single IED via a

unicast address. In general, GOOSE messages are used to exchange status information

between two or more devices, notably the publisher and the numerous subscribing devices;

for example, circuit breaker status and voltage measurements are shared between functions

in a protective scheme. GOOSE messages are continuously transmitted via the Local Area

Network (LAN). Figure 3.9 depicts an illustration of the publisher-subscriber method that is

utilised in the GOOSE message exchange as an example.

104 | P a g e

Figure 3.9: An example of the GOOSE Publisher-Subscriber mechanism (IEC 61850-7-2,

2003)

It is critical to achieve or maintain interoperability when GOOSE messages are sent. Data

transmission benefits provided by IEC 61850 are particularly advantageous for time-critical

data exchange between functions located within a bay or across many bays. GOOSE

communications rely on peer-to-peer communication to address the needs of those who

require protection. (Mguzulwa, 2018)

The goal of GOOSE messaging is to maintain the state of logic or analogue values in IEDs

indefinitely. Continuous indication via control messaging is critical if the GOOSE messaging

concept is to be achieved. The subscriber is defined as any IED equipped to consume the

message's content, whereas the publisher is defined as the IED that broadcasts the message.

When the data in the dataset is modified, the publisher's transmission buffer is changed, and

the values are sent through a GOOSE message. As a result, the publishing device floods the

LAN with the latest GOOSE messages, and the subscriber must guarantee that they are

captured. The GOOSE messages provide information that informs the subscriber when a

status has changed and at what time it occurred. Every few milliseconds, IEDs must update

their contact status and analogue values. This means that each publication will repeat the

most recent messages numerous times to keep subscribers informed. GOOSE messages are

conveyed in a continuous fashion using a repetition approach as illustrated in Figure 3.10. To

ensure that GOOSE messages are delivered at the desired speed and reliability, IEC 61850-

8-1 standard provides a retransmission mechanism for GOOSE messages. (Retonda-Modiya,

2012; Mguzulwa, 2018; Emmanuel, 2014; Ncube, 2012; Abdolkhalig, 2014)

105 | P a g e

Figure 3.10: Repetitive transmission of GOOSE messages

GOOSE is a connectionless, event-driven communication service. After a certain interval, a

GOOSE client transmits GOOSE messages continually (T0). When a substation event occurs,

i.e., when the status value of one or more data items in the GOOSE dataset changes, the

GOOSE transmission interval drops dramatically, as seen in Figure 3.10 (T1). Following the

occurrence, the transmission settles into a predetermined interval, which remains constant

until the next event happens (T2, T3, and T0). The GOOSE message retransmission

mechanism is necessary to transmit messages from the publisher to the subscriber device for

the subscribing device to verify that communications via process bus are healthy (Abdolkhalig,

2014).

The GOOSE Control Block (GoCB) manages the GOOSE message services and database.

Control blocks specify the rate at which data is transferred between IEDs and the method by

which it is communicated using abstract communication services. As seen in Table 3.2, the

GoCB specifies information such as the GoCB name, the GoCB reference, the GOOSE

enable, the dataset, and other attributes that permit the delivery of a GOOSE message.

106 | P a g e

Table 3.2: GOOSE Control Block Class (International Electrotechnical Commission, 2009)

GoCB Class

Attribute

name

Attribute type FC TrgOp Value/Value Range

GoCBName ObjectName GO - Instance name of an instance of GoCB

GoCBRef ObjectReference GO - Path-name of an instance of GoCB

GoEna BOOLEAN GO dchg Enabled (TRUE) | disabled (FALSE)

AppID VISIBLE STRING65 GO - System-wide identification

DatSet ObjectReference GO dchg

ConfRev INT32U GO dchg

NdsCom BOOLEAN GO dchg

Services

SendGOOSEMessage

GetGoReference

GetGOOSEElementNumber

GetGoCBValues

SetGoCBValues

A dataset defines the message content. An ethernet frame encapsulates the GOOSE

message. The ethernet frame's header contains information about the destination, source,

ethertype, and payload. IEC 61850 defines the payload's structure.

The next section explains the GOOSE message structure as established in the IEC 61850-8-

1 standard.

3.3.1.1 GOOSE Message Structure

The compatibility of GOOSE messages must be tested consistently to guarantee that IEDs

are adequately validated. IEC 61850 is a comprehensive standard, and compliance with this

standard does not always indicate interoperability with equipment from different suppliers. The

interoperability of GOOSE communications enables a variety of applications in an automation

substation. GOOSE messaging is essentially peer-to-peer messaging that may be used to

construct any application that requires a message. When compared to hardwired alternatives,

the use of the GOOSE message has been shown to reduce fault-clearing time. While

compliance tests may have been performed, prior research indicates that message structures

are critical for interoperability. (Mguzulwa, 2018) state advantages of GOOSE message

namely:

107 | P a g e

• GOOSE protocol uses the standard Ethernet for communication.

• Ethernet replaces point-to-point hardwired copper.

• Speed performance requirements are improved.

• Due to the message's periodic repetition, it has a high degree of reliability.

• The GOOSE is directly mapped to the Ethernet layer hence the processing time is also

less which is best suited for very time-critical protection functions in the substation.

The benefit of GOOSE messages is critically significant in the deployment of interoperability

because these advantages must be realised by a variety of suppliers in the substation

automation system to be effective.

GOOSE messages are mapped to the ISO 8802-3 Ethernet frame, and the Protocol Data Unit

(PDU) is included in the Ethernet frame's data payload part. The ISO 8802-3 frame consists

of the following: (International Electrotechnical Commission, 2009)

• MAC Destination address: This is the MAC address of the destination device. The

destination address is defined as a multicast address.

• MAC Source Address: This is the MAC address of the GOOSE sending device.

• VLAN Tag: GOOSE frames are tagged using the IEEE 802.1Q to separate time-critical

messages from low-priority data. The Priority tagged field consists of three fields

namely: Tag Protocol Identifier (TPID), Tag Control Information (TCI), and Virtual LAN

Identifier (VLID).

• EtherType information: The Ethernet PDU consists of four fields namely: Application

Identifier (APPID), Ethernet type, Length, and GOOSE Application Protocol Data Unit

(APDU).

In multicast addressing, the destination device's MAC address should be in the range 01-0C-

CD-01-00-00 to 01-0C-CD-01-01-FF. The VLAN field's TPID is set to 0x8100 to differentiate

IEEE 802.1Q-tagged frames from untagged frames. For GOOSE messages, the EtherType is

0x88B8, and the APPID is set to 0x0000 by default. The IEC 61850-8-1 standard specifies

that the GOOSE APPID may be any value between 0x0000 and 0x3FFF. (International

Electrotechnical Commission, 2009)

The structure of the ISO 8802-3 Ethernet frame is shown in Figure 3.11.

108 | P a g e

Figure 3.11: GOOSE Message Frame Structure (International Electrotechnical Commission,

2009)

The GOOSE APDU consists of the following fields: (Hariri et al., 2019; Ncube, 2012;

Emmanuel, 2014; Abdolkhalig, 2014; Gadelha Da Silveira & Franco, 2019)

• State number (stNum): This field contains a state number of the client’s state machine

that indicates when an event occurred, namely when a GOOSE message changed

state or when an event occurred.

• Sequence number (sqNum): This field keeps track of the number of GOOSE

messages transmitted over the network. This value is incremented once an event

109 | P a g e

happens until the next event occurs or the retransmission time reaches the stable

retransmission time. When the next event occurs, the value turns to zero.

• Simulation/Test: This field provides insights into whether the messages published are

from a test operation or live scenario.

• Time allowed to live (TAL): This field contains information about the maximum

amount of time that the packet has to travel to its destination.

• Need to commission (NdsCom): This field specifies whether or not the GOOSE

client/publisher requires commissioning; and validating the GOOSE message.

• Configuration revision (confRev): This field specifies the configuration file's revision

number at the time of transmission. This value is increased whenever the dataset's

data items are reordered, deleted, or added.

• Number of dataset entries (numDatSetEntries): The value in this field shows the

number of data sets.

• GOOSE control block reference (gocbRef): A unique reference to the control block

associated with the GOOSE message.

• Data set (datSet): The GOOSE dataset name is specified.

• GOOSE ID (goID): The field indicates the name of the GOOSE dataset that sends the

message.

• Timestamp (t): The field indicates the time when the GOOSE message is generated.

• Data: The field indicates the information of the GOOSE message (bool, integer,

float…).

Publisher IEDs encrypt the information contained in a data set and build an envelope for it to

be delivered in a package. When this packet is received by subscriber IEDs, the information

included in the gocbRef, datSet, goID, confRev, and numDatSetEntries parameters is used to

validate and process the messages. After the message has been validated, the information

included in the data set is used to carry out the IED logic.

The GOOSE message structure is discussed. The next section discusses the SV message

structure defined in the IEC 61850-9-2 standard.

3.3.2 IEC 61850-9-2 SV messages according to IEC 61850-9-2LE

The IEC 61850-9-2 standard defines the process level as a means of collecting data, such as

voltage and current, from transducers attached to the major power system equipment. As

defined in the IEC 61850 standard, SV messages are linked to measurement dispersion. They

110 | P a g e

are moved from the bay to the process level of the power system. Time limitations apply to

the transmission of sampled values. It is possible to transmit sampled values in an ordered

and time-controlled way using the IEC 61850 protocol architecture by mapping SV messages

directly to the data link layer of the ethernet network stack. Time-critical SV messages can be

exchanged between two or more devices periodically. The SV data exchange has a

publisher/subscriber model as illustrated in Figure 3.12.

Figure 3.12: Sampled Value Control Class (IEC 61850-7-2, 2003)

On the sending side, the publisher stores the data in a local buffer, and the subscriber gets

the values from the receiving side's local buffer. The count of sampled values is appended as

a timestamp, allowing the subscriber to check the values' timeliness. The multicasting of time-

critical messages should be supported by any IED that communicates via the IEC 61850-9-2

process bus. Multicasting allows for the distribution of the same message to numerous

subscribers at the same time.

The Sampled Value Control Block (SVCB) manages the SV message services and database.

The SV services are used to manage the communication process between the publisher and

the subscriber. As seen in Table 3.3, the SV control block is detailed.

111 | P a g e

Table 3.3: SV Control Block Model (IEC 61850-7-2, 2003)

MSVCB Class

Attribute name Attribute type FC TrgOp Value/Value Range

MsvCBNam ObjectName - - Instance name of an instance of MSVCB

MsvCBRef ObjectReference - - Path-name of an instance of MSVCB

SvEna BOOLEAN MS dchg Enabled (TRUE) | disabled (FALSE)

MsvID VISIBLE

STRING65

MS -

DatSet ObjectReference MS dchg

ConfRev INT32U MS dchg

SmpRate INT16U MS - (0…MAX)

OptFlds PACKED LIST MS dchg

 refresh-time BOOLEAN

sampled-

synchronised

BOOLEAN

sample-rate BOOLEAN

Services

SendMSVMessage

GetMSVCBValues

SetMSVCBValues

IEC 61850 messages are directly connected to the ethernet stack's data link layer. The User

Datagram Protocol (UDP) and Transmission Control Protocol (TCP) transport layers are no

longer used since they introduce additional processing latency as a result of the ethernet frame

headers. The performance of both SV and GOOSE communications is critical since the power

network's proper operation is dependable on their timely transmission. In switched Ethernet

networks, there are numerous sources of delay, each of which contributes to the total

performance. Additionally, lengthening the packets causes the message to consume more

bandwidth, putting the network under pressure. Bandwidth has a significant impact on network

delay. (Skoff, 2020)

Because protection systems maintain the grid's reliability, their performance is critical. As IEC

61850 becomes more widely implemented in power systems worldwide, sampling value-

based methods will unavoidably become the industry standard for identifying and isolating

problems. As a result, they must undergo thorough testing to ensure that they can be relied

upon in the same manner that traditional protection systems are. (Skoff, 2020)

112 | P a g e

The next section explains the SV message structure as established in the IEC 61850-9-2LE

standard.

3.3.2.1 IEC 61850-9-2 SV structure and IEC 61850-9-2LE data model

IEC 61850 Part 9-2 specifies a user-configurable SV message frame, which may be

customised using the substation configuration language. The implementation of the IEC

61850-9-2 communication service mapping is simplified by the definition of datasets, ASCI,

physical connections, and sample rates. This section discusses message mapping using

sampled values, as defined in IEC 61850-9-2LE. As demonstrated in Figure 3.13, IEC 61850-

9-2LE SV messages are translated to an ISO 8802-3 Ethernet frame that consists of a header

and the SV APDU.

Figure 3.13: Structure of an IEC 61850-9-2 SV Message (Hariri et al., 2019)

Figure 3.13 shows the structure of an SV message. It is composed of three parts, namely a

header, a payload, and a checksum. The Ethernet frame header contains the following

information: (Hariri et al., 2019; Ncube, 2012; Emmanuel, 2014; Abdolkhalig, 2014;

International Electrotechnical Commission, 2009)

• MAC Destination address: IEC 61850-9-2 employs Media Access Controller (MAC)

filtering to ensure that SV messages are delivered on time. As detailed in IEC 61850-

9-2, the target address in multicast mode should be in the range 01-0C-CD-04-00-00

to 01-0C-CD04-01-FF.

• MAC Source Address: This is the MAC address of the source device.

113 | P a g e

• VLAN Tag: SV frames are tagged using the IEEE 802.1Q to separate time-critical

messages from low-priority data. The Priority tagged field consists of two fields namely:

TPID and TCI. The TCI field is further divided into Canonical Format Identifier (CFI)

and VLID. For SV frames, the TPID should be set to 0x8100. When set to 0x8100, the

frame is identified as an IEEE 802.1Q frame.

• EtherType information: This field is used to specify which protocol is contained within

an Ethernet Frame's Payload. The EtherType for IEC 61850-9-2 SV packets is

0x88BA. APPID is used to distinguish between Ethernet frames containing SV

messages. APPID identifies the network information and is set to 0x4000 for SV

messages.

• SV Application Protocol Data Unit (SV APDU): This is the sampled value APDU that

contains the application data. The SV APDU in Figure 3.13 consists of one or more

Application Service Data Units (ASDUs). These fields are the svID, smpCnt, confRev,

smpSynch, and the sequence of data. Each ASDU then contains seven subfields

which are as follows:

o Sampled Value ID (svID): This field is a unique identification of the sampled

value buffer.

o Sample Count (smpCnt): This is an incremental counter that increases each

time a new sample value is received. The smpCnt parameter is equal to the

number of published SV messages each cycle.

o Configuration revision (confRev): This field specifies the value that indicates

the number of configuration changes. This value is increased whenever the

dataset's data items are reordered, deleted, or added.

o Sampled Synchronised (smpSynch): A Boolean value that indicates whether

the SV is synchronised with a clock signal or not by setting it to either TRUE or

FALSE.

o Sequence of data (Seq Data) and dataset: This field contains the dataset to

be transmitted in the SV packet.

o Refresh Time (RefrTm): This contains the refresh time of the SV buffer.

In a sampled value digital substation, an IEC 61850-9-2LE compliant device would publish SV

streams of four currents (IA, IB, IC, and IN) followed by four voltages (VA, VB, VC, and VN).

The IEC 61850-9-2LE recommends a publication rate of 80 or 256 samples per cycle for SV

messages on 50Hz and 60Hz systems, respectively. Violation of these rates for a specific

sampled value stream will enable the detection of a DoS attack. Synchronisation is critical in

an SV substation because SV streams generated by many physical devices cannot be reliably

114 | P a g e

interpreted without synchronised time sampling. This guarantees the time coherence of all

devices, facilitating precise data analysis and decision-making.

The IEC 61850-9-2LE provides a pre-defined data model and dataset for the transmission of

current and voltage samples. This data model contains four TVTR and four TCTR logical

nodes representing voltage and current transformers respectively. Each instance of the

current transformer (TCTR) and voltage transformer (TVTR) logical nodes digitises one phase

or neutral current or voltage. The primary current and voltage sample values are members of

the dataset PhsMeas1 used in the ASDU. Figure 3.14 illustrates the data model for IEC 61850-

9-2LE SV messages.

Figure 3.14: IEC 61850-9-2LE data model

The TVTR and TCTR logical node classes, as depicted above, contain the data objects for

the voltage and current samples. To decrease implementation complexity, IEC 61850-9-2LE

makes use of an instance of the SAV common data class that only supports characteristics

with the measurement (MX) functional constraint. Each sampled value published in an IEC

61850-9-2LE contains the instantaneous magnitude (instMag.i) value of the analogue voltage

or current and the quality attribute (q) which contains flags that are set by the source to inform

the receiving device about the validity and other quality-related issues of the sample.

In analog GOOSE, the Deadband (db) is a range surrounding a particular measurement value

that does not trigger any reporting or communication. This is done to avoid excessive

communication and reporting of little, unimportant changes in analog values. Instantaneous

magnitude is a parameter in analog GOOSE that specifies the current value of an analog

quantity at any given time. The Deadband parameter is linked to instantaneous magnitude in

that it specifies the range surrounding the current value within which no reporting or

communication will occur. If the change in the analog value falls within the Deadband, it is

115 | P a g e

deemed inconsequential, and the system generates no new message to communicate the

change.

The following section summarises the benefits of adopting the IEC 61850 standard for

communication networks.

3.4 Security Risks and Challenges in IEC 61850

In addition to making the smart grid far more efficient and sustainable in addressing the

expanding global energy concerns, the growth of cyber-physical entities has also introduced

numerous vulnerabilities that have led to breaches in data integrity, confidentiality, and

availability. Power control grids based on IEC 61850 are being given careful consideration

concerning information security risks and hazards. Using IEC 61850 in a similar setting is the

ideal situation for secure IEC 61850-based substations. IEC 62351 is not supported by all

currently manufactured IEDs from various manufacturers. Thus, other security measures like

Intrusion Detection Systems (IDS) are required to guard against potential assaults on the

current IEC 61850-based networks. Smart grids' security is extremely important due to the

anticipated heavy reliance on IEDs and cyberattacks could result in substantial technical and

financial losses. Analysing the smart grid's vulnerabilities and identifying mitigation strategies

are essential. If cybersecurity vulnerabilities are not examined, the physical power system

may be compromised, and operations may fail. (Elgargouri & Elmusrati, 2017)

According to (Elgargouri & Elmusrati, 2017), the following are potential attacks on IEDs in

the present IEC 61850 local area networks:

1. Unauthorised Access

2. Denial of service

3. Spoofing

4. Data interception

5. Man-in-the-middle attack

6. Configuration Tampering

7. Operation System Attack

The aforementioned attacks may have a variety of effects on the smart substation, causing

various forms of network damage. The following are the most prevalent effects of various

cyber-attacks:

116 | P a g e

1. Denial of service from the control system

2. Interruption of protection communication

3. Interruption of the monitoring system

4. Network interruption

5. Protection tripping failure

These effects pose substantial risks to both networks and human life. This means that, even

though these attacks are rare, their impact must be considered, and prevention strategies

established. IEC 61850 features various security flaws that competent attackers could

exploit to compromise the system, perhaps resulting in a blackout. When implementing IEC

61850, the following major aspects should be examined (Massink, 2016):

1. Hardcoded functions: IEC 61850 offers powerful functionalities that can result in

unforeseen events. This makes access control levels extremely difficult and limits the

device's security protection.

2. Authentication: The IEC61850 MMS-based protocol includes authentication.

Nevertheless, the approach is not widely supported and employs plain-text

passwords.

3. Key management: Key management provides additional risk, such as specially

developed key management infrastructure that does not address the relevant issues,

which might expose a system while providing a false impression of security.

4. Firmware integrity: Typically, firmware is not signed, and there is no method to verify

its integrity. This could enable certain advanced assault scenarios, especially if the

supply chain is uncontrolled.

5. Message Integrity: The GOOSE protocol does not provide publisher authentication.

This means that anyone on the network can pose as a publisher. Although various

efforts have been made to secure GOOSE by inserting a signature, it was

demonstrated in 2010 that the time and performance requirements of GOOSE for

protection methods currently make it technically difficult to construct a satisfactory

solution using the existing specification.

Any unencrypted data is vulnerable when using the IEC 61850 protocol for substation

automation communications outside the substation. If firewalls or data gateways are not

used, substation LANs are exposed. All data is exposed if the utility depends on third parties

for outside communications. Do security risk analyses of every data entering or exiting the

substation to ascertain whether encryption is practical and, at the very least, authentication.

If a cyber incursion is involved, the price of inaction may be incalculable. Before choosing a

117 | P a g e

supplier to provide smart substation devices, exercise prudence and extensive testing.

Before applying to the live system, all security updates and patches should be tested in a lab

or testing environment. In the event of a suspected vulnerability or threat, make sure

providers or vendors are promptly updating customers.

3.5 Security Requirements for IEC 61850 Messages

Due to the significant growth of unmanned substations and renewable energy sources like

solar power and wind turbines, power grids have become significantly more complex. In

terms of power generation, renewable energies have so far had the biggest impact on power

networks, resulting in an unstable grid.

This makes it challenging to control the real-time distribution of power. Digital substations,

which offer stability and flexibility regarding power supply, are becoming important and

crucial in power transmissions to address these instabilities in power networks. Therefore,

ethernet-based devices must be used instead of traditional serial-based devices, unless the

serial-based devices can communicate on an ethernet-based network. But another problem

emerges: since ethernet-based networks are constantly at risk from cyberattacks, as a result

of this development, energy networks are now vulnerable to the same vulnerabilities that IT-

based systems are. IEC 61850 was not initially built with security in mind, which may provide

a significant risk if security is not promptly addressed. Cybersecurity implementation must be

prioritised in power substations. As a result of an unsecured IEC 61850-based

communication system, cyber hackers may acquire access and establish communications

within a network. As a result, methods to detect assaults are required to respond quickly and

minimise the damage.

While adopting IEC 61850, (Massink, 2016) advises considering the following factors:

1. It is important to confirm that IEC 61850 is limited to the substation's local network

and is unable to access any other networks.

2. Prohibit unlawful communications via a firewall at the substation level by employing

the Deny All rules approach.

3. Observe the substation network for unusual activity by using packet filtering firewalls,

and utilising proper Intrusion Detection System (IDS) solutions.

4. Restrict third-party access to the substation by implementing network segmentation,

demilitarized zones, deploying firewalls and using Virtual Private Networks (VPNs).

118 | P a g e

5. Establish appropriate security specifications for vendors by establishing compliance

frameworks such as North American Electric Reliability Corporation Critical

Infrastructure Protection (NERC CIP), ISO 27001 Certification, NIST frameworks or

MITRE ATT&CK.

6. Establish a reliable security management approach by utilising proper Security

Information and Event Management (SIEM) solutions.

7. Assess the security of devices to detect potential vulnerabilities and provide

mitigation measures by using assessment tools like the Common Vulnerability

Scoring System (CVSS).

Critical power activities are managed by substation protection and control systems using

communication protocols such as IEC 61850. Communication protocols rarely have

sufficient security measures, while playing a very crucial function. Because of this, there is a

significant possibility that rogue attackers could access old IEDs through these

communication protocols and disrupt systems causing enormous financial damages. For

industrial automation and control systems, the IEC 62351 standard has grown to be one of

the most widely used cybersecurity standards. Operators must take into account techniques

to safeguard sensitive data and monitor the state of network security when using the

recognised technologies.

To stop these types of malicious activities, the following measures must be implemented

(Moxa, 2022):

1. Communication gateways such as ethernet switches or converters must encrypt data

for communication protocols such as IEC 61850 and program tampering resistance.

To reduce security attacks, critical data must be encrypted.

2. Monitoring the security status of network devices and any malicious activities. Making

the network infrastructure more secure is essential.

3. Install IEC 61850-compliant communication gateways to secure devices and

increase communication security.

4. Configure devices securely with security-embedded functions to ensure the device is

secure in the initial configuration process. DDoS defence with integrated suspicious

activity detection capabilities

5. Use strong passwords to avoid unwanted access.

6. Implement sniffer and data breach protection.

119 | P a g e

7. Protocol encryptions increase communication security. If communication is not

encrypted, hackers may learn how to operate your IEDs and then give them a bogus

control command, jeopardising the operation of your substation.

8. Installation of a communication gateway that conforms to IEC 61850 security

features to offer a comprehensive cybersecurity package featuring intrusion

prevention systems.

A study on "how standards improve substation cybersecurity" is presented by (Steinhauser &

Klien, 2021). The authors offer suggestions for enhancing substation security. It's crucial to

remember that newly installed substations use modern technologies and standards, which

significantly enhance cybersecurity. The National Institute of Standards and Technology

(NIST), which employs the security functions of “Identify, Protect, Detect, Respond, and

Recover,” is the first standard the authors suggest. The objective of the standard is to

enhance the security of critical infrastructure. Additionally, the authors advise using IEC

61850 devices that provide intrusion detection and implementing cyber risk management in

IEC 61850 devices to report actual threats. The intrusion detection system can track the

exchange of information between IEDs and assess network packets in comparison to actual

data models. Recently, the authentication method IEC 62351 was introduced to secure

GOOSE and R-SV transmissions. The subscriber device can Recognise and disregard

bogus IEC 61850 communications by implementing IEC 62351. The cybersecurity of

communication networks used by power utilities is considerably aided by the use of

standardised protocols and techniques. Consequently, IEC 61850 can be more effective,

dependable, and secure than conventional communication techniques in substations,

making it a preferable choice. The security challenge of IEC 61850 communication and

transmission is handled to some extent, and protocol encryption is implemented.

3.6 Overview of IEC 62351

The current standard for data transmission and security in digital substation systems is IEC

62351. It focuses on the key criteria for secure data transmission and communication, such

as data integrity, secrecy, and authentication. The introduction of IEC 62351 addressed a

challenge in securing power systems by bringing traditional non-secure communication

methods up to speed. The requirement for cyber security and the implementation of IEC

61850 have been major discussions in the electrical environment.

End-to-end security for smart grids can be attained by using the IEC 62351 security standard

to protocols like IEC 61850 and traditional protocols such as DNP3, and 60870-5-101/-104.

120 | P a g e

The standard series stipulates the importance of authentication and authorisation as well as

encryption to ensure integrity. IEC 62351-3, for illustration, defines Transport Layer Security

(TLS) encryption. For serial protocols and devices that are unable to fulfil the computational

demands of encryption, IEC 62351-5 offers various options. It cannot provide data secrecy

without encryption. To enable authentication for peer-to-peer multicast protocols like R-SV,

IEC 62351-6 offers a method for digitally signing messages. IEC 62351-6 standard defines

security protocols in IEC 61850 such as GOOSE and SV. To avoid interfering with the

system's smooth operation, the security mechanisms contained in these messages must

introduce the least amount of latency possible. This criterion had an impact on the final

version of the standard, which calls for required authentication and message integrity.

Encryption-based confidentiality has been designated as an optional feature. These signals

(IEC 61850 protocols) must be sent within 3 ms, thus encryption and other security

techniques that slow down transmission are not compliant. As such, IEC 62351-6 does not

recommend encryption for IEC 61850 applications. Part 6 of the IEC 62351 standard adds

an RSA-based signature to the GOOSE and SV frame to secure the integrity of the frame

structure and provide authenticity in installations employing IEC 61850 with ethernet-based

technologies. The standard expressly states that the RSASSA-PSS (Probabilistic Signature

Scheme) digital signature technique based on RFC 3447 must be used. As RSA signatures

are very expensive in terms of the processing power needed, the standard's suggestion to

utilise them to secure extended PDUs renders it unsuitable for applications that need a

minimum response time of 3 ms. (Ustun et al., 2019) and (Hohlbaum et al., 2010) used the

RSA method in accordance with the IEC 62351-6 standard to protect GOOSE messages

from cybersecurity threats. However, it has been observed that the computational time for

RSA algorithms does not fulfil the 3ms timing criteria, making IEC 61850 message security

practically unachievable. (Hohlbaum et al., 2010) further implements the algorithm on a Field

Programmable Gate Arrays (FPGA) and Application-Specific Integrated Circuit (ASIC)

platform to test performance measures. Both options are inapplicable since the response

time is inadequate and the latter is not financially feasible. (Hussain, Ustun, et al., 2020)

recommend the implementation of HMAC-SHA256 for securing IEC 61850 protocols which

requires less computational time and as such should meet the response time requirements

of 3ms. The cybersecurity mechanisms must not cause message delays that exceed the

permissible limitations. The most recent iteration of the IEC 62351-6 standard replaced RSA

with the Secure Hash Algorithm-256 (SHA-256) and Advanced Encryption Standard (AES)

Galois Message Authentication Code (AES-GMAC) algorithms, allowing for both data

authentication and encryption. When implemented in hardware, this method has proven to

be exceedingly efficient, with high data transmission and minimal latency.

121 | P a g e

Therefore, implementing IEC 62351 is a continuous process. Once established, security

methods must be regularly maintained and upgraded to keep up with changing security risks

and challenges to maintain optimal security.

To preserve essential infrastructure and ensure stable power generation, data and

communications must be safeguarded. The IEC 62351 standard provides an internationally

recognised method for providing that security. To ensure protection in accordance with IEC

62351, smart grids must implement IEC 61850-based systems and devices. IEC 62351 must

be used to protect time-critical traffic related to smart grids.

3.6.1 IEC 62351-6: Security Extensions for GOOSE and SV

The "Security for IEC 61850" standard, IEC 62351-6, primarily focuses on the security

enhancements for GOOSE and SV.

IEC 62351-6 makes two major contributions to GOOSE and SV security. The first is the

inclusion of an optional AES-128 encryption alternative and a new field called Authentication

Value to GOOSE and SV PDUs that is used to check for integrity. The GOOSE and SV

PDUs have been modified to prevent replay assaults as the second security measure. As

previously stated, encryption is not encouraged in packets owing to performance

considerations. Yet, the usage of encryption permits the prevention of cyber-attacks and

data theft. IEC 62351-6 adds two new fields to the GOOSE and SV PDUs:

• Authentication Value using RSA digital signature: SHA-256 is used as an input;

• timestamp indicates when the PDU was created.

Every PDU must have a valid Authentication Value added by the Publisher. As only the

genuine publisher is aware of the secret key needed to generate the signature, subscribers

can then validate the Authentication Value to ensure the authenticity of the PDU. Since both

require creating a legitimate signature, attackers are no longer able to manipulate or alter

messages as a result. An authentication value enhances the security and reliability of the

communication between substations in a power grid. (Robillard, 2018)

122 | P a g e

3.6.2 Replay Protection for GOOSE

In most cases, a GOOSE message with a greater stNum implies that it is the latest. As a

result, IEC 62351-6 requires the GOOSE subscriber to record the last stNum received from

a certain publisher and delete any PDU from this publisher with a lower stNum. This

approach addresses PDUs that occur out of time, preventing the subscriber from reacting to

previous events and perhaps causing problems. Moreover, it defends against replay attacks.

To reset stNum, stNum is set back to 0 in two cases. In the first case, the 32-bit value

overflows to exceed its maximum. The second scenario involves a message timeout. If the

subscriber does not get a GOOSE PDU within the time allowed to live (TAL) indicated in the

TAL field of the most recent PDU received, the subscriber assumes contact has been lost

and counts this as a message timeout. TAL is a method used to ensure that messages are

delivered on time. The message is discarded when the TAL value reaches 0.

Time window-based filtering is a popular technique for skew filtering. This entails defining an

acceptable time range for GOOSE messages (with a greater stNum) to arrive at each node

in the network. Messages sent outside of this time frame are deleted. Another option is

threshold-based filtering, which requires specifying a skew tolerance as the greatest

acceptable deviation from a GOOSE message's predicted arrival time. Because GOOSE

messages are used to convey time-sensitive information between IEDs, skew filtering is vital

in substation automation systems. If the skew is not managed appropriately, the accuracy

and reliability of information interchange might be jeopardised, leading to errors in control

and protection operations. Skew filtering considerably restricts replay attacks since PDUs

older than the skew period cannot be exploited. (Robillard, 2018)

3.6.3 Replay Protection for SV

A timestamp field is not included in SV PDUs. In most cases, if the publisher and subscriber

use synchronised clocks protocol and exchange messages in real-time, this is not an issue.

Yet, it is troublesome when we consider the possibility of a delay or replay attack. It is nearly

hard to verify the creation time for a certain SV PDU and assess its reliability without the

timestamp. To remedy this, IEC 62351-6 includes a timestamp field in every SV packet. This

mechanism ensures that the data is not tampered with by verifying the source of the

message and the timestamp of the message. The timestamp ensures that the message

hasn't been replayed from a previous session.

123 | P a g e

The smpCnt value in SV messages keeps track of the sequence of the PDUs. A PDU with a

greater smpCnt is often newer. A technique used to protect against replay attacks is to

discard any received SV messages with a smpCnt value lower than the previous value,

which ensures that only the newest messages are accepted.

One technique to protect against replay attacks in the SV protocol is to reset the smpCnt

value after a predetermined time interval, when there is a message timeout. Another

approach is to detect when the smpCnt value overflows and reset the value as needed. By

resetting the smpCnt value on every sync pulse, the SV protocol ensures that the sequence

of samples is correctly identified, and the correct order of arrival is maintained. This makes it

easier to detect and prevent any attempts at replay attacks, which aim to manipulate the

sequence of SV messages to create false or misleading data.

Skew filtering for SV PDUs specifies acceptable time tolerances for the arrival of SV

messages at each receiver. SV messages arriving outside the specified time range are

considered invalid and are discarded. The acceptable time range for SV messages is based

on the expected time of arrival, which is typically adjusted to account for delays that can

occur due to network congestion or other issues. (Robillard, 2018)

3.7 Conclusion

Applications for protection, automation, and control are the most important aspects of the

smart power system’s reliability and security. The move from traditional technology to IEC

61850-based solutions in smart substations was made possible by the advancement of

communication technology. For new solutions to be employed in existing or new substations,

they must be compatible with both traditional and non-traditional technologies (Apostolov,

2020). The provision of implementation instructions ensures interoperability between merging

units and primary or secondary equipment. The benefit of employing new technology is that it

enables the creation of more advanced communication architectures such as the ethernet-

based IEC 61850 communication standard. The suite, in comparison to traditional and

hardwired systems, offers several advantages. These benefits make the IEC 61850 standard

an excellent choice for communications networks embedded within systems. Consequently,

IEC 61850 can be more effective, dependable, and secure than conventional communication

techniques in substations, making it a preferable choice.

Time is critical in IEC 61850-based systems, which is why time requirements have been

incorporated into object modelling of data, including SV, GOOSE, Client/Server and GSSE.

124 | P a g e

As mentioned previously, IEC 61850 establishes specifications for event time stamping for

use in a variety of protection, automation, and control applications.

In IEC 61850-based protection and control systems, high-speed peer-to-peer topology utilises

a mechanism developed to suit a range of specifications. The GSE approach can be thought

of as a method for an IED to provide unauthorised reports. The implementation of each IED

determines the performance and reliability of the system. (Apostolov, 2020)

Due to the time-critical and high-speed characteristics of today's Ethernet-based

communication technology, it is an ideal communication technology for automation

applications in substations. Furthermore, an overview of the security threats and vulnerabilities

in IEC 61850 GOOSE and SV messages is presented, including the challenges in securing

the communication protocols. The security requirements for IEC 61850 messages are also

presented. A thorough cyber-physical security solution is necessary in addition to the

vulnerability and impact study of cyberattacks to prevent the discovered security issue. A key

role is played by the security standard IEC 62351, which is utilised to offer end-to-end Security

and secure communication in accordance with IEC 61850 standards.

The knowledge necessary has been generated from the literature reviewed and is believed to

be sufficient to enable the proposed research project, which is the development of

authentication methods for GOOSE and SV communication.

The following chapter details the project's development and presents the algorithms that will

be utilised to complete the project. The implementation procedures developed for client/server

functions are explained in detail in Chapter 4.

125 | P a g e

4. CHAPTER FOUR: CASE STUDY: CONTEXT AND DEVELOPMENT

4.1 Introduction

Security is not a consideration when developing SCADA protocols. These protocols are

subject to security threats and, if exploited, could jeopardise the reliability of the power

network. When an attacker gains control of a device, they have the ability to change its

settings. They can modify the device to the point where the power system becomes unstable

and power delivery is disrupted. (Ustun et al., 2020)

Future electrical systems will be represented by active networks capable of bidirectional power

transmission. They have improved communication capabilities, allowing them to monitor,

protect, and control operations. A phasor measurement unit (PMU) is a device used in power

systems to measure and monitor electrical value in real-time. PMUs capture both the

magnitude and phase angle of voltage and current, at a specific location in an electrical grid.

