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ABSTRACT 

 

Before standardising uniform communication networks, protocols such as the 

Distributed Network Protocol (DNP3), were used in distributed control systems to 

transmit telemetry data. However, these network protocols lacked a standard naming 

convention, making their implementation in control systems expensive due to the use 

of copper wiring. 

 

The Industrial Internet of Things (IIoT) has contributed to the integration of Information 

and Communication Technology (ICT) in power systems. The integration of smart 

technology in substation automation has led to the transformation of the Smart Grid 

(SG). Over the years, malware and other cyber-attacks have compromised the cyber-

security of industrial networks. Some attacks have successfully hacked the 

Supervisory Control and Data Acquisition (SCADA) systems of industrial plants. 

Cyber-security is becoming a concern in substation automation and is gaining 

attention in power systems. Protecting all information in Substation Automation 

Systems (SAS) is of paramount importance for the success of the SG revolution. 

The need to standardise communication networks prompted the transition to 

networked smart grid systems, reducing costs and engineering time associated with 

system implementation. The number of security threats targeting electrical networks 

has been increasing rapidly, and several protocols utilised in these environments are 

being studied to address these cyber-attacks. The development of security 

mechanisms for securing the substation communication network is crucial. 

 

In the realm of Cyber-Physical Systems (CPS), the IEC 61850 standard for 

communication networks is attracting significant attention for its potential to 

modernise, technologically advance, and make distribution automation effective and 

economical. IEC 61850 provides an integrated solution in the power system for 

communication between intelligent devices, offering interoperability and reliability, and 

incorporating a better form of standardisation as the central smart grid communication 

protocol. However, IEC 61850 does not have any safety-related features, and cyber-

security attacks remain a concern in the substation environment. Edition 1 of IEC 
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61850 did not emphasise cybersecurity as a primary focus. The standardisation of 

data models and communication protocols were the main objectives of this version. 

Furthermore, Edition 2 of IEC 61850 introduced some improvements to the standard. 

Although Edition 2 incorporated the enhancement of security features compared to 

Edition 1, it did not offer a comprehensive set of cybersecurity capabilities that 

addressed all modern security challenges.  

 

The deployment of IEC 62351 has been introduced to address this concern in power 

systems. It is crucial to secure communication in the SAS from any cyber-security 

attacks. Implementing both IEC 61850 and IEC 62351 standards requires extensive 

knowledge in data networking, software modelling, system simulation, and testing 

procedures. 

 

Generic Object-Oriented Substation Event (GOOSE) and Sampled Value (SV) 

messages are critical for secure operation and have stringent performance 

requirements. GOOSE is a model process where data is collected, grouped into a 

dataset, and transmitted on a process bus. SV is a publisher and subscriber 

communication where information, such as values of power, is transmitted between 

the merging units and intelligent electronic devices (IEDs). Compromising GOOSE or 

SV messages may cause severe power loss to the system. Manipulating or disrupting 

GOOSE communications could compromise the efficient operation of protective 

relays, resulting in delayed or incorrect responses under fault events. Tampering with 

SV messages may result in false data being fed into the protection and control 

systems, causing the protective devices to malfunction or fail. Both situations have the 

potential to disrupt the power grid's normal operation, resulting in failures and power 

outages that have severe consequences for vital systems and end users. As a result, 

securing these communication protocols is critical to ensuring the reliability and 

stability of the electrical infrastructure. 

 

This study aims to develop an authentication algorithm for Routable-GOOSE (R-

GOOSE) or Routable-SV (R-SV) and implement it in a real-time software application. 

Critical security features must be enabled to support authentication and authorisation. 

The EtM algorithm is proposed for maintaining message confidentiality and integrity, 

with AES-128 encryption for privacy and MAC algorithms for message authentication. 
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Simulation results indicate that the EtM algorithm can be successfully used for R-SV 

messages while meeting the stringent 3 ms latency criteria. The results suggest that 

future IEC 62351 security standards can confidently advocate for encryption for R-SV 

communication. 
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GLOSSARY OF TERMS 

 

• International Electrotechnical Commission 

The International Electrotechnical Commission (IEC) prepares and publishes 

International Standards for all electrical, electronic, and related technologies. 

 

• IEC-61850 

The standard for communications at a substation.  

 

• IEC-62351 

The international information security standard for operations in the control of power 

systems. 

 

• IEC TC57 WG15: 

IEC 62351 requirements for power system security. The communication standard was 

initiated to assume the evolution and implementation of cybersecurity standards for 

substation automation system communications.  

 

• IED 

Intelligent Electronic Device. A microprocessor-based system that performs protection, 

measuring, and control functions in the substation automation industry. 

 

• RTDS 

Real-Time Digital Simulator for power systems. It can simulate any current substation 

system in real-time. 

 

• GOOSE 

The Generic Object-Oriented Substation Events protocol is event-based. GOOSE is 

specified as a publisher/subscriber type communication to distribute information 

exchange between IEDs across a substation network over Ethernet. 

 

• SAMPLED VALUE 

Sampled Values (SV) protocol is a publisher/subscriber type communication. SV is 

used for information exchange between IEDs in a Substation over the Ethernet. SV is 

used for sending digitised values of power system quantities. 
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• Substation Configuration Language 

Substation Configuration Language (SCL) reference’s part 6 of the IEC61850 

standard. SCL provides a mechanism for defining how substation equipment is 

connected to the substation. 
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1. CHAPTER ONE: INTRODUCTION 

 

1.1 Introduction 

 

Power systems have long been a crucial component of infrastructure since they provide 

dependable and uninterrupted power to people's homes, workplaces, and factories all around 

the world. Cybersecurity is becoming increasingly crucial, not only for these physical systems 

but also for the software platforms that operate and maintain them. Cyberattacks are growing 

more widespread, sophisticated, and destructive. As a result, power systems are now 

vulnerable to similar attacks. Indeed, multiple cyberattacks on electrical systems have been 

reported in recent years, with some causing significant damage. Given this risk, both power 

systems and the software that supports them must be appropriately secured.  

 

Cyber security in power systems is an important component of the total resilience of the 

electrical grid, as digital attacks on such networks can be disastrous for critical infrastructure. 

As a result, industry professionals and government institutions must work tirelessly to remain 

ahead of harmful attack attempts. Many major victories have been achieved in this regard: 

effective security solutions have been developed; protocols have been upgraded to better 

protect connected systems from attack; and best practices are periodically examined to assure 

regulatory compliance. 

 

Researchers and the electrical sector have paid close attention to authentication algorithms 

for IEC 61850 GOOSE and Sampled Value messages (SVM) in recent years. The reason for 

the attention: first, these are the two most commonly used communication formats in smart 

grids and second, many people are concerned about their security and privacy. Unfortunately, 

if these messages are not properly verified, they can be readily compromised. Several sectors 

are profiting from the use of IEC 61850 GOOSE and Sampled Value messages, as well as 

the implementation of IEC 62351 security measures. GOOSE and Sampled Value messages 

are ethernet-based systems and hence introduce a risk of cyber security. Authenticated 

communication is essential in many security applications. The number of such applications is 

growing, but more efficient and safe authentication procedures are still required. We introduce 

a general architecture in this thesis for creating authentication methods for IEC 61850 GOOSE 

and Sampled Value messages. We begin by outlining the fundamental structure and elements 

of an authentication algorithm. The development of our framework for the authentication 

algorithm is then thoroughly described. Finally, using a set of best practices and actual cases, 
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we assess the suggested framework. Also, we conducted simulation tests to assess the 

performance and efficiency of our algorithm.  

 

As a result, even though there will always be a chance that power systems' cyber security may 

be compromised, taking these preventative measures (implementation of IEC 62351 security 

measures) greatly lowers the potential damage. Organisations must act proactively to 

safeguard their digital assets given the constantly changing dangers posed by criminal actors. 

As a result, a thorough strategy that takes into account organisational and operational factors 

in addition to technological ones must be established. Strong authentication and authorisation 

mechanisms, encryption of sensitive data in storage and transit, ongoing monitoring of online 

behaviour, routine system patching, prompt reaction to new threats and vulnerabilities, and 

awareness training for staff are all required as a result. Companies can successfully reduce 

risk and improve overall cybersecurity by implementing these actions. 

 

1.2 Overview 

 

For accurate, reliable monitoring and control in the substation, and to ensure quality power in 

the electrical network and protection (including security mechanism) of the infrastructure in 

case of faults or cyber-attacks, secure Supervisory Control and Data Acquisition (SCADA) 

applications were implemented (Ncube, 2012). SCADA operations are critical for data control, 

data monitoring, and equipment control for operational maintenance. SCADA systems are 

based on communication and many protocols have been deployed in the system to allow for 

data exchange. SCADA systems are used to make use of legacy communication protocols 

such as DNP3, Modbus, etc. These protocols are regarded as non-standardised legacy 

communication protocols. These protocols were either based on RS-232 or RS-485 which 

were limited to a data transfer rate of less than 1Mbps, which greatly negatively affects 

execution time and data access as information can be easily intercepted when the 

transmission of information data is low (Ncube, 2012). Figure 1.1 shows a solution where non-

standardised ethernet-based Intelligent Electronic Devices (IEDs) are implemented. One of 

the advantages of ethernet-based systems includes the use of less copper wiring (and hence 

the connection time is less), inexpensive cabling cost, and network addressability. 
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Figure 1.1: Substation architecture using non-standardised IED (Emmanuel, 2014). 

 

Cyber security is essential for the safe and efficient operation of the intelligent electrical 

network. (Leszczyna, 2018) agrees that standardisation should be applied throughout. 

Recently, many new standards have been published to address communication networks and 

cyber security within substation automation. In the 21st century substation automation has 

become one of the most interesting topics and hence the two standards of IEC 61850 and IEC 

62351 in power system networks. Both IEC standards have gained and attracted worldwide 

attention as the dominant topics in power systems. As such for this research, the focus will be 

on the following applicable standards, IEC 61850, and IEC 62351 which define communication 

networks and cyber security requirements for power systems. 

 

At most, the violation of cyber security may result in a business loss in terms of finances and 

other major consequences as a result. Cyber-attacks on the smart grid may be harmful having 

a disadvantaged impact on the health, safety, or economic situations of the general population. 

Securing the smart grid is one of the paramount fundamental procedures that need to be taken 

to protect the grid from attacks and this requires multidisciplinary approaches and procedures 

that form a combination with various technologies, policies, and standards. The International 

Society of Automation (ISA) introduced security standards for the industrial control system. 

The security requirements are also well suited for the SCADA and Information Technology 

(IT) environment (Karnati, 2020): 

 

1. Access control, 

2. Usage control, 

3. Data privacy, 

4. Data confidentiality, 

5. Limit data flow, 

6. Timely event response and, 

7. Network resource availability. 
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IEC 62351 is the standard for cyber security to help secure IEC 61850 communication. 

(Hohlbaum et al., 2010) however, alludes to some challenges of the standard that need to be 

addressed. Secure communication in the real-time substation environment must be addressed 

per the IEC 61850 real-time specification. This can be achieved by complying with the 

technical specifications of IEC 61850 GOOSE and SV messages as specified in IEC 62351-

6. 

 

1.2.1 Cyber Security 

 

Networking applications are increasingly in demand for secure communication. Finding a 

method to verify data security transmission over an unstable and insecure medium is a 

necessity. The demand for secure data communication has initiated the development of 

cryptographic standards and encryption algorithms (Khali et al., 2016). The Hash Message 

Authenticated Code (HMAC) is considered a preferred standard for authentication with robust 

security features. It is a signed security tag used to secure plaintext employing authentication 

(Karnati, 2020). As such, the Secure Hash Algorithm (SHA)-2 hash function was introduced 

with improved security levels of the Advanced Encryption Standard (AES). HMAC and digital 

signature algorithms (DSA) rely heavily on hash functions. The first secure hash function 

algorithm, SHA-1, was released in 1995; and used in numerous network-based applications, 

however, is being phased out.  SHA-1 is used for message authentication with the shared 

secret key. The implementation of HMAC is to provide authentication to both the source of the 

message and its integrity achieved by attaching a digital signature to the message (Michail et 

al., 2004). Therefore, the receiver of the communication is in a position to determine whether 

or not the message has been altered maliciously by the cyber-attacker. Nonetheless, both the 

sender and the receiver need to have access to the same secret key to identify any changes 

made to the message. Due to the increasing demand for internet technology, essential security 

implementation is required. Furthermore, another discussion on high-performance 

development in security development and implementation is required. 

 

Daily, the use of the internet is rapidly increasing and as such, it is expected that internet 

networking is secured. Internet together with cyber security is an essential, critical, and crucial 

subject in today’s information and cyber systems. The transmission of data or information must 

be protected against illegal and unauthorised access by providing special security measures. 

Digital signatures, which may be used to authenticate a communication (encrypted or not), are 

one of the security techniques employed to protect information by examining the original 

content of the message that has not been tampered with. One of the advantages of the digital 
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signature is that it cannot be imitated as such, the message is time-stamped and signed. The 

process includes initiating the identity of the signatory and the integrity of the message can be 

verified (Alajbegović et al., 2006). As such, integrity and authentication cannot be separated 

as encryption alone does not provide integrity nor does it provide authentication. 

 

(Oyelade et al., 2015) studies the implementation of secured message transmission using the 

Data Encryption Standard (DES) and Rivest Shamir-Adleman (RSA) cryptosystem. In the 

past, cryptosystem was used to secure and protect confidential information in the defence 

force and important state institutions such as national security. Security methods are 

continuously being used to secure critical and confidential data against cyber-attacks. As 

mentioned, essential information needs to be protected against any penetration and 

tampering; the information must also be transmitted confidentially. (Oyelade et al., 2015) utilise 

the encryption and decryption mechanism using an asymmetric algorithm to provide a secure 

channel. Furthermore, the transmitted data will be encrypted and decrypted using the 

symmetric algorithm. It is critical to maintain the authenticity or security of digital data while it 

is being transmitted across a network; encryption is a critical component in maintaining data 

integrity and security (Pedamkar, 2023).  

 

The implementation of the cryptosystem is to address authentication, confidentiality, integrity, 

and non-repudiation security features. Authentication is a function or process related to the 

verification and determination of the source of data, verifying a user’s identity. Confidentiality 

ensures the privacy of the data. Only authorised users can possess the contents of the 

information. Confidentiality is designed to prevent malicious attacks such as snooping. Data 

integrity is designed to protect the contents of the information to ensure that it is not altered 

by authorised users. When sending or receiving data, the non-repudiation service protects 

against data being retracted by either the sender or the receiver. Non-repudiation is not part 

of integrity; it is a security feature that prevents an intruder from denying the validity of their 

previous actions and provides evidence that an action occurred. 

 

(Oyelade et al., 2015) further studies the implication of speed and strength of the symmetric 

algorithm with the strength and key management capabilities of the asymmetric algorithm. It 

is noted that the symmetric algorithm provides a poor key management technique and as such 

the implementation of the algorithms is such that the key generation is processed using the 

asymmetric encryption technique, RSA algorithm. RSA algorithm technique is known for its 

advantages in encryption and authentication when employed. The process used for encrypting 

and decrypting the data is symmetric encryption. Successful transmission of the text document 

data (using client-server) is concluded using an enhanced encryption algorithm that combines 
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the strengths of both the symmetric and asymmetric key algorithms. The technique was 

implemented in Microsoft Visual Basic. NET. It was further found that the combination of these 

two key algorithms provides an increase in the encryption speed. As stated on paper, the 

technique provides better security when used together. 

 

1.3 Awareness of Problem 

 

The IEC 61850 and IEC 62351 standards are being implemented globally in the substation 

automation engineering field for protection, monitoring, and control. The development and 

implementation of the standards are well documented in scientific papers. Examples of typical 

applications can be found in (Farooq et al., 2019), (Schlegel et al., 2017a), (Hohlbaum et al., 

2010) and (Pal & Dash, 2015). The efficient operation of the power network requires secure, 

failsafe, accurate, and reliable mechanisms to ensure that network integrity is maintained for 

optimal operation. The implication is that any tool or mechanism utilised to assist with the 

reliable operation of the power system should inherently be robust, accurate and effective. 

Viruses and cyber-attacks have compromised the cyber-security of industrial networks. 

Delivery of messages is delayed as a result of these attacks (Denial-of-Service, Man-in-the-

Middle etc.), and data loss and data security become increasingly important when interacting 

with network components. Cybersecurity is a growing concern in substation automation, and 

it is important to protect all information in Substation Automation Systems (SAS). However, 

IEC 61850 does not have any safety-related features, and the deployment of IEC 62351 is 

necessary to address cyber security concerns. 

 

The smart grid and substation automation networks are installed with IEDs which operate on 

communication protocols that need to conform to IEC 61850 and the implementation of the 

IEC 62351 security standard is also to be prioritised. Information infrastructure that enables 

power system protection, monitoring, and control is essential to substation automation. 

Previously, communication networks were not vulnerable to security measures as 

communication occurred via private networks which implies that they were secured through 

Security Through Obscurity (STO). This meant that a system can be secure so long as nobody 

outside of its implementation group can find out anything about its internal mechanisms. The 

research into the security of communication networks in substation automation has driven the 

need for standardisation of power system communication protocol as security and integrity 

became a never-lasting concern. 
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With the increasing installation of IEDs in the power system network, it is essential to 

implement secure communication for substation equipment. Problems in cyber security can 

arise when communication is not secured or unreliable. The power system needs to be 

protected against cybersecurity attacks and hence security for IEDs is critical. Security attacks 

may come in the form of deliberate attacks launched by disgruntled employees or hackers 

who can compromise the substation network. One of the ways to prevent intrusion of systems 

is to install the Intrusion Detection System (IDS) and Intrusion Prevention System (IPS). IDS 

protects SCADA and substation automation systems against cyber-attacks. IDS detect 

uncertified and harmful actions on the substation network and as well identifies problems in 

the communication, allowing it to detect malfunctions in the substation. Its unique approach 

automatically creates a complete system model of the automation system and the substation. 

An intrusion prevention system (IPS) is software that performs all of the functions of an IDS 

while additionally attempting to prevent cyberattacks. It not only detects malicious activity, but 

it also takes steps to prevent attacks from any suspicious activity. The IPS may drop a packet 

from suspicious traffic, automatically terminate a port, or block future network traffic from that 

IP address.   

 

Security standards need to be assessed to address vulnerabilities in the smart grid 

infrastructure. To protect the Confidentiality, Integrity, and Availability (CIA) of substation 

networks, the communication in power systems needs to be safe from cyberattacks. 

Confidentiality can be managed by encrypting data and files and requiring multi-factor 

authentication. Integrity can be achieved by using cryptography and digital signatures to 

securely check and prove the integrity of data. Availability monitoring and maintaining 

hardware and software. Security mechanisms in the power system network must be 

implemented by achieving a balance in information technology and power system operations. 

This study will contribute towards the adoption of the IEC 62351 standard.  

 

1.4 Problem Statement 

 

1.4.1 Ideal Scenario 

 

An accurate security mechanism will ensure that the power system will be efficient, robust, 

reliable, and protected from cyber-attacks. One of the most recommended practice steps that 

can be considered in a power system environment is to conduct an industrial control system 

security risk assessment. However, that might not be enough; the authentication and 
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encryption security control form the basis for most cyber security solutions techniques utilised 

in power systems.  

 

The cyber security strategy must protect the assets most critical to an efficient and reliable 

power system operation. All communication networks to the power system must be secured 

and continually assessed for any changes and new vulnerabilities. Defensive strategies need 

to be put in place to detect when a potential vulnerability is exploited. Critical security controls 

can reduce the risk of cyber-attacks by great margins.  

 

The industrial environment is to implement and develop a strong security control mechanism 

to increase operational efficiency and reduce the risk of attacks through the standardisation of 

IEC 61850 and IEC 62351. What typifies a secure power system and hence reliable and 

efficient is that implements authentication or encryption security controls conforming to 

communication and cyber security standards. 

 

1.4.2 The Problem Statement 

 

There is a need to develop robust authentication algorithms for IEC 61850 GOOSE and SV 

messages in modern networked substations to prevent cyberattacks and improve the security 

of these systems. Within this standard, a low latency restriction must be met, as well as time-

critical status transfer. Hence a need for high-speed time-critical communications for updating 

the status and events in the power system. The development of the thesis will include the 

design and implementation phase. The design phase will focus on the code development of 

the authentication algorithm adhering to the correct frame structure for GOOSE/SV messages. 

The implementation phase is the commissioning of the presented authentication algorithm 

using the Kali Linux command line to run the code, Wireshark to collect and analyse data, and 

Ettercap to launch man-in-the-middle attacks (MITM) to infect traffic between the publisher-

subscriber devices. 

 

There are many substations across the world and each one of them is critical for achieving 

the efficiency and adaptability of the smart grid network. As part of the operation of the smart 

grid, information about the consumption and operations is required to be transmitted to a 

substation automation system for analysis. This however requires data to be transmitted via 

two-way communication; this is achieved by Ethernet and TCP/IP and conforms to the IEC 

61850 standard. As such, the communication protocols raise security risks and cyber threats. 

The power system communication is also to be secured using IEC 62351 as a reference. The 

industrial environment has recognised various security vulnerabilities to which the power 
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system may be susceptible. The substations are critical power systems that require high input 

speeds, redundancy and dedicated equipment to meet the operating requirements. The 

execution of IEC 62351-6 presents the most computational requirements as far as 

implementation is concerned. It must perform the responsibility of authentication security 

mechanism of GOOSE and SMV in the required critical transfer time of 3ms. This is paramount 

and essential for protecting and safeguarding substation functioning.  

 

One of the recommended security mechanisms is encryption. Encryption is used to achieve 

confidentiality in substation communication. IEC 62351, Part 3, and Part 4 propose the use of 

TLS for TCP/IP to provide confidentiality. Symmetric key and asymmetric key are the two 

methods used for encryption. The symmetric algorithm employs one key to encrypt and 

decrypt, while the asymmetric algorithm utilises two separate keys to encrypt and decrypt. 

 

One of the commonly used symmetric block ciphers is Data Encryption Standard (DES), 

TripleDES, and Advanced Encryption Standard (AES). One of the most extensively used 

methods is DES, however, as a result of concerns regarding the level of security (vulnerable 

to brute force attack) it provided, the TripleDES algorithm was presented to the DES to 

increase the security level however it presented a slow encryption algorithm (Weerathunga, 

Pubudu Eroshan, 2012). AES is the new recommended standard. 

 

The most popular asymmetric cipher is the RSA algorithm. RSA is a cryptographic algorithm 

employed for key exchanges and digital signatures. However, it has the disadvantage of being 

time-consuming and requires a greater amount of processing power. RSA encryption is also 

vulnerable to brute force attacks however with the implementation of complex keys the brute 

force attack can be prevented. Another development would be to use Elliptic Curve 

Cryptography (ECC) which has a small key size and a computational advantage. Asymmetric 

encryption ciphers are cryptographically more secure than symmetric ciphers but their 

encryption and decryption speeds are too slow for power system communication protection 

(Weerathunga, Pubudu Eroshan, 2012). Therefore, encryption only provides additional CPU 

load on the IEDs and increases GOOSE transmission time. The communication system must 

be able to meet the timing demands associated with Protection, Automation and Controls 

(PAC). A detailed investigation of its behaviour must be taken into account given the time-

constrained nature of SAS applications. 
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1.4.3 Proposed Solution 

 

A secure substation automation control operation is vital due to the critical information system. 

Standardised communication is critical in power system automation. The standard IEC 61850 

is popular (due to its flexible and robust modelling) because it is set to become the standard 

for power system communication. IEC 61850 specifies protocols that are set to address the 

problem of compatibility. Of the customs, GOOSE is specifically made to meet the needs of 

operations, while being mindful of timing requirements. As the number of critical infrastructures 

employing IEC 61850 increases, cybersecurity aspects are also relevant to the study. IEC 

62351-6 and IEC 61850 standards work together and address security mechanisms to protect 

IEC 61850 messages. These mechanisms must not cause delays in IEC 61850 messages as 

GOOSE and SV messages have time-critical requirements.  Considering the speed, the Keyed 

Hash-Message Authentication Code-Secure Hash Algorithm (HMAC-SHA256) must be 

introduced to authenticate GOOSE and SV messages to achieve integrity and authentication 

of Message Authentication Code (MAC) based digital signature algorithm. 

 

To address the above problem, this study examines the development of a security algorithm 

and evaluates the impact of the security mechanism on IEC 61850 GOOSE and R-SV 

communication performance.  

 

Existing cybersecurity features from the open-source code library will be introduced to 

incorporate the security algorithm (https://github.com/61850security). By using HMAC 

techniques, it secures GOOSE message transmission. The secure GOOSE functions are 

created using the C programming language and the OpenSSL library. The proposed security 

method was shown to be capable of meeting GOOSE's time requirements by (Hussain et al., 

2019). The literature review demonstrates that increasing research is being done on protecting 

GOOSE communication, although applying authentication techniques to SV protocol is still 

uncommon. This thesis presents a design-based solution algorithm and analysis for 

implementing a secure R-SV message to prove that the enabled security algorithm can secure 

SV packets with negligible timing requirements. Most importantly the implementation will 

conform to the structure of the SV protocol data unit (PDU). The solution will be tested and 

validated with an HMAC algorithm on a software platform. 

 

 

 

  

https://github.com/61850security
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1.5 Research Aims and Objectives 

 

1.5.1 Research Aims 

 

This project will explore and evaluate the application of standard IEC 61850 and IEC 62351 

technology in the automation environment of the substations. 

 

This study aims: 

1. To develop, implement, and analyse various encryption algorithms and key 

management agreements for GOOSE and R-SV.  

 

1.5.2 Research Objectives 

 

The objectives of this study seek to address: 

 

1. Literature review on the history of substation automation systems. 

2. Literature review of data encryption algorithms. 

3. Literature review of IEC 61850 and IEC62351 standards. 

4. Literature review: To study the IEC 61850 standard methodologies and mapping. 

5. Theoretical analysis of data encryption algorithms. 

6. Investigation of the effect of messaging propagation delays introduced by the data 

encryption algorithm. 

7. To enhance the compatibility of data encryption algorithms, tailored to meet the 

requirements of IEC61850 standard-based communication in substations through 

adaptation and improvisation. 

8. Investigation of the performance of the existing and proposed algorithm for various 

case studies. 

9. Development of an algorithm for data transfer on the Ethernet communications 

network. 

10. An algorithm is to be synthesised and ported to a software deployment using a Kali-

Linux virtual machine to simulate the algorithm. 

11.  The development of testing and validation of security algorithm for R-SV message. 

12. Analysis of results and conclusion. 
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1.6 Hypothesis 

 

The implemented authenticated encryption algorithm will comply with IEC 61850 and IEC 

62351 and the critical time requirements of data transmission are adhered to. An authenticated 

encryption algorithm is implemented for maintaining message confidentiality and integrity. The 

developed security algorithm is utilised on the SV frame structure. The R-SV messages are 

captured using Wireshark to validate the data traffic and Ettercap is used to perform an MITM 

attack by spoofing network traffic. Simulation results indicate that the EtM algorithm can be 

used for GOOSE/R-SV messages while meeting stringent latency criteria and the future IEC 

62351 security standards can advocate encryption for R-SV communication. 

 

The research work will test the following: 

1. Integration of the HMAC algorithm with an R-SV message. 

2. Ensure that R-SV packet frame structure is conformed to, and protocol complies with 

IEC 61850. 

3. Ensure that the HMAC algorithm conforms to IEC 62351-6. 

4. Prove that the implemented HMAC algorithm meets timing and security requirements. 

 

1.7 Delineation of the Research 

 

This thesis is to develop an authentication algorithm for IEC 61850 GOOSE and R-SV 

messages and further evaluate the impact of the security mechanism on IEC 61850 

communication performance.  The design will be developed and employed on a Kali-Linux 

software platform; where the client-server code and security algorithm for R-SV will be tested 

and validated. For GOOSE and R-SV communications, an authentication algorithm will be 

used to ensure message integrity and authenticity. As such, considerable knowledge is 

required for raw socket programming and code development for client-server for GOOSE and 

R-SV message structure. 

 

The following tasks form part of the project: 

1. Development of methods for IEC 61850 standard implementation. 

2. Development of methods for IEC 62351 standard implementation. 

3. Development and implementation of an authenticated encryption algorithm for R-SV 

messages. 

4. A C program running on a personal computer is proposed for the simulation of the R-

SV message. The choice of C-language for simulating IEC 61850 Sampled Value 

streams is not mandated by the standard itself but is often made for practical reasons. 
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5. C is a low-level programming language. C allows developers to optimise code for 

performance, ensuring that the simulation runs efficiently. C-language is generally 

faster and more efficient. It does not increase the payload and the frame structure is 

compliant. 

6. Wireshark is proposed for the capture and analysis of the data packet of the generated 

R-SV messages. 

7. Ettercap is proposed for generating the MITM attack. 

 

The design and implementation will be conducted on a simulation setup for the confirmation 

of GOOSE and R-SV messages as illustrated in Figure 1.2. 

 

Figure 1.2: Simulation Setup 

 

The thesis studies security mechanism that deploys authentication codes for GOOSE in 

particular and R-SV communication. 

 

1.8 Significance of Research 

 

Conformance to the IEC 61850 and IEC 62351 is crucial for the optimal operation of the 

substation automation network. IEC 61850 provides mechanisms for developing the best 

engineering standard for substation automation systems. Conformance to the IEC 62351 

standard is of paramount importance as cyber security is an increasing concern regarding 

power systems as industrial plants have been compromised by attacks and viruses. IEC 62351 

specifies communication protocols and the security mechanisms suitable for protecting 

information in the substation automation network. The development of cyber security 

algorithms and techniques for information security to ensure the CIA will contribute to the 

evolution of substation automation networks. It is important to develop encryption mechanisms 
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such as algorithms and techniques to ensure the authenticity and integrity security of GOOSE 

and SV communication in a power system. 

 

This study will contribute towards the growing knowledge base in substation automation and 

cyber security. Furthermore, it will also facilitate the education of technologists and engineers. 

 

1.9 Research Design and Methodology 

 

1.9.1 Research Design 

 

This is an experimental study design that aims to take particular factors into account in 

accordance with the hypothesis. A brief description of the research plan is presented 

accordingly: 

 

1. Define Objective: Development of an authentication algorithm for IEC 61850 

messages. 

2. Planning/Designing Process: The development of the thesis will include the design and 

implementation phase.  The review of the literature and available implemented 

solutions is to be studied. 

3. Experimentation Procedure: The design phase will focus on the code development of 

the authenticated encryption algorithm adhering to the frame structure for GOOSE/R-

SV messages. The implementation phase is the deployment of the presented 

authenticated encryption algorithm using the Kali Linux command line to run the code. 

4. Analysis/Modelling: Wireshark is used to collect and analyse data, and Ettercap is used 

to launch MITM attacks to infect traffic between publisher-subscriber devices.  

5. Interpretation of Results: The Wireshark capture will show all the required fields 

according to IEC 61850-8 for GOOSE, IEC 61850-9-2 for R-SV and the generated 

attacks of the packets are analysed. This will provide a platform that can be easily 

reconfigured to test improvisations or updates and amendments to programs. 

6. Conclusion: Questions must be resolved. Can authenticated encryption be 

successfully implemented with R-SV PDU? Does the implemented security algorithm 

meet timing requirements? Was the frame structure for GOOSE/R-SV compliant? 

 

1.9.2 Methodology 
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A review of the literature will be undertaken to ascertain the trend in IEC 61850 and IEC 62351 

for GOOSE and SV messages. Attention will be focused on works related to theoretical studies 

and practical implementations of proposed security mechanisms for GOOSE and SV 

messages. Newly proposed encryption methods will also be a focal point to ascertain 

mechanisms for best practice. The article uses an experimental research design to develop 

and evaluate authentication algorithms for IEC 61850 GOOSE and R-SV messages in 

substation automation systems. The article follows these steps: 

 

1. Review the literature on substation automation systems, communication and cyber 

security standards, authentication methods and data encryption algorithms. 

2. Analyse the theoretical aspects of authentication methods and data encryption 

algorithms and their impact on message propagation delays. 

3. Develop an algorithm for data transfer on the Ethernet communications network using 

C programming language and OpenSSL library. 

4. Simulate the algorithm on a personal computer using Kali-Linux virtual machine, 

Wireshark, and Ettercap tools. 

5. Test and validate the security algorithm for R-SV messages and evaluate its 

performance for various case studies. 

6. Conclude with a discussion of the results and future research directions. 

 

 

1.10 Organisation of the Thesis 

 

The thesis is divided into six chapters detailing the introduction and background into substation 

automation systems, problem definition, a literature review into substation automation trends, 

a detailed study into IEC 61850 and IEC 62351standard, an investigation into the IEC 61850 

GOOSE and Sampled value messaging system, and the results of the software development 

of the simulated security algorithm for GOOSE message. 

 

Chapter 1: presents an overview of the substation automation developments, IEC 61850, and 

IEC 62351 standards and highlights the problem definition, project aims and objectives, and 

research methodologies.  

 

Chapter 2: presents the literature search and literature review into IEC 61850 and IEC 62351 

standards. This section also reviews the GOOSE and SV messages. The development of 

security mechanisms in substation automation. Various technical papers, journals, and articles 

were read and analysed. 



16 | P a g e  
 

 

Chapter 3: discusses comprehensively an overview of the IEC 61850 standard with emphasis 

on sampled value messaging and in particular focus on GOOSE messaging.  

 

Chapter 4: presents various authentication codes for GOOSE and discusses the output of 

each code. The codes will be compiled using Kali-Linux Virtual Box. 

 

Chapter 5: describes the authentication algorithm development and implementation of the 

GOOSE message and provides snippets of the code. The design will conform to the applicable 

standards, IEC 61850, and IEC 62351. 

 

Chapter 6: provides a conclusion to this research project and provides expansion prospects 

such as real-time implementation for future research projects. Following Chapter 6, the 

references and appendices are supplied. 

 

1.11 Journal Papers 

 

A journal paper will be published. 

 

 

1.12 Artifact 

 

The project will contribute towards an integrated merging unit that can be deployed in a 

substation environment. 

 

1.13 Conclusion 

 

This chapter discussed the necessity of developing and implementing cyber security in the 

substation automation environment. Traditional communication protocols need to be updated 

with security measures that can counteract current security threats. The electricity grid is no 

longer contained within its physical structure, which makes security even more difficult. If 

security standards are not updated, energy data could become even more exposed since it is 

transmitted through and stored in the cloud.  

 

A brief overview of the communication and cyber security standard was discussed. 

Furthermore, the introduction to Hash Message Authentication Code (HMAC) was deliberated. 
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This chapter outlines the research project's goals and objectives, problem statements, 

methods, and contributions and further includes a chapter outline for this thesis. 

 

The second chapter contains an extensive literature review of research projects on the 

development of algorithms for secure GOOSE and R-SV messages. This chapter of the 

literature review also covers the introduction of the IEC 61850 standard, the IEC 62351 

standard, and raw socket programming. Several papers are reviewed to assess/outline the 

research aims and objectives. 
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2. CHAPTER TWO: LITERATURE REVIEW 

 

2.1 Introduction 

 

As the grid gets smarter and more networked, substation automation relies on digital control 

and digital communication to secure, control, and monitor the grid's operations. The evolution 

of Substation Automation Systems (SAS) has continuously sought advanced technology 

integration to deliver power with the protection of operators, power system equipment, and the 

end-user. The stability of the grid is vital as electricity is to be delivered continuously without 

failures. This motivated the need for quality and reliable electricity supply. The intermittent 

interruption of communication in the grid, the growing concerns of standardisation in the 

substation automation environment, and cyber security have gained attention to address 

stable and reliable communication and cyber security in the power system. Hence, the 

necessity for standardisation of communication networks, and substation design, prompted 

the rapid development and implementation of technology to networked smart grid systems. 

Communication is the fundamental factor in SAS, and virtually the security of the power 

system environment must be developed with performance and reliability addressed. 

 

Concerns regarding the security of SAS communication are studied. Also, the development of 

various security mechanisms for a secure power system is addressed. The substation is a 

critical infrastructure, consisting of critical devices that should be protected against malicious 

security attacks. Unsecured, and unprotected communication networks raise various security 

issues. IEC 61850 and IEC 62351 are receiving worldwide consideration and as such have 

managed to become the substation automation communication and cyber security standard 

of the future. The IEC 61850 GOOSE and SV messages are essential for the secure 

functioning of the electrical network.  

 

The following is a list of the sections that make up this chapter: Section 2.2 discusses the 

awareness of the problem in the literature. A review of relevant literature about cybersecurity 

is found in section 2.3.  Section 2.4 focuses on IEC 61850-8-1 GOOSE and IEC 61850-9-2 

SV messages. Furthermore, it presents a literature review relevant to the mapping, publishing, 

evaluation, and application of IEC 61850 communication in a SAS. Section 2.5 deals with the 

literature review of the cyber security standard, IEC 62351 and section 2.6 provides an 

overview of socket programming. Section 2.7 draws the conclusion. 
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2.2 Awareness of the Problem in Literature 

 

When the internet and the advancement of digitalisation are used to facilitate communication 

between literally billions of people and are used as a tool for commerce, social interaction, and 

the exchange of an increasing amount of personal information, security has become an 

extremely important issue for all internet users to deal with daily. Smart grids can be connected 

to substations via the internet (for remote monitoring and control, fault detection, cybersecurity 

monitoring, grid optimisation, and advanced metering infrastructure), as well as to other smart 

grids. As a result, energy generation may now be dispersed throughout the entire grid, which 

is equipped with sensors to assist in monitoring, protecting, and controlling it. Smart grids and 

microgrids, in addition to their advantages, have some disadvantages and additional 

challenges to overcome, such as concerns about compromised data security and privacy. As 

a result of communicating through a network, security must be strengthened to avoid being 

targeted by hostile activities and to maintain a stable grid. Data protection professionals are 

concerned about the amount of information that can be collected and provided to service 

providers, as well as the chance that this information could end up in the hands of malicious 

attackers. These data sets may contain significant information on the subject (Sontowski, 

2016). Security and privacy are two crucial needs for smart grids, yet they are also important 

for traditional grids. Because a grid contains a large number of security-critical systems, it is 

vital to ensure their safety and security. When it comes to smart grids, the protocol IEC 61850 

is widely employed. However, IEC 61850 does not have any standardised security 

procedures. Techniques for ensuring secure communication can be implemented. Therefore, 

the communication standard can be used in conjunction with TLS and SSL. These two 

protocols are responsible for network communication security (Sontowski, 2016). Part 3 of the 

IEC 62351 standard was introduced to address security measures. It was proposed in IEC 

62351-3 and IEC 62351-4 that TLS be used for profiles that contain TCP/IP. TLS and IPSec 

encrypt data to maintain the security and privacy of communications (Weerathunga, Pubudu 

Eroshan, 2012). 

 

2.3 Theoretical Framework – Data Security and Privacy 

 

Inadequate data security costs organisations billions of dollars per year, according to industry 

estimates (Bogdanov et al., 2011a). As such, a significant amount of money is spent to 

safeguard the systems after they have been compromised. Significantly so, it is now possible 

to decrease numerous hazards and improve the security of systems by implementing security 

procedures. Security measures must be put in place from the beginning of a project, and they 

must be in place throughout the entire process, from design to development to implementation 
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and they must be tested regularly. Taking enhanced security measures and 

precautions is critically important. Many issues can be traced back to a lack of proper data 

security and data privacy measures in place. Most businesses place a high value on privacy 

to maintain their consumers' trust. Privacy, on the other hand, is a considerably broader term.  

 

(Hitachi ABB, n.d.) design the FOX615 multiplexing platform's TEGO1 interface board. 

TEGO1 has an integrated IEC 61850 interface that allows it to connect directly to an electrical 

substation's IEC 61850 station/process bus. This interface enables the use of GOOSE and 

SV messages for line distance and differential protection, as well as new applications like 

remote trip and interlocking. TEGO1 is included in IEC 61850. It portrays the distant IED in 

the local substation. TEGO1 was created to address one of three major issues: cybersecurity. 

Because GOOSE/R-SV messages are based on Ethernet packets and the station bus is 

based on an Ethernet Switched network, cyber security aspects such as data integrity and 

access limitations must be considered, particularly for important applications needing high 

real-time performance. Furthermore, TEGO1 enables GOOSE/SV message authentication for 

man-in-the-middle (MITM) attacks and replay protection. Furthermore, crucial features such 

as redundancy in the event of a communication breakdown, filtering capabilities, and 

translation capabilities are provided. To maintain privacy and security in computing, using 

encryption to protect one's data is extremely crucial. Encryption is one of those cyber security 

mechanisms that are frequently in the news, especially when it comes to government 

agencies. Encryption is at the heart of Internet security and privacy protection (Thakkar, 2020). 

Considering the increasing interconnection of computer networks and the sophistication of 

cyber-attacks, cryptography is becoming an increasingly important tool for ensuring that data 

users can maintain their privacy and confidentiality, while also ensuring authentication, 

integrity, availability, and identification (Hamouda, 2020). Cryptography methods are critical in 

protecting data from hostile attacks. It is possible to divide and distinguish the encryption 

algorithm into two types: symmetric key (private key) and asymmetric key (public key). The 

public key is used to encrypt the communication, while the private key is used to decrypt the 

message once the message has been encrypted. The encryption process is made feasible 

using cryptographic keys in conjunction with encryption methods, which are discussed further 

in Table 2.1 (Thakkar, 2020). The algorithms must be designed in such a way that they are 

difficult to be cracked by intruders. This list of commonly used encryption algorithms covers 

algorithms such as Rivest–Shamir–Adleman (RSA), Elliptic Curve Cryptography (ECC), Triple 

Data Encryption Standard (3DES), Advanced Encryption System (AES), and others (Rivest 

Cipher). The DES and AES algorithms are the most well-known of these encryption 

algorithms. The analysis and construction of these protocols must be done efficiently to ensure 

the secrecy of the messages that are being conveyed. 
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An overview of the encryption techniques is presented in Figures 2.1, 2.2, and 2.3 respectively. 

Essentially Figure 2.1 presents the symmetric encryption. The key point in symmetric 

encryption is that both the sender and receiver share identical keys. The sender wants to 

communicate with the recipient by sending a message (plaintext). The sender will take the 

secret key that will be used to encrypt the message (ciphertext) and will transfer it across the 

internet. The message (ciphertext) will be received by the recipient using the same secret key, 

who will decrypt it (plaintext) and be able to read it. 

 

 

Figure 2.1: Symmetric Encryption Example (Hamouda, 2020). 

 

Asymmetric encryption is presented in Figure 2.2. The public key and the secret key are used 

for encryption. The public key is used for encryption and is freely distributable. The secret key 

is used to decode the data and is only known to the key pair's owner. In this situation, the 

client encrypts the message (plaintext) using the public key. This is critical because it assures 

that only the intended recipient with the matching private keys can view the messages, not an 

unauthorised user. The server then uses the secret key to decrypt the message (ciphertext). 
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Figure 2.2: Asymmetric Encryption Example (ClickSSL, 2022) 

 

Furthermore, hybrid encryption is a combination of symmetric and asymmetric cryptography. 

The goal is for the sender to encrypt the symmetric method's secret key using the asymmetric 

method's public key and then deliver this data to the recipient. Both the encrypted symmetric 

key and the encrypted data are sent to the receiver. The receiver decrypts the secret 

symmetric key, and both parties now have the key for symmetric encryption, allowing the 

sender to quickly transfer the remainder of the data. 

 

 

Figure 2.3: Hybrid Encryption Example (Sontowski, 2016) 

 

When it comes to data security, encryption is a key component of cryptography, which is the 

most effective and widely used approach available today (Pedamkar, 2023). Both symmetric 

and asymmetric encryption have their own set of advantages, and we cannot choose one over 

the other because they are mutually exclusive. Asymmetric encryption, on the other hand, is 

unquestionably superior in terms of security because it assures authentication and non-

repudiation. However, performance is a factor that we cannot afford to overlook, which is why 

symmetric encryption will continue to be required.  
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Aspects of security and applications abound, ranging from safe commerce and payments to 

private communications and the protection of healthcare data, among other things. When it 

comes to secure communications, encryption is a critical component of the equation. Although 

cryptography is necessary for data security, it is not adequate on its own. Encryption can 

provide confidentiality, but it is incapable of providing integrity. To achieve integrity, 

authentication must be used in conjunction with encryption technology. Using a covert 

channel, the client can transfer data to the server without being detected (S.A. Fatayer, 2020). 

Before using the covert channel, both parties must have already shared information. The 

confidentiality of pre-agreement information and the detectability of covert channels are the 

two most significant issues for covert channels (S.A. Fatayer, 2020). (S.A. Fatayer, 2020) 

provides a demonstration of how integrating encryption, authentication, and a covert channel 

results in a new covert channel that provides security of data being transmitted while remaining 

undetected. The covert channel technique is shown in Figure 2.4. The proposed covert 

channel requires shared information between the client and server. The technique needs a 

pre-shared table that consists of the original keys and their corresponding fake keys. Each 

original key has multiple fake keys. In this case, the most important feature is that the bogus 

key is utilised in the communication channel, but the original key is kept confidential on both 

sides (client and server). The secrecy of the information between the client and server was 

ensured by the use of an encryption algorithm and the HMAC algorithm is used to verify 

integrity (S.A. Fatayer, 2020). Covert channels together with encryption and authentication 

lead to secure communication. 

 

 

Figure 2.4: Covert channel secure communication (S.A. Fatayer, 2020) 

 



24 | P a g e  
 

The author further presents the characteristics and properties of the covert channel stating 

that for security and more private communication, plausibility, undetectability, and 

indispensability need to be achieved. This technique addresses secrecy requirements through 

encryption, as well as integrity requirements using an authentication algorithm. A secure 

communication channel between the client and the server that allows them to communicate 

data safely and to agree on keys that will be used for future communication is established 

between them. Table 2.1 discusses the encryption methods. 

 

Table 2.1: Encryption Techniques (Thakkar, 2020) 

Type of 

Encryption 

Method Types Advantages Disadvantages Usage 

Symmetric 

Encryption 

Data is 

encrypted and 

decrypted with 

the help of a 

single 

cryptographic 

key. Ideal for 

applications in 

which a large 

amount of data 

needs to be 

encrypted 

regularly. 

Symmetric 

encryption is 

primarily used 

for encryption. 

Data Encryption 

Standard (DES) 

- The simplicity 

with which 

symmetric 

encryption is 

implemented is 

its most 

distinguishing 

characteristic. 

As such, 

symmetric 

encryption is 

faster, requires 

less 

computational 

power, and does 

not dampen 

internet speed. 

- Low encryption 

key length. 

- It was cracked 

by many 

security 

researchers; it is 

officially no 

longer in use 

and replaced by 

the AES 

algorithm. 

- SSL/TLS 

protocol 

(website 

security) 

Triple Data 

Encryption 

Standard 

(3DES) - 3DES 

was created to 

address some of 

the 

shortcomings of 

the DES 

algorithm. 

- 3DES is 

significantly 

more difficult to 

crack than its 

predecessor, 

DES. Each data 

block is 

subjected to 

three repetitions 

of the DES 

algorithm. 

- According to 

Karthikeyan 

Bhargavan and 

Gatan Leurent 

of Inria (Paris), 

attacks against 

TDEA were 

analysed and 

implemented in 

real-world 

applications. 

The results 

show that the 

- SSL/TLS 

protocol 

(website 

security) 
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collision attack 

on TDEA 

represents a 

serious security 

vulnerability for 

many common 

uses of these 

protocols, 

including the 

HTTPS protocol 

for secure 

Internet 

connections. 

Furthermore, the 

investigation 

reveals that 

security 

vulnerability 

continues to be 

a severe 

concern. After 

2023, the use of 

3DES will be 

phased out in all 

new software 

applications. 

Advanced 

Encryption 

System (AES) - 

It is one of the 

most widely 

used forms of 

encryption 

algorithms, and 

it was developed 

as a 

replacement for 

the DES 

method. 

- AES is a 

secure, quick, 

and versatile 

encryption 

method.  

- AES is a 

significantly 

faster algorithm. 

- The most 

significant 

benefit is the 

longer the keys 

are, the more 

difficult it is to 

crack them. 

 - Finding a 

weakness in the 

algorithm. 

- Brute force 

search. 

- XSL (extended 

sparse 

linearisation) 

attack. 

- Wireless 

security 

-Processor 

security and file 

encryption 

-SSL/TLS 

protocol 

(website 

security) 

-Wi-Fi security 

-Mobile app 

encryption 

-Virtual private 

network (VPN) 

etc. 
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Asymmetric 

Encryption 

Entails the use 

of several keys 

for the 

encryption and 

decryption of 

information. An 

asymmetric 

encryption 

scheme consists 

of two different 

encryption keys 

that are 

mathematically 

related to one 

another. 

Asymmetric 

encryption 

provides the 

benefits of 

encryption, 

authentication, 

and non-

repudiation all in 

one package. 

Ron Rivest, Adi 

Shamir, and 

Leonard 

Adleman (RSA) 

Encryption 

- Data remains 

protected 

against man-in-

the-middle 

(MITM) attacks. 

- Provides 

authentication. 

- Provides 

scalability. 

Various 

encryption key 

lengths can be 

used. 

- Most widely 

used 

asymmetric 

encryption 

algorithm 

- RSA is a 

deterministic 

method, it is 

possible to 

conduct a 

passive attack 

on it as well. To 

prevent these 

attacks, a hash 

function can be 

incorporated into 

the encryption 

function that 

allows the 

receiver to 

confirm whether 

he got a valid 

message. 

- website 

security 

- email 

encryption 

- crypto-

currency 

Elliptic Curve 

Cryptography 

(ECC) 

Encryption 

- Data remains 

protected 

against man-in-

the-middle 

(MITM) attacks. 

- Provides 

authentication. 

- It’s impossible 

to crack as it is a 

complex 

algorithm. 

- Faster 

performance 

since less 

networking load 

and computing 

power. 

- Many server 

software has not 

added support 

for ECC 

SSL/TLS 

certificates. RSA 

continues to be 

widely used. 

 - website 

security 

 

Hybrid 

Encryption - 

Symmetric + 

Asymmetric 

Encryption 

It combines the 

best features of 

both symmetric 

and asymmetric 

encryption 

methods, 

resulting in a 

synergistic effect 

that allows for 

 - Fast 

communication 

- Less 

computing 

power 

  - website 

security 

- web browsers 

- E-mail 

encryption 
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the development 

of resilient 

encryption 

systems. As 

long as both the 

public and 

private keys are 

kept completely 

safe, this sort of 

encryption is 

regarded to be 

extremely 

secure. 

 

 

As encryption, HMAC is a fundamental security procedure. Because of the rapid evolution of 

communication standards, security has become an increasingly important requirement, 

particularly in today's world. It is vital to maintain secrecy however, without authentication, we 

are unable to identify and authenticate the persons or parties involved in a transaction. 

Encryption and HMAC are critical in addressing security issues. The implementation of these 

security techniques needs to be employed in critical infrastructures and provisions developed 

in future technologies. HMAC has been established as a standard for robust authentication 

with additional security features. 

 

The Message Authentication Code (MAC) is used to ensure the authenticity and integrity of 

messages. Most MACs use symmetric key techniques and one-way hash functions. AES-

CBC-MAC employs a symmetric mechanism, whereas HMAC utilises a hash function-based 

technique. The first release of the secure hash function algorithm was known as SHA-1. The 

second generation of the SHA algorithm, SHA-2, has been created to take advantage of the 

enhanced security features of the Advanced Encryption Standard (AES) protocol (AES). Brute 

force attacks on the MAC are more challenging to execute than detecting a collision in a hash 

function, and the cryptographic strength of AES block cipher encryption is higher as well. The 

AES-Cipher Block Chain (CBC)-MAC algorithm is therefore regarded as a safe authentication 

method (Weerathunga, Pubudu Eroshan, 2012). The hash algorithm SHA-1 provides the 

lowest level of security. SHA-2 hash algorithms are being given more attention as a result of 

the increase in the number of security bits associated with digital signature algorithms and 

AES and as a result, they are better suited for dealing with recent developments in computer 

security. 
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To evaluate HMAC over the message or file, the following expression is required to compute 

(Dondossola & Terruggia, 2015). 

 

MAC(text)t = HMAC(K, text)t = H((K0  opad )|| H((K0  ipad) || text))
t
 

 

Equation 2.1 

 

HMAC uses the following parameters and symbols (Dondossola & Terruggia, 2015): 

 

“B = Block size (in bytes) e.g., 64 bytes = 512 bits, 

H = Approved hash function (SHA-1, SHA-2), 

ipad = Inner pad e.g., the byte x36 times repeated B times, 

opad = Outer pad e.g., the byte x’5c’ repeated B times, 

K = Secret key shared between the sender and the receiver, 

Ko = The key K with zeros appended to form a B byte key,  

L =  Block size (in bytes) of the output of the approved hash function, 

T = The number of bytes of MAC, 

text = The data on which the HMAC is calculated; the length of the data is n bits,  

where the maximum value for n depends on the hash algorithm used.” 

 

The HMAC method is presented in Figure 2.5. Table 2.2 depicts the algorithm's process 

operation (Dondossola & Terruggia, 2015). 

 

Table 2.2: HMAC Algorithm 

STEPS DESCRIPTION 

1. “If the length of K = B, set K0 = K. Go to step 4” 

2. “If the length of K > B, hash K to obtain an L byte string: K = H(K). 

3. “If the length of K < B, append zeros to the end of K to create a B-byte string K0 

(e.g., if K is 20 bytes in length and B = 64, then K will be appended with 44 

zero bytes 0x00).” 

4. “Exclusive-Or K0 with ipad to produce a B-byte string: K0  ipad.” 

5. “Append the stream of data 'text' to the string resulting from step 4: 

(K0 ipad) || text” 

6. “Apply H to the stream generated in step 5: H((K0 ipad) || text).” 

7. “Exclusive-Or K0 with opad: K0  opad.” 
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8. “Append the result from step 6 to step 7: 

(K0  opad) || H((K0  ipad) || text).” 

9. “Apply H to the result from step 8: 

H((K0  opad )|| H((K0  ipad) || text)).” 

10. “Select the leftmost t bytes of the result of step 9 as the MAC.” 

 

The hash method and key are used on both the sender and recipient sides to obtain the 

matching HMAC value, which is used to verify the authenticity of the data. As mentioned 

above, HMAC makes use of a cryptographic hash function that is irreversible; hence, when 

we utilise HMAC from the sender side to encrypt a message using the HMAC formula, the 

message is encrypted at the sender side (Gupta et al., 2017). The hash function and the key 

will be used by the receiver to produce a value that is equal to or greater than the hash. We 

decrypt the cyphertext with the help of an authentication key and compute the HMAC on the 

plain text. If both values are equivalent, the decryption is accepted; otherwise, the decryption 

is rejected. 

 

Figure 2.5: Illustration of the HMAC Construction (Gupta et al., 2017) 
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Known as a cryptographic algorithm, the HMAC provides the maximum level of protection 

against security threats. HMACs are used to exchange information between two parties who 

are both aware of the secret key used to encrypt the information. A digital signature does not 

require the verification of a secret key to be authenticated. In cryptography platforms and other 

industries, encryption and hash methods have important applications. Encryption is often used 

to protect the confidentiality of data. Only authorised people with the key should be able to 

access the data. On the other hand, hashing works well for verification; knowing the actual 

data is unnecessary, just whether or not the hashes are the same. Table 2.3 shows reviewed 

papers for data security. 

 

Table 2.3: Data security reviewed literature papers. 