This means that the measurements are synchronised with a time reference. As such, the term

"synchrophasor" emphasizes the synchronization of these measurements across different

locations within the electrical grid. The PMU Communication Network (PMU-CN) system is

constructed in accordance with the IEEE C37.118.2 and IEC 61850-90-5 standards. IEEE

C37.118.2, on the other hand, does not provide any protective mechanisms for mitigating

security assaults on an unsecured IP network. Transmission Control Protocol (TCP) and User

Datagram Protocol (UDP) protocols used in communication networks between

synchrophasors, and Phasor Data Concentrators (PDC) have security vulnerabilities since the

protocol that is supposed to be utilised for synchrophasor communication is not defined within

the IEEE C37.118.2 standard. As a result, to address the cybersecurity flaws, IEC 61850-90-

5 was developed, which includes stronger protection measures and defines HMAC for IEC

61850 message authentication. Effective security solutions must therefore be inclusive,

interoperable, and efficient. (Khan et al., 2016)

Based on IEC 61850, Part 6 of the IEC 62351 standard offers security methods to secure real-

time communications. SV and GOOSE messages must be generated, transmitted, and

analysed in less than 3 ms. After assessing the security risks and challenges to IEC61850

communications and the latest developments in GOOSE and SV cybersecurity, the work

presented in Chapter 5, Section 5.5 offers a security algorithm to enable message

authentication and confidentiality. The design will be developed and implemented on a Kali-

126 | P a g e

Linux software environment, where the client-server code and security algorithm for R-SV will

be evaluated. As a result, extensive knowledge is necessary for raw socket programming,

client-server code design, and GOOSE and R-SV message structure. Objectives of the design

phase seek to adapt and improvise an existing security algorithm as presented by (Hussain,

Farooq, et al., 2020) for IEC 61850 messages and investigate the performance of the

algorithm. The article investigates the security issues with the IEC 61850 standard's GOOSE

messages and suggests a technique to ensure the messages' secrecy and integrity. The

article then discusses the potential flaws in GOOSE communications and the necessity of

incorporating security. To achieve confidentiality and integrity in the GOOSE messages, the

approach suggested employs an arrangement of symmetric encryption and digital signatures.

The article contains the method's technical details as well as a full study of the proposed

method's security features. The study also compares the proposed method to other current

methods and highlights the benefits of the proposed method in terms of security, performance,

and compatibility with existing systems. In its entirety, the article offers a thorough analysis of

the security issues relating to the GOOSE messages in the IEC 61850 standard and suggests

a workable strategy to ensure the confidentiality and integrity of these messages. The

suggested approach can make the electrical power system significantly more secure and

guarantee the power grid's dependable and secure operation.

In this chapter, we discuss socket programming and further study the toolbox called Routable

Goose/Sampled Value (R-GoSV) and Secure Goose/Sampled Value (S-GoSV) as presented

by (Ustun et al., 2020) and (Farooq; et al., 2019). Section 4.2 mainly focuses on the

development and implementation of the client/server communication component of the design

architecture. Section 4.3 discusses GOOSE message structures according to IEC 61850-8-1

and shows implementation details of plain GOOSE software. Section 4.4 describes the

implementation details of secure GOOSE communication, and further demonstrates the

results with Wireshark capture.

4.2 TCP Client-Server Socket Programming

Sockets act as virtual endpoints for all network communications between two hosts connected

by a network. TCP interfaces are connection-oriented, which means they support the idea of

an isolated connection on a specific port that can only be used by one program at a time.

Because of the connection concept, TCP is a reliable stream; if errors occur, they may be

identified and compensated for by resending the rejected packets. (Moon & posts by Silver

Moon & rarr.; 2020)

127 | P a g e

TCP client-server programming is a networking technique used for implementing

communication using the IEC 61850 protocol in electrical substations. The client-server

programming model involves the use of a client application and a server application, with the

client sending requests to the server and the server responding with the requested information.

One of the key strengths of TCP client-server programming for IEC 61850 communication is

its compatibility with a wide range of devices and systems. TCP is a widely used and well-

established protocol, making it a reliable option for communication in different types of

substations. Additionally, TCP is a reliable protocol that ensures data is transferred accurately

and efficiently, making it a good choice for critical systems.

Another strength of TCP client-server programming is its flexibility. The client and server

applications can be customised and configured to meet specific requirements, providing more

flexibility for users. Additionally, TCP client-server programming can be implemented across

different types of networks, making it a versatile option for communication in different types of

environments.

However, there are also some limitations to TCP client-server programming for IEC 61850

communication. One major limitation is its lack of security features. TCP communication is

vulnerable to cyber threats and attacks, which can be particularly problematic in the energy

sector where the impact of such attacks can be significant. Therefore, additional security

measures may need to be implemented to ensure secure communication.

Another limitation of TCP client-server programming is its reliance on a stable network

connection. If the network connection is lost or unstable, communication can be disrupted,

leading to errors and even system failures. The design and implementation of TCP client-

server programming for IEC 61850 communication involves several key considerations:

• Firstly, the design of the TCP client-server architecture should take into account the

specific requirements of the IEC 61850 standard. This includes defining the data

model, data exchange mechanisms, and communication profiles required for the

system.

• Secondly, the implementation of the TCP client-server protocol should ensure the

reliability and security of the communication. This includes implementing error

checking and correction codes, as well as encryption and authentication to protect

against attacks such as eavesdropping and tampering.

128 | P a g e

• Thirdly, the implementation should consider the performance and scalability of the

system. This includes optimising the network bandwidth, minimising latency, and

ensuring that the system can handle large amounts of data and multiple concurrent

connections.

4.2.1 Common Functions used in Socket Programming

The socket() function creates a client socket, which is then connected to a remote address

with the connect() function, and lastly data can be retrieved with the recv() function. On the

server end, we must also establish a socket with a socket() call, but we must then bind() that

socket to an IP and port where it may listen() for connections, accept() connections, and then

send() or recv() data to the other interfaces on the network. (Moon & posts by Silver Moon &

rarr.; 2020)

4.2.2 Implementation of Raw Socket

Raw socket programming is a low-level networking technique used for implementing

communication using the IEC 61850 protocol in electrical substations. Raw socket

programming allows the developer to directly access the network interface, bypassing the

operating system's network stack and providing more control over the communication process.

The strengths and limitations of raw socket programming are discussed below.

Strengths:

1. One of the key strengths of raw socket programming for IEC 61850 communication is

its flexibility and customisation. Raw socket programming allows the developer to

customise the communication process and control the data transmission and

reception, providing more flexibility for users. Additionally, raw socket programming

can be used with different types of network interfaces, making it a versatile option for

communication in different types of environments.

2. Another strength of raw socket programming is its efficiency. Raw socket programming

can achieve high performance and low latency because it allows the developer to

directly access the network interface, bypassing the operating system's network stack,

which can introduce additional processing delays.

129 | P a g e

Limitations:

1. However, there are also some limitations to raw socket programming for IEC 61850

communication. One major limitation is its complexity. Raw socket programming

requires a high level of expertise and understanding of network protocols and systems,

which can be a barrier for some users. Additionally, raw socket programming can be

more prone to errors and vulnerabilities, as it bypasses some of the built-in security

features of the operating system's network stack.

2. Another limitation of raw socket programming is its lack of compatibility with some

systems and devices. Raw socket programming may not be compatible with some

legacy systems or devices that require higher-level networking protocols.

Socket interfaces are those that circumvent the TCP/IP layers and instead transmit packets to

the designated application via the Internet Control Message Protocol (ICMP) and Internet

Group Management Protocol (IGMP). This enables the program to build ICMP and IGMP

purely as user processes rather than injecting additional code into the kernel.

4.2.3 Socket Programming – Case Study

Below you’ll find a case study of a very simple client-server software in C. The client

establishes a link to the server, and the server delivers the message “Hello From Me”, and the

client outputs the received message. These programs are often labelled “Client” and “Server”.

The “Client” shares the information with the “Server” by sending its messages through an

Ethernet port.

The source code found in Appendix A and Appendix B is used to analyse the client and server

programs to open a socket. The socket must be configured by both the client and server.

Socket family, socket type, and protocol are all necessary.

1. int socket(int domain, int type, int protocol);

Refer to Figure 4.1: The socket family for a raw socket is PF_INET, the socket type for TCP

is SOCK_STREAM and for the protocol, the netinet/in.h defines the sockaddr_in structure.

The sockaddr_in structure is used to store addresses for the Internet address family.

(Saxena, 2015)

130 | P a g e

Figure 4.1: Client socket

Refer to Figure 4.2: If the socket creation succeeds, it will return "Client socket Successfully

Created." After the socket has been allocated, it must connect to the server. A sockaddr_in

structure describing the server is required for the connection to be formed. Specifically, we

must use serverAddr.sin and serverAddr.sin port to indicate the server and port to connect

to. The IP address is supplied via serverAddr.sin family, configured to AF_INET.

Figure 4.2: Connect function

Refer to Figure 4.3: As with creating the socket, an established connection will return

“Connected to Server Successfully”. Data can now be sent and received through the socket.

Figure 4.3: Close function

The receive function must receive data from a connection-mode or connectionless-mode

socket. Because it prevents the program from obtaining the source address of incoming data,

it is most typically used with linked sockets.

131 | P a g e

At the terminal, compile and run the program. To run and compile the software, one requires

administration rights as a root user. The client socket's output is shown in Figure 4.4. Client

sockets were successfully generated and connected.

Figure 4.4: Software output for Client communication

As previously stated, the goal of generating a socket for a server differs from that of a client.

The socket is created using the same syntax as the client, except that the structure is set up

with information pertaining to the server rather than the peer it wants to connect to.

Usually, the special contact INADDR_ANY may be used to enable receiving client requests

on any IP address the server supplies; in principle, such as in a multi-hosting server, you could

specify a particular IP address as illustrated in Figure 4.5.

Figure 4.5: Server socket

A server must be able to manage several client requests, it is more sophisticated than a client.

A server essentially has two functions: managing existing connections and listening for new

ones to form.

132 | P a g e

As illustrated in Figure 4.6, the server binds to its address and port, while the client program

connects to the server's IP address and port. It is now possible to listen to the server socket

after it has been bound. Once a server socket is listening, it is able to receive client

connections.

Figure 4.6: Receive function

A bind function obtains a unique name for the socket when the socket descriptor is generated.

The listen function enables the server to accept connections from clients. The backlog is fixed

at six in this case study. This implies the system will queue up to six incoming connection

requests before rejecting them as shown in Figure 4.7.

To accept an incoming connection request, the server utilises the accept function. The accept

call will remain blocked indefinitely while the incoming connection is established.

Figure 4.7: Bind function

At the terminal, compile and execute the program as depicted in Figure 4.8. Keep in mind that

you should execute the software as root. To use raw sockets, you'll need to be logged in as

root. The socket was successfully created, as evidenced by the output of the server socket.

133 | P a g e

Figure 4.8: Software output for Server communication

In conclusion, the successful production and transmission of packets over a network must be

confirmed by using packet sniffers like Wireshark. To comprehend the data flow through

network connections, it is also crucial to understand the roles of clients and servers.

We can discover a lot about how clients and servers communicate by examining the network

traffic that a packet sniffer has gathered. We may monitor the exchange of data packets,

monitor network protocols, and identify potential problems or anomalies that may occur during

transmission.

In our case study, we looked at the functions of a client and a server concerning web browsing.

We learned that the server is a remote computer that a client—like a web browser—creates a

connection. Through sockets, the server accepts connections from clients and responds to

them, allowing the client to request data retrieval.

In the specific example we explored, the web browser acted as the client, and

www.google.com served as the server. This relationship demonstrated how clients and

servers work together to enable seamless data exchange and provide users with the

information they seek.

Network administrators and developers may efficiently debug network issues, optimise

performance, and maintain the smooth operation of diverse applications and services by using

tools like Wireshark and comprehending the client-server architecture. In conclusion, the

analysis of network traffic using packet sniffers and the understanding of clients and servers

play vital roles in the field of networking. We can increase network communications'

effectiveness and dependability by further study and investigation of these ideas, which will

result in better user experiences and more durable digital infrastructure.

The IEC 61850 protocol has specific communication and behaviour requirements, and the

communication middleware architecture is created to meet those requirements. A thorough

examination of the model, including its architectural components, was presented in Chapter

3.2. The design only supports a limited number of communication techniques required for the

http://www.google.com/

134 | P a g e

successful operation of ACSI clients and servers. The case study above showed that the

developed architecture may be used successfully to offer the communication services required

by the IEC 61850 protocol.

4.3 Plain GOOSE Source Code

Appendix C shows the plain GOOSE source code, which creates R-GOOSE packets without

applying any security algorithms to them and sends them to the network with their entire stack

of headers from IP, UDP, and session layers, followed by application data. The application

data in this case is a GOOSE protocol as illustrated in IEC 61850-8-1.

Intelligent electronic devices (IEDs) that use Ethernet communication protocols are becoming

standard in electric substations. One of the most crucial aspects of power system operation is

the communications infrastructure that supports power system protection, monitoring, and

control. With the emergence of IEDs, there is a growing requirement for communication to be

provided to these devices. Communication without security techniques presents several

network concerns. A negative consequence of this is exposure to cyberattacks. Ethernet-

based networks are easier to gain access to, and standardised communications allow hackers

to know exactly what commands to provide. The following is a list of strengths and

weaknesses of non-secure GOOSE.

Strengths:

• Fast and efficient: GOOSE messages are multicast, which means that they can be

sent to multiple devices simultaneously, reducing the amount of traffic on the network

and improving the response time.

• Reliable: GOOSE messages include error checking and correction codes, ensuring

the integrity of the information transmitted.

• Scalable: GOOSE messages can be used to exchange different types of information,

such as status, commands, and measurements, making it a flexible protocol that can

be adapted to different applications.

• Interoperable: The IEC 61850 standard defines the format and structure of GOOSE

messages, ensuring interoperability between devices from different vendors.

Limitations:

• Security: GOOSE messages are not encrypted, making them vulnerable to

eavesdropping, tampering, and replay attacks. Additional security measures, such as

135 | P a g e

encryption and authentication, must be implemented to ensure the confidentiality and

integrity of the information transmitted.

• Network bandwidth: Although GOOSE messages are efficient, they still require

bandwidth on the network, and excessive GOOSE traffic can congest the network and

cause delays.

• Configuration: The configuration of GOOSE messages can be complex, requiring

specialised knowledge and tools to set up and maintain.

Overall, the GOOSE source code algorithm is a reliable and flexible protocol for

communication in power substations. However, its limitations in terms of security and

complexity must be addressed when implementing it in a substation. Additional security

measures and network management strategies should be used to ensure the secure and

efficient operation of the protocol. This can be a significant concern in critical power system

applications where data security is a top priority.

To accomplish interoperability and standardisation, the message format or structure must be

specified. To skip the network and transport layer headers, GOOSE communication is directly

mapped to the data link layer, reducing the size of the message and, as a result, the

propagation and processing delays of the GOOSE messages. The GOOSE message, as

illustrated in Figure 4.9, consists of six-byte destination and source address fields, followed by

a two-byte Ether-type field that specifies the type of data in the payload field. The ether-type

value for a GOOSE message is 88-B8. APPID, Length, Reserved1, Reserved2, and GOOSE

APDU fields are followed by padded data and Frame Check Sequence in the GOOSE PDU

(FCS). The source code supplied in Appendix C can be used to verify the GOOSE PDU format

illustrated in Figure 4.9.

Figure 4.9: GOOSE PDU format (Hussain et al., 2019)

136 | P a g e

Figure 4.11 shows the Wireshark capture of the unsecure GOOSE generated. It shows all the

relative fields of the GOOSE message format. The TCP Ethernet communication

programming was presented above in Section 4.2 to illustrate that all the communication traffic

is sent and received through the Ethernet port. The simple TCP sending and receiving

example presented above is used as a reference to understand how to send out information

through the Ethernet port.

The plain GOOSE source code presented by (Hussain et al., 2019) uses the UDP. UDP is a

transport layer protocol with enables application programs to send messages to each other.

The UDP protocol also has two applications, namely the client and the server. The client sends

out UDP messages to the server through the Ethernet port. Since the aim of the program is to

send out GOOSE messages, the concentration is put on the client (sending) program. The

UDP sending is illustrated on a flow chart in Figure 4.10.

Figure 4.10: UDP Sending (Zhao, 2012)

137 | P a g e

Figure 4.11: Packet capture of unsecure GOOSE message

Two crucial functions, socket() and sendto() are used to send UDP messages via the

Ethernet port, as shown in the source code forward in Appendix C.

The program uses the socket function to transmit and receive packets, as well as perform

other socket actions as shown in Figure 4.12. The socket function opens a socket

communication and returns a descriptor when it is invoked. On success, this method returns

the file descriptor; on failure, it returns -1. This function's call format is as follows:

1. int socket(int domain, int type, int protocol);

138 | P a g e

The domain value, as stated with the TCP protocol, provides the protocol family that will be

used for communication. This option is set to AF_INET in this implementation, indicating that

the address family is Internet Protocol version 4 (IPv4). The function's type is indicated, and

it's utilised to establish the communication semantics. In this implementation, it's set to

SOCK_RAW, which enables datagrams. The protocol argument is the third parameter, and it

provides the protocol that will be used with the function. This option is IPPROTO_RAW for the

UDP protocol.

Figure 4.12: Create socket function

The send function is utilised to send data to a different socket. The format for calling this

function is as follows:

2. ssize_t sendto(int s, const void *buf, size_t len, int flags, const struct sockaddr

*to_addrs, socklen_t to_len);

Refer to Figure 4.13, the option s is the sending socket's file descriptor. This message can be

located in buf and has a length of len characters. In the case of UDP, the flags parameter is

the bit string OR of zero, and it is used to identify the message transmission type. The

to_addrs option links to the sockaddr structure, which stores the destination address. The

139 | P a g e

to_len option specifies the length of the target sockaddr. If the function is successful, it will

return the number of characters sent; otherwise, it will return -1.

Figure 4.13: Send function

UDP communications can be transmitted across the Ethernet port using these two basic

functionalities. The software Wireshark can capture Ethernet traffic. Figure 4.10 depicts the

capturing of UDP packets. It is essential to notice that data such as the Ethernet header and

the protocol tag are also included in the whole UDP packet containing the message to be

conveyed. This data encapsulation can be done automatically for UDP because it is a

transportation layer protocol, but it cannot be done for the data link layer. To comprehend how

to transfer data via the Ethernet port, the UDP sending and receiving example is utilised as a

guide.

4.4 R-GoSV GOOSE Source Code

This C program, as demonstrated in Appendix D, combines IP, UDP, Session layer headers,

and application data to send a full stack of GOOSE APDU messages created according to

IEC 61850-90-5. The GOOSE message is classified as application data by IEC 61850-8-1.

The session layer includes the needed security fields. Information from the session layer is

encrypted and transferred over the network, along with a digital signature.

This toolbox was developed by (Ustun et al., 2020) utilising the SSL programming library that

secures R-GOOSE and R-SV communications that can be transmitted in a network without

140 | P a g e

any security mechanism. The proposed R-GoSV algorithms can be used to generate R-

GOOSE and R-SV packets with security which can then be used for testing various

cybersecurity techniques.

Furthermore, since the communication traffic is sent and received via the Ethernet port, the

data link layer programming is studied for R-SV communication. To send data link layer traffic

out, all relevant data must be programmed before the calling of sending functions. An Address

Resolution Protocol (ARP) sample code is examined to understand the programming of the

data link layer packet (Zhao, 2012). An ARP socket is sent via the socket function and a buffer

argument is assigned to the sendto function. It is necessary to modify the socket command to

allow the sendto function to send out ARP structures. The Ethernet port will be utilised to

transmit data. The R-SV protocol implementation will be an extension of the ARP sending

program. However, the ARP structure must be modified to conform to the IEC 61850-9-2

standard.

GoSV framework has been developed to build GOOSE and SV messages from scratch.

Manually building these messages with low-level detail enables cutting-edge research where

novel approaches are tested (Ustun, 2021). Routable messages such as R-GOOSE and R-

SV are an addition as per IEC 61850-90-5. These messages are used to secure PMU

communication and follow the structure shown in Figure 4.14.

The R-GOOSE source code algorithm uses the standard GOOSE message format and adds

several additional fields to support routing and other features. The algorithm is designed to be

simple and efficient, with a low processing overhead and minimal impact on network

performance. One of the main strengths of the R-GOOSE source code algorithm is its

flexibility. The algorithm can be implemented in a wide range of network environments,

including both Ethernet and IP-based networks. This makes it well-suited for use in a variety

of different power system applications, from small distribution networks to large-scale

transmission systems. Another strength of the R-GOOSE source code algorithm is its security

features. The algorithm includes support for authentication and encryption, which helps to

prevent unauthorised access to GOOSE messages and protect the integrity of the data. This

makes R-GOOSE a suitable choice for critical power system applications (Wide-Area

Monitoring Systems, Distributed Energy Resources, Substation Automation systems) where

data security is paramount.

141 | P a g e

Figure 4.14: Session Layers in IEC 61850-90-5 (Ustun, 2021)

Once implemented, the R-GoSV toolbox is able to send regular and secured (encrypted) R-

GOOSE/R-SV messages as shown in Figure 4.15, respectively. It is important to highlight

here that, in the latter case, the message cannot be successfully detected since the contents

are encrypted. The IEC 61850-90-5 standard describes MAC techniques for generating hash

values to achieve message integrity and authentication. Despite confidentiality not being a

requirement, the standard specifies encryption algorithms for IEC 61850-90-5 R-GOOSE and

R-SV messages. As depicted in Figure 4.15, the Wireshark capture shows all the required

fields starting from ethernet, IP, UDP and Session headers. Furthermore, the strengths and

weaknesses of the R-GoSV messages are discussed below:

142 | P a g e

Strengths:

• Security: R-GoSV messages are encrypted and authenticated, which makes them

more secure than standard GOOSE messages. The use of digital signatures ensures

that the information is authentic and has not been tampered with. It provides a secure

method of communication that protects against cyber threats and attacks, which is

crucial in the energy sector where the impact of such attacks can be significant.

Additionally, the R-GoSV algorithm provides validation of messages to ensure that only

valid messages are accepted, further enhancing the security of the communication.

• Flexibility: R-GoSV messages can be routed over IP networks, making it possible to

communicate between substations and different parts of the power grid. This feature

can be particularly useful in larger substations where longer distances need to be

covered.

• Interoperability: The R-GoSV source code algorithm is defined by the IEC 61850

standard, ensuring interoperability between devices from different vendors.

Limitations:

• Complexity: The configuration of R-GoSV messages can be complex, requiring

specialised knowledge and tools to set up and maintain. This can make it challenging

to implement and troubleshoot. If not implemented correctly, it can lead to

communication errors and even system failures.

• Overhead: R-GoSV messages require additional processing overhead to encrypt,

authenticate, and digitally sign the information. This can impact the response time and

throughput of the protocol.

• Cost: The use of encryption, authentication, and digital signatures can increase the

cost of implementing the protocol, particularly for legacy devices that may require

hardware upgrades.

143 | P a g e

Figure 4.15: Wireshark frame of secure R-GOOSE

In short, the GoSV tool is able to create custom GOOSE and SV messages. These can be

secured with S-GoSV and made routable with R-GoSV. The developed R-GoSV incorporates

the specified security methods. The HMAC-SHA256 digital signature and AES-128 encryption

techniques are employed to ensure message authentication and integrity and to achieve

confidentiality, respectively. Data integrity attacks can be prevented by applying encryption

and message authentication techniques, which protect the grid. The proposed method

employs authenticated encryption algorithms to mitigate cyberattacks on substations. The use

of AES ensures the confidentiality of transmitted data, encompassing protection function

operations and status information. This prevents interception and comprehension of

exchanged messages by potential attackers. HMAC validates message integrity during

transmission, confirming its origin from the expected sender and deterring unauthorised

intruders from posing as legitimate devices within the substation network. Authenticated

encryption guarantees data integrity, rendering any unauthorised modifications detectable.

The failure of decryption or integrity checks signifies potential tampering, thus impeding

144 | P a g e

attackers from modifying data without detection. Even if encrypted data is captured, decryption

without the appropriate keys remains unattainable for cyberattacks.

4.5 Conclusion

Chapter 4 presents an overview of TCP client/server communication. The context and outline

for the research project are established. The design and implementation of the communication

model are studied for requirements of the IEC 61850 protocol. Communication architectures

must be designed to meet the unique behaviour and communication requirements of the IEC

61850 protocol. While the standard supports both TCP and UDP communication protocols,

TCP is often the preferred choice due to its reliability and error-checking capabilities. However,

there are limitations of TCP communication that can impact its effectiveness in IEC 61850

implementation. One of the primary limitations of TCP communication is latency. TCP is a

reliable protocol that requires error-checking and acknowledgement of every packet. This can

lead to delays in the delivery of data, which can impact the performance of real-time systems

such as those found in substation automation. The latency introduced by TCP can result in a

delay in the processing of critical events, leading to potential system failures. UDP is often

used in IEC 61850 implementation due to its low latency and high speed. However, there are

limitations to UDP communication that can impact its effectiveness in substation automation

systems. UDP is an unreliable protocol, meaning that it does not provide any error-checking

or retransmission mechanisms. This can result in lost or corrupted data packets, which can

impact the overall reliability of the system. In substation automation systems, where real-time

data transmission is critical, the loss of data can lead to potential safety issues.

An unsecure plain GOOSE and secure GOOSE program is also studied in Chapter 4. Non-

secure GOOSE and secure GOOSE are two different approaches to transmitting GOOSE

messages with different levels of security. Non-secure GOOSE messages are transmitted

without any security mechanisms, while secure GOOSE messages are transmitted with

additional security features such as encryption and authentication.

One of the key advantages of non-secure GOOSE is its simplicity. Non-secure GOOSE

messages are easy to implement and require minimal processing, making them a cost-

effective solution for many applications. Additionally, non-secure GOOSE messages have

lower latency, which is important for fast communication in critical systems.

145 | P a g e

However, non-secure GOOSE has some significant limitations in terms of security. Non-

secure GOOSE messages can be intercepted, modified, or even blocked by attackers, which

can lead to system failures or data breaches. Therefore, non-secure GOOSE is not suitable

for critical systems where the integrity and confidentiality of the data are essential.

Secure GOOSE, on the other hand, provides a higher level of security compared to non-

secure GOOSE. Secure GOOSE messages are transmitted with additional security features

such as encryption and authentication, which protect the data from interception, modification,

and tampering. This makes secure GOOSE suitable for critical systems where the integrity

and confidentiality of the data are essential.

However, secure GOOSE has some limitations as well. The additional security features of

secure GOOSE may introduce additional processing delays, which can increase latency and

reduce the performance of the system. Additionally, the implementation of secure GOOSE

can be more complex and costly compared to non-secure GOOSE, which may not be feasible

for all applications.

As such, developed security algorithms are to meet data and sampling speeds for

performance and security requirements. Developed algorithms that publish GOOSE and R-

SV communication must comply with IEC 61850 and implemented authentication and integrity

levels must conform to IEC 62351-6 as recommended. According to existing research (Elbez

et al., 2019; Farooq et al., 2019), it has been found that RSA-based digital signatures cannot

meet the time-critical requirements for communication with substation automation. As an

alternative and to meet the desired requirement, the HMAC-based digital algorithm HMAC-

SHA26 is implemented to secure GOOSE and R-SV messages in the communications

network for power system automation. Careful consideration must be given to the design and

implementation of the system to ensure reliability, security, and performance.

Chapter 5 presents a simulation test conducted to evaluate the R-SV communication protocol

resulting from the integration of the authentication algorithm. Chapter 5 details the

conformance test of the R-SV message structure to the IEC 61850-9-2. Chapter 5 also details

the test conducted using Wireshark and Ettercap to verify the frame structure of the R-SV

protocol and introduce spoofing network traffic, respectively. A brief description of the research

design is presented accordingly:

146 | P a g e

1. Design Objective: Evaluate current security solutions for GOOSE and R-SV

messages. Development of an authentication algorithm for R-SV messages.

2. Experimentation Procedure: The design phase will focus on code development. The

implementation phase is the deployment of the presented authenticated encryption

algorithm.

3. Analysis: Wireshark is used to collect and analyse data, and Ettercap is used to launch

MITM attacks.

4. Interpretation of Results: The Wireshark capture will show all the required fields

according to IEC 61850-9-2 for R-SV and the generated attacks of the packets are

analysed.

147 | P a g e

5. CHAPTER FIVE: CASE STUDY IMPLEMENTATION: TESTING AND RESULTS

ANALYSIS

5.1 Introduction

The IEC 61850 standard for substation automation systems is widely utilised. While electrical

substations continue to digitalise, GOOSE and SV-based line protection applications are

becoming more common. The same standard governs IEC 61850 signal exchange between

IEDs with different protocols. The conventional approach to protective applications increases

the complexity of the protection system. Even with today's IEC 61850 architecture, employing

GOOSE and SV-based communications for line distance and differential protection

applications would result in significant simplification. For example, with the traditional way of

line distance protection, the efficiency of the overall solution is restricted by the speed of the

binary contacts, which have relatively slow switching operation times, resulting in longer fault-

clearing periods than necessary. As a result of the growing popularity of digital substations,

with their undeniable benefits in terms of visibility and flexibility, the use of GOOSE and SV-

based protection applications is advantageous, if they meet the required performance

parameters, such as dependability and security, as defined by the IEC 62351 and IEC 61850

standards.

This project explores and evaluates the application of standard IEC 61850 and IEC 62351

technology. The implementation aims to develop an encryption and authentication algorithm

for IEC 61850 R-SV messages. Based on the literature review, the majority of the authors tend

to emphasise security development for the GOOSE protocol. Although R-SV communications

are vulnerable to cyberattacks and have a similar frame format to GOOSE messages, they

have not attracted the same level of scrutiny as GOOSE messages in the literature. As such,

this has led the thesis to develop an algorithm to secure R-SV communication adhere to the

frame structure and address this gap. Some solutions in the literature do not enable real-time

traffic and thus are incompatible with GOOSE and SV messages. Whereas others violate the

required delay of 3 ms or fail to meet the standards, our design authenticates and encrypts

IEC 61850 and satisfies IEC 62351:2020. The proposed mechanism in this thesis uses the

IEC 62351-6 recommended authentication value extension and encryption of SV APDU in R-

SV messages to counteract cyber-attacks.

The following sections detail the project's implementation and present the results of the

project. In this chapter, the implementation of the developed authentication code can be used

to publish secure sampled value messages as discussed in Section 5.2. Encryption then an

148 | P a g e

Authentication algorithm is employed on the SV PDU as detailed in Section 5.3 and Section

5.4, respectively. The sampled value messages published from the two devices (Kali-Linux

virtual machines) are captured using a commercial protocol analyser tool called Wireshark as

illustrated in Section 5.5 to validate the structure of R-SV messages published against that

defined in the IEC 61850-9-2 standard. Furthermore, Ettercap will be used to perform an MITM

attack by spoofing network traffic as described in Section 5.6.

5.2 Security of Sampled Values

5.2.1 Potential Threats and Vulnerabilities

Because of the nature of the electrical transmission system, the vast majority of substations

are unattended. Furthermore, gateways and large networks connect substations to a control

centre. Remote access to substations is therefore necessary. The most serious concern with

remote access is that appropriate security controls may not be implemented. As a result,

substation infiltration could happen in several ways. An attacker may infect a laptop connected

to the substation communication network. As a result, if equipment located at the lower level

is hacked, the intruder could be able to exploit the process bus network.

Because of its features, such as plain text messages and multicast at the data link layer, the

SV protocol reveals all data details within a network. An attacker with process bus access can

inspect the R-SV message. As a result, launch a cyber-attack by changing voltage

measurements. Another method for compromising the R-SV message is to exploit

weaknesses in the subscriber's processing protocol.

5.2.1.1 Replay Attacks and Masquerade Attacks

The intruder can initiate two types of cyberattacks against SVs: replay attacks and

masquerade attacks. During regular operation, an intruder intercepts a substation network and

records an R-SV message packet including current and voltage measurements. During a

malfunction, the intruder then replicates the intercepted packets into the substation network.

During the failure, the IED receives normal current and voltage parameters. This would cause

the IED to maintain the circuit breaker closed irrespective presence of a malfunction. The fault

level could surge, and the network could potentially fail. This would cause significant damage

to equipment, and power outages, and potentially jeopardise the reliability of power. In a

masquerade attack, an attacker gains access to the substation network by establishing a false

identity and retrieving and intercepting an R-SV communication packet to manipulate or alter

149 | P a g e

the measured values. The initial R-SV packet would be completely tampered with as a result.

A malicious attacker may manipulate the R-SV data, causing the IED process of operation to

produce unexpected results, which could have negative consequences.

Overall, the standard IEC 61850-9-2 SV is proven to be sensitive to replay and masquerading

attacks (Suhail Hussain et al., 2023). As a result, the presented technique in this study

incorporates the IEC 62351-6 recommended authentication value extension and encryption of

SV frame structure in R-SV communications to mitigate cyber-attacks.

5.2.2 Sampled Measured Values

The R-SV message is used to communicate measured samples from sensor systems between

IED devices. The R-SV message is a multicast technique that is used for data transmission

between several IEDs connected to an Ethernet network. The OSI model layer 2 is utilised for

mapping R-SV data. The bottom tiers of the ISO/OSI model use Ethernet multicast and serial

line unicast communication. As previously discussed in Section 3.3.2, the following fields are

contained within the SV packet frame as discussed by (Karnati, 2020):

• “Destination address

• Source address: The address of the publisher.

• VLAN priority tag: Priority tagging according to IEEE 802.1Q.

• Ethertype: SV Ethertype is set to 88-BA.

• APPID: Application identifier.

• Length: The total number of bytes in the SV message.

• Reserved 1: Reserved for future standardisation.

• Reserved 2: Reserved for future standardisation.

• APDU: APDU contains SV data structure.”

The information to be distributed in the process bus network is encoded in the SV buffer as

an APDU. The following fields are contained in the APDU of the SV packet as discussed by

(Karnati, 2020):

• “svID: Should be a system-wide unique identification.

• smpCnt: Each time a new sampling value is taken, this value will be incremented. If

the sample is synchronised by a clock signal and the synchronising signal occurs, the

counter must be set to zero.

150 | P a g e

• ConfRef: Value from the MSVCB.

• RefrTm: Contains the refresh time of the SV buffer.

• smpSynch: Synchronised by an external clock signal.

• seqData: List of data values related to the data set definition.”

5.2.2.1 Replay Attacks in IEC 61850 GOOSE and Sampled Value Messages

Comparison

Replay attacks in GOOSE communication are easily identified by evaluating the values of the

stNum and sqNum fields of the incoming GOOSE with the last received GOOSE

communication. With each additional GOOSE communication, the sqNum value is increased.

Whereas the stNum value is increased whenever there is an event in data set information.

When the stNum is increased, the sqNum value is reset to 0. As a result, any replay attack in

GOOSE messages can be easily discovered by comparing the current GOOSE

communication’s stNum and sqNum values to the old GOOSE communication’s stNum and

sqNum values. The smpCnt field in SV messages is incremented for each new SV message

and its value is reset to 0 every second. The SV message's smpCnt value is equivalent to the

GOOSE message's sqNum value. However, the SV message lacks a value similar to stNum

in the GOOSE message. Because the smpCnt value is reset every second, it is insufficient to

detect replay attacks in SV messages. The optional field Security in the IEC 61850-9-2 SV

APDU is kept for future specification and use. The security field is used to store the timestamp,

or the moment at which the SV frame was formatted. In the proposed security method, the

security field timestamp value, coupled with the smpCnt value, is used to detect replay attacks

in SV messages. With the proposed security approach, the Security field of each SV packet

now comprises the time at which the packet was produced. If the received SV packet's

timestamp value is less than or equal to the last received timestamp, replay is detected, and

the packet is deleted. If the value is greater, the SV packet is processed further, and the last

received timestamp value is updated with the current SV packet's timestamp value. (Suhail

Hussain et al., 2023)

5.3 Message Authentication Code

5.3.1 Hash Message Authentication Code (HMAC)

As an authentication value, IEC 62351-6:2007 proposes using RSA-based digital signatures.

The processing time for RSA-based digital signatures is 2-3 msec. As a result, it is unsuitable

for SVs. Conversely, because MAC methods have relatively short processing durations, they

151 | P a g e

can be utilised to generate this authentication value. Several MAC methods recommended in

the recently published IEC 62351-6:2020 are employed to generate the authentication value

in the proposed mechanism. Additionally, the SV APDU is encrypted using Advanced

Encryption Standard using the HMAC SHA-256 method.

Validating the integrity of data carried over or kept on an unprotected medium is critical in the

age of open network communications. Message Authentication Codes (MACs) are commonly

used to validate data exchanged between two parties who share a secret key.

To authenticate a plaintext communication message, a secure tag, such as MAC, is utilised.

The MAC can be created from the original message and includes limited procedures to confirm

that the publisher has not tampered with the message's integrity. Producing MAC from the

message context, on the other hand, will require processing power and time, which is a key

concern for the real-time operation of the substation automation system because SV must

come within 3ms, according to IEC 61850. As a result, the SV message must take precedence

over other communication messages, and encryption methods are not advised due to the

additional processing time required (Karnati, 2020).

HMAC is a hash function-based algorithm that can assure message integrity and

authentication. The following are some of the benefits of HMAC:

• the tag's length is short and fixed,

• preventing duplication,

• the original message is hidden.

It is challenging to calculate the identical inputs from the output HMAC tags due to the collision

resistance and one-way function properties (Refer to Section 2.3, Equation 2.1). As a result,

a secret key is usually used by HMAC. The fundamental goals of this construction are as

follows:

• To utilise hash functions in their original form.

• To retain the original hash function output without incurring major degradation.

• To give a well-understood cryptographic assessment of the authentication

mechanism's strength.

152 | P a g e

5.4 Authenticated Encryption

The most common use of cryptography on the Internet these days is to create a secure

channel between two endpoints and then exchange data over that channel. Typical

implementations initiate a key-exchange protocol to establish a shared key between the

participants, and then utilise this key to authenticate and encrypt the transmitted data using

efficient symmetric key algorithms as depicted in Figure 5.1. Usually, when encryption is

employed on data, a MAC is required to provide additional security, since encryption alone is

insufficient to protect data from intruders. An authorised encryption mode of operation must

provide both privacy and communication authenticity.

Figure 5.1: EtM security algorithm

Hash or message authentication mechanisms are utilised to ensure the integrity of

communication. Encryption and integrity techniques are sometimes used together:

• Encrypt-then-MAC (EtM): ensures ciphertext confidentiality, but no plaintext

confidentiality,

• MAC-then-encrypt (MtE): ensures plaintext confidentiality, but no ciphertext

confidentiality, and

• Encrypt-and-MAC (EandM): ensures plaintext confidentiality, but no ciphertext

confidentiality.

Figure 5.1 illustrates the EtM algorithm. The encryption technique used by the sender returns

a ciphertext (including the authentication tag), but the decryption process used by the receiver

returns either a plaintext or a special symbol indicating that the ciphertext is faulty or

unauthentic. To construct a fresh digest if the user tampers with the ciphertext, they must also

know the HMAC key. The ciphertext will not authenticate if the user modifies the digest

(Oszywa & Gliwa, 2012). This is advantageous for two reasons: first, it makes a denial-of-

153 | P a g e

service assault considerably more difficult by allowing you to discard faked packets more

quickly, and second, it limits your "attack surface."

EtM is the most secure algorithm since modifications to the ciphertext can be filtered out prior

to decryption using a valid MAC code, preventing communications tampering. MtE and EandM

each offer varying levels of security, but EtM offers the whole package. The user cannot

tamper with the ciphertext when EtM is used.

Encryption hides your data but does not prevent tampering. As a result, authentication has

been incorporated into the algorithm. Thus, establishing, and standardising specialised

authenticated encryption techniques is quite valuable. The EtM technique is the best for

achieving authenticated encryption and should minimise or remove a variety of attacks on the

present MtE mechanism. (Gutmann, 2014)

5.5 Implementation

For the IEC 61850 message exchange, the IEC 62351-6:2020 standard outlines the use of

security requirements such as digital signatures that use RSA algorithms to ensure integrity

and authenticity. However, it makes no provision for protecting the confidentiality of R-SV

messages. With the rapid expansion of IEC 61850 from substation automation to power

management, IEC 61850 messages are now being used to transmit sensitive data that

requires secrecy. Previous research has found that when applied to R-SV messages, the

generation of digital signatures using RSA and ECDSA algorithms requires long computational

and processing times (Harispuru & Schuster, n.d.); Gonzalez-Redondo et al., 2013; Firouzi et

al., 2017). Because R-SV communications have a 3 ms time limit, IEC 62351-1 advises

against using encryption methods. However, R-SV messages must be encrypted to achieve

the confidentiality requirement. Moreover, the implementation of encryption algorithms must

conform to the timing restriction of 3ms. Most of the literature does not consider security

mechanisms for R-SV messages, especially confidentiality requirements.

In this chapter, the iterative implementation procedures are documented, to address the lack

of information. A method is proposed to ensure the confidentiality and message authentication

of R-SV messages by employing Authenticated Encryption with Associated Data (AEAD)

algorithms. Further, C-library-based implementations are developed by programming R-SV

data frames according to the IEC 61850-9-2 standard to test the timing performance and

feasibility of the proposed security method for R-SV messages. The complete source code of

the interface is included in Annexure E and Annexure F.

154 | P a g e

5.5.1 Proposed Method for Achieving Confidentiality in SV Messages

In the R-SV protocol, the suggested method uses the EtM variant of the AEAD algorithms to

employ confidentiality, message integrity, and authenticity.

The security scheme for R-SV messages in IEC 61850 was originally based on MACs and

digital signatures to ensure the integrity and authenticity of the data. However, this scheme

had some limitations and was vulnerable to various attacks such as replay attacks, man-in-

the-middle attacks, and message insertion attacks. Therefore, the security scheme is to

address these vulnerabilities and improve the overall security of R-SV communication.

The adapted security scheme for R-SV communication in IEC 61850 includes the following

measures:

1. Encryption: Encryption is used to protect the confidentiality of R-SV messages by

ensuring that only authorised devices can access the data. Encryption algorithms such

as AES-128 are used to encrypt the messages before transmission over the network.

However, as research progresses, new attack methods such as the Biclique attack

emerge. Attackers are aware that in order to carry out a brute force assault against

AES-128, they must try every possible key combination until the correct key is

identified. A biclique attack is a type of attack that exploits the block cipher's algebraic

structure. It specifically checks for collisions throughout the encryption process. A

biclique attack focuses on discovering collisions in the encryption mechanism, possibly

decreasing the complexity of the attack. The biclique attack is currently the only key-

recovery attack on complete AES using a single key. (Bogdanov et al., 2011b) used it

to build bicliques for all three versions of AES. The biclique attack is approximately

four times faster than brute force. The biclique assault can only be implemented

hypothetically. As a result, there are no practical implications for AES encryption. There

is currently no known viable attack that would allow someone who does not know the

key to access data encrypted by AES when properly implemented.

2. Timestamping: Timestamping is used to prevent replay attacks by adding a timestamp

to each message. The receiver can then check the timestamp to ensure that the

message is fresh and has not been replayed.

3. Sequence numbers: Sequence numbers are used to prevent message insertion

attacks by assigning a unique sequence number to each message. The receiver can

then check the sequence number to ensure that the message is in the correct order

and has not been inserted or modified.

155 | P a g e

4. HMAC: HMACs are used to ensure the integrity of R-SV messages by generating a

unique signature for each message. The signature is based on a hash function and a

secret key that is shared between the sender and receiver. Having more than one

HMAC with different keys or algorithms can enhance security however there are

potential risks. Managing multiple HMACs can increase complexity in key

management. This complexity could potentially introduce vulnerabilities. If there are

implementation flaws, they could be exploited regardless of the number of HMACs

used.

5. For AES-HMAC to work securely, both the sender and receiver must agree on a shared

secret key and specific algorithm used including the AES variant and HMAC function.

The structure of the message being exchanged must be well-defined.

The EtM send program is responsible for constructing an Ethernet frame that includes all the

necessary fields of the frame, including the destination address, the source address, the ether

type, and then the SV PDU fields. As illustrated in Figure 5.2, the fields that make up the PDU

comprise APPID, the length of the PDU, Reserved1, Reserved2, and SV APDU fields, and

then they are followed by the Frame Check Sequence (FCS) field.

Figure 5.2: EtM algorithm applied to GOOSE or SV PDU (Hussain, Farooq, et al., 2020)

In the event that the frame is secured via a digital signature mechanism, the Reserved1 field

will contain the length of the Extension field. There is no extension field for SV messages when

its value is 0, which indicates that no security is being applied to such communications. The

authentication value (MAC value) for SV PDU is derived from the Ethertype field till the end of

the encrypted SV APDU. The length of the Extension field appended to the SV PDU is added

to the second byte of the SV PDU's reserved1 field. The Cyclic Redundancy Check (CRC)

value is stored in the Reserved2 column. The Tag-Length-Value (TLV) format is used for the

fields that make up the SV APDU. While processing the SV frames at the publisher, the SV

APDU is encrypted first, and then the MAC value is created and added to the extension field.

The EtM transmit software uses AES-128 encryption to encrypt the SV APDU after it has

completed the construction of the SV ethernet frame. The total amount of space used up by

156 | P a g e

the SV APDU fields is 137 bytes. Padding brings the total size of an SV APDU up to 144 bytes,

which is necessary because AES-128 encrypts 16 bytes of data at a time. The cipher text that

is produced as the output of AES-128 is then passed as an input to the HMAC-SHA-256

generating function, which produces a MAC value consisting of 32 bytes. The MAC value that

has been created is saved in an extended field of the SV APDU. The extension fields include

the version, Time of Current Key, Time of Next Key, Security Algorithm, and Key ID, followed

by the 32-byte MAC value, as shown in Figure 5.3. The most significant byte is the one that is

used to represent the encryption technique, while the least significant byte is the one that is

used to indicate the authentication algorithm for the message (Ustun et al., 2020). Every

second, the EtM send program constructs the SV PDU frame in a buffer character array and

sends it to the network. The times of encryption and MAC creation are captured. The publisher

sends the secure SV packets.

Figure 5.3: Structure of Extension field (Hussain, Farooq, et al., 2020)

Upon receiving the secure R-SV packet, the subscriber obtains the MAC value in the extension

field and stores it. In the EtM receiver program, which receives data from the sender program,

the cipher text and the MAC value are extracted from the received data into cipher and hash

arrays. In addition, the EtM receiver software compares the received MAC value with a newly

generated MAC value using the HMAC-SHA-256 creation function. The encrypted text will be

decrypted if the two values match; otherwise, the packet will not be further processed. As a

result, the time it takes to generate and decode the MAC is recorded.

5.5.2 Implementation and Performance Evaluation

To implement an IEC 61850 communication system, a thorough grasp of the processes,

techniques, and technologies is required. In addition, a new framework for substation

communication based on the IEC 61850 standard is established to solve the cybersecurity

challenges stated in IEC 62351 for critical infrastructure communication.

157 | P a g e

The proposed approach for R-SV security, which makes use of the EtM algorithm, has been

put into action. Simulation is implemented to examine the reliability of securing R-SV

communications and to determine whether it is feasible. Furthermore, the simulation confirms

the SV PDU as stated in Part 9-2 of the IEC 61850 standard. The message structure is

checked by simulating and recording the R-SV message using network protocol analyser

software, followed by packet frame analysis. Figure 5.4 depicts the experimental setup for R-

SV message simulation and validation, with the EtM transmitter and receiver programs running

on Kali-Linux software installed on a personal computer (PC). To collect R-SV message

packets and perform MITM attacks, Wireshark and Ettercap software running on a PC are

utilised. A network switch connects the two machines. The developed security system satisfies

the requirements for message confidentiality, integrity, and authentication. Also, the

recommended security technique works well to protect against unauthorised access, spoofing,

and MITM attacks.

Figure 5.4: PC with Kali-Linux and PC with Wireshark Network Analyzer Software and

Ettercap

EtM is utilised to secure R-SV communications transmitted between the publisher and the

subscriber. Figure 5.3 depicts the overall security process of the proposed mechanism, while

Table 5.1 provides further information about the suggested security protocol. Using AES-128

encryption and HMAC SHA-256 message integrity, the EtM algorithm safeguards R-SV

message communication. The publisher and subscriber programs are executed on two distinct

terminals that function as two IEDs. As shown in Table 5.1, the publisher terminal initiates the

R-SV message creation process, Gen_EtM(), which generates a secure R-SV message

including an encrypted SV APDU (Ed) and MAC value “h” using the symmetric PreSharedKey

“k”. Figure 5.5 depicts the Wireshark capture of an encrypted and authenticated R-SV

message broadcast by the EtM AEAD algorithm of the S-GoSV library.

158 | P a g e

Figure 5.5: Packet capture of EtM SV message

The subscriber reads the encrypted APDU (Ed) values into the ReceivedData buffer after

receiving the secure R-SV message. As shown in Table 5.1, the procedure verify_EtM() is

utilised to validate the R-SV message's integrity. First, a new MAC value "h1" is generated

using the symmetric PreSharedKey "k" for the received encrypted SV APDU (Ed). "h1" is

compared to the received MAC value "h" and validated. The encrypted SV PDU is decrypted

and processed further if they match; otherwise, it is refused since the MAC value mismatch

signifies that at least one of the received encrypted SV PDUs or MAC values has been altered.

To obtain the APDU data for an approved packet, the encrypted SV APDU (Ed) is decrypted

using the key "k."

159 | P a g e

Table 5.1: Publisher and Subscriber Algorithm

Algorithm Gen_EtM() Algorithm verify_EtM()

svPDU  GoSV() ReceivedData 

svPDU.APDU = Ed

InputData  svPDU.APDU h  svPDU.extension

k  PreSharedKey() k  PreSharedKey()

Ed

 EncryptK (InputData)

h1  MACk (ReceivedData)

h  MACk (Ed) if h = h1 then

svPDU.Extension  h APDU  DecryptK (Ed)

svPDU.APDU  Ed else

 return “Reject SV packet”

To evaluate timing performance, the computational times required to execute the EtM security

version are computed. The testing system is an Intel(R) Core(TM) i7-10510U with 16GB RAM

running Kali-Linux with EtM sender and receiver software with GCC compiler. Compile and

run the application at the command prompt. The EtM sender program execution steps are as

follows:

• Install libssl library.

• Replace the destination and source MAC addresses with your intended MAC

addresses in the EtM_send.c program.

• Replace the network interface name with your computer’s network interface name in

the EtM_send.c program.

• Then compile and run the program as illustrated in Figure 5.6.

• The server code is responsible for providing the data to the clients. This involves

creating a socket connection and binding it to a server port. The server code then

listens for incoming client requests and responds with the requested data.

• Figure 5.7 shows the secure R-SV packet captures of the publisher device employed

with the EtM technique. It incorporates all the authentication inputs of the SV PDU.

Wireshark shows all the required fields according to IEC 61850-9-2. Refer to Appendix

G for more detailed packet capture.

160 | P a g e

Figure 5.6: Terminal output for publisher device

Figure 5.7: Packet Capture of Publisher

The EtM receiver program execution steps are as follows:

• Install libssl library.

• Replace the destination MAC address with your receiver computer’s MAC address in

the EtM_recv.c program.

• Replace the network interface name with your computer’s network interface name in

the EtM_recv.c program.

• Then compile and run the program as illustrated in Figure 5.8.

161 | P a g e

• The client code is responsible for requesting the data from the server. This involves

creating a socket connection and sending a request message to the server. The client

code then receives the requested data from the server and processes it according to

the data model.

• Figure 5.9 shows the secure R-SV packet captures of the subscriber device employed

with the EtM algorithm. Wireshark shows all the required fields according to IEC 61850-

9-2. Refer to Appendix H for more detailed packet capture.

The final step in developing a publisher-subscriber code algorithm is to validate the data

model. This involves checking that the data objects exchanged between publishers and

subscribers are consistent with the data model. Any errors or inconsistencies should be logged

and handled appropriately. The use of multicast messages reduces the amount of network

traffic and improves the efficiency of communication.

Figure 5.8: Terminal output for subscriber device

162 | P a g e

Figure 5.9: Packet Capture of Subscriber

The computational times required to generate R-SV messages with security extensions are

calculated to assess timing performance. This is accomplished by sampling CPU times at the

beginning and end of C programs. Table 5.2 shows the computational times for processing

the SV frames, generating MAC values for various MAC algorithms, and encrypting the SV

APDU at the publisher. It also shows the times taken to process the received SV frames,

regenerate the MAC values for various MAC algorithms, and decrypt the SV APDU at the

subscriber side. As seen in Table 5.2, the processing and communication delays for

transmitting secure R-SV messages are significantly below the 3ms minimum. The simulation

verifies the R-SV message structure provided in IEC 61850 standard part 9-2. In addition, the

built security algorithm corresponds to the IEC 62531 security standard. Detailed data on the

computational time is found in Appendix I and Appendix J. The end-to-end delay time is

calculated with Wireshark data as provided in Appendix G. Average values are obtained from

the values in the respective Appendix.

163 | P a g e

Table 5.2: Computational time for secure SV security algorithm

Security

algorithm

Signature

length

(bytes)

Average computational time (ms)

EtM Publisher EtM Subscriber

MAC

generation

time

Encryption

time

MAC

generation

time

MAC

comparison

time

Decryption

AES 128 16 - 0.01044 - - 0.001

HMAC

SHA256

32 0.00226 - 0.008 0.001 -

End to End delay

Normal 0.002088

Worst

case

0.001047

Cybersecurity functions must not interrupt the existing protection functions of IEDs. Any delays

or interruptions of the normal operation of the IED during the power system fault may damage

or disrupt substation equipment. Therefore, the total time delay has to be measured to validate

the performance of the security algorithm including delays in the merging unit, process bus

Ethernet switch, IED, R-SV communication, GOOSE communication, and station bus Ethernet

delays (Karnati, 2020).

Therefore, to confirm the security algorithm performance, the entire time delay needs to be

measured. This includes the delays that occur in the merging unit, the process bus, the IED,

the R-SV communication, the GOOSE communication, and the station bus Ethernet delays.

Using the S-GoSV library implementation, (Hussain, Farooq, et al., 2020) simulate a

substation communication network to determine if a worst-case scenario will still be functional.

Both processing and communication delays for transmitting encrypted GOOSE messages are

within the 3ms threshold, as confirmed by the authors. Consequently, the proposed security

method can be used effectively in real-time applications. Moreover, (Hussain, Farooq, et al.,

2020) concur that the EtM security algorithm has greater benefits than the MtE and E&M

algorithms. Based on these findings, future cybersecurity frameworks for the IEC 62351

standard can advocate encryption for IEC 61850 messages with confidence.

164 | P a g e

Overall, the adapted security scheme for SVMs in IEC 61850 provides a robust and

comprehensive set of measures to ensure the confidentiality, integrity, and authenticity of the

data. By incorporating encryption, timestamping, sequence numbers and HMACs the scheme

provides a multi-layered defence against various types of attacks. This improved security

scheme enables safe and secure communication between IEDs in the substation, helping to

ensure the reliable and efficient operation of the power grid.

5.6 ARP MITM attacks using Ettercap and Wireshark

Due to the inclusion of vital equipment in substation-based communication and the transfer of

data through an unsecured public network, a robust security mechanism is necessary to

prevent cyberattacks. Multiple attacks, including MITM, replay, and DoS compromise

substation-based communication based on the IEC 61850 framework. The developed secure

R-SV algorithm can be utilised to examine the impact of various cyber vulnerabilities. The SV

protocol exposes all data information in the communication network due to its features,

including plain text messages and multicast at the data link layer. As a result, a hacker may

discover vital information for cyberattacks. Exploiting the weaknesses of the processing

subscriber is another technique to compromise the R-SV message and prevent the substation

system from functioning normally. Attackers can launch cyberattacks if they get access to or

reverse-engineer the security algorithm. ARP MITM attacks are also called ARP spoofing or

ARP cache poisoning, the idea is to corrupt the ARP table of hosts using bogus ARP replies.

The attacker needs to be on the same network as the hosts being attacked for this attack to

work. This attack takes advantage of the lack of security mechanisms in ARP to validate the

identities of ARP speakers. As such, the MITM attack is implemented on Ettercap, and

Wireshark is used to capture and analyse the generated attacks of the packets.

Data is transmitted from the publisher to the subscriber device. The publisher and subscriber

devices are set as target 1 and target 2 respectively on Ettercap. An MITM attack is

implemented to reroute the traffic as shown in Figure 5.10. As such, target 1 will assume that

the attacker’s MAC address is that of target 2, and traffic will be rerouted to the attacker as

illustrated in Figure 5.11. The same applies when network traffic is transmitted via a router;

the attacker will suggest that they are the target device and traffic must be rerouted via their

MAC address. Once an adversary gains access to the process bus of the digital substation,

they could monitor the R-SV packets and analyse the semantics of SV PDU. After finishing

the analysis of SV streams, they could initiate the SV attacks such as injecting fault currents

and voltages.

165 | P a g e

Figure 5.10: Ettercap capture of MITM attack

Figure 5.11: Wireshark capture of MITM attack

Furthermore, any change in the SV PDU during communication indicates a difference between

the modified hash value (h) and the one recomputed at the receiver (h1). The SV PDU is

tampered with and forwarded to the receiver. Tampering is discovered when hash values are

166 | P a g e

recalculated. Figure 5.12 depicts the results of tamper detection when the SV PDU hash value

is mismatched, and the received packet is discarded.

Figure 5.12: Rejected SV PDU

In substation automation, mitigating cybersecurity attacks is a crucial requirement. As a result,

the number of cyber-attacks on substations is on the rise, and it has emerged as a major threat

that may cause substation damage. Encryption and authentication are essential security

requirements that must be implemented to prevent cybersecurity attacks and provide robust

security measures.

Authenticated encryption using the AES-HMAC algorithm provides robust security measures

that ensure the confidentiality, integrity, and authenticity of data. The AES encryption algorithm

is widely regarded as one of the most secure encryption algorithms, while the HMAC algorithm

provides strong authentication and message integrity. The AES-HMAC algorithm is efficient in

terms of processing time and computational resources, making it ideal for use in resource-

constrained environments. The AES-HMAC algorithm is an efficient encryption method that

can process large amounts of data quickly and securely. This is particularly important for the

real-time transmission of R-SV messages, where delays in processing can have significant

consequences. The use of authenticated encryption using the AES-HMAC algorithm is

compliant with many industry standards such as IEC 62351.

5.7 Comparative Analysis

(Hussain, Farooq, et al., 2020) developed and implemented an EtM security algorithm on

GOOSE PDU based on the modification of IEC 62351-6. However, a detailed analysis of the

packet data on Wireshark was conducted and found that the GOOSE PDU format is not

compliant with IEC 62351-6. Figure 5.13 shows the Wireshark capture of the non-compliant

GOOSE PDU. If the format of GOOSE and R-SV are not adhered to as specified in IEC

167 | P a g e

61850 and IEC 62351, this may cause a potential low delay in delivering high-speed

communication although the 3ms requirement will be met. Messages with a stringent time

requirement must be delivered on time. Processing time delays at both ends, propagation

time delays in communication links, and processing and queuing time delays in intermediate

switches all contribute to transmission time. Non - compliance, on the other hand, may result

in a lack of interoperability. The frame encryption and authentication procedures may no

longer be compliant with the standard after modifications are made for implementation.

Security may be significantly impacted by changing the encryption and authentication

processes.

For successful implementation, the proposed additional security techniques on R-SVs must

adhere to the above-mentioned timing requirements. The implementation to secure R-SV

messages in the thesis is as defined in IEC 62351-6.

Figure 5.13: Wireshark capture of GOOSE PDU with error

If the IEC 61850 GOOSE frame structure does not adhere to the standard requirements,

various issues may arise. These disadvantages can affect the overall performance,

interoperability, and reliability of the substation automation system. Below are some specific

drawbacks that can occur.

1. Compatibility Issues: Adhering to the IEC 61850 standard guarantees compatibility

between devices from different vendors, enabling them to work together effectively.

However, if the GOOSE frame structure does not meet the standard, it can lead to

incompatibility issues among devices produced by different manufacturers. As a

consequence, this can cause communication difficulties, data loss, or incorrect data

168 | P a g e

interpretation, ultimately obstructing the smooth integration of devices in the

substation.

2. Communication Errors: The GOOSE communication system relies on a defined frame

structure outlined in the standard. Any deviations from this structure can lead to

problems in communication. Incompatible frame structures can cause incorrect

interpretation of data or even the loss of crucial information during transmission. As a

consequence, this poses a risk to the security and efficiency of operations involving

IEDs and other time-sensitive services within the substation.

3. Reduced Performance: Adhering to the standard guarantees efficient and optimal

communication among IEDs. The purpose of the GOOSE frame structure is to

minimize network bandwidth usage while facilitating rapid data exchange. However,

frame structures that do not meet the standard can introduce unnecessary overhead

or inadequate data representation, leading to increased network traffic, longer delays,

and a decline in overall system performance.

The format structure outlined in IEC 62351-6:2020 is essential for establishing secure and

dependable communication. However, if the format structure does not adhere to the standard,

it can result in various drawbacks, such as:

1. Security Vulnerabilities: The IEC 62351-6:2020 standard outlines a format structure

that encompasses authentication, encryption, and integrity verification methods.

Failure to adhere to this structure or implement it accurately can lead to security

weaknesses. Unauthorized individuals may exploit these weaknesses to gain entry

without permission, tamper with data, or carry out harmful actions. Failing to meet the

standard raises the likelihood of security breaches and undermines the overall security

of power and energy systems.

2. Interoperability Issues: Adhering to IEC 62351-6:2020 guarantees efficient and secure

communication among various components and systems in the power and energy

infrastructure. However, if the format structure fails to comply with the standard, it can

lead to problems with interoperability. This means that components produced by

different manufacturers may struggle to interpret or handle communication data

accurately, resulting in communication breakdowns, data errors, or system instability.

Non-compliance hampers the integration and seamless functioning of diverse systems

and components.

3. Reduced Resiliency: The standard's defined format structure guarantees the

trustworthiness and consistency of communication between control systems and their

associated parts. Failure to adhere to this structure can result in errors or discrepancies

169 | P a g e

during the transmission and reception of data. These errors have the potential to cause

misunderstandings in commands, incorrect system reactions, or even complete

system breakdowns. Format structures that do not comply with the standard can

jeopardize the overall reliability of power and energy systems, impacting their efficiency

and accessibility. Non-compliant systems may display abnormal behaviour, including

variations in message formatting, timing, or protocol implementation.

To address these drawbacks, it is crucial to guarantee adherence to the format structure

outlined in IEC 62351-6:2020. By following this standard, organisations can bolster the

security, interoperability, reliability, and regulatory adherence of their power and energy

systems. This, in turn, promotes safer and more efficient operations within this vital industry.

As depicted in Figure 5.13, the presence of an error in the packet indicates the existence of

significant issues, such as malformed packets. These problems involve a violation of the

specification of the GOOSE protocol, which includes invalid field values or illegal lengths. In

Figure 5.14, the Wireshark capture illustrates a compliant GOOSE PDU. The code presented

by (Hussain, Farooq, et al., 2020) has been adjusted to align with the standards of IEC 61850

and IEC 62351. Modifications may be necessary for frame encryption and authentication due

to non-compliance with the specified format. Format non-compliance refers to situations where

the data frame format used in the system does not meet the requirements outlined in the

standard.

170 | P a g e

Figure 5.14 Wireshark capture of correct GOOSE PDU

It should be emphasised that Abstract Syntax Notation One (ASN.1) Basic Encoding Rules

(BER) are utilised for the decoding of GOOSE and SV protocols. The BER transfer syntax

operates on the principle of a triplet format known as Tag, Length, Value (TLV). As

demonstrated in Figure 5.14, the data sequence follows the BER structure, as shown in

Figure 5.15, specifically for GOOSE. The GOOSE PDU is encoded using the TLV format,

with the starting tag being 0x61. Subsequently, the Tag is followed by the Length, which

indicates the overall length of the GOOSE PDU. The Value section of the GOOSE PDU

contains a sequence of data.

171 | P a g e

Figure 5.15 IEC 61850-8-1 GOOSE PDU structure (ASN.1 Encoding)

(Rodriguez et al., 2021) analysed and evaluated different security algorithms as referred to in

Chapter 2, however, the authors have recommended the use of the AES Galois Counter Mode

(AES-GCM) algorithm. The authors have proven that even in a worst-case scenario the

algorithm is extremely efficient and achieves both data throughput and low latency when

implemented in hardware. The presented solution is fully IEC 62351-6 compliant. (Suhail

Hussain et al., 2023) recently discovered that processing time delays at both the publisher

and subscriber for different MAC algorithms (AES-HMAC-128/256, AES-GCM-128/256, etc.)

are less than the 0.2ms limit. They validated that the overall end-to-end delays, including

processing and communication time delays, for various MAC algorithms are less than the IEC

61850 standards' 3ms restriction. When choosing between these algorithms, it is important to

consider the specific security requirements and potential attack scenarios of the system being

secured.

Both AES-HMAC and AES-GCM algorithms provide strong security measures that ensure the

confidentiality, integrity, and authenticity of data. As computing capabilities increase, it's

generally recommended to use longer key lengths for increased security. To ensure that the

172 | P a g e

3ms timing requirements are met, opt for encryption algorithms that strike a balance between

security and computational efficiency, optimise the code and hardware for better performance,

and optimise the overall network infrastructure for low-latency communication to minimise

congestion. Although loner key lengths provide higher security, always assess the security

requirements, and choose minimum key lengths to help reduce computational overheads.

However, AES-GCM is generally considered more secure due to its use of the GCM

authentication mechanism, which provides better protection against potential attacks. Both

AES-HMAC and AES-GCM algorithms are efficient in terms of processing time and

computational resources. However, AES-GCM is generally considered more efficient due to

its parallel processing capabilities, which allow for faster encryption and decryption of large

amounts of data. As with any encryption algorithm, the security of AES-GCM depends heavily

on the proper management of cryptographic keys. Weaknesses in key generation, storage, or

distribution could compromise the security of the system. To ensure that key management is

not compromised, use a secure number generator and ensure that keys are long enough to

resist brute-force attacks. Use secure key storage mechanisms and ensure the use of secure

channels for key distribution. Avoid transmitting keys over insecure networks or channels.

Existing methods and techniques for securing R-SV messages in IEC 61850 communication

include Digital Signature (DS), Message Authentication Code (MAC), and Transport Layer

Security (TLS). DS and MAC provide authentication and integrity protection but do not provide

encryption. TLS provides both encryption and authentication but can be more complex and

costly to implement compared to authenticated encryption. In comparison to these existing

methods and techniques, authenticated encryption offers a good balance of security and

efficiency. It provides both encryption and authentication in a single operation, reducing

processing overhead and improving performance. Additionally, authenticated encryption

offers strong confidentiality and integrity protection, ensuring that the data transmitted

between two parties is secure and authentic. However, the key management system needs to

be secure, and it is vulnerable to side-channel attacks, which are also limitations of other

cryptographic techniques.

5.8 Conclusion

The IEC 61850 standard is gaining more attention as it is positioned to become the next

standard for power system communication. A significant portion of the research focuses on

adapting IEC 61850 information models and message structures to new smart grid devices.

Performance evaluations need the presence of a tool that can generate and distribute GOOSE

173 | P a g e

and SV messages with specific parameters. This chapter describes in detail the

implementation processes that led to the development of the secure R-SV functions. The

programming for the encapsulation of different layers of the R-SV frame in C programming

under the Linux system is also documented. The implemented simulation demonstrates that

messages published by the R-SV source code strictly adhere to the IEC 61850 format, as

identified by the Wireshark network sniffer software tool, which correctly decoded all fields of

the generated custom GoSV frames. SV streams are utilized for the purpose of real-time

monitoring and control within a networked system. The quantity of SV streams that can be

disseminated across the system's network is contingent upon several factors. These factors

include the capacity of the communication network, which necessitates the utilization of high-

performance IEEE 802.1Q-compliant managed Ethernet switches on the process bus, as well

as the processing capabilities of the devices, ensuring compliance with the IEC 61850

standard. In addition to considerations regarding bandwidth limitations, it is imperative to

carefully manage the configuration of the Process Bus Local Area Network (LAN) segment

and to meticulously select Layer 2 multicast addresses. IEEE 802.1Q facilitates both the

processing of messages with priority-based scheduling policies and the segmentation of the

process bus to enable efficient processing of SV streams.

The EtM algorithm is proposed for maintaining message confidentiality and integrity. IEC

62351 is employed to implement the security requirements for R-SV messages. For privacy,

the EtM algorithm is implemented with AES-128 encryption. MAC algorithms are employed to

authenticate messages. Simulation results indicate that the EtM algorithm can successfully be

used for R-SV messages while meeting stringent 3 ms latency criteria. The findings indicate

that the proposed MAC and AES algorithms can be implemented in R-SV communications

without any challenges. Based on these findings, future IEC 62351 security standards can

confidently advocate encryption for R-SV messages.

174 | P a g e

6. CHAPTER SIX: CONCLUSION AND FUTURE WORK

6.1 Introduction

It is difficult to secure today's power systems since they frequently employ communication

protocols with minimal or no security mechanisms yet are implemented for bandwidth and

efficiency. Additionally, many grids haven't received security upgrades post-commissioning.

To address vulnerable power grids, IEC Technical Committee 57 began research on ways to

make power grids secure in the early 2000s. WG15 was established to assess the

requirements from a technical standpoint and determine a method for implementation. As

such, the IEC 61850 standard represents a significant step forward for both standardisation

and ICS security for digital substations. With its extensive implementation, utilities and

operators can now efficiently commission, collaborate, and maintain new equipment (Carullo,

2020). However, although being efficient, its communication protocols, GOOSE and SV, have

security vulnerabilities. While numerous scholars from all over the world have proposed

solutions to the issue, IEC has already established a standard approach to deal with such

flaws.

Electricity generation, substation, and power grid operations are being compelled to

strengthen OT and IoT security methods to increase the resilience of their systems in response

to rising cyber-attacks, management concerns, and governmental policies. Innovative

solutions that improve OT and IoT visibility, cybersecurity, and availability are critical

components that must be implemented. For event visibility, OT and IoT systems are required

at the grid or substation level. The reliability and safety of the power system may be negatively

impacted by networking issues. The ability to react quickly to threats and abnormalities is

essential, but early detection of problems necessitates real-time visibility over connections,

communications, and other factors. Unfortunately, many power systems lack these

capabilities. Operational reliability can be significantly affected by security weaknesses in

operations and technology. More emphasis should be placed on best practices and technology

to improve the reliability and security of the electrical system. By monitoring network traffic for

security attacks and suspicious activity and further delivering enhanced security detection,

Nozomi Networks offers a solution to boost OT and IoT visibility. The solution from Nozomi

Networks enhances visibility, resilience, and cybersecurity. (Carullo, 2020)

To ensure the cross-vendor interoperability that has made IEC 61850 effective, researchers

have emphasised the significance of establishing a single standard in substation automation

175 | P a g e

systems. To achieve integrity and confidentiality, IEC 61850 communication messages must

now be deployed with security mechanisms. IEC 62351-6 specifies a method for securing IEC

61850 protocols by incorporating a security extension section into the frames. Security threats

in IEC 61850 communication messages have been addressed and vendors are standardising

implementation to protect the IEC 61850 protocols. Enhancing the IEC 62351 security

standard will ensure the security of the electricity grid.

The rising number of cyber-physical attacks on the power system demonstrates the necessity

to improve the security mechanisms of existing industrial communication protocols. Although

GMAC and HMAC are suggested by IEC62351- 6:2020 as cybersecurity mitigation to verify

SV integrity, real-time applications, and performance evaluations for using the MAC algorithms

have not been fully implemented. Compromised security keys between publisher and

subscriber may disclose additional security vulnerabilities and cyber threats. This thesis

recommended the implementation of a secure R-SV framework to address the

abovementioned issue by evaluating the developed algorithm in a LAN environment. The

development of the security scheme for R-SV messages was a comprehensive process that

involved careful consideration of the various security threats that could affect the integrity,

confidentiality, and availability of the sampled value data. The scheme was designed to

provide a robust and effective solution to these threats, while also ensuring that the

requirements of the standard were met. The performance of the proposed R-SV message has

been analysed and validated with AES and HMAC algorithms. The results of the secure R-SV

framework meet the performance requirements of IEC 61850. This can be applied to test

benches of IEDs for further implementation in a real environment. The cryptographic strength

of encryption and authentication techniques determines the security of a system. We

investigated the combination of an encryption and authentication algorithm, taking the

algorithm's cryptographic strength and performance into account. In our studies, we

discovered that AES-128 is a more efficient encryption method with higher performance,

whereas HMAC-SHA256 is a more efficient authentication algorithm. However, in certain

environments, there are several concerns and potential drawbacks to employing AES-128.