Paper Research Objectives Method Outcomes 

(Bhanot & Hans, 2015) The authors conduct a 

comparative analysis 

and review of several 

encryption techniques. 

Different Algorithms are 

compared based on 

various parameters. The 

authors looked at ten 

different data encryption 

techniques, including 

DES, Triple DES, RSA, 

AES, ECC, BLOWFISH, 

TWOFISH, 

THREEFISH, RC5, and 

IDEA, amongst other 

things. 

Each algorithm has its 

own set of advantages 

that vary depending on 

the parameters used. 

The strength of each 

encryption technique is 

determined by the key 

management system 

used, the type of 

cryptography employed, 

and the number of keys 

used. Even though there 

is significant room for 

improvement, the 

authors propose the 

ECC and Blowfish 

encryption algorithms. 

The authors reiterate 

that these encryption 

algorithms are leading 

when it comes to 

security level and 

providing faster 

encryption speed. 

(Alajbegović et al., 

2006) 

This paper presents the 

DSA security technique. 

Mathematica 4.0 will be 

used to show the 

production and 

verification of signatures 

using DSA, as 

We may utilise the DSA 

to generate digital 

signatures for any type 

of message that we 

send out (encrypted or 
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demonstrated by the 

authors. It is necessary 

to produce a digital 

signature as well as a 

public key (which 

includes the secret key). 

DSA is reliant on the 

confidentiality of the 

private key is 

maintained. 

not). As a result of its 

dependence on the 

discrete logarithm 

problem, which is 

extremely difficult to 

solve, this approach has 

proven to be extremely 

safe. 

(Michail et al., 2004) In this research, the 

authors describe an 

efficient implementation 

of the HMAC using the 

SHA-1 hash function 

that is both fast and 

secure in terms of 

performance. This 

technique, in 

conjunction with a 

shared secret key, is 

used to authenticate 

messages sent across 

the network. 

The proposed system 

architecture has been 

described in VHDL. The 

entire system has been 

thoroughly tested and 

confirmed using 

commercial simulation 

tools, and its functioning 

has been thoroughly 

tested and verified. All 

the internal components 

in the design were 

created using XILINX 

FPGA chips, which are 

available for purchase 

online. 

The results of the 

simulations, which were 

carried out with 

commercial tools, 

confirmed the efficiency 

of the HMAC 

implementation in terms 

of both performance and 

throughput. Special 

effort has been taken to 

ensure that the 

suggested 

implementation does not 

add additional design 

complexity, while at the 

same time ensuring that 

functionality is 

maintained at the 

needed levels. 

(Chen & Yuan, 2012) In this research, we 

introduced a Key 

Derivation Function 

(KDF) technique based 

on the HMAC-SHA-256 

cryptographic algorithm 

in LTE networks. 

The SHA-256 and 

HMAC algorithm 

overview and 

implementation process 

are presented. 

HMAC-SHA is a hash 

function utilised in 

communication and 

shared key 

authentication. It is 

capable of effectively 

preventing data from 

being intercepted and 

tampered with during 

transmissions; 

maintaining data 

integrity, dependability, 

and security; and 

preventing data from 

being compromised. 
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(Oyelade et al., 2015) An encryption or 

decryption system for 

text data has been 

developed by the 

authors, and it makes 

use of both the DES and 

the RSA cryptosystems. 

It was decided to utilise 

the asymmetric method 

for the key encryption 

and decryption process 

since it allows for the 

delivery of keys over a 

secure channel, whilst 

the data to be 

communicated will be 

encrypted and 

decrypted using the 

symmetric technique. 

This system was 

created to achieve a 

variety of security 

aspects, including 

authentication, 

confidentiality, integrity, 

and non-repudiation of 

information. In addition, 

we combined the speed 

and strength of the 

symmetric method with 

the robustness and key 

management 

capabilities of the 

asymmetric algorithm, 

resulting in a better 

encryption algorithm, 

and we used text data 

as our experimental 

data to demonstrate 

this. 

(Hamouda, 2020) In this article, a 

comparative analysis of 

various encryption 

methods is provided. 

The author has 

conducted a 

performance analysis of 

the following encryption 

techniques: DES, 3DES, 

and AES, and compared 

their performance. They 

have been evaluated 

based on their capacity 

to secure data, the time 

it takes to encrypt data, 

and the amount of 

throughput required by 

the algorithm. 

The findings of the 

comparative analysis 

demonstrated the 

capabilities of each 

algorithm. It concluded 

that the AES algorithm 

outperformed all other 

commonly used 

encryption algorithms in 

terms of performance. It 

was decided to consider 

security. 

(Francis & Monoth, 

2018) 

A thorough examination 

of the numerous hybrid 

cryptosystems 

presented by various 

researchers is carried 

out, with the results 

being a list of the 

characteristics of the 

Ultimately, the purpose 

of this research is to 

investigate and evaluate 

the advantages of hybrid 

cryptography. It is 

critical to ensure the 

security of information 

exchange through the 

internet as well as the 

Using the notion of 

hybrid cryptography, this 

work adds to the 

knowledge of 

cryptography by 

analysing several 

algorithms that make 

use of the concept. It 

may be argued that, 
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algorithms employed in 

hybrid cryptography. 

local storage of secret 

information. Some of the 

most important 

algorithms used in 

hybrid cryptography, 

such as the DES, AES, 

RSA, ECC, and DSA, 

are examined in detail. 

despite the increased 

computational difficulty, 

cryptographic goals 

such as secrecy, 

integrity, and 

authenticity can be 

attained using hybrid 

cryptographic systems. 

 

Sections 2.4 and 2.5 will review the literature on the use of IEC 61850 and IEC 62351 in 

automation systems, as well as study the performance of devices that support GOOSE and 

SV. 

 

2.4 Literature Review – IEC 61850 

 

2.4.1 Introduction 

 

Over the years, communication networks have become a crucial part of the substation 

automation system (SAS) to provide control and protection in the power system. The 

advancement of technology has transformed digital communication to be introduced in Data 

Acquisition Systems (DASs) for monitoring and controlling processes (Ncube, 2012). 

However, legacy protocols had the disadvantage of limited, and low bandwidth (Sun et al., 

2012). As such, motivation was brought forward to improve the reliability of the DASs by 

improving the bandwidth. This motivated the development and implementation of hardware 

and software such as microprocessors to enhance control and monitoring procedures. This is 

further attributed to the integration of IEDs (Ncube, 2012; Sun et al., 2012). GOOSE 

communications are usually small in size and sent as multicast messages. They are intended 

for speedy and efficient communication, with relatively minimal bandwidth requirements when 

compared to SV messages. SV messages contain sampled values, and the amount of data 

generated is determined by the sampling rate and number of measurement points. As a result, 

SV may have higher bandwidth requirements than GOOSE. Because GOOSE 

communications are small and targeted, they have a low potential to congest the bandwidth. 

Congestion can arise when there are a significant number of events or devices communicating 

at the same time. SV messages have the potential to cause bandwidth congestion, particularly 

in situations when a rapid rate of sampling a large number of measurement points is occurring. 

For the transmission of SV data, latency and bandwidth are crucial parameters. (Groat et al., 

2023) examine the communication bandwidth used by GOOSE and SV messages and further 

provide recommendations on reducing bandwidth utilisation and using the available bandwidth 
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efficiently. The authors present communication capacity utilisation calculations for common 

applications that are scalable for the number of devices, based on Ethernet frame structure 

and settable transmission rates. The authors confirm that the sampled value bandwidth 

exceeds the GOOSE bandwidth. 

 

An IED is a software-configurable microprocessor-based relay with a combination of functions 

to monitor, protect and control. As a result, combining numerous operations into a single 

device reduces cost, and time, and increases substation automation levels (Emmanuel, 2014). 

Before the introduction of IEC 61850 and microprocessor-based relays, legacy communication 

protocols introduced issues where there was no interoperability between devices and no 

interchangeability. However, at the time, there was no standard to address such issues. 

Therefore, a standard needed to be introduced to implement standardisation and provide 

interoperability across various IEDs. 

 

As such, the IEC 61850 standard was released in its initial version to provide interoperability, 

a consistent design process (including system setup), and interchangeability. The IEC 61850 

standard was first issued in 2002 by Working Group 10 (WG 10) of IEC TC 57. IEC TC 57 is 

in charge of the development of international standards in substation automation. The 

specification was created to address issues with older traditional legacy communication 

protocols. The standard establishes a communication interface between process equipment, 

bay level, and station level levels of the power system. Figure 2.6 shows a standardised SAS. 

The standardisation of IEC 61850 came as a need as legacy communication interfaces lacked 

interoperability, and the deployment and development costs were expensive and high 

(Emmanuel, 2014). 

 

 

Figure 2.6: Standardised substation automation system (Emmanuel, 2014). 
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The IEC 61850 standard takes into account communication requirements within the substation 

automation network. The standard defines the interoperability between functions and devices; 

the capability of IEDs from various manufacturers to interface with each other for information 

exchange and use the information for functions providing protection, monitoring, control, and 

automation. Furthermore, the Ethernet-based communication standard brought benefits of 

reduced configuration, installation, and commissioning costs and increased power system 

stability (Karnati, 2020). Based on protocols and standards, IEC 61850 is the ideal 

communication standard for substation automation purposes (Hohlbaum et al., 2010). This 

standard aims to establish a level of communication, which supports emerging technologies 

and meets operational and performance requirements. 

 

Two groups of communication interfaces are available in the IEC 61850 standard: the client-

server and peer-to-peer architecture. A client-server architecture enables services like 

Reporting and Remote Switching. The peer-to-peer architecture supports Generic Substation 

Event (GSE) services. GSE is connected with time-critical, rapid and reliable communication 

amongst IEDs. GOOSE messages are associated with the GSE service. The use of the 

GOOSE message is quite critical in a substation, for the protection of the power system. As 

such, the GOOSE message structure is important for detecting and isolating any faults in the 

system. 

 

Part 6 of IEC 61850 describes the use of substation automation SCL in configuration tools for 

users to configure IEDs. Part 7 of the standard describes the object modelling approach, 

logical node and data classification, specific object definitions and descriptions, and abstract 

communications service interface (ASCI). Part 8 describes communications across the station 

bus, the Local Area Network (LAN) connecting the IEDs and the relay room. Part 9 describes, 

among other things, communications across the process bus, the LAN connection to the high 

voltage yard for voltage and current sampled readings, power equipment status report, etc. 

(Julie, 2014). 

 

One of the key features of IEC 61850 is the separation of the application from the 

communication through an abstract communications service interface. As illustrated in Figure 

2.7, the stack selected according to the highest development technology comprises of 

Manufacturing Message Specification (MMS) connection layer over Transport Control 

Protocol/Internet Protocol, TCP/IP. The GOOSE and SV operations run with high-speed 

switched Ethernet data frames excluding processing of any middle layers.  
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Fast messages include GOOSE commands such as trip, interlocking, and inter-trip signals. 

IEC61850-5 offers multiple performance levels for raw data packets from digital equipment for 

SV communications. 

 

 

 

Figure 2.7: IEC 61850 Communication Service Overview (Committee et al., 2017) 

 

In substation automation, three levels occur the process, bay, and station level. The process 

level contains electrical equipment (power transformers, circuit breakers, switch 

disconnectors, etc). These high-voltage devices connected to the bay level are installed below 

the process level. Transferred information includes analogue input and output data 

incorporating current and voltage transformer outputs, as well as trip signals from protection 

relays. Figure 2.8 depicts the logical interface provided by the IEC 61850 standard between 

station level, bay level, and process level. The IEC 61850 standard replaces hardwiring 

between substation components with communication interfaces, hence simplifying substation 

architecture. The new substation communication architecture is enhanced by the replacement 

of hardwired communication cables, which decreases deployment and maintenance costs 

(Apostolov, 2010). 
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Logical Interfaces as illustrated in Figure 2.8 (Commission, 2017): 

1. Protection – bay and station level data transfer between the levels. 

2. Protection – bay level and remote protection data transfer between the levels  

3. Bay-level data transfer 

4. Bay levels current transformer and voltage transformer data transfer between levels 

(Sampled Value messages) 

5. Control - process and bay level data transfer (measurements, status, and control) 

between levels (GOOSE messages) 

6. Control - bay and station level data transfer between levels 

7. Substation and remote engineer’s workplace data transfer between levels 

8. Data exchange amongst the bays (GOOSE messages) 

9. Station-level data transfer 

10. Control – substation device and control centre data exchange  

 

 

Figure 2.8: Logical Interfacing between Station, Bay, and Process Levels (Commission, 

2017) 

 

As mentioned, the emphasis switched from serial-based legacy substations to ethernet-based 

substations where seamless data communication is presented in the architecture between the 

substation levels. As depicted in Figure 2.8, the bay level comprises IEDs that communicate 
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with the devices situated at the station level through an MMS communication service in a 

client-server architecture (Emmanuel, 2014). MMS is utilised for data retrieval from IEDs as 

well as configuration and remote access. The utilisation of the publisher/subscriber 

communication services allows for the establishment of inter-communication between IEDs 

(Emmanuel, 2014). Furthermore, the process-level devices exchange information with the 

bay-level IEDs using the IEC 61850 process bus communication interface to transmit GOOSE 

and SV messages. The information is subsequently mapped into GOOSE and SV messages 

using ISO 8802-3 ethernet frame (Ncube, 2012). Studying the hierarchical architecture shown 

in Figure 2.9; IEDs may be installed in the station, bay, and process level. IEDs installed at 

the station level generally serve as Human Machine Interfaces (HMIs) allowing operators to 

monitor and observe IED signals installed at the plant or substation. No control may be 

conducted via the HMI. It is the bay level IEDs that perform the control, protection, and 

measurement functions using GOOSE or SV messages. The process level compromises the 

process level IEDs which utilise the process bus to transmit information such as sampled 

values of voltage and current measurements. 

 

 

Figure 2.9: IEDs installed in the IEC 61850 power system (Lei et al., 2014) 

 

A high-speed communication protocol between the process-level devices and the bay-level 

devices is provided by the IEC 61850 process bus. For the communication of GOOSE and SV 

messages, the process bus protocol uses ISO 8802-3 ethernet protocol. As compared to 

serial, hardwired communication, IEC 61850 process bus comes with benefits such as: 
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1. The implementation cost is reduced due to the decrease in the amount of copper 

cabling being used. 

2. Reduce the wire resistance to prevent saturation in instrument transformers 

(Apostolov, 2010). 

3. Improves the safety of the substation by preventing open circuits (Apostolov, 2010). 

4. Elimination of legacy protocols by employing easy and accessible TCP/IP and Ethernet 

technology. 

5. Ultimate adaptability and interoperability of the system 

 

Based on the above discussion, IEC 61850 provides a greater advantage than legacy 

communication protocols in substation automation systems. Any cyber security technique that 

seeks to secure IEC 61850 communication messages must consider these performance class 

requirements. The IEC 61850 protocols are transmitted on a process bus as unencrypted 

ethernet packets. The IED data can be sniffed and tampered with by an attacker, thereby 

weakening the security. The quick response times needed for certain types of communication, 

combined with the restricted capacity of some IEDs to process, present a clear challenge. 

These challenges need to be studied and see how IEC 62351 addresses them. 

 

2.4.2 Theoretical Framework 

 

Cyber-physical systems (CPS) have security concerns and those challenges need to be 

addressed and solved. (Yoo & Shon, 2016), present a paper where they study the IEC 61850-

based challenges and research directions for the heterogeneous cyber-physical system. In 

addition, the vulnerabilities, security specifications, and security architecture are addressed. 

Security issues are closely examined in the electrical grid in Korea. (Yoo & Shon, 2016), also, 

address the standardisation of smart grid communication protocols that correlate to the IEC 

61850 standard that is based on substation automation. 

 

The IEC 61850 standard and other smart grid protocols are presented and reviewed. The 

analysis of IEC 61850 standardisation and other smart grid protocols will be discussed. (Yoo 

& Shon, 2016), briefly discusses the IEC standards and correspondence protocols IEC 61850, 

DNP3, IEC 61970, and OPC UA. The original edition of the IEC 61850 standard was released 

in 2002, however, the information provided remained restricted to communication within a 

substation network (inside). The IEC 61850-7-410 version which described the object model 

in the hydropower environment was created in 2007, meaning the application available to the 
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outside of the substation. IEC 61850 is designed to help model and self-describe information 

in an object-oriented way. As such, it is stated that the fundamental variations between IEC 

61850 and other smart grid communication protocols cause problems in the harmonisation of 

protocols and may pose security threats. 

 

The IEC 61850 information model can be mapped or transmitted in three ways: MMS, 

GOOSE, and SMV. GOOSE and SMV are transmitted over TCP/IP networks or use Ethernet 

for high speed. Furthermore,  (Yoo & Shon, 2016) discussed briefly that the safety aspects of 

the IEC 61850 standard are laid down in IEC 62351. The IEC 62351 sets out how protocols 

based on TCP/IP can be secured via Transport Layer Security (TLS). The standard is revised 

for GOOSE / SMV messages based on a message authentication code being generated. 

 

DNP3 is a communication protocol for communication transmission between the control centre 

and its power system. In 1993, the DNP3 protocol was developed and in 2010, it was 

standardised as IEEE 1815-2010. A study was conducted by the Smart Grid Interoperability 

Panel to standardise the DNP3 and IEC 61850 mapping process. The interoperability between 

the DNP3 and IEC 61850 is inevitable in this environment.  The security mechanism for the 

DNP3 messages is specified in IEEE 1815-2010 and IEEE 1815-2012 as Secure 

Authentication Versions 2 and 5 (Yoo & Shon, 2016). The IEEE 1815-2012 standard was 

subsequently revised to strengthen Secure Authentication to provide application layer 

functions to verify the source of the messages, the integrity of the message, and the ability to 

update keys remotely using cryptography and security statistics to check events of 

authorisation failures. 

 

(Yoo & Shon, 2016) further study IEC 61970, providing a structured framework for the 

representation of specific power system objects with object-oriented relationships for these 

objects; The IEC 61970 specification is employed in control centres, and together with the IEC 

61850 standard, it is a primary standard for the smart grid. Many applications require the 

implementation of systems across the smart grid environment; thus, the IEC 62361-102 

standard is being developed, which harmonises the IEC 61970 and IEC 61850 specifications. 

 

Lastly, (Yoo & Shon, 2016) reviewed the Open Platform Communication Unified Architecture 

(OPC UA). The objective of OPC UA is to boost interoperability by providing a standard 

interface for the exchange of messages between Windows-based applications and various 

field devices within the industrial network environment. OPC UA provides a platform-

independent environment by introducing a service-oriented architecture concept (Yoo & Shon, 

2016). Therefore, the power system in Korea uses a mix of heterogeneous standards such as 
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IEC 61850, DNP3, IEC 61970, and OPC UA for data communication. Communication 

standards are interconnected between IEC 61850 and DNP3 and IEC 61850 and IEC 61970. 

A mapping approach has to be pre-determined to achieve conversion between different 

communication protocols (Yoo & Shon, 2016). When mapping to IEC 61850 and DNP3, a 

protocol mapping table can be created using the DNP3 XML file, the Substation Configuration 

Description (SCD) file, and the mapping rules as defined within the IEEE 1815 standard. 

Furthermore, a configuration tool can be helpful for pre-setting protocol mapping (Yoo & Shon, 

2016). The link between the IEC 61850 and IEC 61970 specifications concerns data exchange 

services and information models standardised in the substation automation environment. 

However, both standards are not mutually compatible and have been designed for different 

purposes. The IEC 61850 standard defines the functional elements of the substation's IED as 

Logical Nodes (LNs). The IEC 61970 standard defines the power system resources and their 

relationship in the Unified Modelling Language (UML). Therefore, the interlink between IEC 

61850 and IEC 61970 should be addressed in terms of both the information model and the 

data exchange service. Mapping between IEC 61850 and IEC 61970 information models may 

be impossible; a unified information model must be developed by incorporating the IEC 61850 

information model with the Common Information Model (CIM).  

 

In IEC 60870, protocol mapping refers to the process of transferring information across 

multiple communication protocols. The IEC 60870-5 protocol standard provides telecontrol, 

teleprotection, and other telecommunication operations for power systems. IEC 60870-5 is an 

adopted standard for telecontrol equipment and systems. Protocol mapping is especially 

important in the context of IEC 60870-5-104, a companion standard that specifies the usage 

of the TCP/IP protocol suite for telecontrol (Lin & Nadjm-Tehrani, 2018).  The standard covers 

frame structure, information field content, and data transfer processes. 

 

a) Application Layer - The application layer is responsible for the frame structure of the 

data to be transmitted. It specifies information objects and application service data 

units (ASDUs). 

b) Transport Layer - IEC 60870-5-104 utilises the Transmission Control Protocol (TCP) 

for reliable data transmission. The ASDUs are incorporated into TCP packets for 

transmission between devices. 

c) Network Layer - The Internet Protocol (IP) is used to address and route TCP packets. 

ASDU data is bundled into IP packets to enable end-to-end network communication 

between devices. 
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The IEC-60870-5-104 protocol is widely used in SCADA networks to manage critical 

infrastructure. DNP3 and IEC-60870-5-104 were both designed particularly for SCADA 

communication beyond the substation level; however, DNP3 has a few advantages over IEC-

60870-5-104. DNP3 is capable of transmitting high data quantities over great distances while 

also enabling more rapid transfer of data. To benefit from the effective data transfer and 

execution of IEC 61850, IEC-61850 is commonly used for data mapping of IEC-60870-5-104. 

(Lin & Nadjm-Tehrani, 2018; Anon, 2021) 

 

2.4.3 Application, performance evaluation, and development of IEDs capable of 

publishing IEC 61850-8-1 GOOSE messages 

 

One of the communication interfaces presented in the IEC 61850 standard is the GOOSE 

message. The GOOSE interface facilitates communication between IEDs in different levels of 

a SAS. The GOOSE message maps data and object models into an ethernet protocol. 

 

GOOSE communication is time-critical messages that are sent timeously when the occurrence 

of a certain event in the data and object model changes (Ncube, 2012). Because GOOSE 

messages are transmitted regularly, they can be used to transmit analogue and binary data to 

the receiving IED. GOOSE message implementation comes with the benefit of reduced wiring 

and engineering fees as the ethernet frame or network is used on the process bus. The 

process bus communication network should complete communication of GOOSE and SV 

messages within 4ms, as these are time-critical messages (Weerathunga, Pubudu Eroshan, 

2012). The IEC 61850-5 standard specifies the time it takes for various types and classes of 

messages to be transmitted. According to the IEC 61850-5 standard, all devices that comply 

must be capable of transmitting messages of unique types or classes within the specified 

timing requirements. However, considering that, GOOSE communication is categorised as 

GOOSE trip (Type 1A) and GOOSE block messages (Type 1B). GOOSE trip messages are 

further classified into two performance classes, P1 and P2/P3, based on the transmission 

time. For P1 and P2/P3, the time requirement is 10 ms and 3 ms, respectively (Committee et 

al., 2017). 

 

To verify that devices in the design stage meet the timing criteria for IEC 61850-8-1 messages, 

(Gonzalez-Redondo et al., 2013) explore strategies for monitoring the GOOSE communication 

transmission time. It is possible to measure time using three different techniques: the round-

trip test, the ping-pong test, and the rally test. The IEC 61850-10 standard provides the round-

trip time for calculating the time delay of a subscribed message being retransmitted back to 

the sending device. With the ping-pong technique, the Device Under Test (DUT) broadcasts 
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a message to a receiving device. As soon as the message is received by the subscribing 

device, it sends out a GOOSE message that is then subscribed to by the DUT. Lastly, a rally 

technique is conducted, in which both devices simultaneously issue GOOSE communication, 

which is subsequently received by the other device. After the device has received a message, 

it will broadcast a new message, which the other device will then subscribe to. As a result, 

both devices will be constantly energised. According to the configuration, a client-server 

architecture is implemented. Using this practical configuration, the findings indicate that the 

greatest round time trip time for a GOOSE message is 1.536 ms, which is less than the time 

requirement of 3ms (Gonzalez-Redondo et al., 2013). 

 

Figure 2.10 details the communication stack of the protocol. The fast transmission time of 

messages is guaranteed as GOOSE messages are mapped to the second layer of the stack 

interface (Hohlbaum et al., 2010). The SV and GOOSE protocols map straight into the ethernet 

frame. As specified, the MMS protocol can work via TCP/IP or ISO. Using "Ether-type" or 

"802.3", all data is mapped into an Ethernet layer. 

 

 

Figure 2.10: Message communications stack in IEC 61850 (Ali et al., 2016) 

 

As previously discussed, GOOSE communication can be utilised to transmit data between 

IEDs or between process equipment such as transformers or circuit breakers. Analogue 

values and or digital signals can be transmitted via GOOSE messaging to IEDs located on the 

bay level. 
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GOOSE messages offer numerous advantages over conventional communication protocols. 

The benefits of using GOOSE are listed below (Ncube, 2012; Emmanuel, 2014): 

1. High-speed transmission between substation IEDs. 

2. Reduced point-to-point copper wiring for protection and control networks. (Daboul et 

al, 2015) examine the performance and timing of GOOSE messages when used in 

conjunction with serial communication in a SAS. Two IEDs were designed to exchange 

GOOSE messages via serial communication; the findings indicate that the GOOSE 

round-trip duration is roughly 2.5 ms, but the hardwired signals exchange takes 20 ms. 

This article demonstrates that GOOSE messaging can be used to exchange 

information in SAS without impacting the system's operation. 

3. The latest GOOSE messages are regularly available on the process bus as they are 

transmitted as a multicast message; as such providing high system availability. 

4. The GOOSE protocol does not support message acknowledgements. Hence the 

amount of traffic in the process bus is reduced guaranteeing high delivery rates. 

5. Flexibility and expandability for protection and control schemes. 

6. GOOSE capability to be utilised beyond substations and on different smart grid 

applications through Routable GOOSE (R-GOOSE). 

 

GOOSE protocols are adaptable for implementation in a wide range of applications. Table 2.4 

shows a catalogue of articles that describe the use of the GOOSE communication protocol in 

an IEC 61850 standard-based SAS. 

 

Table 2.4: IEC 61850 GOOSE Literature Review 

Paper Research Objectives Method Outcomes 

(Apostolov & Vandiver, 

2011) 

The authors study the 

IEC 61850 GOOSE 

applications to 

protection systems. 

The authors study the 

need for improved 

electric supply by 

investigating failures in 

the distribution 

protection scheme. 

Furthermore, a 

simulation tool is 

proposed to test the 

system. 

The use of IEC 61850 

GOOSE messages 

significantly improves 

distribution substation 

protection by reducing 

fault clearing times and 

mitigating the effect of 

short circuit faults. By 

utilising high-speed 

messaging, many 

hardwired connections 

are eliminated. 
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(Gonzalez-Redondo et 

al., 2013) 

The IEC 61850 GOOSE 

strict time requirements 

are studied. This 

document includes a 

brief description of 

various performance 

tests. 

A simple testbed for 

evaluation purposes is 

presented. A testbed for 

doing a first 

performance evaluation 

of a Commercial Off The 

Shelf (COTS) solution 

for IEC 61850 devices 

was used to 

demonstrate a 

straightforward 

methodology based on 

physical transfer time 

measurements. 

Tests on the GOOSE 

message demonstrate 

that the system is 

appropriate for the most 

demanding applications 

with a transfer time of 

approximately 1.5 ms. 

(Omar Hegazi , Eman 

Hammad , Abdallah 

Farraj, 2017) 

This article describes 

the modelling and 

construction of a 

GOOSE traffic generator 

in the Riverbed Modeler. 

We quantify the extra 

processing latency 

introduced by the traffic 

generator's 

implementation in terms 

of encoding/decoding. 

The generated 

generator was 

incorporated into the 

Riverbed Modeler, 

which required the 

development of a 

customised model to 

support IEC-61850 in 

Modeler. 

The simulation results 

demonstrated the 

customised models' low 

overhead. The primary 

contributions of this 

work are a full modelling 

of the GOOSE message 

and a message 

generator for extracting 

status and value data. 

The proposed message 

generator can be used 

to convey time-sensitive 

GOOSE signals quickly 

and reliably, as well as 

expand research on 

cyber-security. 

 

(Harispuru & Schuster, 

n.d.) 

This article 

demonstrates how to 

configure and test 

GOOSE communication 

to achieve maximum 

dependability without 

losing performance. 

The purpose of this 

study is to discuss the 

tools and approaches 

for increasing the 

reliability of 

communication at the 

IED level via GOOSE 

messaging. 

Numerous diagnostic 

methods for GOOSE 

signals were described. 

Test programs can be 

used to validate the 

network's data 

traffic.  These test 

programs can verify that 

GOOSE messages are 

being transmitted 

correctly across the 

network and that they 

match the preset data. 
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(Elbez et al., 2018) The document describes 

the design and 

implementation of a 

software testbed to 

study the CPS of IEC 

61850-based electrical 

substations. 

The suggested testbed 

provides an appropriate 

level of 

detail/abstraction for 

both the network and 

physical components, as 

well as their 

communication. The 

proposed testbed is 

unique in that it 

integrates the physical 

and cyber components 

of the power system. 

The current testbed was 

developed specifically to 

analyse the cyber-

physical security of 

electrical substations 

per IEC 61850. 

Additionally, the 

proposed testbed will be 

utilised to demonstrate 

defence mechanisms for 

securing the network 

connection of modern 

electrical substations. 

(Fernandes et al., 2014) The paper provides an 

overview of the GOOSE 

protocol and its benefits. 

In this study, the authors 

presented a 

demonstration of the 

use of GOOSE 

capabilities in a 

protection IED to 

demonstrate its 

functionality. The results 

of two such IEDs being 

tested in a laboratory 

environment are 

discussed. 

The IEC61850 GOOSE 

connection between the 

two devices was 

successfully 

established, with both 

devices able to publish 

and receive GOOSE 

messages. The 

seamless integration of 

IEC61850 into the IED 

simplifies the process of 

developing power 

system protection 

strategies. 

(Bhamare, n.d.) This article discusses 

how to implement 

several of the new 

capabilities included in 

IEC 61850, 

Communication 

Networks and Systems 

in Substations. 

The article discusses 

how to leverage 

GOOSE communication 

to increase the system's 

dependability and 

performance between 

protection and control 

devices. The author 

further studies the 

network architecture for 

GOOSE communication 

to better reduce 

hardwiring and provide a 

more modern and 

reliable protection and 

control system. 

IEC 61850 is a good 

investment because of 

the cost reductions 

associated with 

substation design, 

installation, 

commissioning, and 

operation, as well as the 

addition of new 

capabilities that are not 

feasible or cost-viable 

using traditional 

methodologies. Utilising 

IEC 61850 and GOOSE 

significantly improves 

the performance and 

speed. Additionally, the 
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usage of IEC 61850 and 

GOOSE increases the 

operational reliability of 

the protection system. 

(Pathan & Asad, 2016) This article discusses in 

depth the GOOSE-

based ACSE scheme 

logics for power 

transformers, as well as 

their latency. 

The scheme is 

optimised for 

performance using the 

software PCM V2.5, 

which eliminates the 

need for redesign and 

rewiring. The simulation 

results indicated the 

latencies of GOOSE 

messages on a system 

setup for an ACSE 

scheme. 

Automatic changeover 

switching equipment 

(ACSE) transfer 

systems improve the 

reliability of a power 

system by automatically 

switching to a standby 

power source when the 

primary source 

experiences a power 

outage. The authors 

conclude that the 

proposed approach is 

reliable since old wiring 

can break without 

warning. 

 

These previous research studies demonstrate that GOOSE messages can be used to 

communicate time-sensitive communications over a low-traffic Ethernet network. As part of 

the implementation of an electrical fault protection scheme that uses GOOSE, the system 

engineer must ensure that, in the event of an electrical fault, the protection scheme is 

operational within a reasonable amount of time. When a fault occurs, there are several 

different methods for determining how quickly a protective system responds. The speed and 

performance of an IEC 61850 protection application are used to determine whether or not a 

system is a suitable solution. Methods for determining the precise GOOSE transfer time have 

also been developed. It is critical to ensure that the GOOSE transfer time is within the allowed 

time frame because this has a direct impact on the overall response time (Retonda-Modiya, 

2012). 

 

2.4.4 Application, performance evaluation, and development of IEDs capable of 

publishing IEC 61850-9-2 SV messages 

 

As the IED continues to develop, more and more digital systems are being incorporated into 

the power system, and the conventional protection system is being phased out in favour of the 

digital system. The testing of traditional protection systems has already been completed, while 

the evaluation of digital systems in the power industry is still in the process of being completed. 
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(Engler et al., 2004) conducted several feasibility tests. The tests involved measuring the delay 

time of SV across an Ethernet network, as well as the performance of the IEDs when it is 

loaded with an SV message. During the evaluation, the accuracy of synchronisation was within 

20µs. When using SV, the maximum delay time is 3.520ms. (Engler et al., 2004) confirms that 

the real-time requirements are conformed to the substation automation environment. (Engler 

et al., 2004) further dictates that modern ethernet equipment should be used to accomplish 

reliable operation. (Kanabar & Sidhu, 2011) further simulates a process bus for a substation 

using ethernet communication. Communication delays for time-critical packets (such as 

process bus communication, which includes GOOSE and SV) are permitted according to IEC 

61850, with a maximum of 3ms to 4ms. (Kanabar & Sidhu, 2011), using fibre optic 

communication confirms that the delay time of SV is within the required range. The benefit of 

employing ethernet-based communication is that it enables the creation of more advanced 

communication architectures and integration with the rapidly increasing ethernet-based 

communication technologies. Due to the time-critical and high-speed characteristics of today's 

Ethernet-based communication technology, it is an ideal communication technology for 

automation applications in substations (Abdolkhalig, 2014). Ethernet-based communication 

has been proposed for use in substation automation in parts 8 and 9 of the IEC 61850 

standard, respectively, at the station and process levels.  

 

The communication network within the substation is organised into three levels: process, bay, 

and station. The process is at the lowest level of the network. The switchgear equipment, 

actuators, and sensors are all considered to be part of the process level. The process bus is 

the Ethernet interface between the IEDs at the process and bay level.  Only a few practical 

implementations have used the IEC 61850-9-2 process bus standard. Incorporating the 

process bus has numerous clear advantages. Comparing the new approach to the previous 

approach, there will be a significant reduction in the amount of copper wiring required to 

connect the process equipment. Aside from that, automated testing is possible with a 

digitalised information system, which makes the installation process simpler (Zhao, 2012).  

 

(Adewole & Tzoneva, 2014a) investigate the effect of the SV process bus on the operational 

performance of protective relays. The speed, dependability, and security characteristics of the 

sampled value process bus under investigation were among the considerations. (Adewole & 

Tzoneva, 2014a) compared the performance of two IEDs in a distance protection scheme by 

employing a hardware-in-the loop-solution to a standard hardwired arrangement to see which 

was more effective. A Real-Time Digital Simulator (RTDS), an IED, a GPS clock, and an 

industrial network switch were used to configure the hardware-in-the-loop SV protection 
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method. To evaluate the protection system's performance, it was subjected to a variety of fault 

locations, fault resistance, and fault inceptions with varying Source Impedance Ratios (SIR). 

 

According to (Adewole & Tzoneva, 2014a) to evaluate the security and reliability features of 

the IEC 61850-9-2 standard process bus communication network, the delay was introduced 

into the network. Due to the similar response and tripping times between the two 

communication modes, the findings of laboratory testing suggest that the IEC 61850-9-2 

standard process bus can be used in place of conventional hardwired communication between 

protection IEDs and instrument transformers. However, when compared to hardwired 

systems, the SV process bus offers several advantages, including the removal of parallel 

copper wires between instrument transformers and IEDs, as sample values are published onto 

an Ethernet network. (Adewole & Tzoneva, 2014a) conducted a test to demonstrate that the 

IEC 61850 process bus may be utilised in place of conventional protection schemes without 

compromising the security and operation of the system. 

 

Merging Units that comply with the IEC 61850-9-1 standard and the IEC 61850-9-2 standard 

communicate SV messages to bay-level IEDs using the serial link and the Ethernet process 

bus, respectively, according to the standards. Each of these SV messages contains 

instantaneous voltage and current samples of the power system, which are sampled by the 

Merging Unit (MU) at a predetermined pace. The MU is a device that allows information to be 

exchanged between the electronic current transformer and the bay-level equipment. It is used 

for metering and for implementing other protective functions to use the sampled value 

messages received by the bay-level IEDs instead of the full value messages. To receive these 

published SV messages, bay-level IEDs must subscribe to them using the abstract 

communication services provided in the IEC 61850-7-2 and IEC 61850-9-2 standards (Ncube, 

2012). 

 

In sensor systems, such as CTs, VTs, or digital input or digital output sharing, sampled 

measured value (SMV) is a mechanism that is used to transport measured samples from 

sensor systems between IED devices. The MU depicted in Figure 2.11 accepts analogue input 

signals from current and voltage transformers via an Analogue to Digital Converter (ADC) and 

binary input signals from primary plant equipment through a digital converter. In this case, the 

information is mapped onto an IEC 61850-9-1 standard SV frame and then broadcast to bay 

controllers through a serial unidirectional multidrop point-to-point communication link. Thus, a 

single ethernet-based process bus network may carry a large number of digital signals. 
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Figure 2.11: IEC 61850-9-1 standard-based Merging Unit (Ncube, 2012) 

 

MUs are depicted in Figure 2.11 as devices that are capable of broadcasting sampled value 

messages carrying digital information obtained by reading digital inputs per the IEC 61850-9-

1 standard (Ncube, 2012). Aside from the fact that they must continuously supply information 

to protection, monitoring, and control devices, sampled values are transmitted at a consistent 

rate, as opposed to GOOSE messages. As a result, the sampled values consume a significant 

amount of network traffic. Because the SMV and GOOSE messages will be the primary 

constraints on network capabilities, it is critical to conduct a thorough examination of these 

two protocols under their most extreme operation to ensure system stability. 

 

Table 2.5 provides a literature review of IEC 61850 SV messages for use in substation 

automation systems. 

 

Table 2.5: IEC 61850 SV Literature Review 

Paper Research Objectives Method Outcomes 

(Apostolov, 2010) The study begins by 

defining the Process 

Bus concept as defined 

in IEC 61850 9-2 and 

then focuses on the 

implementation that 

provides interoperability 

between merging units 

In comparison to 

conventional protection 

and recording systems, 

applications based on 

the IEC 61850 provide 

several significant 

benefits. The study 

discusses functional 

Improved system 

flexibility, reduced CT 

saturation problems, 

and prevention of open 

current circuit 

circumstances are only 

a few of the major 

benefits addressed in 
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and protection devices. 

The Merging Unit's 

components, 

performance 

requirements, and 

temporal 

synchronisation are 

discussed. 

enhancements in 

conjunction with the 

realistic elimination of 

performance or safety 

concerns. 

the study. There are 

numerous benefits 

compared to traditional 

protection and control 

systems: Cost savings 

on wiring, installation, 

and commissioning, and 

simplicity of adjustment 

to different 

configurations. 

(Adewole & Tzoneva, 

2014b) 

The objective of the 

research is to examine 

the movement toward 

the usage of the IEC 

61850-9-2 Process Bus 

in substations. The 

impact of the IEC 

61850-9-2 standard on 

the reliability, security, 

and operational speed 

of protective IEDs is 

discussed. 

A lab-scale hardware-in-

the-loop experiment is 

implemented and used 

for the investigations. It 

includes the RTDS, an 

IEC 61850-9-2 

protection IED with SV 

inputs, a conventional 

hardwired protection 

IED, a GPS satellite 

clock, and industrial 

network switches. The 

studies are designed to 

compare the 

performance of the two 

protection IEDs' 

distance protection 

functions while exposed 

to a variety of fault types 

at a variety of fault 

locations. Additionally, 

the effect of random 

noise/delay on the 

protection functionalities 

of an IEC 61850-9-2 

Process Bus-based 

protection IED is 

examined. It 

demonstrated that it 

does not affect the 

Process Bus IED unless 

security and reliability 

are compromised. 

The results of the 

numerous tests 

conducted revealed that 

both IEDs operate 

similarly in terms of 

operating time 

responsiveness and 

tripping times 

throughout all protective 

zones. Additionally, the 

IED's dependability and 

security were confirmed. 

Integration of Process 

Bus-based IED 

improves substation 

safety, reduces copper 

usage, and simplifies 

maintenance and 

reconfiguration. 
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(Skendzic et al., 2007) The IEC 61850-9-2 

standard introduces the 

SV Process Bus idea. 

This standard proposes 

that the outputs of 

Current and Voltage 

Transformers that are 

now hardwired to 

various equipment be 

converted to digital 

signals and transmitted 

via an Ethernet network. 

This article discusses 

the Merging Unit 

Concept, examines the 

reliability of the 

protection system in a 

process bus context, 

and provides an 

alternate way for 

successfully deploying 

this technology. SV 

process bus has several 

additional issues that 

must be handled, as 

well as interoperability 

difficulties. 

A large reduction in the 

amount of low-voltage 

cable and its 

replacement with logical 

connections established 

through the process bus 

LAN are two key 

benefits of the proposed 

solution, which promises 

to minimise installation 

costs. As a result, a 

fresh approach is 

required. It must be 

adaptable, dependable, 

and capable of 

delivering benefits to its 

users. 

(Ingram, Schaub, 

Taylor, et al., 2013) 

The objective of this 

article is to examine the 

role of a communication 

network that is 

developed on the IEC 

61850 standard. The 

information gathered is 

used to acquire a better 

knowledge of the 

properties of the 

process bus. The 

concept of coherent 

transmission, as well as 

its implications for 

Ethernet switches, are 

addressed in detail. 

The behaviour of 

Ethernet switches with 

sampled value traffic is 

investigated in detail 

using experiments 

based on substation 

observations. The 

authors provide test 

methods for determining 

a network's adequacy. 

Once an Ethernet switch 

queue sampled value 

frames, future switches 

incur minimal additional 

delay, as such 

communications cabling 

can be cut without 

impairing operation. A 

process bus network's 

performance and 

reliability have been 

proven to be 

satisfactory. 

(Engler et al., 2004) This document provides 

an overview of the 

feasibility studies 

completed with IEC 

61850. 

The IEC 61850 standard 

makes extensive use of 

industry-standard 

protocols like TCP/IP 

and switched Ethernet. 

The advantage of this 

approach is that it 

enables the employment 

of readily available and 

acceptable 

communication 

The feasibility studies 

indicate that the 

communication solution 

presented by IEC 61850 

satisfies the control and 

protection specifications. 
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components. While the 

use of Ethernet for 

connection between 

stations and at the bay 

level looks to be trouble-

free, it is vital to confirm 

that the same 

technology can be 

utilised for time-critical 

communication. 

(Hodder et al., 2009) This paper discusses 

the primary motivations 

and expectations for 

next-generation 

protection and control 

systems across today's 

utilities. A practical 

design is described that 

provides both strong 

technical performance 

and significant cost 

reductions to the user, 

with cost savings and 

resource optimisation 

demonstrated through a 

simplified business case 

study. 

A fundamental business 

justification for building 

IEC 61850-9-2 process 

bus architectures must 

be to minimise all costs 

related to the 

installation, operation, 

and maintenance of 

protection and control 

systems, as well as to 

optimise project 

execution and resource 

use. 

Recognising the current 

cost structure, a 

technical solution for 

protection, control, and 

automation has been 

designed that is both 

simple and practical, 

with a high potential for 

quick adoption. The 

architecture is focused 

on delivering a system 

that complies with IEC 

61850, is cyber secure, 

and provides business 

benefits. 

 

(Starck et al., 2013) This article describes 

how to optimise 

switchgear using IEC 

61850-9-2. The paper 

further describes how 

sampled values can be 

used to improve the 

reliability and functioning 

of a medium-voltage 

substation's IEDs. 

This article describes a 

way to combine station 

and process buses into 

a common bus, 

complete with an 

example and availability 

analysis. Calculated 

findings suggest that 

availability, 

performance, and 

reliability have been 

improved. 

In comparison to typical 

instrument transformers, 

the use of non-

conventional instrument 

transformers in 

conjunction with IEC 

61850 real-time 

communication provides 

more cost-effective 

solutions with increased 

availability. 

(Kumar et al., 2016) The purpose of this 

article is to analyse the 

efficacy of a smart 

protection system in a 

zone substation that 

This article provides 

simulation results for 

packet transit delay in 

an Ethernet 

environment, which may 

In conclusion, while old 

copper wires linking 

relays in a conventional 

substation functioned 

well at the bay and 
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utilises IEC 61850-9-2 

relays. 

have a significant 

influence on the SAS 

network's protection 

system. Increasing the 

SV's frequency resulted 

in increased packet 

losses per second 

during the performance 

simulation. 

process level, it is 

recommended to 

consider the deployment 

of the IEC 61850-9-2 

process bus design to 

save costs and 

accelerate project 

implementation time. 

The ease of wiring and 

flexibility of changing 

devices without having 

to shut down the 

secondary system are 

the main advantages of 

the process bus design. 

(Gurusinghe et al., 

2018) 

The purpose of this 

study is to demonstrate 

a methodology for 

testing a fully digital 

SAS utilising a real-time 

power system simulator. 

A real-time simulator, 

four multi-functional 

protection IEDs, a MU, 

an amplifier, a GPS 

clock, a GPS antenna, 

two Ethernet networks, 

and a workstation to 

execute the essential 

software are included in 

the suggested test 

setup. Such testing 

requires a complex 

testing infrastructure 

and a significant amount 

of engineering work. 

IEC 61850 SV enables 

interoperability, as well 

as cost savings 

associated with 

commissioning and 

maintenance. SV 

enhances the safety and 

dependability of the 

substation environment. 

 

Ethernet process bus communication networks that adhere to IEC 61850-9-2 specifications 

can provide numerous advantages and benefits. The advantages of ethernet switched 

communication, which is specified in IEC 61850-9-2, such as the data speeds, zero-collision, 

and flexible design, make it preferable to the serial point-to-point standard links standardised 

in IEC 61850-9-1 (Abdolkhalig, 2014). The process bus, which is based on an Ethernet 

communication network, was proposed by the IEC 61850 standard to reduce the expense of 

engineering and wiring of long copper wires between the process level and the bay level or 

control room in the substation. Other than cost savings, the process bus has an architecture 

that is simple, flexible, and interoperable, among other characteristics. The IEC 61850-based 

process bus, in particular, has several technical difficulties. The latency and loss of time-critical 

SMV messages via the ethernet process bus communication network are the most significant 
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technical challenges that have been explored by (Engler et al., 2004, Kanabar & Sidhu, 2011, 

Adewole & Tzoneva, 2014, Abdolkhalig, 2014). To successfully implement a protection 

application in a substation the communication availability and reliability must be investigated 

as well. The IEC 61850-8-1 proposed that the same GOOSE message be sent numerous 

times to improve transmission reliability. However, because SV messages are not repeated 

during transmission, the reliability of their transmission is reduced. As a result, it is critical to 

analyse and research the dynamic behaviour of process bus communication based on IEC 

618509-2. The impact of SV loss or delay on substation phasor estimation and digital 

protection should be mitigated through the development of appropriate approaches for any 

future digital protection and automation systems. Other considerations for the development of 

the process bus include time synchronisation and data security. etc., (Abdolkhalig, 2014, 

Kasztenny et al., 2005). 

 

Precision Time Protocol (PTP) and time synchronisation are pivotal components of power 

utility automation for ensuring precise and synchronised time across multiple devices and 

systems. Within the framework of IEC 61850, specifically Part 9-3, there is a dedicated focus 

on addressing time synchronisation. This standard describes the utilisation of PTP to 

synchronise clocks, ensuring interoperability across various devices. PTP enables highly 

accurate time synchronisation by facilitating the exchange of timing information among 

networked devices. Numerous power utility applications, such as energy management, fault 

logging, and protective relaying, depend on precise time synchronisation. PTP guarantees 

that electrical grid devices operate at exact times, improving system efficiency and reliability. 

The successful implementation of PTP must take into consideration factors such as network 

latency, delay variation, and device clock accuracy. 

 

(Lin & Nadjm-Tehrani, 2018) investigated the application of Precision Time Protocol (PTP) for 

synchronising the sampled value Process Bus. The study involved comprehensive tests to 

assess the performance of PTP within the Process Bus across varying Ethernet network 

loading scenarios. The experimental setup comprised a network switch and a Global 

Positioning System (GPS) utilised to emulate merging units (MUs) for imposing network 

loading conditions. An external time reference device was incorporated to compare the 

synchronisation accuracy between master and slave clocks under diverse loading conditions. 

The experimental results indicate that Process Bus traffic has the potential to disrupt PTP 

synchronisation due to packet losses, leading to a delay exceeding 1μs in the slave clock 

relative to the master clock. Furthermore, the experiments highlight that outcomes are 

achieved when there are no merging units (MUs) traffic or when Virtual Local Area Networks 
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(VLANs) are employed, as opposed to sharing the same network for Sampled Value (SV) and 

PTP communication. 

 

(Ingram, Schaub, Campbell, et al., 2013) delved into an examination of the effectiveness of 

Precision Time Protocol (PTP) components within the context of IEC 61850 sampled value 

Process Bus systems. The methodology outlined in this study encompasses a diverse range 

of tests that can be employed by system designers for the thorough analysis of timing 

components. The authors put forth a synchronisation system that aligns with the 

comprehensive functional requirements of the system. As per the findings presented by the 

authors, PTP devices engineered for deployment in power systems demonstrate 

interoperability, ensuring accurate synchronisation for each grandmaster and slave clock pair. 

However, it is imperative to acknowledge the substantial impact of clocks employed within a 

substation timing system on its overall performance. The study reveals that the implemented 

PTP system successfully adheres to the ±1 μs standards outlined in IEC 61850-9-2 Light 

Edition (LE), even when utilising a shared process bus network for both SV communication 

and time synchronisation. 

 

(Shrestha et al., 2021) conducted a comprehensive investigation into the consequences of 

time synchronisation and network-related issues on protection within digital secondary 

systems (DSS). In the context of an IEC 61850-based DSS, synchronisation and SV data 

exchange occur via an Ethernet network. Optimal functionality of protection functions 

mandates the maintenance of both time sources and an efficient protection network. The 

authors present a test case illustrating the impacts of disabling protection function operation 

during instances of network congestion. Addressing time synchronisation challenges, potential 

issues arise from non-functional GPS signals, uncertain dependability and redundancy of 

satellite clocks, and different synchronisation sequences among MUs and protective relays 

from different manufacturers. Likewise, inadequately configured Ethernet networks may lead 

to packet loss or substantial network delays, causing temporary incapacitation of protection 

functions or degradation in overall protection speed. The study advocates for the consolidation 

of communications and time synchronisation services over a unified channel within an IEC 

61850-based DSS. This approach ensures precise time alignment among all communicating 

devices, with clearly defined failure and recovery processes. The overarching objective is to 

guarantee synchronised operation among all communicative devices within the DSS, 

emphasising that proper functionality is dependent upon accurate time synchronisation. Loss 

of synchronisation within a DSS induces an artificial phase shift, potentially leading to 

erroneous tripping and detrimental effects on protective function availability. 
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The following section conducts a review of literature on the IEC 62351 standard in detail 

focusing on available security techniques that can be employed. 

 

2.5 Literature Review – IEC 62351 

 

2.5.1 Introduction 

 

As the power system becomes more advanced, with the integration of IoT and IT, cyber 

security becomes a feature to be considered as the development of technology poses new 

security risks. The operation that is managed between IEDs that are connected by 

communication networks has a high transmission of information, and the cyber system has 

been widely implemented for monitoring, controlling, and protecting, which is why there is a 

requirement for security. Data and communication in the power system are to be securely 

protected to maintain a safe electricity supply as the energy sector is a critical infrastructure. 

However, it must be noted that “no industry can eradicate risk entirely when determining 

security strategies against current threats facing the energy sector” (Karnati, 2020). 

Implementation of a security standard ensures compliance in performance and 

interoperability. Cyber security is important for its critical infrastructure. Integration of cyber 

security policies and measures from the planning of a communication network to its 

deployment and maintenance are essential to make the network resilient to external attacks 

and internal carelessness. The IEC 62351 standard addresses security challenges and 

countermeasures in power system communication networks, while the IEC 61850 standard 

does not incorporate security elements (Karnati, 2020). Understandably so, cybersecurity was 

not an issue when the IEC 61850 standard was first published.  

 

IEC Working Group (WG) 15 of Technical Committee (TC) 57 published IEC 62351 on security 

for IEC 61850 because there had been insufficient progress made in the direction of 

incorporating security within the communication standard (Nozomi et al., 2019). IEC 62351 is 

a cyber security standard (accepted internationally) that is focused on improving and delivering 

security to the power system and further developing cyber security measures for GOOSE and 

SV communication. The standard seeks to ensure the credibility, reliability, and confidentiality 

of the different protocols used in the automation of substations. Cyber security is defined as a 

method for securing the transmission of data on a communications network. Det Norske 

Veritas Germanischer Lloyd (DNV GL) is one of the companies that offer IEC 62351 

verification and conformance testing. These procedures help prove the security level and 
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interoperability of the power system including solving compliance issues. Rigorous testing is 

essential to ensure that the infrastructure is secure. 

 

With the 4th Industrial Revolution (4IR), automation has become of paramount importance in 

life. Industrial control automation is available in different industries and as such manages 

electricity, water, transportation, power stations, etc. These critical infrastructures must be 

protected from cyber-attacks, failure, and damage or this may lead to economic destruction 

(Schlegel et al., 2017b). Improving security against targeted cyber-attacks and hacker virus 

attacks is of paramount importance. Therefore, IEC 62351 addresses the security of 

substations and protocols used in power systems. (Schlegel et al., 2017b) puts it that, “like 

many of these standards, it is not a revolution, but a careful evolution, to address security 

issues without completely breaking backward- compatibility and interoperability with legacy 

systems”. The standard is made up of ten different parts, addressing different areas. Table 

2.6 provides a summary of the major sections of the standard. 

 

Table 2.6: Summary of IEC 62351 Standard (Cleveland, 2012) 

IEC 62351 

Parts 

Title 

Part 1 Communication Network and System Security Introduction to Security 

Issues: An overview of the standard is provided and aims are highlighted. 

It also provides information on security and security attacks. 

Part 2 Glossary of Terms 

Part 3 Communication Network and System Security Profiles including TCP/IP:  

This standard focuses on TCP/IP-based security protocols. The aim is to 

ensure the authenticity and integrity of transport layer data, and preferably 

also confidentiality using encryption mechanisms. 

Part 4 Profiles including MMS: This section addresses security protection for 

profiles such as the MMS. 

Part 5 Security for IEC 60870-5 and Derivatives: The fifth section, defines 

security protection for IEC 60870-5 protocols, as well as derivatives such 

as DNP-3. 
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Part 6 Security for IEC 61850: This section of the standard discusses security 

protection for protocols as defined in the related IEC 61850 Standard. This 

section suggests an extension for GOOSE and SV messages Protocol 

Data Units (PDUs) of IEC 61850. 

Part 7 Objects for Network Management: This part of the standard describes the 

types of data structures to be used which are unique to power systems. 

Part 8 Role-based Access Control: This section describes system-wide role-

based access control for the infrastructure of power systems. It addresses 

different access types, such as direct and remote access. 

Part 9 Key Management: This section intends to address key management. 

Part 10 Security Architecture Guidelines: This IEC 62351 section provides general 

guidance on the security architecture of power systems. This offers a 

description of the security controls that can be introduced in the power 

systems, as well as interface design guidelines on how to develop 

communication infrastructure for power systems. 