The main worry with AES-128 is its relatively low-key length, which may render it more

vulnerable to brute-force attacks or new attacks over time (due to algorithm ageing). AES-128

deployment in a substation environment necessitates adequate design and management.

Inadequate configuration settings, such as poor key management or ineffective modes of

operation, could compromise encryption security.

Digital substations must be structurally organised to ensure that the sampled value method is

always operational. The performance of protection systems is therefore of the utmost

176 | P a g e

importance to maintain the reliable operation of the power grid. As IEC 61850 becomes more

prevalent in power systems, sampled values-based fault detection and isolation solutions will

inevitably become the industry standard. Therefore, they must be thoroughly verified and

evaluated to be as reliable as traditional protection structures as secure communications will

be crucial for the next generation of technology within substation automation. Section 6.2

describes the problems that were solved in this thesis. The thesis deliverables are discussed

in Section 6.3. The algorithm developed is discussed in Section 6.4, and Section 6.5 proposes

future work. Section 6.6 discusses how the work done in this study has been applied. Section

6.7 provides the conclusion to this chapter.

6.2 Problems Solved in this Thesis

The problems solved can be categorised into two sections which are:

• Design-based

• Implementation-based

6.2.1 Design-based Problems

Sub-problem 1: Overview and analysis of IEC 61850 protocols in particular GOOSE and

Sampled Values.

Sub-problem 2: Overview of IEC 62351 cyber security implementation for smart grids and in-

depth analysis of IEC 62351-6.

Sub-problem 3: Critical analysis of time requirements of IEC 61850 protocols.

Sub-problem 4: Overview and critical analysis of encryption and authentication techniques.

Sub-problem 5: Design and development of a secure R-SV message security algorithm.

Sub-problem 6: Critical analysis of the developed secure R-SV algorithm with existing

security algorithms.

6.2.2 Implementation-based Problems

Sub-problem 1: Simulation of the authenticated encryption algorithm using Kali-Linux virtual

machine and obtain results in Wireshark software for comparative analysis.

Sub-problem 2: Simulation of an MITM attack via Ettercap software and analysis of the

network traffic.

Sub-problem 3: Simulation and comparative analysis of other available security algorithms,

providing improvisations and amendments if required.

177 | P a g e

6.3 Thesis Deliverables

The following deliverables have been achieved through the work done in this thesis.

6.3.1 Literature Review

To obtain a thorough understanding of IEC 61850 and IEC 62351, a detailed literature

review was conducted. The GOOSE and Sampled Value protocols, as well as security

algorithms, received special attention. The development of various security techniques for a

secure power system is discussed, demonstrating that this is an active research subject.

According to this evaluation, security algorithms are expected to meet cyber security and

timing requirements for GOOSE and Sampled Values communications. This literature

analysis inspired the idea to create a security method based on authenticated encryption.

6.3.2 Critical Analysis of IEC 61850

The IEC 61850 standard considers substation automation network communication

requirements. As the central smart grid communication protocol, IEC 61850 provides an

integrated solution in the power system for communication between intelligent devices,

ensuring interoperability and long-term stability while including a higher form of

standardisation. IEC 61850 is the optimal communication standard for substation automation

based on protocols and standards. The usage of the GOOSE message at a substation is

crucial for power system protection. The GOOSE and SV operations use high-speed

switched Ethernet data frames with no middle-layer processing. However, IEC 61850 lacks

any security-related elements, and cyber-security threats in the substation environment

remain a problem.

6.3.3 Critical Analysis of IEC 62351

To address this risk in power systems and further enhance cyber security measures for

GOOSE and SV communication, IEC 62351 has been implemented. It is critical to protect

SAS communication from cyber-security threats. Implementing IEC 61850 and IEC 62351

standards necessitates a thorough understanding of data networking, software modelling,

system simulation, and testing procedures. Networking applications are becoming

increasingly popular for secure communication. It is critical to provide a system for verifying

data security transmission across an unstable and unsecure medium. The need for secure

178 | P a g e

data transfer has prompted the creation of cryptographic standards and encryption

techniques. The HMAC is a recommended authentication standard with strong security

characteristics. Further research uses RSA algorithms for their advantages in encryption and

authentication to give better security, but they have the downside of being time-consuming

and requiring more computing power. To achieve confidentiality and integrity, the study uses

an authenticated encryption technique. The security requirements for GOOSE/SV

communications are implemented using IEC 62351. The authenticated encryption procedure

is applied with AES-128 encryption for privacy. Messages are authenticated using MAC

techniques.

6.3.4 Design and Development of an Authenticated Encryption Algorithm

A review of the most recent GOOSE and SV message security options was done. To assure

compliance with IEC 61850-9-2 and IEC 62351-6, the presented authenticated encryption

method code was designed, and put into practice, and the results were examined. Stringent

performance specifications apply to GOOSE and SV communications, which are essential

for secure operation. Compared to non-secure protocols, Secure SV offers a high level of

security. Data is shielded from interception, modification, and tampering when secure SV

messages are delivered with extra security measures like authentication and encryption.

Secure SV can therefore be used in critical systems where data integrity and confidentiality

are crucial. The designed security algorithm meets data and sampling speed requirements

for performance and security. The algorithm developed publishes R-SV communication and

is IEC 61850 compliant, while the applied authentication and integrity levels are IEC 62351-6

compliant. To allow authentication and authorisation, critical security elements must be

enabled. For message confidentiality and integrity, the EtM method is recommended,

together with AES-128 encryption for privacy and MAC techniques for message

authentication. The simulation results show that the EtM technique can be employed for R-

SV messages while meeting the strict 3 ms time limitation. The findings imply that future IEC

62351 security standards can confidently advocate for SV communication encryption.

6.4 Future Work

• Performance evaluation of multiple R-SV streams: This involves evaluating the

sampled data accuracy during transmission and reception. In order to ensure that the

time alignment complies with the required requirements, it entails assessing the

synchronisation of sampled data.

179 | P a g e

• Investigate efficient key management among substation devices: For substation

devices which comprise different types of IEDs, effective key management is crucial

to securing communication channels, protecting sensitive data, and maintaining the

power grid's overall cybersecurity.

• Smart grid security software testing and security validation: As with any new

technology, smart grid security is important to preventing cyberattacks and ensuring a

secure, uninterrupted supply of electricity. Evaluating the encryption mechanisms used

to secure data during transmission and storage. Ensure that data integrity is

maintained and that sensitive information is properly encrypted.

• Real-time simulation and performance analysis of a cyber-power system with different

security algorithms: Establish a cyber-power system model by implementing a real-

time simulation environment. Incorporate the chosen security algorithms into the

simulation environment that runs in real-time. Assess how well they function in a

dynamic environment by taking into account variables like response speed, resource

utilisation, and flexibility in response to changing circumstances.

6.5 Application of the results from this thesis

The research, methods, and algorithms that have resulted from the work done in this thesis

can be utilised for the following purposes:

• Used in smart grid systems for smart metering and energy automation.

• Used in substation automation systems.

• The security algorithms can be used in practical applications at Cape Peninsula

University of Technology for research purposes.

6.6 Conclusion

This chapter presents a summary of the work conducted in this thesis. Software algorithms

in the form of authenticated encryption have been developed to achieve the aims and

objectives of the work done in this thesis.

180 | P a g e

REFERENCES

(Nozomi), Ite, W.H. & Pe, P.A. 2019. Improving ICS Cyber Security for Substations and

Power Grids Real-time ICS Threat Detection and Operational Visibility Use Cases. ,

(August).

Abdolkhalig, A. 2014. Dynamic Phasor Estimation in Electrical Power Systems Based on

IEC61850 Process-Bus. , (1–131).

https://digital.library.adelaide.edu.au/dspace/bitstream/2440/92054/3/02whole.pdf.

Adewole, A.C. & Tzoneva, R. 2014a. Impact of IEC 61850-9-2 standard-based process bus

on the operating performance of protection IEDS: Comparative study. IFAC.

http://dx.doi.org/10.3182/20140824-6-ZA-1003.00598.

Adewole, A.C. & Tzoneva, R. 2014b. Impact of IEC 61850-9-2 standard-based process bus

on the operating performance of protection IEDS: Comparative study. IFAC

Proceedings Volumes (IFAC-PapersOnline), 19(January): 2245–2252.

Alajbegović, H., Zečić, D. & Jamak, H. 2006. Digital Signature Algorithm. 10th International

Research/Expert Conference, (September).

Ali, N.H., Ali, B.B.M., Basir, O., Othman, M.L. & Hashim, F.B. 2016. WLAN oriented

optimization of process bus in IEC 61850-based substation communication network.

Proceedings of 2015 IEEE International Renewable and Sustainable Energy

Conference, IRSEC 2015, (June 2017).

Apostolov, A. 2010. IEC 61850 9-2 process bus applications and benefits. IET Conference

Publications, 2010(558 CP).

Apostolov, A. & Vandiver, B. 2011. IEC 61850 GOOSE applications to distribution protection

schemes. 2011 64th Annual Conference for Protective Relay Engineers, (December):

178–184.

Bertocco, M., Ferraris, F., Offelli, C., Parvis, M., Blanco, J.R., Ferrero, F.J., Valledor, M.,

Campo, J.C., Haizad, M., Ibrahim, R., Adnan, A., Chung, T.D., Hassan, S.M., Sharma,

D.P., Samuel, K., Ramoutar, K., Lowe, T., David, I., Kalaitzakis, K., Koutroulis, E.,

Vlachos, V., Moreno, C., González, A., Olazagoitia, J.L., Vinolas, J., Wali, S. & Areeb,

M. 1998. Real Time Communication with Client / Server Architecture Using Secure

Shell Protocol. , 47(1–5): 1–6.

Bhamare, Y. Utilization of IEC 61850 GOOSE messaging in protection applications in

distribution network.

Bhanot, R. & Hans, R. 2015. A review and comparative analysis of various encryption

algorithms. International Journal of Security and its Applications, 9(4): 289–306.

Bogdanov, A., Khovratovich, D. & Rechberger, C. 2011a. Biclique cryptanalysis of the full

AES.

181 | P a g e

Bogdanov, A., Khovratovich, D. & Rechberger, C. 2011b. Biclique cryptanalysis of the full

AES.

Chen, F. & Yuan, J. 2012. Enhanced key derivation function of HMAC-SHA-256 algorithmin

LTE network. Proceedings - 2012 4th International Conference on Multimedia and

Security, MINES 2012, 3: 15–18.

Cleveland, F.M. 2012. IEC TC 57 WG15: IEC 62351 Security Standards for the ower System

Information Infrastructure. International Electrotechnical Commission, 14.

Commission, I.E. 2017. IEC TR 61850-7-500. IEC Technical Report, 1.0: 1–10.

Committee, S., Power, I. & Society, E. 2017. IEEE Recommended Practice for Implementing

an IEC 61850-Based Substation Communications , Protection , Monitoring , and

Control System IEEE Power and Energy Society IEEE Recommended Practice for

Implementing an IEC 61850-Based Substation Communications , .

Dolezilek, D., Gammel, D. & Fernandes, W. 2020. Cybersecurity based on IEC 62351 and

IEC 62443 for IEC 61850 systems. IET Conference Publications, 2020(CP771).

Dondossola, G. & Terruggia, R. 2015. Cyber Physical Systems Approach to Smart Electric

Power Grid. http://www.scopus.com/inward/record.url?eid=2-s2.0-

84921709913&partnerID=tZOtx3y1.

Elbez, G., Keller, H.B. & Hagenmeyer, V. 2018. A Cost-efficient Software Testbed for Cyber-

Physical Security in IEC 61850-based Substations. 2018 IEEE International Conference

on Communications, Control, and Computing Technologies for Smart Grids,

SmartGridComm 2018: 1–6.

Elbez, G., Keller, H.B. & Hagenmeyer, V. 2019. Authentication of GOOSE Messages under

Timing Constraints in IEC 61850 Substations. : 137–143.

Emmanuel, L. 2014. VIRTUALIZATION OF A SENSOR NODE TO ENABLE THE

SIMULATION OF IEC 61850-BASED SAMPLED VALUE MESSAGES.

Engler, F., Kruimer, B., Kern, T.L., Schimmel, G., Andersson, L. & Schwarz, K. 2004. IEC

61850 based digital communication as interface to the primary equipment. : 1–8.

Farooq;, S.M., Hussain, S.M.S. & Ustun, T.S. 2019. S-GoSV: Framework for Generating

Secure IEC 61850 GOOSE and Sample Value Messages.

Farooq, S.M., Hussain, S.M.S., Kiran, S. & Ustun, T.S. 2018. Certificate based

authentication mechanism for PMU communication networks based on IEC 61850-90-

5. Electronics (Switzerland), 7(12).

Farooq, S.M., Hussain, S.M.S. & Ustun, T.S. 2019. Performance evaluation and analysis of

IEC 62351-6 probabilistic signature scheme for securing GOOSE messages. IEEE

Access, 7(March): 32343–32351.

Fernandes, C., Borkar, S. & Gohil, J. 2014. Testing of Goose Protocol of IEC61850 Standard

in Protection IED. International Journal of Computer Applications, 93(16): 30–35.

182 | P a g e

Firouzi, S.R., Vanfretti, L., Ruiz-Alvarez, A., Hooshyar, H. & Mahmood, F. 2017. Interpreting

and implementing IEC 61850-90-5 Routed-Sampled Value and Routed-GOOSE

protocols for IEEE C37.118.2 compliant wide-area synchrophasor data transfer. Electric

Power Systems Research, 144(March): 255–267.

Francis, N. & Monoth, T. 2018. An Analysis of Hybrid Cryptographic Approaches for

Information Security. International Journal of Applied Engineering Research, 13(3):

124–127. http://www.ripublication.com.

Gadelha Da Silveira, M. & Franco, P.H. 2019. IEC 61850 Network Cybersecurity: Mitigating

GOOSE Message Vulnerabilities.

Gonzalez-Redondo, M.J., Moreno-Munoz, A., Pallares-Lopez, V., Real-Calvo, R.J., Lopez,

M.A.O. & Moreno-Garcia, I.M. 2013. IEC 61850 GOOSE transfer time measurement in

development stage. IEEE International Symposium on Industrial Electronics.

Groat, J., Vandiver, G.S.A.B. & Vasudevan, B. 2023. Communication bandwidth

considerations for digital substation applications. 2023 76th Annual Conference for

Protective Relay Engineers, CFPR 2023: 1–12.

Gupta, T., Aggarwal, M. & Kumar, M. 2017. Comparative Analysis of MAC and HMAC-Sha3

using NS-2. International Journal of Computer Applications, 160(6): 9–14.

Gurusinghe, D.R., Kariyawasam, S. & Ouellette, D.S. 2018. Testing of IEC 61850 sampled

values based digital substation automation systems. The Journal of Engineering,

2018(15): 807–811.

Hamouda, B.E.H.H. 2020. Comparative study of different cryptographic algorithms. Journal

of Information Security, 11(4): 138–148.

Harbi, Y., Aliouat, Z., Refoufi, A., Harous, S. & Bentaleb, A. 2019. Enhanced authentication

and key management scheme for securing data transmission in the internet of things.

Ad Hoc Networks, 94: 101948. https://doi.org/10.1016/j.adhoc.2019.101948.

Hariri, M. El, Harmon, E., Youssef, T., Saleh, M., Habib, H. & Mohammed, O. 2019. The IEC

61850 sampled measured values protocol: Analysis, threat identification, and feasibility

of using NN forecasters to detect spoofed packets †. Energies, 12(19).

Harispuru, C. & Schuster, N. Making IEC 61850 GOOSE Communication More Reliable. : 1–

6.

Hitachi ABB. FOX615 TEGO1 IEC 61850 GOOSE and Sampled Value Proxy Gateway

interface module . FOX615 multiplexing platform . Enabling GOOSE and SV messaging

thanks to TEGO1 interface card .

Hodder, S., Kasztenny, B., McGinn, D. & Hunt, R. 2009. IEC 61850 process bus solution

addressing business needs of today’s utilities. 2009 Power Systems Conference:

Advance Metering, Protection, Control, Communication, and Distributed Resources,

PSC 2009, (March): 56–76.

183 | P a g e

Hohlbaum, F., Braendle, M. & Alvarez, F. 2010. Cyber security practical considerations for

implementing IEC 62351. PAC World 2010: 1–8.

Hong, J., Liu, C.C. & Govindarasu, M. 2014. Detection of cyber intrusions using network-

based multicast messages for substation automation. 2014 IEEE PES Innovative Smart

Grid Technologies Conference, ISGT 2014, (February).

Hong, S., Shin, D. & Lee, S. Experimenting Security Algorithms for the IEC 61850-based

Substation Communication.

Hou, D. & Dolezilek, D. 2010. IEC 61850 – What It Can and Cannot Offer to Traditional

Protection Schemes. SEL Journal of Reliable Power, 1(2): 1–12.

Hoyos, J., Dehus, M. & Brown, T.X. 2012. Exploiting the GOOSE protocol: A practical attack

on cyber-infrastructure. 2012 IEEE Globecom Workshops, GC Wkshps 2012: 1508–

1513.

Hussain, S.M.S., Farooq, S.M. & Ustun, T.S. 2020. A Method for Achieving Confidentiality

and Integrity in IEC 61850 GOOSE Messages. IEEE Transactions on Power Delivery,

35(5): 2565–2567.

Hussain, S.M.S., Farooq, S.M. & Ustun, T.S. 2019. Analysis and implementation of message

authentication code (MAC) algorithms for GOOSE message security. IEEE Access, 7:

80980–80984.

Hussain, S.M.S., Ustun, T.S. & Kalam, A. 2020. A Review of IEC 62351 Security

Mechanisms for IEC 61850 Message Exchanges. IEEE Transactions on Industrial

Informatics, 16(9): 5643–5654.

IEC 61850-7-1. 2003. Communication networks and systems for power utility automation -

Part 7-1: Basic communication structure for substation and feeder equipment –

Principles and models.

IEC 61850-7-2. 2003. International Standard International Standard. 61010-1 © Iec:2001,

2003: 13.

Ingram, D.M.E., Schaub, P., Campbell, D.A. & Taylor, R.R. 2013. Performance analysis of

PTP components for IEC 61850 process bus applications. IEEE Transactions on

Instrumentation and Measurement, 62(4): 710–719.

Ingram, D.M.E., Schaub, P., Taylor, R.R. & Campbell, D.A. 2013. Performance analysis of

IEC 61850 sampled value process bus networks. IEEE Transactions on Industrial

Informatics, 9(3): 1445–1454.

International Electrotechnical Commission. 2009. Communication networks and systems in

substations – Part 8-1: Specific Communication Service Mapping (SCSM) – Mappings

to MMS (ISO 9506-1 and ISO 9506-2) and to ISO/IEC 8802-3. International

Organisation, 2007: 1–11.

Ishchenko, D. & Nuqui, R. 2018. Secure Communication of Intelligent Electronic Devices in

184 | P a g e

Digital Substations. Proceedings of the IEEE Power Engineering Society Transmission

and Distribution Conference, 2018-April.

Julie, F.G. 2014. DEVELOPMENT OF AN IEC 61850 STANDARD-BASED AUTOMATION

SYSTEM FOR A DISTRIBUTION POWER NETWORK.

Kalita, L. 2012. Socket programming. International Journal of Computer Science and

Information Technologies, 5(3): 1812–1822.

Kanabar, M.G. & Sidhu, T.S. 2011. Performance of IEC 61850-9-2 process bus and

corrective measure for digital relaying. IEEE Transactions on Power Delivery, 26(2):

725–735.

Kang, D.J., Lee, J.J., Kim, B.H. & Hur, D. 2011. Proposal strategies of key management for

data encryption in SCADA network of electric power systems. International Journal of

Electrical Power and Energy Systems, 33(9): 1521–1526.

http://dx.doi.org/10.1016/j.ijepes.2009.03.004.

Karnati, R. 2020. Security of Process Bus in Digital Substation. University of Michigan-

Dearborn. https://deepblue.lib.umich.edu/handle/2027.42/166307.

Kasztenny, B., Whatley, J., Urden, E.A., Burger, J., Finney, D. & Adamiak, M. 2005.

Unanswered questions about IEC 61850. 32nd Annual Western Protective Relay

Conference.

Khali, H., Mehdi, R. & Araar, A. 2016. A System-Level Architecture For Hash Message

Authentication Code. , (10): 2016.

Khan, R., McLaughlin, K., Laverty, D. & Sezer, S. 2016. IEEE C37.118-2 synchrophasor

communication framework: Overview, cyber vulnerabilities analysis and performance

evaluation. ICISSP 2016 - Proceedings of the 2nd International Conference on

Information Systems Security and Privacy, (April 2017): 167–176.

Kim, J., Kim, Y. & Kim, T. 2013. Implementation of secure GOOSE protocol using HSM.

Applied Mechanics and Materials, 261–262: 236–241.

Kim, J.C. & Kim, T.H. 2014. Implementatio of Secure IEC 61850 Communication.

Proceedings of the CIRED Workshop 2014, (322): 11–12.

Kriger, C., Behardien, S. & Retonda-Modiya, J.C. 2013. A detailed analysis of the GOOSE

message structure in an IEC 61850 standard-based substation automation system.

International Journal of Computers, Communications and Control, 8(5): 708–721.

Kumar, S. 2019. A Review On Client-Server Based Applications And Research Opportunity.

International Journal of Recent Scientific Research, (August).

Kumar, S., Das, N. & Islam, S. 2016. Performance evaluation of a process bus architecture

in a zone substation based on IEC 61850-9-2. Asia-Pacific Power and Energy

Engineering Conference, APPEEC, 2016-Janua(November).

Leszczyna, R. 2018. A review of standards with cybersecurity requirements for smart grid.

185 | P a g e

Computers and Security, 77: 262–276.

Lin, C.Y. & Nadjm-Tehrani, S. 2018. Understanding IEC-60870-5-104 traffic patterns in

SCADA networks. CPSS 2018 - Proceedings of the 4th ACM Workshop on Cyber-

Physical System Security, Co-located with ASIA CCS 2018: 51–60.

Mguzulwa, N.R. 2018. Investigation of Interoperability of Iec 61850 Protection Functions.

Michail, H.E., Kakarountas, A.P., Milidonis, A. & Goutis, C.E. 2004. Efficient implementation

of the Keyed-Hash Message Authentication Code (HMAC) using the SHA-1 hash

function. 11th IEEE International Conference on Electronics, Circuits and Systems,

ICECS 2004: 567–570.

Mohagheghi, S., Tournier, J.C., Stoupis, J., Guise, L., Coste, T., Andersen, C.A. & Dall, J.

2011. Applications of IEC 61850 in distribution automation. 2011 IEEE/PES Power

Systems Conference and Exposition, PSCE 2011, (March).

Moreira, N., Molina, E., Lázaro, J., Jacob, E. & Astarloa, A. 2016. Cyber-security in

substation automation systems. Renewable and Sustainable Energy Reviews, 54:

1552–1562. http://dx.doi.org/10.1016/j.rser.2015.10.124.

National Institute of Standards and Technology. 2012. Nist framework and roadmap for

smart grid interoperability standards, release 1.0. Smart Grid Cybersecurity Guidelines

and Interoperability Standards (with DVD): 19–133.

Ncube, A.M. 2012. IEC 61850-9-2 BASED SAMPLED VALUES AND IEC 61850-8-1

GOOSE MESSAGES MAPPING ON AN FPGA PLATFORM.

Omar Hegazi , Eman Hammad , Abdallah Farraj, and D.K. 2017. IEC-61850 GOOSE

TRAFFIC MODELING AND GENERATION Omar Hegazi , Eman Hammad , Abdallah

Farraj , and Deepa Kundur Department of Electrical and Computer Engineering ,

University of Toronto , Canada Email : omar.hegazi@mail.utoronto.ca , { ehammad ,

abdallah ,. , (Xml): 1100–1104.

Oszywa, W. & Gliwa, R. 2012. Combining message encryption and authentication. Annales

UMCS, Informatica, 11(2): 61–79.

Oyelade, J., Isewon, I., Oladipupo, O. & 2, A.F. 2015. Implementation of Secured Message

Transmission using DES and RSA Cryptosystem. Covenant Journal of Informatics and

Communication Technology, 2(January).

Ozansoy, C.R., Zayegh, A. & Kalam, K. 2007. The real-time publisher/subscriber

communication model for distributed substation systems. IEEE Transactions on Power

Delivery, 22(3): 1411–1423.

Pal, A. & Dash, R. 2015. A Paradigm Shift in Substation Engineering: IEC 61850 Approach.

Procedia Technology, 21: 8–14. http://dx.doi.org/10.1016/j.protcy.2015.10.003.

Pathan, E.E. & Asad, E.M. 2016. ACSE GOOSE Messages Deployment for IEC61850

Substation Automation System. International Journal of Advanced Research in

186 | P a g e

Electrical, Electronics and Instrumentation Engineering, 5(1): 254–261.

Piantadosi, G., Marrone, S., Sansone, M. & Sansone, C. 2015. A secure, scalable and

versatile multi-layer client–server architecture for remote intelligent data processing.

Journal of Reliable Intelligent Environments, 1(2–4): 173–187.

Retonda-Modiya, J.-C. 2012. Development of an Embedded System Actuator Node for.

http://hdl.handle.net/20.500.11838/1162.

Robillard, C. 2018. Network and System Management using IEC 62351-7 in IEC 61850

Substations: Design and Implementation. , (December).

Rodriguez, M., Lazaro, J., Bidarte, U., Jimenez, J. & Astarloa, A. 2021. A fixed-latency

architecture to secure GOOSE and sampled value messages in substation systems.

IEEE Access, 9: 51646–51658.

Schlegel, R., Obermeier, S. & Schneider, J. 2017a. A security evaluation of IEC 62351.

Journal of Information Security and Applications, 34: 197–204.

Schlegel, R., Obermeier, S. & Schneider, J. 2017b. A security evaluation of IEC 62351.

Journal of Information Security and Applications, 34(June): 197–204.

Shrestha, A., Silveira, M., Yellajosula, J. & Mutha, S.K. 2021. Understanding the Impacts of

Time Synchronization and Network Issues on Protection in Digital Secondary Systems.

PAC World Global Conference 2021: 1–11.

Skendzic, V., Ender, I. & Zweigle, G. 2007. IEC 61850-9-2 Process Bus and Its Impact on

Power System Protection and Control Reliability. 9th Annual Western Power Delivery

Automation Conference: 1–7.

https://cdn.selinc.com/assets/Literature/Publications/Technical Papers/6275_Process

Bus_VS_20070226_Web.pdf?v=20150812-084500.

Skoff, N.M. 2020. Performance Analysis of Sampled Values- Based Protection in IEC 61850

Process Bus Networks. : 1–79.

Sontowski, M. 2016. Workshop Data Security and Privacy. , (June).

Starck, J., Wimmer, D.W. & Majer, K. 2013. SWITCHGEAR OPTIMIZATION USING IEC

61850-9-2. 22 nd International Conference on Electricity Distribution, (0668): 10–13.

Strobel, M., Wiedermann, N. & Eckert, C. 2016. Novel weaknesses in IEC 62351 protected

Smart Grid control systems. 2016 IEEE International Conference on Smart Grid

Communications, SmartGridComm 2016: 266–270.

Suhail Hussain, S.M., Aftab, M.A., Farooq, S.M., Ali, I., Ustun, T.S. & Konstantinou, C. 2023.

An Effective Security Scheme for Attacks on Sample Value Messages in IEC 61850

Automated Substations. IEEE Open Access Journal of Power and Energy: 1–1.

https://ieeexplore.ieee.org/document/10065529/.

Sun, X., Redfern, D.M. & Aggarwal, P.R.K. 2012. Protection Performance Study for

Secondary Systems with IEC61850.

187 | P a g e

Tebekaemi, E. 2016. Designing An IEC 61850 Based Power Distribution Substation

Simulation / Emulation Testbed for Cyber-Physical Security Studies. CYBER 2016 : The

First International Conference on Cyber-Technologies and Cyber-Systems, (c): 41–49.

Tesfay, T.T. & Le Boudec, J.Y. 2018. Experimental comparison of multicast authentication

for wide area monitoring systems. IEEE Transactions on Smart Grid, 9(5): 4394–4404.

Ustun, T.S. 2021. A critical review of iec 61850 testing tools. Sustainability (Switzerland),

13(11).

Ustun, T.S., Farooq, S.M. & Hussain, S.M.S. 2019. A Novel Approach for Mitigation of

Replay and Masquerade Attacks in Smartgrids Using IEC 61850 Standard. IEEE

Access, 7: 156044–156053.

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8873588.

Ustun, T.S., Farooq, S.M. & Suhail Hussain, S.M. 2020. Implementing Secure Routable

GOOSE and SV Messages Based on IEC 61850-90-5. IEEE Access, 8: 26162–26171.

Wang, N., Yao, R., Liu, Y., Wu, Y. & Mou, D. 2019. A key management method for smart

substation. Energy Procedia, 156: 337–342.

https://doi.org/10.1016/j.egypro.2018.11.152.

Weerathunga, Pubudu Eroshan, W.U. 2012. Security Aspects of Smart Grid Communication.

The School of Graduate and Postdoctoral Studies Western University, 3(September):

1–47.

Wright, J.G. & Wolthusen, S.D. 2016. Limitations of IEC62351-3’s public key management.

Proceedings - International Conference on Network Protocols, ICNP, 2016-

Decem(HotPNS): 1–6.

Xue, M. & Zhu, C. 2009. The socket programming and software design for communication

based on client/server. Proceedings of the 2009 Pacific-Asia Conference on Circuits,

Communications and System, PACCS 2009: 775–777.

Yoo, H. & Shon, T. 2016. Challenges and research directions for heterogeneous cyber-

physical system based on IEC 61850: Vulnerabilities, security requirements, and

security architecture. Future Generation Computer Systems, 61: 128–136.

http://dx.doi.org/10.1016/j.future.2015.09.026.

Zhao, P. 2012. IEC 61850-9-2 Process Bus Communication Interface for Light Weight

Merging Unit Testing Environment. : 85.

J. Shen, S. Chang, J. Shen, Q. Liu, X. Sun, A lightweight multi-layer authentication protocol

for wireless body area networks, Future Gen. Comput. Syst. 78 (2018) 956–963.

R. Amin, S.H. Islam, G. Biswas, M.S. Obaidat, A robust mutual authentication protocol for

wsn with multiple base-stations, Ad Hoc Netw. 75 (2018) 1–18.

188 | P a g e

A. Mehmood, M.M. Umar, H. Song, Icmds: secure inter-cluster multiple-key distribution

scheme for wireless sensor networks, Ad Hoc Netw. 55 (2017) 97–106.

Aticleworld. 2021. Socket programming in c using TCP/IP - Aticleworld. [online] Available at:

<https://aticleworld.com/socket-programming-in-c-using-tcpip/> [Accessed 18 June 2021].

GeeksforGeeks. 2019. Socket Programming in C/C++ - GeeksforGeeks. [online] Available

at: <https://www.geeksforgeeks.org/socket-programming-cc/> [Accessed 18 June 2021].

Thakkar, J., 2020. Types of Encryption: 5 Encryption Algorithms & How to Choose the Right

One. [online] Hashed Out by The SSL Store™. Available at:

<https://www.thesslstore.com/blog/types-of-encryption-encryption-algorithms-how-to-

choose-the-right-one/> [Accessed 24 June 2021].

Hamouda, B., 2020. Comparative Study of Different Cryptographic Algorithms. Journal of

Information Security, 11(03), pp.138-148.

S.A. Fatayer, T., 2020. Secure Communication Using Cryptography and Covert Channel.

Computer and Network Security.

Pedamkar, P., 2023 Cryptography vs Encryption | 6 Awesome Differences You Should

Learn. [online] EDUCBA. Available at: <https://www.educba.com/cryptography-vs-

encryption/> [Accessed 24 June 2021].

ClickSSL, 2022. Symmetric vs Asymmetric Encryption – Know the Difference. [online]

ClickSSL Blog - Information about SSL Certificates & Infosec. Available at:

https://www.clickssl.net/blog/symmetric-encryption-vs-asymmetric-encryption.

Daboul, M., Wasserbauser, V. & Orsagova, J., 2015. Laboratory testing of the

communication based protection relays. In 21st Conference student EEICT. Brně,

2015. Fakulta elektrotechniky a komunikačních technologií.

Apostolov, A., 2020. Time in IEC 61850 based substation protection and control systems |

PAC World. [online] PAC World. Available at: <https://www.pacw.org/time-in-iec-61850-

based-substation-protection-and-control-systems> [Accessed 14 October 2021].

https://www.clickssl.net/blog/symmetric-encryption-vs-asymmetric-encryption

189 | P a g e

Moon, S. & posts by Silver Moon →, V. all. 2020. How to Code a Server and Client in C

with Sockets on Linux - Code Examples - BinaryTides. BinaryTides.

https://www.binarytides.com/server-client-example-c-sockets-linux/ 10 April 2022.

Moon, S. & posts by Silver Moon →, V. all. 2020. Socket programming in C on Linux -

The Ultimate Guide for Beginners - BinaryTides. BinaryTides.

https://www.binarytides.com/socket-programming-c-linux-tutorial/ 10 April 2022.

Saxena, S. 2015. A Guide to Using Raw Sockets - open source for you. Open Source For

You. https://www.opensourceforu.com/2015/03/a-guide-to-using-raw-sockets/ 10 April 2022.

Gutmann, P. 2014. Encrypt-then-MAC for Transport Layer Security (TLS) and Datagram

Transport Layer Security (DTLS). : 1–7.

Carullo, Moreno. 2020. IEC 61850 Meets IEC 62351: Securing GOOSE Power Grid

Weaknesses. Nozomi Networks. https://www.nozominetworks.com/blog/iec-61850-meets-

iec-62351/ 18 July 2022.

61850security - overview (no date) GitHub. Available at: https://github.com/61850security

(Accessed: December 9, 2022).

Anon. 2021. ▷ What is an IEC 104 - IEC 60870-5-104? - iGrid Smart Guide. iGrid T&D.

https://www.igrid-td.com/smartguide/communicationprotocols/iec-60870-5-104/.

Massink, M.R. 2016. IEC 61850: Are Your Substations Secure? Applied Risk.

https://applied-risk.com/resources/iec-61850-are-your-substations-secure 4 February 2024.

190 | P a g e

APPENDICES

191 | P a g e

APPENDIX A

TCP Client Source Code

/*This file is part of LearnEveryone*/

/*https://www.youtube.com/watch?v=GY_Gy1ob4nA for more information*/

/* Copyright (C) Ajaze Parvez Khan*/

/*This program is not published*/

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/socket.h>

#include <sys/types.h>

#include <netinet/in.h>

#include <arpa/inet.h>

#define PORT 5555

void main(){

 int clientSocket;

 struct sockaddr_in serverAddr;

 char buf[1024];

 clientSocket=socket(PF_INET,SOCK_STREAM,0);

 printf("Client socket Created Successfully...\n");

 memset(&serverAddr,'\0',sizeof(serverAddr));

 serverAddr.sin_family=AF_INET;

 serverAddr.sin_port=htons(PORT);

 serverAddr.sin_addr.s_addr=inet_addr("127.0.0.1");

 connect(clientSocket,(struct sockaddr*)&serverAddr,sizeof(serverAddr));

 printf("Connected to Server Successfully...\n");

 recv(clientSocket,buf,1024,0);

 printf("Data Received: %s...\n",buf);

 printf("Closing Connection...\n");

}

https://www.youtube.com/watch?v=GY_Gy1ob4nA

192 | P a g e

APPENDIX B

TCP Server Source Code

/*This file is part of LearnEveryone*/

/*https://www.youtube.com/watch?v=GY_Gy1ob4nA for more information*/

/* Copyright (C) Ajaze Parvez Khan*/

/*This program is not published*/

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/socket.h>

#include <sys/types.h>

#include <netinet/in.h>

#include <arpa/inet.h>

#define PORT 5555

void main()

{

 int sockfd;

 struct sockaddr_in serverAddr;

 int newSocket;

 struct sockaddr_in newAddr;

 socklen_t addr_size;

 char buf[1024];

 sockfd=socket(PF_INET,SOCK_STREAM,0);

 printf("Server socket Created Successfully...\n");

 memset(&serverAddr,'\0',sizeof(serverAddr));

 serverAddr.sin_family=AF_INET;

 serverAddr.sin_port=htons(PORT);

 serverAddr.sin_addr.s_addr=inet_addr("127.0.0.1");

 bind(sockfd,(struct sockaddr*)&serverAddr,sizeof(serverAddr));

 printf("Bind to Port Number %d\n",4455);

 listen(sockfd,6);

 printf("Listening...\n");

 newSocket=accept(sockfd,(struct sockaddr*)&newAddr,&addr_size);

 strcpy(buf,"HELLO FROM ME");

 send(newSocket,buf,strlen(buf),0);

 printf("Closing Connection...\n");

}

https://www.youtube.com/watch?v=GY_Gy1ob4nA

193 | P a g e

APPENDIX C

Plain GOOSE Source Code

/*This file is part of Github*/

/*https://github.com/61850security/R-GoSV*/

/*Source code published by (Hussain et al., 2019) */

/*This program is published*/

#include <arpa/inet.h>

#include <linux/if_packet.h>

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <sys/ioctl.h>

#include <sys/socket.h>

#include <net/if.h>

#include <netinet/ether.h>

#include <unistd.h>

/* enter your intended MAC address*/

#define DEST_MAC0 0xFC

#define DEST_MAC1 0x61

#define DEST_MAC2 0x98

#define DEST_MAC3 0x8A

#define DEST_MAC4 0x1F

#define DEST_MAC5 0x2F

/* destination MAC address: FC 61 98 8A 46 EE */

/* interface name: enter your intername name */

#define IF_NAME "eth0"

#define B_SIZE 2048

/* IP Header fields */

char ver_hl =0x45; // version 4 and header length of ip is 20 (5) bytes (1 byte)

char tos = 0x00; // type of service. IP precedence and Differentiated Service code point (1 byte)

char totlen1 = 0x00; // Total length of the packet (header 20 + data 185=205) (2 bytes)

char totlen2 = 0xCD;

char identification1 = 0x6B; // unique identification of each packet (2 bytes)

char identification2 = 0xA1;

char frag_off1 = 0x00; //if the packets are fragmented, then this field will be used. (2 bytes)

char frag_off2 = 0x00;

char ttl = 0x80; // time to live (1 byte)

char protocol = 0x11; // next protocol in the sequence UDP (1 byte)

char hdrchks1 = 0x00; // header check sum (2 bytes)

char hdrchks2 = 0x00;

// source IP address (4 bytes)

char srcaddr0 = 0xEF; //239 127 --> 0x7F

char srcaddr1 = 0xBF; //191 0 --> 0x00

char srcaddr2 = 0x69; //105 0 --> 0x00

char srcaddr3 = 0xBA; //186 1 --> 0x01

// destination IP address (4 bytes)

char dstaddr0 = 0xC0; //192

char dstaddr1 = 0xA8; //168

https://github.com/61850security/R-GoSV

194 | P a g e

char dstaddr2 = 0x01; //1

char dstaddr3 = 0x03; //3

/* UDP Header fields */

char srcport1 = 0xDA;

char srcport2 = 0xD1;

char dstport1 = 0x00;

char dstport2 = 0x66;

char lengt1= 0x00;

char lengt2 = 0xB9; /* length of udp header 8 + data 177 = 185 */

char chksum1 = 0xD7;

char chksum2 = 0x3B;

/* Session header */

char len_id = 0x01; /* Length identifier according to RFC1240 OSI connectionless transport services over */

char t_id = 0x40; // transport identifier

char session_id = 0xA1; /* Non-tunnlled GOOSE */

char length_id = 0x18; /* 22 + length id 1 + common header 1 = 24 */

char common_header= 0x80;

char l_id = 0x16; /* length of common session header spdu length 4 + spdu num 4 + version 2 + timeofcurrent key

4 + timeof next key 2 +

 security algorithm 2 + keyID 4 = 22 bytes */

char spdu_length1=0x00; /* length of entire SPDU =167 bytes */

char spdu_length2=0x00;

char spdu_length3=0x00;

char spdu_length4=0xA7;

char spdu_num1=0x00; /* spdu unique identification number */

char spdu_num2=0x00;

char spdu_num3=0x00;

char spdu_num4=0x0D;

char ver1=0x00;

char ver2=0x01;

char TimeofCurrentKey1=0x00;

char TimeofCurrentKey2=0x00;

char TimeofCurrentKey3=0x00;

char TimeofCurrentKey4=0x00;

char TimeofNextKey1=0x00;

char TimeofNextKey2=0x00;

char sa1=0x00; /* Encryption algorithms used*/

char sa2=0x00; /* authentication algorithm used */

char keyID1=0x00;

char keyID2=0x00;

char keyID3=0x00;

char keyID4=0x00;

char len1=0x00; /* 4 length + 1 payload type + 1 simulation + 2 APPDI + 2 length + 137 = 147 */

char len2=0x00;

char len3=0x00;

char len4=0x93;

char pl_type=0x81; /* 81 for GOOSE 82 for SV */

char simulation=0x00; /* boolean value*/

char APPID1=0x00;

char APPID2=0x01;

char length1=0x00; /* 137 GOOSE + 2 length = 139*/

char length2=0x8B;

/* GOOSE message according to IEC 61850-8-1*/

char goosePDU_tag1=0x61; /* goosePDU tag */

char goosePDU_tag2=0x81;

195 | P a g e

char goosePDU_length=0x86; /* goosePDU length */

char gocbRef_tag=0x80; /* gocbRef (GOOSE Control Block Reference) tag */

char gocbRef_length=0x1A; /* gocbRef length */

char gocbRef_value1=0x46; /* gocbRef value */

char gocbRef_value2=0x52;

char gocbRef_value3=0x45;

char gocbRef_value4=0x41;

char gocbRef_value5=0x2D;

char gocbRef_value6=0x47;

char gocbRef_value7=0x6F;

char gocbRef_value8=0x53;

char gocbRef_value9=0x56;

char gocbRef_value10=0x2D;

char gocbRef_value11=0x31;

char gocbRef_value12=0x20;

char gocbRef_value13=0x2F;

char gocbRef_value14=0x4C;

char gocbRef_value15=0x4C;

char gocbRef_value16=0x4E;

char gocbRef_value17=0x30;

char gocbRef_value18=0x24;

char gocbRef_value19=0x47;

char gocbRef_value20=0x4F;

char gocbRef_value21=0x24;

char gocbRef_value22=0x67;

char gocbRef_value23=0x63;

char gocbRef_value24=0x62;

char gocbRef_value25=0x30;

char gocbRef_value26=0x31;

char timeAllowedtoLive_tag=0x81; /* timeAllowedtoLive tag */

char timeAllowedtoLive_length=0x03; /* timeAllowedtoLive length */

char timeAllowedtoLive_value1=0x00; /* timeAllowedtoLive value */

char timeAllowedtoLive_value2=0x9C;

char timeAllowedtoLive_value3=0x40;

char dataset_tag=0x82; /* data set tag*/

char dataset_length=0x18; /* data set length*/

char dataset_value1=0x46; /* data set value*/

char dataset_value2=0x52;

char dataset_value3=0x45;

char dataset_value4=0x41;

char dataset_value5=0x2D;

char dataset_value6=0x47;

char dataset_value7=0x6F;

char dataset_value8=0x53;

char dataset_value9=0x56;

char dataset_value10=0x2D;

char dataset_value11=0x31;

char dataset_value12=0x20;

char dataset_value13=0x2F;

char dataset_value14=0x4C;

char dataset_value15=0x4C;

char dataset_value16=0x4E;

char dataset_value17=0x30;

char dataset_value18=0x24;

char dataset_value19=0x47;

char dataset_value20=0x4F;

char dataset_value21=0x4F;

char dataset_value22=0x53;

char dataset_value23=0x45;

char dataset_value24=0x31;

char goID_tag=0x83; /* goID tag*/

char goID_length=0x0B; /* goID length*/

196 | P a g e

char goID_value1=0x46; /* goID value [11]*/

char goID_value2=0x52;

char goID_value3=0x45;

char goID_value4=0x41;

char goID_value5=0x2D;

char goID_value6=0x47;

char goID_value7=0x6F;

char goID_value8=0x53;

char goID_value9=0x56;

char goID_value10=0x2D;

char goID_value11=0x31;

char time_tag=0x84; /* time tag*/

char time_length=0x08; /* time length*/

char time_value1=0x38; /* time value*/

char time_value2=0x6E;

char time_value3=0xBB;

char time_value4=0xF3;

char time_value5=0x42;

char time_value6=0x17;

char time_value7=0x28;

char time_value8=0x0A; /* st_Num (State Number) tag */

char st_Num_tag=0x85; /* st_Num length */

char st_Num_length=0x01; /* st_Num value */

char st_Num_value=0x01;

char sq_Num_tag=0x86; /* sq_Num (sequence Number) tag */

char sq_Num_length=0x01; /* sq_Num length */

char sq_Num_value=0x0A; /* sq_Num value */

char test_tag=0x87; /*test tag*/

char test_length=0x01; /*test length*/

char test_value=0x00; /*test value*/

char confRev_tag=0x88; /*confRev (Configuration Revision) tag*/

char confRev_length=0x01; /*confRev length*/

char confRev_value=0x01; /*confRev value*/

char ndsCom_tag=0x89; /*ndsCom (needs Commissioning) tag*/

char ndsCom_length=0x01; /*ndsCom length*/

char ndsCom_value=0x00; /*ndsCom value*/

char numDatSetEntries_tag=0x8A; /* number of members of Data Set */

char numDatSetEntries_length=0x01;

char numDatSetEntries_value=0x08;

char alldata_tag=0xAB; /*all data*/

char alldata_length=0x20;

char alldata_value1=0x83;

char alldata_value2=0x01;

char alldata_value3=0x00;

char alldata_value4=0x84;

char alldata_value6=0x03;

char alldata_value5=0x03;

char alldata_value7=0x00;

char alldata_value8=0x00;

char alldata_value9=0x83;

char alldata_value10=0x01;

char alldata_value11=0x00;

char alldata_value12=0x84;

char alldata_value13=0x03;

char alldata_value14=0x03;

char alldata_value15=0x00;

char alldata_value16=0x00;

char alldata_value17=0x83;

char alldata_value18=0x01;

char alldata_value19=0x00;

char alldata_value20=0x84;

char alldata_value21=0x03;

197 | P a g e

char alldata_value22=0x03;

char alldata_value23=0x00;

char alldata_value24=0x00;

char alldata_value25=0x83;

char alldata_value26=0x01;

char alldata_value27=0x00;

char alldata_value28=0x84;

char alldata_value29=0x03;

char alldata_value30=0x03;

char alldata_value31=0x00;

char alldata_value32=0x00;

unsigned char goosedata[137] =

{

0x61, 0x81, 0x86, 0x80, 0x1A, 0x46, 0x52, 0x45, 0x41, 0x2D, 0x47, 0x6F, 0x53, 0x56, 0x2D, 0x31, 0x20, 0x2F,

0x4C, 0x4C, 0x4E, 0x30, 0x24, 0x47, 0x4F, 0x24, 0x67, 0x63, 0x62, 0x30, 0x31, 0x81, 0x03, 0x00, 0x9C, 0x40,

0x82, 0x18, 0x46, 0x52, 0x45, 0x41, 0x2D, 0x47, 0x6F, 0x53, 0x56, 0x2D, 0x31, 0x20, 0x2F, 0x4C, 0x4C, 0x4E,

0x30, 0x24, 0x47, 0x4F, 0x4F, 0x53, 0x45, 0x31, 0x83, 0x0B, 0x46, 0x52, 0x45, 0x41, 0x2D, 0x47, 0x6F, 0x53,

0x56, 0x2D, 0x31, 0x84, 0x08, 0x38, 0x6E, 0xBB, 0xF3, 0x42, 0x17, 0x28, 0x0A, 0x85, 0x01, 0x01, 0x86, 0x01,

0x0A, 0x87, 0x01, 0x00, 0x88, 0x01, 0x01, 0x89, 0x01, 0x00, 0x8A, 0x01, 0x08, 0xAB, 0x20, 0x83, 0x01, 0x00,

0x84, 0x03, 0x03, 0x00, 0x00, 0x83, 0x01, 0x00, 0x84, 0x03, 0x03, 0x00, 0x00, 0x83, 0x01, 0x00, 0x84, 0x03,

0x03, 0x00, 0x00, 0x83, 0x01, 0x00, 0x84, 0x03, 0x03, 0x00, 0x00

};

char signature=0x85;

char sig_len=0x00; /* length of the signature value 32 bytes generated by HMAC-SHA256*/

int main(int argc, char *argv[])

{

 int sfd;

 int i=0,j=0;

 struct ifreq if_idx;

 struct ifreq if_mac;

 int tx_len;

 unsigned char sendbuf[B_SIZE];

 struct sockaddr_ll socket_address; /* The sockaddr_ll structure is a device-independent physical-layer

address.*/

 char ifName[IFNAMSIZ];

 /* Get interface name */

 strcpy(ifName, IF_NAME);

 /* Open RAW socket to send on */

 if ((sfd = socket(AF_PACKET, SOCK_RAW, IPPROTO_RAW)) == -1)

 {

 perror("socket");

 }

 /* clear the struct ifreq if_idx with memset system call */

 memset(&if_idx, 0, sizeof(struct ifreq));

 /* copy interface name into struct ifreq if_idx */

 strncpy(if_idx.ifr_name, ifName, IFNAMSIZ-1);

 /* configure the interface index */

 if (ioctl(sfd, SIOCGIFINDEX, &if_idx) < 0)

 perror("SIOCGIFINDEX");

 // Loop forever

198 | P a g e

 while(1) {

 /* Buffer of BUF_SIZ bytes we'll construct our frame in.

 First, clear it all to zero. */

 memset(sendbuf, 0, B_SIZE);

 tx_len = 0;

 /* Construct the UDP header */

 /* Destination MAC address */

 sendbuf[tx_len++] = DEST_MAC0;

 sendbuf[tx_len++] = DEST_MAC1;

 sendbuf[tx_len++] = DEST_MAC2;

 sendbuf[tx_len++] = DEST_MAC3;

 sendbuf[tx_len++] = DEST_MAC4;

 sendbuf[tx_len++] = DEST_MAC5;

 //source address MAC FC 61 98 EA BC 20

 /* Source MAC address */

 sendbuf[tx_len++] = 0xA0;

 sendbuf[tx_len++] = 0xB3;

 sendbuf[tx_len++] = 0xCC;

 sendbuf[tx_len++] = 0xC5;

 sendbuf[tx_len++] = 0x77;

 sendbuf[tx_len++] = 0xA1;

 /* Ethertype field IP protocol */

 sendbuf[tx_len++] = 0x08;

 sendbuf[tx_len++] = 0x00;

 /* PDU fields */

 sendbuf[tx_len++] = ver_hl;

 sendbuf[tx_len++] = tos;

 sendbuf[tx_len++] = totlen1;

 sendbuf[tx_len++] = totlen2;

 sendbuf[tx_len++] = identification1;

 sendbuf[tx_len++] = identification2;

 sendbuf[tx_len++] = frag_off1;

 sendbuf[tx_len++] = frag_off2;

 sendbuf[tx_len++] = ttl;

 sendbuf[tx_len++] = protocol;

 sendbuf[tx_len++] = hdrchks1;

 sendbuf[tx_len++] = hdrchks2;

 sendbuf[tx_len++] = srcaddr0;

 sendbuf[tx_len++] = srcaddr1;

 sendbuf[tx_len++] = srcaddr2;

 sendbuf[tx_len++] = srcaddr3;

 sendbuf[tx_len++] = dstaddr0;

 sendbuf[tx_len++] = dstaddr1;

 sendbuf[tx_len++] = dstaddr2;

 sendbuf[tx_len++] = dstaddr3;

 sendbuf[tx_len++] = srcport1;

 sendbuf[tx_len++] = srcport2;

 sendbuf[tx_len++] = dstport1;

 sendbuf[tx_len++] = dstport2;

 sendbuf[tx_len++] = lengt1;

 sendbuf[tx_len++] = lengt2;

 sendbuf[tx_len++] = chksum1;

 sendbuf[tx_len++] = chksum2;

199 | P a g e

 sendbuf[tx_len++] = len_id;

 sendbuf[tx_len++] = t_id;

 sendbuf[tx_len++] = session_id;

 sendbuf[tx_len++] = length_id;

 sendbuf[tx_len++] = common_header;

 sendbuf[tx_len++] = l_id;

 sendbuf[tx_len++] = spdu_length1;

 sendbuf[tx_len++] = spdu_length2;

 sendbuf[tx_len++] = spdu_length3;

 sendbuf[tx_len++] = spdu_length4;

 sendbuf[tx_len++] = spdu_num1;

 sendbuf[tx_len++] = spdu_num2;

 sendbuf[tx_len++] = spdu_num3;

 sendbuf[tx_len++] = spdu_num4;

 sendbuf[tx_len++] = ver1;

 sendbuf[tx_len++] = ver2;

 sendbuf[tx_len++] = TimeofCurrentKey1;

 sendbuf[tx_len++] = TimeofCurrentKey2;

 sendbuf[tx_len++] = TimeofCurrentKey3;

 sendbuf[tx_len++] = TimeofCurrentKey4;

 sendbuf[tx_len++] = TimeofNextKey1;

 sendbuf[tx_len++] = TimeofNextKey2;

 sendbuf[tx_len++] = sa1;

 sendbuf[tx_len++] = sa2;

 sendbuf[tx_len++] = keyID1;

 sendbuf[tx_len++] = keyID2;

 sendbuf[tx_len++] = keyID3;

 sendbuf[tx_len++] = keyID4;

 sendbuf[tx_len++] = len1;

 sendbuf[tx_len++] = len2;

 sendbuf[tx_len++] = len3;

 sendbuf[tx_len++] = len4;

 sendbuf[tx_len++] = pl_type;

 sendbuf[tx_len++] = simulation; /* boolean value*/

 sendbuf[tx_len++] = APPID1;

 sendbuf[tx_len++] = APPID2;

 sendbuf[tx_len++] = length1;

 sendbuf[tx_len++] = length2;

 for(j=0;j<137;j++)

 sendbuf[tx_len++] = goosedata[j];

 sendbuf[tx_len++] = signature;

 sendbuf[tx_len++] = sig_len;

 sendbuf[tx_len++] = 0xB7;

 sendbuf[tx_len++] = 0x09;

 sendbuf[tx_len++] = 0xD7;

 sendbuf[tx_len++] = 0x83;

 /* Index of the network device */

 socket_address.sll_ifindex = if_idx.ifr_ifindex; /* Network Interface number */

 /* Address length*/

 socket_address.sll_halen = ETH_ALEN; /* Length of Ethernet address */

 /* Destination MAC */

 socket_address.sll_addr[0] = DEST_MAC0;

 socket_address.sll_addr[1] = DEST_MAC1;

 socket_address.sll_addr[2] = DEST_MAC2;

200 | P a g e

 socket_address.sll_addr[3] = DEST_MAC3;

 socket_address.sll_addr[4] = DEST_MAC4;

 socket_address.sll_addr[5] = DEST_MAC5;

 /* Send packet */

 if (sendto(sfd, sendbuf, tx_len, 0, (struct sockaddr*)&socket_address, sizeof(struct sockaddr_ll)) < 0)

 printf("Send failed\n");

 else {

 printf("Sent :");

 for (i=0; i < tx_len; i++)

 printf("%02x:", sendbuf[i]);

 printf("\n");

 }

 /* Wait specified number of microseconds

 1,000,000 microseconds = 1 second

 */

 usleep(1000000);

 }

 return 0;

}

201 | P a g e

APPENDIX D

R-GOOSE Source Code

/*This file is part of Github*/

/*https://github.com/61850security/R-GoSV*/

/* Source code published by (Hussain et al., 2019) */

/*This program is published*/

#include <arpa/inet.h>

#include <linux/if_packet.h>

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <sys/ioctl.h>

#include <sys/socket.h>

#include <net/if.h>

#include <netinet/ether.h>

#include <unistd.h>

#include <openssl/hmac.h>

#include <openssl/evp.h>

/* Keep your intended destination MAC here*/

#define DEST_MAC0 0xFC

#define DEST_MAC1 0x61

#define DEST_MAC2 0x98

#define DEST_MAC3 0x8A

#define DEST_MAC4 0x1F

#define DEST_MAC5 0x2F

#define IF_NAME "eth0"

#define B_SIZE 2048

/* IP Header fields */

char ver_hl =0x45; // version 4 and header length of ip is 20 (5) bytes (1 byte)

char tos = 0x00; // type of service. IP precedence and Differentiated Service code point (1 byte)

char totlen1 = 0x00; // Total length of the packet (header 20 + udp packet size 217) (2 bytes)

char totlen2 = 0xED;

char identification1 = 0x6B; // unique identification of each packet (2 bytes)

char identification2 = 0xA1;

char frag_off1 = 0x00; //if the packets are fragmented, then this field will be used. (2 bytes)

char frag_off2 = 0x00;

char ttl = 0x80; // time to live (1 byte)

char protocol = 0x11; // next protocol in the sequence UDP (1 byte)

char hdrchks1 = 0x00; // header check sum (2 bytes)

char hdrchks2 = 0x00;

https://github.com/61850security/R-GoSV

202 | P a g e

// source IP address (4 bytes)

char srcaddr0 = 0xEF; //239 127 --> 0x7F

char srcaddr1 = 0xBF; //191 0 --> 0x00

char srcaddr2 = 0x69; //105 0 --> 0x00

char srcaddr3 = 0xBA; //186 1 --> 0x01

// destination IP address (4 bytes)

char dstaddr0 = 0xC0; //192

char dstaddr1 = 0xA8; //168

char dstaddr2 = 0x01; //1

char dstaddr3 = 0x03; //3

/* UDP Header fields */

char srcport1 = 0xDA;

char srcport2 = 0xD1;

char dstport1 = 0x00;

char dstport2 = 0x66;

char lengt1= 0x00;

char lengt2 = 0xD9; /* length of udp header 8 + udp pay load size = 209 (38+137+34) = 217 */

char chksum1 = 0xD7;

char chksum2 = 0x3B;

/* Session header */

char len_id = 0x01; /* Length identifier according to RFC1240 OSI connectionless transport services over */

char t_id = 0x40; // transport identifier

char session_id = 0xA1; /* Non-tunnlled goose */

char length_id = 0x18; /* length of common session header 22 + length id 1 + common header 1 = 24 */

char common_header= 0x80;

char l_id = 0x16; /* length of common session header spdu length 4 + spdu num 4 + version 2 + timeofcurrent key

4 + timeofnextkey 2 +

 security algorithm 2 + keyID 4 = 22 bytes */

char spdu_length1=0x00; /* length of entire SPDU =199 bytes */

char spdu_length2=0x00; /* spdu num 4 + ver 2 + TofCkey 4 + TofNKey 2 + SA 2 + keyID 4 + len 4 + pl_type 1 +

simulation 1 */

char spdu_length3=0x00; /* APPID 2 + length 2 + SV size + signature 1 + sig_len 1 + sign_val 32 =199 */

char spdu_length4=0xC7;

char spdu_num1=0x00; /* spdu unique identification number */

char spdu_num2=0x00;

char spdu_num3=0x00;

char spdu_num4=0x0D;

char ver1=0x00;

char ver2=0x01;

203 | P a g e

char TimeofCurrentKey1=0x5B; /*hexadecimal timestamp/epoch */

char TimeofCurrentKey2=0xFC; /* Tuesday, November 27, 2018 4:48:00 PM */

char TimeofCurrentKey3=0xF6;

char TimeofCurrentKey4=0xB0;

char TimeofNextKey1=0x00;

char TimeofNextKey2=0x3C; /* 60 minutes for time of next key */

char sa1=0x00; /* Encryption algorithms used*/

char sa2=0x03; /* authentication algorithm used */

char keyID1=0x00;

char keyID2=0x00;

char keyID3=0x00;

char keyID4=0x0C;

char len1=0x00; /* 1 payload type + 1 simulation + 2 APPDI + 2 length + goose data size 137 =143 */

char len2=0x00;

char len3=0x00;

char len4=0x8F;

char pl_type=0x81; /* 81 for GOOSE 82 for SV */

char simulation=0x01; /* boolean value*/

char APPID1=0x00;

char APPID2=0x01;

char length1=0x00; /* goose data size 137 */

char length2=0x89;

/* GOOSE message according to IEC 61850-8-1*/

char goosePDU_tag1=0x61; /* goosePDU tag */

char goosePDU_tag2=0x81;

char goosePDU_length=0x86; /* goosePDU length */

char gocbRef_tag=0x80; /* gocbRef (GOOSE Control Block Reference) tag */

char gocbRef_length=0x1A; /* gocbRef length */

char gocbRef_value1=0x46; /* gocbRef value */

char gocbRef_value2=0x52;

char gocbRef_value3=0x45;

char gocbRef_value4=0x41;

char gocbRef_value5=0x2D;

char gocbRef_value6=0x47;

char gocbRef_value7=0x6F;

char gocbRef_value8=0x53;

char gocbRef_value9=0x56;

char gocbRef_value10=0x2D;

char gocbRef_value11=0x31;

char gocbRef_value12=0x20;

char gocbRef_value13=0x2F;

char gocbRef_value14=0x4C;

char gocbRef_value15=0x4C;

char gocbRef_value16=0x4E;

char gocbRef_value17=0x30;

204 | P a g e

char gocbRef_value18=0x24;

char gocbRef_value19=0x47;

char gocbRef_value20=0x4F;

char gocbRef_value21=0x24;

char gocbRef_value22=0x67;

char gocbRef_value23=0x63;

char gocbRef_value24=0x62;

char gocbRef_value25=0x30;

char gocbRef_value26=0x31;

char timeAllowedtoLive_tag=0x81; /* timeAllowedtoLive tag */

char timeAllowedtoLive_length=0x03; /* timeAllowedtoLive length */

char timeAllowedtoLive_value1=0x00; /* timeAllowedtoLive value */

char timeAllowedtoLive_value2=0x9C;

char timeAllowedtoLive_value3=0x40;

char dataset_tag=0x82; /* data set tag*/

char dataset_length=0x18; /* data set length*/

char dataset_value1=0x46; /* data set value*/

char dataset_value2=0x52;

char dataset_value3=0x45;

char dataset_value4=0x41;

char dataset_value5=0x2D;

char dataset_value6=0x47;

char dataset_value7=0x6F;

char dataset_value8=0x53;

char dataset_value9=0x56;

char dataset_value10=0x2D;

char dataset_value11=0x31;

char dataset_value12=0x20;

char dataset_value13=0x2F;

char dataset_value14=0x4C;

char dataset_value15=0x4C;

char dataset_value16=0x4E;

char dataset_value17=0x30;

char dataset_value18=0x24;

char dataset_value19=0x47;

char dataset_value20=0x4F;

char dataset_value21=0x4F;

char dataset_value22=0x53;

char dataset_value23=0x45;

char dataset_value24=0x31;

char goID_tag=0x83; /* goID tag*/

char goID_length=0x0B; /* goID length*/

char goID_value1=0x46; /* goID value [11]*/

char goID_value2=0x52;

char goID_value3=0x45;

205 | P a g e

char goID_value4=0x41;

char goID_value5=0x2D;

char goID_value6=0x47;

char goID_value7=0x6F;

char goID_value8=0x53;

char goID_value9=0x56;

char goID_value10=0x2D;

char goID_value11=0x31;

char time_tag=0x84; /* time tag*/

char time_length=0x08; /* time length*/

char time_value1=0x38; /* time value*/

char time_value2=0x6E;

char time_value3=0xBB;

char time_value4=0xF3;

char time_value5=0x42;

char time_value6=0x17;

char time_value7=0x28;

char time_value8=0x0A; /* st_Num (State Number) tag */

char st_Num_tag=0x85; /* st_Num length */

char st_Num_length=0x01; /* st_Num value */

char st_Num_value=0x01;

char sq_Num_tag=0x86; /* sq_Num (sequence Number) tag */

char sq_Num_length=0x01; /* sq_Num length */

char sq_Num_value=0x0A; /* sq_Num value */

char test_tag=0x87; /*test tag*/

char test_length=0x01; /*test length*/

char test_value=0x00; /*test value*/

char confRev_tag=0x88; /*confRev (Configuration Revision) tag*/

char confRev_length=0x01; /*confRev length*/

char confRev_value=0x01; /*confRev value*/

char ndsCom_tag=0x89; /*ndsCom (needs Commissioning) tag*/

char ndsCom_length=0x01; /*ndsCom length*/

char ndsCom_value=0x00; /*ndsCom value*/

char numDatSetEntries_tag=0x8A; /* number of members of Data Set */

char numDatSetEntries_length=0x01;

char numDatSetEntries_value=0x08;

char alldata_tag=0xAB; /*all data*/

char alldata_length=0x20;

char alldata_value1=0x83;

char alldata_value2=0x01;

char alldata_value3=0x00;

char alldata_value4=0x84;

char alldata_value6=0x03;

char alldata_value5=0x03;

char alldata_value7=0x00;

206 | P a g e

char alldata_value8=0x00;

char alldata_value9=0x83;

char alldata_value10=0x01;

char alldata_value11=0x00;

char alldata_value12=0x84;

char alldata_value13=0x03;

char alldata_value14=0x03;

char alldata_value15=0x00;

char alldata_value16=0x00;

char alldata_value17=0x83;

char alldata_value18=0x01;

char alldata_value19=0x00;

char alldata_value20=0x84;

char alldata_value21=0x03;

char alldata_value22=0x03;

char alldata_value23=0x00;

char alldata_value24=0x00;

char alldata_value25=0x83;

char alldata_value26=0x01;

char alldata_value27=0x00;

char alldata_value28=0x84;

char alldata_value29=0x03;

char alldata_value30=0x03;

char alldata_value31=0x02;

char alldata_value32=0x01;

unsigned char goosedata[137] =

 {

0x61, 0x81, 0x86, 0x80, 0x1A, 0x46, 0x52, 0x45, 0x41, 0x2D, 0x47, 0x6F, 0x53, 0x56, 0x2D,

0x31, 0x20, 0x2F, 0x4C, 0x4C, 0x4E, 0x30, 0x24, 0x47, 0x4F, 0x24, 0x67, 0x63, 0x62, 0x30,

0x31, 0x81, 0x03, 0x00, 0x9C, 0x40, 0x82, 0x18, 0x46, 0x52, 0x45, 0x41, 0x2D, 0x47, 0x6F,

0x53, 0x56, 0x2D, 0x31, 0x20, 0x2F, 0x4C, 0x4C, 0x4E, 0x30, 0x24, 0x47, 0x4F, 0x4F, 0x53,

0x45, 0x31, 0x83, 0x0B, 0x46, 0x52, 0x45, 0x41, 0x2D, 0x47, 0x6F, 0x53, 0x56, 0x2D, 0x31,

0x84, 0x08, 0x38, 0x6E, 0xBB, 0xF3, 0x42, 0x17, 0x28, 0x0A, 0x85, 0x01, 0x01, 0x86, 0x01,

0x0A, 0x87, 0x01, 0x00, 0x88, 0x01, 0x01, 0x89, 0x01, 0x00, 0x8A, 0x01, 0x08, 0xAB, 0x20,

0x83, 0x01, 0x00, 0x84, 0x03, 0x03, 0x00, 0x00, 0x83, 0x01, 0x00, 0x84, 0x03, 0x03, 0x00,

0x00, 0x83, 0x01, 0x00, 0x84, 0x03, 0x03, 0x00, 0x00, 0x83, 0x01, 0x00, 0x84, 0x03, 0x03,

0x02, 0x01

};

unsigned char signature_data[173]=

{

0xA1, 0x18, 0x80, 0x16, 0x00, 0x00, 0x00, 0xC7, 0x00, 0x00, 0x00, 0x0D, 0x00, 0x01, 0x5B, 0xFC,

0xF6, 0xB0, 0x00, 0x3C, 0x02, 0x03, 0x00, 0x00, 0x00, 0x0C, 0x00, 0x00, 0x00, 0x8F, 0x81, 0x01,

0x00, 0x01, 0x00, 0x89, 0x61, 0x81, 0x86, 0x80, 0x1A, 0x46, 0x52, 0x45, 0x41, 0x2D, 0x47, 0x6F,

0x53, 0x56, 0x2D, 0x31, 0x20, 0x2F, 0x4C, 0x4C, 0x4E, 0x30, 0x24, 0x47, 0x4F, 0x24, 0x67, 0x63,

207 | P a g e

0x62, 0x30, 0x31, 0x81, 0x03, 0x00, 0x9C, 0x40, 0x82, 0x18, 0x46, 0x52, 0x45, 0x41, 0x2D, 0x47,

0x6F, 0x53, 0x56, 0x2D, 0x31, 0x20, 0x2F, 0x4C, 0x4C, 0x4E, 0x30, 0x24, 0x47, 0x4F, 0x4F, 0x53,

0x45, 0x31, 0x83, 0x0B, 0x46, 0x52, 0x45, 0x41, 0x2D, 0x47, 0x6F, 0x53, 0x56, 0x2D, 0x31, 0x84,

0x08, 0x38, 0x6E, 0xBB, 0xF3, 0x42, 0x17, 0x28, 0x0A, 0x85, 0x01, 0x01, 0x86, 0x01, 0x0A, 0x87,

0x01, 0x00, 0x88, 0x01, 0x01, 0x89, 0x01, 0x00, 0x8A, 0x01, 0x08, 0xAB, 0x20, 0x83, 0x01, 0x00,

0x84, 0x03, 0x03, 0x00, 0x00, 0x83, 0x01, 0x00, 0x84, 0x03, 0x03, 0x00, 0x00, 0x83, 0x01, 0x00,

0x84, 0x03, 0x03, 0x00, 0x00, 0x83, 0x01, 0x00, 0x84, 0x03, 0x03, 0x02, 0x01

}; //updated

unsigned char ciphertext[173]=

{

0xA3, 0x50, 0x43, 0x00, 0xf3, 0x8f, 0x23, 0xb5, 0x3e, 0x07, 0x34, 0x99, 0x75, 0xd8, 0xbe, 0x6f,

0x7c, 0x66, 0x48, 0x6c, 0xa9, 0xe0, 0x7e, 0x8e, 0x7f, 0x3f, 0x16, 0x02, 0x31, 0x7f, 0x28, 0x4e,

0xdc, 0x48, 0xff, 0x26, 0x99, 0xd5, 0x28, 0xa7, 0x22, 0x54, 0x0e, 0x0a, 0x19, 0x93, 0xa4, 0xb7,

0x56, 0x52, 0xAD, 0xC9, 0x68, 0x3C, 0x82, 0xFD, 0xAF, 0x30, 0xAF, 0x7D, 0x48, 0xE8, 0x8B, 0x8E,

0x9B, 0x7C, 0xF9, 0x1C, 0x27, 0x0B, 0x05, 0xB8, 0x2B, 0xF7, 0x8D, 0xF2, 0x4F, 0x0D, 0xAB, 0x4D,

0x57, 0xDA, 0x29, 0x0B, 0x7E, 0x75, 0x24, 0x24, 0x9A, 0x7C, 0xAA, 0x7A, 0x38, 0x7C, 0x1C, 0xAA,

0x8F, 0x39, 0xA8, 0xE3, 0x74, 0xE5, 0xBB, 0x2F, 0x6A, 0x9E, 0x39, 0xB0, 0x32, 0x9D, 0x56, 0x7E,

0xA8, 0x83, 0xE3, 0xF8, 0xEB, 0x2E, 0x97, 0xD8, 0x04, 0xA0, 0x4E, 0x56, 0x5D, 0xC6, 0xC2, 0xBB,

0x5B, 0x26, 0x7C, 0x5E, 0x91, 0x41, 0x97, 0x08, 0x15, 0x30, 0x6D, 0x8E, 0x5F, 0x0E, 0x90, 0x13,

0xC4, 0x8F, 0xF9, 0x60, 0x66, 0x84, 0x08, 0x30, 0xD9, 0xFB, 0xBA, 0x97, 0x44, 0xC1, 0xBE, 0xA3,

0xAD, 0xA6, 0x37, 0x75, 0x18, 0xF6, 0xDB, 0xD8, 0x3E, 0x4B, 0xAA, 0x82, 0x21

};

char signature=0x85;

char sig_len=0x20; /* length of the signature value 32 bytes generated by HMAC-SHA256*/

char sig_val[32]= /* It is calculated from session identifier(SI) to end of user data payload */

{

0x94, 0x86, 0x5b, 0x96, 0xbf, 0xc8, 0x8d, 0x25, 0x29, 0xd1, 0x15, 0x24, 0xd2, 0x2b, 0xcb, 0x62,

0x58, 0xa5, 0x61, 0x9a, 0x81, 0x91, 0x99, 0x25, 0x06, 0x88, 0x0b, 0x96, 0xfa, 0x9c, 0x6a, 0x8c

 };

int main(int argc, char *argv[])

{

 int sfd;

 int i=0,j=0;

 struct ifreq if_idx;

 struct ifreq if_mac;

 int tx_len;

 unsigned char sendbuf[B_SIZE],Data[173];

 struct sockaddr_ll socket_address; /* The sockaddr_ll structure is a device-independent physical-layer

address.*/

 char ifName[IFNAMSIZ];

 unsigned char key[14]= { 0x32, 0x21, 0x23, 0x52, 0x71, 0x98, 0x24, 0x03, 0x38, 0x27, 0x01, 0x12, 0x95, 0x23};

 unsigned char *hash;

 /* Get interface name */

 strcpy(ifName, IF_NAME);

208 | P a g e

 /* Open RAW socket to send on */

 if ((sfd = socket(AF_PACKET, SOCK_RAW, IPPROTO_RAW)) == -1)

 {

 perror("socket");

 }

 /* clear the struct ifreq if_idx with memset system call */

 memset(&if_idx, 0, sizeof(struct ifreq));

 /* copy interface name into struct ifreq if_idx */

 strncpy(if_idx.ifr_name, ifName, IFNAMSIZ-1);

 /* configure the interface index */

 if (ioctl(sfd, SIOCGIFINDEX, &if_idx) < 0)

 perror("SIOCGIFINDEX");

 // Loop forever

 while(1) {

 /* Buffer of BUF_SIZ bytes we'll construct our frame in.