 

IEC 62351 parts 3, part 4, part 6, and part 10 are significant for the research, and as such an 

assessment is provided in Table 2.7. There are other available cybersecurity standards such 

as the IEC 62443 standard and National Institute of Standards and Technology (NIST) 

cybersecurity framework. 

 

Cybersecurity constitutes a fundamental element within Industrial Control Systems (ICS). The 

IEC 62443 series of standards presents a pragmatic and attainable framework for addressing 

security risks. Its primary aim is to diminish the vulnerabilities inherent in the establishment 

and operation of Industrial Automation Control Systems (IACS). Familiarity with the structural 

organisation of IEC 62443 and the associated obligations is conducive to upholding robust 

cybersecurity within IACS, which are integral components of smart grids. 

 

IEC 62443 prescribes that IT security professionals typically conduct network and device 

scans as part of routine vulnerability assessments and security evaluations, as outlined in IEC 

62443-3-1. Additionally, suppliers of software patches are required to conduct vulnerability 

assessments in accordance with IEC 62443-2-3. Furthermore, all components of smart grid 
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architecture must undergo compliance testing against the set of standards. (Dolezilek et al., 

2020) emphasized the utilization of Industrial Control Systems (ICS) methods and standards 

to develop defense-in-depth cybersecurity measures for digital communications within an 

Energy Control System (ECS) network. The ECS communications architecture, being mission-

critical, is structured into various levels, each with distinct requirements and features ranging 

from the process level to the control centre. By leveraging these levels, the authors advocate 

for the identification of interconnected cyber defense technologies, determining their 

deployment levels, and associating them with specific devices, as outlined in IEC 62443 Part 

3. This approach contrasts with the broad defense-in-depth strategy of mandating all devices 

to incorporate every cyber defense technology, as suggested by IEC 62443 Part 4. (Dolezilek 

et al., 2020) underscores the significance of designing system security rather than relying 

solely on device security. They argue that adopting a defense-in-depth strategy ensures 

comprehensive cybersecurity, unlike the insufficient device-level security measures outlined 

in IEC 62351 and IEC 62443 Part 4. Ultimately, they assert that defense in depth is the 

appropriate method for effectively securing modern ICSs against both malicious and non-

malicious cyber threats. 

 

The National Institute of Standards and Technology Special Publications (NIST SP) 800-82, 

Guide to Industrial Control Systems (ICS) Security, comprehensively addresses the security 

of Industrial Control Systems (ICS). NIST SP 800-82 introduces security controls pertaining to 

security assessments, including Security Assessment and Authorization procedures, which 

validate the proper application and functionality of specific security controls, ensuring the 

desired outcomes. Recommendations regarding penetration and vulnerability testing tools are 

provided, mindful of instances where the utilization of such tools resulted in disruptions to ICS 

operations due to increased traffic and exploits. Thus, it is advisable to meticulously evaluate 

the potential impact of these tools on ICS operations beforehand. 

 

Table 2.7: Assessment for Significant IEC 62351 Parts(Schlegel et al., 2017b) 

Part Title 

Part 3 This part aims to implement message integrity protection and 

confidentiality. The standard IEC 62351-3 addresses the need to utilise 

Transport Layer Security (TLS) and X.509 certificates to provide 

encryption and authentication. Utilising TLS for substation automation is 

a suitable and appropriate choice that provides a degree of security. The 

standard, however, allows the use of NULL ciphers which do not use 

encryption. This is risking incompatible implementation and hence some 
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degree of sufficient security is not provided. Another major issue with 

this part of the standard is backward compatibility reducing the security 

provided. 

Part 4 The standard provides security for application-level security profiles and 

for TCP / IP-based profiles. However, differing security mechanisms will 

be achieved, depending on whether encryption is used or not. If 

encryption is used, part 3 of IEC 62351 must be applied to achieve 

authentication, integrity, and 69iality, if not unauthorised access to 

information. The main problem is that if IEC 62351-3 is not used with the 

standard, then no integrity or confidentiality of the message will be 

provided, only initial authentication. The authentication also has a time 

stamp, which must be correct. If not accurate, the security profiles at the 

application level are open to at least three attacks. 

Part 6 Part 6 is an appropriate and suitable standard. However, there is no 

provision for time-critical traffic. Many applications need a response time 

of 4ms, and IEC 62351-6 does not recommend encryption for such 

applications. The use of RSA signatures is recommended for the 

authenticity and integrity of extended PDUs.  For applications requiring a 

4ms response time hash-based message authentication code (HMAC) 

can be implemented.   

Part 10 Part 10 sets out comprehensive and precise architectural and security 

control details. 
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2.5.2 Methodology Implementation in Literature 

 

(Hohlbaum et al., 2010) practically considered the performance evaluation of IEC 62351-6 and 

concluded that the potential software (cryptography algorithms) and hardware solutions could 

not meet the necessary performance requirements for GOOSE and SV data. As such, 

literature will be studied to address symmetric cryptography. (Schlegel et al., 2017b) approves 

that the IEC 62351 standard can meaningfully improve security in substation automation and 

control systems if applied correctly: providing authentication, integrity, and confidentiality of 

data. However, backward compatibility remains a concern because there is some extent of 

security loophole. Various mechanisms are paramount to improving the security architecture 

of power systems. (Tesfay & Le Boudec, 2018) investigate better performance algorithms such 

as the Elliptic Curve Digital Signature Algorithm (ECDSA). The authors proved that the latter 

algorithm has features of being faster and requiring lower computational power than RSA. 

(Farooq; et al., 2019) further studies various security algorithms for IEC 61850-based 

messages to secure GOOSE, Routable-GOOSE, SV, Routable-SV, and MMS. GOOSE and 

SV messages sent via IP networks are referred to as “routable” as per IEC 61850-90-5. In 

essence, R-GOOSE and R-SV implement the Application Profile and employ routable UDP to 

permit data transfer across WAN. Notably,(Karnati, 2020) observes a loop when it comes to 

securing SV messages as more research needs to be conducted. (Karnati, 2020) designs 

implement, and further conducts a performance analysis of IEC 62351 for providing security 

mechanisms for SV by examining the structure of the SV communication protocol. The 

platform is tested and validated using Hash-based Message Authentication Code (HMAC) and 

Galois MAC (GMAC). IEC 61850 uses ethernet and TCP / IP and therefore firewalls can 

protect the perimeter of security and VPN technology can build secure channels to remote 

centres. Access to the systems must be secured along with comprehensive logging of all user 

accounts by user authentication and authorisation. As follows, Figure 2.12 depicts potential 

security attacks in the substation automation environment: 

 

1. A1; a cyber intruder may compromise the user interface (SCADA, HMI). Access control 

measures are to be put in place for identification and authentication to prevent 

unauthorised access. The remote access points must have suitable security frames 

implemented. 

2. A2; cyber-attack can disrupt time synchronisation and operators will lose 

communication with the power system. 

3. A3; compromise station bus. 

4. A4; an attacker can gain access to the bay-level devices. 
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5. A5; an intruder can alter the device protection settings by employing a Protection 

Setting tempering attack. Protection settings and information in the communication 

network are to be confidential and prevent any unapproved disclosure. 

6. A6; the transmitted GOOSE message can be captured and modified by employing a 

GOOSE Forgery or Spoofing attack. A false message can lead to the failure of the 

substation. 

7. A7; process bus communication is compromised, and useful information can be used 

for cyber-attacks. The configuration of the communication path is to be strictly 

controlled as the protection scheme of the substation is critical. Security measures are 

to be implemented so that vulnerabilities of the subscriber device are not exploited. 

8. A8; sampled values from the merging unit can be changed by employing a Sampled 

Value Stream Forgery attack. Data integrity is to be implemented to prevent 

unauthorised data exploitation. 

9. A9; compromise the firewall and gain access to the power system. 

 

Based on these potential cyber-attacks, the substation environment must be secured against 

any security threats. The transmission of false GOOSE messages can cause IED settings to 

be modified and hence disrupt field device operations. As such, the operators of IEDs in the 

substation need identification and authentication; access must be controlled whether locally 

or centrally. 

 

 

Figure 2.12: Potential Cyber-attacks in a SAS (Hong et al., 2014) 
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2.5.3 Synthesis and Analysis of Literature 

 

The Internet has radically transformed the way we communicate with each other and share 

information. While security is a key component of IoT implementation, it is sometimes 

overlooked during system development. Designing with security in mind can save time and 

effort, as well as financial implications that could cause damage. 

 

The overarching theme is that considering security at the design phase can save not just time 

and work later on, but also potential embarrassment and financial loss. Security education is 

a rapidly growing field in and of itself. This domain recognises that even the most secure 

technologies are only as secure as their users. User education educates individuals on how 

to defend themselves against cyber hazards. 

 

Emerging technologies pose new challenges and opportunities for cybersecurity to address 

and evolve. Changes in how businesses keep data digitally, the volume of content published 

via the web, and the increasing number of linked devices all result in new forms of 

vulnerabilities. The amount of data breaches has risen. New technology entails new attack 

channels for cyber dangers, as well as implications for physical security. As more industries 

migrate to the internet and become a part of the digital world, cybersecurity is becoming a 

bigger field. This means that practically every industry requires cybersecurity, in addition to 

cybersecurity being an industry in and of itself. Cybersecurity as a field involves a diverse set 

of abilities that function in concert. Data and communications must be secured to ensure the 

security of essential infrastructure and a stable electricity supply. The IEC 62351 standard 

provides a mechanism for achieving that security that is widely recognised. And compliance 

with it ensures performance and interoperability, which increases the appeal of systems and 

components to network operators. As a result, a comprehensive security model is necessary 

for substation communication. IEC Technical Committee (TC) 57 WG 15 produced the IEC 

62351 standard, to resolve substation communication security challenges. To implement 

cybersecurity measures in IEC 61850-compliant smart grids, a detailed understanding of the 

IEC 62351 standard is required. Following that, customised solutions for ensuring secure 

communication in various aspects of smart grid operation can be devised (Hussain, Ustun, et 

al., 2020). 

 

To ensure the safety of different substation communication services, such as IEC 61850, there 

are security requirements included in the IEC 62351 standard. IEC 61850 is becoming one of 

the extensively utilised standards for substation automation. As a result, (Hussain, Ustun, et 

al., 2020) present a detailed examination of security concerns, cyber threats, and 
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recommendations for IEC 61850 communication. Additionally, extensive study is given to the 

security issues specified in IEC 62351 for the protection of several IEC 61850 communications 

(GOOSE, SV, R(Routable)-GOOSE, R(Routable)-SV, and MMS). To better understand these 

cybersecurity techniques and put them into perspective within the context of substation 

automation, a brief overview is provided. Additional information is provided by the authors, 

including the review of the cybersecurity techniques defined in the IEC 62351-6:2007 standard 

with the IEC 62351-6:2020 standard. 

 

(Yoo & Shon, 2016) makes it clear that the IEC 61850 standard is at the centre of the industrial 

control environment. As such, the connections between these heterogeneous protocols are 

inevitable. However, there may be an infringement of end-to-end security at connection points 

between communication protocols. As such, vulnerabilities are exposed if we rely solely on 

existing security requirements for individual protocols. (Yoo & Shon, 2016) studied safety 

issues that may arise in the smart grid and provided advice on security measures that can be 

taken. 

 

(Harbi et al., 2019) further investigates authentication and key management mechanisms for 

securing the transmission of data on the Internet of Things (IoT). The fundamentals of IoT are 

agreed on regarding the change it brings into society by allowing various equipment to connect 

and access an internet cloud, hence attracting worldwide attention. The challenges of ensuring 

security and privacy in network communication in IoT is a fundamental problem. (Harbi et al., 

2019) propose a secure Wireless Sensor Network (WSN) authentication and key management 

scheme to secure data transmission. The scheme examined security flaws such as replay 

attacks, denial of service (DoS) attacks, impersonation attacks, lack of mutual authentication, 

and session key agreement. Once the security flaws are identified, (Harbi et al., 2019) propose 

a secure and enhanced scheme to overcome such challenge weaknesses. Various logic and 

tools such as the Burrow-Abadi-Needham logic, Automated Validation of Internet Security 

Protocols, and Application tools are utilised for verification of the enhanced security scheme. 

(Karnati, 2020) further studies and discusses the cyber-attacks initiated on SV as follows: 

 

1. Replay attack: This is a cyber security attack where cybercriminals monitor the 

communication network to intercept and delay (playing back) critical information such 

as SV packets that contain values of current and voltage. 

2. Spoofing: The original SV message was attacked, captured, modified, and injected 

with malicious information. Figure 2.13 shows an example of the spoofing attack where 

the original SV message is manipulated. The subscribing device discards the original 

SV message stream and subscribes to the spoofed message stream. The time 
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synchronisation information and measurement values can be manipulated. Attackers 

can also tamper with the operation of the field equipment (Karnati, 2020). 

 

 

 

Figure 2.13: An example of spoofing attacks for SV messages (Hariri et al., 2019) 

 

3. Flooding Attack: Attackers identify the critical information of the initial SV messages in 

the communication stream. The original message is then manipulated and reproduced, 

flooding the process bus with SV messages. The main object of this malicious attack 

is to attack the normal SV subscriber function where the protection functions cannot 

be processed. 

4. High smpCnt Attack: If an SV subscribing device repeatedly gets a high number of SV 

messages that contain smpCnt, the device will ignore all other normal SV messages. 

The intruder has the potential to interfere with the regular operation of the SV in the 

power system. Because of this, in the long run, the usual monitoring that is done on 

the measurement function of the subscribing device will be discarded (Karnati, 2020). 

 

IoT has been recognised as a revolutionary technology of the present century. To encrypt the 

data being transmitted, the transmission of data over a public network needs to be protected 

and thus a secret key should be exchanged between the communication parties. Only the 

authorised or involved communicating parties can access the transmitted data hence the 

requirement of authentication and key agreements (Harbi et al., 2019).  

 

The convergence of information technology (IT) and operational technology (OT) 

environments, which were formerly designed to run separately, has evolved dramatically as 
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digital transformation has accelerated over the last decade. This convergence, fueled by a 

rising reliance on cyber-physical systems and technical breakthroughs, has resulted in 

indisputable commercial advantages such as increased efficiency, sustainability, and 

creativity. However, it has also created new risks and concerns, particularly in cybersecurity. 

 

IT environments have typically focused on managing and processing data, using techniques 

like encryption and firewalls to protect confidentiality, whereas OT environments prioritize 

managing and controlling physical devices critical to production, prioritizing integrity. As these 

previously independent environments merge, efficiency and visibility improve; yet, issues 

occur due to differing security needs and unique cyberthreats encountered by IT and OT 

systems. 

 

Increased connections between IT and OT systems expand the attack surface for hackers, 

demanding specialized security controls and communication between IT and OT teams. IT 

and OT systems have significantly distinct security requirements and confront various 

cyberthreats, allowing IT and OT operations inside a business to become contaminated. 

Traditional IT security solutions may be ineffective for OT assets because they function in real-

time and cannot tolerate the latency associated with IT systems. Incompatibilities in hardware, 

software, and communication protocols between IT and OT systems can cause disruptions 

with rapid and serious consequences. 

 

In IT/OT convergence, successful cybersecurity frameworks necessitate more collaboration 

between IT and OT teams, as well as solutions capable of protecting all important assets 

inside the environment. This collaboration protects the security and stability of critical 

infrastructure in OT sectors, as well as the protection of sensitive information in IT systems. 

As a result, properly protecting convergent environments requires tackling both IT and OT's 

distinct security requirements and concerns. 

 

Several authentications and key agreement schemes have been proposed in recent years to 

secure sensor networks within the IoT context. (Harbi et al., 2019) studied various schemes 

that addressed security flaws some were ineffective, and their protocols were unsafe under 

various attacks. In one of the papers presented by (Shen et al., 2018) where they designed 

two authentication and key management protocols. Both protocols are based on Elliptic Curve 

Cryptography (ECC) and Message Authentication Code (MAC) which generally offer 

confidentiality, integrity, and authenticity. However, the ECC and MAC were found by (Harbi 

et al., 2019) to be vulnerable to various attacks and the proposed schemes failed to achieve 

mutual authentication. (Harbi et al., 2019) further studies an effective WSN network 
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architecture and a robust authentication protocol for the secure transmission of the data 

provided by (Amin et al., 2018). The proposed scheme by (Amin et al., 2018) provides 

authentication and key management. Yet cost-effectiveness is ineffective. Not limited to the 

review of papers, (Harbi et al., 2019) review a paper authored by (Mehmood et al., 2017). 

(Mehmood et al., 2017) proposed a secure mechanism called an inter-cluster multiple key 

distribution schemes (ICMDS) for WSNs. They focused on key management and 

authentication. They employed various key methods of distribution to secure communication 

between clusters. The proposed scheme, however, is insecure since it is vulnerable to several 

types of attacks. 

 

To secure communication networks it is important to design authentication and key agreement 

mechanisms. As discussed, key agreement schemes for authentication and session are 

based on ECC and rigid one-way functions. The ECC gives greater security and is suitable for 

restricted environments. In the paper, (Harbi et al., 2019) discuss and review the (Mehmood 

et al., 2017) scheme and its security weakness issues. An enhanced ECC-based scheme is 

being proposed to overcome the security flaws provided by (Mehmood et al., 2017) and 

analyse, assess, and evaluate its security and performance. 

 

The Mutual Authentication and Key Agreement (MAKA) is called the enhanced scheme. It 

consists of five phases: initialisation, key generation, node registration, authentication of 

nodes, and agreement to the session key. (Harbi et al., 2019)  conclude informedly that the 

proposed authentication and key management scheme for IoT applications are more secure 

and effective. 

 

(Rodriguez et al., 2021) further evaluates a fixed latency architecture to secure GOOSE and 

SV messages to provide authentication and confidentiality using the AES-GCM algorithm. The 

authors implement and test the test to successfully authenticate and encrypt real-time GOOSE 

and SV data in less than 7µs. The implemented design complies with IEC 61850 and IEC 

62351 respectively where IEC 61850 data is generated, transmitted, and processed in less 

than 3ms. Data authentication and encryption can be implemented for GOOSE and SV using 

the AES-GCM algorithm that introduces fixed latency. Table 2.8 shows various security 

algorithms employed to evaluate and verify compliance with IEC 62351 standard, and time 

requirements to secure GOOSE. The proposed algorithm by (Rodriguez et al., 2021) is the 

only solution compliant with IEC 62351-6. The RSA algorithm is not compliant because of the 

latency time, and the combination of AES & and SHA-256 algorithms is not compliant because 

of the format. 
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Table 2.8: Comparison of IEC 62351-6 GOOSE and SV frame security implementation 

proposals (Rodriguez et al., 2021) 

Algorithm Functionality Implementation Maximum 

Latency 

(ms) 

Delivery 

Time 

Usage 

Maximum 

Throughput 

Fixed 

Latency 

IEC 

62351-6 

Compliant 

RSA Authentication Software 4 133% - No No (Time) 

RSA Authentication Hardware 1.917 63.9% - Yes No (Time) 

RSA Authentication Software 6 200% - No No (Time) 

RSASSA-

P 

Authentication Software 0.942 31.4% - No No (Time) 

KCS1-

v1_5 

Authentication Software 3.56 118.7% - No No (Time) 

EtM (AES 

& SHA-

256) 

Authentication 

and 

Encryption 

Software 0.242 8.07% - No No 

(Format) 

E&M 

(AES & 

SHA-256) 

Authentication 

and 

Encryption 

Software 0.235 7.83% - No No 

(Format) 

MtE (AES 

& SHA-

256) 

Authentication 

and 

Encryption 

Software 0.284 9.47% - No No 

(Format) 

AES-

GCM 

Authentication 

and 

Encryption 

Hardware 0.006 0.23% > 1Gbits-1 Yes Yes 

 

Confidentiality has proven to be difficult to implement since using asymmetric cryptography is 

a challenge to secure real-time traffic. Encryption is a desirable feature however presents an 

additional challenge of computational overheads, which need to be limited to not compromise 

the delivery time of the IEC 61850 data. As such (Rodriguez et al., 2021), study the current 

security attacks, and further evaluate available cybersecurity solutions. (Hohlbaum et al., 

2010), have studied the RSA algorithm, using a software implementation and the results show 

that asymmetric cryptography is a challenge for securing real-time traffic. The minimum time 

required to generate the digital signature is 1.5ms to 4ms, which is not compliant. IEC 62351-
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1 recommends that encryption algorithms not be used with IEDs due to their high processing 

times. (Ishchenko & Nuqui, 2018) further confirmed the results using the latest technological 

hardware, and the results were still not in compliance. (Farooq et al., 2019) propose an 

alternative algorithm for securing real-time traffic. The authors implemented the RSASSA-PSS 

digital signature using Python and verification times were calculated. The authors found that 

neither RSASSA-PSS digital signature is fast enough and unsuitable to secure critical 

operations for securing IEC 61850 data. However, the results show that the RSASSA-PSS 

digital signature has better and improved performance than RSA. 

 

The smart grid is a rapidly evolving power system of generation systems, distribution systems, 

transmission lines, electrical equipment, and control technology to meet demand in the 21st 

century (Kim et al., 2013). The smart grid is an electrical grid comprising controls, computers, 

automation, and new technologies that respond digitally to changing electrical demands. 

Distributed communication and intelligence capabilities can improve the efficiency and 

reliability of the smart grid and other networks. However, if smart grids are not implemented 

with sufficient protection controls, they could create new vulnerabilities that would allow 

hacking and cyber-attacking of utilities. 

 

Thus, (Kim et al., 2013) evaluate the safety output of the GOOSE, implementing the IEC 

62351-6 MAC protocol, applying it to F-IED using the IEC 61850 GOOSE and Hardware 

Security Module (HSM), and develop the environment for the security test beds. As the Electric 

Power Research Institute (EPRI) reports, one of the major issues confronting the development 

of smart grids is the cyber security of networks. According to the EPRI Report, “Cyber security 

is a critical issue due to the increasing potential of cyber-attacks and incidents against this 

critical sector as it becomes more and more interconnected. Cyber security must address not 

only deliberate attacks, such as from disgruntled employees, industrial espionage, and 

terrorists, but inadvertent compromises of the information infrastructure due to user errors, 

equipment failures, and natural disasters. Vulnerabilities might allow an attacker to penetrate 

a network, gain access to control software, and alter load conditions to destabilise the grid in 

unpredictable ways.” (National Institute of Standards and Technology, 2012) 

 

IEC 61850 and IEC 62351 are supported by (Kim et al., 2013). However, it must be noted that 

IEC 62351 is not only for IEC 61850. It includes cybersecurity for IEC 61850, IEC 60870-5 

(101/104 and DNP3), IEC 60870-6 Inter Control Center Protocol (ICCP), and IEC 

61968/61970 Common Information Model (CIM). The design and configuration specification 

for substation automation is IEC 61850, as shown in Figure 2.14. 
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Figure 2.14: IEC 61850 Communication Model (Kim et al., 2013) 

 

IEC 61850 utilised object-oriented data models to explain the details of various equipment and 

automation functions. The IEC 61850 specifies the interface between the IEDs and the 

schemes that map them to multiple protocols using TCP / IP and high-speed ethernet. GOOSE 

is a protocol intended for use in IEC 61850 for sending critical time messages, such as 

substation incidents, commands, and alarms inside the substation network as mentioned by 

(Kim et al., 2013). Because GOOSE is designed to transmit time-critical messages; messages 

must be sent within 4ms, so security mechanisms that affect transmission rates are 

inappropriate. IEC 62351-6 provides security measures for authentication and integrity 

measures which include critical timing requirements for digitally signing the messages. 

 

(Kim et al., 2013), used MAC mechanism IEC 62351-6 as illustrated in Figure 2.15. The MAC 

mechanism includes hash-value calculations, authentication-value calculations, 

authentication-value decryption, and digital signature verification from sender to receiver.  
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Figure 2.15: Secure GOOSE Procedure (Hussain et al., 2019) 

 

(Hussain et al., 2019) agree that IEC 61850 is a very popular standard that is currently being 

researched intensively and note that it is also relevant to study aspects of cybersecurity. 

(Hussain et al., 2019) develop the S-GoSV (Secure GOOSE and SV) software which 

generates GOOSE and SV messages. The software incorporates a security feature to protect 

them from cyber-attacks inside a substation. The Secure GOOSE and SV software implement 

RSA digital signature algorithms as IEC 62351-6 stipulates. The generation and verification 

procedure used for the RSA digital signature algorithm is shown in Figure 2.16. The full 

process of generating and verifying digital signatures is described in (Farooq et al., 2019). 

However, RSA digital signature algorithms take a long time based on performance studies 

and do not comply with critical time requirements as set out in the substation communication 

standard IEC 61850. To address this concern (Hussain et al., 2019), a Keyed Hash-Message 

Authentication Code - Secure Hash Algorithm (HMAC-SHA256) was developed and 

implemented in the S-GoSV message securing software. Furthermore, the authors discuss 

GOOSE and SV message structures as stipulated by IEC 61850-8-1 and IEC 61850-9-2, and 

demonstration results with Wireshark are provided. 
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Figure 2.16: Generation and Verification of RSA Digital Signature Algorithm (Hussain et al., 

2019) 

 

(Wang et al., 2019) presents a key management security mechanism for substation 

automation. The authors clearly outline that the security of encrypted messages, cryptographic 

systems, and protection of the keys are a unit and depend on each other. Key management 

schemes are based on key generation, key negotiation, key distribution and key updating. 

(Wang et al., 2019) implement an invulnerable key management algorithm to ensure the 

protection of keys for cryptographic systems and messages. They propose an improved key 

management mechanism which has a great advantage in terms of communication. The 

proposed key generation algorithm meets the confidentiality requirements of message 

security, the stability of the communication network is better, and the real-time performance is 

better.  Security analysis was presented and different attacks like the MITM attack, replay 

attack, and anti-tampering have been experimented with, and each attack has been 

prevented. 

 

(Kriger et al., 2013) examined the GOOSE message in a substation that conforms to the IEC 

61850 standard and confirmed their results using simulation and a practical experiment was 

conducted with IEDs. The IEDs were utilised to generate GOOSE messages and Wireshark 

was used for analysis. The authors concluded their results with an actual testbed confirming 

the GOOSE PDU as specified in Part 8-1 of the IEC 61850 standard.
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2.6 Overview of Raw Socket Programming 

 

As previously mentioned above, a socket provides an abstraction layer for the programmer to 

send and receive data, either using two processes on the same machine or across the network 

to a different device. We can then define socket programming as a method of connecting two 

network nodes so that they can communicate with one another. One socket listens on a 

specific port at an IP address, and another socket reaches out to the other to establish a 

connection. While the client attempts to contact the server, the server creates a listener socket. 

(Socket Programming in C/C++ - Geeks for Geeks, 2019) 

 

In this thesis, socket programming will be conducted in C using TCP/IP. A TCP refers to a 

connection-oriented communication protocol. In socket programming, a connection between 

two processes is referred to as an association. As such, the association can be defined as a 

data structure that specifies the two processes and their method of communication. The data 

structure includes the protocol, addresses, and processes. 

 

In the OSI model, the protocol is a layer that is included between the application and the 

internet protocol layer. TCP is a protocol utilised in networking for sending data packets. It 

guarantees that data reaches the intended recipient. Before delivering the data packets, a 

connection is thereby established at the source and destination nodes. The connection is then 

maintained until the transmission of data is complete. Subsequently, TCP has a 

retransmission feature, which means that when a TCP client delivers data to the server, it 

expects an acknowledgement in return. If an acknowledgement is not received, the data will 

be lost after a given length of time, and TCP will automatically retransmit the data. TCP is a 

dependable stream because of the connection notion, which allows faults to be identified and 

compensated for by resending failed packets.  
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Figure 2.17: Sequence of function for client-server communication (Socket programming in c 

using TCP/IP - Article world, 2021) 

 

In the TCP/IP model, network communication incorporates a client-server topology. 

Specifically, communication is initiated, and a connection is established between the client 

and the server. Examples of client-server communication will be implemented under Section 

4.2. The implementation will specifically follow a sequence of functions for client-server 

communication as shown in Figure 2.17. Subsequently, after establishing a connection with a 

client, the server will wait for the client to send a message. After receiving the message, the 

server will examine it and send an appropriate response in accordance with the message. 

 

Steps to creating client communication using TCP are as follows (Socket programming in c 

using TCP/IP – Article world, 2021): 
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1. “Create a socket using the socket () function in c, 

2. Initialise the socket address structure as per the server and connect the socket to the 

address of the server using the connect (), 

3. Receive and send the data using the recv () and send () functions, 

4. Close the connection by calling the close () function.” 

 

Steps to creating server communication using TCP are as follows (Socket programming in c 

using TCP/IP – Article world, 2021): 

 

1. “Create a socket using the socket () function in c, 

2. Initialise the socket address structure and bind the socket to an address using the bind 

() function, 

3. Listen for connections with the listen () function, 

4. Accept a connection with the accept () function system call. This call typically blocks 

until a client connects to the server, 

5. Receive and send data by using the recv () and send () functions in c, 

6. Close the connection by using the close () function.” 

 

The client-server mode is an information-sharing mode that is commonly used in information 

systems, such as databases. The most fundamental aspect of client-server setup is the 

custom and the server. The term "client" usually refers to a personal computer or a 

workstation. It presents the terminal client with a very user-friendly interface, such as Microsoft 

Windows and other similar programs. The server offers the client a group of users who are all 

using the same service application, which is provided by the server. The database server is 

the most widely used type of server. It allows a large number of clients to share the same 

access to information sources. (Xue & Zhu, 2009) 

 

Figure 2.18 shows the client-server system structure. Computer systems with a client-server 

structure can exchange information and resources across them. For example, files and disk 

space can be shared between systems, while processors can collaborate and transmit 

messages inexorably amongst numerous processors. Some of the processors are running on 

the client side, while the rest are working on the server side of things. The distribution of task-

level applications between client and server lies at the heart of the client-server system's 

structure. The software that facilitates communication serves as the foundation of the 

exchange. The TCP/IP protocol suite is an example of this type of software. As a result of 

supporting this software (communication software and operating system), the primary 
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objective is to create a fundamental structure for distributed applications to operate on. (Xue 

& Zhu, 2009) 

 

 

Figure 2.18: Client-server system structure 

 

When we use TCP protocol to connect a client and a server, we gain several advantages. 

For example, TCP is well-suited for applications requiring high reliability, and transmission 

time is significantly less critical. Other protocols, such as HTTP, HTTPS, FTP, SMTP, and 

Telnet, make use of it. TCP rearranges data packets in the requested order. There is a 

100% assurance that the data transfer is complete and arrives in the sequence in which it 

was sent. TCP employs Flow Control and necessitates the transmission of the handshake 

procedure to establish a connection before sending data. 

 

Henceforth, The IEC 61850 standard specifies communication interfaces that enable 

publisher-subscriber and client-server services to be provided. These services help IEC 

61850 devices communicate via MMS for client/server applications. GOOSE messaging is 

used to provide peer-to-peer communication between publishing and subscribing devices, 

while SV messaging is used to distribute measurements. Therefore, IEDs connect with the 

HMI via the MMS protocol's messaging capabilities. Inter-IED communication is 

accomplished via the GOOSE publisher-subscriber messaging system. Through a publisher-

subscriber arrangement, the process-level devices communicate power system information 

(voltage and current measurements, circuit breaker status, alarm notifications etc.) from 

switchyard source devices to the bay level. 

 

For decades, communication methods have been utilised to help power systems work better. 

By delivering innovative, simple-to-use, durable technology for power system protection, 

automation, control, and monitoring, power suppliers aim to increase productivity and make 

electric power more reliable, safe, and cost-effective. The strategy's major objective is to 

develop acceptable communication technologies and protocols (Ozansoy et al., 2007). It has 
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become practical and justifiable to incorporate station IEDs on a peer-to-peer communication 

network as a result of the advent of IEC 61850, which is a standardisation effort. 

 

The standard also allows for peer-to-peer communication for exchanging SV and GOOSE 

messages between devices, furthermore, the client-server topology is provided by mapping 

to the MMS stack. Figure 2.19 presents the peer-to-peer topology. For IEC 61850, the 

critical point to remember about publisher-subscriber communication is that it can occur only 

if a client-server architecture has been established previously. When a server is destroyed, 

any aspects that are reliant on it are also destroyed. 

 

 

Figure 2.19 Publisher-subscriber communication model (Ozansoy et al., 2007) 

 

IEC 61850 requires the deployment of a client-server and peer-to-peer communication 

architecture to enable the ACSI, one of the critical techniques for ensuring compatibility 

between devices manufactured by various manufacturers. Table 2.9 shows reviewed papers 

for socket programming. Not many papers were reviewed as the topic is not a focal study. 

 

Table 2.9: Socket programming reviewed literature papers. 

Paper Research Objectives Method Outcomes 

(Kalita, 2012) The purpose of this 

paper is to introduce 

sockets and their use in 

network programming. 

In addition, the paper 

discusses socket 

programming in Java 

over TCP. 

In client-server 

applications, sockets are 

essential. Writing to or 

reading from these 

sockets allows the client 

and server to 

communicate with one 

another. This paper 

teaches network 

programming concepts 

and elements involved 

in constructing network 

applications utilising 

This paper studies 

sockets, ports, and 

socket programming 

over TCP, and UDP. 

Sockets are used in 

network programming to 

provide interprocess 

communication between 

hosts, with sockets 

serving as the 

communication's 

endpoint. Because the 

Internet protocol is used 
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sockets. Java was 

designed to establish 

client-server traffic via 

sockets, performing 

socket functions is one 

of the most fundamental 

network programming 

tasks that a Java 

programmer is likely to 

confront. 

to communicate 

between computers, 

sockets are also known 

as network sockets or 

Internet sockets. Java 

has outperformed all 

other languages in 

terms of establishing 

connections between 

clients and servers. 

(Kumar, 2019) The author provides a 

detailed study of the 

client-server topology, 

emphasising core 

aspects of development, 

implementation, and 

research issues. The 

purpose of this study is 

to raise awareness of 

client-server topology 

development issues and 

to highlight important 

principles. 

One of the primary goals 

of this research is to 

identify research 

difficulties in the client-

server system. Studying 

the performance 

evaluation, and the 

reliability of the client-

server system. The goal 

of performance 

evaluation is to give a 

fair and comprehensive 

conceptual 

understanding of the 

client-server system. 

The client-server system 

and its many 

components were 

explained in this study: 

client-server 

architecture, physical 

and logical components 

of client-server 

architecture, and 

implementation strategy. 

We also included some 

client-server scenarios. 

Performance, reliability, 

trusted system design, 

and secure system 

development are some 

of the developing 

disciplines for study and 

development in the 

current environment. 

(Xue & Zhu, 2009) The use of the 

client/server mode, as 

well as the notion and 

programming approach 

of sockets based on 

client-server, are 

discussed in this work. 

The approach of 

software design for 

communication between 

client and server 

processes utilising the 

socket mechanism is 

primarily examined, and 

examples of connection-

oriented service 

programs are shown. 

The transmission layer 

can provide TCP or 

UDP. 

The client-server mode 

is a common information 

transfer paradigm in 

information systems. 

The distribution of task-

level applications 

between client and 

server lies at the heart 

of the client/server 

system structure. To 

make it easier to put 

together an effective 

client service program. 

On the transport layer, 
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the authors stated that 

they require a thorough 

understanding of the 

TCP and UDP protocols. 

(Bertocco et al., 1998) The authors present 

real-time communication 

with client-server 

architecture using the 

Secure Shell (SSH) 

protocol. As such, we 

frequently assume that 

Internet communication 

is just as reliable as 

traditional kinds. We 

anticipate that what we 

are saying will reach the 

intended receiver in its 

original form. 

Unfortunately, there are 

numerous security 

issues in distributed 

control systems, as well 

as numerous methods 

for the problem of 

transmission security.  

The focus of this study 

is on a low-cost solution: 

TCP communication 

tunnelling using the well-

known SSH protocol. 

The Network Control 

System experimental 

framework employed in 

this study entails real-

time control of many 

plants linked to the 

controllers via the 

ZigBee network. ZigBee 

is a wireless technology 

that was developed as 

an open global standard 

to address the unique 

requirements of low-

cost, low-power wireless 

sensor networks. The 

ZigBee technology was 

designed to transfer 

data over radio 

frequency in difficult 

environments. ZigBee 

allows for a large range 

of wireless network 

configurations using 

low-cost, low-power 

solutions. It increases 

the ability to run for 

several years on low-

cost batteries for a 

variety of testing 

applications. 

In contrast to private 

enterprise solutions, the 

SSH client technique 

necessitates essentially 

no user credentials on 

the client system. As a 

result, we demonstrate 

that the SSH protocol is 

more efficient than the 

TCP protocol. SSH is a 

network communication 

protocol that is designed 

to be controllable and 

cost-effective to adopt. 

Client and server SSH 

software are available 

for practically all 

operating systems. The 

client in this article is a 

computer, and the 

server is a Raspberry Pi 

board. The SSH client 

and server must 

establish a stable 

connection before any 

communication can take 

place. This allows them 

to share keys, 

passwords, and lastly, 

any data they send to 

one another providing 

strong authentication 

and firm communication 

between client and 

server. 

(Piantadosi et al., 2015) It has become more 

necessary in recent 

years in many scientific 

disciplines to collect and 

analyse large amounts 

In the framework of an 

image-based medical 

diagnostic environment, 

the authors created a 

case study. This 

The authors have 

designed a medical 

case study to aid in the 

discovery of lesion 

detection automatically. 
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of data. As a result, 

there is a rise in the 

study of automated data 

management and data 

mining to develop 

trustworthy ways for 

data analysis and 

interpretation. The 

authors propose a 

client-server architecture 

for advanced distant 

data processing that is 

secure, smart, versatile, 

and capable of 

incorporating pre-

existing local 

applications.  

enabled us to address 

several additional issues 

that were also closely 

associated with medical 

data and the analysis of 

that data. The purpose 

of this research is to 

propose an architecture 

for advanced remote 

workflow execution in a 

secure and versatile 

client-server intelligent 

environment that can 

interact with a wide 

range of software 

applications and 

systems. 

This design provides the 

radiologist with access 

to secure and robust 

draughting software. 

Tests have shown that 

the suggested design 

has several advantages, 

including an 

improvement in system 

throughput, ease of 

upgradeability, 

maintainability, and 

scalability, among 

others. The authors 

conclude that the work 

is useful for facilitating 

the integration of 

intelligent devices into 

existing infrastructure. 

(Ozansoy et al., 2007) Using the IEC 61850 

protocol as an example, 

the authors offer a real-

time 

publisher/subscriber 

communication model 

as a means of 

addressing the 

protocol's unique 

behaviour and 

communication 

requirements. The 

authors provide a full 

description of the 

model's architecture and 

implementation, as well 

as some noteworthy 

performance results, in 

their paper. 

At the heart of this 

strategy is the 

development of 

appropriate 

communication 

technologies and 

protocols. The authors 

began their research on 

IEC 61850 by 

transforming it into a 

real protocol by 

implementing its 

services and information 

models as concrete 

programs using 

sophisticated object-

oriented programming 

techniques. Additionally, 

the design and 

implementation of a 

standard delivery 

service were conducted, 

which was created 

specifically to address 

the IEC 61850 protocol's 

The paper used 

simulations to assess 

the performance of the 

publisher/subscriber 

communication model. 

The simulations 

revealed that the 

designed architecture is 

capable of providing the 

IEC 61850 protocol with 

essential communication 

services. It adds a 

negligible amount of 

overhead to the 

underlying protocol 

stack, while yet keeping 

the overall delay within 

acceptable limits. 
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communication 

requirements, to support 

client/server and 

publisher/subscriber 

communication models. 

 

2.7 Conclusion 

 

In closing, to achieve interoperability, authentication, integrity, and confidentiality within the 

substation automation environment, IEC 61850 and IEC 62351 should be conformed to. With 

the above literature, it is found that the challenge of encryption cannot be successfully solved 

to meet timing requirements for secure GOOSE. A new authentication scheme must be 

developed to meet compliance with cyber security and timing requirements. In 2020, IEC 

issued a new version of the security standard, IEC 62351:2020. The standard introduces 

Secure Hash Algorithm-256 (SHA-256) and Advanced Encryption Standard (AES) Galois 

Message Authentication Code (AES-GMAC) algorithms. The implementation of these two 

algorithms is expected to meet compliance for cyber security, and timing requirements to 

secure GOOSE and R-SV messages. The standard also includes AES Galois/Counter Mode 

(AES-GCM), to allow to provide both confidentiality and integrity. (Hussain, Farooq, et al., 

2020) studies and implements a method of achieving both authentication and encryption by 

employing Authenticated Encryption with Associated Data (AEAD). The authors study three 

different methods for the AEAD algorithm to achieve encryption and authenticated GOOSE 

messages. These are Encrypt-then-MAC (EtM), Encrypt-and-MAC (E&M) and MAC-then-

Encrypt (MtE). It secures GOOSE message communication by employing AES-128 encryption 

and HMAC SHA-256 message integrity. (Hussain, Farooq, et al., 2020) conclude that the 

AEAD algorithm can be employed successfully to secure GOOSE, meeting the time 

requirements of 3ms. Table 2.10 shows reviewed papers for IEC 62351. 

 

Table 2.10: IEC 62351 reviewed literature papers 

Paper Research Objectives Method Outcomes 

(Yoo & Shon, 2016) Studies the electrical 

grid in Korea and further 

addresses security 

vulnerabilities, 

requirements, and 

security mechanisms in 

power system 

Investigating the 

integration of the IEC 

61850 protocol with 

other communication 

protocols such as 

DNP3, IEC 61970, and 

OPC UA. 

Security issues that can 

occur in a power grid 

were noted. Various 

security 

countermeasures were 

proposed. The security 

technique was 

employed in an IEC 
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61850 – DNP3 

environment and 

verified. 

(Kang et al., 2011) The authors propose 

strategies of key 

management for data 

encryption in SCADA 

networks and further 

study the issues present 

in SCADA networks. 

Evaluating the SCADA 

network security 

problems in the Korean 

power grid. Encryption is 

employed in the SCADA 

system for cyber 

security. 

Symmetric encryption is 

applied to the SCADA 

network. However, the 

authors found that 

symmetric encryption is 

more vulnerable to 

cyber-attacks than 

asymmetric encryption. 

The key distribution 

period based on the 

Quality of Service (QoS) 

function is evaluated, 

and the authors 

conclude it is more 

significant for network 

performance and 

security. 

 A cyber security attack 

can physically impact 

the failure of critical 

infrastructure. This 

paper studies and 

evaluates the most used 

security techniques. 

A hardware cyber-

physical testbed 

including the security 

mechanism is 

implemented to secure 

the substation from 

security vulnerabilities. 

A substation is 

simulated, and the 

Anomaly Detection 

System (ADS) 

successfully captures 

the malicious attacks 

that have been 

detected. ADS is applied 

to the testbed to 

evaluate the 

effectiveness of the 

detection capabilities. 

 

(Moreira et al., 2016) A Stuxnet virus is one of 

the popular security 

attacks that were able to 

maliciously intrude on 

the SCADA and take 

control of its operation in 

Iran. Awareness was 

raised and the authors 

explored available 

security techniques and 

their applicability to 

Cyber security 

mechanisms such as 

RSA, HMAC-SHA, 

ECDSA, and AES 

algorithms are studied to 

prevent attacks. The 

MACsec cryptographic 

technique is also 

presented as an 

alternative as it provides 

hop-by-hop integrity and 

The paper discusses the 

evolution of substation 

communication and 

further studies how IEC 

61850 is integrated with 

the power system 

environment. Also, 

cyber security for the 

communication 

standard, IEC 61850 is 

discussed to evaluate 
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SAS. A MAC-based 

security mechanism is 

proposed. 

authenticity, but not end-

to-end source 

authenticity. 

the prevention of 

unauthorised access to 

SAS. The authors 

recommend that a 

hybrid solution be 

developed to include 

hop-by-hop group 

authentication and 

integrity using 

symmetric cryptography 

and end-to-end 

authentication. 

(Wang et al., 2019) This paper presents a 

key management 

method for the smart 

substation. The security 

of cryptosystems 

depends on ensuring 

that the key 

management is secured 

and not compromised. 

the authors propose an 

improved symmetric 

polynomial-based key 

management method.  

 

The proposed key 

management method is 

analysed to verify the 

message security and 

efficiency to prevent 

security attacks. 

Simulations are 

deployed to test the 

various attacks 

mentioned and each 

security attack is 

prevented and resisted. 

The symmetric 

polynomial key 

management scheme 

based on symmetric 

encryption is 

implemented. An 

analysis of the security 

scheme is presented 

through simulation and 

the results verify real-

time performance. 

 

(Schlegel et al., 2017a) This article presents a 

security evaluation of 

the IEC 62351 

compliance, examining 

several aspects of the 

security standard. The 

authors further discuss 

how the security 

standard can improve 

security in SAS. 

An overview of the ten 

parts of the IEC 62351 

standard is evaluated. 

The standard contains 

security measures to 

ensure that integrity, 

authenticity, and 

confidentiality are 

implemented in a 

substation environment. 

The standard addresses 

security issues present 

in SAS. Also, discuss 

the performance related 

to backward 

compatibility. The 

authors are satisfied 

with the standard as it 

provides a reasonable 

amount of security. 

However, some of the 

cryptographic algorithms 

also need to be 

considered. 

(Hohlbaum et al., 2010) In substation 

automation, IEC 61850 

standard and IEC 62351 

cyber security standard 

The performance 

requirement of the IEC 

62351-6 standard has 

been confirmed to not 

The authors further look 

at the available methods 

to secure the SAS. 

Since IEC 61850 is 
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need to be 

implemented. IEC 

62351 is the security 

standard for IEC 61850 

communication. In this 

paper, the challenge of 

addressing secure 

communication in the 

power system in 

compliance with the 

communication standard 

is presented. IEC 

62351-6 of the standard 

is discussed (in 

particular) to address 

the performance 

requirements for IEC 

61850 protocols. 

be compliant with IEC 

61850 GOOSE and SV 

data delivery. 

presented which makes 

use of ethernet and 

TCP/IP, firewalls and 

VPN technology can be 

used to protect the 

security of remote 

stations and systems. 

Systems and devices 

must further use user 

authentication and 

authorisation. 

(Hoyos et al., 2012) The authors 

demonstrate a practical 

experiment by attacking 

the GOOSE protocol on 

cyberinfrastructure. 

Malware is created to 

capture and tamper with 

the GOOSE message. 

The GOOSE message 

is then reinjected into 

the power grid to exploit 

the network. 

Mitigation of the 

malware attack was 

discussed. Some 

mitigation measures 

include the introduction 

of strict IT techniques to 

be put in place. In the 

power grid, devices 

require security 

algorithms to be 

implemented. Data 

needs to be encrypted 

and authenticated. Utility 

infrastructure must not 

only be secured 

physically but also cyber 

security techniques are 

to be deployed. 

(Farooq et al., 2018) The communication 

requirements for the 

phasor measurement 

unit (PMU) are stated in 

the IEEE C37.118.2005 

and the IEC/TR 61850-

90-5:2012. The standard 

establishes data 

Due to the number of 

attacks on critical 

infrastructure, the 

implementation of a 

security technique is a 

critical requirement in 

PMU networks. The IEC 

61850-90-5 addresses 

It's paramount that the 

communication network 

be secured from any 

security attacks. The 

implementation of 

authentication is critical 

to protect devices in the 

communication network. 
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communication between 

PMUs etc. The transport 

data needs to be 

compliant with IEC 

61850. To secure PMU 

communication 

networks from MITM 

attacks, the paper 

presents a certificate-

based authentication 

system. 

the security issue and 

proposes an HMAC 

algorithm together with a 

key distribution centre 

(KDC) for authenticating 

and providing encryption 

to data. However, the 

standard does not 

address the impact of 

the man-in-the-middle 

(MITM) attack during 

KDC. 

The authors developed 

an authentication 

method to mitigate 

MITM attacks during 

KDC key exchange in 

PMU networks. 

However, the authors 

have noted that IEEE 

C37.118 does not 

address cyber security 

concerns and IEC 

61850-90-2 only 

addresses certain 

security techniques, 

without detail of 

implementation. 

(Tebekaemi, 2016) The authors develop 

and implement an IEC 

61850 compliant 

substation testbed 

simulation for cyber-

physical security 

studies. As previously 

noted, current the 

substation environment 

has evolved in a 

revolution of intelligence 

introducing information 

and communication 

technology. As such, to 

maintain a secure 

operation of the 

substation, the various 

security concerns must 

be assessed to develop 

a robust security 

solution. 

In the paper, the 

physical vulnerabilities 

and cyber vulnerabilities 

are discussed. The 

power system is 

modelled in 

Matlab/Simulink. The 

simulation includes the 

power model, IED 

model, communication 

model, and attack 

model. The IED must be 

IEC 61850 compliant. 

The process level 

includes the switchgear 

devices, bay level, and 

station level. The 

switchgear devices 

communicate with the 

bay-level IEDs via 

GOOSE messages with 

HMAC for security. The 

communication model 

consists of the process 

network and the station 

network that supports 

GOOSE and SV 

protocols. The attack 

A simulation testbed is 

being used to perform 

analysis of the power 

grid and security 

protocols. It further 

provides an overview of 

physical attacks on the 

grid. The physical 

system and 

communication network 

must support the IEC 

61850 standard. The 

simulation testbed is 

tested against network 

attacks at the process 

and network LAN. Using 

Wireshark, the authors 

were able to capture 

and manipulate the 

GOOSE messages. The 

MITM attack was also 

deployed to intercept 

messages. The authors 

clarified that the 

simulation was tested 

without compliance with 

the IEC 62351 standard. 

As such, the simulation 
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model can be a physical 

attack on the system or 

a network attack. 

was then performed 

introducing IEC 62351 

and the attacks were not 

successful. 

(Hong et al., 2014) The proposed NIDS 

uses multicast 

messages to monitor 

and identify suspicious 

activities in substation 

automation systems. It 

uses a specification-

based algorithm to 

detect and prevent 

cyber-attacks. 

 

The performance test 

was performed for 

various scenarios 

related to cyber 

intrusions. The objective 

of the test was to 

evaluate the reliability 

and correctness of the 

proposed intrusion 

detection system. The 

cyber-attacks were 

simulated on a testbed 

and the results show 

that the proposed 

algorithms can identify 

anomalies and prevent 

attacks in substations. 

The experiment was 

carried out for various 

security attack 

scenarios, such as 

packet modification, 

denial-of-service 

attacks, and replay 

attacks. This paper 

presents an intrusion 

detection system that 

can identify anomalous 

behaviours in real-time 

environments. It can 

also be used to prevent 

the exploitation of the 

network by detecting 

malicious activities 

carried out by multicast 

messages. 

(Strobel et al., 2016) The authors present the 

weakness in the IEC 

62351 standard. These 

vulnerabilities allow for 

the replay of GOOSE 

and SV messages. The 

other weakness present 

in the Simple Network 

Time Protocol (SNTP) 

protocol also makes the 

system vulnerable to 

security attacks. 

This paper presents the 

findings and 

recommendations 

related to the issues 

with IEC 62351. The 

authors analyse part 

specifications of the IEC 

61850 and IEC 62351 

standard. 

The authors analysed 

and discovered the 

weaknesses. The 

weakness identified is 

the replay attack in the 

GOOSE message, 

cross-receiver replays in 

the SV message, and 

the attacks on the 

SNTP. They reiterate 

IEC 62351 needs to be 

improved as IEC 61850-

based infrastructure 

demands a robust 

security technique. 

(Wright & Wolthusen, 

2016) 

This paper discusses 

IEC 62351-3 standards 

for public-key 

management.  

An analysis is provided 

to clarify that IEC 

62351-3 does not align 

with the performance 

requirements in IEC 

61850. The authors 

IEC 62351-3 

implementation of TLS 

and public key 

management is 

discussed. As stated, for 

the TLS algorithm to 
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effectively make it clear 

that this may undermine 

operations. As such, 

operations may be 

vulnerable to denial-of-

service attacks. The 

data packets 

transported using the 

TLS protocol are 

secured as per 

IEC62351-3, but this is 

contingent on the 

effective deployment of 

public key infrastructure. 

function, there must be 

a public key algorithm to 

allow authentication. 

Possible problems are 

stated regarding the 

implementation of the 

public key infrastructure. 

In the same manner, 

possible solutions to 

these problems are 

addressed. 

(Kim & Kim, 2014) An evaluation of the IEC 

61850 standard is 

conducted. Secure 

communication to the 

protocol is implemented 

using IEC 62351-6 and 

IEC 62351-4. 

An implementation of 

the IEC 62351-6 and 

IEC 62351- security 

mechanism is employed 

on a Smart Distribution 

Management System 

(SDMS) that uses IEC 

61850 communication. 

To secure GOOSE, the 

MAC-SHA256 security 

algorithm and ECDSA 

digital signature are 

implemented. To secure 

MMS, IEC 61850 MMS 

stack, ECDH, ECDSA, 

AES 256, and SHA 

algorithms are used. 

(Hong et al., n.d.) Cyber security has 

become an issue in the 

newest technology used 

in SAS. The modernised 

network uses enhanced 

communication 

functionalities. The 

authors design a 

security algorithm to 

provide authentication 

and integrity for securing 

substation operations. 

Malicious GOOSE and 

SV communication can 

cause the power system 

to fail. 

A security technique is 

developed to ensure 

authentication and 

integrity. The security 

algorithm is to meet the 

performance 

requirements imposed 

by IEC 61850 and IEC 

62351. The test is 

conducted on a 

computer that includes 

an embedded system. 

The objective is to 

prevent spoofing and 

replay attacks and 

ensure authorised 

access. 

MAC is utilised to 

confirm the authenticity 

and integrity of a 

message. As an added 

feature, key distribution 

is employed in peer-

peer communication. 

However, adding an 

encryption algorithm 

increases the message 

processing time. 

Therefore, encryption is 

to be left out unless 

confidentiality is 

required in the 

message. The authors 

concluded that the 

HMAC technique 

outperforms alternative 

authentication 

mechanisms. 
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According to the analysis of the literature, several research projects are examining the use of 

GOOSE and SV messages in substation automation systems. Additionally, data security 

approaches are examined to ensure the integrity of IEC 61850 protocols. Security 

requirements are identified and factors such as data integrity, authentication, confidentiality, 

performance, and compatibility with the IEC 61850 standard are considered. Factors such as 

the algorithm's strength and vulnerabilities are assessed, including performance implications. 

As a result, this thesis will contribute to the effective transmission of knowledge about the IEC 

61850 standard, in particular the R-SV and GOOSE messages, and the IEC 62351 standard. 

I researched the various options and determined that Authenticated Encryption is a secure 

algorithm. Authenticated Encryption integrates data encryption and authentication into a single 

algorithm, giving a comprehensive solution for protecting data integrity and authenticity. 

Chapter Three of this thesis delves further into the IEC 61850 standard, focusing on the 

information mapping from communication services to GOOSE and SV messages. It further 

discusses in detail the GOOSE and SV device models and their message structure. 
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3. CHAPTER THREE: THEORETICAL FRAMEWORK 

 

3.1 Introduction 

 

The IEC 61850 standard is the result of many industry initiatives to standardise communication 

in substation automation. Since the early 1990s, non-standard communication mechanisms 

have been utilised in SCADA systems, although they lack interoperability and 

interchangeability. This was because multiple remote terminal units (RTUs) from different 

vendors didn't support the same protocol. With such communication systems, RTUs were 

single-purpose devices, making distributed functions difficult. To create a substation 

automation system based on the IEC 61850 standard, a thorough examination of the standard 

is required. The IEC 61850 standard was created to describe application objects that can be 

sent via data communications. Years of development in automation and protection object 

modelling followed. In addition to the literature discussed in Chapter 2, we can effectively view 

that the IEC 61850 standard was introduced to set out the standardisation of communication 

in substation automation systems (SAS), including smart grids. Accordingly, the development 

of the IEC 61850 standard has been identified based on various advantages over hardwired 

and legacy communication techniques. The advantages include the virtualisation of the 

substation automation that is flexible, interoperability between devices, and reduction of 

engineering time (Abdolkhalig, 2014). In addition to providing a strong network of 

architectures, the IEC 61850 standard sets rigorous testing criteria for substation equipment 

such as fast communication and common communication protocol between field devices. 

 

To develop an authentication algorithm for Generic Object-Oriented Substation Event 

(GOOSE) and Sampled Value (SV) messages, in-depth knowledge of the IEC 61850 standard 

is required. This chapter introduces the IEC 61850 standard for GOOSE and SV 

communications and provides an overview of the IEC 62351 standard. This chapter is divided 

into three parts: Section 3.2 provides an overview of the IEC 61850 standards that are relevant 

to this study. In Section 3.3, the IEC 61850 process bus and mapping data to SV and GOOSE 

messages are studied. In Section 3.4 and Section 3.5, we discuss the security challenges and 

requirements for IEC 61850, Section 3.6 provides an overview of the IEC 62351 security 

standard. 
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3.2 Overview of the IEC 61850 standard 

 

The IEC 61850 standard consists of ten sections where the large sections are further split into 

smaller sections resulting in the entire standard comprising a total of fourteen parts. Necessary 

for this research, Part 5, Part 6, Part 7, Part 8, and Part 9 will be studied. The IEC 61850 

standard describes the requirements for substation automation and establishes a future-proof 

architecture for substation automation that enables interoperability, scalability, flexibility, and 

maintainability of substation automation systems. 

 

3.2.1 Part 5 – Communication Requirements 

 

The IEC 61850 standard provides performance classes for the various types of messages 

required to map data (data objects and attributes) to specified protocols in Part 5. This 

standard defines five communication profiles, three of which are for time-critical 

communications known as link-layer communication services, while the other two are for non-

time-critical messages. These communication profiles are shown in Figure 3.1. 

 

 

Figure 3.1: IEC 61850 message types and performance class (Ncube, 2012). 
 

Figure 3.1 depicts three time-critical communication services, each of which is indicated in red 

blocks. These are the GOOSE, Generic Substation State Event (GSSE), and SV messages, 

among others. Since these communication services are mapped directly to the data-link layer, 

protocol overhead is reduced, and performance is increased. The two remaining 

communication profiles described in this standard are the device time synchronisation 

messages based on the simple network time protocol (SNTP) protocol and the Manufacturing 
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Message Specification (MMS) profile for the management of substation equipment (Ncube, 

2012). 

 

The Type 1, Type 1A, and Type 4 time-critical messages, each of which is mapped to a distinct 

EtherType, are of special interest to the researchers working on this project. Deliveries times 

for different types of messages are established in Part 5 of the standard; thus, all Intelligent 

Electronic Devices (IEDs) that are capable of publishing either one or several types of 

messages, as defined in this standard, shall conform to the delivery times specified in the 

standard. The next section provides a summary of part 6 of the IEC 61850 standard. 

 

3.2.2 Part 6 – Substation Automation System Configuration 

 

Part 6 of the communication standard introduces and discusses the Substation Configuration 

Language (SCL). The SCL is a configuration language based on the eXtensible Markup 

Language (XML). It enables system engineers to construct abstract models of primary and 

secondary substation equipment, communication mechanisms between equipment, and 

relationships between equipment. The Unified Modelling Language (UML) serves as the 

foundation for the modelling platform for this configuration language (Ncube, 2012; Apostolov, 

2010). 

 

This configuration language enables IED configuration and settings to be transmitted to a 

system configuration tool or another IED, decreasing the cost and labour by omitting manual 

intervention. Part 6 of the standard defines four different types of SCL files (Julie, 2014; Ncube, 

2012; Hou & Dolezilek, 2010):  

 

a) Documents describing the System Specific Description (SSD); Functional models 

define how automation systems behave when performing a function, such as 

protection, automation, or control. 

b) Station Configuration Description (SCD); The SCD file has a fully configured 

communication section for IEDs or sub-systems. This file contains a list of all the IEDs 

located throughout the distribution substation that comprise the automation system. 

c) IED Capability Description (ICD); The ICD file defines the IED's default capabilities 

before its name and address are configured, whereas the CID file represents a 

customised IED. 

d) Configured IED Description (CID); The distinction between ICD and CID files is that an 

IED has a unique name and address. 
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Figure 3.2 illustrates the system configurator and IED configurator. It begins by gathering all 

the data from the SSD file, which includes system-linked data, and the ICD, which includes 

IED-linked data and then establishing the SCD file. This file creates the function and 

information transfer for each IED and stores it in a database. The IED Configurator then 

gathers the SCD file and generates the CID file. Next, the CID file is sent via a communication 

connection to a specific IED. 

 

Figure 3.2: System Configurator and IED Configurator (Julie, 2014) 

 

The next section summarises part 7 of the IEC 61850 standard. 

 

3.2.3 Part 7 – Basic Communication Structure 

 

This section of the IEC 61850 standard is subdivided into four portions, which are designated 

as Part 7-1, Part 7-2, Part 7-3, and Part 7-4, respectively. Providing the fundamental concepts 

and principles of communication amongst substation equipment in an IEC 61850 standard-

based automation system is the primary focus of Part 7-1. The standard takes advantage of 

the virtualisation idea to provide a view of some real-world device characteristics that are 

critical for information exchange with other devices. Part 7-2 covers the exchange of data 

between entities via abstract communication service interfaces. Part 7-3 defines structures for 

representing common data qualities for a specific data object, and it is divided into three 

sections. Logical node classes and their associated common data classes are defined in Part 
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7-4, and these classes and data classes can be mapped to a specific communication service 

mapping to facilitate information sharing between entities (IEC 61850-7-1, 2003).  

 

SASs are primarily responsible for protecting, controlling, and monitoring plant equipment 

employed in the substation and its feeders. These functions serve as the foundation for the 

IEC 61850 standard's object-oriented physical and logical device information models. The IEC 

61850 standard's core is comprised of information models and methodologies for device 

modelling. The information models and methods for device modelling are at the heart of the 

IEC 61850 standard. As illustrated in Figure 3.3, the models defined in the IEC 61850 standard 

enable the virtualisation of physical devices. Objects, classes, attributes, inheritance, and 

methods are all common object-oriented concepts covered by the IEC 61850 standard. 

Concerning the data view and the communication view, the IEC 61850 employs object-

oriented principles to describe actual physical devices and associated substation functions. 

 

 

Figure 3.3: Modelling approach (IEC 61850-7-1, 2003) 

 

3.2.3.1 Abstract Communication Services 

 

The Abstract Communication Service Interface (ACSI) is defined in Part 7-2 of the IEC 61850 

standard. The standard specifies its application in substation automation when IED 

collaboration in real-time is necessary. The ACSI is a critical aspect in determining 
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interoperability. Therefore, The ACSI specifies how data is exchanged between devices in a 

substation automation system. Moreover, ACSI is characterised as being independent of the 

communication systems (IEC 61850-7-2, 2003). The ACSI consists of two parts that define 

two different communication models: client-server and peer-to-peer architecture models as 

illustrated in Figure 3.4 (Kriger et al., 2013). Data modelling approaches described in parts 7-

3 and 7-4 of this standard are used in conjunction with these communication services to create 

models (IEC 61850-7-2, 2003). 

 

If two devices are connected in a peer-to-peer communication architecture, one is a publisher 

(which transmits data) and the other is a subscriber (who listens for information). Client-server 

architectures are frequently used for device configuration and remote access, while peer-to-

peer architectures are frequently used for time-critical message exchange. IEC 61850 requires 

the deployment of a peer-to-peer or client-server topology to enable the ACSI, one of the 

critical techniques for ensuring compatibility between devices. The communication between a 

client and a remote server may be for data access, device control, logging of events, 

publisher/subscriber, file transfer, etc. (IEC 61850-7-2, 2003). 

 

 

Figure 3.4: ASCI Services (IEC 61850-7-1, 2003) 

 

To ensure compatibility, Part 9-2 of IEC 61850 specifies a Specific Communication Service 

Mapping (SCSM). SCSM is used to map the modelled data to well-known communication 

protocols such as TCP/IP, MMS, and ISO 8802-3 Ethernet frames (Mguzulwa, 2018). SCSMs 

describe the fundamental communication protocols and standards used between devices for 

data transmission using either client-server or peer-to-peer models. Parts 8 and 9 of the IEC 

61850 standards define SCSM. 
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The next section discusses the data modelling of substation information. 

 

3.2.3.2 Data Modelling 

 

This is a critical part of the IEC 61850 standard since it permits interoperability across IEDs 

and functions. The standard is focused on describing the information models that allow the 

IEDs from multiple vendors to transmit information to one another. 

 

The IEC 61850 standard makes use of data models that are representations of analogue 

power system equipment. These data models are generated using a process known as 

virtualisation. Virtualisation is the technique of presenting an automated system with a view of 

the elements of a physical device that are of relevance to it. Not only is virtualisation a 

philosophical notion that underpins the IEC 61850 modelling standard, but it is also an 

engineering process in which field professionals model actual substation automation 

equipment and operations (Retonda-Modiya, 2012). 

 

The IEC 61850 standard permits the virtualisation of a physical power system.  Figure 3.3 

shows an illustration of a virtualisation process. The initial phase in the IEC 61850 modelling 

process that leads to the ACSI is the virtualisation of SAS components and their associated 

functionalities. Virtualisation is a procedure that is used to standardise the behaviour of a SAS 

device or function using them to facilitate communication between devices. Among the many 

prototypes in the IEC 61850-7 of the standard are classes of Logical Node Classes, Data 

Classes, and Common Data Classes. In other words, for devices and functions that have 

already been standardised, there is no need to go through the entire virtualisation process 

again. 

 

With the use of IEDs, it is possible to reduce redundant connections of hardwiring involving 

RTUs, programmable logic controllers (PLCs), metering devices, and instrument transformers 

in today's architecture of power system automation. This requires an electrical engineer to be 

familiar with the IEC 61850 data modelling standard to achieve this goal. 
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Figure 3.5: Data model layers (IEC 61850-7-1, 2003) 

 

Data modelling in IEC 61850 begins by considering Figure 3.5 which contains five layers. 

Figure 3.5 depicts an object-oriented representation of the IEC 61850 standard data modelling 

technique. According to Figure 3.5, a physical network addressable device is comprised of a 

logical device, which in turn has several logical nodes for providing a variety of functionality. 

In Figure 3.5, the data model is overlaid with standard names, as follows (Retonda-Modiya, 

2012; Mguzulwa, 2018; Emmanuel, 2014; Ncube, 2012): 

 

a) The physical device that is directly connected to the network address is the first layer 

of the architecture. The real network addressable device (IED) in an automation 

system is identified by the physical device. 

b)  The second layer is the logical device, the IED. Groups of Logical Nodes that are 

connected within a physical device. 

c) The third layer is the logical node, which represents abstract data items and the 

fundamental components of the IEC 61850 object-oriented virtual model. This is 

accomplished using standardised data and data properties. This permits the creation 

of a hierarchical class model in which all class information, associated services, and 

parameters may be accessible via a communication network. 

 

Table 3.1 Logical Node groups in the IEC 61850-7-1 standard (IEC 61850-7-1, 2003) 

Logical Node Groups Group Designator 

System Logical Nodes L (3) 

Protection functions P (28) 

Protection related functions R (10) 

Supervisory control C (5) 

Generic References G (3) 

Interfacing and Archiving I (4) 

Automatic Control A (4) 
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Metering and Measurement M (8) 

Switchgear X (2) 

Instrument Transformer T (2) 

Power Transformer Y (4) 

Further power system equipment Z (15) 

Sensors S (4) 

 

d) The fourth layer is the data class. This is the real data that an automation system 

measures, monitors, or controls. Table 3.1 shows how the IEC 61850 standard 

classifies SAS functions into logical nodes. The groupings are further broken into 92 

distinct Logical Nodes, each of which is built of 355 data classes that have application-

specific meaning. 

e) The data is the fifth layer. The 92 data class types are enlarged to a total of 355 data 

classes. A data attribute is a feature of the data object that is being monitored or 

measured.  

 

The IEC 61850 standard is based on the Unified Modelling Language (UML) and employs 

an object-oriented modelling methodology. This configuration language makes use of UML 

as a basic modelling platform. After defining a class or function, the user is not required to 

redefine the object or function but may create an instance of that class, or object. Figure 

3.6 shows the UML class diagram of the IEC 61850 data mode. 
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Figure 3.6:  UML class diagram of the IEC 61850 data model (IEC 61850-7-2, 2003) 

 

Part 7 of the IEC 61850 standard covers data communication models, communication 

services, and data classes between devices in an IEC 61850 standard-based system. The 

IEC 61850 standard further introduces an important factor of standard naming convention for 

devices, logical nodes, objects, and data attributes. However, details of the naming convention 

are present in this literature.  Part 8-1 of the IEC 61850 standard, which defines the precise 

communication service mapping of application data to Manufacturing Message Specification 

(MMS) and ISO 8802-3 GOOSE messages, is discussed in the following section. 

 

3.2.4 Part 8-1 – Mapping to MMS and Ethernet 

 

It has been defined in the IEC 61850 standard that there are two types of information exchange 

systems. Each has its architectural framework: the first is strictly client-server communication, 

while the second has additional incorporates functionality based on the publisher-subscriber 

communication structure. To facilitate the provision of these services, the IEC 61850 standard 

specifies a layered communication structure on top of the OSI model. 
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The IEC 61850-8-1 standard defines the mapping of process level, bay level, and station level 

device abstract objects and services to the application layer. Along with mapping to the 

application layer, IEC 61850-8-1 defines profiles for the communication stack's data link, 

networking, transport, session, and presentation levels. ACSI and information model 

mappings to a specific protocol are defined in this section of the IEC 61850 standard. 

 

Figure 3.7 illustrates the IEC 61850 standard's SCSM; defining how the IEC 61850 standard's 

part 7 application data is communicated utilising the SCSM. To minimise protocol overhead 

and message delivery times, the SCSM provides access to lower layers of the OSI model 

where GOOSE and SV messages are directly mapped to the data link layer, while mapping of 

data and information to MMS encompasses all seven of the Open System Interconnect (OSI) 

stack. Furthermore, the data is routed over an ethernet link layer via the ISO 8802-3 ethernet 

frame "EtherType" for GOOSE and SV (International Electrotechnical Commission, 2009).  

 

 

 

 

 

 

 

 

 

 

 

 

 

SCSMs are designated by IEC 61850-8-1, IEC 61850-9-1, and IEC 61850-9-2 standards. IEC 

61850-8-1 assigns the MMS responsibility for the majority of ACSI services. Additionally, it 

provides mappings between Sampled Values, GOOSE, Time Synchronisation, GSSE and 

Ethernet. IEC 61850-8-1 defines the services that are commonly used for exchange 

throughout the substation. IEC 61850 defines GOOSE as the standard's core crust because 

it enables quick applications that meet the standard's protective performance standards. 

 

The next section introduces the mapping of applications for the SV messages. 

Figure 3.7: Layered structure of the IEC 61850 standard (Mohagheghi et al., 2011) 
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3.2.5 Part 9-1 and 9-2 – Sampled Measured Value Mapping. 

 

IEC 61850 standard describes SCSM as a method of transferring current and voltage samples 

through a serial point-to-point link or over an Ethernet process bus to bay-level IEDs. 

Information is mapped across a traditional multi-drop point-to-point serial configuration in Part 

9-1 of the specification; information is mapped onto an ISO 8802-3 Ethernet frame in Part 9-2 

of the specification. The advantages of Ethernet switched communication, as defined in Part 

9-2 of the specification, such as data speeds, zero-collision, and a flexible design, made it 

preferable to serial point-to-point connection. Furthermore, reducing the expense of costly and 

lengthy copper wiring between a substation and the control centre. 

 

As with GOOSE messages, mapping voltage and current samples to an ISO 8802-3 Ethernet 

frame generates SV messages, a time-critical peer-to-peer communication protocol. There 

are differences between Part 9-1 of the IEC 61850 standard and Part 9-2 of the same standard 

not only in terms of the underlying interface but also in terms of the information that is shared. 

Digital inputs and voltage and current measurements are both contained in Part 9-1 of the IEC 

61850 standard. Part 9-2 permits only voltage and current measurements within the defined 

frame, as GOOSE messages for digital status transmission are already present. 

 

Contrary to Part 9-1 of the IEC 61850 standard, Part 9-2 restricts the transmission of SV 

packets without binary input statuses. The dataset is customisable in the framework of the IEC 

6180-9-2 standard via the SCL. The digitisation of signals from instrument transformers is 

specified in Part 9-1, and the mapping of these signals into SMV frames that are transmitted 

via an Ethernet data link protocol is defined in Part 9-2. According to Part 9-2, an Ethernet-

based network has been proposed for communication in substations to send and receive 

protection and automation signals between devices. The digitised signals (using Merging 

Units) are distributed via the Ethernet-based process bus to the bay-level protection and 

control IEDs. The Merging Unit is a critical component of the IEC 61850 process bus. 

 

IEC 61850-9-2 Ethernet communication networks based on process-bus can provide 

numerous benefits, including a flexible architecture, and interoperability. For time-critical 

messages, such as SMV, it is crucially important that the feasibility and reliability of substation 

protection systems operating over an Ethernet-switched Process-Bus network be thoroughly 

investigated, even though the Part 9-2-based process bus has proven to be a promising 

technology for protection systems (Abdolkhalig, 2014). 
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3.3 Application of the IEC 61850 standard in a Substation Automation System 

 

As utilities worldwide embrace the IEC 61850 digital substation standard, completely 

automated techniques of power system monitoring will eventually replace traditional 

strategies. While emerging techniques improve efficiency and controllability, they require 

thorough evaluation and analysis before being widely used.  

 

Standardisation of communication systems in a distribution substation automation system has 

been achieved through the introduction of the IEC 61850 standard. Throughout history, 

communication has always been important in the operation and automation of the power 

system. As a result, the communication standard was created to interface with modern 

technology and provide features that were previously unavailable through legacy 

communications protocols. When compared to a legacy method, IEC 61850 allows for 

advances in the power system that would otherwise be impossible. These distinguishing 

qualities of the new communication standard for IEDs have a significant effect on the costs 

associated with the design, construction, installation, commissioning, and operation of power 

systems, among other things. As described previously, the process bus is composed of two 

real-time data transfer protocols: the GOOSE and SV messages defined in Parts 8-1 and 9-2, 

respectively. Per the IEC 61850 standard, a SAS is divided into three distinct levels, which are 

represented by stations, bay, and process levels, as indicated in Figure 3.8. 

 

Figure 3.8: IEC 61850 System Architecture (Zhao, 2012) 
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The introduction of the IEC 61850 standard defined communication for substation automation 

systems. The introduction of the IEC 61850 standard has brought about several benefits for 

the Substation Automation System (SAS) environment. The requirement for interoperability 

among relevant devices from various vendors is a requirement for ensuring that utilities derive 

value from their investments. Interoperability, according to the IEC 61850 systems, is a 

significant advantage in the Substation Automation System (SAS) context (Mguzulwa, 2018). 

To successfully implement interoperable systems in the SAS environment, thorough testing 

and a careful selection of vendors are required. This entails thorough testing to ensure that 

the SAS meets the standards of a certain SAS. Interoperability implementation and testing 

techniques in a SAS must be created and extensively validated with multiple situations of 

interoperability to be considered successful (Mguzulwa, 2018). 

 

The subsequent sections, 3.3.1 and 3.3.2, elaborate on the GOOSE and SV message 

structures, respectively. 

 

3.3.1 IEC 61850-8-1 standard GOOSE Messages 

 

GOOSE messaging refers to the time-critical messaging sent between IEDs in a peer-to-peer 

fashion; these messages can be multicast to many IEDs or directed to a single IED via a 

unicast address. In general, GOOSE messages are used to exchange status information 

between two or more devices, notably the publisher and the numerous subscribing devices; 

for example, circuit breaker status and voltage measurements are shared between functions 

in a protective scheme. GOOSE messages are continuously transmitted via the Local Area 

Network (LAN). Figure 3.9 depicts an illustration of the publisher-subscriber method that is 

utilised in the GOOSE message exchange as an example. 
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Figure 3.9: An example of the GOOSE Publisher-Subscriber mechanism (IEC 61850-7-2, 

2003) 

 

It is critical to achieve or maintain interoperability when GOOSE messages are sent. Data 

transmission benefits provided by IEC 61850 are particularly advantageous for time-critical 

data exchange between functions located within a bay or across many bays. GOOSE 

communications rely on peer-to-peer communication to address the needs of those who 

require protection. (Mguzulwa, 2018) 

 

The goal of GOOSE messaging is to maintain the state of logic or analogue values in IEDs 

indefinitely. Continuous indication via control messaging is critical if the GOOSE messaging 

concept is to be achieved. The subscriber is defined as any IED equipped to consume the 

message's content, whereas the publisher is defined as the IED that broadcasts the message. 

When the data in the dataset is modified, the publisher's transmission buffer is changed, and 

the values are sent through a GOOSE message. As a result, the publishing device floods the 

LAN with the latest GOOSE messages, and the subscriber must guarantee that they are 

captured. The GOOSE messages provide information that informs the subscriber when a 

status has changed and at what time it occurred. Every few milliseconds, IEDs must update 

their contact status and analogue values. This means that each publication will repeat the 

most recent messages numerous times to keep subscribers informed. GOOSE messages are 

conveyed in a continuous fashion using a repetition approach as illustrated in Figure 3.10. To 

ensure that GOOSE messages are delivered at the desired speed and reliability, IEC 61850-

8-1 standard provides a retransmission mechanism for GOOSE messages. (Retonda-Modiya, 

2012; Mguzulwa, 2018; Emmanuel, 2014; Ncube, 2012; Abdolkhalig, 2014) 
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Figure 3.10:  Repetitive transmission of GOOSE messages 

 

GOOSE is a connectionless, event-driven communication service. After a certain interval, a 

GOOSE client transmits GOOSE messages continually (T0). When a substation event occurs, 

i.e., when the status value of one or more data items in the GOOSE dataset changes, the 

GOOSE transmission interval drops dramatically, as seen in Figure 3.10 (T1). Following the 

occurrence, the transmission settles into a predetermined interval, which remains constant 

until the next event happens (T2, T3, and T0). The GOOSE message retransmission 

mechanism is necessary to transmit messages from the publisher to the subscriber device for 

the subscribing device to verify that communications via process bus are healthy (Abdolkhalig, 

2014). 

 

The GOOSE Control Block (GoCB) manages the GOOSE message services and database. 

Control blocks specify the rate at which data is transferred between IEDs and the method by 

which it is communicated using abstract communication services. As seen in Table 3.2, the 

GoCB specifies information such as the GoCB name, the GoCB reference, the GOOSE 

enable, the dataset, and other attributes that permit the delivery of a GOOSE message. 
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Table 3.2: GOOSE Control Block Class (International Electrotechnical Commission, 2009) 

GoCB Class 

Attribute 

name 

Attribute type FC TrgOp Value/Value Range 

GoCBName ObjectName GO - Instance name of an instance of GoCB 

GoCBRef ObjectReference GO - Path-name of an instance of GoCB 

GoEna BOOLEAN GO dchg Enabled (TRUE) | disabled (FALSE) 

AppID VISIBLE STRING65 GO - System-wide identification 

DatSet ObjectReference GO dchg  

ConfRev INT32U GO dchg  

NdsCom BOOLEAN GO dchg  

Services 

SendGOOSEMessage  

GetGoReference  

GetGOOSEElementNumber  

GetGoCBValues  

SetGoCBValues 

 

A dataset defines the message content. An ethernet frame encapsulates the GOOSE 

message. The ethernet frame's header contains information about the destination, source, 

ethertype, and payload. IEC 61850 defines the payload's structure. 

 

The next section explains the GOOSE message structure as established in the IEC 61850-8-

1 standard. 

 

3.3.1.1 GOOSE Message Structure 

 

The compatibility of GOOSE messages must be tested consistently to guarantee that IEDs 

are adequately validated. IEC 61850 is a comprehensive standard, and compliance with this 

standard does not always indicate interoperability with equipment from different suppliers. The 

interoperability of GOOSE communications enables a variety of applications in an automation 

substation. GOOSE messaging is essentially peer-to-peer messaging that may be used to 

construct any application that requires a message. When compared to hardwired alternatives, 

the use of the GOOSE message has been shown to reduce fault-clearing time. While 

compliance tests may have been performed, prior research indicates that message structures 

are critical for interoperability. (Mguzulwa, 2018) state advantages of GOOSE message 

namely: 
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• GOOSE protocol uses the standard Ethernet for communication. 

• Ethernet replaces point-to-point hardwired copper. 

• Speed performance requirements are improved. 

• Due to the message's periodic repetition, it has a high degree of reliability. 

• The GOOSE is directly mapped to the Ethernet layer hence the processing time is also 

less which is best suited for very time-critical protection functions in the substation. 

 

The benefit of GOOSE messages is critically significant in the deployment of interoperability 

because these advantages must be realised by a variety of suppliers in the substation 

automation system to be effective. 

 

GOOSE messages are mapped to the ISO 8802-3 Ethernet frame, and the Protocol Data Unit 

(PDU) is included in the Ethernet frame's data payload part.  The ISO 8802-3 frame consists 

of the following: (International Electrotechnical Commission, 2009) 

 

• MAC Destination address: This is the MAC address of the destination device. The 

destination address is defined as a multicast address. 

• MAC Source Address: This is the MAC address of the GOOSE sending device. 

• VLAN Tag: GOOSE frames are tagged using the IEEE 802.1Q to separate time-critical 

messages from low-priority data. The Priority tagged field consists of three fields 

namely: Tag Protocol Identifier (TPID), Tag Control Information (TCI), and Virtual LAN 

Identifier (VLID). 

• EtherType information: The Ethernet PDU consists of four fields namely: Application 

Identifier (APPID), Ethernet type, Length, and GOOSE Application Protocol Data Unit 

(APDU).  

 

In multicast addressing, the destination device's MAC address should be in the range 01-0C-

CD-01-00-00 to 01-0C-CD-01-01-FF. The VLAN field's TPID is set to 0x8100 to differentiate 

IEEE 802.1Q-tagged frames from untagged frames. For GOOSE messages, the EtherType is 

0x88B8, and the APPID is set to 0x0000 by default. The IEC 61850-8-1 standard specifies 

that the GOOSE APPID may be any value between 0x0000 and 0x3FFF. (International 

Electrotechnical Commission, 2009) 

 

The structure of the ISO 8802-3 Ethernet frame is shown in Figure 3.11. 
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Figure 3.11: GOOSE Message Frame Structure (International Electrotechnical Commission, 

2009) 

 

The GOOSE APDU consists of the following fields: (Hariri et al., 2019; Ncube, 2012; 

Emmanuel, 2014; Abdolkhalig, 2014; Gadelha Da Silveira & Franco, 2019) 

 

• State number (stNum): This field contains a state number of the client’s state machine 

that indicates when an event occurred, namely when a GOOSE message changed 

state or when an event occurred. 

• Sequence number (sqNum): This field keeps track of the number of GOOSE 

messages transmitted over the network. This value is incremented once an event 
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happens until the next event occurs or the retransmission time reaches the stable 

retransmission time. When the next event occurs, the value turns to zero. 

• Simulation/Test: This field provides insights into whether the messages published are 

from a test operation or live scenario. 

• Time allowed to live (TAL): This field contains information about the maximum 

amount of time that the packet has to travel to its destination. 

• Need to commission (NdsCom): This field specifies whether or not the GOOSE 

client/publisher requires commissioning; and validating the GOOSE message. 

• Configuration revision (confRev): This field specifies the configuration file's revision 

number at the time of transmission. This value is increased whenever the dataset's 

data items are reordered, deleted, or added. 

• Number of dataset entries (numDatSetEntries): The value in this field shows the 

number of data sets. 

• GOOSE control block reference (gocbRef): A unique reference to the control block 

associated with the GOOSE message. 

• Data set (datSet): The GOOSE dataset name is specified. 

• GOOSE ID (goID): The field indicates the name of the GOOSE dataset that sends the 

message. 

• Timestamp (t): The field indicates the time when the GOOSE message is generated. 

• Data: The field indicates the information of the GOOSE message (bool, integer, 

float…). 

 

Publisher IEDs encrypt the information contained in a data set and build an envelope for it to 

be delivered in a package. When this packet is received by subscriber IEDs, the information 

included in the gocbRef, datSet, goID, confRev, and numDatSetEntries parameters is used to 

validate and process the messages. After the message has been validated, the information 

included in the data set is used to carry out the IED logic. 

 

The GOOSE message structure is discussed. The next section discusses the SV message 

structure defined in the IEC 61850-9-2 standard. 

 

3.3.2 IEC 61850-9-2 SV messages according to IEC 61850-9-2LE 

 

 

The IEC 61850-9-2 standard defines the process level as a means of collecting data, such as 

voltage and current, from transducers attached to the major power system equipment. As 

defined in the IEC 61850 standard, SV messages are linked to measurement dispersion. They 
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are moved from the bay to the process level of the power system. Time limitations apply to 

the transmission of sampled values. It is possible to transmit sampled values in an ordered 

and time-controlled way using the IEC 61850 protocol architecture by mapping SV messages 

directly to the data link layer of the ethernet network stack. Time-critical SV messages can be 

exchanged between two or more devices periodically. The SV data exchange has a 

publisher/subscriber model as illustrated in Figure 3.12.  

 

 

Figure 3.12: Sampled Value Control Class (IEC 61850-7-2, 2003) 

 

On the sending side, the publisher stores the data in a local buffer, and the subscriber gets 

the values from the receiving side's local buffer. The count of sampled values is appended as 

a timestamp, allowing the subscriber to check the values' timeliness. The multicasting of time-

critical messages should be supported by any IED that communicates via the IEC 61850-9-2 

process bus. Multicasting allows for the distribution of the same message to numerous 

subscribers at the same time. 

The Sampled Value Control Block (SVCB) manages the SV message services and database. 

The SV services are used to manage the communication process between the publisher and 

the subscriber. As seen in Table 3.3, the SV control block is detailed. 
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Table 3.3: SV Control Block Model (IEC 61850-7-2, 2003) 

MSVCB Class 

Attribute name Attribute type FC TrgOp Value/Value Range 

MsvCBNam ObjectName - - Instance name of an instance of MSVCB 

MsvCBRef ObjectReference - - Path-name of an instance of MSVCB 

SvEna BOOLEAN MS dchg Enabled (TRUE) | disabled (FALSE) 

MsvID VISIBLE 

STRING65 

MS -  

DatSet ObjectReference MS dchg  

ConfRev INT32U MS dchg  

SmpRate INT16U MS - (0…MAX) 

OptFlds PACKED LIST MS dchg  

 refresh-time BOOLEAN    

sampled-

synchronised 

BOOLEAN    

sample-rate BOOLEAN    

Services 

SendMSVMessage  

GetMSVCBValues  

SetMSVCBValues 

 

IEC 61850 messages are directly connected to the ethernet stack's data link layer. The User 

Datagram Protocol (UDP) and Transmission Control Protocol (TCP) transport layers are no 

longer used since they introduce additional processing latency as a result of the ethernet frame 

headers. The performance of both SV and GOOSE communications is critical since the power 

network's proper operation is dependable on their timely transmission. In switched Ethernet 

networks, there are numerous sources of delay, each of which contributes to the total 

performance. Additionally, lengthening the packets causes the message to consume more 

bandwidth, putting the network under pressure. Bandwidth has a significant impact on network 

delay. (Skoff, 2020) 

 

Because protection systems maintain the grid's reliability, their performance is critical. As IEC 

61850 becomes more widely implemented in power systems worldwide, sampling value-

based methods will unavoidably become the industry standard for identifying and isolating 

problems. As a result, they must undergo thorough testing to ensure that they can be relied 

upon in the same manner that traditional protection systems are. (Skoff, 2020) 
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The next section explains the SV message structure as established in the IEC 61850-9-2LE 

standard. 

 

3.3.2.1 IEC 61850-9-2 SV structure and IEC 61850-9-2LE data model 

 

IEC 61850 Part 9-2 specifies a user-configurable SV message frame, which may be 

customised using the substation configuration language. The implementation of the IEC 

61850-9-2 communication service mapping is simplified by the definition of datasets, ASCI, 

physical connections, and sample rates. This section discusses message mapping using 

sampled values, as defined in IEC 61850-9-2LE. As demonstrated in Figure 3.13, IEC 61850-

9-2LE SV messages are translated to an ISO 8802-3 Ethernet frame that consists of a header 

and the SV APDU. 

 

 

Figure 3.13: Structure of an IEC 61850-9-2 SV Message (Hariri et al., 2019) 

 

Figure 3.13 shows the structure of an SV message. It is composed of three parts, namely a 

header, a payload, and a checksum. The Ethernet frame header contains the following 

information: (Hariri et al., 2019; Ncube, 2012; Emmanuel, 2014; Abdolkhalig, 2014; 

International Electrotechnical Commission, 2009) 

 

• MAC Destination address: IEC 61850-9-2 employs Media Access Controller (MAC) 

filtering to ensure that SV messages are delivered on time. As detailed in IEC 61850-

9-2, the target address in multicast mode should be in the range 01-0C-CD-04-00-00 

to 01-0C-CD04-01-FF. 

• MAC Source Address: This is the MAC address of the source device. 
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• VLAN Tag: SV frames are tagged using the IEEE 802.1Q to separate time-critical 

messages from low-priority data. The Priority tagged field consists of two fields namely: 

TPID and TCI. The TCI field is further divided into Canonical Format Identifier (CFI) 

and VLID. For SV frames, the TPID should be set to 0x8100. When set to 0x8100, the 

frame is identified as an IEEE 802.1Q frame. 

• EtherType information: This field is used to specify which protocol is contained within 

an Ethernet Frame's Payload. The EtherType for IEC 61850-9-2 SV packets is 

0x88BA. APPID is used to distinguish between Ethernet frames containing SV 

messages. APPID identifies the network information and is set to 0x4000 for SV 

messages. 

• SV Application Protocol Data Unit (SV APDU): This is the sampled value APDU that 

contains the application data. The SV APDU in Figure 3.13 consists of one or more 

Application Service Data Units (ASDUs). These fields are the svID, smpCnt, confRev, 

smpSynch, and the sequence of data. Each ASDU then contains seven subfields 

which are as follows: 

o Sampled Value ID (svID): This field is a unique identification of the sampled 

value buffer. 

o Sample Count (smpCnt): This is an incremental counter that increases each 

time a new sample value is received. The smpCnt parameter is equal to the 

number of published SV messages each cycle. 

o Configuration revision (confRev): This field specifies the value that indicates 

the number of configuration changes. This value is increased whenever the 

dataset's data items are reordered, deleted, or added. 

o Sampled Synchronised (smpSynch): A Boolean value that indicates whether 

the SV is synchronised with a clock signal or not by setting it to either TRUE or 

FALSE. 

o Sequence of data (Seq Data) and dataset: This field contains the dataset to 

be transmitted in the SV packet. 

o Refresh Time (RefrTm): This contains the refresh time of the SV buffer. 

 

In a sampled value digital substation, an IEC 61850-9-2LE compliant device would publish SV 

streams of four currents (IA, IB, IC, and IN) followed by four voltages (VA, VB, VC, and VN).  

The IEC 61850-9-2LE recommends a publication rate of 80 or 256 samples per cycle for SV 

messages on 50Hz and 60Hz systems, respectively. Violation of these rates for a specific 

sampled value stream will enable the detection of a DoS attack. Synchronisation is critical in 

an SV substation because SV streams generated by many physical devices cannot be reliably 
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interpreted without synchronised time sampling. This guarantees the time coherence of all 

devices, facilitating precise data analysis and decision-making. 

 

The IEC 61850-9-2LE provides a pre-defined data model and dataset for the transmission of 

current and voltage samples. This data model contains four TVTR and four TCTR logical 

nodes representing voltage and current transformers respectively. Each instance of the 

current transformer (TCTR) and voltage transformer (TVTR) logical nodes digitises one phase 

or neutral current or voltage. The primary current and voltage sample values are members of 

the dataset PhsMeas1 used in the ASDU. Figure 3.14 illustrates the data model for IEC 61850-

9-2LE SV messages. 

 

 

Figure 3.14: IEC 61850-9-2LE data model 

 

The TVTR and TCTR logical node classes, as depicted above, contain the data objects for 

the voltage and current samples. To decrease implementation complexity, IEC 61850-9-2LE 

makes use of an instance of the SAV common data class that only supports characteristics 

with the measurement (MX) functional constraint. Each sampled value published in an IEC 

61850-9-2LE contains the instantaneous magnitude (instMag.i) value of the analogue voltage 

or current and the quality attribute (q) which contains flags that are set by the source to inform 

the receiving device about the validity and other quality-related issues of the sample. 

 

In analog GOOSE, the Deadband (db) is a range surrounding a particular measurement value 

that does not trigger any reporting or communication. This is done to avoid excessive 

communication and reporting of little, unimportant changes in analog values. Instantaneous 

magnitude is a parameter in analog GOOSE that specifies the current value of an analog 

quantity at any given time. The Deadband parameter is linked to instantaneous magnitude in 

that it specifies the range surrounding the current value within which no reporting or 

communication will occur. If the change in the analog value falls within the Deadband, it is 
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deemed inconsequential, and the system generates no new message to communicate the 

change. 

 

The following section summarises the benefits of adopting the IEC 61850 standard for 

communication networks. 

 

3.4 Security Risks and Challenges in IEC 61850 

 

In addition to making the smart grid far more efficient and sustainable in addressing the 

expanding global energy concerns, the growth of cyber-physical entities has also introduced 

numerous vulnerabilities that have led to breaches in data integrity, confidentiality, and 

availability. Power control grids based on IEC 61850 are being given careful consideration 

concerning information security risks and hazards. Using IEC 61850 in a similar setting is the 

ideal situation for secure IEC 61850-based substations. IEC 62351 is not supported by all 

currently manufactured IEDs from various manufacturers. Thus, other security measures like 

Intrusion Detection Systems (IDS) are required to guard against potential assaults on the 

current IEC 61850-based networks. Smart grids' security is extremely important due to the 

anticipated heavy reliance on IEDs and cyberattacks could result in substantial technical and 

financial losses. Analysing the smart grid's vulnerabilities and identifying mitigation strategies 

are essential. If cybersecurity vulnerabilities are not examined, the physical power system 

may be compromised, and operations may fail. (Elgargouri & Elmusrati, 2017) 

According to (Elgargouri & Elmusrati, 2017), the following are potential attacks on IEDs in 

the present IEC 61850 local area networks: 

 

1. Unauthorised Access 

2. Denial of service 

3. Spoofing 

4. Data interception 

5. Man-in-the-middle attack 

6. Configuration Tampering 

7. Operation System Attack 

 

The aforementioned attacks may have a variety of effects on the smart substation, causing 

various forms of network damage. The following are the most prevalent effects of various 

cyber-attacks: 
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1. Denial of service from the control system 

2. Interruption of protection communication 

3. Interruption of the monitoring system 

4. Network interruption 

5. Protection tripping failure 

 

These effects pose substantial risks to both networks and human life. This means that, even 

though these attacks are rare, their impact must be considered, and prevention strategies 

established. IEC 61850 features various security flaws that competent attackers could 

exploit to compromise the system, perhaps resulting in a blackout. When implementing IEC 

61850, the following major aspects should be examined (Massink, 2016): 

1. Hardcoded functions: IEC 61850 offers powerful functionalities that can result in 

unforeseen events. This makes access control levels extremely difficult and limits the 

device's security protection. 

2. Authentication: The IEC61850 MMS-based protocol includes authentication. 

Nevertheless, the approach is not widely supported and employs plain-text 

passwords. 

3. Key management: Key management provides additional risk, such as specially 

developed key management infrastructure that does not address the relevant issues, 

which might expose a system while providing a false impression of security. 

4. Firmware integrity: Typically, firmware is not signed, and there is no method to verify 

its integrity. This could enable certain advanced assault scenarios, especially if the 

supply chain is uncontrolled. 

5. Message Integrity: The GOOSE protocol does not provide publisher authentication. 

This means that anyone on the network can pose as a publisher. Although various 

efforts have been made to secure GOOSE by inserting a signature, it was 

demonstrated in 2010 that the time and performance requirements of GOOSE for 

protection methods currently make it technically difficult to construct a satisfactory 

solution using the existing specification. 

 

Any unencrypted data is vulnerable when using the IEC 61850 protocol for substation 

automation communications outside the substation. If firewalls or data gateways are not 

used, substation LANs are exposed. All data is exposed if the utility depends on third parties 

for outside communications. Do security risk analyses of every data entering or exiting the 

substation to ascertain whether encryption is practical and, at the very least, authentication. 

If a cyber incursion is involved, the price of inaction may be incalculable. Before choosing a 
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supplier to provide smart substation devices, exercise prudence and extensive testing. 

Before applying to the live system, all security updates and patches should be tested in a lab 

or testing environment. In the event of a suspected vulnerability or threat, make sure 

providers or vendors are promptly updating customers. 

 

3.5 Security Requirements for IEC 61850 Messages 

 

Due to the significant growth of unmanned substations and renewable energy sources like 

solar power and wind turbines, power grids have become significantly more complex. In 

terms of power generation, renewable energies have so far had the biggest impact on power 

networks, resulting in an unstable grid. 

 

This makes it challenging to control the real-time distribution of power. Digital substations, 

which offer stability and flexibility regarding power supply, are becoming important and 

crucial in power transmissions to address these instabilities in power networks. Therefore, 

ethernet-based devices must be used instead of traditional serial-based devices, unless the 

serial-based devices can communicate on an ethernet-based network. But another problem 

emerges: since ethernet-based networks are constantly at risk from cyberattacks, as a result 

of this development, energy networks are now vulnerable to the same vulnerabilities that IT-

based systems are. IEC 61850 was not initially built with security in mind, which may provide 

a significant risk if security is not promptly addressed. Cybersecurity implementation must be 

prioritised in power substations. As a result of an unsecured IEC 61850-based 

communication system, cyber hackers may acquire access and establish communications 

within a network. As a result, methods to detect assaults are required to respond quickly and 

minimise the damage. 

 

While adopting IEC 61850, (Massink, 2016) advises considering the following factors: 

 

1. It is important to confirm that IEC 61850 is limited to the substation's local network 

and is unable to access any other networks. 

2. Prohibit unlawful communications via a firewall at the substation level by employing 

the Deny All rules approach. 

3. Observe the substation network for unusual activity by using packet filtering firewalls, 

and utilising proper Intrusion Detection System (IDS) solutions. 

4. Restrict third-party access to the substation by implementing network segmentation, 

demilitarized zones, deploying firewalls and using Virtual Private Networks (VPNs). 
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5. Establish appropriate security specifications for vendors by establishing compliance 

frameworks such as North American Electric Reliability Corporation Critical 

Infrastructure Protection (NERC CIP), ISO 27001 Certification, NIST frameworks or 

MITRE ATT&CK. 

6. Establish a reliable security management approach by utilising proper Security 

Information and Event Management (SIEM) solutions. 

7. Assess the security of devices to detect potential vulnerabilities and provide 

mitigation measures by using assessment tools like the Common Vulnerability 

Scoring System (CVSS). 

 

Critical power activities are managed by substation protection and control systems using 

communication protocols such as IEC 61850. Communication protocols rarely have 

sufficient security measures, while playing a very crucial function. Because of this, there is a 

significant possibility that rogue attackers could access old IEDs through these 

communication protocols and disrupt systems causing enormous financial damages. For 

industrial automation and control systems, the IEC 62351 standard has grown to be one of 

the most widely used cybersecurity standards. Operators must take into account techniques 

to safeguard sensitive data and monitor the state of network security when using the 

recognised technologies. 

 

To stop these types of malicious activities, the following measures must be implemented 

(Moxa, 2022): 

 

1. Communication gateways such as ethernet switches or converters must encrypt data 

for communication protocols such as IEC 61850 and program tampering resistance. 

To reduce security attacks, critical data must be encrypted. 

2. Monitoring the security status of network devices and any malicious activities. Making 

the network infrastructure more secure is essential. 

3. Install IEC 61850-compliant communication gateways to secure devices and 

increase communication security. 

4. Configure devices securely with security-embedded functions to ensure the device is 

secure in the initial configuration process.  DDoS defence with integrated suspicious 

activity detection capabilities 

5. Use strong passwords to avoid unwanted access.  

6. Implement sniffer and data breach protection. 
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7. Protocol encryptions increase communication security. If communication is not 

encrypted, hackers may learn how to operate your IEDs and then give them a bogus 

control command, jeopardising the operation of your substation. 

8. Installation of a communication gateway that conforms to IEC 61850 security 

features to offer a comprehensive cybersecurity package featuring intrusion 

prevention systems. 

 

A study on "how standards improve substation cybersecurity" is presented by (Steinhauser & 

Klien, 2021). The authors offer suggestions for enhancing substation security. It's crucial to 

remember that newly installed substations use modern technologies and standards, which 

significantly enhance cybersecurity. The National Institute of Standards and Technology 

(NIST), which employs the security functions of “Identify, Protect, Detect, Respond, and 

Recover,” is the first standard the authors suggest. The objective of the standard is to 

enhance the security of critical infrastructure. Additionally, the authors advise using IEC 

61850 devices that provide intrusion detection and implementing cyber risk management in 

IEC 61850 devices to report actual threats. The intrusion detection system can track the 

exchange of information between IEDs and assess network packets in comparison to actual 

data models. Recently, the authentication method IEC 62351 was introduced to secure 

GOOSE and R-SV transmissions. The subscriber device can Recognise and disregard 

bogus IEC 61850 communications by implementing IEC 62351. The cybersecurity of 

communication networks used by power utilities is considerably aided by the use of 

standardised protocols and techniques. Consequently, IEC 61850 can be more effective, 

dependable, and secure than conventional communication techniques in substations, 

making it a preferable choice. The security challenge of IEC 61850 communication and 

transmission is handled to some extent, and protocol encryption is implemented. 

 

3.6 Overview of IEC 62351 

 

The current standard for data transmission and security in digital substation systems is IEC 

62351. It focuses on the key criteria for secure data transmission and communication, such 

as data integrity, secrecy, and authentication. The introduction of IEC 62351 addressed a 

challenge in securing power systems by bringing traditional non-secure communication 

methods up to speed. The requirement for cyber security and the implementation of IEC 

61850 have been major discussions in the electrical environment. 

 

End-to-end security for smart grids can be attained by using the IEC 62351 security standard 

to protocols like IEC 61850 and traditional protocols such as DNP3, and 60870-5-101/-104. 
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The standard series stipulates the importance of authentication and authorisation as well as 

encryption to ensure integrity. IEC 62351-3, for illustration, defines Transport Layer Security 

(TLS) encryption. For serial protocols and devices that are unable to fulfil the computational 

demands of encryption, IEC 62351-5 offers various options. It cannot provide data secrecy 

without encryption. To enable authentication for peer-to-peer multicast protocols like R-SV, 

IEC 62351-6 offers a method for digitally signing messages. IEC 62351-6 standard defines 

security protocols in IEC 61850 such as GOOSE and SV. To avoid interfering with the 

system's smooth operation, the security mechanisms contained in these messages must 

introduce the least amount of latency possible. This criterion had an impact on the final 

version of the standard, which calls for required authentication and message integrity. 

Encryption-based confidentiality has been designated as an optional feature. These signals 

(IEC 61850 protocols) must be sent within 3 ms, thus encryption and other security 

techniques that slow down transmission are not compliant. As such, IEC 62351-6 does not 

recommend encryption for IEC 61850 applications. Part 6 of the IEC 62351 standard adds 

an RSA-based signature to the GOOSE and SV frame to secure the integrity of the frame 

structure and provide authenticity in installations employing IEC 61850 with ethernet-based 

technologies. The standard expressly states that the RSASSA-PSS (Probabilistic Signature 

Scheme) digital signature technique based on RFC 3447 must be used. As RSA signatures 

are very expensive in terms of the processing power needed, the standard's suggestion to 

utilise them to secure extended PDUs renders it unsuitable for applications that need a 

minimum response time of 3 ms. (Ustun et al., 2019) and (Hohlbaum et al., 2010) used the 

RSA method in accordance with the IEC 62351-6 standard to protect GOOSE messages 

from cybersecurity threats. However, it has been observed that the computational time for 

RSA algorithms does not fulfil the 3ms timing criteria, making IEC 61850 message security 

practically unachievable. (Hohlbaum et al., 2010) further implements the algorithm on a Field 

Programmable Gate Arrays (FPGA) and Application-Specific Integrated Circuit (ASIC) 

platform to test performance measures. Both options are inapplicable since the response 

time is inadequate and the latter is not financially feasible. (Hussain, Ustun, et al., 2020) 

recommend the implementation of HMAC-SHA256 for securing IEC 61850 protocols which 

requires less computational time and as such should meet the response time requirements 

of 3ms. The cybersecurity mechanisms must not cause message delays that exceed the 

permissible limitations. The most recent iteration of the IEC 62351-6 standard replaced RSA 

with the Secure Hash Algorithm-256 (SHA-256) and Advanced Encryption Standard (AES) 

Galois Message Authentication Code (AES-GMAC) algorithms, allowing for both data 

authentication and encryption. When implemented in hardware, this method has proven to 

be exceedingly efficient, with high data transmission and minimal latency. 
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Therefore, implementing IEC 62351 is a continuous process. Once established, security 

methods must be regularly maintained and upgraded to keep up with changing security risks 

and challenges to maintain optimal security. 

 

To preserve essential infrastructure and ensure stable power generation, data and 

communications must be safeguarded. The IEC 62351 standard provides an internationally 

recognised method for providing that security. To ensure protection in accordance with IEC 

62351, smart grids must implement IEC 61850-based systems and devices. IEC 62351 must 

be used to protect time-critical traffic related to smart grids. 

 

3.6.1 IEC 62351-6: Security Extensions for GOOSE and SV 

 

The "Security for IEC 61850" standard, IEC 62351-6, primarily focuses on the security 

enhancements for GOOSE and SV. 

 

IEC 62351-6 makes two major contributions to GOOSE and SV security. The first is the 

inclusion of an optional AES-128 encryption alternative and a new field called Authentication 

Value to GOOSE and SV PDUs that is used to check for integrity. The GOOSE and SV 

PDUs have been modified to prevent replay assaults as the second security measure. As 

previously stated, encryption is not encouraged in packets owing to performance 

considerations. Yet, the usage of encryption permits the prevention of cyber-attacks and 

data theft. IEC 62351-6 adds two new fields to the GOOSE and SV PDUs: 

 

• Authentication Value using RSA digital signature: SHA-256 is used as an input; 

• timestamp indicates when the PDU was created. 

 

Every PDU must have a valid Authentication Value added by the Publisher. As only the 

genuine publisher is aware of the secret key needed to generate the signature, subscribers 

can then validate the Authentication Value to ensure the authenticity of the PDU. Since both 

require creating a legitimate signature, attackers are no longer able to manipulate or alter 

messages as a result. An authentication value enhances the security and reliability of the 

communication between substations in a power grid. (Robillard, 2018) 
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3.6.2 Replay Protection for GOOSE 

 

In most cases, a GOOSE message with a greater stNum implies that it is the latest. As a 

result, IEC 62351-6 requires the GOOSE subscriber to record the last stNum received from 

a certain publisher and delete any PDU from this publisher with a lower stNum. This 

approach addresses PDUs that occur out of time, preventing the subscriber from reacting to 

previous events and perhaps causing problems. Moreover, it defends against replay attacks.  

 

To reset stNum, stNum is set back to 0 in two cases. In the first case, the 32-bit value 

overflows to exceed its maximum. The second scenario involves a message timeout. If the 

subscriber does not get a GOOSE PDU within the time allowed to live (TAL) indicated in the 

TAL field of the most recent PDU received, the subscriber assumes contact has been lost 

and counts this as a message timeout. TAL is a method used to ensure that messages are 

delivered on time. The message is discarded when the TAL value reaches 0. 

 

Time window-based filtering is a popular technique for skew filtering. This entails defining an 

acceptable time range for GOOSE messages (with a greater stNum) to arrive at each node 

in the network. Messages sent outside of this time frame are deleted. Another option is 

threshold-based filtering, which requires specifying a skew tolerance as the greatest 

acceptable deviation from a GOOSE message's predicted arrival time. Because GOOSE 

messages are used to convey time-sensitive information between IEDs, skew filtering is vital 

in substation automation systems. If the skew is not managed appropriately, the accuracy 

and reliability of information interchange might be jeopardised, leading to errors in control 

and protection operations. Skew filtering considerably restricts replay attacks since PDUs 

older than the skew period cannot be exploited. (Robillard, 2018) 

 

3.6.3 Replay Protection for SV 

 

A timestamp field is not included in SV PDUs. In most cases, if the publisher and subscriber 

use synchronised clocks protocol and exchange messages in real-time, this is not an issue. 

Yet, it is troublesome when we consider the possibility of a delay or replay attack. It is nearly 

hard to verify the creation time for a certain SV PDU and assess its reliability without the 

timestamp. To remedy this, IEC 62351-6 includes a timestamp field in every SV packet. This 

mechanism ensures that the data is not tampered with by verifying the source of the 

message and the timestamp of the message. The timestamp ensures that the message 

hasn't been replayed from a previous session. 
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The smpCnt value in SV messages keeps track of the sequence of the PDUs. A PDU with a 

greater smpCnt is often newer. A technique used to protect against replay attacks is to 

discard any received SV messages with a smpCnt value lower than the previous value, 

which ensures that only the newest messages are accepted. 

 

One technique to protect against replay attacks in the SV protocol is to reset the smpCnt 

value after a predetermined time interval, when there is a message timeout. Another 

approach is to detect when the smpCnt value overflows and reset the value as needed. By 

resetting the smpCnt value on every sync pulse, the SV protocol ensures that the sequence 

of samples is correctly identified, and the correct order of arrival is maintained. This makes it 

easier to detect and prevent any attempts at replay attacks, which aim to manipulate the 

sequence of SV messages to create false or misleading data. 

 

Skew filtering for SV PDUs specifies acceptable time tolerances for the arrival of SV 

messages at each receiver. SV messages arriving outside the specified time range are 

considered invalid and are discarded. The acceptable time range for SV messages is based 

on the expected time of arrival, which is typically adjusted to account for delays that can 

occur due to network congestion or other issues. (Robillard, 2018) 

 

3.7 Conclusion 

 

Applications for protection, automation, and control are the most important aspects of the 

smart power system’s reliability and security. The move from traditional technology to IEC 

61850-based solutions in smart substations was made possible by the advancement of 

communication technology. For new solutions to be employed in existing or new substations, 

they must be compatible with both traditional and non-traditional technologies (Apostolov, 

2020). The provision of implementation instructions ensures interoperability between merging 

units and primary or secondary equipment. The benefit of employing new technology is that it 

enables the creation of more advanced communication architectures such as the ethernet-

based IEC 61850 communication standard. The suite, in comparison to traditional and 

hardwired systems, offers several advantages. These benefits make the IEC 61850 standard 

an excellent choice for communications networks embedded within systems. Consequently, 

IEC 61850 can be more effective, dependable, and secure than conventional communication 

techniques in substations, making it a preferable choice. 