 First, clear it all to zero. */

 memset(sendbuf, 0, B_SIZE);

 tx_len = 0;

 /* Construct the UDP header */

 /* Destination MAC address */

 sendbuf[tx_len++] = DEST_MAC0;

 sendbuf[tx_len++] = DEST_MAC1;

 sendbuf[tx_len++] = DEST_MAC2;

 sendbuf[tx_len++] = DEST_MAC3;

 sendbuf[tx_len++] = DEST_MAC4;

 sendbuf[tx_len++] = DEST_MAC5;

 /* Source MAC address */

 sendbuf[tx_len++] = 0xA0;

 sendbuf[tx_len++] = 0xB3;

 sendbuf[tx_len++] = 0xCC;

 sendbuf[tx_len++] = 0xC5;

 sendbuf[tx_len++] = 0x77;

 sendbuf[tx_len++] = 0xA1;

 /* Ethertype field IP protocol */

 sendbuf[tx_len++] = 0x08;

 sendbuf[tx_len++] = 0x00;

209 | P a g e

 /* PDU fields */

 sendbuf[tx_len++] = ver_hl;

 sendbuf[tx_len++] = tos;

 sendbuf[tx_len++] = totlen1;

 sendbuf[tx_len++] = totlen2;

 sendbuf[tx_len++] = identification1;

 sendbuf[tx_len++] = identification2;

 sendbuf[tx_len++] = frag_off1;

 sendbuf[tx_len++] = frag_off2;

 sendbuf[tx_len++] = ttl;

 sendbuf[tx_len++] = protocol;

 sendbuf[tx_len++] = hdrchks1;

 sendbuf[tx_len++] = hdrchks2;

 sendbuf[tx_len++] = srcaddr0;

 sendbuf[tx_len++] = srcaddr1;

 sendbuf[tx_len++] = srcaddr2;

 sendbuf[tx_len++] = srcaddr3;

 sendbuf[tx_len++] = dstaddr0;

 sendbuf[tx_len++] = dstaddr1;

 sendbuf[tx_len++] = dstaddr2;

 sendbuf[tx_len++] = dstaddr3;

 sendbuf[tx_len++] = srcport1;

 sendbuf[tx_len++] = srcport2;

 sendbuf[tx_len++] = dstport1;

 sendbuf[tx_len++] = dstport2;

 sendbuf[tx_len++] = lengt1;

 sendbuf[tx_len++] = lengt2;

 sendbuf[tx_len++] = chksum1;

 sendbuf[tx_len++] = chksum2;

 sendbuf[tx_len++] = len_id;

 sendbuf[tx_len++] = t_id;

 /* sendbuf[tx_len++] = session_id;

 sendbuf[tx_len++] = length_id;

 sendbuf[tx_len++] = common_header;

 sendbuf[tx_len++] = l_id;

 sendbuf[tx_len++] = spdu_length1;

 sendbuf[tx_len++] = spdu_length2;

 sendbuf[tx_len++] = spdu_length3;

 sendbuf[tx_len++] = spdu_length4;

 sendbuf[tx_len++] = spdu_num1;

 sendbuf[tx_len++] = spdu_num2;

 sendbuf[tx_len++] = spdu_num3;

210 | P a g e

 sendbuf[tx_len++] = spdu_num4;

 sendbuf[tx_len++] = ver1;

 sendbuf[tx_len++] = ver2;

 sendbuf[tx_len++] = TimeofCurrentKey1;

 sendbuf[tx_len++] = TimeofCurrentKey2;

 sendbuf[tx_len++] = TimeofCurrentKey3;

 sendbuf[tx_len++] = TimeofCurrentKey4;

 sendbuf[tx_len++] = TimeofNextKey1;

 sendbuf[tx_len++] = TimeofNextKey2;

 sendbuf[tx_len++] = sa1;

 sendbuf[tx_len++] = sa2;

 sendbuf[tx_len++] = keyID1;

 sendbuf[tx_len++] = keyID2;

 sendbuf[tx_len++] = keyID3;

 sendbuf[tx_len++] = keyID4;

 sendbuf[tx_len++] = len1;

 sendbuf[tx_len++] = len2;

 sendbuf[tx_len++] = len3;

 sendbuf[tx_len++] = len4;

 sendbuf[tx_len++] = pl_type;

 sendbuf[tx_len++] = simulation;

 sendbuf[tx_len++] = APPID1;

 sendbuf[tx_len++] = APPID2;

 sendbuf[tx_len++] = length1;

 sendbuf[tx_len++] = length2;

 for(j=0;j<137;j++)

 sendbuf[tx_len++] = goosedata[j];

 */

 for(j=0;j<173;j++)

 sendbuf[tx_len++] = ciphertext[j];

 sendbuf[tx_len++] = signature;

 sendbuf[tx_len++] = sig_len;

 /*

 for(j=0;j<32;j++)

 sendbuf[tx_len++] = hash[j]; */

 for(j=0;j<32;j++)

 sendbuf[tx_len++] = sig_val[j];

 /*sendbuf[tx_len++] = 0x3C;

 sendbuf[tx_len++] = 0x1D;

 sendbuf[tx_len++] = 0x1C;

 sendbuf[tx_len++] = 0x98; */

211 | P a g e

 sendbuf[tx_len++] = 0xEF;

 sendbuf[tx_len++] = 0x1B;

 sendbuf[tx_len++] = 0x13;

 sendbuf[tx_len++] = 0x81;

 /* Index of the network device */

 socket_address.sll_ifindex = if_idx.ifr_ifindex; /* Network Interface number */

 /* Address length*/

 socket_address.sll_halen = ETH_ALEN; /* Length of Ethernet address */

 /* Destination MAC */

 socket_address.sll_addr[0] = DEST_MAC0;

 socket_address.sll_addr[1] = DEST_MAC1;

 socket_address.sll_addr[2] = DEST_MAC2;

 socket_address.sll_addr[3] = DEST_MAC3;

 socket_address.sll_addr[4] = DEST_MAC4;

 socket_address.sll_addr[5] = DEST_MAC5;

 /* Send packet */

 if (sendto(sfd, sendbuf, tx_len, 0, (struct sockaddr*)&socket_address, sizeof(struct sockaddr_ll)) < 0)

 printf("Send failed\n");

 else {

 printf("Sent :");

 for (i=0; i < tx_len; i++)

 printf("%02x:", sendbuf[i]);

 printf("\n");

 }

 /* Wait specified number of microseconds

 1,000,000 microseconds = 1 second

 */

 usleep(1000000);

 }

 return 0;

}

212 | P a g e

APPENDIX E

EtM Sender Source Code

/*This file is part of Github*/

/*https://github.com/61850security/S-GoSV-part-2*/

/* Source code published by (Hussain, Farooq, et al., 2020) */

/*This program is published*/

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <string.h>

#include <openssl/hmac.h>

#include <openssl/evp.h>

#include <sys/time.h>

#include <arpa/inet.h>

#include <linux/if_packet.h>

#include <string.h>

#include <sys/ioctl.h>

#include <sys/socket.h>

#include <net/if.h>

#include <netinet/ether.h>

#include <unistd.h>

/*

#define DEST_MAC0 0xFF

#define DEST_MAC1 0xFF

#define DEST_MAC2 0xFF

#define DEST_MAC3 0xFF

#define DEST_MAC4 0xFF

#define DEST_MAC5 0xFF

*/

#define DEST_MAC0 0x08

#define DEST_MAC1 0x00

#define DEST_MAC2 0x27

#define DEST_MAC3 0xF8

#define DEST_MAC4 0x42

#define DEST_MAC5 0xA7

// We can set standard multicast destination address as 01 0C CD 01 03 FF

#define IF_NAME "eth0" /* your system interface name */

#define BUF_SIZ 2048

https://github.com/61850security/R-GoSV

213 | P a g e

/* Session layer fields */

char APPID1=0x00;

char APPID2=0x01;

char length1=0x00;

char length2=0x66;

char resrv1_1=0x00; /* int16_t resrv1; */

char resrv1_2=0x00;

char resrv2_1=0x00; /* int16_t resrv2 */

char resrv2_2=0x00;

char session_id = 0xA2;

char length_id = 0x18;

char common_header= 0x80;

char l_id = 0x16;

char spdu_length1=0x00;

char spdu_length2=0x00;

char spdu_length3=0x00;

char spdu_length4=0xA4;

char spdu_num1=0x00;

char spdu_num2=0x00;

char spdu_num3=0x00;

char spdu_num4=0x0C;

char ver1=0x00;

char ver2=0x01;

char TimeofCurrentKey1=0x5B;

char TimeofCurrentKey2=0xFC;

char TimeofCurrentKey3=0xF6;

char TimeofCurrentKey4=0xB0;

char TimeofNextKey1=0x00;

char TimeofNextKey2=0x3C;

char sa1=0x02;

char sa2=0x03;

char keyID1=0x00;

char keyID2=0x00;

char keyID3=0x00;

char keyID4=0x0D;

char len1=0x00;

char len2=0x00;

char len3=0x00;

char len4=0x6C;

char pl_type=0x82;

char simulation=0x01;

214 | P a g e

/* Sample Value fields according to IEC 61850-9-2 */

char sav_PDU_tag=0x60; /* sav_PDU tag */

char sav_PDU_length=0x64; /* sav_PDU length - size of APDU */

char noASDU_tag=0x80; /* number of ASDU tag */

char noASDU_length=0x01; /* number of ASDU length */

char noASDU=0x01; /* noASDU value */

char SequenceofASDU_tag=0xA2; /* SequenceofASDU tag */

char SequenceofASDU_length=0x5F; /* SequenceofASDU length - size of all ASDU */

char ASDU_tag=0x30; /* ASDU tag */

char ASDU_length=0x5D; /* ASDU length */

char svID_tag =0x80; /* Sample Value identifier tag */

char svID_length =0x0C; /* Sample Value identifier length */

char svID_1=0x46; /* svID[12] naming */

char svID_2=0x52;

char svID_3=0x45;

char svID_4=0x41;

char svID_5=0x2D;

char svID_6=0x47;

char svID_7=0x6F;

char svID_8=0x53;

char svID_9=0x56;

char svID_10=0x2D;

char svID_11=0x31;

char svID_12=0x20;

char smpCnt_tag=0x82; /* sample count tag */

char smpCnt_length =0x02; /* sample count length */

char smpCnt_1=0x00; /* sample count */

char smpCnt_2=0x08;

char confRev_tag=0x83; /* confRev tag - configuratin revision number */

char confRev_length=0x04; /* confRev length */

char confRev1=0x00; /* confRev value */

char confRev2=0x00;

char confRev3=0x00;

char confRev4=0x01;

char smpSynch_tag = 0x85; /* smpSynch tag -synchronisation identifier */

char smpSynch_length =0x01; /* smpSynch_length */

char smpSynch =0x00; /* smpSynch value */

char SequenceofData_tag =0x87; /* SequenceofData tag */

char SequenceofData_length=0x40; /* SequenceofData length */

/* Enter your custom measurement values in hexa decimal */

char a[64]= { 0x00, 0x00, 0x00, 0x5A, 0x12, 0x15, 0x12, 0x64,

 0x11, 0x12, 0x18, 0x22, 0x14, 0x12, 0x17, 0x16,

 0x30, 0x42, 0x10, 0x14, 0x12, 0x15, 0x12, 0x64,

215 | P a g e

 0x11, 0x12, 0x18, 0x22, 0x14, 0x12, 0x17, 0x16,

 0x30, 0x42, 0x10, 0x14, 0x12, 0x15, 0x12, 0x64,

 0x11, 0x12, 0x18, 0x22, 0x14, 0x12, 0x17, 0x16,

 0x30, 0x42, 0x10, 0x14, 0x12, 0x15, 0x12, 0x64,

 0x11, 0x12, 0x18, 0x22, 0x14, 0x12, 0x17, 0x16 };

unsigned char s[256] =

 {

 0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5, 0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76,

 0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0, 0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0,

 0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC, 0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15,

 0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A, 0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75,

 0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0, 0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84,

 0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B, 0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF,

 0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85, 0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8,

 0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5, 0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2,

 0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17, 0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73,

 0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88, 0x46, 0xEE, 0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB,

 0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C, 0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79,

 0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9, 0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08,

 0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6, 0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A,

 0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E, 0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E,

 0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94, 0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF,

 0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68, 0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16

 };

 unsigned char inv_s[256] =

 {

 0x52, 0x09, 0x6A, 0xD5, 0x30, 0x36, 0xA5, 0x38, 0xBF, 0x40, 0xA3, 0x9E, 0x81, 0xF3, 0xD7, 0xFB,

 0x7C, 0xE3, 0x39, 0x82, 0x9B, 0x2F, 0xFF, 0x87, 0x34, 0x8E, 0x43, 0x44, 0xC4, 0xDE, 0xE9, 0xCB,

 0x54, 0x7B, 0x94, 0x32, 0xA6, 0xC2, 0x23, 0x3D, 0xEE, 0x4C, 0x95, 0x0B, 0x42, 0xFA, 0xC3, 0x4E,

 0x08, 0x2E, 0xA1, 0x66, 0x28, 0xD9, 0x24, 0xB2, 0x76, 0x5B, 0xA2, 0x49, 0x6D, 0x8B, 0xD1, 0x25,

 0x72, 0xF8, 0xF6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xD4, 0xA4, 0x5C, 0xCC, 0x5D, 0x65, 0xB6, 0x92,

 0x6C, 0x70, 0x48, 0x50, 0xFD, 0xED, 0xB9, 0xDA, 0x5E, 0x15, 0x46, 0x57, 0xA7, 0x8D, 0x9D, 0x84,

 0x90, 0xD8, 0xAB, 0x00, 0x8C, 0xBC, 0xD3, 0x0A, 0xF7, 0xE4, 0x58, 0x05, 0xB8, 0xB3, 0x45, 0x06,

 0xD0, 0x2C, 0x1E, 0x8F, 0xCA, 0x3F, 0x0F, 0x02, 0xC1, 0xAF, 0xBD, 0x03, 0x01, 0x13, 0x8A, 0x6B,

 0x3A, 0x91, 0x11, 0x41, 0x4F, 0x67, 0xDC, 0xEA, 0x97, 0xF2, 0xCF, 0xCE, 0xF0, 0xB4, 0xE6, 0x73,

 0x96, 0xAC, 0x74, 0x22, 0xE7, 0xAD, 0x35, 0x85, 0xE2, 0xF9, 0x37, 0xE8, 0x1C, 0x75, 0xDF, 0x6E,

 0x47, 0xF1, 0x1A, 0x71, 0x1D, 0x29, 0xC5, 0x89, 0x6F, 0xB7, 0x62, 0x0E, 0xAA, 0x18, 0xBE, 0x1B,

 0xFC, 0x56, 0x3E, 0x4B, 0xC6, 0xD2, 0x79, 0x20, 0x9A, 0xDB, 0xC0, 0xFE, 0x78, 0xCD, 0x5A, 0xF4,

 0x1F, 0xDD, 0xA8, 0x33, 0x88, 0x07, 0xC7, 0x31, 0xB1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xEC, 0x5F,

 0x60, 0x51, 0x7F, 0xA9, 0x19, 0xB5, 0x4A, 0x0D, 0x2D, 0xE5, 0x7A, 0x9F, 0x93, 0xC9, 0x9C, 0xEF,

 0xA0, 0xE0, 0x3B, 0x4D, 0xAE, 0x2A, 0xF5, 0xB0, 0xC8, 0xEB, 0xBB, 0x3C, 0x83, 0x53, 0x99, 0x61,

 0x17, 0x2B, 0x04, 0x7E, 0xBA, 0x77, 0xD6, 0x26, 0xE1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0C, 0x7D

 };

216 | P a g e

unsigned char mul2[] =

{

 0x00,0x02,0x04,0x06,0x08,0x0a,0x0c,0x0e,0x10,0x12,0x14,0x16,0x18,0x1a,0x1c,0x1e,

 0x20,0x22,0x24,0x26,0x28,0x2a,0x2c,0x2e,0x30,0x32,0x34,0x36,0x38,0x3a,0x3c,0x3e,

 0x40,0x42,0x44,0x46,0x48,0x4a,0x4c,0x4e,0x50,0x52,0x54,0x56,0x58,0x5a,0x5c,0x5e,

 0x60,0x62,0x64,0x66,0x68,0x6a,0x6c,0x6e,0x70,0x72,0x74,0x76,0x78,0x7a,0x7c,0x7e,

 0x80,0x82,0x84,0x86,0x88,0x8a,0x8c,0x8e,0x90,0x92,0x94,0x96,0x98,0x9a,0x9c,0x9e,

 0xa0,0xa2,0xa4,0xa6,0xa8,0xaa,0xac,0xae,0xb0,0xb2,0xb4,0xb6,0xb8,0xba,0xbc,0xbe,

 0xc0,0xc2,0xc4,0xc6,0xc8,0xca,0xcc,0xce,0xd0,0xd2,0xd4,0xd6,0xd8,0xda,0xdc,0xde,

 0xe0,0xe2,0xe4,0xe6,0xe8,0xea,0xec,0xee,0xf0,0xf2,0xf4,0xf6,0xf8,0xfa,0xfc,0xfe,

 0x1b,0x19,0x1f,0x1d,0x13,0x11,0x17,0x15,0x0b,0x09,0x0f,0x0d,0x03,0x01,0x07,0x05,

 0x3b,0x39,0x3f,0x3d,0x33,0x31,0x37,0x35,0x2b,0x29,0x2f,0x2d,0x23,0x21,0x27,0x25,

 0x5b,0x59,0x5f,0x5d,0x53,0x51,0x57,0x55,0x4b,0x49,0x4f,0x4d,0x43,0x41,0x47,0x45,

 0x7b,0x79,0x7f,0x7d,0x73,0x71,0x77,0x75,0x6b,0x69,0x6f,0x6d,0x63,0x61,0x67,0x65,

 0x9b,0x99,0x9f,0x9d,0x93,0x91,0x97,0x95,0x8b,0x89,0x8f,0x8d,0x83,0x81,0x87,0x85,

 0xbb,0xb9,0xbf,0xbd,0xb3,0xb1,0xb7,0xb5,0xab,0xa9,0xaf,0xad,0xa3,0xa1,0xa7,0xa5,

 0xdb,0xd9,0xdf,0xdd,0xd3,0xd1,0xd7,0xd5,0xcb,0xc9,0xcf,0xcd,0xc3,0xc1,0xc7,0xc5,

 0xfb,0xf9,0xff,0xfd,0xf3,0xf1,0xf7,0xf5,0xeb,0xe9,0xef,0xed,0xe3,0xe1,0xe7,0xe5

};

unsigned char mul_3[] =

{

 0x00,0x03,0x06,0x05,0x0c,0x0f,0x0a,0x09,0x18,0x1b,0x1e,0x1d,0x14,0x17,0x12,0x11,

 0x30,0x33,0x36,0x35,0x3c,0x3f,0x3a,0x39,0x28,0x2b,0x2e,0x2d,0x24,0x27,0x22,0x21,

 0x60,0x63,0x66,0x65,0x6c,0x6f,0x6a,0x69,0x78,0x7b,0x7e,0x7d,0x74,0x77,0x72,0x71,

 0x50,0x53,0x56,0x55,0x5c,0x5f,0x5a,0x59,0x48,0x4b,0x4e,0x4d,0x44,0x47,0x42,0x41,

 0xc0,0xc3,0xc6,0xc5,0xcc,0xcf,0xca,0xc9,0xd8,0xdb,0xde,0xdd,0xd4,0xd7,0xd2,0xd1,

 0xf0,0xf3,0xf6,0xf5,0xfc,0xff,0xfa,0xf9,0xe8,0xeb,0xee,0xed,0xe4,0xe7,0xe2,0xe1,

 0xa0,0xa3,0xa6,0xa5,0xac,0xaf,0xaa,0xa9,0xb8,0xbb,0xbe,0xbd,0xb4,0xb7,0xb2,0xb1,

 0x90,0x93,0x96,0x95,0x9c,0x9f,0x9a,0x99,0x88,0x8b,0x8e,0x8d,0x84,0x87,0x82,0x81,

 0x9b,0x98,0x9d,0x9e,0x97,0x94,0x91,0x92,0x83,0x80,0x85,0x86,0x8f,0x8c,0x89,0x8a,

 0xab,0xa8,0xad,0xae,0xa7,0xa4,0xa1,0xa2,0xb3,0xb0,0xb5,0xb6,0xbf,0xbc,0xb9,0xba,

 0xfb,0xf8,0xfd,0xfe,0xf7,0xf4,0xf1,0xf2,0xe3,0xe0,0xe5,0xe6,0xef,0xec,0xe9,0xea,

 0xcb,0xc8,0xcd,0xce,0xc7,0xc4,0xc1,0xc2,0xd3,0xd0,0xd5,0xd6,0xdf,0xdc,0xd9,0xda,

 0x5b,0x58,0x5d,0x5e,0x57,0x54,0x51,0x52,0x43,0x40,0x45,0x46,0x4f,0x4c,0x49,0x4a,

 0x6b,0x68,0x6d,0x6e,0x67,0x64,0x61,0x62,0x73,0x70,0x75,0x76,0x7f,0x7c,0x79,0x7a,

 0x3b,0x38,0x3d,0x3e,0x37,0x34,0x31,0x32,0x23,0x20,0x25,0x26,0x2f,0x2c,0x29,0x2a,

 0x0b,0x08,0x0d,0x0e,0x07,0x04,0x01,0x02,0x13,0x10,0x15,0x16,0x1f,0x1c,0x19,0x1a

};

unsigned char mul_9[] =

{

 0x00,0x09,0x12,0x1b,0x24,0x2d,0x36,0x3f,0x48,0x41,0x5a,0x53,0x6c,0x65,0x7e,0x77,

 0x90,0x99,0x82,0x8b,0xb4,0xbd,0xa6,0xaf,0xd8,0xd1,0xca,0xc3,0xfc,0xf5,0xee,0xe7,

 0x3b,0x32,0x29,0x20,0x1f,0x16,0x0d,0x04,0x73,0x7a,0x61,0x68,0x57,0x5e,0x45,0x4c,

217 | P a g e

 0xab,0xa2,0xb9,0xb0,0x8f,0x86,0x9d,0x94,0xe3,0xea,0xf1,0xf8,0xc7,0xce,0xd5,0xdc,

 0x76,0x7f,0x64,0x6d,0x52,0x5b,0x40,0x49,0x3e,0x37,0x2c,0x25,0x1a,0x13,0x08,0x01,

 0xe6,0xef,0xf4,0xfd,0xc2,0xcb,0xd0,0xd9,0xae,0xa7,0xbc,0xb5,0x8a,0x83,0x98,0x91,

 0x4d,0x44,0x5f,0x56,0x69,0x60,0x7b,0x72,0x05,0x0c,0x17,0x1e,0x21,0x28,0x33,0x3a,

 0xdd,0xd4,0xcf,0xc6,0xf9,0xf0,0xeb,0xe2,0x95,0x9c,0x87,0x8e,0xb1,0xb8,0xa3,0xaa,

 0xec,0xe5,0xfe,0xf7,0xc8,0xc1,0xda,0xd3,0xa4,0xad,0xb6,0xbf,0x80,0x89,0x92,0x9b,

 0x7c,0x75,0x6e,0x67,0x58,0x51,0x4a,0x43,0x34,0x3d,0x26,0x2f,0x10,0x19,0x02,0x0b,

 0xd7,0xde,0xc5,0xcc,0xf3,0xfa,0xe1,0xe8,0x9f,0x96,0x8d,0x84,0xbb,0xb2,0xa9,0xa0,

 0x47,0x4e,0x55,0x5c,0x63,0x6a,0x71,0x78,0x0f,0x06,0x1d,0x14,0x2b,0x22,0x39,0x30,

 0x9a,0x93,0x88,0x81,0xbe,0xb7,0xac,0xa5,0xd2,0xdb,0xc0,0xc9,0xf6,0xff,0xe4,0xed,

 0x0a,0x03,0x18,0x11,0x2e,0x27,0x3c,0x35,0x42,0x4b,0x50,0x59,0x66,0x6f,0x74,0x7d,

 0xa1,0xa8,0xb3,0xba,0x85,0x8c,0x97,0x9e,0xe9,0xe0,0xfb,0xf2,0xcd,0xc4,0xdf,0xd6,

 0x31,0x38,0x23,0x2a,0x15,0x1c,0x07,0x0e,0x79,0x70,0x6b,0x62,0x5d,0x54,0x4f,0x46

};

unsigned char mul_11[] =

{

 0x00,0x0b,0x16,0x1d,0x2c,0x27,0x3a,0x31,0x58,0x53,0x4e,0x45,0x74,0x7f,0x62,0x69,

 0xb0,0xbb,0xa6,0xad,0x9c,0x97,0x8a,0x81,0xe8,0xe3,0xfe,0xf5,0xc4,0xcf,0xd2,0xd9,

 0x7b,0x70,0x6d,0x66,0x57,0x5c,0x41,0x4a,0x23,0x28,0x35,0x3e,0x0f,0x04,0x19,0x12,

 0xcb,0xc0,0xdd,0xd6,0xe7,0xec,0xf1,0xfa,0x93,0x98,0x85,0x8e,0xbf,0xb4,0xa9,0xa2,

 0xf6,0xfd,0xe0,0xeb,0xda,0xd1,0xcc,0xc7,0xae,0xa5,0xb8,0xb3,0x82,0x89,0x94,0x9f,

 0x46,0x4d,0x50,0x5b,0x6a,0x61,0x7c,0x77,0x1e,0x15,0x08,0x03,0x32,0x39,0x24,0x2f,

 0x8d,0x86,0x9b,0x90,0xa1,0xaa,0xb7,0xbc,0xd5,0xde,0xc3,0xc8,0xf9,0xf2,0xef,0xe4,

 0x3d,0x36,0x2b,0x20,0x11,0x1a,0x07,0x0c,0x65,0x6e,0x73,0x78,0x49,0x42,0x5f,0x54,

 0xf7,0xfc,0xe1,0xea,0xdb,0xd0,0xcd,0xc6,0xaf,0xa4,0xb9,0xb2,0x83,0x88,0x95,0x9e,

 0x47,0x4c,0x51,0x5a,0x6b,0x60,0x7d,0x76,0x1f,0x14,0x09,0x02,0x33,0x38,0x25,0x2e,

 0x8c,0x87,0x9a,0x91,0xa0,0xab,0xb6,0xbd,0xd4,0xdf,0xc2,0xc9,0xf8,0xf3,0xee,0xe5,

 0x3c,0x37,0x2a,0x21,0x10,0x1b,0x06,0x0d,0x64,0x6f,0x72,0x79,0x48,0x43,0x5e,0x55,

 0x01,0x0a,0x17,0x1c,0x2d,0x26,0x3b,0x30,0x59,0x52,0x4f,0x44,0x75,0x7e,0x63,0x68,

 0xb1,0xba,0xa7,0xac,0x9d,0x96,0x8b,0x80,0xe9,0xe2,0xff,0xf4,0xc5,0xce,0xd3,0xd8,

 0x7a,0x71,0x6c,0x67,0x56,0x5d,0x40,0x4b,0x22,0x29,0x34,0x3f,0x0e,0x05,0x18,0x13,

 0xca,0xc1,0xdc,0xd7,0xe6,0xed,0xf0,0xfb,0x92,0x99,0x84,0x8f,0xbe,0xb5,0xa8,0xa3

};

unsigned char mul_13[] =

{

 0x00,0x0d,0x1a,0x17,0x34,0x39,0x2e,0x23,0x68,0x65,0x72,0x7f,0x5c,0x51,0x46,0x4b,

 0xd0,0xdd,0xca,0xc7,0xe4,0xe9,0xfe,0xf3,0xb8,0xb5,0xa2,0xaf,0x8c,0x81,0x96,0x9b,

 0xbb,0xb6,0xa1,0xac,0x8f,0x82,0x95,0x98,0xd3,0xde,0xc9,0xc4,0xe7,0xea,0xfd,0xf0,

 0x6b,0x66,0x71,0x7c,0x5f,0x52,0x45,0x48,0x03,0x0e,0x19,0x14,0x37,0x3a,0x2d,0x20,

 0x6d,0x60,0x77,0x7a,0x59,0x54,0x43,0x4e,0x05,0x08,0x1f,0x12,0x31,0x3c,0x2b,0x26,

 0xbd,0xb0,0xa7,0xaa,0x89,0x84,0x93,0x9e,0xd5,0xd8,0xcf,0xc2,0xe1,0xec,0xfb,0xf6,

 0xd6,0xdb,0xcc,0xc1,0xe2,0xef,0xf8,0xf5,0xbe,0xb3,0xa4,0xa9,0x8a,0x87,0x90,0x9d,

 0x06,0x0b,0x1c,0x11,0x32,0x3f,0x28,0x25,0x6e,0x63,0x74,0x79,0x5a,0x57,0x40,0x4d,

218 | P a g e

 0xda,0xd7,0xc0,0xcd,0xee,0xe3,0xf4,0xf9,0xb2,0xbf,0xa8,0xa5,0x86,0x8b,0x9c,0x91,

 0x0a,0x07,0x10,0x1d,0x3e,0x33,0x24,0x29,0x62,0x6f,0x78,0x75,0x56,0x5b,0x4c,0x41,

 0x61,0x6c,0x7b,0x76,0x55,0x58,0x4f,0x42,0x09,0x04,0x13,0x1e,0x3d,0x30,0x27,0x2a,

 0xb1,0xbc,0xab,0xa6,0x85,0x88,0x9f,0x92,0xd9,0xd4,0xc3,0xce,0xed,0xe0,0xf7,0xfa,

 0xb7,0xba,0xad,0xa0,0x83,0x8e,0x99,0x94,0xdf,0xd2,0xc5,0xc8,0xeb,0xe6,0xf1,0xfc,

 0x67,0x6a,0x7d,0x70,0x53,0x5e,0x49,0x44,0x0f,0x02,0x15,0x18,0x3b,0x36,0x21,0x2c,

 0x0c,0x01,0x16,0x1b,0x38,0x35,0x22,0x2f,0x64,0x69,0x7e,0x73,0x50,0x5d,0x4a,0x47,

 0xdc,0xd1,0xc6,0xcb,0xe8,0xe5,0xf2,0xff,0xb4,0xb9,0xae,0xa3,0x80,0x8d,0x9a,0x97

};

unsigned char mul_14[] =

{

 0x00,0x0e,0x1c,0x12,0x38,0x36,0x24,0x2a,0x70,0x7e,0x6c,0x62,0x48,0x46,0x54,0x5a,

 0xe0,0xee,0xfc,0xf2,0xd8,0xd6,0xc4,0xca,0x90,0x9e,0x8c,0x82,0xa8,0xa6,0xb4,0xba,

 0xdb,0xd5,0xc7,0xc9,0xe3,0xed,0xff,0xf1,0xab,0xa5,0xb7,0xb9,0x93,0x9d,0x8f,0x81,

 0x3b,0x35,0x27,0x29,0x03,0x0d,0x1f,0x11,0x4b,0x45,0x57,0x59,0x73,0x7d,0x6f,0x61,

 0xad,0xa3,0xb1,0xbf,0x95,0x9b,0x89,0x87,0xdd,0xd3,0xc1,0xcf,0xe5,0xeb,0xf9,0xf7,

 0x4d,0x43,0x51,0x5f,0x75,0x7b,0x69,0x67,0x3d,0x33,0x21,0x2f,0x05,0x0b,0x19,0x17,

 0x76,0x78,0x6a,0x64,0x4e,0x40,0x52,0x5c,0x06,0x08,0x1a,0x14,0x3e,0x30,0x22,0x2c,

 0x96,0x98,0x8a,0x84,0xae,0xa0,0xb2,0xbc,0xe6,0xe8,0xfa,0xf4,0xde,0xd0,0xc2,0xcc,

 0x41,0x4f,0x5d,0x53,0x79,0x77,0x65,0x6b,0x31,0x3f,0x2d,0x23,0x09,0x07,0x15,0x1b,

 0xa1,0xaf,0xbd,0xb3,0x99,0x97,0x85,0x8b,0xd1,0xdf,0xcd,0xc3,0xe9,0xe7,0xf5,0xfb,

 0x9a,0x94,0x86,0x88,0xa2,0xac,0xbe,0xb0,0xea,0xe4,0xf6,0xf8,0xd2,0xdc,0xce,0xc0,

 0x7a,0x74,0x66,0x68,0x42,0x4c,0x5e,0x50,0x0a,0x04,0x16,0x18,0x32,0x3c,0x2e,0x20,

 0xec,0xe2,0xf0,0xfe,0xd4,0xda,0xc8,0xc6,0x9c,0x92,0x80,0x8e,0xa4,0xaa,0xb8,0xb6,

 0x0c,0x02,0x10,0x1e,0x34,0x3a,0x28,0x26,0x7c,0x72,0x60,0x6e,0x44,0x4a,0x58,0x56,

 0x37,0x39,0x2b,0x25,0x0f,0x01,0x13,0x1d,0x47,0x49,0x5b,0x55,0x7f,0x71,0x63,0x6d,

 0xd7,0xd9,0xcb,0xc5,0xef,0xe1,0xf3,0xfd,0xa7,0xa9,0xbb,0xb5,0x9f,0x91,0x83,0x8d

};

unsigned char rcon[11] =

{

 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36,

};

unsigned char * g (unsigned char wInput[4], int counter)

{

 unsigned char * wReady = malloc(4);

 unsigned char temp[4] = "";

 unsigned char a = wInput[0];

 for(int i =0;i<3; i++)

 {

 temp[i] = wInput[(i+1)];

 }

 temp[3] = a;

219 | P a g e

 for (int i =0; i<4;i++)

 temp[i] = s[temp[i]];

 //unsigned char array formed for xoring with rcon

 unsigned char array2[4] = "";

 array2[0] = rcon[counter];

 array2[1] = array2[2] = array2[3] = 0x00;

 for (int i=0;i<4;i++)

 wReady[i] = temp[i] ^ array2[i];

 return wReady;

}

unsigned char * keyExpansion(unsigned char key[16])

{

 unsigned char words[44][4];

 for (int i = 0; i < 44; ++i)

 {

 for (int j = 0; j <4; ++j)

 {

 words[i][j]=0x00;

 }

 }

 unsigned char * expandedKey = malloc(176);

 int byteCount = 0; //this is to keep a count on the bytes of the expandedKey array

 for (int i=0;i<16;i++)

 expandedKey[i] = key[i];

 for(int j=0;j<4;j++)

 {

 for(int k=0;k<4;k++)

 {

 words[j][k] = expandedKey[byteCount];

 byteCount++;

 }

 }

 for(int l=4;l<44;l++)

 {

 if((l%4)==0)

 {

220 | P a g e

 for(int m=0;m<4;m++)

 {

 words[l][m] = words[(l-4)][m] ^ g(words[l-1], (l/4))[m];

 }

 }

 else

 {

 for(int n=0;n<4;n++)

 {

 words[l][n] = words[l-1][n] ^ words[l-4][n];

 }

 }

 }

 int loc=0;

 for(int i=0;i<44;i++)

 {

 for(int j=0;j<4;j++)

 {

 expandedKey[loc] = words[i][j];

 loc++;

 }

 }

 return expandedKey;

}

void mixColumns(unsigned char * plainText)

{

 unsigned char * tempC = malloc(16);

 for (int i = 0; i < 4; ++i)

 {

 tempC[(4*i)+0] = (unsigned char) (mul2[plainText[(4*i)+0]] ^ mul_3[plainText[(4*i)+1]] ^ plainText[(4*i)+2] ^

plainText[(4*i)+3]);

 tempC[(4*i)+1] = (unsigned char) (plainText[(4*i)+0] ^ mul2[plainText[(4*i)+1]] ^ mul_3[plainText[(4*i)+2]] ^

plainText[(4*i)+3]);

 tempC[(4*i)+2] = (unsigned char) (plainText[(4*i)+0] ^ plainText[(4*i)+1] ^ mul2[plainText[(4*i)+2]] ^

mul_3[plainText[(4*i)+3]]);

 tempC[(4*i)+3] = (unsigned char) (mul_3[plainText[(4*i)+0]] ^ plainText[(4*i)+1] ^ plainText[(4*i)+2] ^

mul2[plainText[(4*i)+3]]);

 }

 for (int i = 0; i < 16; ++i)

 {

 plainText[i] = tempC[i];

221 | P a g e

 }

 free(tempC);

}

void inverseMixedColumn (unsigned char * plainText)

{

 unsigned char * tempC = malloc(18);

 for (int i = 0; i < 4; ++i)

 {

 tempC[(4*i)+0] = (unsigned char) (mul_14[plainText[(4*i)+0]] ^ mul_11[plainText[(4*i)+1]] ^

mul_13[plainText[(4*i)+2]] ^ mul_9[plainText[(4*i)+3]]);

 tempC[(4*i)+1] = (unsigned char) (mul_9[plainText[(4*i)+0]] ^ mul_14[plainText[(4*i)+1]] ^

mul_11[plainText[(4*i)+2]] ^ mul_13[plainText[(4*i)+3]]);

 tempC[(4*i)+2] = (unsigned char) (mul_13[plainText[(4*i)+0]] ^ mul_9[plainText[(4*i)+1]] ^

mul_14[plainText[(4*i)+2]] ^ mul_11[plainText[(4*i)+3]]);

 tempC[(4*i)+3] = (unsigned char) (mul_11[plainText[(4*i)+0]] ^ mul_13[plainText[(4*i)+1]] ^

mul_9[plainText[(4*i)+2]] ^ mul_14[plainText[(4*i)+3]]);

 }

 for (int i = 0; i < 16; ++i)

 {

 plainText[i] = tempC[i];

 }

 free(tempC);

}

void byteSubShiftRow(unsigned char * state)

{

 unsigned char tmp[16];

 tmp[0] = s[state[0]];

 tmp[1] = s[state[5]];

 tmp[2] = s[state[10]];

 tmp[3] = s[state[15]];

 tmp[4] = s[state[4]];

 tmp[5] = s[state[9]];

 tmp[6] = s[state[14]];

 tmp[7] = s[state[3]];

 tmp[8] = s[state[8]];

 tmp[9] = s[state[13]];

 tmp[10] = s[state[2]];

 tmp[11] = s[state[7]];

 tmp[12] = s[state[12]];

222 | P a g e

 tmp[13] = s[state[1]];

 tmp[14] = s[state[6]];

 tmp[15] = s[state[11]];

 for(int i=0;i<16;i++)

 {

 state[i] = tmp[i];

 }

}

void inverseByteSubShiftRow(unsigned char * plainText)

{

 unsigned char * temp = malloc(16);

 temp[0] = inv_s[plainText[0]];

 temp[1] = inv_s[plainText[13]];

 temp[2] = inv_s[plainText[10]];

 temp[3] = inv_s[plainText[7]];

 temp[4] = inv_s[plainText[4]];

 temp[5] = inv_s[plainText[1]];

 temp[6] = inv_s[plainText[14]];

 temp[7] = inv_s[plainText[11]];

 temp[8] = inv_s[plainText[8]];

 temp[9] = inv_s[plainText[5]];

 temp[10] = inv_s[plainText[2]];

 temp[11] = inv_s[plainText[15]];

 temp[12] = inv_s[plainText[12]];

 temp[13] = inv_s[plainText[9]];

 temp[14] = inv_s[plainText[6]];

 temp[15] = inv_s[plainText[3]];

 for (int i = 0; i < 16; ++i)

 plainText[i] = temp[i];

 free(temp);

}

unsigned char * AESEncryption(unsigned char * plainText, unsigned char * expandedKey)

{

 unsigned char * state = malloc(16);

 unsigned char * cipherText = malloc(16);

 //unsigned char * expandedKey = malloc(176);

 //expandedKey = keyExpansion(Key);

 //key addition for the first round

 for (int i = 0; i < 16; ++i)

 {

223 | P a g e

 state[i] = plainText[i] ^ expandedKey[i];

 }

 //now the 9 rounds begin

 for(int rounds = 1; rounds<10; rounds++)

 {

 byteSubShiftRow(state);

 mixColumns(state);

 int counter = 0;

 int loc = rounds*16;

 while(counter<16)

 {

 state[counter] ^= expandedKey[loc];

 loc++;

 counter++;

 }

 }

 //10th round

 byteSubShiftRow(state);

 for(int i=0; i<16;i++)

 {

 cipherText[i] = state[i] ^ expandedKey[i+160];

 //printf("\n cipher[%d]=%x",i,cipher[i]);

 }

 free(state);

 return cipherText;

}

int main(int argc, char *argv[])

{

 unsigned char PDU[BUF_SIZ];

 unsigned char InputData[16], Data[16],cipher_str[1024]="";

 unsigned char plainText[16];

 unsigned char key[14]= { 0x32, 0x21, 0x23, 0x52, 0x71, 0x98, 0x24, 0x03, 0x38, 0x27, 0x01, 0x12, 0x95, 0x23};

 unsigned char * expandedKey = malloc(176);

 unsigned char * cipher = malloc(16);

 unsigned char * plainText1 = malloc(16);

 unsigned char *hash;

 unsigned char hash_string[32];

 int inx=0,i=0,j=0,x,y,z=0,n,p=0,q=0,temp,temp1,p_index=0,index,count=1;

 double begin,end,time_spent,time_hmac=0,time_encrypt=0;

 int sfd,len=0;

224 | P a g e

 unsigned char sendbuf[BUF_SIZ],ifName[IFNAMSIZ];

 struct sockaddr_ll socket_address; /* The sockaddr_ll structure is a device-independent physical-layer

address.*/

 struct ifreq if_idx, if_mac;

 /* Get interface name */

 strcpy(ifName, IF_NAME);

 /* Open RAW socket to send on */

 if ((sfd = socket(AF_PACKET, SOCK_RAW, IPPROTO_RAW)) == -1)

 perror("socket");

 /* Initiazing the ifreq structure to zero */

 memset(&if_idx, 0, sizeof(struct ifreq));

 /* Copying the interface name */

 strncpy(if_idx.ifr_name, ifName, IFNAMSIZ-1);

 /* Get the index of the interface to send on */

 if (ioctl(sfd, SIOCGIFINDEX, &if_idx) < 0)

 perror("SIOCGIFINDEX");

 expandedKey = keyExpansion(key);

 for(;1;)

 {

 PDU[inx++] = sav_PDU_tag;

 PDU[inx++] = sav_PDU_length;

 PDU[inx++] = noASDU_tag;

 PDU[inx++] = noASDU_length;

 PDU[inx++] = noASDU;

 PDU[inx++] = SequenceofASDU_tag;

 PDU[inx++] = SequenceofASDU_length;

 PDU[inx++] = ASDU_tag;

 PDU[inx++] = ASDU_length;

 PDU[inx++] = svID_tag;

 PDU[inx++] = svID_length;

 PDU[inx++] = svID_1;

 PDU[inx++] = svID_2;

 PDU[inx++] = svID_3;

 PDU[inx++] = svID_4;

 PDU[inx++] = svID_5;

 PDU[inx++] = svID_6;

225 | P a g e

 PDU[inx++] = svID_7;

 PDU[inx++] = svID_8;

 PDU[inx++] = svID_9;

 PDU[inx++] = svID_10;

 PDU[inx++] = svID_11;

 PDU[inx++] = svID_12;

 PDU[inx++] = smpCnt_tag;

 PDU[inx++] = smpCnt_length;

 PDU[inx++] = smpCnt_1;

 PDU[inx++] = smpCnt_2;

 PDU[inx++] = confRev_tag;

 PDU[inx++] = confRev_length;

 PDU[inx++] = confRev1;

 PDU[inx++] = confRev2;

 PDU[inx++] = confRev3;

 PDU[inx++] = confRev4;

 PDU[inx++] = smpSynch_tag;

 PDU[inx++] = smpSynch_length;

 PDU[inx++] = smpSynch;

 PDU[inx++] = SequenceofData_tag;

 PDU[inx++] = SequenceofData_length;

 /* Buffer of BUF_SIZ bytes we'll construct our frame in. First, clear it all to zero. */

 memset(sendbuf, 0, BUF_SIZ);

 len=0;

 /* Construct the Ethernet header */

 /* Destination address */

 sendbuf[len++] = DEST_MAC0;

 sendbuf[len++] = DEST_MAC1;

 sendbuf[len++] = DEST_MAC2;

 sendbuf[len++] = DEST_MAC3;

 sendbuf[len++] = DEST_MAC4;

 sendbuf[len++] = DEST_MAC5;

 /* Create the source */

 sendbuf[len++] = 0xA0;

 sendbuf[len++] = 0xB3;

 sendbuf[len++] = 0xCC;

 sendbuf[len++] = 0xC5;

 sendbuf[len++] = 0x77;

 sendbuf[len++] = 0xA1;

 sendbuf[len++] = 0x81;

226 | P a g e

 sendbuf[len++] = 0x00;

 sendbuf[len++] = 0x80;

 sendbuf[len++] = 0x00;

 /* Ethertype field Sampled Value protocol*/

 sendbuf[len++] = 0x88;

 sendbuf[len++] = 0xBA;

 /* PDU fields */

 sendbuf[len++] = APPID1;

 sendbuf[len++] = APPID2;

 sendbuf[len++] = length1;

 sendbuf[len++] = length2;

 sendbuf[len++] = resrv1_1;

 sendbuf[len++] = resrv1_2;

 sendbuf[len++] = resrv2_1;

 sendbuf[len++] = resrv2_2;

 sendbuf[len++] = sav_PDU_tag;

 sendbuf[len++] = sav_PDU_length;

 sendbuf[len++] = noASDU_tag;

 sendbuf[len++] = noASDU_length;

 sendbuf[len++] = noASDU;

 sendbuf[len++] = SequenceofASDU_tag;

 sendbuf[len++] = SequenceofASDU_length;

 sendbuf[len++] = ASDU_tag;

 sendbuf[len++] = ASDU_length;

 sendbuf[len++] = svID_tag;

 sendbuf[len++] = svID_length;

 sendbuf[len++] = svID_1;

 sendbuf[len++] = svID_2;

 sendbuf[len++] = svID_3;

 sendbuf[len++] = svID_4;

 sendbuf[len++] = svID_5;

 sendbuf[len++] = svID_6;

 sendbuf[len++] = svID_7;

 sendbuf[len++] = svID_8;

 sendbuf[len++] = svID_9;

 sendbuf[len++] = svID_10;

 sendbuf[len++] = svID_11;

 sendbuf[len++] = svID_12;

 sendbuf[len++] = smpCnt_tag;

 sendbuf[len++] = smpCnt_length;

 sendbuf[len++] = smpCnt_1;

 sendbuf[len++] = smpCnt_2;

227 | P a g e

 sendbuf[len++] = confRev_tag;

 sendbuf[len++] = confRev_length;

 sendbuf[len++] = confRev1;

 sendbuf[len++] = confRev2;

 sendbuf[len++] = confRev3;

 sendbuf[len++] = confRev4;

 sendbuf[len++] = smpSynch_tag;

 sendbuf[len++] = smpSynch_length;

 sendbuf[len++] = smpSynch;

 sendbuf[len++] = SequenceofData_tag;

 sendbuf[len++] = SequenceofData_length;

 /* extension fields*/

 sendbuf[len++] = session_id;

 sendbuf[len++] = length_id;

 sendbuf[len++] = common_header;

 sendbuf[len++] = l_id;

 sendbuf[len++] = spdu_length1;

 sendbuf[len++] = spdu_length2;

 sendbuf[len++] = spdu_length3;

 sendbuf[len++] = spdu_length4;

 sendbuf[len++] = spdu_num1;

 sendbuf[len++] = spdu_num2;

 sendbuf[len++] = spdu_num3;

 sendbuf[len++] = spdu_num4;

 sendbuf[len++] = ver1;

 sendbuf[len++] = ver2;

 sendbuf[len++] = TimeofCurrentKey1;

 sendbuf[len++] = TimeofCurrentKey2;

 sendbuf[len++] = TimeofCurrentKey3;

 sendbuf[len++] = TimeofCurrentKey4;

 sendbuf[len++] = TimeofNextKey1;

 sendbuf[len++] = TimeofNextKey2;

 sendbuf[len++] = sa1;

 sendbuf[len++] = sa2;

 sendbuf[len++] = keyID1;

 sendbuf[len++] = keyID2;

 sendbuf[len++] = keyID3;

 sendbuf[len++] = keyID4;

 sendbuf[len++] = len1;

 sendbuf[len++] = len2;

 sendbuf[len++] = len3;

 sendbuf[len++] = len4;

 sendbuf[len++] = pl_type;

 sendbuf[len++] = simulation;

228 | P a g e

 //printf(" total packet size=%d",inx);

 temp= inx%16;

 //printf(" temp=%d",temp);

 for (i=0; i<abs(temp-16); i++)

 PDU[inx++]=0x00;

 //printf(" inx value=%d",inx);

 /*for(i=0;i< inx;i++)

 printf(" %.2x",PDU[i]);

 */

 temp1= (inx/16);

 //printf(" temp1=%d",temp1);

 printf("\n Encrypted text:\n");

 for (x=0;x< temp1 ;x++)

 {

 //printf(" \n Plain Text of [%d] chunk :\n",x);

 for (y=0;y<16;y++)

 {

 plainText[y]= PDU[z++];

 //printf(" %02x",plainText[y]);

 }

 begin = clock();

 cipher=AESEncryption(plainText,expandedKey);

 end = clock();

 time_spent= (double)(end - begin) / CLOCKS_PER_SEC;

 time_encrypt = time_encrypt+time_spent;

 //printf(" \n cipher Text of [%d] chunk :\n",x);

 for (n=0; n<16 ; n++)

 {

 printf(" %02x", cipher[n]);

 sprintf(&(Data[n * 2]) , "%02x", cipher[n]);

 sendbuf[len++]=cipher[n];

 }

 strcat(cipher_str,Data);

 //printf("\n cipher-str: %s",cipher_str);

 //printf(" Data-str :%s",Data);

 }

 /*printf("\n send buf data:\n");

 for (i=0; i<144; i++)

 {

 printf(" %02x",sendbuf[i]);

 } */

229 | P a g e

 //printf("\n Cipher Text string :\n %s", cipher_str);

 begin = clock();

 hash = HMAC(EVP_sha256(), key, strlen((char *)key), cipher_str, strlen((char *)cipher_str), NULL, NULL);

 end = clock();

 time_hmac= (double)(end - begin) / CLOCKS_PER_SEC;

 begin = clock();

 hash = HMAC(EVP_sha256(), key, strlen((char *)key), cipher_str, strlen((char *)cipher_str), NULL, NULL);

 end = clock();

 time_hmac= (double)(end - begin) / CLOCKS_PER_SEC;

 printf("\n hash value:");

 for (i = 0; i < 32 ; i++)

 {

 sprintf(&(hash_string[i * 2]), "%02x", hash[i]);

 printf("%02x",hash[i]);

 sendbuf[len++]=hash[i];

 }

 /*printf("\n send buf data:\n");

 for (i=0; i<208; i++)

 {

 printf(" %02x",sendbuf[i]);

 } */

 //printf("\nHash value: %s", hash_string);

 //printf("\n\n");

 //printf(" time =%lf",time_spent);

 inx=0;z=0;

 strcpy(cipher_str,"\0");

 //printf("cipher_str=%s",cipher_str);

 //printf("\nencryption time=%lf\n hash generation time=%lf\n",et[index]*1000,ht[index]*1000);

 /* Index of the network device */

 socket_address.sll_ifindex = if_idx.ifr_ifindex; /* Network Interface number */

 /* Address length*/

 socket_address.sll_halen = ETH_ALEN; /* Length of Ethernet address */

 /* Destination MAC */

 socket_address.sll_addr[0] = DEST_MAC0;

 socket_address.sll_addr[1] = DEST_MAC1;

230 | P a g e

 socket_address.sll_addr[2] = DEST_MAC2;

 socket_address.sll_addr[3] = DEST_MAC3;

 socket_address.sll_addr[4] = DEST_MAC4;

 socket_address.sll_addr[5] = DEST_MAC5;

 /* Send packet */

 if (sendto(sfd, sendbuf, len, 0, (struct sockaddr*)&socket_address, sizeof(struct sockaddr_ll)) < 0)

 printf("Send failed\n");

 else

 {

 printf("\n packet data Sent :");

 for (i=0; i < len; i++)

 printf("%02x:", sendbuf[i]);

 printf("\n\n\n");

 //printf("\n packet=%d",count++);

 printf("\n MAC generation time=%lf",time_hmac*1000);

 printf("\n Encryption time=%lf\n",time_encrypt*1000);

 printf("\n-------------------------------------\n\n");

 time_hmac=0;time_encrypt=0;

 }

 /* Wait specified number of microseconds 1,000,000 microseconds = 1 second */

 usleep(1000000);

 }

 return 0;

}

231 | P a g e

APPENDIX F

EtM Receiver Source Code

/*This file is part of Github*/

/*https://github.com/61850security/S-GoSV-part-2*/

/* Source code published by (Hussain, Farooq, et al., 2020) */

/*This program is published*/

#include <arpa/inet.h>

#include <linux/if_packet.h>

#include <linux/ip.h>

#include <linux/udp.h>

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <sys/ioctl.h>

#include <sys/socket.h>

#include <net/if.h>

#include <netinet/ether.h>

#include <unistd.h>

#include <math.h>

#include <openssl/hmac.h>

#include <openssl/evp.h>

#include <sys/time.h>

#define DEST_MAC0 0xFF

#define DEST_MAC1 0xFF

#define DEST_MAC2 0xFF

#define DEST_MAC3 0xFF

#define DEST_MAC4 0xFF

#define DEST_MAC5 0xFF

#define ETHER_TYPE 0x88BF

#define DEFAULT_IF "eth0" /* your system interface name */

#define BUF_SIZ 2048

unsigned char s[256] =

 {

 0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5, 0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76,

 0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0, 0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0,

 0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC, 0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15,

 0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A, 0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75,

 0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0, 0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84,

https://github.com/61850security/R-GoSV

232 | P a g e

 0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B, 0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF,

 0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85, 0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8,

 0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5, 0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2,

 0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17, 0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73,

 0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88, 0x46, 0xEE, 0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB,

 0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C, 0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79,

 0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9, 0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08,

 0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6, 0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A,

 0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E, 0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E,

 0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94, 0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF,

 0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68, 0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16

 };

 unsigned char inv_s[256] =

 {

 0x52, 0x09, 0x6A, 0xD5, 0x30, 0x36, 0xA5, 0x38, 0xBF, 0x40, 0xA3, 0x9E, 0x81, 0xF3, 0xD7, 0xFB,

 0x7C, 0xE3, 0x39, 0x82, 0x9B, 0x2F, 0xFF, 0x87, 0x34, 0x8E, 0x43, 0x44, 0xC4, 0xDE, 0xE9, 0xCB,

 0x54, 0x7B, 0x94, 0x32, 0xA6, 0xC2, 0x23, 0x3D, 0xEE, 0x4C, 0x95, 0x0B, 0x42, 0xFA, 0xC3, 0x4E,

 0x08, 0x2E, 0xA1, 0x66, 0x28, 0xD9, 0x24, 0xB2, 0x76, 0x5B, 0xA2, 0x49, 0x6D, 0x8B, 0xD1, 0x25,

 0x72, 0xF8, 0xF6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xD4, 0xA4, 0x5C, 0xCC, 0x5D, 0x65, 0xB6, 0x92,

 0x6C, 0x70, 0x48, 0x50, 0xFD, 0xED, 0xB9, 0xDA, 0x5E, 0x15, 0x46, 0x57, 0xA7, 0x8D, 0x9D, 0x84,

 0x90, 0xD8, 0xAB, 0x00, 0x8C, 0xBC, 0xD3, 0x0A, 0xF7, 0xE4, 0x58, 0x05, 0xB8, 0xB3, 0x45, 0x06,

 0xD0, 0x2C, 0x1E, 0x8F, 0xCA, 0x3F, 0x0F, 0x02, 0xC1, 0xAF, 0xBD, 0x03, 0x01, 0x13, 0x8A, 0x6B,

 0x3A, 0x91, 0x11, 0x41, 0x4F, 0x67, 0xDC, 0xEA, 0x97, 0xF2, 0xCF, 0xCE, 0xF0, 0xB4, 0xE6, 0x73,

 0x96, 0xAC, 0x74, 0x22, 0xE7, 0xAD, 0x35, 0x85, 0xE2, 0xF9, 0x37, 0xE8, 0x1C, 0x75, 0xDF, 0x6E,

 0x47, 0xF1, 0x1A, 0x71, 0x1D, 0x29, 0xC5, 0x89, 0x6F, 0xB7, 0x62, 0x0E, 0xAA, 0x18, 0xBE, 0x1B,

 0xFC, 0x56, 0x3E, 0x4B, 0xC6, 0xD2, 0x79, 0x20, 0x9A, 0xDB, 0xC0, 0xFE, 0x78, 0xCD, 0x5A, 0xF4,

 0x1F, 0xDD, 0xA8, 0x33, 0x88, 0x07, 0xC7, 0x31, 0xB1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xEC, 0x5F,

 0x60, 0x51, 0x7F, 0xA9, 0x19, 0xB5, 0x4A, 0x0D, 0x2D, 0xE5, 0x7A, 0x9F, 0x93, 0xC9, 0x9C, 0xEF,

 0xA0, 0xE0, 0x3B, 0x4D, 0xAE, 0x2A, 0xF5, 0xB0, 0xC8, 0xEB, 0xBB, 0x3C, 0x83, 0x53, 0x99, 0x61,

 0x17, 0x2B, 0x04, 0x7E, 0xBA, 0x77, 0xD6, 0x26, 0xE1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0C, 0x7D

 };

unsigned char mul2[] =

{

 0x00,0x02,0x04,0x06,0x08,0x0a,0x0c,0x0e,0x10,0x12,0x14,0x16,0x18,0x1a,0x1c,0x1e,

 0x20,0x22,0x24,0x26,0x28,0x2a,0x2c,0x2e,0x30,0x32,0x34,0x36,0x38,0x3a,0x3c,0x3e,

 0x40,0x42,0x44,0x46,0x48,0x4a,0x4c,0x4e,0x50,0x52,0x54,0x56,0x58,0x5a,0x5c,0x5e,

 0x60,0x62,0x64,0x66,0x68,0x6a,0x6c,0x6e,0x70,0x72,0x74,0x76,0x78,0x7a,0x7c,0x7e,

 0x80,0x82,0x84,0x86,0x88,0x8a,0x8c,0x8e,0x90,0x92,0x94,0x96,0x98,0x9a,0x9c,0x9e,

 0xa0,0xa2,0xa4,0xa6,0xa8,0xaa,0xac,0xae,0xb0,0xb2,0xb4,0xb6,0xb8,0xba,0xbc,0xbe,

 0xc0,0xc2,0xc4,0xc6,0xc8,0xca,0xcc,0xce,0xd0,0xd2,0xd4,0xd6,0xd8,0xda,0xdc,0xde,

 0xe0,0xe2,0xe4,0xe6,0xe8,0xea,0xec,0xee,0xf0,0xf2,0xf4,0xf6,0xf8,0xfa,0xfc,0xfe,

 0x1b,0x19,0x1f,0x1d,0x13,0x11,0x17,0x15,0x0b,0x09,0x0f,0x0d,0x03,0x01,0x07,0x05,

 0x3b,0x39,0x3f,0x3d,0x33,0x31,0x37,0x35,0x2b,0x29,0x2f,0x2d,0x23,0x21,0x27,0x25,

233 | P a g e

 0x5b,0x59,0x5f,0x5d,0x53,0x51,0x57,0x55,0x4b,0x49,0x4f,0x4d,0x43,0x41,0x47,0x45,

 0x7b,0x79,0x7f,0x7d,0x73,0x71,0x77,0x75,0x6b,0x69,0x6f,0x6d,0x63,0x61,0x67,0x65,

 0x9b,0x99,0x9f,0x9d,0x93,0x91,0x97,0x95,0x8b,0x89,0x8f,0x8d,0x83,0x81,0x87,0x85,

 0xbb,0xb9,0xbf,0xbd,0xb3,0xb1,0xb7,0xb5,0xab,0xa9,0xaf,0xad,0xa3,0xa1,0xa7,0xa5,

 0xdb,0xd9,0xdf,0xdd,0xd3,0xd1,0xd7,0xd5,0xcb,0xc9,0xcf,0xcd,0xc3,0xc1,0xc7,0xc5,

 0xfb,0xf9,0xff,0xfd,0xf3,0xf1,0xf7,0xf5,0xeb,0xe9,0xef,0xed,0xe3,0xe1,0xe7,0xe5

};

unsigned char mul_3[] =

{

 0x00,0x03,0x06,0x05,0x0c,0x0f,0x0a,0x09,0x18,0x1b,0x1e,0x1d,0x14,0x17,0x12,0x11,

 0x30,0x33,0x36,0x35,0x3c,0x3f,0x3a,0x39,0x28,0x2b,0x2e,0x2d,0x24,0x27,0x22,0x21,

 0x60,0x63,0x66,0x65,0x6c,0x6f,0x6a,0x69,0x78,0x7b,0x7e,0x7d,0x74,0x77,0x72,0x71,

 0x50,0x53,0x56,0x55,0x5c,0x5f,0x5a,0x59,0x48,0x4b,0x4e,0x4d,0x44,0x47,0x42,0x41,

 0xc0,0xc3,0xc6,0xc5,0xcc,0xcf,0xca,0xc9,0xd8,0xdb,0xde,0xdd,0xd4,0xd7,0xd2,0xd1,

 0xf0,0xf3,0xf6,0xf5,0xfc,0xff,0xfa,0xf9,0xe8,0xeb,0xee,0xed,0xe4,0xe7,0xe2,0xe1,

 0xa0,0xa3,0xa6,0xa5,0xac,0xaf,0xaa,0xa9,0xb8,0xbb,0xbe,0xbd,0xb4,0xb7,0xb2,0xb1,

 0x90,0x93,0x96,0x95,0x9c,0x9f,0x9a,0x99,0x88,0x8b,0x8e,0x8d,0x84,0x87,0x82,0x81,

 0x9b,0x98,0x9d,0x9e,0x97,0x94,0x91,0x92,0x83,0x80,0x85,0x86,0x8f,0x8c,0x89,0x8a,

 0xab,0xa8,0xad,0xae,0xa7,0xa4,0xa1,0xa2,0xb3,0xb0,0xb5,0xb6,0xbf,0xbc,0xb9,0xba,

 0xfb,0xf8,0xfd,0xfe,0xf7,0xf4,0xf1,0xf2,0xe3,0xe0,0xe5,0xe6,0xef,0xec,0xe9,0xea,

 0xcb,0xc8,0xcd,0xce,0xc7,0xc4,0xc1,0xc2,0xd3,0xd0,0xd5,0xd6,0xdf,0xdc,0xd9,0xda,

 0x5b,0x58,0x5d,0x5e,0x57,0x54,0x51,0x52,0x43,0x40,0x45,0x46,0x4f,0x4c,0x49,0x4a,

 0x6b,0x68,0x6d,0x6e,0x67,0x64,0x61,0x62,0x73,0x70,0x75,0x76,0x7f,0x7c,0x79,0x7a,

 0x3b,0x38,0x3d,0x3e,0x37,0x34,0x31,0x32,0x23,0x20,0x25,0x26,0x2f,0x2c,0x29,0x2a,

 0x0b,0x08,0x0d,0x0e,0x07,0x04,0x01,0x02,0x13,0x10,0x15,0x16,0x1f,0x1c,0x19,0x1a

};

unsigned char mul_9[] =

{

 0x00,0x09,0x12,0x1b,0x24,0x2d,0x36,0x3f,0x48,0x41,0x5a,0x53,0x6c,0x65,0x7e,0x77,

 0x90,0x99,0x82,0x8b,0xb4,0xbd,0xa6,0xaf,0xd8,0xd1,0xca,0xc3,0xfc,0xf5,0xee,0xe7,

 0x3b,0x32,0x29,0x20,0x1f,0x16,0x0d,0x04,0x73,0x7a,0x61,0x68,0x57,0x5e,0x45,0x4c,

 0xab,0xa2,0xb9,0xb0,0x8f,0x86,0x9d,0x94,0xe3,0xea,0xf1,0xf8,0xc7,0xce,0xd5,0xdc,

 0x76,0x7f,0x64,0x6d,0x52,0x5b,0x40,0x49,0x3e,0x37,0x2c,0x25,0x1a,0x13,0x08,0x01,

 0xe6,0xef,0xf4,0xfd,0xc2,0xcb,0xd0,0xd9,0xae,0xa7,0xbc,0xb5,0x8a,0x83,0x98,0x91,

 0x4d,0x44,0x5f,0x56,0x69,0x60,0x7b,0x72,0x05,0x0c,0x17,0x1e,0x21,0x28,0x33,0x3a,

 0xdd,0xd4,0xcf,0xc6,0xf9,0xf0,0xeb,0xe2,0x95,0x9c,0x87,0x8e,0xb1,0xb8,0xa3,0xaa,

 0xec,0xe5,0xfe,0xf7,0xc8,0xc1,0xda,0xd3,0xa4,0xad,0xb6,0xbf,0x80,0x89,0x92,0x9b,

 0x7c,0x75,0x6e,0x67,0x58,0x51,0x4a,0x43,0x34,0x3d,0x26,0x2f,0x10,0x19,0x02,0x0b,

 0xd7,0xde,0xc5,0xcc,0xf3,0xfa,0xe1,0xe8,0x9f,0x96,0x8d,0x84,0xbb,0xb2,0xa9,0xa0,

 0x47,0x4e,0x55,0x5c,0x63,0x6a,0x71,0x78,0x0f,0x06,0x1d,0x14,0x2b,0x22,0x39,0x30,

 0x9a,0x93,0x88,0x81,0xbe,0xb7,0xac,0xa5,0xd2,0xdb,0xc0,0xc9,0xf6,0xff,0xe4,0xed,

 0x0a,0x03,0x18,0x11,0x2e,0x27,0x3c,0x35,0x42,0x4b,0x50,0x59,0x66,0x6f,0x74,0x7d,

 0xa1,0xa8,0xb3,0xba,0x85,0x8c,0x97,0x9e,0xe9,0xe0,0xfb,0xf2,0xcd,0xc4,0xdf,0xd6,

234 | P a g e

 0x31,0x38,0x23,0x2a,0x15,0x1c,0x07,0x0e,0x79,0x70,0x6b,0x62,0x5d,0x54,0x4f,0x46

};

unsigned char mul_11[] =

{

 0x00,0x0b,0x16,0x1d,0x2c,0x27,0x3a,0x31,0x58,0x53,0x4e,0x45,0x74,0x7f,0x62,0x69,

 0xb0,0xbb,0xa6,0xad,0x9c,0x97,0x8a,0x81,0xe8,0xe3,0xfe,0xf5,0xc4,0xcf,0xd2,0xd9,

 0x7b,0x70,0x6d,0x66,0x57,0x5c,0x41,0x4a,0x23,0x28,0x35,0x3e,0x0f,0x04,0x19,0x12,

 0xcb,0xc0,0xdd,0xd6,0xe7,0xec,0xf1,0xfa,0x93,0x98,0x85,0x8e,0xbf,0xb4,0xa9,0xa2,

 0xf6,0xfd,0xe0,0xeb,0xda,0xd1,0xcc,0xc7,0xae,0xa5,0xb8,0xb3,0x82,0x89,0x94,0x9f,

 0x46,0x4d,0x50,0x5b,0x6a,0x61,0x7c,0x77,0x1e,0x15,0x08,0x03,0x32,0x39,0x24,0x2f,

 0x8d,0x86,0x9b,0x90,0xa1,0xaa,0xb7,0xbc,0xd5,0xde,0xc3,0xc8,0xf9,0xf2,0xef,0xe4,

 0x3d,0x36,0x2b,0x20,0x11,0x1a,0x07,0x0c,0x65,0x6e,0x73,0x78,0x49,0x42,0x5f,0x54,

 0xf7,0xfc,0xe1,0xea,0xdb,0xd0,0xcd,0xc6,0xaf,0xa4,0xb9,0xb2,0x83,0x88,0x95,0x9e,

 0x47,0x4c,0x51,0x5a,0x6b,0x60,0x7d,0x76,0x1f,0x14,0x09,0x02,0x33,0x38,0x25,0x2e,

 0x8c,0x87,0x9a,0x91,0xa0,0xab,0xb6,0xbd,0xd4,0xdf,0xc2,0xc9,0xf8,0xf3,0xee,0xe5,

 0x3c,0x37,0x2a,0x21,0x10,0x1b,0x06,0x0d,0x64,0x6f,0x72,0x79,0x48,0x43,0x5e,0x55,

 0x01,0x0a,0x17,0x1c,0x2d,0x26,0x3b,0x30,0x59,0x52,0x4f,0x44,0x75,0x7e,0x63,0x68,

 0xb1,0xba,0xa7,0xac,0x9d,0x96,0x8b,0x80,0xe9,0xe2,0xff,0xf4,0xc5,0xce,0xd3,0xd8,

 0x7a,0x71,0x6c,0x67,0x56,0x5d,0x40,0x4b,0x22,0x29,0x34,0x3f,0x0e,0x05,0x18,0x13,

 0xca,0xc1,0xdc,0xd7,0xe6,0xed,0xf0,0xfb,0x92,0x99,0x84,0x8f,0xbe,0xb5,0xa8,0xa3

};

unsigned char mul_13[] =

{

 0x00,0x0d,0x1a,0x17,0x34,0x39,0x2e,0x23,0x68,0x65,0x72,0x7f,0x5c,0x51,0x46,0x4b,

 0xd0,0xdd,0xca,0xc7,0xe4,0xe9,0xfe,0xf3,0xb8,0xb5,0xa2,0xaf,0x8c,0x81,0x96,0x9b,

 0xbb,0xb6,0xa1,0xac,0x8f,0x82,0x95,0x98,0xd3,0xde,0xc9,0xc4,0xe7,0xea,0xfd,0xf0,

 0x6b,0x66,0x71,0x7c,0x5f,0x52,0x45,0x48,0x03,0x0e,0x19,0x14,0x37,0x3a,0x2d,0x20,

 0x6d,0x60,0x77,0x7a,0x59,0x54,0x43,0x4e,0x05,0x08,0x1f,0x12,0x31,0x3c,0x2b,0x26,

 0xbd,0xb0,0xa7,0xaa,0x89,0x84,0x93,0x9e,0xd5,0xd8,0xcf,0xc2,0xe1,0xec,0xfb,0xf6,

 0xd6,0xdb,0xcc,0xc1,0xe2,0xef,0xf8,0xf5,0xbe,0xb3,0xa4,0xa9,0x8a,0x87,0x90,0x9d,

 0x06,0x0b,0x1c,0x11,0x32,0x3f,0x28,0x25,0x6e,0x63,0x74,0x79,0x5a,0x57,0x40,0x4d,

 0xda,0xd7,0xc0,0xcd,0xee,0xe3,0xf4,0xf9,0xb2,0xbf,0xa8,0xa5,0x86,0x8b,0x9c,0x91,

 0x0a,0x07,0x10,0x1d,0x3e,0x33,0x24,0x29,0x62,0x6f,0x78,0x75,0x56,0x5b,0x4c,0x41,

 0x61,0x6c,0x7b,0x76,0x55,0x58,0x4f,0x42,0x09,0x04,0x13,0x1e,0x3d,0x30,0x27,0x2a,

 0xb1,0xbc,0xab,0xa6,0x85,0x88,0x9f,0x92,0xd9,0xd4,0xc3,0xce,0xed,0xe0,0xf7,0xfa,

 0xb7,0xba,0xad,0xa0,0x83,0x8e,0x99,0x94,0xdf,0xd2,0xc5,0xc8,0xeb,0xe6,0xf1,0xfc,

 0x67,0x6a,0x7d,0x70,0x53,0x5e,0x49,0x44,0x0f,0x02,0x15,0x18,0x3b,0x36,0x21,0x2c,

 0x0c,0x01,0x16,0x1b,0x38,0x35,0x22,0x2f,0x64,0x69,0x7e,0x73,0x50,0x5d,0x4a,0x47,

 0xdc,0xd1,0xc6,0xcb,0xe8,0xe5,0xf2,0xff,0xb4,0xb9,0xae,0xa3,0x80,0x8d,0x9a,0x97

};

unsigned char mul_14[] =

{

235 | P a g e

 0x00,0x0e,0x1c,0x12,0x38,0x36,0x24,0x2a,0x70,0x7e,0x6c,0x62,0x48,0x46,0x54,0x5a,

 0xe0,0xee,0xfc,0xf2,0xd8,0xd6,0xc4,0xca,0x90,0x9e,0x8c,0x82,0xa8,0xa6,0xb4,0xba,

 0xdb,0xd5,0xc7,0xc9,0xe3,0xed,0xff,0xf1,0xab,0xa5,0xb7,0xb9,0x93,0x9d,0x8f,0x81,

 0x3b,0x35,0x27,0x29,0x03,0x0d,0x1f,0x11,0x4b,0x45,0x57,0x59,0x73,0x7d,0x6f,0x61,

 0xad,0xa3,0xb1,0xbf,0x95,0x9b,0x89,0x87,0xdd,0xd3,0xc1,0xcf,0xe5,0xeb,0xf9,0xf7,

 0x4d,0x43,0x51,0x5f,0x75,0x7b,0x69,0x67,0x3d,0x33,0x21,0x2f,0x05,0x0b,0x19,0x17,

 0x76,0x78,0x6a,0x64,0x4e,0x40,0x52,0x5c,0x06,0x08,0x1a,0x14,0x3e,0x30,0x22,0x2c,

 0x96,0x98,0x8a,0x84,0xae,0xa0,0xb2,0xbc,0xe6,0xe8,0xfa,0xf4,0xde,0xd0,0xc2,0xcc,

 0x41,0x4f,0x5d,0x53,0x79,0x77,0x65,0x6b,0x31,0x3f,0x2d,0x23,0x09,0x07,0x15,0x1b,

 0xa1,0xaf,0xbd,0xb3,0x99,0x97,0x85,0x8b,0xd1,0xdf,0xcd,0xc3,0xe9,0xe7,0xf5,0xfb,

 0x9a,0x94,0x86,0x88,0xa2,0xac,0xbe,0xb0,0xea,0xe4,0xf6,0xf8,0xd2,0xdc,0xce,0xc0,

 0x7a,0x74,0x66,0x68,0x42,0x4c,0x5e,0x50,0x0a,0x04,0x16,0x18,0x32,0x3c,0x2e,0x20,

 0xec,0xe2,0xf0,0xfe,0xd4,0xda,0xc8,0xc6,0x9c,0x92,0x80,0x8e,0xa4,0xaa,0xb8,0xb6,

 0x0c,0x02,0x10,0x1e,0x34,0x3a,0x28,0x26,0x7c,0x72,0x60,0x6e,0x44,0x4a,0x58,0x56,

 0x37,0x39,0x2b,0x25,0x0f,0x01,0x13,0x1d,0x47,0x49,0x5b,0x55,0x7f,0x71,0x63,0x6d,

 0xd7,0xd9,0xcb,0xc5,0xef,0xe1,0xf3,0xfd,0xa7,0xa9,0xbb,0xb5,0x9f,0x91,0x83,0x8d

};

unsigned char rcon[11] =

{

 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36,

};

unsigned char * g (unsigned char wInput[4], int counter)