 

Time is critical in IEC 61850-based systems, which is why time requirements have been 

incorporated into object modelling of data, including SV, GOOSE, Client/Server and GSSE. 
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As mentioned previously, IEC 61850 establishes specifications for event time stamping for 

use in a variety of protection, automation, and control applications. 

 

In IEC 61850-based protection and control systems, high-speed peer-to-peer topology utilises 

a mechanism developed to suit a range of specifications. The GSE approach can be thought 

of as a method for an IED to provide unauthorised reports. The implementation of each IED 

determines the performance and reliability of the system. (Apostolov, 2020) 

 

Due to the time-critical and high-speed characteristics of today's Ethernet-based 

communication technology, it is an ideal communication technology for automation 

applications in substations. Furthermore, an overview of the security threats and vulnerabilities 

in IEC 61850 GOOSE and SV messages is presented, including the challenges in securing 

the communication protocols. The security requirements for IEC 61850 messages are also 

presented. A thorough cyber-physical security solution is necessary in addition to the 

vulnerability and impact study of cyberattacks to prevent the discovered security issue. A key 

role is played by the security standard IEC 62351, which is utilised to offer end-to-end Security 

and secure communication in accordance with IEC 61850 standards. 

 

The knowledge necessary has been generated from the literature reviewed and is believed to 

be sufficient to enable the proposed research project, which is the development of 

authentication methods for GOOSE and SV communication.  

 

The following chapter details the project's development and presents the algorithms that will 

be utilised to complete the project. The implementation procedures developed for client/server 

functions are explained in detail in Chapter 4. 
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4. CHAPTER FOUR: CASE STUDY: CONTEXT AND DEVELOPMENT 

 

4.1 Introduction 

 

Security is not a consideration when developing SCADA protocols. These protocols are 

subject to security threats and, if exploited, could jeopardise the reliability of the power 

network. When an attacker gains control of a device, they have the ability to change its 

settings. They can modify the device to the point where the power system becomes unstable 

and power delivery is disrupted. (Ustun et al., 2020) 

 

Future electrical systems will be represented by active networks capable of bidirectional power 

transmission. They have improved communication capabilities, allowing them to monitor, 

protect, and control operations. A phasor measurement unit (PMU) is a device used in power 

systems to measure and monitor electrical value in real-time.  PMUs capture both the 

magnitude and phase angle of voltage and current, at a specific location in an electrical grid. 

This means that the measurements are synchronised with a time reference. As such, the term 

"synchrophasor" emphasizes the synchronization of these measurements across different 

locations within the electrical grid. The PMU Communication Network (PMU-CN) system is 

constructed in accordance with the IEEE C37.118.2 and IEC 61850-90-5 standards. IEEE 

C37.118.2, on the other hand, does not provide any protective mechanisms for mitigating 

security assaults on an unsecured IP network. Transmission Control Protocol (TCP) and User 

Datagram Protocol (UDP) protocols used in communication networks between 

synchrophasors, and Phasor Data Concentrators (PDC) have security vulnerabilities since the 

protocol that is supposed to be utilised for synchrophasor communication is not defined within 

the IEEE C37.118.2 standard. As a result, to address the cybersecurity flaws, IEC 61850-90-

5 was developed, which includes stronger protection measures and defines HMAC for IEC 

61850 message authentication. Effective security solutions must therefore be inclusive, 

interoperable, and efficient. (Khan et al., 2016) 

 

Based on IEC 61850, Part 6 of the IEC 62351 standard offers security methods to secure real-

time communications. SV and GOOSE messages must be generated, transmitted, and 

analysed in less than 3 ms. After assessing the security risks and challenges to IEC61850 

communications and the latest developments in GOOSE and SV cybersecurity, the work 

presented in Chapter 5, Section 5.5 offers a security algorithm to enable message 

authentication and confidentiality. The design will be developed and implemented on a Kali-
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Linux software environment, where the client-server code and security algorithm for R-SV will 

be evaluated. As a result, extensive knowledge is necessary for raw socket programming, 

client-server code design, and GOOSE and R-SV message structure. Objectives of the design 

phase seek to adapt and improvise an existing security algorithm as presented by (Hussain, 

Farooq, et al., 2020) for IEC 61850 messages and investigate the performance of the 

algorithm. The article investigates the security issues with the IEC 61850 standard's GOOSE 

messages and suggests a technique to ensure the messages' secrecy and integrity. The 

article then discusses the potential flaws in GOOSE communications and the necessity of 

incorporating security. To achieve confidentiality and integrity in the GOOSE messages, the 

approach suggested employs an arrangement of symmetric encryption and digital signatures. 

The article contains the method's technical details as well as a full study of the proposed 

method's security features. The study also compares the proposed method to other current 

methods and highlights the benefits of the proposed method in terms of security, performance, 

and compatibility with existing systems. In its entirety, the article offers a thorough analysis of 

the security issues relating to the GOOSE messages in the IEC 61850 standard and suggests 

a workable strategy to ensure the confidentiality and integrity of these messages. The 

suggested approach can make the electrical power system significantly more secure and 

guarantee the power grid's dependable and secure operation.  

 

In this chapter, we discuss socket programming and further study the toolbox called Routable 

Goose/Sampled Value (R-GoSV) and Secure Goose/Sampled Value (S-GoSV) as presented 

by (Ustun et al., 2020) and  (Farooq; et al., 2019). Section 4.2 mainly focuses on the 

development and implementation of the client/server communication component of the design 

architecture. Section 4.3 discusses GOOSE message structures according to IEC 61850-8-1 

and shows implementation details of plain GOOSE software. Section 4.4 describes the 

implementation details of secure GOOSE communication, and further demonstrates the 

results with Wireshark capture. 

 

4.2 TCP Client-Server Socket Programming 

 

Sockets act as virtual endpoints for all network communications between two hosts connected 

by a network. TCP interfaces are connection-oriented, which means they support the idea of 

an isolated connection on a specific port that can only be used by one program at a time. 

Because of the connection concept, TCP is a reliable stream; if errors occur, they may be 

identified and compensated for by resending the rejected packets. (Moon & posts by Silver 

Moon & rarr.; 2020) 
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TCP client-server programming is a networking technique used for implementing 

communication using the IEC 61850 protocol in electrical substations. The client-server 

programming model involves the use of a client application and a server application, with the 

client sending requests to the server and the server responding with the requested information. 

 

One of the key strengths of TCP client-server programming for IEC 61850 communication is 

its compatibility with a wide range of devices and systems. TCP is a widely used and well-

established protocol, making it a reliable option for communication in different types of 

substations. Additionally, TCP is a reliable protocol that ensures data is transferred accurately 

and efficiently, making it a good choice for critical systems. 

 

Another strength of TCP client-server programming is its flexibility. The client and server 

applications can be customised and configured to meet specific requirements, providing more 

flexibility for users. Additionally, TCP client-server programming can be implemented across 

different types of networks, making it a versatile option for communication in different types of 

environments. 

 

However, there are also some limitations to TCP client-server programming for IEC 61850 

communication. One major limitation is its lack of security features. TCP communication is 

vulnerable to cyber threats and attacks, which can be particularly problematic in the energy 

sector where the impact of such attacks can be significant. Therefore, additional security 

measures may need to be implemented to ensure secure communication. 

 

Another limitation of TCP client-server programming is its reliance on a stable network 

connection. If the network connection is lost or unstable, communication can be disrupted, 

leading to errors and even system failures. The design and implementation of TCP client-

server programming for IEC 61850 communication involves several key considerations: 

 

• Firstly, the design of the TCP client-server architecture should take into account the 

specific requirements of the IEC 61850 standard. This includes defining the data 

model, data exchange mechanisms, and communication profiles required for the 

system. 

• Secondly, the implementation of the TCP client-server protocol should ensure the 

reliability and security of the communication. This includes implementing error 

checking and correction codes, as well as encryption and authentication to protect 

against attacks such as eavesdropping and tampering. 
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• Thirdly, the implementation should consider the performance and scalability of the 

system. This includes optimising the network bandwidth, minimising latency, and 

ensuring that the system can handle large amounts of data and multiple concurrent 

connections. 

 

4.2.1 Common Functions used in Socket Programming 

 

The socket() function creates a client socket, which is then connected to a remote address 

with the connect() function, and lastly data can be retrieved with the recv() function. On the 

server end, we must also establish a socket with a socket() call, but we must then bind() that 

socket to an IP and port where it may listen() for connections, accept() connections, and then 

send() or recv() data to the other interfaces on the network. (Moon & posts by Silver Moon & 

rarr.; 2020) 

 

4.2.2 Implementation of Raw Socket 

 

Raw socket programming is a low-level networking technique used for implementing 

communication using the IEC 61850 protocol in electrical substations. Raw socket 

programming allows the developer to directly access the network interface, bypassing the 

operating system's network stack and providing more control over the communication process. 

The strengths and limitations of raw socket programming are discussed below. 

 

Strengths: 

 

1. One of the key strengths of raw socket programming for IEC 61850 communication is 

its flexibility and customisation. Raw socket programming allows the developer to 

customise the communication process and control the data transmission and 

reception, providing more flexibility for users. Additionally, raw socket programming 

can be used with different types of network interfaces, making it a versatile option for 

communication in different types of environments. 

 

2. Another strength of raw socket programming is its efficiency. Raw socket programming 

can achieve high performance and low latency because it allows the developer to 

directly access the network interface, bypassing the operating system's network stack, 

which can introduce additional processing delays. 
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Limitations: 

 

1. However, there are also some limitations to raw socket programming for IEC 61850 

communication. One major limitation is its complexity. Raw socket programming 

requires a high level of expertise and understanding of network protocols and systems, 

which can be a barrier for some users. Additionally, raw socket programming can be 

more prone to errors and vulnerabilities, as it bypasses some of the built-in security 

features of the operating system's network stack. 

 

2. Another limitation of raw socket programming is its lack of compatibility with some 

systems and devices. Raw socket programming may not be compatible with some 

legacy systems or devices that require higher-level networking protocols. 

 

Socket interfaces are those that circumvent the TCP/IP layers and instead transmit packets to 

the designated application via the Internet Control Message Protocol (ICMP) and Internet 

Group Management Protocol (IGMP). This enables the program to build ICMP and IGMP 

purely as user processes rather than injecting additional code into the kernel. 

 

4.2.3 Socket Programming – Case Study 

 

Below you’ll find a case study of a very simple client-server software in C. The client 

establishes a link to the server, and the server delivers the message “Hello From Me”, and the 

client outputs the received message. These programs are often labelled “Client” and “Server”. 

The “Client” shares the information with the “Server” by sending its messages through an 

Ethernet port. 

 

The source code found in Appendix A and Appendix B is used to analyse the client and server 

programs to open a socket. The socket must be configured by both the client and server. 

Socket family, socket type, and protocol are all necessary. 

 

1. int socket(int domain, int type, int protocol); 

 

Refer to Figure 4.1: The socket family for a raw socket is PF_INET, the socket type for TCP 

is SOCK_STREAM and for the protocol, the netinet/in.h defines the sockaddr_in structure. 

The sockaddr_in structure is used to store addresses for the Internet address family. 

(Saxena, 2015) 
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Figure 4.1: Client socket 

 

Refer to Figure 4.2: If the socket creation succeeds, it will return "Client socket Successfully 

Created." After the socket has been allocated, it must connect to the server. A sockaddr_in 

structure describing the server is required for the connection to be formed. Specifically, we 

must use serverAddr.sin and serverAddr.sin port to indicate the server and port to connect 

to. The IP address is supplied via serverAddr.sin family, configured to AF_INET. 

 

 

Figure 4.2: Connect function 

 

Refer to Figure 4.3: As with creating the socket, an established connection will return 

“Connected to Server Successfully”. Data can now be sent and received through the socket. 

 

 

Figure 4.3: Close function 

 

The receive function must receive data from a connection-mode or connectionless-mode 

socket. Because it prevents the program from obtaining the source address of incoming data, 

it is most typically used with linked sockets. 
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At the terminal, compile and run the program. To run and compile the software, one requires 

administration rights as a root user. The client socket's output is shown in Figure 4.4. Client 

sockets were successfully generated and connected. 

 

 

Figure 4.4: Software output for Client communication 

 

As previously stated, the goal of generating a socket for a server differs from that of a client. 

The socket is created using the same syntax as the client, except that the structure is set up 

with information pertaining to the server rather than the peer it wants to connect to.  

 

Usually, the special contact INADDR_ANY may be used to enable receiving client requests 

on any IP address the server supplies; in principle, such as in a multi-hosting server, you could 

specify a particular IP address as illustrated in Figure 4.5. 

 

 

Figure 4.5: Server socket 

 

A server must be able to manage several client requests, it is more sophisticated than a client. 

A server essentially has two functions: managing existing connections and listening for new 

ones to form. 
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As illustrated in Figure 4.6, the server binds to its address and port, while the client program 

connects to the server's IP address and port. It is now possible to listen to the server socket 

after it has been bound. Once a server socket is listening, it is able to receive client 

connections. 

 

 

Figure 4.6: Receive function 

 

A bind function obtains a unique name for the socket when the socket descriptor is generated. 

The listen function enables the server to accept connections from clients. The backlog is fixed 

at six in this case study. This implies the system will queue up to six incoming connection 

requests before rejecting them as shown in Figure 4.7. 

  

To accept an incoming connection request, the server utilises the accept function. The accept 

call will remain blocked indefinitely while the incoming connection is established. 

 

 

Figure 4.7: Bind function 

 

At the terminal, compile and execute the program as depicted in Figure 4.8. Keep in mind that 

you should execute the software as root. To use raw sockets, you'll need to be logged in as 

root. The socket was successfully created, as evidenced by the output of the server socket. 
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Figure 4.8: Software output for Server communication 

 

In conclusion, the successful production and transmission of packets over a network must be 

confirmed by using packet sniffers like Wireshark. To comprehend the data flow through 

network connections, it is also crucial to understand the roles of clients and servers. 

We can discover a lot about how clients and servers communicate by examining the network 

traffic that a packet sniffer has gathered. We may monitor the exchange of data packets, 

monitor network protocols, and identify potential problems or anomalies that may occur during 

transmission. 

 

In our case study, we looked at the functions of a client and a server concerning web browsing. 

We learned that the server is a remote computer that a client—like a web browser—creates a 

connection. Through sockets, the server accepts connections from clients and responds to 

them, allowing the client to request data retrieval. 

 

In the specific example we explored, the web browser acted as the client, and 

www.google.com served as the server. This relationship demonstrated how clients and 

servers work together to enable seamless data exchange and provide users with the 

information they seek. 

 

Network administrators and developers may efficiently debug network issues, optimise 

performance, and maintain the smooth operation of diverse applications and services by using 

tools like Wireshark and comprehending the client-server architecture. In conclusion, the 

analysis of network traffic using packet sniffers and the understanding of clients and servers 

play vital roles in the field of networking. We can increase network communications' 

effectiveness and dependability by further study and investigation of these ideas, which will 

result in better user experiences and more durable digital infrastructure. 

 

The IEC 61850 protocol has specific communication and behaviour requirements, and the 

communication middleware architecture is created to meet those requirements. A thorough 

examination of the model, including its architectural components, was presented in Chapter 

3.2. The design only supports a limited number of communication techniques required for the 

http://www.google.com/
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successful operation of ACSI clients and servers. The case study above showed that the 

developed architecture may be used successfully to offer the communication services required 

by the IEC 61850 protocol. 

 

4.3 Plain GOOSE Source Code 

 

Appendix C shows the plain GOOSE source code, which creates R-GOOSE packets without 

applying any security algorithms to them and sends them to the network with their entire stack 

of headers from IP, UDP, and session layers, followed by application data. The application 

data in this case is a GOOSE protocol as illustrated in IEC 61850-8-1. 

 

Intelligent electronic devices (IEDs) that use Ethernet communication protocols are becoming 

standard in electric substations. One of the most crucial aspects of power system operation is 

the communications infrastructure that supports power system protection, monitoring, and 

control. With the emergence of IEDs, there is a growing requirement for communication to be 

provided to these devices. Communication without security techniques presents several 

network concerns. A negative consequence of this is exposure to cyberattacks. Ethernet-

based networks are easier to gain access to, and standardised communications allow hackers 

to know exactly what commands to provide. The following is a list of strengths and 

weaknesses of non-secure GOOSE. 

 

Strengths: 

• Fast and efficient: GOOSE messages are multicast, which means that they can be 

sent to multiple devices simultaneously, reducing the amount of traffic on the network 

and improving the response time. 

• Reliable: GOOSE messages include error checking and correction codes, ensuring 

the integrity of the information transmitted. 

• Scalable: GOOSE messages can be used to exchange different types of information, 

such as status, commands, and measurements, making it a flexible protocol that can 

be adapted to different applications. 

• Interoperable: The IEC 61850 standard defines the format and structure of GOOSE 

messages, ensuring interoperability between devices from different vendors. 

 

Limitations: 

• Security: GOOSE messages are not encrypted, making them vulnerable to 

eavesdropping, tampering, and replay attacks. Additional security measures, such as 
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encryption and authentication, must be implemented to ensure the confidentiality and 

integrity of the information transmitted. 

• Network bandwidth: Although GOOSE messages are efficient, they still require 

bandwidth on the network, and excessive GOOSE traffic can congest the network and 

cause delays. 

• Configuration: The configuration of GOOSE messages can be complex, requiring 

specialised knowledge and tools to set up and maintain. 

 

Overall, the GOOSE source code algorithm is a reliable and flexible protocol for 

communication in power substations. However, its limitations in terms of security and 

complexity must be addressed when implementing it in a substation. Additional security 

measures and network management strategies should be used to ensure the secure and 

efficient operation of the protocol. This can be a significant concern in critical power system 

applications where data security is a top priority. 

 

To accomplish interoperability and standardisation, the message format or structure must be 

specified. To skip the network and transport layer headers, GOOSE communication is directly 

mapped to the data link layer, reducing the size of the message and, as a result, the 

propagation and processing delays of the GOOSE messages. The GOOSE message, as 

illustrated in Figure 4.9, consists of six-byte destination and source address fields, followed by 

a two-byte Ether-type field that specifies the type of data in the payload field. The ether-type 

value for a GOOSE message is 88-B8. APPID, Length, Reserved1, Reserved2, and GOOSE 

APDU fields are followed by padded data and Frame Check Sequence in the GOOSE PDU 

(FCS). The source code supplied in Appendix C can be used to verify the GOOSE PDU format 

illustrated in Figure 4.9. 

 

Figure 4.9: GOOSE PDU format (Hussain et al., 2019) 
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Figure 4.11 shows the Wireshark capture of the unsecure GOOSE generated. It shows all the 

relative fields of the GOOSE message format. The TCP Ethernet communication 

programming was presented above in Section 4.2 to illustrate that all the communication traffic 

is sent and received through the Ethernet port. The simple TCP sending and receiving 

example presented above is used as a reference to understand how to send out information 

through the Ethernet port.  

 

The plain GOOSE source code presented by (Hussain et al., 2019) uses the UDP. UDP is a 

transport layer protocol with enables application programs to send messages to each other. 

The UDP protocol also has two applications, namely the client and the server. The client sends 

out UDP messages to the server through the Ethernet port. Since the aim of the program is to 

send out GOOSE messages, the concentration is put on the client (sending) program. The 

UDP sending is illustrated on a flow chart in Figure 4.10. 

 

 

Figure 4.10: UDP Sending (Zhao, 2012) 
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Figure 4.11: Packet capture of unsecure GOOSE message 
 

Two crucial functions, socket() and sendto() are used to send UDP messages via the 

Ethernet port, as shown in the source code forward in Appendix C. 

 

The program uses the socket function to transmit and receive packets, as well as perform 

other socket actions as shown in Figure 4.12. The socket function opens a socket 

communication and returns a descriptor when it is invoked. On success, this method returns 

the file descriptor; on failure, it returns -1. This function's call format is as follows: 

 

1. int socket(int domain, int type, int protocol); 
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The domain value, as stated with the TCP protocol, provides the protocol family that will be 

used for communication. This option is set to AF_INET in this implementation, indicating that 

the address family is Internet Protocol version 4 (IPv4). The function's type is indicated, and 

it's utilised to establish the communication semantics. In this implementation, it's set to 

SOCK_RAW, which enables datagrams. The protocol argument is the third parameter, and it 

provides the protocol that will be used with the function. This option is IPPROTO_RAW for the 

UDP protocol. 

 

 

Figure 4.12: Create socket function 

 

The send function is utilised to send data to a different socket. The format for calling this 

function is as follows: 

 

2. ssize_t sendto(int s, const void *buf, size_t len, int flags, const struct sockaddr 

*to_addrs, socklen_t to_len); 

 

Refer to Figure 4.13, the option s is the sending socket's file descriptor. This message can be 

located in buf and has a length of len characters. In the case of UDP, the flags parameter is 

the bit string OR of zero, and it is used to identify the message transmission type. The 

to_addrs option links to the sockaddr structure, which stores the destination address. The 
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to_len option specifies the length of the target sockaddr. If the function is successful, it will 

return the number of characters sent; otherwise, it will return -1. 

 

Figure 4.13: Send function 

 

UDP communications can be transmitted across the Ethernet port using these two basic 

functionalities. The software Wireshark can capture Ethernet traffic. Figure 4.10 depicts the 

capturing of UDP packets. It is essential to notice that data such as the Ethernet header and 

the protocol tag are also included in the whole UDP packet containing the message to be 

conveyed. This data encapsulation can be done automatically for UDP because it is a 

transportation layer protocol, but it cannot be done for the data link layer. To comprehend how 

to transfer data via the Ethernet port, the UDP sending and receiving example is utilised as a 

guide. 

 

4.4 R-GoSV GOOSE Source Code 

 

This C program, as demonstrated in Appendix D, combines IP, UDP, Session layer headers, 

and application data to send a full stack of GOOSE APDU messages created according to 

IEC 61850-90-5. The GOOSE message is classified as application data by IEC 61850-8-1. 

The session layer includes the needed security fields. Information from the session layer is 

encrypted and transferred over the network, along with a digital signature. 

 

This toolbox was developed by (Ustun et al., 2020) utilising the SSL programming library that 

secures R-GOOSE and R-SV communications that can be transmitted in a network without 
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any security mechanism. The proposed R-GoSV algorithms can be used to generate R-

GOOSE and R-SV packets with security which can then be used for testing various 

cybersecurity techniques. 

 

Furthermore, since the communication traffic is sent and received via the Ethernet port, the 

data link layer programming is studied for R-SV communication. To send data link layer traffic 

out, all relevant data must be programmed before the calling of sending functions. An Address 

Resolution Protocol (ARP) sample code is examined to understand the programming of the 

data link layer packet (Zhao, 2012). An ARP socket is sent via the socket function and a buffer 

argument is assigned to the sendto function. It is necessary to modify the socket command to 

allow the sendto function to send out ARP structures. The Ethernet port will be utilised to 

transmit data. The R-SV protocol implementation will be an extension of the ARP sending 

program. However, the ARP structure must be modified to conform to the IEC 61850-9-2 

standard. 

 

GoSV framework has been developed to build GOOSE and SV messages from scratch. 

Manually building these messages with low-level detail enables cutting-edge research where 

novel approaches are tested (Ustun, 2021). Routable messages such as R-GOOSE and R-

SV are an addition as per IEC 61850-90-5. These messages are used to secure PMU 

communication and follow the structure shown in Figure 4.14.  

 

The R-GOOSE source code algorithm uses the standard GOOSE message format and adds 

several additional fields to support routing and other features. The algorithm is designed to be 

simple and efficient, with a low processing overhead and minimal impact on network 

performance. One of the main strengths of the R-GOOSE source code algorithm is its 

flexibility. The algorithm can be implemented in a wide range of network environments, 

including both Ethernet and IP-based networks. This makes it well-suited for use in a variety 

of different power system applications, from small distribution networks to large-scale 

transmission systems. Another strength of the R-GOOSE source code algorithm is its security 

features. The algorithm includes support for authentication and encryption, which helps to 

prevent unauthorised access to GOOSE messages and protect the integrity of the data. This 

makes R-GOOSE a suitable choice for critical power system applications (Wide-Area 

Monitoring Systems, Distributed Energy Resources, Substation Automation systems) where 

data security is paramount. 
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Figure 4.14: Session Layers in IEC 61850-90-5 (Ustun, 2021) 

 

Once implemented, the R-GoSV toolbox is able to send regular and secured (encrypted) R-

GOOSE/R-SV messages as shown in Figure 4.15, respectively. It is important to highlight 

here that, in the latter case, the message cannot be successfully detected since the contents 

are encrypted. The IEC 61850-90-5 standard describes MAC techniques for generating hash 

values to achieve message integrity and authentication. Despite confidentiality not being a 

requirement, the standard specifies encryption algorithms for IEC 61850-90-5 R-GOOSE and 

R-SV messages. As depicted in Figure 4.15, the Wireshark capture shows all the required 

fields starting from ethernet, IP, UDP and Session headers. Furthermore, the strengths and 

weaknesses of the R-GoSV messages are discussed below: 
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Strengths: 

• Security: R-GoSV messages are encrypted and authenticated, which makes them 

more secure than standard GOOSE messages. The use of digital signatures ensures 

that the information is authentic and has not been tampered with. It provides a secure 

method of communication that protects against cyber threats and attacks, which is 

crucial in the energy sector where the impact of such attacks can be significant. 

Additionally, the R-GoSV algorithm provides validation of messages to ensure that only 

valid messages are accepted, further enhancing the security of the communication. 

• Flexibility: R-GoSV messages can be routed over IP networks, making it possible to 

communicate between substations and different parts of the power grid. This feature 

can be particularly useful in larger substations where longer distances need to be 

covered. 

• Interoperability: The R-GoSV source code algorithm is defined by the IEC 61850 

standard, ensuring interoperability between devices from different vendors. 

 

Limitations: 

• Complexity: The configuration of R-GoSV messages can be complex, requiring 

specialised knowledge and tools to set up and maintain. This can make it challenging 

to implement and troubleshoot. If not implemented correctly, it can lead to 

communication errors and even system failures. 

• Overhead: R-GoSV messages require additional processing overhead to encrypt, 

authenticate, and digitally sign the information. This can impact the response time and 

throughput of the protocol. 

• Cost: The use of encryption, authentication, and digital signatures can increase the 

cost of implementing the protocol, particularly for legacy devices that may require 

hardware upgrades. 
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Figure 4.15: Wireshark frame of secure R-GOOSE 

 

In short, the GoSV tool is able to create custom GOOSE and SV messages. These can be 

secured with S-GoSV and made routable with R-GoSV. The developed R-GoSV incorporates 

the specified security methods. The HMAC-SHA256 digital signature and AES-128 encryption 

techniques are employed to ensure message authentication and integrity and to achieve 

confidentiality, respectively. Data integrity attacks can be prevented by applying encryption 

and message authentication techniques, which protect the grid. The proposed method 

employs authenticated encryption algorithms to mitigate cyberattacks on substations. The use 

of AES ensures the confidentiality of transmitted data, encompassing protection function 

operations and status information. This prevents interception and comprehension of 

exchanged messages by potential attackers. HMAC validates message integrity during 

transmission, confirming its origin from the expected sender and deterring unauthorised 

intruders from posing as legitimate devices within the substation network. Authenticated 

encryption guarantees data integrity, rendering any unauthorised modifications detectable. 

The failure of decryption or integrity checks signifies potential tampering, thus impeding 
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attackers from modifying data without detection. Even if encrypted data is captured, decryption 

without the appropriate keys remains unattainable for cyberattacks. 

 

4.5 Conclusion 

 

Chapter 4 presents an overview of TCP client/server communication. The context and outline 

for the research project are established. The design and implementation of the communication 

model are studied for requirements of the IEC 61850 protocol. Communication architectures 

must be designed to meet the unique behaviour and communication requirements of the IEC 

61850 protocol.  While the standard supports both TCP and UDP communication protocols, 

TCP is often the preferred choice due to its reliability and error-checking capabilities. However, 

there are limitations of TCP communication that can impact its effectiveness in IEC 61850 

implementation. One of the primary limitations of TCP communication is latency. TCP is a 

reliable protocol that requires error-checking and acknowledgement of every packet. This can 

lead to delays in the delivery of data, which can impact the performance of real-time systems 

such as those found in substation automation. The latency introduced by TCP can result in a 

delay in the processing of critical events, leading to potential system failures. UDP is often 

used in IEC 61850 implementation due to its low latency and high speed. However, there are 

limitations to UDP communication that can impact its effectiveness in substation automation 

systems. UDP is an unreliable protocol, meaning that it does not provide any error-checking 

or retransmission mechanisms. This can result in lost or corrupted data packets, which can 

impact the overall reliability of the system. In substation automation systems, where real-time 

data transmission is critical, the loss of data can lead to potential safety issues. 

 

An unsecure plain GOOSE and secure GOOSE program is also studied in Chapter 4. Non-

secure GOOSE and secure GOOSE are two different approaches to transmitting GOOSE 

messages with different levels of security. Non-secure GOOSE messages are transmitted 

without any security mechanisms, while secure GOOSE messages are transmitted with 

additional security features such as encryption and authentication. 

 

One of the key advantages of non-secure GOOSE is its simplicity. Non-secure GOOSE 

messages are easy to implement and require minimal processing, making them a cost-

effective solution for many applications. Additionally, non-secure GOOSE messages have 

lower latency, which is important for fast communication in critical systems. 

 



145 | P a g e  
 

However, non-secure GOOSE has some significant limitations in terms of security. Non-

secure GOOSE messages can be intercepted, modified, or even blocked by attackers, which 

can lead to system failures or data breaches. Therefore, non-secure GOOSE is not suitable 

for critical systems where the integrity and confidentiality of the data are essential. 

 

Secure GOOSE, on the other hand, provides a higher level of security compared to non-

secure GOOSE. Secure GOOSE messages are transmitted with additional security features 

such as encryption and authentication, which protect the data from interception, modification, 

and tampering. This makes secure GOOSE suitable for critical systems where the integrity 

and confidentiality of the data are essential. 

 

However, secure GOOSE has some limitations as well. The additional security features of 

secure GOOSE may introduce additional processing delays, which can increase latency and 

reduce the performance of the system. Additionally, the implementation of secure GOOSE 

can be more complex and costly compared to non-secure GOOSE, which may not be feasible 

for all applications. 

 

As such, developed security algorithms are to meet data and sampling speeds for 

performance and security requirements. Developed algorithms that publish GOOSE and R-

SV communication must comply with IEC 61850 and implemented authentication and integrity 

levels must conform to IEC 62351-6 as recommended. According to existing research (Elbez 

et al., 2019; Farooq et al., 2019), it has been found that RSA-based digital signatures cannot 

meet the time-critical requirements for communication with substation automation. As an 

alternative and to meet the desired requirement, the HMAC-based digital algorithm HMAC-

SHA26 is implemented to secure GOOSE and R-SV messages in the communications 

network for power system automation. Careful consideration must be given to the design and 

implementation of the system to ensure reliability, security, and performance.  

 

Chapter 5 presents a simulation test conducted to evaluate the R-SV communication protocol 

resulting from the integration of the authentication algorithm. Chapter 5 details the 

conformance test of the R-SV message structure to the IEC 61850-9-2. Chapter 5 also details 

the test conducted using Wireshark and Ettercap to verify the frame structure of the R-SV 

protocol and introduce spoofing network traffic, respectively. A brief description of the research 

design is presented accordingly: 
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1. Design Objective: Evaluate current security solutions for GOOSE and R-SV 

messages. Development of an authentication algorithm for R-SV messages. 

2. Experimentation Procedure: The design phase will focus on code development. The 

implementation phase is the deployment of the presented authenticated encryption 

algorithm. 

3. Analysis: Wireshark is used to collect and analyse data, and Ettercap is used to launch 

MITM attacks.  

4. Interpretation of Results: The Wireshark capture will show all the required fields 

according to IEC 61850-9-2 for R-SV and the generated attacks of the packets are 

analysed.
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5. CHAPTER FIVE: CASE STUDY IMPLEMENTATION: TESTING AND RESULTS 

ANALYSIS 
 

5.1 Introduction 
 

The IEC 61850 standard for substation automation systems is widely utilised. While electrical 

substations continue to digitalise, GOOSE and SV-based line protection applications are 

becoming more common. The same standard governs IEC 61850 signal exchange between 

IEDs with different protocols. The conventional approach to protective applications increases 

the complexity of the protection system. Even with today's IEC 61850 architecture, employing 

GOOSE and SV-based communications for line distance and differential protection 

applications would result in significant simplification. For example, with the traditional way of 

line distance protection, the efficiency of the overall solution is restricted by the speed of the 

binary contacts, which have relatively slow switching operation times, resulting in longer fault-

clearing periods than necessary. As a result of the growing popularity of digital substations, 

with their undeniable benefits in terms of visibility and flexibility, the use of GOOSE and SV-

based protection applications is advantageous, if they meet the required performance 

parameters, such as dependability and security, as defined by the IEC 62351 and IEC 61850 

standards. 

 

This project explores and evaluates the application of standard IEC 61850 and IEC 62351 

technology. The implementation aims to develop an encryption and authentication algorithm 

for IEC 61850 R-SV messages. Based on the literature review, the majority of the authors tend 

to emphasise security development for the GOOSE protocol. Although R-SV communications 

are vulnerable to cyberattacks and have a similar frame format to GOOSE messages, they 

have not attracted the same level of scrutiny as GOOSE messages in the literature. As such, 

this has led the thesis to develop an algorithm to secure R-SV communication adhere to the 

frame structure and address this gap. Some solutions in the literature do not enable real-time 

traffic and thus are incompatible with GOOSE and SV messages. Whereas others violate the 

required delay of 3 ms or fail to meet the standards, our design authenticates and encrypts 

IEC 61850 and satisfies IEC 62351:2020. The proposed mechanism in this thesis uses the 

IEC 62351-6 recommended authentication value extension and encryption of SV APDU in R-

SV messages to counteract cyber-attacks. 

 

The following sections detail the project's implementation and present the results of the 

project. In this chapter, the implementation of the developed authentication code can be used 

to publish secure sampled value messages as discussed in Section 5.2. Encryption then an 
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Authentication algorithm is employed on the SV PDU as detailed in Section 5.3 and Section 

5.4, respectively. The sampled value messages published from the two devices (Kali-Linux 

virtual machines) are captured using a commercial protocol analyser tool called Wireshark as 

illustrated in Section 5.5 to validate the structure of R-SV messages published against that 

defined in the IEC 61850-9-2 standard. Furthermore, Ettercap will be used to perform an MITM 

attack by spoofing network traffic as described in Section 5.6. 

 

5.2 Security of Sampled Values 
 

5.2.1 Potential Threats and Vulnerabilities 

 

Because of the nature of the electrical transmission system, the vast majority of substations 

are unattended. Furthermore, gateways and large networks connect substations to a control 

centre. Remote access to substations is therefore necessary. The most serious concern with 

remote access is that appropriate security controls may not be implemented. As a result, 

substation infiltration could happen in several ways. An attacker may infect a laptop connected 

to the substation communication network. As a result, if equipment located at the lower level 

is hacked, the intruder could be able to exploit the process bus network. 

 

Because of its features, such as plain text messages and multicast at the data link layer, the 

SV protocol reveals all data details within a network. An attacker with process bus access can 

inspect the R-SV message. As a result, launch a cyber-attack by changing voltage 

measurements. Another method for compromising the R-SV message is to exploit 

weaknesses in the subscriber's processing protocol. 

 

5.2.1.1 Replay Attacks and Masquerade Attacks 

 

The intruder can initiate two types of cyberattacks against SVs: replay attacks and 

masquerade attacks. During regular operation, an intruder intercepts a substation network and 

records an R-SV message packet including current and voltage measurements. During a 

malfunction, the intruder then replicates the intercepted packets into the substation network. 

During the failure, the IED receives normal current and voltage parameters. This would cause 

the IED to maintain the circuit breaker closed irrespective presence of a malfunction. The fault 

level could surge, and the network could potentially fail. This would cause significant damage 

to equipment, and power outages, and potentially jeopardise the reliability of power. In a 

masquerade attack, an attacker gains access to the substation network by establishing a false 

identity and retrieving and intercepting an R-SV communication packet to manipulate or alter 
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the measured values. The initial R-SV packet would be completely tampered with as a result. 

A malicious attacker may manipulate the R-SV data, causing the IED process of operation to 

produce unexpected results, which could have negative consequences. 

 

Overall, the standard IEC 61850-9-2 SV is proven to be sensitive to replay and masquerading 

attacks (Suhail Hussain et al., 2023). As a result, the presented technique in this study 

incorporates the IEC 62351-6 recommended authentication value extension and encryption of 

SV frame structure in R-SV communications to mitigate cyber-attacks. 

 

5.2.2 Sampled Measured Values 

 

The R-SV message is used to communicate measured samples from sensor systems between 

IED devices. The R-SV message is a multicast technique that is used for data transmission 

between several IEDs connected to an Ethernet network. The OSI model layer 2 is utilised for 

mapping R-SV data. The bottom tiers of the ISO/OSI model use Ethernet multicast and serial 

line unicast communication. As previously discussed in Section 3.3.2, the following fields are 

contained within the SV packet frame as discussed by (Karnati, 2020): 

 

• “Destination address 

• Source address: The address of the publisher. 

• VLAN priority tag: Priority tagging according to IEEE 802.1Q. 

• Ethertype: SV Ethertype is set to 88-BA. 

• APPID: Application identifier. 

• Length: The total number of bytes in the SV message. 

• Reserved 1: Reserved for future standardisation. 

• Reserved 2: Reserved for future standardisation. 

• APDU: APDU contains SV data structure.” 

 

The information to be distributed in the process bus network is encoded in the SV buffer as 

an APDU. The following fields are contained in the APDU of the SV packet as discussed by 

(Karnati, 2020): 

 

• “svID: Should be a system-wide unique identification. 

• smpCnt: Each time a new sampling value is taken, this value will be incremented. If 

the sample is synchronised by a clock signal and the synchronising signal occurs, the 

counter must be set to zero. 
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• ConfRef: Value from the MSVCB. 

• RefrTm: Contains the refresh time of the SV buffer. 

• smpSynch: Synchronised by an external clock signal. 

• seqData: List of data values related to the data set definition.” 

 

5.2.2.1 Replay Attacks in IEC 61850 GOOSE and Sampled Value Messages 

Comparison 

 

Replay attacks in GOOSE communication are easily identified by evaluating the values of the 

stNum and sqNum fields of the incoming GOOSE with the last received GOOSE 

communication. With each additional GOOSE communication, the sqNum value is increased. 

Whereas the stNum value is increased whenever there is an event in data set information. 

When the stNum is increased, the sqNum value is reset to 0. As a result, any replay attack in 

GOOSE messages can be easily discovered by comparing the current GOOSE 

communication’s stNum and sqNum values to the old GOOSE communication’s stNum and 

sqNum values. The smpCnt field in SV messages is incremented for each new SV message 

and its value is reset to 0 every second. The SV message's smpCnt value is equivalent to the 

GOOSE message's sqNum value. However, the SV message lacks a value similar to stNum 

in the GOOSE message. Because the smpCnt value is reset every second, it is insufficient to 

detect replay attacks in SV messages. The optional field Security in the IEC 61850-9-2 SV 

APDU is kept for future specification and use. The security field is used to store the timestamp, 

or the moment at which the SV frame was formatted. In the proposed security method, the 

security field timestamp value, coupled with the smpCnt value, is used to detect replay attacks 

in SV messages. With the proposed security approach, the Security field of each SV packet 

now comprises the time at which the packet was produced. If the received SV packet's 

timestamp value is less than or equal to the last received timestamp, replay is detected, and 

the packet is deleted. If the value is greater, the SV packet is processed further, and the last 

received timestamp value is updated with the current SV packet's timestamp value. (Suhail 

Hussain et al., 2023) 

 

5.3 Message Authentication Code 

 

5.3.1 Hash Message Authentication Code (HMAC) 

 

As an authentication value, IEC 62351-6:2007 proposes using RSA-based digital signatures. 

The processing time for RSA-based digital signatures is 2-3 msec. As a result, it is unsuitable 

for SVs. Conversely, because MAC methods have relatively short processing durations, they 
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can be utilised to generate this authentication value. Several MAC methods recommended in 

the recently published IEC 62351-6:2020 are employed to generate the authentication value 

in the proposed mechanism. Additionally, the SV APDU is encrypted using Advanced 

Encryption Standard using the HMAC SHA-256 method. 

 

Validating the integrity of data carried over or kept on an unprotected medium is critical in the 

age of open network communications. Message Authentication Codes (MACs) are commonly 

used to validate data exchanged between two parties who share a secret key. 

 

To authenticate a plaintext communication message, a secure tag, such as MAC, is utilised. 

The MAC can be created from the original message and includes limited procedures to confirm 

that the publisher has not tampered with the message's integrity. Producing MAC from the 

message context, on the other hand, will require processing power and time, which is a key 

concern for the real-time operation of the substation automation system because SV must 

come within 3ms, according to IEC 61850. As a result, the SV message must take precedence 

over other communication messages, and encryption methods are not advised due to the 

additional processing time required (Karnati, 2020). 

 

HMAC is a hash function-based algorithm that can assure message integrity and 

authentication. The following are some of the benefits of HMAC: 

 

• the tag's length is short and fixed, 

• preventing duplication, 

• the original message is hidden. 

 

It is challenging to calculate the identical inputs from the output HMAC tags due to the collision 

resistance and one-way function properties (Refer to Section 2.3, Equation 2.1). As a result, 

a secret key is usually used by HMAC. The fundamental goals of this construction are as 

follows: 

 

• To utilise hash functions in their original form. 

• To retain the original hash function output without incurring major degradation. 

• To give a well-understood cryptographic assessment of the authentication 

mechanism's strength. 
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5.4 Authenticated Encryption 
 

The most common use of cryptography on the Internet these days is to create a secure 

channel between two endpoints and then exchange data over that channel. Typical 

implementations initiate a key-exchange protocol to establish a shared key between the 

participants, and then utilise this key to authenticate and encrypt the transmitted data using 

efficient symmetric key algorithms as depicted in Figure 5.1. Usually, when encryption is 

employed on data, a MAC is required to provide additional security, since encryption alone is 

insufficient to protect data from intruders. An authorised encryption mode of operation must 

provide both privacy and communication authenticity. 

 

 

Figure 5.1: EtM security algorithm 

 

Hash or message authentication mechanisms are utilised to ensure the integrity of 

communication. Encryption and integrity techniques are sometimes used together: 

 

• Encrypt-then-MAC (EtM): ensures ciphertext confidentiality, but no plaintext 

confidentiality, 

• MAC-then-encrypt (MtE): ensures plaintext confidentiality, but no ciphertext 

confidentiality, and 

• Encrypt-and-MAC (EandM): ensures plaintext confidentiality, but no ciphertext 

confidentiality. 

 

Figure 5.1 illustrates the EtM algorithm. The encryption technique used by the sender returns 

a ciphertext (including the authentication tag), but the decryption process used by the receiver 

returns either a plaintext or a special symbol indicating that the ciphertext is faulty or 

unauthentic. To construct a fresh digest if the user tampers with the ciphertext, they must also 

know the HMAC key. The ciphertext will not authenticate if the user modifies the digest 

(Oszywa & Gliwa, 2012). This is advantageous for two reasons: first, it makes a denial-of-
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service assault considerably more difficult by allowing you to discard faked packets more 

quickly, and second, it limits your "attack surface." 

 

EtM is the most secure algorithm since modifications to the ciphertext can be filtered out prior 

to decryption using a valid MAC code, preventing communications tampering. MtE and EandM 

each offer varying levels of security, but EtM offers the whole package. The user cannot 

tamper with the ciphertext when EtM is used. 

 

Encryption hides your data but does not prevent tampering. As a result, authentication has 

been incorporated into the algorithm. Thus, establishing, and standardising specialised 

authenticated encryption techniques is quite valuable. The EtM technique is the best for 

achieving authenticated encryption and should minimise or remove a variety of attacks on the 

present MtE mechanism. (Gutmann, 2014) 

 

5.5 Implementation 
 

For the IEC 61850 message exchange, the IEC 62351-6:2020 standard outlines the use of 

security requirements such as digital signatures that use RSA algorithms to ensure integrity 

and authenticity. However, it makes no provision for protecting the confidentiality of R-SV 

messages. With the rapid expansion of IEC 61850 from substation automation to power 

management, IEC 61850 messages are now being used to transmit sensitive data that 

requires secrecy. Previous research has found that when applied to R-SV messages, the 

generation of digital signatures using RSA and ECDSA algorithms requires long computational 

and processing times (Harispuru & Schuster, n.d.); Gonzalez-Redondo et al., 2013; Firouzi et 

al., 2017). Because R-SV communications have a 3 ms time limit, IEC 62351-1 advises 

against using encryption methods. However, R-SV messages must be encrypted to achieve 

the confidentiality requirement. Moreover, the implementation of encryption algorithms must 

conform to the timing restriction of 3ms. Most of the literature does not consider security 

mechanisms for R-SV messages, especially confidentiality requirements. 

 

In this chapter, the iterative implementation procedures are documented, to address the lack 

of information. A method is proposed to ensure the confidentiality and message authentication 

of R-SV messages by employing Authenticated Encryption with Associated Data (AEAD) 

algorithms. Further, C-library-based implementations are developed by programming R-SV 

data frames according to the IEC 61850-9-2 standard to test the timing performance and 

feasibility of the proposed security method for R-SV messages. The complete source code of 

the interface is included in Annexure E and Annexure F. 
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5.5.1 Proposed Method for Achieving Confidentiality in SV Messages 

 

In the R-SV protocol, the suggested method uses the EtM variant of the AEAD algorithms to 

employ confidentiality, message integrity, and authenticity. 

 

The security scheme for R-SV messages in IEC 61850 was originally based on MACs and 

digital signatures to ensure the integrity and authenticity of the data. However, this scheme 

had some limitations and was vulnerable to various attacks such as replay attacks, man-in-

the-middle attacks, and message insertion attacks. Therefore, the security scheme is to 

address these vulnerabilities and improve the overall security of R-SV communication. 

 

The adapted security scheme for R-SV communication in IEC 61850 includes the following 

measures: 

 

1. Encryption: Encryption is used to protect the confidentiality of R-SV messages by 

ensuring that only authorised devices can access the data. Encryption algorithms such 

as AES-128 are used to encrypt the messages before transmission over the network. 

However, as research progresses, new attack methods such as the Biclique attack 

emerge. Attackers are aware that in order to carry out a brute force assault against 

AES-128, they must try every possible key combination until the correct key is 

identified. A biclique attack is a type of attack that exploits the block cipher's algebraic 

structure. It specifically checks for collisions throughout the encryption process. A 

biclique attack focuses on discovering collisions in the encryption mechanism, possibly 

decreasing the complexity of the attack. The biclique attack is currently the only key-

recovery attack on complete AES using a single key. (Bogdanov et al., 2011b) used it 

to build bicliques for all three versions of AES. The biclique attack is approximately 

four times faster than brute force. The biclique assault can only be implemented 

hypothetically. As a result, there are no practical implications for AES encryption. There 

is currently no known viable attack that would allow someone who does not know the 

key to access data encrypted by AES when properly implemented. 

2. Timestamping: Timestamping is used to prevent replay attacks by adding a timestamp 

to each message. The receiver can then check the timestamp to ensure that the 

message is fresh and has not been replayed. 

3. Sequence numbers: Sequence numbers are used to prevent message insertion 

attacks by assigning a unique sequence number to each message. The receiver can 

then check the sequence number to ensure that the message is in the correct order 

and has not been inserted or modified. 
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4. HMAC: HMACs are used to ensure the integrity of R-SV messages by generating a 

unique signature for each message. The signature is based on a hash function and a 

secret key that is shared between the sender and receiver. Having more than one 

HMAC with different keys or algorithms can enhance security however there are 

potential risks. Managing multiple HMACs can increase complexity in key 

management. This complexity could potentially introduce vulnerabilities. If there are 

implementation flaws, they could be exploited regardless of the number of HMACs 

used. 

5. For AES-HMAC to work securely, both the sender and receiver must agree on a shared 

secret key and specific algorithm used including the AES variant and HMAC function. 

The structure of the message being exchanged must be well-defined. 

 

The EtM send program is responsible for constructing an Ethernet frame that includes all the 

necessary fields of the frame, including the destination address, the source address, the ether 

type, and then the SV PDU fields. As illustrated in Figure 5.2, the fields that make up the PDU 

comprise APPID, the length of the PDU, Reserved1, Reserved2, and SV APDU fields, and 

then they are followed by the Frame Check Sequence (FCS) field. 

 

 

Figure 5.2: EtM algorithm applied to GOOSE or SV PDU (Hussain, Farooq, et al., 2020) 

 

In the event that the frame is secured via a digital signature mechanism, the Reserved1 field 

will contain the length of the Extension field. There is no extension field for SV messages when 

its value is 0, which indicates that no security is being applied to such communications.  The 

authentication value (MAC value) for SV PDU is derived from the Ethertype field till the end of 

the encrypted SV APDU. The length of the Extension field appended to the SV PDU is added 

to the second byte of the SV PDU's reserved1 field. The Cyclic Redundancy Check (CRC) 

value is stored in the Reserved2 column. The Tag-Length-Value (TLV) format is used for the 

fields that make up the SV APDU. While processing the SV frames at the publisher, the SV 

APDU is encrypted first, and then the MAC value is created and added to the extension field. 

The EtM transmit software uses AES-128 encryption to encrypt the SV APDU after it has 

completed the construction of the SV ethernet frame. The total amount of space used up by 



156 | P a g e  
 

the SV APDU fields is 137 bytes. Padding brings the total size of an SV APDU up to 144 bytes, 

which is necessary because AES-128 encrypts 16 bytes of data at a time. The cipher text that 

is produced as the output of AES-128 is then passed as an input to the HMAC-SHA-256 

generating function, which produces a MAC value consisting of 32 bytes. The MAC value that 

has been created is saved in an extended field of the SV APDU. The extension fields include 

the version, Time of Current Key, Time of Next Key, Security Algorithm, and Key ID, followed 

by the 32-byte MAC value, as shown in Figure 5.3. The most significant byte is the one that is 

used to represent the encryption technique, while the least significant byte is the one that is 

used to indicate the authentication algorithm for the message (Ustun et al., 2020). Every 

second, the EtM send program constructs the SV PDU frame in a buffer character array and 

sends it to the network. The times of encryption and MAC creation are captured. The publisher 

sends the secure SV packets. 

 

 

Figure 5.3: Structure of Extension field (Hussain, Farooq, et al., 2020) 

 

Upon receiving the secure R-SV packet, the subscriber obtains the MAC value in the extension 

field and stores it. In the EtM receiver program, which receives data from the sender program, 

the cipher text and the MAC value are extracted from the received data into cipher and hash 

arrays. In addition, the EtM receiver software compares the received MAC value with a newly 

generated MAC value using the HMAC-SHA-256 creation function. The encrypted text will be 

decrypted if the two values match; otherwise, the packet will not be further processed. As a 

result, the time it takes to generate and decode the MAC is recorded. 

 

5.5.2 Implementation and Performance Evaluation 

 

To implement an IEC 61850 communication system, a thorough grasp of the processes, 

techniques, and technologies is required. In addition, a new framework for substation 

communication based on the IEC 61850 standard is established to solve the cybersecurity 

challenges stated in IEC 62351 for critical infrastructure communication. 
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The proposed approach for R-SV security, which makes use of the EtM algorithm, has been 

put into action. Simulation is implemented to examine the reliability of securing R-SV 

communications and to determine whether it is feasible. Furthermore, the simulation confirms 

the SV PDU as stated in Part 9-2 of the IEC 61850 standard. The message structure is 

checked by simulating and recording the R-SV message using network protocol analyser 

software, followed by packet frame analysis. Figure 5.4 depicts the experimental setup for R-

SV message simulation and validation, with the EtM transmitter and receiver programs running 

on Kali-Linux software installed on a personal computer (PC). To collect R-SV message 

packets and perform MITM attacks, Wireshark and Ettercap software running on a PC are 

utilised. A network switch connects the two machines. The developed security system satisfies 

the requirements for message confidentiality, integrity, and authentication. Also, the 

recommended security technique works well to protect against unauthorised access, spoofing, 

and MITM attacks. 

 

 

Figure 5.4: PC with Kali-Linux and PC with Wireshark Network Analyzer Software and 

Ettercap 

 

EtM is utilised to secure R-SV communications transmitted between the publisher and the 

subscriber. Figure 5.3 depicts the overall security process of the proposed mechanism, while 

Table 5.1 provides further information about the suggested security protocol. Using AES-128 

encryption and HMAC SHA-256 message integrity, the EtM algorithm safeguards R-SV 

message communication. The publisher and subscriber programs are executed on two distinct 

terminals that function as two IEDs. As shown in Table 5.1, the publisher terminal initiates the 

R-SV message creation process, Gen_EtM(), which generates a secure R-SV message 

including an encrypted SV APDU (Ed) and MAC value “h” using the symmetric PreSharedKey 

“k”. Figure 5.5 depicts the Wireshark capture of an encrypted and authenticated R-SV 

message broadcast by the EtM AEAD algorithm of the S-GoSV library. 
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Figure 5.5: Packet capture of EtM SV message 

 

The subscriber reads the encrypted APDU (Ed) values into the ReceivedData buffer after 

receiving the secure R-SV message. As shown in Table 5.1, the procedure verify_EtM() is 

utilised to validate the R-SV message's integrity. First, a new MAC value "h1" is generated 

using the symmetric PreSharedKey "k" for the received encrypted SV APDU (Ed). "h1" is 

compared to the received MAC value "h" and validated. The encrypted SV PDU is decrypted 

and processed further if they match; otherwise, it is refused since the MAC value mismatch 

signifies that at least one of the received encrypted SV PDUs or MAC values has been altered. 

To obtain the APDU data for an approved packet, the encrypted SV APDU (Ed) is decrypted 

using the key "k." 
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Table 5.1: Publisher and Subscriber Algorithm 

Algorithm Gen_EtM( ) Algorithm verify_EtM() 

svPDU  GoSV() ReceivedData  

svPDU.APDU = Ed 

InputData  svPDU.APDU h  svPDU.extension 

k  PreSharedKey() k  PreSharedKey() 

Ed 

 EncryptK (InputData) 

h1  MACk (ReceivedData) 

h  MACk (Ed) if h = h1 then 

svPDU.Extension  h APDU  DecryptK (Ed) 

svPDU.APDU  Ed else 

 return “Reject SV packet” 

 

To evaluate timing performance, the computational times required to execute the EtM security 

version are computed. The testing system is an Intel(R) Core(TM) i7-10510U with 16GB RAM 

running Kali-Linux with EtM sender and receiver software with GCC compiler. Compile and 

run the application at the command prompt. The EtM sender program execution steps are as 

follows: 

• Install libssl library. 

• Replace the destination and source MAC addresses with your intended MAC 

addresses in the EtM_send.c program. 

• Replace the network interface name with your computer’s network interface name in 

the EtM_send.c program. 

• Then compile and run the program as illustrated in Figure 5.6. 

• The server code is responsible for providing the data to the clients. This involves 

creating a socket connection and binding it to a server port. The server code then 

listens for incoming client requests and responds with the requested data. 

• Figure 5.7 shows the secure R-SV packet captures of the publisher device employed 

with the EtM technique. It incorporates all the authentication inputs of the SV PDU. 

Wireshark shows all the required fields according to IEC 61850-9-2. Refer to Appendix 

G for more detailed packet capture. 
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Figure 5.6: Terminal output for publisher device 

 

 

Figure 5.7: Packet Capture of Publisher 

 

The EtM receiver program execution steps are as follows: 

• Install libssl library. 

• Replace the destination MAC address with your receiver computer’s MAC address in 

the EtM_recv.c program. 

• Replace the network interface name with your computer’s network interface name in 

the EtM_recv.c program. 

• Then compile and run the program as illustrated in Figure 5.8. 
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• The client code is responsible for requesting the data from the server. This involves 

creating a socket connection and sending a request message to the server. The client 

code then receives the requested data from the server and processes it according to 

the data model. 

• Figure 5.9 shows the secure R-SV packet captures of the subscriber device employed 

with the EtM algorithm. Wireshark shows all the required fields according to IEC 61850-

9-2. Refer to Appendix H for more detailed packet capture. 

 

The final step in developing a publisher-subscriber code algorithm is to validate the data 

model. This involves checking that the data objects exchanged between publishers and 

subscribers are consistent with the data model. Any errors or inconsistencies should be logged 

and handled appropriately. The use of multicast messages reduces the amount of network 

traffic and improves the efficiency of communication. 

 

 

Figure 5.8: Terminal output for subscriber device 
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Figure 5.9: Packet Capture of Subscriber 

 

The computational times required to generate R-SV messages with security extensions are 

calculated to assess timing performance. This is accomplished by sampling CPU times at the 

beginning and end of C programs. Table 5.2 shows the computational times for processing 

the SV frames, generating MAC values for various MAC algorithms, and encrypting the SV 

APDU at the publisher. It also shows the times taken to process the received SV frames, 

regenerate the MAC values for various MAC algorithms, and decrypt the SV APDU at the 

subscriber side. As seen in Table 5.2, the processing and communication delays for 

transmitting secure R-SV messages are significantly below the 3ms minimum. The simulation 

verifies the R-SV message structure provided in IEC 61850 standard part 9-2. In addition, the 

built security algorithm corresponds to the IEC 62531 security standard. Detailed data on the 

computational time is found in Appendix I and Appendix J. The end-to-end delay time is 

calculated with Wireshark data as provided in Appendix G. Average values are obtained from 

the values in the respective Appendix. 
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Table 5.2: Computational time for secure SV security algorithm 

Security 

algorithm 

Signature 

length 

(bytes) 

Average computational time (ms) 

EtM Publisher EtM Subscriber 

MAC 

generation 

time 

Encryption 

time 

MAC 

generation 

time 

MAC 

comparison 

time 

Decryption 

AES 128 16 - 0.01044 - - 0.001 

HMAC 

SHA256 

32 0.00226 - 0.008 0.001 - 

 

End to End delay 

Normal 0.002088 

Worst 

case 

0.001047 

 

Cybersecurity functions must not interrupt the existing protection functions of IEDs. Any delays 

or interruptions of the normal operation of the IED during the power system fault may damage 

or disrupt substation equipment. Therefore, the total time delay has to be measured to validate 

the performance of the security algorithm including delays in the merging unit, process bus 

Ethernet switch, IED, R-SV communication, GOOSE communication, and station bus Ethernet 

delays (Karnati, 2020). 

 

Therefore, to confirm the security algorithm performance, the entire time delay needs to be 

measured. This includes the delays that occur in the merging unit, the process bus, the IED, 

the R-SV communication, the GOOSE communication, and the station bus Ethernet delays. 

 

Using the S-GoSV library implementation, (Hussain, Farooq, et al., 2020) simulate a 

substation communication network to determine if a worst-case scenario will still be functional. 

Both processing and communication delays for transmitting encrypted GOOSE messages are 

within the 3ms threshold, as confirmed by the authors. Consequently, the proposed security 

method can be used effectively in real-time applications. Moreover, (Hussain, Farooq, et al., 

2020) concur that the EtM security algorithm has greater benefits than the MtE and E&M 

algorithms. Based on these findings, future cybersecurity frameworks for the IEC 62351 

standard can advocate encryption for IEC 61850 messages with confidence. 
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Overall, the adapted security scheme for SVMs in IEC 61850 provides a robust and 

comprehensive set of measures to ensure the confidentiality, integrity, and authenticity of the 

data. By incorporating encryption, timestamping, sequence numbers and HMACs the scheme 

provides a multi-layered defence against various types of attacks. This improved security 

scheme enables safe and secure communication between IEDs in the substation, helping to 

ensure the reliable and efficient operation of the power grid. 

 

5.6 ARP MITM attacks using Ettercap and Wireshark 
 

Due to the inclusion of vital equipment in substation-based communication and the transfer of 

data through an unsecured public network, a robust security mechanism is necessary to 

prevent cyberattacks. Multiple attacks, including MITM, replay, and DoS compromise 

substation-based communication based on the IEC 61850 framework. The developed secure 

R-SV algorithm can be utilised to examine the impact of various cyber vulnerabilities. The SV 

protocol exposes all data information in the communication network due to its features, 

including plain text messages and multicast at the data link layer. As a result, a hacker may 

discover vital information for cyberattacks. Exploiting the weaknesses of the processing 

subscriber is another technique to compromise the R-SV message and prevent the substation 

system from functioning normally. Attackers can launch cyberattacks if they get access to or 

reverse-engineer the security algorithm. ARP MITM attacks are also called ARP spoofing or 

ARP cache poisoning, the idea is to corrupt the ARP table of hosts using bogus ARP replies. 

The attacker needs to be on the same network as the hosts being attacked for this attack to 

work. This attack takes advantage of the lack of security mechanisms in ARP to validate the 

identities of ARP speakers. As such, the MITM attack is implemented on Ettercap, and 

Wireshark is used to capture and analyse the generated attacks of the packets. 

 

Data is transmitted from the publisher to the subscriber device. The publisher and subscriber 

devices are set as target 1 and target 2 respectively on Ettercap. An MITM attack is 

implemented to reroute the traffic as shown in Figure 5.10. As such, target 1 will assume that 

the attacker’s MAC address is that of target 2, and traffic will be rerouted to the attacker as 

illustrated in Figure 5.11. The same applies when network traffic is transmitted via a router; 

the attacker will suggest that they are the target device and traffic must be rerouted via their 

MAC address. Once an adversary gains access to the process bus of the digital substation, 

they could monitor the R-SV packets and analyse the semantics of SV PDU. After finishing 

the analysis of SV streams, they could initiate the SV attacks such as injecting fault currents 

and voltages. 
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Figure 5.10: Ettercap capture of MITM attack 
 

 

Figure 5.11: Wireshark capture of MITM attack 

 

Furthermore, any change in the SV PDU during communication indicates a difference between 

the modified hash value (h) and the one recomputed at the receiver (h1). The SV PDU is 

tampered with and forwarded to the receiver. Tampering is discovered when hash values are 
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recalculated. Figure 5.12 depicts the results of tamper detection when the SV PDU hash value 

is mismatched, and the received packet is discarded.  

 

 

Figure 5.12: Rejected SV PDU 

 

In substation automation, mitigating cybersecurity attacks is a crucial requirement. As a result, 

the number of cyber-attacks on substations is on the rise, and it has emerged as a major threat 

that may cause substation damage. Encryption and authentication are essential security 

requirements that must be implemented to prevent cybersecurity attacks and provide robust 

security measures. 

 

Authenticated encryption using the AES-HMAC algorithm provides robust security measures 

that ensure the confidentiality, integrity, and authenticity of data. The AES encryption algorithm 

is widely regarded as one of the most secure encryption algorithms, while the HMAC algorithm 

provides strong authentication and message integrity. The AES-HMAC algorithm is efficient in 

terms of processing time and computational resources, making it ideal for use in resource-

constrained environments. The AES-HMAC algorithm is an efficient encryption method that 

can process large amounts of data quickly and securely. This is particularly important for the 

real-time transmission of R-SV messages, where delays in processing can have significant 

consequences. The use of authenticated encryption using the AES-HMAC algorithm is 

compliant with many industry standards such as IEC 62351. 

 

5.7 Comparative Analysis 
 

(Hussain, Farooq, et al., 2020) developed and implemented an EtM security algorithm on 

GOOSE PDU based on the modification of IEC 62351-6. However, a detailed analysis of the 

packet data on Wireshark was conducted and found that the GOOSE PDU format is not 

compliant with IEC 62351-6. Figure 5.13 shows the Wireshark capture of the non-compliant 

GOOSE PDU. If the format of GOOSE and R-SV are not adhered to as specified in IEC 
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61850 and IEC 62351, this may cause a potential low delay in delivering high-speed 

communication although the 3ms requirement will be met. Messages with a stringent time 

requirement must be delivered on time. Processing time delays at both ends, propagation 

time delays in communication links, and processing and queuing time delays in intermediate 

switches all contribute to transmission time. Non - compliance, on the other hand, may result 

in a lack of interoperability. The frame encryption and authentication procedures may no 

longer be compliant with the standard after modifications are made for implementation. 

Security may be significantly impacted by changing the encryption and authentication 

processes. 

 

For successful implementation, the proposed additional security techniques on R-SVs must 

adhere to the above-mentioned timing requirements. The implementation to secure R-SV 

messages in the thesis is as defined in IEC 62351-6. 

 

 

Figure 5.13: Wireshark capture of GOOSE PDU with error 
 

If the IEC 61850 GOOSE frame structure does not adhere to the standard requirements, 

various issues may arise. These disadvantages can affect the overall performance, 

interoperability, and reliability of the substation automation system. Below are some specific 

drawbacks that can occur. 

 

1. Compatibility Issues: Adhering to the IEC 61850 standard guarantees compatibility 

between devices from different vendors, enabling them to work together effectively. 

However, if the GOOSE frame structure does not meet the standard, it can lead to 

incompatibility issues among devices produced by different manufacturers. As a 

consequence, this can cause communication difficulties, data loss, or incorrect data 
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interpretation, ultimately obstructing the smooth integration of devices in the 

substation. 

2. Communication Errors: The GOOSE communication system relies on a defined frame 

structure outlined in the standard. Any deviations from this structure can lead to 

problems in communication. Incompatible frame structures can cause incorrect 

interpretation of data or even the loss of crucial information during transmission. As a 

consequence, this poses a risk to the security and efficiency of operations involving 

IEDs and other time-sensitive services within the substation. 

3. Reduced Performance: Adhering to the standard guarantees efficient and optimal 

communication among IEDs. The purpose of the GOOSE frame structure is to 

minimize network bandwidth usage while facilitating rapid data exchange. However, 

frame structures that do not meet the standard can introduce unnecessary overhead 

or inadequate data representation, leading to increased network traffic, longer delays, 

and a decline in overall system performance. 

 

The format structure outlined in IEC 62351-6:2020 is essential for establishing secure and 

dependable communication. However, if the format structure does not adhere to the standard, 

it can result in various drawbacks, such as: 

 

1. Security Vulnerabilities: The IEC 62351-6:2020 standard outlines a format structure 

that encompasses authentication, encryption, and integrity verification methods. 

Failure to adhere to this structure or implement it accurately can lead to security 

weaknesses. Unauthorized individuals may exploit these weaknesses to gain entry 

without permission, tamper with data, or carry out harmful actions. Failing to meet the 

standard raises the likelihood of security breaches and undermines the overall security 

of power and energy systems. 

2. Interoperability Issues: Adhering to IEC 62351-6:2020 guarantees efficient and secure 

communication among various components and systems in the power and energy 

infrastructure. However, if the format structure fails to comply with the standard, it can 

lead to problems with interoperability. This means that components produced by 

different manufacturers may struggle to interpret or handle communication data 

accurately, resulting in communication breakdowns, data errors, or system instability. 

Non-compliance hampers the integration and seamless functioning of diverse systems 

and components. 

3. Reduced Resiliency: The standard's defined format structure guarantees the 

trustworthiness and consistency of communication between control systems and their 

associated parts. Failure to adhere to this structure can result in errors or discrepancies 



169 | P a g e  
 

during the transmission and reception of data. These errors have the potential to cause 

misunderstandings in commands, incorrect system reactions, or even complete 

system breakdowns. Format structures that do not comply with the standard can 

jeopardize the overall reliability of power and energy systems, impacting their efficiency 

and accessibility. Non-compliant systems may display abnormal behaviour, including 

variations in message formatting, timing, or protocol implementation. 

 

To address these drawbacks, it is crucial to guarantee adherence to the format structure 

outlined in IEC 62351-6:2020. By following this standard, organisations can bolster the 

security, interoperability, reliability, and regulatory adherence of their power and energy 

systems. This, in turn, promotes safer and more efficient operations within this vital industry. 

 

As depicted in Figure 5.13, the presence of an error in the packet indicates the existence of 

significant issues, such as malformed packets. These problems involve a violation of the 

specification of the GOOSE protocol, which includes invalid field values or illegal lengths. In 

Figure 5.14, the Wireshark capture illustrates a compliant GOOSE PDU. The code presented 

by (Hussain, Farooq, et al., 2020) has been adjusted to align with the standards of IEC 61850 

and IEC 62351. Modifications may be necessary for frame encryption and authentication due 

to non-compliance with the specified format. Format non-compliance refers to situations where 

the data frame format used in the system does not meet the requirements outlined in the 

standard. 
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Figure 5.14 Wireshark capture of correct GOOSE PDU 

 

It should be emphasised that Abstract Syntax Notation One (ASN.1) Basic Encoding Rules 

(BER) are utilised for the decoding of GOOSE and SV protocols. The BER transfer syntax 

operates on the principle of a triplet format known as Tag, Length, Value (TLV). As 

demonstrated in Figure 5.14, the data sequence follows the BER structure, as shown in 

Figure 5.15, specifically for GOOSE. The GOOSE PDU is encoded using the TLV format, 

with the starting tag being 0x61. Subsequently, the Tag is followed by the Length, which 

indicates the overall length of the GOOSE PDU. The Value section of the GOOSE PDU 

contains a sequence of data. 
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Figure 5.15 IEC 61850-8-1 GOOSE PDU structure (ASN.1 Encoding) 

 

(Rodriguez et al., 2021) analysed and evaluated different security algorithms as referred to in 

Chapter 2, however, the authors have recommended the use of the AES Galois Counter Mode 

(AES-GCM) algorithm. The authors have proven that even in a worst-case scenario the 

algorithm is extremely efficient and achieves both data throughput and low latency when 

implemented in hardware. The presented solution is fully IEC 62351-6 compliant. (Suhail 

Hussain et al., 2023) recently discovered that processing time delays at both the publisher 

and subscriber for different MAC algorithms (AES-HMAC-128/256, AES-GCM-128/256, etc.) 

are less than the 0.2ms limit. They validated that the overall end-to-end delays, including 

processing and communication time delays, for various MAC algorithms are less than the IEC 

61850 standards' 3ms restriction. When choosing between these algorithms, it is important to 

consider the specific security requirements and potential attack scenarios of the system being 

secured. 

 

Both AES-HMAC and AES-GCM algorithms provide strong security measures that ensure the 

confidentiality, integrity, and authenticity of data. As computing capabilities increase, it's 

generally recommended to use longer key lengths for increased security. To ensure that the 
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3ms timing requirements are met, opt for encryption algorithms that strike a balance between 

security and computational efficiency, optimise the code and hardware for better performance, 

and optimise the overall network infrastructure for low-latency communication to minimise 

congestion. Although loner key lengths provide higher security, always assess the security 

requirements, and choose minimum key lengths to help reduce computational overheads. 

 

However, AES-GCM is generally considered more secure due to its use of the GCM 

authentication mechanism, which provides better protection against potential attacks. Both 

AES-HMAC and AES-GCM algorithms are efficient in terms of processing time and 

computational resources. However, AES-GCM is generally considered more efficient due to 

its parallel processing capabilities, which allow for faster encryption and decryption of large 

amounts of data. As with any encryption algorithm, the security of AES-GCM depends heavily 

on the proper management of cryptographic keys. Weaknesses in key generation, storage, or 

distribution could compromise the security of the system. To ensure that key management is 

not compromised, use a secure number generator and ensure that keys are long enough to 

resist brute-force attacks. Use secure key storage mechanisms and ensure the use of secure 

channels for key distribution. Avoid transmitting keys over insecure networks or channels. 

 

Existing methods and techniques for securing R-SV messages in IEC 61850 communication 

include Digital Signature (DS), Message Authentication Code (MAC), and Transport Layer 

Security (TLS). DS and MAC provide authentication and integrity protection but do not provide 

encryption. TLS provides both encryption and authentication but can be more complex and 

costly to implement compared to authenticated encryption. In comparison to these existing 

methods and techniques, authenticated encryption offers a good balance of security and 

efficiency. It provides both encryption and authentication in a single operation, reducing 

processing overhead and improving performance. Additionally, authenticated encryption 

offers strong confidentiality and integrity protection, ensuring that the data transmitted 

between two parties is secure and authentic. However, the key management system needs to 

be secure, and it is vulnerable to side-channel attacks, which are also limitations of other 

cryptographic techniques. 

 

5.8 Conclusion 
 

The IEC 61850 standard is gaining more attention as it is positioned to become the next 

standard for power system communication. A significant portion of the research focuses on 

adapting IEC 61850 information models and message structures to new smart grid devices. 

Performance evaluations need the presence of a tool that can generate and distribute GOOSE 
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and SV messages with specific parameters. This chapter describes in detail the 

implementation processes that led to the development of the secure R-SV functions. The 

programming for the encapsulation of different layers of the R-SV frame in C programming 

under the Linux system is also documented. The implemented simulation demonstrates that 

messages published by the R-SV source code strictly adhere to the IEC 61850 format, as 

identified by the Wireshark network sniffer software tool, which correctly decoded all fields of 

the generated custom GoSV frames. SV streams are utilized for the purpose of real-time 

monitoring and control within a networked system. The quantity of SV streams that can be 

disseminated across the system's network is contingent upon several factors. These factors 

include the capacity of the communication network, which necessitates the utilization of high-

performance IEEE 802.1Q-compliant managed Ethernet switches on the process bus, as well 

as the processing capabilities of the devices, ensuring compliance with the IEC 61850 

standard. In addition to considerations regarding bandwidth limitations, it is imperative to 

carefully manage the configuration of the Process Bus Local Area Network (LAN) segment 

and to meticulously select Layer 2 multicast addresses. IEEE 802.1Q facilitates both the 

processing of messages with priority-based scheduling policies and the segmentation of the 

process bus to enable efficient processing of SV streams. 

 

The EtM algorithm is proposed for maintaining message confidentiality and integrity. IEC 

62351 is employed to implement the security requirements for R-SV messages. For privacy, 

the EtM algorithm is implemented with AES-128 encryption. MAC algorithms are employed to 

authenticate messages. Simulation results indicate that the EtM algorithm can successfully be 

used for R-SV messages while meeting stringent 3 ms latency criteria. The findings indicate 

that the proposed MAC and AES algorithms can be implemented in R-SV communications 

without any challenges. Based on these findings, future IEC 62351 security standards can 

confidently advocate encryption for R-SV messages. 
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6. CHAPTER SIX: CONCLUSION AND FUTURE WORK 
 

6.1 Introduction 
 

It is difficult to secure today's power systems since they frequently employ communication 

protocols with minimal or no security mechanisms yet are implemented for bandwidth and 

efficiency. Additionally, many grids haven't received security upgrades post-commissioning. 

To address vulnerable power grids, IEC Technical Committee 57 began research on ways to 

make power grids secure in the early 2000s. WG15 was established to assess the 

requirements from a technical standpoint and determine a method for implementation. As 

such, the IEC 61850 standard represents a significant step forward for both standardisation 

and ICS security for digital substations. With its extensive implementation, utilities and 

operators can now efficiently commission, collaborate, and maintain new equipment (Carullo, 

2020). However, although being efficient, its communication protocols, GOOSE and SV, have 

security vulnerabilities. While numerous scholars from all over the world have proposed 

solutions to the issue, IEC has already established a standard approach to deal with such 

flaws. 

 

Electricity generation, substation, and power grid operations are being compelled to 

strengthen OT and IoT security methods to increase the resilience of their systems in response 

to rising cyber-attacks, management concerns, and governmental policies. Innovative 

solutions that improve OT and IoT visibility, cybersecurity, and availability are critical 

components that must be implemented. For event visibility, OT and IoT systems are required 

at the grid or substation level. The reliability and safety of the power system may be negatively 

impacted by networking issues. The ability to react quickly to threats and abnormalities is 

essential, but early detection of problems necessitates real-time visibility over connections, 

communications, and other factors. Unfortunately, many power systems lack these 

capabilities. Operational reliability can be significantly affected by security weaknesses in 

operations and technology. More emphasis should be placed on best practices and technology 

to improve the reliability and security of the electrical system. By monitoring network traffic for 

security attacks and suspicious activity and further delivering enhanced security detection, 

Nozomi Networks offers a solution to boost OT and IoT visibility. The solution from Nozomi 

Networks enhances visibility, resilience, and cybersecurity. (Carullo, 2020) 

 

To ensure the cross-vendor interoperability that has made IEC 61850 effective, researchers 

have emphasised the significance of establishing a single standard in substation automation 
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systems. To achieve integrity and confidentiality, IEC 61850 communication messages must 

now be deployed with security mechanisms. IEC 62351-6 specifies a method for securing IEC 

61850 protocols by incorporating a security extension section into the frames. Security threats 

in IEC 61850 communication messages have been addressed and vendors are standardising 

implementation to protect the IEC 61850 protocols. Enhancing the IEC 62351 security 

standard will ensure the security of the electricity grid. 

 

The rising number of cyber-physical attacks on the power system demonstrates the necessity 

to improve the security mechanisms of existing industrial communication protocols. Although 

GMAC and HMAC are suggested by IEC62351- 6:2020 as cybersecurity mitigation to verify 

SV integrity, real-time applications, and performance evaluations for using the MAC algorithms 

have not been fully implemented. Compromised security keys between publisher and 

subscriber may disclose additional security vulnerabilities and cyber threats. This thesis 

recommended the implementation of a secure R-SV framework to address the 

abovementioned issue by evaluating the developed algorithm in a LAN environment. The 

development of the security scheme for R-SV messages was a comprehensive process that 

involved careful consideration of the various security threats that could affect the integrity, 

confidentiality, and availability of the sampled value data. The scheme was designed to 

provide a robust and effective solution to these threats, while also ensuring that the 

requirements of the standard were met. The performance of the proposed R-SV message has 

been analysed and validated with AES and HMAC algorithms. The results of the secure R-SV 

framework meet the performance requirements of IEC 61850. This can be applied to test 

benches of IEDs for further implementation in a real environment. The cryptographic strength 

of encryption and authentication techniques determines the security of a system. We 

investigated the combination of an encryption and authentication algorithm, taking the 

algorithm's cryptographic strength and performance into account. In our studies, we 

discovered that AES-128 is a more efficient encryption method with higher performance, 

whereas HMAC-SHA256 is a more efficient authentication algorithm. However, in certain 

environments, there are several concerns and potential drawbacks to employing AES-128. 

The main worry with AES-128 is its relatively low-key length, which may render it more 

vulnerable to brute-force attacks or new attacks over time (due to algorithm ageing). AES-128 

deployment in a substation environment necessitates adequate design and management. 

Inadequate configuration settings, such as poor key management or ineffective modes of 

operation, could compromise encryption security. 

 

Digital substations must be structurally organised to ensure that the sampled value method is 

always operational. The performance of protection systems is therefore of the utmost 
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importance to maintain the reliable operation of the power grid. As IEC 61850 becomes more 

prevalent in power systems, sampled values-based fault detection and isolation solutions will 

inevitably become the industry standard. Therefore, they must be thoroughly verified and 

evaluated to be as reliable as traditional protection structures as secure communications will 

be crucial for the next generation of technology within substation automation. Section 6.2 

describes the problems that were solved in this thesis. The thesis deliverables are discussed 

in Section 6.3. The algorithm developed is discussed in Section 6.4, and Section 6.5 proposes 

future work. Section 6.6 discusses how the work done in this study has been applied. Section 

6.7 provides the conclusion to this chapter. 

 

6.2 Problems Solved in this Thesis 
 

The problems solved can be categorised into two sections which are: 

• Design-based 

• Implementation-based 

 

6.2.1 Design-based Problems 

 

Sub-problem 1: Overview and analysis of IEC 61850 protocols in particular GOOSE and 

Sampled Values. 

Sub-problem 2: Overview of IEC 62351 cyber security implementation for smart grids and in-

depth analysis of IEC 62351-6. 

Sub-problem 3: Critical analysis of time requirements of IEC 61850 protocols. 

Sub-problem 4: Overview and critical analysis of encryption and authentication techniques. 

Sub-problem 5: Design and development of a secure R-SV message security algorithm. 

Sub-problem 6: Critical analysis of the developed secure R-SV algorithm with existing 

security algorithms. 

 

6.2.2 Implementation-based Problems 

 

Sub-problem 1: Simulation of the authenticated encryption algorithm using Kali-Linux virtual 

machine and obtain results in Wireshark software for comparative analysis. 

Sub-problem 2: Simulation of an MITM attack via Ettercap software and analysis of the 

network traffic. 

Sub-problem 3: Simulation and comparative analysis of other available security algorithms, 

providing improvisations and amendments if required. 
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6.3 Thesis Deliverables 
 

The following deliverables have been achieved through the work done in this thesis. 

 

6.3.1 Literature Review 

 

To obtain a thorough understanding of IEC 61850 and IEC 62351, a detailed literature 

review was conducted. The GOOSE and Sampled Value protocols, as well as security 

algorithms, received special attention. The development of various security techniques for a 

secure power system is discussed, demonstrating that this is an active research subject. 

According to this evaluation, security algorithms are expected to meet cyber security and 

timing requirements for GOOSE and Sampled Values communications. This literature 

analysis inspired the idea to create a security method based on authenticated encryption. 

 

6.3.2 Critical Analysis of IEC 61850 

 

The IEC 61850 standard considers substation automation network communication 

requirements. As the central smart grid communication protocol, IEC 61850 provides an 

integrated solution in the power system for communication between intelligent devices, 

ensuring interoperability and long-term stability while including a higher form of 

standardisation. IEC 61850 is the optimal communication standard for substation automation 

based on protocols and standards. The usage of the GOOSE message at a substation is 

crucial for power system protection. The GOOSE and SV operations use high-speed 

switched Ethernet data frames with no middle-layer processing. However, IEC 61850 lacks 

any security-related elements, and cyber-security threats in the substation environment 

remain a problem. 

 

6.3.3 Critical Analysis of IEC 62351 

 

To address this risk in power systems and further enhance cyber security measures for 

GOOSE and SV communication, IEC 62351 has been implemented. It is critical to protect 

SAS communication from cyber-security threats. Implementing IEC 61850 and IEC 62351 

standards necessitates a thorough understanding of data networking, software modelling, 

system simulation, and testing procedures. Networking applications are becoming 

increasingly popular for secure communication. It is critical to provide a system for verifying 

data security transmission across an unstable and unsecure medium. The need for secure 
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data transfer has prompted the creation of cryptographic standards and encryption 

techniques. The HMAC is a recommended authentication standard with strong security 

characteristics. Further research uses RSA algorithms for their advantages in encryption and 

authentication to give better security, but they have the downside of being time-consuming 

and requiring more computing power. To achieve confidentiality and integrity, the study uses 

an authenticated encryption technique.  The security requirements for GOOSE/SV 

communications are implemented using IEC 62351. The authenticated encryption procedure 

is applied with AES-128 encryption for privacy. Messages are authenticated using MAC 

techniques. 

 

6.3.4 Design and Development of an Authenticated Encryption Algorithm 

 

A review of the most recent GOOSE and SV message security options was done. To assure 

compliance with IEC 61850-9-2 and IEC 62351-6, the presented authenticated encryption 

method code was designed, and put into practice, and the results were examined. Stringent 

performance specifications apply to GOOSE and SV communications, which are essential 

for secure operation. Compared to non-secure protocols, Secure SV offers a high level of 

security. Data is shielded from interception, modification, and tampering when secure SV 

messages are delivered with extra security measures like authentication and encryption. 

Secure SV can therefore be used in critical systems where data integrity and confidentiality 

are crucial. The designed security algorithm meets data and sampling speed requirements 

for performance and security. The algorithm developed publishes R-SV communication and 

is IEC 61850 compliant, while the applied authentication and integrity levels are IEC 62351-6 

compliant. To allow authentication and authorisation, critical security elements must be 

enabled. For message confidentiality and integrity, the EtM method is recommended, 

together with AES-128 encryption for privacy and MAC techniques for message 

authentication. The simulation results show that the EtM technique can be employed for R-

SV messages while meeting the strict 3 ms time limitation. The findings imply that future IEC 

62351 security standards can confidently advocate for SV communication encryption. 

 

6.4 Future Work 
 

• Performance evaluation of multiple R-SV streams: This involves evaluating the 

sampled data accuracy during transmission and reception. In order to ensure that the 

time alignment complies with the required requirements, it entails assessing the 

synchronisation of sampled data. 
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• Investigate efficient key management among substation devices: For substation 

devices which comprise different types of IEDs, effective key management is crucial 

to securing communication channels, protecting sensitive data, and maintaining the 

power grid's overall cybersecurity. 

• Smart grid security software testing and security validation: As with any new 

technology, smart grid security is important to preventing cyberattacks and ensuring a 

secure, uninterrupted supply of electricity. Evaluating the encryption mechanisms used 

to secure data during transmission and storage. Ensure that data integrity is 

maintained and that sensitive information is properly encrypted. 

• Real-time simulation and performance analysis of a cyber-power system with different 

security algorithms: Establish a cyber-power system model by implementing a real-

time simulation environment. Incorporate the chosen security algorithms into the 

simulation environment that runs in real-time. Assess how well they function in a 

dynamic environment by taking into account variables like response speed, resource 

utilisation, and flexibility in response to changing circumstances. 

 

6.5 Application of the results from this thesis 
 

The research, methods, and algorithms that have resulted from the work done in this thesis 

can be utilised for the following purposes: 

• Used in smart grid systems for smart metering and energy automation. 

• Used in substation automation systems. 

• The security algorithms can be used in practical applications at Cape Peninsula 

University of Technology for research purposes. 

 

6.6 Conclusion 
 

This chapter presents a summary of the work conducted in this thesis. Software algorithms 

in the form of authenticated encryption have been developed to achieve the aims and 

objectives of the work done in this thesis.
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APPENDIX A 
 

TCP Client Source Code 

 

/*This file is part of LearnEveryone*/ 

/*https://www.youtube.com/watch?v=GY_Gy1ob4nA for more information*/ 

/* Copyright (C) Ajaze Parvez Khan*/ 

/*This program is not published*/ 

 

#include <stdio.h> 

#include <stdlib.h> 

#include <string.h> 

 

#include <sys/socket.h> 

#include <sys/types.h> 

 

#include <netinet/in.h> 

#include <arpa/inet.h> 

 

#define PORT 5555 

 

void main(){ 

 

 int clientSocket; 

 struct sockaddr_in serverAddr; 

 char buf[1024]; 

  

 clientSocket=socket(PF_INET,SOCK_STREAM,0); 

 printf("Client socket Created Successfully...\n"); 

  

 memset(&serverAddr,'\0',sizeof(serverAddr)); 

 serverAddr.sin_family=AF_INET; 

 serverAddr.sin_port=htons(PORT); 

 serverAddr.sin_addr.s_addr=inet_addr("127.0.0.1"); 

  

 connect(clientSocket,(struct sockaddr*)&serverAddr,sizeof(serverAddr)); 

 printf("Connected to Server Successfully...\n"); 

  

 recv(clientSocket,buf,1024,0); 

 printf("Data Received: %s...\n",buf); 

 printf("Closing Connection...\n");  

} 

https://www.youtube.com/watch?v=GY_Gy1ob4nA
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APPENDIX B 
 

TCP Server Source Code 

 

/*This file is part of LearnEveryone*/ 

/*https://www.youtube.com/watch?v=GY_Gy1ob4nA for more information*/ 

/* Copyright (C) Ajaze Parvez Khan*/ 

/*This program is not published*/ 

 

#include <stdio.h> 

#include <stdlib.h> 

#include <string.h> 

 

#include <sys/socket.h> 

#include <sys/types.h> 

 

#include <netinet/in.h> 

#include <arpa/inet.h> 

 

#define PORT 5555 

 

void main() 

{ 

 int sockfd; 

 struct sockaddr_in serverAddr; 

  

 int newSocket; 

 struct sockaddr_in newAddr; 

  

 socklen_t addr_size; 

 char buf[1024]; 

  

 sockfd=socket(PF_INET,SOCK_STREAM,0); 

 printf("Server socket Created Successfully...\n");  

 memset(&serverAddr,'\0',sizeof(serverAddr)); 

  

 serverAddr.sin_family=AF_INET; 

 serverAddr.sin_port=htons(PORT); 

 serverAddr.sin_addr.s_addr=inet_addr("127.0.0.1"); 

  

 bind(sockfd,(struct sockaddr*)&serverAddr,sizeof(serverAddr)); 

 printf("Bind to Port Number %d\n",4455); 

  

 listen(sockfd,6); 

 printf("Listening...\n"); 

  

 newSocket=accept(sockfd,(struct sockaddr*)&newAddr,&addr_size); 

  

 strcpy(buf,"HELLO FROM ME");  

 send(newSocket,buf,strlen(buf),0); 

  

 printf("Closing Connection...\n");  

} 

https://www.youtube.com/watch?v=GY_Gy1ob4nA
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APPENDIX C 
 

Plain GOOSE Source Code 

 

/*This file is part of Github*/ 

/*https://github.com/61850security/R-GoSV*/ 

/*Source code published by (Hussain et al., 2019) */ 

/*This program is published*/ 

 

#include <arpa/inet.h> 

#include <linux/if_packet.h> 

#include <stdio.h> 

#include <string.h> 

#include <stdlib.h> 

#include <sys/ioctl.h> 

#include <sys/socket.h> 

#include <net/if.h> 

#include <netinet/ether.h> 

#include <unistd.h> 

 

/* enter your intended MAC address*/ 

#define DEST_MAC0    0xFC 

#define DEST_MAC1    0x61 

#define DEST_MAC2    0x98 

#define DEST_MAC3    0x8A 

#define DEST_MAC4    0x1F 

#define DEST_MAC5    0x2F 

 

/* destination MAC address: FC 61 98 8A 46 EE */ 

/* interface name: enter your intername name */  

#define IF_NAME     "eth0" 

#define B_SIZE     2048 

/* IP Header fields */ 

char ver_hl =0x45;  // version 4 and header length of ip is 20 (5) bytes (1 byte) 

char tos = 0x00; // type of service. IP precedence and Differentiated Service code point (1 byte) 

char totlen1 = 0x00; // Total length of the packet (header 20 + data 185=205 ) (2 bytes) 

char totlen2 = 0xCD;                     

char identification1 = 0x6B; // unique identification of each packet (2 bytes)  

char identification2 = 0xA1; 

char frag_off1 = 0x00; //if the packets are fragmented, then this field will be used. (2 bytes) 

char frag_off2 = 0x00; 

char ttl = 0x80; // time to live (1 byte) 

char protocol = 0x11; // next protocol in the sequence UDP (1 byte) 

char hdrchks1 = 0x00; // header check sum (2 bytes) 

char hdrchks2 = 0x00; 

 

// source IP address (4 bytes) 

char srcaddr0 = 0xEF; //239    127 --> 0x7F 

char srcaddr1 = 0xBF; //191    0   --> 0x00 

char srcaddr2 = 0x69; //105    0   --> 0x00 

char srcaddr3 = 0xBA; //186    1   --> 0x01 

 

// destination IP address (4 bytes) 

char dstaddr0 = 0xC0; //192 

char dstaddr1 = 0xA8; //168 

https://github.com/61850security/R-GoSV
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char dstaddr2 = 0x01; //1 

char dstaddr3 = 0x03; //3 

 

/* UDP Header fields */ 

char srcport1 = 0xDA; 

char srcport2 = 0xD1; 

 

char dstport1 = 0x00; 

char dstport2 = 0x66; 

 

char lengt1= 0x00; 

char lengt2 = 0xB9; /* length of udp header 8 + data 177 = 185 */   

 

char chksum1 = 0xD7; 

char chksum2 = 0x3B;  

 

/* Session header */ 

char len_id = 0x01; /* Length identifier according to RFC1240 OSI connectionless transport services over */ 

char t_id = 0x40; // transport identifier  

char session_id = 0xA1; /* Non-tunnlled GOOSE */ 

char length_id = 0x18;  /*  22 + length id 1 + common header 1 = 24 */ 

char common_header= 0x80; 

char l_id = 0x16; /* length of common session header spdu length 4 + spdu num 4 + version 2 + timeofcurrent key 

4 + timeof next key 2 +  

                          security algorithm 2 + keyID 4 = 22 bytes */ 

char spdu_length1=0x00; /* length of entire SPDU =167 bytes */ 

char spdu_length2=0x00; 

char spdu_length3=0x00; 

char spdu_length4=0xA7; 

char spdu_num1=0x00;    /* spdu unique identification number */ 

char spdu_num2=0x00; 

char spdu_num3=0x00; 

char spdu_num4=0x0D; 

char ver1=0x00; 

char ver2=0x01; 

char TimeofCurrentKey1=0x00; 

char TimeofCurrentKey2=0x00; 

char TimeofCurrentKey3=0x00; 

char TimeofCurrentKey4=0x00; 

char TimeofNextKey1=0x00; 

char TimeofNextKey2=0x00; 

char sa1=0x00; /* Encryption algorithms used*/ 

char sa2=0x00; /* authentication algorithm used */ 

char keyID1=0x00;  

char keyID2=0x00; 

char keyID3=0x00; 

char keyID4=0x00; 

char len1=0x00; /* 4 length + 1 payload type + 1 simulation + 2 APPDI + 2 length + 137 = 147 */ 

char len2=0x00; 

char len3=0x00; 

char len4=0x93; 

char pl_type=0x81; /* 81 for GOOSE 82 for SV */ 

char simulation=0x00; /* boolean value*/ 

char APPID1=0x00; 

char APPID2=0x01; 

char length1=0x00; /* 137 GOOSE + 2 length = 139*/ 

char length2=0x8B; 

 

/* GOOSE message according to IEC 61850-8-1*/  

char goosePDU_tag1=0x61;  /* goosePDU tag  */ 

char goosePDU_tag2=0x81;   
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char goosePDU_length=0x86;  /* goosePDU length  */ 

char gocbRef_tag=0x80;   /* gocbRef (GOOSE Control Block Reference) tag  */ 

char gocbRef_length=0x1A;  /* gocbRef length  */ 

char gocbRef_value1=0x46;  /* gocbRef value  */ 

char gocbRef_value2=0x52; 

char gocbRef_value3=0x45; 

char gocbRef_value4=0x41; 

char gocbRef_value5=0x2D; 

char gocbRef_value6=0x47; 

char gocbRef_value7=0x6F; 

char gocbRef_value8=0x53; 

char gocbRef_value9=0x56; 

char gocbRef_value10=0x2D; 

char gocbRef_value11=0x31; 

char gocbRef_value12=0x20; 

char gocbRef_value13=0x2F; 

char gocbRef_value14=0x4C; 

char gocbRef_value15=0x4C; 

char gocbRef_value16=0x4E; 

char gocbRef_value17=0x30; 

char gocbRef_value18=0x24; 

char gocbRef_value19=0x47; 

char gocbRef_value20=0x4F; 

char gocbRef_value21=0x24; 

char gocbRef_value22=0x67; 

char gocbRef_value23=0x63; 

char gocbRef_value24=0x62; 

char gocbRef_value25=0x30; 

char gocbRef_value26=0x31;  

char timeAllowedtoLive_tag=0x81; /* timeAllowedtoLive tag  */ 

char timeAllowedtoLive_length=0x03; /* timeAllowedtoLive length  */ 

char timeAllowedtoLive_value1=0x00; /* timeAllowedtoLive value  */ 

char timeAllowedtoLive_value2=0x9C; 

char timeAllowedtoLive_value3=0x40; 

char dataset_tag=0x82;   /* data set tag*/ 

char dataset_length=0x18;  /* data set length*/ 

char dataset_value1=0x46;  /* data set value*/ 

char dataset_value2=0x52; 

char dataset_value3=0x45; 

char dataset_value4=0x41; 

char dataset_value5=0x2D; 

char dataset_value6=0x47; 

char dataset_value7=0x6F; 

char dataset_value8=0x53; 

char dataset_value9=0x56; 

char dataset_value10=0x2D; 

char dataset_value11=0x31; 

char dataset_value12=0x20; 

char dataset_value13=0x2F; 

char dataset_value14=0x4C; 

char dataset_value15=0x4C; 

char dataset_value16=0x4E; 

char dataset_value17=0x30; 

char dataset_value18=0x24; 

char dataset_value19=0x47; 

char dataset_value20=0x4F; 

char dataset_value21=0x4F; 

char dataset_value22=0x53; 

char dataset_value23=0x45; 

char dataset_value24=0x31; 

char goID_tag=0x83;   /* goID tag*/ 

char goID_length=0x0B;   /* goID length*/ 
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char goID_value1=0x46;   /* goID value [11]*/ 

char goID_value2=0x52; 

char goID_value3=0x45; 

char goID_value4=0x41; 

char goID_value5=0x2D; 

char goID_value6=0x47; 

char goID_value7=0x6F; 

char goID_value8=0x53; 

char goID_value9=0x56; 

char goID_value10=0x2D; 

char goID_value11=0x31; 

char time_tag=0x84;   /* time tag*/ 

char time_length=0x08;   /* time length*/ 

char time_value1=0x38;   /* time value*/ 

char time_value2=0x6E; 

char time_value3=0xBB; 

char time_value4=0xF3; 

char time_value5=0x42; 

char time_value6=0x17; 

char time_value7=0x28; 

char time_value8=0x0A;   /* st_Num (State Number) tag */ 

char st_Num_tag=0x85;   /* st_Num length */ 

char st_Num_length=0x01;  /* st_Num value */ 

char st_Num_value=0x01; 

char sq_Num_tag=0x86;   /* sq_Num (sequence Number) tag */ 

char sq_Num_length=0x01;  /* sq_Num length */ 

char sq_Num_value=0x0A;   /* sq_Num value */ 

char test_tag=0x87;   /*test tag*/ 

char test_length=0x01;   /*test length*/ 

char test_value=0x00;   /*test value*/ 

char confRev_tag=0x88;   /*confRev (Configuration Revision) tag*/ 

char confRev_length=0x01;  /*confRev length*/ 

char confRev_value=0x01;  /*confRev value*/ 

char ndsCom_tag=0x89;   /*ndsCom (needs Commissioning) tag*/ 

char ndsCom_length=0x01;  /*ndsCom length*/ 

char ndsCom_value=0x00;   /*ndsCom value*/ 

char numDatSetEntries_tag=0x8A;  /* number of members of Data Set */ 

char numDatSetEntries_length=0x01; 

char numDatSetEntries_value=0x08; 

char alldata_tag=0xAB;   /*all data*/ 

char alldata_length=0x20; 

char alldata_value1=0x83; 

char alldata_value2=0x01; 

char alldata_value3=0x00; 

char alldata_value4=0x84; 

char alldata_value6=0x03; 

char alldata_value5=0x03; 

char alldata_value7=0x00; 

char alldata_value8=0x00; 

char alldata_value9=0x83; 

char alldata_value10=0x01; 

char alldata_value11=0x00; 

char alldata_value12=0x84; 

char alldata_value13=0x03; 

char alldata_value14=0x03; 

char alldata_value15=0x00; 

char alldata_value16=0x00; 

char alldata_value17=0x83; 

char alldata_value18=0x01; 

char alldata_value19=0x00; 

char alldata_value20=0x84; 

char alldata_value21=0x03; 
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char alldata_value22=0x03; 

char alldata_value23=0x00; 

char alldata_value24=0x00; 

char alldata_value25=0x83; 

char alldata_value26=0x01; 

char alldata_value27=0x00; 

char alldata_value28=0x84; 

char alldata_value29=0x03; 

char alldata_value30=0x03; 

char alldata_value31=0x00; 

char alldata_value32=0x00; 

 

unsigned char goosedata[137] =  

{ 

0x61, 0x81, 0x86, 0x80, 0x1A, 0x46, 0x52, 0x45, 0x41, 0x2D, 0x47, 0x6F, 0x53, 0x56, 0x2D, 0x31, 0x20, 0x2F, 

0x4C, 0x4C, 0x4E, 0x30, 0x24, 0x47, 0x4F, 0x24, 0x67, 0x63, 0x62, 0x30, 0x31, 0x81, 0x03, 0x00, 0x9C, 0x40, 

0x82, 0x18, 0x46, 0x52, 0x45, 0x41, 0x2D, 0x47, 0x6F, 0x53, 0x56, 0x2D, 0x31, 0x20, 0x2F, 0x4C, 0x4C, 0x4E, 

0x30, 0x24, 0x47, 0x4F, 0x4F, 0x53, 0x45, 0x31, 0x83, 0x0B, 0x46, 0x52, 0x45, 0x41, 0x2D, 0x47, 0x6F, 0x53, 

0x56, 0x2D, 0x31, 0x84, 0x08, 0x38, 0x6E, 0xBB, 0xF3, 0x42, 0x17, 0x28, 0x0A, 0x85, 0x01, 0x01, 0x86, 0x01, 

0x0A, 0x87, 0x01, 0x00, 0x88, 0x01, 0x01, 0x89, 0x01, 0x00, 0x8A, 0x01, 0x08, 0xAB, 0x20, 0x83, 0x01, 0x00, 

0x84, 0x03, 0x03, 0x00, 0x00, 0x83, 0x01, 0x00, 0x84, 0x03, 0x03, 0x00, 0x00, 0x83, 0x01, 0x00, 0x84, 0x03, 

0x03, 0x00, 0x00, 0x83, 0x01, 0x00, 0x84, 0x03, 0x03, 0x00, 0x00 

};  

 

char signature=0x85;  

char sig_len=0x00; /* length of the signature value 32 bytes generated by HMAC-SHA256*/  

 

 

int main(int argc, char *argv[]) 

{ 

    int sfd; 

    int i=0,j=0; 

    struct ifreq if_idx; 

    struct ifreq if_mac; 

    int tx_len; 

    unsigned char sendbuf[B_SIZE]; 

    struct sockaddr_ll socket_address; /* The sockaddr_ll structure is a device-independent physical-layer 

address.*/ 

    char ifName[IFNAMSIZ]; 

 

    /* Get interface name */ 

    strcpy(ifName, IF_NAME); 

 

    /* Open RAW socket to send on */ 

    if ((sfd = socket(AF_PACKET, SOCK_RAW, IPPROTO_RAW)) == -1)  

    { 

        perror("socket"); 

    } 

     

    /* clear the struct ifreq if_idx with memset system call */ 

    memset(&if_idx, 0, sizeof(struct ifreq)); 

 

    /* copy interface name into struct ifreq if_idx */ 

    strncpy(if_idx.ifr_name, ifName, IFNAMSIZ-1); 

 

    /* configure the interface index */  

    if (ioctl(sfd, SIOCGIFINDEX, &if_idx) < 0) 

        perror("SIOCGIFINDEX"); 

     

    // Loop forever 
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    while(1) { 

 

 

        /* Buffer of BUF_SIZ bytes we'll construct our frame in. 

           First, clear it all to zero. */ 

        memset(sendbuf, 0, B_SIZE); 

        tx_len = 0; 

 

        /* Construct the UDP header */ 

 

        /* Destination MAC address */ 

        sendbuf[tx_len++] = DEST_MAC0; 

        sendbuf[tx_len++] = DEST_MAC1; 

        sendbuf[tx_len++] = DEST_MAC2; 

        sendbuf[tx_len++] = DEST_MAC3; 

        sendbuf[tx_len++] = DEST_MAC4; 

        sendbuf[tx_len++] = DEST_MAC5; 

 

 //source address MAC FC 61 98 EA BC 20 

 

           /* Source MAC address */ 

        sendbuf[tx_len++] = 0xA0; 

        sendbuf[tx_len++] = 0xB3; 

        sendbuf[tx_len++] = 0xCC;  

        sendbuf[tx_len++] = 0xC5;  

        sendbuf[tx_len++] = 0x77;  

        sendbuf[tx_len++] = 0xA1;  

 

 

        /* Ethertype field IP protocol */ 

        sendbuf[tx_len++] = 0x08; 

        sendbuf[tx_len++] = 0x00; 

 

        /*  PDU fields */ 

        sendbuf[tx_len++] = ver_hl;                   

        sendbuf[tx_len++] = tos;  

        sendbuf[tx_len++] = totlen1;                  

        sendbuf[tx_len++] = totlen2; 

        sendbuf[tx_len++] = identification1; 

 sendbuf[tx_len++] = identification2;                    

 sendbuf[tx_len++] = frag_off1; 

        sendbuf[tx_len++] = frag_off2;                   

        sendbuf[tx_len++] = ttl; 

        sendbuf[tx_len++] = protocol; 

        sendbuf[tx_len++] = hdrchks1; 

        sendbuf[tx_len++] = hdrchks2; 

        sendbuf[tx_len++] = srcaddr0; 

        sendbuf[tx_len++] = srcaddr1; 

        sendbuf[tx_len++] = srcaddr2; 

        sendbuf[tx_len++] = srcaddr3; 

        sendbuf[tx_len++] = dstaddr0; 

        sendbuf[tx_len++] = dstaddr1; 

        sendbuf[tx_len++] = dstaddr2; 

        sendbuf[tx_len++] = dstaddr3; 

        sendbuf[tx_len++] = srcport1; 

        sendbuf[tx_len++] = srcport2; 

        sendbuf[tx_len++] = dstport1; 

 sendbuf[tx_len++] = dstport2; 

 sendbuf[tx_len++] = lengt1; 

 sendbuf[tx_len++] = lengt2; 

 sendbuf[tx_len++] = chksum1; 

 sendbuf[tx_len++] = chksum2; 
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    sendbuf[tx_len++] = len_id; 

 sendbuf[tx_len++] = t_id; 

    sendbuf[tx_len++] = session_id; 

 sendbuf[tx_len++] = length_id; 

 sendbuf[tx_len++] = common_header; 

 sendbuf[tx_len++] = l_id; 

 sendbuf[tx_len++] = spdu_length1; 

 sendbuf[tx_len++] = spdu_length2; 

 sendbuf[tx_len++] = spdu_length3; 

 sendbuf[tx_len++] = spdu_length4; 

    sendbuf[tx_len++] = spdu_num1; 

 sendbuf[tx_len++] = spdu_num2; 

 sendbuf[tx_len++] = spdu_num3; 

 sendbuf[tx_len++] = spdu_num4; 

 sendbuf[tx_len++] = ver1; 

 sendbuf[tx_len++] = ver2; 

    sendbuf[tx_len++] = TimeofCurrentKey1; 

    sendbuf[tx_len++] = TimeofCurrentKey2; 

    sendbuf[tx_len++] = TimeofCurrentKey3; 

 sendbuf[tx_len++] = TimeofCurrentKey4; 

    sendbuf[tx_len++] = TimeofNextKey1; 

    sendbuf[tx_len++] = TimeofNextKey2; 

 sendbuf[tx_len++] = sa1; 

 sendbuf[tx_len++] = sa2; 

 sendbuf[tx_len++] = keyID1;  

 sendbuf[tx_len++] = keyID2; 

 sendbuf[tx_len++] = keyID3; 

 sendbuf[tx_len++] = keyID4; 

    sendbuf[tx_len++] = len1; 

 sendbuf[tx_len++] = len2; 

 sendbuf[tx_len++] = len3; 

 sendbuf[tx_len++] = len4; 

 sendbuf[tx_len++] = pl_type; 

 sendbuf[tx_len++] = simulation; /* boolean value*/ 

 sendbuf[tx_len++] = APPID1; 

 sendbuf[tx_len++] = APPID2; 

 sendbuf[tx_len++] = length1; 

 sendbuf[tx_len++] = length2; 

 

         

 for(j=0;j<137;j++) 

       sendbuf[tx_len++] = goosedata[j]; 

  

 sendbuf[tx_len++] = signature; 

 sendbuf[tx_len++] = sig_len; 

 

 sendbuf[tx_len++] = 0xB7; 

 sendbuf[tx_len++] = 0x09; 

 sendbuf[tx_len++] = 0xD7; 

 sendbuf[tx_len++] = 0x83;  

 

 /* Index of the network device */ 

        socket_address.sll_ifindex = if_idx.ifr_ifindex;  /* Network Interface number */ 

 

        /* Address length*/ 

        socket_address.sll_halen = ETH_ALEN; /* Length of Ethernet address */ 

 

        /* Destination MAC */ 

        socket_address.sll_addr[0] = DEST_MAC0; 

        socket_address.sll_addr[1] = DEST_MAC1; 

        socket_address.sll_addr[2] = DEST_MAC2; 
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        socket_address.sll_addr[3] = DEST_MAC3; 

        socket_address.sll_addr[4] = DEST_MAC4; 

        socket_address.sll_addr[5] = DEST_MAC5; 

 

        /* Send packet */ 

        if (sendto(sfd, sendbuf, tx_len, 0, (struct sockaddr*)&socket_address, sizeof(struct sockaddr_ll)) < 0) 

            printf("Send failed\n"); 

        else { 

            printf("Sent :"); 

            for (i=0; i < tx_len; i++) 

                printf("%02x:", sendbuf[i]); 

            printf("\n"); 

        } 

        /* Wait specified number of microseconds 

           1,000,000 microseconds = 1 second 

           */ 

        usleep(1000000); 

    } 

    return 0; 

} 
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APPENDIX D 
 

R-GOOSE Source Code 

 
/*This file is part of Github*/ 

/*https://github.com/61850security/R-GoSV*/ 

/* Source code published by (Hussain et al., 2019) */ 

/*This program is published*/ 

 

#include <arpa/inet.h> 

#include <linux/if_packet.h> 

#include <stdio.h> 

#include <string.h> 

#include <stdlib.h> 

#include <sys/ioctl.h> 

#include <sys/socket.h> 

#include <net/if.h> 

#include <netinet/ether.h> 

#include <unistd.h> 

#include <openssl/hmac.h> 

#include <openssl/evp.h> 

 

/* Keep your intended destination MAC here*/ 

#define DEST_MAC0    0xFC 

#define DEST_MAC1    0x61 

#define DEST_MAC2    0x98 

#define DEST_MAC3    0x8A 

#define DEST_MAC4    0x1F 

#define DEST_MAC5    0x2F 

 

#define IF_NAME     "eth0" 

#define B_SIZE     2048 

/* IP Header fields */ 

char ver_hl =0x45;  // version 4 and header length of ip is 20 (5) bytes (1 byte) 

char tos = 0x00; // type of service. IP precedence and Differentiated Service code point (1 byte) 

char totlen1 = 0x00; // Total length of the packet (header 20 + udp packet size 217) (2 bytes) 

char totlen2 = 0xED;                     

char identification1 = 0x6B; // unique identification of each packet (2 bytes)  

char identification2 = 0xA1; 

char frag_off1 = 0x00; //if the packets are fragmented, then this field will be used. (2 bytes) 

char frag_off2 = 0x00; 

char ttl = 0x80; // time to live (1 byte) 

char protocol = 0x11; // next protocol in the sequence UDP (1 byte) 

char hdrchks1 = 0x00; // header check sum (2 bytes) 

char hdrchks2 = 0x00; 

https://github.com/61850security/R-GoSV


202 | P a g e  
 

 

// source IP address (4 bytes) 

char srcaddr0 = 0xEF; //239    127 --> 0x7F 

char srcaddr1 = 0xBF; //191    0   --> 0x00 

char srcaddr2 = 0x69; //105    0   --> 0x00 

char srcaddr3 = 0xBA; //186    1   --> 0x01 

 