{

 unsigned char * wReady = malloc(4);

 unsigned char temp[4] = "";

 unsigned char a = wInput[0];

 for(int i =0;i<3; i++)

 {

 temp[i] = wInput[(i+1)];

 }

 temp[3] = a;

 for (int i =0; i<4;i++)

 temp[i] = s[temp[i]];

 //unsigned char array formed for xoring with rcon

 unsigned char array2[4] = "";

 array2[0] = rcon[counter];

 array2[1] = array2[2] = array2[3] = 0x00;

 for (int i=0;i<4;i++)

 wReady[i] = temp[i] ^ array2[i];

236 | P a g e

 return wReady;

}

unsigned char * keyExpansion(unsigned char key[16])

{

 unsigned char words[44][4];

 for (int i = 0; i < 44; ++i)

 {

 for (int j = 0; j <4; ++j)

 {

 words[i][j]=0x00;

 }

 }

 unsigned char * expandedKey = malloc(176);

 int byteCount = 0; //this is to keep a count on the bytes of the expandedKey array

 for (int i=0;i<16;i++)

 expandedKey[i] = key[i];

 for(int j=0;j<4;j++)

 {

 for(int k=0;k<4;k++)

 {

 words[j][k] = expandedKey[byteCount];

 byteCount++;

 }

 }

 for(int l=4;l<44;l++)

 {

 if((l%4)==0)

 {

 for(int m=0;m<4;m++)

 {

 words[l][m] = words[(l-4)][m] ^ g(words[l-1], (l/4))[m];

 }

 }

 else

 {

 for(int n=0;n<4;n++)

 {

 words[l][n] = words[l-1][n] ^ words[l-4][n];

 }

 }

237 | P a g e

 }

 int loc=0;

 for(int i=0;i<44;i++)

 {

 for(int j=0;j<4;j++)

 {

 expandedKey[loc] = words[i][j];

 loc++;

 }

 }

 return expandedKey;

}

void mixColumns(unsigned char * plainText)

{

 unsigned char * tempC = malloc(16);

 for (int i = 0; i < 4; ++i)

 {

 tempC[(4*i)+0] = (unsigned char) (mul2[plainText[(4*i)+0]] ^ mul_3[plainText[(4*i)+1]] ^ plainText[(4*i)+2] ^

plainText[(4*i)+3]);

 tempC[(4*i)+1] = (unsigned char) (plainText[(4*i)+0] ^ mul2[plainText[(4*i)+1]] ^ mul_3[plainText[(4*i)+2]] ^

plainText[(4*i)+3]);

 tempC[(4*i)+2] = (unsigned char) (plainText[(4*i)+0] ^ plainText[(4*i)+1] ^ mul2[plainText[(4*i)+2]] ^

mul_3[plainText[(4*i)+3]]);

 tempC[(4*i)+3] = (unsigned char) (mul_3[plainText[(4*i)+0]] ^ plainText[(4*i)+1] ^ plainText[(4*i)+2] ^

mul2[plainText[(4*i)+3]]);

 }

 for (int i = 0; i < 16; ++i)

 {

 plainText[i] = tempC[i];

 }

 free(tempC);

}

void inverseMixedColumn (unsigned char * plainText)

{

 unsigned char * tempC = malloc(18);

 for (int i = 0; i < 4; ++i)

 {

 tempC[(4*i)+0] = (unsigned char) (mul_14[plainText[(4*i)+0]] ^ mul_11[plainText[(4*i)+1]] ^

mul_13[plainText[(4*i)+2]] ^ mul_9[plainText[(4*i)+3]]);

238 | P a g e

 tempC[(4*i)+1] = (unsigned char) (mul_9[plainText[(4*i)+0]] ^ mul_14[plainText[(4*i)+1]] ^

mul_11[plainText[(4*i)+2]] ^ mul_13[plainText[(4*i)+3]]);

 tempC[(4*i)+2] = (unsigned char) (mul_13[plainText[(4*i)+0]] ^ mul_9[plainText[(4*i)+1]] ^

mul_14[plainText[(4*i)+2]] ^ mul_11[plainText[(4*i)+3]]);

 tempC[(4*i)+3] = (unsigned char) (mul_11[plainText[(4*i)+0]] ^ mul_13[plainText[(4*i)+1]] ^

mul_9[plainText[(4*i)+2]] ^ mul_14[plainText[(4*i)+3]]);

 }

 for (int i = 0; i < 16; ++i)

 {

 plainText[i] = tempC[i];

 }

 free(tempC);

}

void byteSubShiftRow(unsigned char * state)

{

 unsigned char tmp[16];

 tmp[0] = s[state[0]];

 tmp[1] = s[state[5]];

 tmp[2] = s[state[10]];

 tmp[3] = s[state[15]];

 tmp[4] = s[state[4]];

 tmp[5] = s[state[9]];

 tmp[6] = s[state[14]];

 tmp[7] = s[state[3]];

 tmp[8] = s[state[8]];

 tmp[9] = s[state[13]];

 tmp[10] = s[state[2]];

 tmp[11] = s[state[7]];

 tmp[12] = s[state[12]];

 tmp[13] = s[state[1]];

 tmp[14] = s[state[6]];

 tmp[15] = s[state[11]];

 for(int i=0;i<16;i++)

 {

 state[i] = tmp[i];

 }

}

void inverseByteSubShiftRow(unsigned char * plainText)

{

239 | P a g e

 unsigned char * temp = malloc(16);

 temp[0] = inv_s[plainText[0]];

 temp[1] = inv_s[plainText[13]];

 temp[2] = inv_s[plainText[10]];

 temp[3] = inv_s[plainText[7]];

 temp[4] = inv_s[plainText[4]];

 temp[5] = inv_s[plainText[1]];

 temp[6] = inv_s[plainText[14]];

 temp[7] = inv_s[plainText[11]];

 temp[8] = inv_s[plainText[8]];

 temp[9] = inv_s[plainText[5]];

 temp[10] = inv_s[plainText[2]];

 temp[11] = inv_s[plainText[15]];

 temp[12] = inv_s[plainText[12]];

 temp[13] = inv_s[plainText[9]];

 temp[14] = inv_s[plainText[6]];

 temp[15] = inv_s[plainText[3]];

 for (int i = 0; i < 16; ++i)

 plainText[i] = temp[i];

 free(temp);

}

unsigned char * AESDecryption(unsigned char * cipher, unsigned char * expandedKey)

{

 unsigned char * state = malloc(16);

 unsigned char * plainTxt = malloc(16);

 //key whitening

 for (int i = 0; i < 16; ++i)

 state[i] = cipher[i] ^ expandedKey[160+i];

 // 9 rounds of decryption

 for (int rounds = 9; rounds >0 ; rounds--)

 {

 inverseByteSubShiftRow(state);

 int counter = 0;

 int loc = 16*rounds;

 while(counter<16)

 {

 state[counter] ^= expandedKey[loc];

 loc++;

 counter++;

 }

 inverseMixedColumn(state);

240 | P a g e

 }

 //final 10th round of decryption

 inverseByteSubShiftRow(state);

 for(int i =0; i<16; i++)

 {

 plainTxt[i] = state[i] ^ expandedKey[i];

 //printf("\n plainText[%d]=%x",i,plainText[i]);

 }

 free(state);

 return plainTxt;

}

int main(int argc, char *argv[])

{

 char sender[INET6_ADDRSTRLEN];

 int sockfd, ret, i;

 int sockopt,c_index=0,h_index=0,flag=0,dig=0,p=0,j=0,q=0,count=1;

 ssize_t numbytes;

 struct ifreq ifopts; /* set promiscuous mode */

 struct ifreq if_ip; /* get ip addr */

 struct sockaddr_storage their_addr;

 unsigned char * expandedKey = malloc(176);

 unsigned char * cipher1 = malloc(16);

 unsigned char * plainText1 = malloc(16);

 unsigned char * plainText= malloc(1024);

 unsigned char * hash_recv= malloc(32);

 unsigned char * hash;

 unsigned char * hash_string= malloc(32);

 unsigned char * buf = malloc(1024);

 unsigned char * cipher = malloc(144);

 unsigned char * cipher_str = malloc(288);

 //unsigned char hash_string[32];

 //unsigned char buf[BUF_SIZ],cipher[144],cipher_str[288];

 //uint8_t = unsigned char data type

 char ifName[IFNAMSIZ];

 unsigned char key[14]= { 0x32, 0x21, 0x23, 0x52, 0x71, 0x98, 0x24, 0x03, 0x38, 0x27, 0x01, 0x12, 0x95,

0x23};

 double begin,end,time_spent,time_hmac=0,time_comp=0,time_decrypt=0,t=0;

 expandedKey = keyExpansion(key);

 /* Get interface name */

 if (argc > 1)

 strcpy(ifName, argv[1]);

241 | P a g e

 else

 strcpy(ifName, DEFAULT_IF);

 /* Header structures */

 struct ether_header *eh = (struct ether_header *) buf;

 struct iphdr *iph = (struct iphdr *) (buf + sizeof(struct ether_header));

 struct udphdr *udph = (struct udphdr *) (buf + sizeof(struct iphdr) + sizeof(struct ether_header));

 memset(&if_ip, 0, sizeof(struct ifreq));

 /* Open PF_PACKET socket, listening for EtherType ETHER_TYPE */

 if ((sockfd = socket(PF_PACKET, SOCK_RAW, htons(ETHER_TYPE))) == -1) {

 perror("listener: socket");

 return -1;

 }

 /* Set interface to promiscuous mode - do we need to do this every time? */

 strncpy(ifopts.ifr_name, ifName, IFNAMSIZ-1);

 ioctl(sockfd, SIOCGIFFLAGS, &ifopts);

 ifopts.ifr_flags |= IFF_PROMISC;

 ioctl(sockfd, SIOCSIFFLAGS, &ifopts);

 /* Allow the socket to be reused - incase connection is closed prematurely */

 if (setsockopt(sockfd, SOL_SOCKET, SO_REUSEADDR, &sockopt, sizeof sockopt) == -1) {

 perror("setsockopt");

 close(sockfd);

 exit(EXIT_FAILURE);

 }

 /* Bind to device */

 if (setsockopt(sockfd, SOL_SOCKET, SO_BINDTODEVICE, ifName, IFNAMSIZ-1) == -1) {

 perror("SO_BINDTODEVICE");

 close(sockfd);

 exit(EXIT_FAILURE);

 }

repeat: printf("listener: Waiting to recvfrom...\n");

 numbytes = recvfrom(sockfd, buf, BUF_SIZ, 0, NULL, NULL);

 printf("listener: got packet %lu bytes\n", numbytes);

 /* Check the packet is for me */

 if (eh->ether_dhost[0] == DEST_MAC0 &&

 eh->ether_dhost[1] == DEST_MAC1 &&

 eh->ether_dhost[2] == DEST_MAC2 &&

 eh->ether_dhost[3] == DEST_MAC3 &&

 eh->ether_dhost[4] == DEST_MAC4 &&

 eh->ether_dhost[5] == DEST_MAC5) {

242 | P a g e

 printf("Correct destination MAC address\n");

 } else {

 printf("Wrong destination MAC: %x:%x:%x:%x:%x:%x\n",

 eh->ether_dhost[0],

 eh->ether_dhost[1],

 eh->ether_dhost[2],

 eh->ether_dhost[3],

 eh->ether_dhost[4],

 eh->ether_dhost[5]);

 ret = -1;

 goto done;

 }

 /* Get source IP */

 ((struct sockaddr_in *)&their_addr)->sin_addr.s_addr = iph->saddr;

 inet_ntop(AF_INET, &((struct sockaddr_in*)&their_addr)->sin_addr, sender, sizeof sender);

 /* Look up my device IP addr if possible */

 strncpy(if_ip.ifr_name, ifName, IFNAMSIZ-1);

 if (ioctl(sockfd, SIOCGIFADDR, &if_ip) >= 0) { /* if we can't check then don't */

 printf("Source IP: %s\n My IP: %s\n", sender,

 inet_ntoa(((struct sockaddr_in *)&if_ip.ifr_addr)->sin_addr));

 /* ignore if I sent it */

 if (strcmp(sender, inet_ntoa(((struct sockaddr_in *)&if_ip.ifr_addr)->sin_addr)) == 0){

 printf("but I sent it :(\n");

 ret = -1;

 goto done;

 }

 }

 /* UDP payload length */

 ret = ntohs(udph->len) - sizeof(struct udphdr);

 /* Print packet */

 printf("\n \t Received Packet Data:\n");

 for (i=0; i<numbytes; i++)

 {

 printf("%02x:", buf[i]);

 }

 printf("\n\n received cipher text:\n");

 for(i=22;i<=165;i++)

 {

 printf(" %02x",buf[i]);

 cipher[c_index++]=buf[i];

 }

243 | P a g e

 c_index=0;

 printf("\n\n Received hash value:\n");

 for(i=numbytes-32;i<numbytes;i++)

 {

 printf(" %02x",buf[i]);

 hash_recv[h_index++]=buf[i];

 }

 h_index=0;

 printf("\n\n Received cipher text in a variable extracted from packet data:\n");

 for(i=0;i<144;i++)

 {

 printf(" %02x",cipher[c_index++]);

 }

 c_index=0;

 printf("\n\n Received hash value in a variable extracted packet data:\n");

 h_index=0;

 for(i=0;i<32;i++)

 {

 printf(" %02x",hash_recv[h_index++]);

 }

 h_index=0;

 for (i=0;i<144;i++)

 {

 sprintf(&(cipher_str [i*2]), "%02x", cipher[i]);

 }

 //printf(" Cipher Text string :\n %s", cipher_str);

 begin = clock();

 hash = HMAC(EVP_sha256(), key, strlen((char *)key), cipher_str, strlen((char *)cipher_str),

NULL, NULL);

 end = clock();

 time_hmac= (double)(end - begin) / CLOCKS_PER_SEC;

 begin = clock();

 hash = HMAC(EVP_sha256(), key, strlen((char *)key), cipher_str, strlen((char *)cipher_str),

NULL, NULL);

 end = clock();

 time_hmac= (double)(end - begin) / CLOCKS_PER_SEC;

 //printf(" \n time-spent hmac =%lf",time_hmac*1000);

 for (i = 0; i < 32 ; i++)

 sprintf(&(hash_string[i * 2]), "%02x", hash[i]);

 printf("\n\n Generated hash string at the receiver:%s\n",hash_string);

 begin=clock();

 for (i = 0; i < 32 ; i++)

244 | P a g e

 {

 //printf(" hash value: \n %02x",hash_recv[h_index]);

 //printf(" %02x\n",hash[i]);

 if(hash_recv[h_index++] != hash[i])

 flag=1;

 }

 end=clock();

 time_comp= (double)(end - begin) / CLOCKS_PER_SEC;

 //printf(" \n time-spent comparision =%lf",time_comp*1000);

 printf("\n flag value=%d",flag);

 dig=0;

 if (flag == 0)

 {

 printf("\n ** Hash values matched **\n");

 for (i=0; i<9; i++)

 {

 for (q=0; q<16; q++)

 cipher1[q]= cipher[j++];

 begin = clock();

 plainText1=AESDecryption(cipher1,expandedKey);

 end = clock();

 time_spent= (double)(end - begin) / CLOCKS_PER_SEC;

 time_decrypt = time_decrypt+time_spent;

 for (q=0; q<16; q++)

 {

 plainText[p]= plainText1[q];

 //printf(" %.2x", plainText[p++]);

 }

 //printf("\n");

 }

 //printf("\n Decryption time =%lf\n",time_decrypt*1000);

 }

 else

 {

 //printf("\n Hash values mis-matched\n");

 }

 j=0;p=0;

 strcpy(cipher1,"\0");

 strcpy(plainText1,"\0");

245 | P a g e

 strcpy(plainText,"\0");

 //printf("packet=%d",count++);

 printf(" \n MAC Generation time using HMAC-SHA256=%lf",time_hmac*1000);

 printf(" \n MAC comparision time=%lf",time_comp*1000);

 printf(" \n Decryption time=%lf\n",time_decrypt*1000);

 printf("\n-------------------------------------\n\n");

 //printf(" Total time =%lf", (time_hmac+time_comp+time_decrypt));

 time_hmac=0;time_comp=0;time_decrypt=0;

done: goto repeat;

 close(sockfd);

 return ret;

}

246 | P a g e

APPENDIX G

Attached is the Wireshark capture of the Sampled Value packets from the sending device.

No. Time Time delta Source Destination Protocol Length

1 0 0 HewlettP_

c5:77:a1

PcsCompu

_f8:42:a7

IEC61850

Sampled

Values

176

2 1,0007302

08

1,0007302

08

HewlettP_

c5:77:a1

PcsCompu

_f8:42:a7

IEC61850

Sampled

Values

176

3 1,0005675

12

1,0005675

12

HewlettP_

c5:77:a1

PcsCompu

_f8:42:a7

IEC61850

Sampled

Values

176

4 1,0198553

42

1,0198553

42

HewlettP_

c5:77:a1

PcsCompu

_f8:42:a7

IEC61850

Sampled

Values

176

8 1,0010750

39

0,0402647

58

HewlettP_

c5:77:a1

PcsCompu

_f8:42:a7

IEC61850

Sampled

Values

176

10 1,0006489

91

0,5061951

43

HewlettP_

c5:77:a1

PcsCompu

_f8:42:a7

IEC61850

Sampled

Values

176

11 1,0005700

27

1,0005700

27

HewlettP_

c5:77:a1

PcsCompu

_f8:42:a7

IEC61850

Sampled

Values

176

16 1,0008760

31

0,1528323

43

HewlettP_

c5:77:a1

PcsCompu

_f8:42:a7

IEC61850

Sampled

Values

176

21 1,0007067

47

0,1144432

81

HewlettP_

c5:77:a1

PcsCompu

_f8:42:a7

IEC61850

Sampled

Values

176

26 1,0018686

98

0,0759770

39

HewlettP_

c5:77:a1

PcsCompu

_f8:42:a7

IEC61850

Sampled

Values

176

247 | P a g e

27 1,0003342

68

1,0003342

68

HewlettP_

c5:77:a1

PcsCompu

_f8:42:a7

IEC61850

Sampled

Values

176

28 1,0005809

7

1,0005809

7

HewlettP_

c5:77:a1

PcsCompu

_f8:42:a7

IEC61850

Sampled

Values

176

29 1,0179310

34

1,0179310

34

HewlettP_

c5:77:a1

PcsCompu

_f8:42:a7

IEC61850

Sampled

Values

176

31 1,0007171

72

0,5247796

32

HewlettP_

c5:77:a1

PcsCompu

_f8:42:a7

IEC61850

Sampled

Values

176

33 1,0009275

11

0,9084302

05

HewlettP_

c5:77:a1

PcsCompu

_f8:42:a7

IEC61850

Sampled

Values

176

36 1,0273367

91

0,0460705

61

HewlettP_

c5:77:a1

PcsCompu

_f8:42:a7

IEC61850

Sampled

Values

176

40 1,0060995

77

0,0582979

48

HewlettP_

c5:77:a1

PcsCompu

_f8:42:a7

IEC61850

Sampled

Values

176

41 1,0007468

23

1,0007468

23

HewlettP_

c5:77:a1

PcsCompu

_f8:42:a7

IEC61850

Sampled

Values

176

42 1,0012672

88

1,0012672

88

HewlettP_

c5:77:a1

PcsCompu

_f8:42:a7

IEC61850

Sampled

Values

176

45 1,0005557

93

0,0512975

35

HewlettP_

c5:77:a1

PcsCompu

_f8:42:a7

IEC61850

Sampled

Values

176

46 1,0148303

43

1,0148303

43

HewlettP_

c5:77:a1

PcsCompu

_f8:42:a7

IEC61850

Sampled

Values

176

48 1,0011342

39

0,5734401

32

HewlettP_

c5:77:a1

PcsCompu

_f8:42:a7

IEC61850

Sampled

Values

176

248 | P a g e

49 1,0013998

45

1,0013998

45

HewlettP_

c5:77:a1

PcsCompu

_f8:42:a7

IEC61850

Sampled

Values

176

50 1,0011343

02

1,0011343

02

HewlettP_

c5:77:a1

PcsCompu

_f8:42:a7

IEC61850

Sampled

Values

176

51 1,0007696

18

1,0007696

18

HewlettP_

c5:77:a1

PcsCompu

_f8:42:a7

IEC61850

Sampled

Values

176

52 1,0012899

92

1,0012899

92

HewlettP_

c5:77:a1

PcsCompu

_f8:42:a7

IEC61850

Sampled

Values

176

53 1,0008000

83

1,0008000

83

HewlettP_

c5:77:a1

PcsCompu

_f8:42:a7

IEC61850

Sampled

Values

176

54 1,0116789

12

1,0116789

12

HewlettP_

c5:77:a1

PcsCompu

_f8:42:a7

IEC61850

Sampled

Values

176

55 1,0008834

13

1,0008834

13

HewlettP_

c5:77:a1

PcsCompu

_f8:42:a7

IEC61850

Sampled

Values

176

57 1,0019459

73

0,5899194

5

HewlettP_

c5:77:a1

PcsCompu

_f8:42:a7

IEC61850

Sampled

Values

176

58 1,0029376

33

1,0029376

33

HewlettP_

c5:77:a1

PcsCompu

_f8:42:a7

IEC61850

Sampled

Values

176

59 1,0010649

42

1,0010649

42

HewlettP_

c5:77:a1

PcsCompu

_f8:42:a7

IEC61850

Sampled

Values

176

60 1,0011825

93

1,0011825

93

HewlettP_

c5:77:a1

PcsCompu

_f8:42:a7

IEC61850

Sampled

Values

176

61 1,0005739

51

1,0005739

51

HewlettP_

c5:77:a1

PcsCompu

_f8:42:a7

IEC61850

Sampled

Values

176

249 | P a g e

62 1,0034861

31

1,0034861

31

HewlettP_

c5:77:a1

PcsCompu

_f8:42:a7

IEC61850

Sampled

Values

176

63 1,0028297

43

1,0028297

43

HewlettP_

c5:77:a1

PcsCompu

_f8:42:a7

IEC61850

Sampled

Values

176

65 1,0234456

45

0,0396710

99

HewlettP_

c5:77:a1

PcsCompu

_f8:42:a7

IEC61850

Sampled

Values

176

67 1,0010971

58

0,6238734

34

HewlettP_

c5:77:a1

PcsCompu

_f8:42:a7

IEC61850

Sampled

Values

176

68 1,0095398

06

1,0095398

06

HewlettP_

c5:77:a1

PcsCompu

_f8:42:a7

IEC61850

Sampled

Values

176

70 1,0004541

55

0,0496144

54

HewlettP_

c5:77:a1

PcsCompu

_f8:42:a7

IEC61850

Sampled

Values

176

71 1,0043009

96

1,0043009

96

HewlettP_

c5:77:a1

PcsCompu

_f8:42:a7

IEC61850

Sampled

Values

176

72 1,0012359

77

1,0012359

77

HewlettP_

c5:77:a1

PcsCompu

_f8:42:a7

IEC61850

Sampled

Values

176

74 1,0010892

41

0,0557182

82

HewlettP_

c5:77:a1

PcsCompu

_f8:42:a7

IEC61850

Sampled

Values

176

76 1,0014006

57

0,3002351

73

HewlettP_

c5:77:a1

PcsCompu

_f8:42:a7

IEC61850

Sampled

Values

176

77 1,0046292

04

1,0046292

04

HewlettP_

c5:77:a1

PcsCompu

_f8:42:a7

IEC61850

Sampled

Values

176

250 | P a g e

APPENDIX H

Attached is the Wireshark capture of the Sampled Value packets from the receiving device.

No. Time Source Destination Protocol Length

1 0.000000000 HewlettP_c5:

77:a1

PcsCompu_f

8:42:a7

IEC61850

Sampled

Values

176

5 1.001302427 HewlettP_c5:

77:a1

PcsCompu_f

8:42:a7

IEC61850

Sampled

Values

176

7 1.000630852 HewlettP_c5:

77:a1

PcsCompu_f

8:42:a7

IEC61850

Sampled

Values

176

8 1.000355431 HewlettP_c5:

77:a1

PcsCompu_f

8:42:a7

IEC61850

Sampled

Values

176

13 1.000876148 HewlettP_c5:

77:a1

PcsCompu_f

8:42:a7

IEC61850

Sampled

Values

176

18 1.000772328 HewlettP_c5:

77:a1

PcsCompu_f

8:42:a7

IEC61850

Sampled

Values

176

23 1.001844746 HewlettP_c5:

77:a1

PcsCompu_f

8:42:a7

IEC61850

Sampled

Values

176

24 1.000285075 HewlettP_c5:

77:a1

PcsCompu_f

8:42:a7

IEC61850

Sampled

Values

176

25 1.000931510 HewlettP_c5:

77:a1

PcsCompu_f

8:42:a7

IEC61850

Sampled

Values

176

26 1.017946027 HewlettP_c5:

77:a1

PcsCompu_f

8:42:a7

IEC61850

Sampled

Values

176

251 | P a g e

28 1.000394877 HewlettP_c5:

77:a1

PcsCompu_f

8:42:a7

IEC61850

Sampled

Values

176

30 1.001198878 HewlettP_c5:

77:a1

PcsCompu_f

8:42:a7

IEC61850

Sampled

Values

176

33 1.027394484 HewlettP_c5:

77:a1

PcsCompu_f

8:42:a7

IEC61850

Sampled

Values

176

37 1.005958011 HewlettP_c5:

77:a1

PcsCompu_f

8:42:a7

IEC61850

Sampled

Values

176

38 1.000609014 HewlettP_c5:

77:a1

PcsCompu_f

8:42:a7

IEC61850

Sampled

Values

176

39 1.001205644 HewlettP_c5:

77:a1

PcsCompu_f

8:42:a7

IEC61850

Sampled

Values

176

42 1.000941860 HewlettP_c5:

77:a1

PcsCompu_f

8:42:a7

IEC61850

Sampled

Values

176

43 1.014430880 HewlettP_c5:

77:a1

PcsCompu_f

8:42:a7

IEC61850

Sampled

Values

176

45 1.001542392 HewlettP_c5:

77:a1

PcsCompu_f

8:42:a7

IEC61850

Sampled

Values

176

46 1.001165932 HewlettP_c5:

77:a1

PcsCompu_f

8:42:a7

IEC61850

Sampled

Values

176

47 1.001046078 HewlettP_c5:

77:a1

PcsCompu_f

8:42:a7

IEC61850

Sampled

Values

176

48 1.000869278 HewlettP_c5:

77:a1

PcsCompu_f

8:42:a7

IEC61850

Sampled

Values

176

252 | P a g e

49 1.001141924 HewlettP_c5:

77:a1

PcsCompu_f

8:42:a7

IEC61850

Sampled

Values

176

50 1.000891396 HewlettP_c5:

77:a1

PcsCompu_f

8:42:a7

IEC61850

Sampled

Values

176

51 1.012036862 HewlettP_c5:

77:a1

PcsCompu_f

8:42:a7

IEC61850

Sampled

Values

176

52 1.000375548 HewlettP_c5:

77:a1

PcsCompu_f

8:42:a7

IEC61850

Sampled

Values

176

54 1.002338513 HewlettP_c5:

77:a1

PcsCompu_f

8:42:a7

IEC61850

Sampled

Values

176

55 1.002676293 HewlettP_c5:

77:a1

PcsCompu_f

8:42:a7

IEC61850

Sampled

Values

176

56 1.001021821 HewlettP_c5:

77:a1

PcsCompu_f

8:42:a7

IEC61850

Sampled

Values

176

57 1.001131982 HewlettP_c5:

77:a1

PcsCompu_f

8:42:a7

IEC61850

Sampled

Values

176

58 1.000966325 HewlettP_c5:

77:a1

PcsCompu_f

8:42:a7

IEC61850

Sampled

Values

176

59 1.002994688 HewlettP_c5:

77:a1

PcsCompu_f

8:42:a7

IEC61850

Sampled

Values

176

60 1.003122324 HewlettP_c5:

77:a1

PcsCompu_f

8:42:a7

IEC61850

Sampled

Values

176

62 1.023360673 HewlettP_c5:

77:a1

PcsCompu_f

8:42:a7

IEC61850

Sampled

Values

176

253 | P a g e

64 1.001145123 HewlettP_c5:

77:a1

PcsCompu_f

8:42:a7

IEC61850

Sampled

Values

176

65 1.009552273 HewlettP_c5:

77:a1

PcsCompu_f

8:42:a7

IEC61850

Sampled

Values

176

67 1.000342314 HewlettP_c5:

77:a1

PcsCompu_f

8:42:a7

IEC61850

Sampled

Values

176

68 1.004276707 HewlettP_c5:

77:a1

PcsCompu_f

8:42:a7

IEC61850

Sampled

Values

176

69 1.001357436 HewlettP_c5:

77:a1

PcsCompu_f

8:42:a7

IEC61850

Sampled

Values

176

71 1.000897365 HewlettP_c5:

77:a1

PcsCompu_f

8:42:a7

IEC61850

Sampled

Values

176

73 1.001407896 HewlettP_c5:

77:a1

PcsCompu_f

8:42:a7

IEC61850

Sampled

Values

176

74 1.004875002 HewlettP_c5:

77:a1

PcsCompu_f

8:42:a7

IEC61850

Sampled

Values

176

77 1.000592307 HewlettP_c5:

77:a1

PcsCompu_f

8:42:a7

IEC61850

Sampled

Values

176

254 | P a g e

APPENDIX I

Attached are the computational times of generating MAC and encryption for Sampled Value

packets from the sending device.

No. MAC Generation Time (ms) Encryption Time (ms)

1 0,002 0,008

2 0,002 0,008

3 0,002 0,01

4 0,002 0,008

5 0,002 0,008

6 0,002 0,01

7 0,002 0,008

8 0,002 0,009

9 0,002 0,01

10 0,002 0,009

11 0,002 0,008

12 0,002 0,009

13 0,002 0,01

14 0,002 0,011

15 0,002 0,008

16 0,003 0,014

17 0,004 0,014

18 0,002 0,011

19 0,002 0,01

20 0,002 0,01

21 0,002 0,01

22 0,002 0,01

23 0,002 0,011

24 0,002 0,008

25 0,002 0,01

26 0,002 0,009

27 0,002 0,018

28 0,002 0,01

29 0,002 0,011

255 | P a g e

30 0,003 0,01

31 0,004 0,015

32 0,003 0,011

33 0,002 0,01

34 0,003 0,012

35 0,004 0,014

36 0,002 0,01

37 0,002 0,009

38 0,002 0,009

39 0,002 0,009

40 0,002 0,01

41 0,002 0,008

42 0,002 0,009

43 0,002 0,008

44 0,002 0,021

45 0,002 0,019

46 0,003 0,008

47 0,002 0,009

48 0,003 0,008

49 0,002 0,008

50 0,003 0,015

Average (MAC Generation) Average (Encryption)

0,00226 0,01044

256 | P a g e

APPENDIX J

Attached are the computational times of generating MAC and decryption for Sampled Value

packets from the receiving device.

No. MAC Generation

Time (ms)

MAC comparison

time (ms)

Decryption time

1 0,002 0,000 0,001

2 0,005 0,001 0,001

3 0,012 0,001 0,001

4 0,011 0,002 0,001

5 0,011 0,002 0,001

6 0,011 0,002 0,001

7 0,008 0,001 0,001

8 0,007 0,001 0,001

9 0,011 0,002 0,001

10 0,019 0,002 0,001

11 0,011 0,001 0,001

12 0,011 0,002 0,001

13 0,007 0,001 0,001

14 0,011 0,002 0,001

15 0,012 0,001 0,001

16 0,011 0,002 0,001

17 0,007 0,002 0,001

18 0,018 0,002 0,001

19 0,006 0,001 0,001

20 0,001 0,001 0,001

21 0,007 0,000 0,001

22 0,011 0,001 0,001

23 0,011 0,002 0,001

24 0,012 0,002 0,001

25 0,001 0,000 0,001

26 0,002 0,000 0,001

27 0,002 0,000 0,001

257 | P a g e

28 0,003 0,000 0,001

29 0,002 0,001 0,001

30 0,006 0,000 0,001

31 0,011 0,001 0,001

32 0,009 0,002 0,001

33 0,011 0,001 0,001

34 0,011 0,002 0,001

35 0,011 0,002 0,001

36 0,007 0,001 0,001

37 0,002 0,000 0,001

38 0,005 0,001 0,001

39 0,002 0,000 0,001

40 0,002 0,000 0,001

41 0,003 0,000 0,001

42 0,002 0,001 0,001

43 0,006 0,000 0,001

44 0,011 0,001 0,001

45 0,009 0,002 0,001

46 0,011 0,001 0,001

47 0,011 0,002 0,001

48 0,011 0,002 0,001

49 0,006 0,001 0,001

50 0,006 0,001 0,001

Average (MAC

Generation)

Average (MAC

Comparison)

Average (Decryption)

0,008 0,001 0,001