// destination IP address (4 bytes) 

char dstaddr0 = 0xC0; //192 

char dstaddr1 = 0xA8; //168 

char dstaddr2 = 0x01; //1 

char dstaddr3 = 0x03; //3 

 

/* UDP Header fields */ 

char srcport1 = 0xDA; 

char srcport2 = 0xD1; 

 

char dstport1 = 0x00; 

char dstport2 = 0x66; 

 

char lengt1= 0x00; 

char lengt2 = 0xD9; /* length of udp header 8 + udp pay load size = 209 (38+137+34) = 217 */   

 

char chksum1 = 0xD7; 

char chksum2 = 0x3B;  

/* Session header */ 

char len_id = 0x01; /* Length identifier according to RFC1240 OSI connectionless transport services over */ 

char t_id = 0x40; // transport identifier  

char session_id = 0xA1; /* Non-tunnlled goose */ 

char length_id = 0x18;  /*  length of common session header 22  + length id 1 + common header 1 = 24 */ 

char common_header= 0x80; 

char l_id = 0x16; /* length of common session header spdu length 4 + spdu num 4 + version 2 + timeofcurrent key 

4 + timeofnextkey 2 +  

                          security algorithm 2 + keyID 4 = 22 bytes */ 

char spdu_length1=0x00; /* length of entire SPDU =199 bytes */ 

char spdu_length2=0x00; /* spdu num 4 + ver 2 + TofCkey 4 + TofNKey 2 + SA 2 + keyID 4 + len 4 + pl_type 1 + 

simulation 1  */ 

char spdu_length3=0x00; /* APPID 2 + length 2 + SV size  + signature 1 + sig_len 1 + sign_val 32 =199 */ 

char spdu_length4=0xC7; 

char spdu_num1=0x00;    /* spdu unique identification number */ 

char spdu_num2=0x00; 

char spdu_num3=0x00; 

char spdu_num4=0x0D; 

char ver1=0x00; 

char ver2=0x01; 
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char TimeofCurrentKey1=0x5B; /*hexadecimal timestamp/epoch */ 

char TimeofCurrentKey2=0xFC;  /* Tuesday, November 27, 2018 4:48:00 PM */ 

char TimeofCurrentKey3=0xF6; 

char TimeofCurrentKey4=0xB0; 

char TimeofNextKey1=0x00; 

char TimeofNextKey2=0x3C; /* 60 minutes for time of next key */ 

char sa1=0x00; /* Encryption algorithms used*/ 

char sa2=0x03; /* authentication algorithm used */ 

char keyID1=0x00;  

char keyID2=0x00; 

char keyID3=0x00; 

char keyID4=0x0C; 

char len1=0x00; /* 1 payload type + 1 simulation + 2 APPDI + 2 length + goose data size 137 =143 */ 

char len2=0x00; 

char len3=0x00; 

char len4=0x8F; 

char pl_type=0x81; /* 81 for GOOSE 82 for SV */ 

char simulation=0x01; /* boolean value*/ 

char APPID1=0x00; 

char APPID2=0x01; 

char length1=0x00; /* goose data size 137 */ 

char length2=0x89; 

/* GOOSE message according to IEC 61850-8-1*/  

char goosePDU_tag1=0x61;  /* goosePDU tag  */ 

char goosePDU_tag2=0x81;   

char goosePDU_length=0x86;  /* goosePDU length  */ 

char gocbRef_tag=0x80;   /* gocbRef (GOOSE Control Block Reference) tag  */ 

char gocbRef_length=0x1A;  /* gocbRef length  */ 

char gocbRef_value1=0x46;  /* gocbRef value  */ 

char gocbRef_value2=0x52; 

char gocbRef_value3=0x45; 

char gocbRef_value4=0x41; 

char gocbRef_value5=0x2D; 

char gocbRef_value6=0x47; 

char gocbRef_value7=0x6F; 

char gocbRef_value8=0x53; 

char gocbRef_value9=0x56; 

char gocbRef_value10=0x2D; 

char gocbRef_value11=0x31; 

char gocbRef_value12=0x20; 

char gocbRef_value13=0x2F; 

char gocbRef_value14=0x4C; 

char gocbRef_value15=0x4C; 

char gocbRef_value16=0x4E; 

char gocbRef_value17=0x30; 
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char gocbRef_value18=0x24; 

char gocbRef_value19=0x47; 

char gocbRef_value20=0x4F; 

char gocbRef_value21=0x24; 

char gocbRef_value22=0x67; 

char gocbRef_value23=0x63; 

char gocbRef_value24=0x62; 

char gocbRef_value25=0x30; 

char gocbRef_value26=0x31;  

char timeAllowedtoLive_tag=0x81; /* timeAllowedtoLive tag  */ 

char timeAllowedtoLive_length=0x03; /* timeAllowedtoLive length  */ 

char timeAllowedtoLive_value1=0x00; /* timeAllowedtoLive value  */ 

char timeAllowedtoLive_value2=0x9C; 

char timeAllowedtoLive_value3=0x40; 

char dataset_tag=0x82;   /* data set tag*/ 

char dataset_length=0x18;  /* data set length*/ 

char dataset_value1=0x46;  /* data set value*/ 

char dataset_value2=0x52; 

char dataset_value3=0x45; 

char dataset_value4=0x41; 

char dataset_value5=0x2D; 

char dataset_value6=0x47; 

char dataset_value7=0x6F; 

char dataset_value8=0x53; 

char dataset_value9=0x56; 

char dataset_value10=0x2D; 

char dataset_value11=0x31; 

char dataset_value12=0x20; 

char dataset_value13=0x2F; 

char dataset_value14=0x4C; 

char dataset_value15=0x4C; 

char dataset_value16=0x4E; 

char dataset_value17=0x30; 

char dataset_value18=0x24; 

char dataset_value19=0x47; 

char dataset_value20=0x4F; 

char dataset_value21=0x4F; 

char dataset_value22=0x53; 

char dataset_value23=0x45; 

char dataset_value24=0x31; 

char goID_tag=0x83;   /* goID tag*/ 

char goID_length=0x0B;   /* goID length*/ 

char goID_value1=0x46;   /* goID value [11]*/ 

char goID_value2=0x52; 

char goID_value3=0x45; 
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char goID_value4=0x41; 

char goID_value5=0x2D; 

char goID_value6=0x47; 

char goID_value7=0x6F; 

char goID_value8=0x53; 

char goID_value9=0x56; 

char goID_value10=0x2D; 

char goID_value11=0x31; 

char time_tag=0x84;   /* time tag*/ 

char time_length=0x08;   /* time length*/ 

char time_value1=0x38;   /* time value*/ 

char time_value2=0x6E; 

char time_value3=0xBB; 

char time_value4=0xF3; 

char time_value5=0x42; 

char time_value6=0x17; 

char time_value7=0x28; 

char time_value8=0x0A;   /* st_Num (State Number) tag */ 

char st_Num_tag=0x85;   /* st_Num length */ 

char st_Num_length=0x01;   /* st_Num value */ 

char st_Num_value=0x01; 

char sq_Num_tag=0x86;   /* sq_Num (sequence Number) tag */ 

char sq_Num_length=0x01;  /* sq_Num length */ 

char sq_Num_value=0x0A;   /* sq_Num value */ 

char test_tag=0x87;   /*test tag*/ 

char test_length=0x01;   /*test length*/ 

char test_value=0x00;   /*test value*/ 

char confRev_tag=0x88;   /*confRev (Configuration Revision) tag*/ 

char confRev_length=0x01;  /*confRev length*/ 

char confRev_value=0x01;   /*confRev value*/ 

char ndsCom_tag=0x89;   /*ndsCom (needs Commissioning) tag*/ 

char ndsCom_length=0x01;  /*ndsCom length*/ 

char ndsCom_value=0x00;   /*ndsCom value*/ 

char numDatSetEntries_tag=0x8A;  /* number of members of Data Set */ 

char numDatSetEntries_length=0x01; 

char numDatSetEntries_value=0x08; 

char alldata_tag=0xAB;   /*all data*/ 

char alldata_length=0x20; 

char alldata_value1=0x83; 

char alldata_value2=0x01; 

char alldata_value3=0x00; 

char alldata_value4=0x84; 

char alldata_value6=0x03; 

char alldata_value5=0x03; 

char alldata_value7=0x00; 
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char alldata_value8=0x00; 

char alldata_value9=0x83; 

char alldata_value10=0x01; 

char alldata_value11=0x00; 

char alldata_value12=0x84; 

char alldata_value13=0x03; 

char alldata_value14=0x03; 

char alldata_value15=0x00; 

char alldata_value16=0x00; 

char alldata_value17=0x83; 

char alldata_value18=0x01; 

char alldata_value19=0x00; 

char alldata_value20=0x84; 

char alldata_value21=0x03; 

char alldata_value22=0x03; 

char alldata_value23=0x00; 

char alldata_value24=0x00; 

char alldata_value25=0x83; 

char alldata_value26=0x01; 

char alldata_value27=0x00; 

char alldata_value28=0x84; 

char alldata_value29=0x03; 

char alldata_value30=0x03; 

char alldata_value31=0x02; 

char alldata_value32=0x01; 

 

unsigned char goosedata[137] =   

 {  

0x61, 0x81, 0x86, 0x80, 0x1A, 0x46, 0x52, 0x45, 0x41, 0x2D, 0x47, 0x6F, 0x53, 0x56, 0x2D, 

0x31, 0x20, 0x2F, 0x4C, 0x4C, 0x4E, 0x30, 0x24, 0x47, 0x4F, 0x24, 0x67, 0x63, 0x62, 0x30, 

0x31, 0x81, 0x03, 0x00, 0x9C, 0x40, 0x82, 0x18, 0x46, 0x52, 0x45, 0x41, 0x2D, 0x47, 0x6F, 

0x53, 0x56, 0x2D, 0x31, 0x20, 0x2F, 0x4C, 0x4C, 0x4E, 0x30, 0x24, 0x47, 0x4F, 0x4F, 0x53, 

0x45, 0x31, 0x83, 0x0B, 0x46, 0x52, 0x45, 0x41, 0x2D, 0x47, 0x6F, 0x53, 0x56, 0x2D, 0x31, 

0x84, 0x08, 0x38, 0x6E, 0xBB, 0xF3, 0x42, 0x17, 0x28, 0x0A, 0x85, 0x01, 0x01, 0x86, 0x01, 

0x0A, 0x87, 0x01, 0x00, 0x88, 0x01, 0x01, 0x89, 0x01, 0x00, 0x8A, 0x01, 0x08, 0xAB, 0x20, 

0x83, 0x01, 0x00, 0x84, 0x03, 0x03, 0x00, 0x00, 0x83, 0x01, 0x00, 0x84, 0x03, 0x03, 0x00, 

0x00, 0x83, 0x01, 0x00, 0x84, 0x03, 0x03, 0x00, 0x00, 0x83, 0x01, 0x00, 0x84, 0x03, 0x03, 

0x02, 0x01 

};  

unsigned char signature_data[173]= 

{ 

0xA1, 0x18, 0x80, 0x16, 0x00, 0x00, 0x00, 0xC7, 0x00, 0x00, 0x00, 0x0D, 0x00, 0x01, 0x5B, 0xFC, 

0xF6, 0xB0, 0x00, 0x3C, 0x02, 0x03, 0x00, 0x00, 0x00, 0x0C, 0x00, 0x00, 0x00, 0x8F, 0x81, 0x01, 

0x00, 0x01, 0x00, 0x89, 0x61, 0x81, 0x86, 0x80, 0x1A, 0x46, 0x52, 0x45, 0x41, 0x2D, 0x47, 0x6F, 

0x53, 0x56, 0x2D, 0x31, 0x20, 0x2F, 0x4C, 0x4C, 0x4E, 0x30, 0x24, 0x47, 0x4F, 0x24, 0x67, 0x63, 
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0x62, 0x30, 0x31, 0x81, 0x03, 0x00, 0x9C, 0x40, 0x82, 0x18, 0x46, 0x52, 0x45, 0x41, 0x2D, 0x47, 

0x6F, 0x53, 0x56, 0x2D, 0x31, 0x20, 0x2F, 0x4C, 0x4C, 0x4E, 0x30, 0x24, 0x47, 0x4F, 0x4F, 0x53, 

0x45, 0x31, 0x83, 0x0B, 0x46, 0x52, 0x45, 0x41, 0x2D, 0x47, 0x6F, 0x53, 0x56, 0x2D, 0x31, 0x84, 

0x08, 0x38, 0x6E, 0xBB, 0xF3, 0x42, 0x17, 0x28, 0x0A, 0x85, 0x01, 0x01, 0x86, 0x01, 0x0A, 0x87, 

0x01, 0x00, 0x88, 0x01, 0x01, 0x89, 0x01, 0x00, 0x8A, 0x01, 0x08, 0xAB, 0x20, 0x83, 0x01, 0x00, 

0x84, 0x03, 0x03, 0x00, 0x00, 0x83, 0x01, 0x00, 0x84, 0x03, 0x03, 0x00, 0x00, 0x83, 0x01, 0x00, 

0x84, 0x03, 0x03, 0x00, 0x00, 0x83, 0x01, 0x00, 0x84, 0x03, 0x03, 0x02, 0x01 

};  //updated  

unsigned char ciphertext[173]= 

{ 

0xA3, 0x50, 0x43, 0x00, 0xf3, 0x8f, 0x23, 0xb5, 0x3e, 0x07, 0x34, 0x99, 0x75, 0xd8, 0xbe, 0x6f,  

0x7c, 0x66, 0x48, 0x6c, 0xa9, 0xe0, 0x7e, 0x8e, 0x7f, 0x3f, 0x16, 0x02, 0x31, 0x7f, 0x28, 0x4e, 

0xdc, 0x48, 0xff, 0x26, 0x99, 0xd5, 0x28, 0xa7, 0x22, 0x54, 0x0e, 0x0a, 0x19, 0x93, 0xa4, 0xb7, 

0x56, 0x52, 0xAD, 0xC9, 0x68, 0x3C, 0x82, 0xFD, 0xAF, 0x30, 0xAF, 0x7D, 0x48, 0xE8, 0x8B, 0x8E, 

0x9B, 0x7C, 0xF9, 0x1C, 0x27, 0x0B, 0x05, 0xB8, 0x2B, 0xF7, 0x8D, 0xF2, 0x4F, 0x0D, 0xAB, 0x4D, 

0x57, 0xDA, 0x29, 0x0B, 0x7E, 0x75, 0x24, 0x24, 0x9A, 0x7C, 0xAA, 0x7A, 0x38, 0x7C, 0x1C, 0xAA, 

0x8F, 0x39, 0xA8, 0xE3, 0x74, 0xE5, 0xBB, 0x2F, 0x6A, 0x9E, 0x39, 0xB0, 0x32, 0x9D, 0x56, 0x7E, 

0xA8, 0x83, 0xE3, 0xF8, 0xEB, 0x2E, 0x97, 0xD8, 0x04, 0xA0, 0x4E, 0x56, 0x5D, 0xC6, 0xC2, 0xBB,  

0x5B, 0x26, 0x7C, 0x5E, 0x91, 0x41, 0x97, 0x08, 0x15, 0x30, 0x6D, 0x8E, 0x5F, 0x0E, 0x90, 0x13, 

0xC4, 0x8F, 0xF9, 0x60, 0x66, 0x84, 0x08, 0x30, 0xD9, 0xFB, 0xBA, 0x97, 0x44, 0xC1, 0xBE, 0xA3, 

0xAD, 0xA6, 0x37, 0x75, 0x18, 0xF6, 0xDB, 0xD8, 0x3E, 0x4B, 0xAA, 0x82, 0x21   

};  

char signature=0x85;  

char sig_len=0x20; /* length of the signature value 32 bytes generated by HMAC-SHA256*/  

char sig_val[32]= /* It is calculated from session identifier(SI) to end of user data payload */  

{ 

0x94, 0x86, 0x5b, 0x96, 0xbf, 0xc8, 0x8d, 0x25, 0x29, 0xd1, 0x15, 0x24, 0xd2, 0x2b, 0xcb, 0x62,  

0x58, 0xa5, 0x61, 0x9a, 0x81, 0x91, 0x99, 0x25, 0x06, 0x88, 0x0b, 0x96, 0xfa, 0x9c, 0x6a, 0x8c  

 }; 

int main(int argc, char *argv[]) 

{ 

    int sfd; 

    int i=0,j=0; 

    struct ifreq if_idx; 

    struct ifreq if_mac; 

    int tx_len; 

    unsigned char sendbuf[B_SIZE],Data[173]; 

    struct sockaddr_ll socket_address; /* The sockaddr_ll structure is a device-independent physical-layer 

address.*/ 

    char ifName[IFNAMSIZ]; 

    unsigned char key[14]= { 0x32, 0x21, 0x23, 0x52, 0x71, 0x98, 0x24, 0x03, 0x38, 0x27, 0x01, 0x12, 0x95, 0x23}; 

    unsigned char *hash; 

 

    /* Get interface name */ 

    strcpy(ifName, IF_NAME); 
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    /* Open RAW socket to send on */ 

    if ((sfd = socket(AF_PACKET, SOCK_RAW, IPPROTO_RAW)) == -1)  

    { 

        perror("socket"); 

    } 

     

    /* clear the struct ifreq if_idx with memset system call */ 

    memset(&if_idx, 0, sizeof(struct ifreq)); 

 

    /* copy interface name into struct ifreq if_idx */ 

    strncpy(if_idx.ifr_name, ifName, IFNAMSIZ-1); 

 

    /* configure the interface index */  

    if (ioctl(sfd, SIOCGIFINDEX, &if_idx) < 0) 

        perror("SIOCGIFINDEX"); 

     

    // Loop forever 

    while(1) { 

        /* Buffer of BUF_SIZ bytes we'll construct our frame in. 

           First, clear it all to zero. */ 

        memset(sendbuf, 0, B_SIZE); 

        tx_len = 0; 

 

        /* Construct the UDP header */ 

 

        /* Destination MAC address */ 

        sendbuf[tx_len++] = DEST_MAC0; 

        sendbuf[tx_len++] = DEST_MAC1; 

        sendbuf[tx_len++] = DEST_MAC2; 

        sendbuf[tx_len++] = DEST_MAC3; 

        sendbuf[tx_len++] = DEST_MAC4; 

        sendbuf[tx_len++] = DEST_MAC5; 

 

        /* Source MAC address */ 

        sendbuf[tx_len++] = 0xA0; 

        sendbuf[tx_len++] = 0xB3; 

        sendbuf[tx_len++] = 0xCC;  

        sendbuf[tx_len++] = 0xC5;  

        sendbuf[tx_len++] = 0x77;  

        sendbuf[tx_len++] = 0xA1;  

 

        /* Ethertype field IP protocol */ 

        sendbuf[tx_len++] = 0x08; 

        sendbuf[tx_len++] = 0x00; 
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        /*  PDU fields */ 

        sendbuf[tx_len++] = ver_hl;                   

        sendbuf[tx_len++] = tos;  

        sendbuf[tx_len++] = totlen1;                  

        sendbuf[tx_len++] = totlen2; 

        sendbuf[tx_len++] = identification1; 

 sendbuf[tx_len++] = identification2;                    

 sendbuf[tx_len++] = frag_off1; 

        sendbuf[tx_len++] = frag_off2;                   

        sendbuf[tx_len++] = ttl; 

        sendbuf[tx_len++] = protocol; 

        sendbuf[tx_len++] = hdrchks1; 

        sendbuf[tx_len++] = hdrchks2; 

        sendbuf[tx_len++] = srcaddr0; 

        sendbuf[tx_len++] = srcaddr1; 

        sendbuf[tx_len++] = srcaddr2; 

        sendbuf[tx_len++] = srcaddr3; 

        sendbuf[tx_len++] = dstaddr0; 

        sendbuf[tx_len++] = dstaddr1; 

        sendbuf[tx_len++] = dstaddr2; 

        sendbuf[tx_len++] = dstaddr3; 

        sendbuf[tx_len++] = srcport1; 

        sendbuf[tx_len++] = srcport2; 

        sendbuf[tx_len++] = dstport1; 

 sendbuf[tx_len++] = dstport2; 

 sendbuf[tx_len++] = lengt1; 

 sendbuf[tx_len++] = lengt2; 

 sendbuf[tx_len++] = chksum1; 

 sendbuf[tx_len++] = chksum2; 

  

        sendbuf[tx_len++] = len_id; 

 sendbuf[tx_len++] = t_id; 

     

    /*  sendbuf[tx_len++] = session_id; 

 sendbuf[tx_len++] = length_id; 

 sendbuf[tx_len++] = common_header; 

 sendbuf[tx_len++] = l_id; 

 sendbuf[tx_len++] = spdu_length1; 

 sendbuf[tx_len++] = spdu_length2; 

 sendbuf[tx_len++] = spdu_length3; 

 sendbuf[tx_len++] = spdu_length4; 

        sendbuf[tx_len++] = spdu_num1; 

 sendbuf[tx_len++] = spdu_num2; 

 sendbuf[tx_len++] = spdu_num3; 
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 sendbuf[tx_len++] = spdu_num4; 

 sendbuf[tx_len++] = ver1; 

 sendbuf[tx_len++] = ver2; 

        sendbuf[tx_len++] = TimeofCurrentKey1; 

        sendbuf[tx_len++] = TimeofCurrentKey2; 

        sendbuf[tx_len++] = TimeofCurrentKey3; 

 sendbuf[tx_len++] = TimeofCurrentKey4; 

        sendbuf[tx_len++] = TimeofNextKey1; 

        sendbuf[tx_len++] = TimeofNextKey2; 

 sendbuf[tx_len++] = sa1; 

 sendbuf[tx_len++] = sa2; 

 sendbuf[tx_len++] = keyID1;  

 sendbuf[tx_len++] = keyID2; 

 sendbuf[tx_len++] = keyID3; 

 sendbuf[tx_len++] = keyID4; 

        sendbuf[tx_len++] = len1; 

 sendbuf[tx_len++] = len2; 

 sendbuf[tx_len++] = len3; 

 sendbuf[tx_len++] = len4; 

 sendbuf[tx_len++] = pl_type; 

 sendbuf[tx_len++] = simulation;  

 sendbuf[tx_len++] = APPID1; 

 sendbuf[tx_len++] = APPID2; 

 sendbuf[tx_len++] = length1; 

 sendbuf[tx_len++] = length2; 

 

 for(j=0;j<137;j++) 

       sendbuf[tx_len++] = goosedata[j]; 

 */ 

 

 for(j=0;j<173;j++) 

       sendbuf[tx_len++] = ciphertext[j]; 

 sendbuf[tx_len++] = signature; 

 sendbuf[tx_len++] = sig_len; 

 

        /*     

 for(j=0;j<32;j++) 

       sendbuf[tx_len++] = hash[j]; */ 

 for(j=0;j<32;j++) 

       sendbuf[tx_len++] = sig_val[j]; 

 

 /*sendbuf[tx_len++] = 0x3C; 

 sendbuf[tx_len++] = 0x1D; 

 sendbuf[tx_len++] = 0x1C; 

 sendbuf[tx_len++] = 0x98;  */ 
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 sendbuf[tx_len++] = 0xEF; 

 sendbuf[tx_len++] = 0x1B; 

 sendbuf[tx_len++] = 0x13; 

 sendbuf[tx_len++] = 0x81;  

 

 /* Index of the network device */ 

        socket_address.sll_ifindex = if_idx.ifr_ifindex;  /* Network Interface number */ 

 

        /* Address length*/ 

        socket_address.sll_halen = ETH_ALEN; /* Length of Ethernet address */ 

 

        /* Destination MAC */ 

        socket_address.sll_addr[0] = DEST_MAC0; 

        socket_address.sll_addr[1] = DEST_MAC1; 

        socket_address.sll_addr[2] = DEST_MAC2; 

        socket_address.sll_addr[3] = DEST_MAC3; 

        socket_address.sll_addr[4] = DEST_MAC4; 

        socket_address.sll_addr[5] = DEST_MAC5; 

 

        /* Send packet */ 

        if (sendto(sfd, sendbuf, tx_len, 0, (struct sockaddr*)&socket_address, sizeof(struct sockaddr_ll)) < 0) 

            printf("Send failed\n"); 

        else { 

            printf("Sent :"); 

            for (i=0; i < tx_len; i++) 

                printf("%02x:", sendbuf[i]); 

            printf("\n"); 

        } 

        /* Wait specified number of microseconds 

           1,000,000 microseconds = 1 second 

           */ 

        usleep(1000000); 

    } 

    return 0; 

} 
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APPENDIX E 
 

EtM Sender Source Code 

 
/*This file is part of Github*/ 

/*https://github.com/61850security/S-GoSV-part-2*/ 

/* Source code published by (Hussain, Farooq, et al., 2020) */ 

/*This program is published*/ 

 

#include <stdio.h> 

#include <stdlib.h> 

#include <math.h> 

#include <string.h>  

#include <openssl/hmac.h> 

#include <openssl/evp.h> 

#include <sys/time.h> 

#include <arpa/inet.h> 

#include <linux/if_packet.h> 

#include <string.h> 

#include <sys/ioctl.h> 

#include <sys/socket.h> 

#include <net/if.h> 

#include <netinet/ether.h> 

#include <unistd.h> 

 

/* 

#define DEST_MAC0    0xFF 

#define DEST_MAC1    0xFF 

#define DEST_MAC2    0xFF 

#define DEST_MAC3    0xFF 

#define DEST_MAC4    0xFF 

#define DEST_MAC5    0xFF 

*/ 

 

#define DEST_MAC0    0x08 

#define DEST_MAC1    0x00 

#define DEST_MAC2    0x27 

#define DEST_MAC3    0xF8 

#define DEST_MAC4    0x42 

#define DEST_MAC5    0xA7 

 

// We can set standard multicast destination address as 01 0C CD 01 03 FF 

 

#define IF_NAME     "eth0"  /* your system interface name */ 

#define BUF_SIZ     2048 

https://github.com/61850security/R-GoSV
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/* Session layer fields */ 

 

char APPID1=0x00; 

char APPID2=0x01; 

char length1=0x00;  

char length2=0x66; 

char resrv1_1=0x00;        /* int16_t resrv1;  */ 

char resrv1_2=0x00;                    

char resrv2_1=0x00;       /* int16_t resrv2 */ 

char resrv2_2=0x00;                   

char session_id = 0xA2;  

char length_id = 0x18;   

char common_header= 0x80; 

char l_id = 0x16;  

char spdu_length1=0x00;  

char spdu_length2=0x00;  

char spdu_length3=0x00;  

char spdu_length4=0xA4; 

char spdu_num1=0x00;     

char spdu_num2=0x00; 

char spdu_num3=0x00; 

char spdu_num4=0x0C; 

char ver1=0x00; 

char ver2=0x01; 

char TimeofCurrentKey1=0x5B;  

char TimeofCurrentKey2=0xFC;  

char TimeofCurrentKey3=0xF6; 

char TimeofCurrentKey4=0xB0; 

char TimeofNextKey1=0x00; 

char TimeofNextKey2=0x3C;  

char sa1=0x02;  

char sa2=0x03;  

char keyID1=0x00;  

char keyID2=0x00; 

char keyID3=0x00; 

char keyID4=0x0D; 

char len1=0x00;  

char len2=0x00; 

char len3=0x00; 

char len4=0x6C; 

char pl_type=0x82;  

char simulation=0x01;  
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/* Sample Value fields according to IEC 61850-9-2 */ 

char sav_PDU_tag=0x60;               /* sav_PDU tag  */ 

char sav_PDU_length=0x64;       /* sav_PDU length - size of APDU */ 

char noASDU_tag=0x80;       /* number of ASDU tag  */  

char noASDU_length=0x01;             /* number of ASDU length */ 

char noASDU=0x01;                    /* noASDU value  */ 

char SequenceofASDU_tag=0xA2;        /* SequenceofASDU tag   */ 

char SequenceofASDU_length=0x5F;     /* SequenceofASDU length - size of all ASDU  */ 

char ASDU_tag=0x30;                  /* ASDU tag */ 

char ASDU_length=0x5D;               /* ASDU length */ 

char svID_tag =0x80;                 /* Sample Value identifier tag   */ 

char svID_length =0x0C;              /* Sample Value identifier length */ 

char svID_1=0x46;                    /*  svID[12] naming   */ 

char svID_2=0x52; 

char svID_3=0x45; 

char svID_4=0x41; 

char svID_5=0x2D; 

char svID_6=0x47; 

char svID_7=0x6F; 

char svID_8=0x53; 

char svID_9=0x56; 

char svID_10=0x2D;   

char svID_11=0x31; 

char svID_12=0x20; 

char smpCnt_tag=0x82;                /* sample count tag */ 

char smpCnt_length =0x02;            /* sample count length */ 

char smpCnt_1=0x00;                  /* sample count */ 

char smpCnt_2=0x08; 

char confRev_tag=0x83;               /* confRev tag - configuratin revision number */ 

char confRev_length=0x04;            /* confRev length */ 

char confRev1=0x00;                  /* confRev value */ 

char confRev2=0x00;        

char confRev3=0x00; 

char confRev4=0x01;                    

char smpSynch_tag = 0x85;            /* smpSynch tag -synchronisation identifier */ 

char smpSynch_length =0x01;          /* smpSynch_length */ 

char smpSynch =0x00;        /* smpSynch value  */ 

char SequenceofData_tag =0x87;       /* SequenceofData tag */ 

char SequenceofData_length=0x40;     /* SequenceofData length */ 

 

 

/* Enter your custom measurement values in hexa decimal    */ 

char a[64]=     { 0x00, 0x00, 0x00, 0x5A, 0x12, 0x15, 0x12, 0x64, 

                  0x11, 0x12, 0x18, 0x22, 0x14, 0x12, 0x17, 0x16,  

    0x30, 0x42, 0x10, 0x14, 0x12, 0x15, 0x12, 0x64, 
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                  0x11, 0x12, 0x18, 0x22, 0x14, 0x12, 0x17, 0x16,  

    0x30, 0x42, 0x10, 0x14, 0x12, 0x15, 0x12, 0x64, 

                  0x11, 0x12, 0x18, 0x22, 0x14, 0x12, 0x17, 0x16,  

    0x30, 0x42, 0x10, 0x14, 0x12, 0x15, 0x12, 0x64, 

                  0x11, 0x12, 0x18, 0x22, 0x14, 0x12, 0x17, 0x16 }; 

 

unsigned char s[256] =  

 { 

    0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5, 0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76, 

    0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0, 0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0, 

    0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC, 0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15, 

    0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A, 0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75, 

    0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0, 0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84, 

    0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B, 0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF, 

    0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85, 0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8, 

    0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5, 0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2, 

    0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17, 0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73, 

    0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88, 0x46, 0xEE, 0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB, 

    0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C, 0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79, 

    0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9, 0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08, 

    0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6, 0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A, 

    0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E, 0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E, 

    0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94, 0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF, 

    0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68, 0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16 

 }; 

 unsigned char inv_s[256] =  

 { 

    0x52, 0x09, 0x6A, 0xD5, 0x30, 0x36, 0xA5, 0x38, 0xBF, 0x40, 0xA3, 0x9E, 0x81, 0xF3, 0xD7, 0xFB, 

    0x7C, 0xE3, 0x39, 0x82, 0x9B, 0x2F, 0xFF, 0x87, 0x34, 0x8E, 0x43, 0x44, 0xC4, 0xDE, 0xE9, 0xCB, 

    0x54, 0x7B, 0x94, 0x32, 0xA6, 0xC2, 0x23, 0x3D, 0xEE, 0x4C, 0x95, 0x0B, 0x42, 0xFA, 0xC3, 0x4E, 

    0x08, 0x2E, 0xA1, 0x66, 0x28, 0xD9, 0x24, 0xB2, 0x76, 0x5B, 0xA2, 0x49, 0x6D, 0x8B, 0xD1, 0x25, 

    0x72, 0xF8, 0xF6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xD4, 0xA4, 0x5C, 0xCC, 0x5D, 0x65, 0xB6, 0x92, 

    0x6C, 0x70, 0x48, 0x50, 0xFD, 0xED, 0xB9, 0xDA, 0x5E, 0x15, 0x46, 0x57, 0xA7, 0x8D, 0x9D, 0x84, 

    0x90, 0xD8, 0xAB, 0x00, 0x8C, 0xBC, 0xD3, 0x0A, 0xF7, 0xE4, 0x58, 0x05, 0xB8, 0xB3, 0x45, 0x06, 

    0xD0, 0x2C, 0x1E, 0x8F, 0xCA, 0x3F, 0x0F, 0x02, 0xC1, 0xAF, 0xBD, 0x03, 0x01, 0x13, 0x8A, 0x6B, 

    0x3A, 0x91, 0x11, 0x41, 0x4F, 0x67, 0xDC, 0xEA, 0x97, 0xF2, 0xCF, 0xCE, 0xF0, 0xB4, 0xE6, 0x73, 

    0x96, 0xAC, 0x74, 0x22, 0xE7, 0xAD, 0x35, 0x85, 0xE2, 0xF9, 0x37, 0xE8, 0x1C, 0x75, 0xDF, 0x6E, 

    0x47, 0xF1, 0x1A, 0x71, 0x1D, 0x29, 0xC5, 0x89, 0x6F, 0xB7, 0x62, 0x0E, 0xAA, 0x18, 0xBE, 0x1B, 

    0xFC, 0x56, 0x3E, 0x4B, 0xC6, 0xD2, 0x79, 0x20, 0x9A, 0xDB, 0xC0, 0xFE, 0x78, 0xCD, 0x5A, 0xF4, 

    0x1F, 0xDD, 0xA8, 0x33, 0x88, 0x07, 0xC7, 0x31, 0xB1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xEC, 0x5F, 

    0x60, 0x51, 0x7F, 0xA9, 0x19, 0xB5, 0x4A, 0x0D, 0x2D, 0xE5, 0x7A, 0x9F, 0x93, 0xC9, 0x9C, 0xEF, 

    0xA0, 0xE0, 0x3B, 0x4D, 0xAE, 0x2A, 0xF5, 0xB0, 0xC8, 0xEB, 0xBB, 0x3C, 0x83, 0x53, 0x99, 0x61, 

    0x17, 0x2B, 0x04, 0x7E, 0xBA, 0x77, 0xD6, 0x26, 0xE1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0C, 0x7D 

 }; 
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unsigned char mul2[] = 

{ 

    0x00,0x02,0x04,0x06,0x08,0x0a,0x0c,0x0e,0x10,0x12,0x14,0x16,0x18,0x1a,0x1c,0x1e, 

    0x20,0x22,0x24,0x26,0x28,0x2a,0x2c,0x2e,0x30,0x32,0x34,0x36,0x38,0x3a,0x3c,0x3e, 

    0x40,0x42,0x44,0x46,0x48,0x4a,0x4c,0x4e,0x50,0x52,0x54,0x56,0x58,0x5a,0x5c,0x5e, 

    0x60,0x62,0x64,0x66,0x68,0x6a,0x6c,0x6e,0x70,0x72,0x74,0x76,0x78,0x7a,0x7c,0x7e, 

    0x80,0x82,0x84,0x86,0x88,0x8a,0x8c,0x8e,0x90,0x92,0x94,0x96,0x98,0x9a,0x9c,0x9e, 

    0xa0,0xa2,0xa4,0xa6,0xa8,0xaa,0xac,0xae,0xb0,0xb2,0xb4,0xb6,0xb8,0xba,0xbc,0xbe, 

    0xc0,0xc2,0xc4,0xc6,0xc8,0xca,0xcc,0xce,0xd0,0xd2,0xd4,0xd6,0xd8,0xda,0xdc,0xde, 

    0xe0,0xe2,0xe4,0xe6,0xe8,0xea,0xec,0xee,0xf0,0xf2,0xf4,0xf6,0xf8,0xfa,0xfc,0xfe, 

    0x1b,0x19,0x1f,0x1d,0x13,0x11,0x17,0x15,0x0b,0x09,0x0f,0x0d,0x03,0x01,0x07,0x05, 

    0x3b,0x39,0x3f,0x3d,0x33,0x31,0x37,0x35,0x2b,0x29,0x2f,0x2d,0x23,0x21,0x27,0x25, 

    0x5b,0x59,0x5f,0x5d,0x53,0x51,0x57,0x55,0x4b,0x49,0x4f,0x4d,0x43,0x41,0x47,0x45, 

    0x7b,0x79,0x7f,0x7d,0x73,0x71,0x77,0x75,0x6b,0x69,0x6f,0x6d,0x63,0x61,0x67,0x65, 

    0x9b,0x99,0x9f,0x9d,0x93,0x91,0x97,0x95,0x8b,0x89,0x8f,0x8d,0x83,0x81,0x87,0x85, 

    0xbb,0xb9,0xbf,0xbd,0xb3,0xb1,0xb7,0xb5,0xab,0xa9,0xaf,0xad,0xa3,0xa1,0xa7,0xa5, 

    0xdb,0xd9,0xdf,0xdd,0xd3,0xd1,0xd7,0xd5,0xcb,0xc9,0xcf,0xcd,0xc3,0xc1,0xc7,0xc5, 

    0xfb,0xf9,0xff,0xfd,0xf3,0xf1,0xf7,0xf5,0xeb,0xe9,0xef,0xed,0xe3,0xe1,0xe7,0xe5 

}; 

 

unsigned char mul_3[] =  

{  

    0x00,0x03,0x06,0x05,0x0c,0x0f,0x0a,0x09,0x18,0x1b,0x1e,0x1d,0x14,0x17,0x12,0x11, 

    0x30,0x33,0x36,0x35,0x3c,0x3f,0x3a,0x39,0x28,0x2b,0x2e,0x2d,0x24,0x27,0x22,0x21, 

    0x60,0x63,0x66,0x65,0x6c,0x6f,0x6a,0x69,0x78,0x7b,0x7e,0x7d,0x74,0x77,0x72,0x71, 

    0x50,0x53,0x56,0x55,0x5c,0x5f,0x5a,0x59,0x48,0x4b,0x4e,0x4d,0x44,0x47,0x42,0x41, 

    0xc0,0xc3,0xc6,0xc5,0xcc,0xcf,0xca,0xc9,0xd8,0xdb,0xde,0xdd,0xd4,0xd7,0xd2,0xd1, 

    0xf0,0xf3,0xf6,0xf5,0xfc,0xff,0xfa,0xf9,0xe8,0xeb,0xee,0xed,0xe4,0xe7,0xe2,0xe1, 

    0xa0,0xa3,0xa6,0xa5,0xac,0xaf,0xaa,0xa9,0xb8,0xbb,0xbe,0xbd,0xb4,0xb7,0xb2,0xb1, 

    0x90,0x93,0x96,0x95,0x9c,0x9f,0x9a,0x99,0x88,0x8b,0x8e,0x8d,0x84,0x87,0x82,0x81, 

    0x9b,0x98,0x9d,0x9e,0x97,0x94,0x91,0x92,0x83,0x80,0x85,0x86,0x8f,0x8c,0x89,0x8a, 

    0xab,0xa8,0xad,0xae,0xa7,0xa4,0xa1,0xa2,0xb3,0xb0,0xb5,0xb6,0xbf,0xbc,0xb9,0xba, 

    0xfb,0xf8,0xfd,0xfe,0xf7,0xf4,0xf1,0xf2,0xe3,0xe0,0xe5,0xe6,0xef,0xec,0xe9,0xea, 

    0xcb,0xc8,0xcd,0xce,0xc7,0xc4,0xc1,0xc2,0xd3,0xd0,0xd5,0xd6,0xdf,0xdc,0xd9,0xda, 

    0x5b,0x58,0x5d,0x5e,0x57,0x54,0x51,0x52,0x43,0x40,0x45,0x46,0x4f,0x4c,0x49,0x4a, 

    0x6b,0x68,0x6d,0x6e,0x67,0x64,0x61,0x62,0x73,0x70,0x75,0x76,0x7f,0x7c,0x79,0x7a, 

    0x3b,0x38,0x3d,0x3e,0x37,0x34,0x31,0x32,0x23,0x20,0x25,0x26,0x2f,0x2c,0x29,0x2a, 

    0x0b,0x08,0x0d,0x0e,0x07,0x04,0x01,0x02,0x13,0x10,0x15,0x16,0x1f,0x1c,0x19,0x1a 

}; 

 

unsigned char mul_9[] =  

{ 

    0x00,0x09,0x12,0x1b,0x24,0x2d,0x36,0x3f,0x48,0x41,0x5a,0x53,0x6c,0x65,0x7e,0x77, 

    0x90,0x99,0x82,0x8b,0xb4,0xbd,0xa6,0xaf,0xd8,0xd1,0xca,0xc3,0xfc,0xf5,0xee,0xe7, 

    0x3b,0x32,0x29,0x20,0x1f,0x16,0x0d,0x04,0x73,0x7a,0x61,0x68,0x57,0x5e,0x45,0x4c, 
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    0xab,0xa2,0xb9,0xb0,0x8f,0x86,0x9d,0x94,0xe3,0xea,0xf1,0xf8,0xc7,0xce,0xd5,0xdc, 

    0x76,0x7f,0x64,0x6d,0x52,0x5b,0x40,0x49,0x3e,0x37,0x2c,0x25,0x1a,0x13,0x08,0x01, 

    0xe6,0xef,0xf4,0xfd,0xc2,0xcb,0xd0,0xd9,0xae,0xa7,0xbc,0xb5,0x8a,0x83,0x98,0x91, 

    0x4d,0x44,0x5f,0x56,0x69,0x60,0x7b,0x72,0x05,0x0c,0x17,0x1e,0x21,0x28,0x33,0x3a, 

    0xdd,0xd4,0xcf,0xc6,0xf9,0xf0,0xeb,0xe2,0x95,0x9c,0x87,0x8e,0xb1,0xb8,0xa3,0xaa, 

    0xec,0xe5,0xfe,0xf7,0xc8,0xc1,0xda,0xd3,0xa4,0xad,0xb6,0xbf,0x80,0x89,0x92,0x9b, 

    0x7c,0x75,0x6e,0x67,0x58,0x51,0x4a,0x43,0x34,0x3d,0x26,0x2f,0x10,0x19,0x02,0x0b, 

    0xd7,0xde,0xc5,0xcc,0xf3,0xfa,0xe1,0xe8,0x9f,0x96,0x8d,0x84,0xbb,0xb2,0xa9,0xa0, 

    0x47,0x4e,0x55,0x5c,0x63,0x6a,0x71,0x78,0x0f,0x06,0x1d,0x14,0x2b,0x22,0x39,0x30, 

    0x9a,0x93,0x88,0x81,0xbe,0xb7,0xac,0xa5,0xd2,0xdb,0xc0,0xc9,0xf6,0xff,0xe4,0xed, 

    0x0a,0x03,0x18,0x11,0x2e,0x27,0x3c,0x35,0x42,0x4b,0x50,0x59,0x66,0x6f,0x74,0x7d, 

    0xa1,0xa8,0xb3,0xba,0x85,0x8c,0x97,0x9e,0xe9,0xe0,0xfb,0xf2,0xcd,0xc4,0xdf,0xd6, 

    0x31,0x38,0x23,0x2a,0x15,0x1c,0x07,0x0e,0x79,0x70,0x6b,0x62,0x5d,0x54,0x4f,0x46 

}; 

 

unsigned char mul_11[] =  

{ 

    0x00,0x0b,0x16,0x1d,0x2c,0x27,0x3a,0x31,0x58,0x53,0x4e,0x45,0x74,0x7f,0x62,0x69, 

    0xb0,0xbb,0xa6,0xad,0x9c,0x97,0x8a,0x81,0xe8,0xe3,0xfe,0xf5,0xc4,0xcf,0xd2,0xd9, 

    0x7b,0x70,0x6d,0x66,0x57,0x5c,0x41,0x4a,0x23,0x28,0x35,0x3e,0x0f,0x04,0x19,0x12, 

    0xcb,0xc0,0xdd,0xd6,0xe7,0xec,0xf1,0xfa,0x93,0x98,0x85,0x8e,0xbf,0xb4,0xa9,0xa2, 

    0xf6,0xfd,0xe0,0xeb,0xda,0xd1,0xcc,0xc7,0xae,0xa5,0xb8,0xb3,0x82,0x89,0x94,0x9f, 

    0x46,0x4d,0x50,0x5b,0x6a,0x61,0x7c,0x77,0x1e,0x15,0x08,0x03,0x32,0x39,0x24,0x2f, 

    0x8d,0x86,0x9b,0x90,0xa1,0xaa,0xb7,0xbc,0xd5,0xde,0xc3,0xc8,0xf9,0xf2,0xef,0xe4, 

    0x3d,0x36,0x2b,0x20,0x11,0x1a,0x07,0x0c,0x65,0x6e,0x73,0x78,0x49,0x42,0x5f,0x54, 

    0xf7,0xfc,0xe1,0xea,0xdb,0xd0,0xcd,0xc6,0xaf,0xa4,0xb9,0xb2,0x83,0x88,0x95,0x9e, 

    0x47,0x4c,0x51,0x5a,0x6b,0x60,0x7d,0x76,0x1f,0x14,0x09,0x02,0x33,0x38,0x25,0x2e, 

    0x8c,0x87,0x9a,0x91,0xa0,0xab,0xb6,0xbd,0xd4,0xdf,0xc2,0xc9,0xf8,0xf3,0xee,0xe5, 

    0x3c,0x37,0x2a,0x21,0x10,0x1b,0x06,0x0d,0x64,0x6f,0x72,0x79,0x48,0x43,0x5e,0x55, 

    0x01,0x0a,0x17,0x1c,0x2d,0x26,0x3b,0x30,0x59,0x52,0x4f,0x44,0x75,0x7e,0x63,0x68, 

    0xb1,0xba,0xa7,0xac,0x9d,0x96,0x8b,0x80,0xe9,0xe2,0xff,0xf4,0xc5,0xce,0xd3,0xd8, 

    0x7a,0x71,0x6c,0x67,0x56,0x5d,0x40,0x4b,0x22,0x29,0x34,0x3f,0x0e,0x05,0x18,0x13, 

    0xca,0xc1,0xdc,0xd7,0xe6,0xed,0xf0,0xfb,0x92,0x99,0x84,0x8f,0xbe,0xb5,0xa8,0xa3 

}; 

 

unsigned char mul_13[] =  

{ 

    0x00,0x0d,0x1a,0x17,0x34,0x39,0x2e,0x23,0x68,0x65,0x72,0x7f,0x5c,0x51,0x46,0x4b, 

    0xd0,0xdd,0xca,0xc7,0xe4,0xe9,0xfe,0xf3,0xb8,0xb5,0xa2,0xaf,0x8c,0x81,0x96,0x9b, 

    0xbb,0xb6,0xa1,0xac,0x8f,0x82,0x95,0x98,0xd3,0xde,0xc9,0xc4,0xe7,0xea,0xfd,0xf0, 

    0x6b,0x66,0x71,0x7c,0x5f,0x52,0x45,0x48,0x03,0x0e,0x19,0x14,0x37,0x3a,0x2d,0x20, 

    0x6d,0x60,0x77,0x7a,0x59,0x54,0x43,0x4e,0x05,0x08,0x1f,0x12,0x31,0x3c,0x2b,0x26, 

    0xbd,0xb0,0xa7,0xaa,0x89,0x84,0x93,0x9e,0xd5,0xd8,0xcf,0xc2,0xe1,0xec,0xfb,0xf6, 

    0xd6,0xdb,0xcc,0xc1,0xe2,0xef,0xf8,0xf5,0xbe,0xb3,0xa4,0xa9,0x8a,0x87,0x90,0x9d, 

    0x06,0x0b,0x1c,0x11,0x32,0x3f,0x28,0x25,0x6e,0x63,0x74,0x79,0x5a,0x57,0x40,0x4d, 
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    0xda,0xd7,0xc0,0xcd,0xee,0xe3,0xf4,0xf9,0xb2,0xbf,0xa8,0xa5,0x86,0x8b,0x9c,0x91, 

    0x0a,0x07,0x10,0x1d,0x3e,0x33,0x24,0x29,0x62,0x6f,0x78,0x75,0x56,0x5b,0x4c,0x41, 

    0x61,0x6c,0x7b,0x76,0x55,0x58,0x4f,0x42,0x09,0x04,0x13,0x1e,0x3d,0x30,0x27,0x2a, 

    0xb1,0xbc,0xab,0xa6,0x85,0x88,0x9f,0x92,0xd9,0xd4,0xc3,0xce,0xed,0xe0,0xf7,0xfa, 

    0xb7,0xba,0xad,0xa0,0x83,0x8e,0x99,0x94,0xdf,0xd2,0xc5,0xc8,0xeb,0xe6,0xf1,0xfc, 

    0x67,0x6a,0x7d,0x70,0x53,0x5e,0x49,0x44,0x0f,0x02,0x15,0x18,0x3b,0x36,0x21,0x2c, 

    0x0c,0x01,0x16,0x1b,0x38,0x35,0x22,0x2f,0x64,0x69,0x7e,0x73,0x50,0x5d,0x4a,0x47, 

    0xdc,0xd1,0xc6,0xcb,0xe8,0xe5,0xf2,0xff,0xb4,0xb9,0xae,0xa3,0x80,0x8d,0x9a,0x97 

}; 

 

unsigned char mul_14[] =  

{ 

    0x00,0x0e,0x1c,0x12,0x38,0x36,0x24,0x2a,0x70,0x7e,0x6c,0x62,0x48,0x46,0x54,0x5a, 

    0xe0,0xee,0xfc,0xf2,0xd8,0xd6,0xc4,0xca,0x90,0x9e,0x8c,0x82,0xa8,0xa6,0xb4,0xba, 

    0xdb,0xd5,0xc7,0xc9,0xe3,0xed,0xff,0xf1,0xab,0xa5,0xb7,0xb9,0x93,0x9d,0x8f,0x81, 

    0x3b,0x35,0x27,0x29,0x03,0x0d,0x1f,0x11,0x4b,0x45,0x57,0x59,0x73,0x7d,0x6f,0x61, 

    0xad,0xa3,0xb1,0xbf,0x95,0x9b,0x89,0x87,0xdd,0xd3,0xc1,0xcf,0xe5,0xeb,0xf9,0xf7, 

    0x4d,0x43,0x51,0x5f,0x75,0x7b,0x69,0x67,0x3d,0x33,0x21,0x2f,0x05,0x0b,0x19,0x17, 

    0x76,0x78,0x6a,0x64,0x4e,0x40,0x52,0x5c,0x06,0x08,0x1a,0x14,0x3e,0x30,0x22,0x2c, 

    0x96,0x98,0x8a,0x84,0xae,0xa0,0xb2,0xbc,0xe6,0xe8,0xfa,0xf4,0xde,0xd0,0xc2,0xcc, 

    0x41,0x4f,0x5d,0x53,0x79,0x77,0x65,0x6b,0x31,0x3f,0x2d,0x23,0x09,0x07,0x15,0x1b, 

    0xa1,0xaf,0xbd,0xb3,0x99,0x97,0x85,0x8b,0xd1,0xdf,0xcd,0xc3,0xe9,0xe7,0xf5,0xfb, 

    0x9a,0x94,0x86,0x88,0xa2,0xac,0xbe,0xb0,0xea,0xe4,0xf6,0xf8,0xd2,0xdc,0xce,0xc0, 

    0x7a,0x74,0x66,0x68,0x42,0x4c,0x5e,0x50,0x0a,0x04,0x16,0x18,0x32,0x3c,0x2e,0x20, 

    0xec,0xe2,0xf0,0xfe,0xd4,0xda,0xc8,0xc6,0x9c,0x92,0x80,0x8e,0xa4,0xaa,0xb8,0xb6, 

    0x0c,0x02,0x10,0x1e,0x34,0x3a,0x28,0x26,0x7c,0x72,0x60,0x6e,0x44,0x4a,0x58,0x56, 

    0x37,0x39,0x2b,0x25,0x0f,0x01,0x13,0x1d,0x47,0x49,0x5b,0x55,0x7f,0x71,0x63,0x6d, 

    0xd7,0xd9,0xcb,0xc5,0xef,0xe1,0xf3,0xfd,0xa7,0xa9,0xbb,0xb5,0x9f,0x91,0x83,0x8d 

}; 

 

unsigned char rcon[11] =  

{ 

    0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36,  

}; 

 

unsigned char * g (unsigned char wInput[4], int counter) 

{ 

    unsigned char * wReady = malloc(4); 

    unsigned char temp[4] = ""; 

    unsigned char a = wInput[0]; 

    for(int i =0;i<3; i++) 

    { 

        temp[i] = wInput[(i+1)]; 

    } 

    temp[3] = a; 
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    for (int i =0; i<4;i++) 

        temp[i] = s[temp[i]]; 

 

    //unsigned char array formed for xoring with rcon 

 

    unsigned char array2[4] = ""; 

    array2[0] = rcon[counter]; 

    array2[1] = array2[2] = array2[3] = 0x00; 

 

    for (int i=0;i<4;i++) 

    wReady[i] = temp[i] ^ array2[i]; 

    return wReady; 

} 

 

unsigned char * keyExpansion(unsigned char key[16]) 

{ 

    unsigned char words[44][4]; 

    for (int i = 0; i < 44; ++i) 

    { 

        for (int j = 0; j <4; ++j) 

        { 

            words[i][j]=0x00; 

        } 

    } 

     

    unsigned char * expandedKey = malloc(176); 

     

    int byteCount = 0; //this is to keep a count on the bytes of the expandedKey array 

     

    for (int i=0;i<16;i++) 

            expandedKey[i] = key[i]; 

 

    for(int j=0;j<4;j++) 

    { 

         for(int k=0;k<4;k++) 

         { 

            words[j][k] = expandedKey[byteCount]; 

            byteCount++; 

         } 

    } 

    for(int l=4;l<44;l++) 

    { 

        if((l%4)==0) 

        { 
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            for(int m=0;m<4;m++) 

            { 

                words[l][m] = words[(l-4)][m] ^ g(words[l-1], (l/4))[m]; 

            } 

        } 

        else 

        { 

            for(int n=0;n<4;n++) 

            { 

                words[l][n] = words[l-1][n] ^ words[l-4][n]; 

            } 

        } 

    } 

 

    int loc=0; 

    for(int i=0;i<44;i++ ) 

    { 

        for(int j=0;j<4;j++) 

        { 

            expandedKey[loc] = words[i][j]; 

            loc++; 

        } 

    } 

    return expandedKey; 

} 

 

void mixColumns(unsigned char * plainText) 

{ 

    unsigned char * tempC = malloc(16); 

 

    for (int i = 0; i < 4; ++i) 

    { 

        tempC[(4*i)+0] = (unsigned char) (mul2[plainText[(4*i)+0]] ^ mul_3[plainText[(4*i)+1]] ^ plainText[(4*i)+2] ^ 

plainText[(4*i)+3]); 

        tempC[(4*i)+1] = (unsigned char) (plainText[(4*i)+0] ^ mul2[plainText[(4*i)+1]] ^ mul_3[plainText[(4*i)+2]] ^ 

plainText[(4*i)+3]); 

        tempC[(4*i)+2] = (unsigned char) (plainText[(4*i)+0] ^ plainText[(4*i)+1] ^ mul2[plainText[(4*i)+2]] ^ 

mul_3[plainText[(4*i)+3]]); 

        tempC[(4*i)+3] = (unsigned char) (mul_3[plainText[(4*i)+0]] ^ plainText[(4*i)+1] ^ plainText[(4*i)+2] ^ 

mul2[plainText[(4*i)+3]]); 

    } 

 

    for (int i = 0; i < 16; ++i) 

    { 

        plainText[i] = tempC[i]; 
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    } 

    free(tempC); 

} 

void inverseMixedColumn (unsigned char * plainText) 

{ 

    unsigned char * tempC = malloc(18); 

 

    for (int i = 0; i < 4; ++i) 

    { 

        tempC[(4*i)+0] = (unsigned char) (mul_14[plainText[(4*i)+0]] ^ mul_11[plainText[(4*i)+1]] ^ 

mul_13[plainText[(4*i)+2]] ^ mul_9[plainText[(4*i)+3]]); 

        tempC[(4*i)+1] = (unsigned char) (mul_9[plainText[(4*i)+0]] ^ mul_14[plainText[(4*i)+1]] ^ 

mul_11[plainText[(4*i)+2]] ^ mul_13[plainText[(4*i)+3]]); 

        tempC[(4*i)+2] = (unsigned char) (mul_13[plainText[(4*i)+0]] ^ mul_9[plainText[(4*i)+1]] ^ 

mul_14[plainText[(4*i)+2]] ^ mul_11[plainText[(4*i)+3]]); 

        tempC[(4*i)+3] = (unsigned char) (mul_11[plainText[(4*i)+0]] ^ mul_13[plainText[(4*i)+1]] ^ 

mul_9[plainText[(4*i)+2]] ^ mul_14[plainText[(4*i)+3]]); 

    } 

    for (int i = 0; i < 16; ++i) 

    { 

        plainText[i] = tempC[i]; 

    } 

    free(tempC); 

} 

void byteSubShiftRow(unsigned char * state) 

{ 

 

    unsigned char tmp[16]; 

 

    tmp[0] = s[state[0]]; 

    tmp[1] = s[state[5]]; 

    tmp[2] = s[state[10]]; 

    tmp[3] = s[state[15]]; 

 

    tmp[4] = s[state[4]]; 

    tmp[5] = s[state[9]]; 

    tmp[6] = s[state[14]]; 

    tmp[7] = s[state[3]]; 

 

    tmp[8] = s[state[8]]; 

    tmp[9] = s[state[13]]; 

    tmp[10] = s[state[2]]; 

    tmp[11] = s[state[7]]; 

 

    tmp[12] = s[state[12]]; 
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    tmp[13] = s[state[1]]; 

    tmp[14] = s[state[6]]; 

    tmp[15] = s[state[11]]; 

 

    for(int i=0;i<16;i++) 

    { 

        state[i] = tmp[i]; 

    } 

} 

void inverseByteSubShiftRow(unsigned char * plainText) 

{ 

    unsigned char * temp = malloc(16); 

    temp[0] = inv_s[plainText[0]]; 

    temp[1] = inv_s[plainText[13]]; 

    temp[2] = inv_s[plainText[10]]; 

    temp[3] = inv_s[plainText[7]]; 

    temp[4] = inv_s[plainText[4]]; 

    temp[5] = inv_s[plainText[1]]; 

    temp[6] = inv_s[plainText[14]]; 

    temp[7] = inv_s[plainText[11]]; 

    temp[8] = inv_s[plainText[8]]; 

    temp[9] = inv_s[plainText[5]]; 

    temp[10] = inv_s[plainText[2]]; 

    temp[11] = inv_s[plainText[15]]; 

    temp[12] = inv_s[plainText[12]]; 

    temp[13] = inv_s[plainText[9]]; 

    temp[14] = inv_s[plainText[6]]; 

    temp[15] = inv_s[plainText[3]]; 

 

    for (int i = 0; i < 16; ++i) 

        plainText[i] = temp[i]; 

 

    free(temp); 

} 

 

unsigned char * AESEncryption(unsigned char * plainText, unsigned char * expandedKey) 

{ 

     

    unsigned char * state = malloc(16); 

    unsigned char * cipherText = malloc(16); 

    //unsigned char * expandedKey = malloc(176); 

    //expandedKey = keyExpansion(Key); 

    //key addition for the first round 

    for (int i = 0; i < 16; ++i) 

    { 
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     state[i] = plainText[i] ^ expandedKey[i]; 

    } 

 

    //now the 9 rounds begin 

    for(int rounds = 1; rounds<10; rounds++) 

    { 

        byteSubShiftRow(state); 

        mixColumns(state); 

        int counter = 0; 

        int loc = rounds*16; 

        while(counter<16) 

        { 

            state[counter] ^= expandedKey[loc]; 

            loc++; 

            counter++; 

        } 

    } 

 

    //10th round 

    byteSubShiftRow(state); 

    for(int i=0; i<16;i++) 

    { 

        cipherText[i] = state[i] ^ expandedKey[i+160]; 

        //printf("\n cipher[%d]=%x",i,cipher[i]); 

    } 

    free(state); 

    return cipherText; 

    

} 

  

int main(int argc, char *argv[]) 

{ 

    unsigned char PDU[BUF_SIZ]; 

    unsigned char InputData[16], Data[16],cipher_str[1024]=""; 

    unsigned char plainText[16]; 

    unsigned char key[14]= { 0x32, 0x21, 0x23, 0x52, 0x71, 0x98, 0x24, 0x03, 0x38, 0x27, 0x01, 0x12, 0x95, 0x23};  

    unsigned char * expandedKey = malloc(176); 

    unsigned char * cipher = malloc(16); 

    unsigned char * plainText1 = malloc(16); 

    unsigned char *hash; 

    unsigned char hash_string[32]; 

    int inx=0,i=0,j=0,x,y,z=0,n,p=0,q=0,temp,temp1,p_index=0,index,count=1; 

    double begin,end,time_spent,time_hmac=0,time_encrypt=0; 

 

    int sfd,len=0; 
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    unsigned char sendbuf[BUF_SIZ],ifName[IFNAMSIZ];  

    struct sockaddr_ll socket_address; /* The sockaddr_ll structure is a device-independent physical-layer 

address.*/ 

    struct ifreq if_idx, if_mac; 

 

     /* Get interface name */ 

    strcpy(ifName, IF_NAME); 

 

    /* Open RAW socket to send on */ 

    if ((sfd = socket(AF_PACKET, SOCK_RAW, IPPROTO_RAW)) == -1)  

        perror("socket"); 

 

    /* Initiazing the ifreq structure to zero */ 

    memset(&if_idx, 0, sizeof(struct ifreq)); 

 

    /* Copying the interface name */ 

    strncpy(if_idx.ifr_name, ifName, IFNAMSIZ-1); 

     

    /* Get the index of the interface to send on */ 

    if (ioctl(sfd, SIOCGIFINDEX, &if_idx) < 0) 

        perror("SIOCGIFINDEX"); 

 

    expandedKey = keyExpansion(key); 

 

    for(;1;) 

    { 

 

 PDU[inx++] = sav_PDU_tag;       

 PDU[inx++] = sav_PDU_length; 

 PDU[inx++] = noASDU_tag; 

 PDU[inx++] = noASDU_length; 

 PDU[inx++] = noASDU; 

 PDU[inx++] = SequenceofASDU_tag; 

 PDU[inx++] = SequenceofASDU_length; 

 PDU[inx++] = ASDU_tag; 

 PDU[inx++] = ASDU_length; 

 PDU[inx++] = svID_tag; 

 PDU[inx++] = svID_length; 

 PDU[inx++] = svID_1; 

 PDU[inx++] = svID_2; 

 PDU[inx++] = svID_3; 

 PDU[inx++] = svID_4; 

 PDU[inx++] = svID_5; 

 PDU[inx++] = svID_6; 
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 PDU[inx++] = svID_7; 

 PDU[inx++] = svID_8; 

 PDU[inx++] = svID_9; 

 PDU[inx++] = svID_10; 

 PDU[inx++] = svID_11; 

 PDU[inx++] = svID_12; 

 PDU[inx++] = smpCnt_tag; 

 PDU[inx++] = smpCnt_length; 

 PDU[inx++] = smpCnt_1; 

 PDU[inx++] = smpCnt_2; 

 PDU[inx++] = confRev_tag; 

 PDU[inx++] = confRev_length; 

 PDU[inx++] = confRev1; 

 PDU[inx++] = confRev2; 

 PDU[inx++] = confRev3; 

 PDU[inx++] = confRev4; 

 PDU[inx++] = smpSynch_tag; 

 PDU[inx++] = smpSynch_length; 

 PDU[inx++] = smpSynch; 

 PDU[inx++] = SequenceofData_tag; 

 PDU[inx++] = SequenceofData_length; 

 

        /* Buffer of BUF_SIZ bytes we'll construct our frame in. First, clear it all to zero. */ 

        memset(sendbuf, 0, BUF_SIZ); 

        len=0; 

    

        /* Construct the Ethernet header */ 

 

        /* Destination address */ 

        sendbuf[len++] = DEST_MAC0; 

        sendbuf[len++] = DEST_MAC1; 

        sendbuf[len++] = DEST_MAC2; 

        sendbuf[len++] = DEST_MAC3; 

        sendbuf[len++] = DEST_MAC4; 

        sendbuf[len++] = DEST_MAC5; 

 

        /* Create the source */ 

        sendbuf[len++] = 0xA0;  

        sendbuf[len++] = 0xB3;  

        sendbuf[len++] = 0xCC; 

        sendbuf[len++] = 0xC5; 

        sendbuf[len++] = 0x77; 

        sendbuf[len++] = 0xA1; 

 

        sendbuf[len++] = 0x81; 
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        sendbuf[len++] = 0x00; 

        sendbuf[len++] = 0x80; 

        sendbuf[len++] = 0x00; 

 

        /* Ethertype field Sampled Value protocol*/ 

        sendbuf[len++] = 0x88; 

        sendbuf[len++] = 0xBA; 

 

  /*  PDU fields */ 

        sendbuf[len++] = APPID1;                   

        sendbuf[len++] = APPID2;  

        sendbuf[len++] = length1;                  

        sendbuf[len++] = length2; 

        sendbuf[len++] = resrv1_1; 

 sendbuf[len++] = resrv1_2;                    

 sendbuf[len++] = resrv2_1; 

        sendbuf[len++] = resrv2_2; 

 

 sendbuf[len++] = sav_PDU_tag; 

 sendbuf[len++] = sav_PDU_length; 

 sendbuf[len++] = noASDU_tag; 

 sendbuf[len++] = noASDU_length; 

 sendbuf[len++] = noASDU; 

 sendbuf[len++] = SequenceofASDU_tag; 

 sendbuf[len++] = SequenceofASDU_length; 

 sendbuf[len++] = ASDU_tag; 

 sendbuf[len++] = ASDU_length; 

 sendbuf[len++] = svID_tag; 

 sendbuf[len++] = svID_length; 

 sendbuf[len++] = svID_1; 

 sendbuf[len++] = svID_2; 

 sendbuf[len++] = svID_3; 

 sendbuf[len++] = svID_4; 

 sendbuf[len++] = svID_5; 

 sendbuf[len++] = svID_6; 

 sendbuf[len++] = svID_7; 

 sendbuf[len++] = svID_8; 

 sendbuf[len++] = svID_9; 

 sendbuf[len++] = svID_10; 

 sendbuf[len++] = svID_11; 

 sendbuf[len++] = svID_12; 

 sendbuf[len++] = smpCnt_tag; 

 sendbuf[len++] = smpCnt_length; 

 sendbuf[len++] = smpCnt_1; 

 sendbuf[len++] = smpCnt_2; 
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 sendbuf[len++] = confRev_tag; 

 sendbuf[len++] = confRev_length; 

 sendbuf[len++] = confRev1; 

 sendbuf[len++] = confRev2; 

 sendbuf[len++] = confRev3; 

 sendbuf[len++] = confRev4; 

 sendbuf[len++] = smpSynch_tag; 

 sendbuf[len++] = smpSynch_length; 

 sendbuf[len++] = smpSynch; 

 sendbuf[len++] = SequenceofData_tag; 

 sendbuf[len++] = SequenceofData_length; 

 

        /* extension fields*/ 

 sendbuf[len++] = session_id; 

 sendbuf[len++] = length_id; 

 sendbuf[len++] = common_header; 

 sendbuf[len++] = l_id; 

 sendbuf[len++] = spdu_length1; 

 sendbuf[len++] = spdu_length2; 

 sendbuf[len++] = spdu_length3; 

 sendbuf[len++] = spdu_length4; 

 sendbuf[len++] = spdu_num1; 

 sendbuf[len++] = spdu_num2; 

 sendbuf[len++] = spdu_num3; 

 sendbuf[len++] = spdu_num4; 

 sendbuf[len++] = ver1; 

 sendbuf[len++] = ver2; 

 sendbuf[len++] = TimeofCurrentKey1; 

 sendbuf[len++] = TimeofCurrentKey2; 

 sendbuf[len++] = TimeofCurrentKey3; 

 sendbuf[len++] = TimeofCurrentKey4; 

 sendbuf[len++] = TimeofNextKey1; 

 sendbuf[len++] = TimeofNextKey2; 

 sendbuf[len++] = sa1; 

 sendbuf[len++] = sa2; 

 sendbuf[len++] = keyID1; 

 sendbuf[len++] = keyID2; 

 sendbuf[len++] = keyID3; 

 sendbuf[len++] = keyID4; 

 sendbuf[len++] = len1; 

 sendbuf[len++] = len2; 

 sendbuf[len++] = len3; 

 sendbuf[len++] = len4; 

 sendbuf[len++] = pl_type; 

 sendbuf[len++] = simulation; 
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        //printf(" total packet size=%d",inx);  

        temp= inx%16; 

        //printf(" temp=%d",temp); 

        for (i=0; i<abs(temp-16); i++) 

          PDU[inx++]=0x00; 

        //printf(" inx value=%d",inx); 

     /*for( i=0;i< inx;i++) 

            printf(" %.2x",PDU[i]); 

        */ 

        temp1= (inx/16); 

        //printf(" temp1=%d",temp1); 

   printf("\n Encrypted text:\n"); 

    for (x=0;x< temp1 ;x++) 

        { 

                //printf(" \n Plain Text of [%d] chunk :\n",x); 

         for (y=0;y<16;y++) 

                { 

               plainText[y]= PDU[z++]; 

                        //printf(" %02x",plainText[y]); 

                } 

  begin = clock(); 

            cipher=AESEncryption(plainText,expandedKey); 

  end = clock(); 

  time_spent= (double)(end - begin) / CLOCKS_PER_SEC; 

                time_encrypt = time_encrypt+time_spent; 

                 

            //printf(" \n cipher Text of [%d] chunk :\n",x); 

            for (n=0; n<16 ; n++) 

  { 

   printf(" %02x", cipher[n]); 

   sprintf( &(Data[n * 2]) , "%02x", cipher[n]); 

                        sendbuf[len++]=cipher[n];                       

  } 

  strcat(cipher_str,Data); 

                //printf("\n cipher-str: %s",cipher_str); 

  //printf(" Data-str :%s",Data); 

   

 } 

 /*printf("\n send buf data:\n"); 

        for ( i=0; i<144; i++) 

        { 

   printf(" %02x",sendbuf[i]); 

 } */ 
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 //printf("\n Cipher Text string :\n %s", cipher_str); 

        begin = clock(); 

        hash = HMAC(EVP_sha256(), key, strlen((char *)key), cipher_str, strlen((char *)cipher_str), NULL, NULL); 

 end = clock(); 

 time_hmac= (double)(end - begin) / CLOCKS_PER_SEC; 

  

        begin = clock(); 

        hash = HMAC(EVP_sha256(), key, strlen((char *)key), cipher_str, strlen((char *)cipher_str), NULL, NULL); 

 end = clock(); 

 time_hmac= (double)(end - begin) / CLOCKS_PER_SEC; 

 

        printf("\n hash value:"); 

        for (i = 0; i < 32 ; i++) 

 { 

         sprintf(&(hash_string[i * 2]), "%02x", hash[i]); 

                printf("%02x",hash[i]); 

  sendbuf[len++]=hash[i]; 

 } 

         

        /*printf("\n send buf data:\n"); 

        for ( i=0; i<208; i++) 

        { 

   printf(" %02x",sendbuf[i]); 

 } */ 

        //printf("\nHash value: %s", hash_string); 

        //printf("\n\n");  

        //printf(" time  =%lf",time_spent); 

        inx=0;z=0; 

   

 strcpy(cipher_str,"\0"); 

 //printf("cipher_str=%s",cipher_str); 

 //printf("\nencryption time=%lf\n hash generation time=%lf\n",et[index]*1000,ht[index]*1000); 

 

        /* Index of the network device */ 

        socket_address.sll_ifindex = if_idx.ifr_ifindex;  /* Network Interface number */ 

 

        /* Address length*/ 

        socket_address.sll_halen = ETH_ALEN; /* Length of Ethernet address */ 

 

        /* Destination MAC */ 

        socket_address.sll_addr[0] = DEST_MAC0; 

        socket_address.sll_addr[1] = DEST_MAC1; 
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        socket_address.sll_addr[2] = DEST_MAC2; 

        socket_address.sll_addr[3] = DEST_MAC3; 

        socket_address.sll_addr[4] = DEST_MAC4; 

        socket_address.sll_addr[5] = DEST_MAC5; 

 

        /* Send packet */ 

        if (sendto(sfd, sendbuf, len, 0, (struct sockaddr*)&socket_address, sizeof(struct sockaddr_ll)) < 0) 

            printf("Send failed\n"); 

        else 

        { 

            printf("\n packet data Sent :"); 

            for (i=0; i < len; i++) 

                printf("%02x:", sendbuf[i]); 

            printf("\n\n\n"); 

 

            //printf("\n packet=%d",count++); 

            printf("\n MAC generation time=%lf",time_hmac*1000); 

            printf("\n Encryption time=%lf\n",time_encrypt*1000); 

            printf("\n-------------------------------------\n\n"); 

            time_hmac=0;time_encrypt=0; 

        } 

     /* Wait specified number of microseconds 1,000,000 microseconds = 1 second */ 

        usleep(1000000); 

     }   

      

    return 0; 

} 
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APPENDIX F 
 

EtM Receiver Source Code 

 
/*This file is part of Github*/ 

/*https://github.com/61850security/S-GoSV-part-2*/ 

/* Source code published by (Hussain, Farooq, et al., 2020) */ 

/*This program is published*/ 

 

#include <arpa/inet.h> 

#include <linux/if_packet.h> 

#include <linux/ip.h> 

#include <linux/udp.h> 

#include <stdio.h> 

#include <string.h> 

#include <stdlib.h> 

#include <sys/ioctl.h> 

#include <sys/socket.h> 

#include <net/if.h> 

#include <netinet/ether.h> 

#include <unistd.h> 

#include <math.h> 

#include <openssl/hmac.h> 

#include <openssl/evp.h> 

#include <sys/time.h> 

 

#define DEST_MAC0 0xFF 

#define DEST_MAC1 0xFF 

#define DEST_MAC2 0xFF 

#define DEST_MAC3 0xFF 

#define DEST_MAC4 0xFF 

#define DEST_MAC5 0xFF 

 

#define ETHER_TYPE 0x88BF 

 

#define DEFAULT_IF "eth0"  /* your system interface name */ 

#define BUF_SIZ  2048 

 

unsigned char s[256] =  

 { 

    0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5, 0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76, 

    0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0, 0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0, 

    0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC, 0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15, 

    0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A, 0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75, 

    0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0, 0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84, 

https://github.com/61850security/R-GoSV
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    0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B, 0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF, 

    0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85, 0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8, 

    0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5, 0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2, 

    0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17, 0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73, 

    0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88, 0x46, 0xEE, 0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB, 

    0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C, 0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79, 

    0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9, 0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08, 

    0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6, 0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A, 

    0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E, 0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E, 

    0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94, 0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF, 

    0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68, 0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16 

 }; 

 

 unsigned char inv_s[256] =  

 { 

    0x52, 0x09, 0x6A, 0xD5, 0x30, 0x36, 0xA5, 0x38, 0xBF, 0x40, 0xA3, 0x9E, 0x81, 0xF3, 0xD7, 0xFB, 

    0x7C, 0xE3, 0x39, 0x82, 0x9B, 0x2F, 0xFF, 0x87, 0x34, 0x8E, 0x43, 0x44, 0xC4, 0xDE, 0xE9, 0xCB, 

    0x54, 0x7B, 0x94, 0x32, 0xA6, 0xC2, 0x23, 0x3D, 0xEE, 0x4C, 0x95, 0x0B, 0x42, 0xFA, 0xC3, 0x4E, 

    0x08, 0x2E, 0xA1, 0x66, 0x28, 0xD9, 0x24, 0xB2, 0x76, 0x5B, 0xA2, 0x49, 0x6D, 0x8B, 0xD1, 0x25, 

    0x72, 0xF8, 0xF6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xD4, 0xA4, 0x5C, 0xCC, 0x5D, 0x65, 0xB6, 0x92, 

    0x6C, 0x70, 0x48, 0x50, 0xFD, 0xED, 0xB9, 0xDA, 0x5E, 0x15, 0x46, 0x57, 0xA7, 0x8D, 0x9D, 0x84, 

    0x90, 0xD8, 0xAB, 0x00, 0x8C, 0xBC, 0xD3, 0x0A, 0xF7, 0xE4, 0x58, 0x05, 0xB8, 0xB3, 0x45, 0x06, 

    0xD0, 0x2C, 0x1E, 0x8F, 0xCA, 0x3F, 0x0F, 0x02, 0xC1, 0xAF, 0xBD, 0x03, 0x01, 0x13, 0x8A, 0x6B, 

    0x3A, 0x91, 0x11, 0x41, 0x4F, 0x67, 0xDC, 0xEA, 0x97, 0xF2, 0xCF, 0xCE, 0xF0, 0xB4, 0xE6, 0x73, 

    0x96, 0xAC, 0x74, 0x22, 0xE7, 0xAD, 0x35, 0x85, 0xE2, 0xF9, 0x37, 0xE8, 0x1C, 0x75, 0xDF, 0x6E, 

    0x47, 0xF1, 0x1A, 0x71, 0x1D, 0x29, 0xC5, 0x89, 0x6F, 0xB7, 0x62, 0x0E, 0xAA, 0x18, 0xBE, 0x1B, 

    0xFC, 0x56, 0x3E, 0x4B, 0xC6, 0xD2, 0x79, 0x20, 0x9A, 0xDB, 0xC0, 0xFE, 0x78, 0xCD, 0x5A, 0xF4, 

    0x1F, 0xDD, 0xA8, 0x33, 0x88, 0x07, 0xC7, 0x31, 0xB1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xEC, 0x5F, 

    0x60, 0x51, 0x7F, 0xA9, 0x19, 0xB5, 0x4A, 0x0D, 0x2D, 0xE5, 0x7A, 0x9F, 0x93, 0xC9, 0x9C, 0xEF, 

    0xA0, 0xE0, 0x3B, 0x4D, 0xAE, 0x2A, 0xF5, 0xB0, 0xC8, 0xEB, 0xBB, 0x3C, 0x83, 0x53, 0x99, 0x61, 

    0x17, 0x2B, 0x04, 0x7E, 0xBA, 0x77, 0xD6, 0x26, 0xE1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0C, 0x7D 

 }; 

 

unsigned char mul2[] = 

{ 

    0x00,0x02,0x04,0x06,0x08,0x0a,0x0c,0x0e,0x10,0x12,0x14,0x16,0x18,0x1a,0x1c,0x1e, 

    0x20,0x22,0x24,0x26,0x28,0x2a,0x2c,0x2e,0x30,0x32,0x34,0x36,0x38,0x3a,0x3c,0x3e, 

    0x40,0x42,0x44,0x46,0x48,0x4a,0x4c,0x4e,0x50,0x52,0x54,0x56,0x58,0x5a,0x5c,0x5e, 

    0x60,0x62,0x64,0x66,0x68,0x6a,0x6c,0x6e,0x70,0x72,0x74,0x76,0x78,0x7a,0x7c,0x7e, 

    0x80,0x82,0x84,0x86,0x88,0x8a,0x8c,0x8e,0x90,0x92,0x94,0x96,0x98,0x9a,0x9c,0x9e, 

    0xa0,0xa2,0xa4,0xa6,0xa8,0xaa,0xac,0xae,0xb0,0xb2,0xb4,0xb6,0xb8,0xba,0xbc,0xbe, 

    0xc0,0xc2,0xc4,0xc6,0xc8,0xca,0xcc,0xce,0xd0,0xd2,0xd4,0xd6,0xd8,0xda,0xdc,0xde, 

    0xe0,0xe2,0xe4,0xe6,0xe8,0xea,0xec,0xee,0xf0,0xf2,0xf4,0xf6,0xf8,0xfa,0xfc,0xfe, 

    0x1b,0x19,0x1f,0x1d,0x13,0x11,0x17,0x15,0x0b,0x09,0x0f,0x0d,0x03,0x01,0x07,0x05, 

    0x3b,0x39,0x3f,0x3d,0x33,0x31,0x37,0x35,0x2b,0x29,0x2f,0x2d,0x23,0x21,0x27,0x25, 
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    0x5b,0x59,0x5f,0x5d,0x53,0x51,0x57,0x55,0x4b,0x49,0x4f,0x4d,0x43,0x41,0x47,0x45, 

    0x7b,0x79,0x7f,0x7d,0x73,0x71,0x77,0x75,0x6b,0x69,0x6f,0x6d,0x63,0x61,0x67,0x65, 

    0x9b,0x99,0x9f,0x9d,0x93,0x91,0x97,0x95,0x8b,0x89,0x8f,0x8d,0x83,0x81,0x87,0x85, 

    0xbb,0xb9,0xbf,0xbd,0xb3,0xb1,0xb7,0xb5,0xab,0xa9,0xaf,0xad,0xa3,0xa1,0xa7,0xa5, 

    0xdb,0xd9,0xdf,0xdd,0xd3,0xd1,0xd7,0xd5,0xcb,0xc9,0xcf,0xcd,0xc3,0xc1,0xc7,0xc5, 

    0xfb,0xf9,0xff,0xfd,0xf3,0xf1,0xf7,0xf5,0xeb,0xe9,0xef,0xed,0xe3,0xe1,0xe7,0xe5 

}; 

 

unsigned char mul_3[] =  

{  

    0x00,0x03,0x06,0x05,0x0c,0x0f,0x0a,0x09,0x18,0x1b,0x1e,0x1d,0x14,0x17,0x12,0x11, 

    0x30,0x33,0x36,0x35,0x3c,0x3f,0x3a,0x39,0x28,0x2b,0x2e,0x2d,0x24,0x27,0x22,0x21, 

    0x60,0x63,0x66,0x65,0x6c,0x6f,0x6a,0x69,0x78,0x7b,0x7e,0x7d,0x74,0x77,0x72,0x71, 

    0x50,0x53,0x56,0x55,0x5c,0x5f,0x5a,0x59,0x48,0x4b,0x4e,0x4d,0x44,0x47,0x42,0x41, 

    0xc0,0xc3,0xc6,0xc5,0xcc,0xcf,0xca,0xc9,0xd8,0xdb,0xde,0xdd,0xd4,0xd7,0xd2,0xd1, 

    0xf0,0xf3,0xf6,0xf5,0xfc,0xff,0xfa,0xf9,0xe8,0xeb,0xee,0xed,0xe4,0xe7,0xe2,0xe1, 

    0xa0,0xa3,0xa6,0xa5,0xac,0xaf,0xaa,0xa9,0xb8,0xbb,0xbe,0xbd,0xb4,0xb7,0xb2,0xb1, 

    0x90,0x93,0x96,0x95,0x9c,0x9f,0x9a,0x99,0x88,0x8b,0x8e,0x8d,0x84,0x87,0x82,0x81, 

    0x9b,0x98,0x9d,0x9e,0x97,0x94,0x91,0x92,0x83,0x80,0x85,0x86,0x8f,0x8c,0x89,0x8a, 

    0xab,0xa8,0xad,0xae,0xa7,0xa4,0xa1,0xa2,0xb3,0xb0,0xb5,0xb6,0xbf,0xbc,0xb9,0xba, 

    0xfb,0xf8,0xfd,0xfe,0xf7,0xf4,0xf1,0xf2,0xe3,0xe0,0xe5,0xe6,0xef,0xec,0xe9,0xea, 

    0xcb,0xc8,0xcd,0xce,0xc7,0xc4,0xc1,0xc2,0xd3,0xd0,0xd5,0xd6,0xdf,0xdc,0xd9,0xda, 

    0x5b,0x58,0x5d,0x5e,0x57,0x54,0x51,0x52,0x43,0x40,0x45,0x46,0x4f,0x4c,0x49,0x4a, 

    0x6b,0x68,0x6d,0x6e,0x67,0x64,0x61,0x62,0x73,0x70,0x75,0x76,0x7f,0x7c,0x79,0x7a, 

    0x3b,0x38,0x3d,0x3e,0x37,0x34,0x31,0x32,0x23,0x20,0x25,0x26,0x2f,0x2c,0x29,0x2a, 

    0x0b,0x08,0x0d,0x0e,0x07,0x04,0x01,0x02,0x13,0x10,0x15,0x16,0x1f,0x1c,0x19,0x1a 

}; 

 

unsigned char mul_9[] =  

{ 

    0x00,0x09,0x12,0x1b,0x24,0x2d,0x36,0x3f,0x48,0x41,0x5a,0x53,0x6c,0x65,0x7e,0x77, 

    0x90,0x99,0x82,0x8b,0xb4,0xbd,0xa6,0xaf,0xd8,0xd1,0xca,0xc3,0xfc,0xf5,0xee,0xe7, 

    0x3b,0x32,0x29,0x20,0x1f,0x16,0x0d,0x04,0x73,0x7a,0x61,0x68,0x57,0x5e,0x45,0x4c, 

    0xab,0xa2,0xb9,0xb0,0x8f,0x86,0x9d,0x94,0xe3,0xea,0xf1,0xf8,0xc7,0xce,0xd5,0xdc, 

    0x76,0x7f,0x64,0x6d,0x52,0x5b,0x40,0x49,0x3e,0x37,0x2c,0x25,0x1a,0x13,0x08,0x01, 

    0xe6,0xef,0xf4,0xfd,0xc2,0xcb,0xd0,0xd9,0xae,0xa7,0xbc,0xb5,0x8a,0x83,0x98,0x91, 

    0x4d,0x44,0x5f,0x56,0x69,0x60,0x7b,0x72,0x05,0x0c,0x17,0x1e,0x21,0x28,0x33,0x3a, 

    0xdd,0xd4,0xcf,0xc6,0xf9,0xf0,0xeb,0xe2,0x95,0x9c,0x87,0x8e,0xb1,0xb8,0xa3,0xaa, 

    0xec,0xe5,0xfe,0xf7,0xc8,0xc1,0xda,0xd3,0xa4,0xad,0xb6,0xbf,0x80,0x89,0x92,0x9b, 

    0x7c,0x75,0x6e,0x67,0x58,0x51,0x4a,0x43,0x34,0x3d,0x26,0x2f,0x10,0x19,0x02,0x0b, 

    0xd7,0xde,0xc5,0xcc,0xf3,0xfa,0xe1,0xe8,0x9f,0x96,0x8d,0x84,0xbb,0xb2,0xa9,0xa0, 

    0x47,0x4e,0x55,0x5c,0x63,0x6a,0x71,0x78,0x0f,0x06,0x1d,0x14,0x2b,0x22,0x39,0x30, 

    0x9a,0x93,0x88,0x81,0xbe,0xb7,0xac,0xa5,0xd2,0xdb,0xc0,0xc9,0xf6,0xff,0xe4,0xed, 

    0x0a,0x03,0x18,0x11,0x2e,0x27,0x3c,0x35,0x42,0x4b,0x50,0x59,0x66,0x6f,0x74,0x7d, 

    0xa1,0xa8,0xb3,0xba,0x85,0x8c,0x97,0x9e,0xe9,0xe0,0xfb,0xf2,0xcd,0xc4,0xdf,0xd6, 
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    0x31,0x38,0x23,0x2a,0x15,0x1c,0x07,0x0e,0x79,0x70,0x6b,0x62,0x5d,0x54,0x4f,0x46 

}; 

 

unsigned char mul_11[] =  

{ 

    0x00,0x0b,0x16,0x1d,0x2c,0x27,0x3a,0x31,0x58,0x53,0x4e,0x45,0x74,0x7f,0x62,0x69, 

    0xb0,0xbb,0xa6,0xad,0x9c,0x97,0x8a,0x81,0xe8,0xe3,0xfe,0xf5,0xc4,0xcf,0xd2,0xd9, 

    0x7b,0x70,0x6d,0x66,0x57,0x5c,0x41,0x4a,0x23,0x28,0x35,0x3e,0x0f,0x04,0x19,0x12, 

    0xcb,0xc0,0xdd,0xd6,0xe7,0xec,0xf1,0xfa,0x93,0x98,0x85,0x8e,0xbf,0xb4,0xa9,0xa2, 

    0xf6,0xfd,0xe0,0xeb,0xda,0xd1,0xcc,0xc7,0xae,0xa5,0xb8,0xb3,0x82,0x89,0x94,0x9f, 

    0x46,0x4d,0x50,0x5b,0x6a,0x61,0x7c,0x77,0x1e,0x15,0x08,0x03,0x32,0x39,0x24,0x2f, 

    0x8d,0x86,0x9b,0x90,0xa1,0xaa,0xb7,0xbc,0xd5,0xde,0xc3,0xc8,0xf9,0xf2,0xef,0xe4, 

    0x3d,0x36,0x2b,0x20,0x11,0x1a,0x07,0x0c,0x65,0x6e,0x73,0x78,0x49,0x42,0x5f,0x54, 

    0xf7,0xfc,0xe1,0xea,0xdb,0xd0,0xcd,0xc6,0xaf,0xa4,0xb9,0xb2,0x83,0x88,0x95,0x9e, 

    0x47,0x4c,0x51,0x5a,0x6b,0x60,0x7d,0x76,0x1f,0x14,0x09,0x02,0x33,0x38,0x25,0x2e, 

    0x8c,0x87,0x9a,0x91,0xa0,0xab,0xb6,0xbd,0xd4,0xdf,0xc2,0xc9,0xf8,0xf3,0xee,0xe5, 

    0x3c,0x37,0x2a,0x21,0x10,0x1b,0x06,0x0d,0x64,0x6f,0x72,0x79,0x48,0x43,0x5e,0x55, 

    0x01,0x0a,0x17,0x1c,0x2d,0x26,0x3b,0x30,0x59,0x52,0x4f,0x44,0x75,0x7e,0x63,0x68, 

    0xb1,0xba,0xa7,0xac,0x9d,0x96,0x8b,0x80,0xe9,0xe2,0xff,0xf4,0xc5,0xce,0xd3,0xd8, 

    0x7a,0x71,0x6c,0x67,0x56,0x5d,0x40,0x4b,0x22,0x29,0x34,0x3f,0x0e,0x05,0x18,0x13, 

    0xca,0xc1,0xdc,0xd7,0xe6,0xed,0xf0,0xfb,0x92,0x99,0x84,0x8f,0xbe,0xb5,0xa8,0xa3 

}; 

 

unsigned char mul_13[] =  

{ 

    0x00,0x0d,0x1a,0x17,0x34,0x39,0x2e,0x23,0x68,0x65,0x72,0x7f,0x5c,0x51,0x46,0x4b, 

    0xd0,0xdd,0xca,0xc7,0xe4,0xe9,0xfe,0xf3,0xb8,0xb5,0xa2,0xaf,0x8c,0x81,0x96,0x9b, 

    0xbb,0xb6,0xa1,0xac,0x8f,0x82,0x95,0x98,0xd3,0xde,0xc9,0xc4,0xe7,0xea,0xfd,0xf0, 

    0x6b,0x66,0x71,0x7c,0x5f,0x52,0x45,0x48,0x03,0x0e,0x19,0x14,0x37,0x3a,0x2d,0x20, 

    0x6d,0x60,0x77,0x7a,0x59,0x54,0x43,0x4e,0x05,0x08,0x1f,0x12,0x31,0x3c,0x2b,0x26, 

    0xbd,0xb0,0xa7,0xaa,0x89,0x84,0x93,0x9e,0xd5,0xd8,0xcf,0xc2,0xe1,0xec,0xfb,0xf6, 

    0xd6,0xdb,0xcc,0xc1,0xe2,0xef,0xf8,0xf5,0xbe,0xb3,0xa4,0xa9,0x8a,0x87,0x90,0x9d, 

    0x06,0x0b,0x1c,0x11,0x32,0x3f,0x28,0x25,0x6e,0x63,0x74,0x79,0x5a,0x57,0x40,0x4d, 

    0xda,0xd7,0xc0,0xcd,0xee,0xe3,0xf4,0xf9,0xb2,0xbf,0xa8,0xa5,0x86,0x8b,0x9c,0x91, 

    0x0a,0x07,0x10,0x1d,0x3e,0x33,0x24,0x29,0x62,0x6f,0x78,0x75,0x56,0x5b,0x4c,0x41, 

    0x61,0x6c,0x7b,0x76,0x55,0x58,0x4f,0x42,0x09,0x04,0x13,0x1e,0x3d,0x30,0x27,0x2a, 

    0xb1,0xbc,0xab,0xa6,0x85,0x88,0x9f,0x92,0xd9,0xd4,0xc3,0xce,0xed,0xe0,0xf7,0xfa, 

    0xb7,0xba,0xad,0xa0,0x83,0x8e,0x99,0x94,0xdf,0xd2,0xc5,0xc8,0xeb,0xe6,0xf1,0xfc, 

    0x67,0x6a,0x7d,0x70,0x53,0x5e,0x49,0x44,0x0f,0x02,0x15,0x18,0x3b,0x36,0x21,0x2c, 

    0x0c,0x01,0x16,0x1b,0x38,0x35,0x22,0x2f,0x64,0x69,0x7e,0x73,0x50,0x5d,0x4a,0x47, 

    0xdc,0xd1,0xc6,0xcb,0xe8,0xe5,0xf2,0xff,0xb4,0xb9,0xae,0xa3,0x80,0x8d,0x9a,0x97 

}; 

 

unsigned char mul_14[] =  

{ 
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    0x00,0x0e,0x1c,0x12,0x38,0x36,0x24,0x2a,0x70,0x7e,0x6c,0x62,0x48,0x46,0x54,0x5a, 

    0xe0,0xee,0xfc,0xf2,0xd8,0xd6,0xc4,0xca,0x90,0x9e,0x8c,0x82,0xa8,0xa6,0xb4,0xba, 

    0xdb,0xd5,0xc7,0xc9,0xe3,0xed,0xff,0xf1,0xab,0xa5,0xb7,0xb9,0x93,0x9d,0x8f,0x81, 

    0x3b,0x35,0x27,0x29,0x03,0x0d,0x1f,0x11,0x4b,0x45,0x57,0x59,0x73,0x7d,0x6f,0x61, 

    0xad,0xa3,0xb1,0xbf,0x95,0x9b,0x89,0x87,0xdd,0xd3,0xc1,0xcf,0xe5,0xeb,0xf9,0xf7, 

    0x4d,0x43,0x51,0x5f,0x75,0x7b,0x69,0x67,0x3d,0x33,0x21,0x2f,0x05,0x0b,0x19,0x17, 

    0x76,0x78,0x6a,0x64,0x4e,0x40,0x52,0x5c,0x06,0x08,0x1a,0x14,0x3e,0x30,0x22,0x2c, 

    0x96,0x98,0x8a,0x84,0xae,0xa0,0xb2,0xbc,0xe6,0xe8,0xfa,0xf4,0xde,0xd0,0xc2,0xcc, 

    0x41,0x4f,0x5d,0x53,0x79,0x77,0x65,0x6b,0x31,0x3f,0x2d,0x23,0x09,0x07,0x15,0x1b, 

    0xa1,0xaf,0xbd,0xb3,0x99,0x97,0x85,0x8b,0xd1,0xdf,0xcd,0xc3,0xe9,0xe7,0xf5,0xfb, 

    0x9a,0x94,0x86,0x88,0xa2,0xac,0xbe,0xb0,0xea,0xe4,0xf6,0xf8,0xd2,0xdc,0xce,0xc0, 

    0x7a,0x74,0x66,0x68,0x42,0x4c,0x5e,0x50,0x0a,0x04,0x16,0x18,0x32,0x3c,0x2e,0x20, 

    0xec,0xe2,0xf0,0xfe,0xd4,0xda,0xc8,0xc6,0x9c,0x92,0x80,0x8e,0xa4,0xaa,0xb8,0xb6, 

    0x0c,0x02,0x10,0x1e,0x34,0x3a,0x28,0x26,0x7c,0x72,0x60,0x6e,0x44,0x4a,0x58,0x56, 

    0x37,0x39,0x2b,0x25,0x0f,0x01,0x13,0x1d,0x47,0x49,0x5b,0x55,0x7f,0x71,0x63,0x6d, 

    0xd7,0xd9,0xcb,0xc5,0xef,0xe1,0xf3,0xfd,0xa7,0xa9,0xbb,0xb5,0x9f,0x91,0x83,0x8d 

}; 

 

unsigned char rcon[11] =  

{ 

    0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36,  

}; 

 

unsigned char * g (unsigned char wInput[4], int counter) 

{ 

    unsigned char * wReady = malloc(4); 

    unsigned char temp[4] = ""; 

    unsigned char a = wInput[0]; 

    for(int i =0;i<3; i++) 

    { 

        temp[i] = wInput[(i+1)]; 

    } 

    temp[3] = a; 

 

    for (int i =0; i<4;i++) 

        temp[i] = s[temp[i]]; 

 

    //unsigned char array formed for xoring with rcon 

 

    unsigned char array2[4] = ""; 

    array2[0] = rcon[counter]; 

    array2[1] = array2[2] = array2[3] = 0x00; 

 

    for (int i=0;i<4;i++) 

    wReady[i] = temp[i] ^ array2[i]; 
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    return wReady; 

} 

 

unsigned char * keyExpansion(unsigned char key[16]) 

{ 

    unsigned char words[44][4]; 

    for (int i = 0; i < 44; ++i) 

    { 

        for (int j = 0; j <4; ++j) 

        { 

            words[i][j]=0x00; 

        } 

    } 

     

    unsigned char * expandedKey = malloc(176); 

     

    int byteCount = 0; //this is to keep a count on the bytes of the expandedKey array 

     

    for (int i=0;i<16;i++) 

            expandedKey[i] = key[i]; 

 

    for(int j=0;j<4;j++) 

    { 

         for(int k=0;k<4;k++) 

         { 

            words[j][k] = expandedKey[byteCount]; 

            byteCount++; 

         } 

    } 

    for(int l=4;l<44;l++) 

    { 

        if((l%4)==0) 

        { 

            for(int m=0;m<4;m++) 

            { 

                words[l][m] = words[(l-4)][m] ^ g(words[l-1], (l/4))[m]; 

            } 

        } 

        else 

        { 

            for(int n=0;n<4;n++) 

            { 

                words[l][n] = words[l-1][n] ^ words[l-4][n]; 

            } 

        } 
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    } 

 

    int loc=0; 

    for(int i=0;i<44;i++ ) 

    { 

        for(int j=0;j<4;j++) 

        { 

            expandedKey[loc] = words[i][j]; 

            loc++; 

        } 

    } 

    return expandedKey; 

} 

 

void mixColumns(unsigned char * plainText) 

{ 

    unsigned char * tempC = malloc(16); 

 

    for (int i = 0; i < 4; ++i) 

    { 

        tempC[(4*i)+0] = (unsigned char) (mul2[plainText[(4*i)+0]] ^ mul_3[plainText[(4*i)+1]] ^ plainText[(4*i)+2] ^ 

plainText[(4*i)+3]); 

        tempC[(4*i)+1] = (unsigned char) (plainText[(4*i)+0] ^ mul2[plainText[(4*i)+1]] ^ mul_3[plainText[(4*i)+2]] ^ 

plainText[(4*i)+3]); 

        tempC[(4*i)+2] = (unsigned char) (plainText[(4*i)+0] ^ plainText[(4*i)+1] ^ mul2[plainText[(4*i)+2]] ^ 

mul_3[plainText[(4*i)+3]]); 

        tempC[(4*i)+3] = (unsigned char) (mul_3[plainText[(4*i)+0]] ^ plainText[(4*i)+1] ^ plainText[(4*i)+2] ^ 

mul2[plainText[(4*i)+3]]); 

    } 

 

    for (int i = 0; i < 16; ++i) 

    { 

        plainText[i] = tempC[i]; 

    } 

    free(tempC); 

} 

void inverseMixedColumn (unsigned char * plainText) 

{ 

    unsigned char * tempC = malloc(18); 

 

    for (int i = 0; i < 4; ++i) 

    { 

        tempC[(4*i)+0] = (unsigned char) (mul_14[plainText[(4*i)+0]] ^ mul_11[plainText[(4*i)+1]] ^ 

mul_13[plainText[(4*i)+2]] ^ mul_9[plainText[(4*i)+3]]); 
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        tempC[(4*i)+1] = (unsigned char) (mul_9[plainText[(4*i)+0]] ^ mul_14[plainText[(4*i)+1]] ^ 

mul_11[plainText[(4*i)+2]] ^ mul_13[plainText[(4*i)+3]]); 

        tempC[(4*i)+2] = (unsigned char) (mul_13[plainText[(4*i)+0]] ^ mul_9[plainText[(4*i)+1]] ^ 

mul_14[plainText[(4*i)+2]] ^ mul_11[plainText[(4*i)+3]]); 

        tempC[(4*i)+3] = (unsigned char) (mul_11[plainText[(4*i)+0]] ^ mul_13[plainText[(4*i)+1]] ^ 

mul_9[plainText[(4*i)+2]] ^ mul_14[plainText[(4*i)+3]]); 

    } 

    for (int i = 0; i < 16; ++i) 

    { 

        plainText[i] = tempC[i]; 

    } 

    free(tempC); 

} 

void byteSubShiftRow(unsigned char * state) 

{ 

 

    unsigned char tmp[16]; 

 

    tmp[0] = s[state[0]]; 

    tmp[1] = s[state[5]]; 

    tmp[2] = s[state[10]]; 

    tmp[3] = s[state[15]]; 

 

    tmp[4] = s[state[4]]; 

    tmp[5] = s[state[9]]; 

    tmp[6] = s[state[14]]; 

    tmp[7] = s[state[3]]; 

 

    tmp[8] = s[state[8]]; 

    tmp[9] = s[state[13]]; 

    tmp[10] = s[state[2]]; 

    tmp[11] = s[state[7]]; 

 

    tmp[12] = s[state[12]]; 

    tmp[13] = s[state[1]]; 

    tmp[14] = s[state[6]]; 

    tmp[15] = s[state[11]]; 

 

    for(int i=0;i<16;i++) 

    { 

        state[i] = tmp[i]; 

    } 

} 

void inverseByteSubShiftRow(unsigned char * plainText) 

{ 
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    unsigned char * temp = malloc(16); 

    temp[0] = inv_s[plainText[0]]; 

    temp[1] = inv_s[plainText[13]]; 

    temp[2] = inv_s[plainText[10]]; 

    temp[3] = inv_s[plainText[7]]; 

    temp[4] = inv_s[plainText[4]]; 

    temp[5] = inv_s[plainText[1]]; 

    temp[6] = inv_s[plainText[14]]; 

    temp[7] = inv_s[plainText[11]]; 

    temp[8] = inv_s[plainText[8]]; 

    temp[9] = inv_s[plainText[5]]; 

    temp[10] = inv_s[plainText[2]]; 

    temp[11] = inv_s[plainText[15]]; 

    temp[12] = inv_s[plainText[12]]; 

    temp[13] = inv_s[plainText[9]]; 

    temp[14] = inv_s[plainText[6]]; 

    temp[15] = inv_s[plainText[3]]; 

 

    for (int i = 0; i < 16; ++i) 

        plainText[i] = temp[i]; 

 

    free(temp); 

} 

 

unsigned char * AESDecryption(unsigned char * cipher, unsigned char * expandedKey) 

{ 

    unsigned char * state = malloc(16); 

    unsigned char * plainTxt = malloc(16); 

    //key whitening 

    for (int i = 0; i < 16; ++i) 

        state[i] = cipher[i] ^ expandedKey[160+i]; 

 

    // 9 rounds of decryption 

    for (int rounds = 9; rounds >0 ; rounds--) 

    { 

        inverseByteSubShiftRow(state); 

        int counter = 0; 

        int loc = 16*rounds; 

        while(counter<16) 

        { 

            state[counter] ^= expandedKey[loc]; 

            loc++; 

            counter++; 

        } 

        inverseMixedColumn(state); 
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    } 

 

    //final 10th round of decryption 

    inverseByteSubShiftRow(state); 

    for(int i =0; i<16; i++) 

    { 

        plainTxt[i] = state[i] ^ expandedKey[i]; 

        //printf("\n plainText[%d]=%x",i,plainText[i]); 

    } 

    free(state); 

    return plainTxt; 

} 

 

int main(int argc, char *argv[]) 

{ 

 char sender[INET6_ADDRSTRLEN]; 

 int sockfd, ret, i; 

 int sockopt,c_index=0,h_index=0,flag=0,dig=0,p=0,j=0,q=0,count=1; 

 ssize_t numbytes; 

 struct ifreq ifopts; /* set promiscuous mode */ 

 struct ifreq if_ip; /* get ip addr */ 

 struct sockaddr_storage their_addr; 

        unsigned char * expandedKey = malloc(176); 

        unsigned char * cipher1 = malloc(16); 

        unsigned char * plainText1 = malloc(16); 

        unsigned char * plainText= malloc(1024); 

 unsigned char * hash_recv= malloc(32); 

        unsigned char * hash; 

        unsigned char * hash_string= malloc(32); 

        unsigned char * buf = malloc(1024); 

        unsigned char * cipher = malloc(144); 

        unsigned char * cipher_str = malloc(288); 

        //unsigned char hash_string[32]; 

 //unsigned char buf[BUF_SIZ],cipher[144],cipher_str[288]; 

        //uint8_t = unsigned char data type 

 char ifName[IFNAMSIZ]; 

        unsigned char key[14]= { 0x32, 0x21, 0x23, 0x52, 0x71, 0x98, 0x24, 0x03, 0x38, 0x27, 0x01, 0x12, 0x95, 

0x23};  

        double begin,end,time_spent,time_hmac=0,time_comp=0,time_decrypt=0,t=0; 

   

        expandedKey = keyExpansion(key); 

  

 /* Get interface name */ 

 if (argc > 1) 

  strcpy(ifName, argv[1]); 
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 else 

  strcpy(ifName, DEFAULT_IF); 

 

 /* Header structures */ 

 struct ether_header *eh = (struct ether_header *) buf; 

 struct iphdr *iph = (struct iphdr *) (buf + sizeof(struct ether_header)); 

 struct udphdr *udph = (struct udphdr *) (buf + sizeof(struct iphdr) + sizeof(struct ether_header)); 

 

 memset(&if_ip, 0, sizeof(struct ifreq)); 

 

 /* Open PF_PACKET socket, listening for EtherType ETHER_TYPE */ 

 if ((sockfd = socket(PF_PACKET, SOCK_RAW, htons(ETHER_TYPE))) == -1) { 

  perror("listener: socket");  

  return -1; 

 } 

 

 /* Set interface to promiscuous mode - do we need to do this every time? */ 

 strncpy(ifopts.ifr_name, ifName, IFNAMSIZ-1); 

 ioctl(sockfd, SIOCGIFFLAGS, &ifopts); 

 ifopts.ifr_flags |= IFF_PROMISC; 

 ioctl(sockfd, SIOCSIFFLAGS, &ifopts); 

 /* Allow the socket to be reused - incase connection is closed prematurely */ 

 if (setsockopt(sockfd, SOL_SOCKET, SO_REUSEADDR, &sockopt, sizeof sockopt) == -1) { 

  perror("setsockopt"); 

  close(sockfd); 

  exit(EXIT_FAILURE); 

 } 

 /* Bind to device */ 

 if (setsockopt(sockfd, SOL_SOCKET, SO_BINDTODEVICE, ifName, IFNAMSIZ-1) == -1) { 

  perror("SO_BINDTODEVICE"); 

  close(sockfd); 

  exit(EXIT_FAILURE); 

 } 

 

repeat: printf("listener: Waiting to recvfrom...\n"); 

 numbytes = recvfrom(sockfd, buf, BUF_SIZ, 0, NULL, NULL); 

 printf("listener: got packet %lu bytes\n", numbytes); 

 

 /* Check the packet is for me */ 

 if (eh->ether_dhost[0] == DEST_MAC0 && 

   eh->ether_dhost[1] == DEST_MAC1 && 

   eh->ether_dhost[2] == DEST_MAC2 && 

   eh->ether_dhost[3] == DEST_MAC3 && 

   eh->ether_dhost[4] == DEST_MAC4 && 

   eh->ether_dhost[5] == DEST_MAC5) { 
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  printf("Correct destination MAC address\n"); 

 } else { 

  printf("Wrong destination MAC: %x:%x:%x:%x:%x:%x\n", 

      eh->ether_dhost[0], 

      eh->ether_dhost[1], 

      eh->ether_dhost[2], 

      eh->ether_dhost[3], 

      eh->ether_dhost[4], 

      eh->ether_dhost[5]); 

  ret = -1; 

  goto done; 

 } 

 

 /* Get source IP */ 

 ((struct sockaddr_in *)&their_addr)->sin_addr.s_addr = iph->saddr; 

 inet_ntop(AF_INET, &((struct sockaddr_in*)&their_addr)->sin_addr, sender, sizeof sender); 

 

 /* Look up my device IP addr if possible */ 

 strncpy(if_ip.ifr_name, ifName, IFNAMSIZ-1); 

 if (ioctl(sockfd, SIOCGIFADDR, &if_ip) >= 0) { /* if we can't check then don't */ 

  printf("Source IP: %s\n My IP: %s\n", sender,  

    inet_ntoa(((struct sockaddr_in *)&if_ip.ifr_addr)->sin_addr)); 

  /* ignore if I sent it */ 

  if (strcmp(sender, inet_ntoa(((struct sockaddr_in *)&if_ip.ifr_addr)->sin_addr)) == 0){ 

   printf("but I sent it :(\n"); 

   ret = -1; 

   goto done; 

  } 

 } 

 

 /* UDP payload length */ 

 ret = ntohs(udph->len) - sizeof(struct udphdr); 

 

 /* Print packet */ 

 printf("\n \t Received Packet Data:\n"); 

        for (i=0; i<numbytes; i++)  

        { 

            printf("%02x:", buf[i]); 

         } 

        printf("\n\n received cipher text:\n"); 

        for(i=22;i<=165;i++) 

        { 

             printf(" %02x",buf[i]); 

             cipher[c_index++]=buf[i]; 

        } 
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        c_index=0; 

        printf("\n\n Received hash value:\n"); 

        for(i=numbytes-32;i<numbytes;i++) 

        { 

             printf(" %02x",buf[i]); 

             hash_recv[h_index++]=buf[i]; 

        } 

        h_index=0; 

        printf("\n\n Received cipher text in a variable extracted from packet data:\n"); 

        for(i=0;i<144;i++) 

        { 

             printf(" %02x",cipher[c_index++]); 

        } 

        c_index=0; 

        printf("\n\n Received hash value in a variable extracted packet data:\n"); 

        h_index=0; 

        for(i=0;i<32;i++) 

        { 

             printf(" %02x",hash_recv[h_index++]); 

        } 

        h_index=0; 

        for (i=0;i<144;i++) 

 { 

  sprintf( &(cipher_str [i*2]), "%02x", cipher[i]); 

        } 

        //printf(" Cipher Text string :\n %s", cipher_str); 

  begin = clock(); 

  hash = HMAC(EVP_sha256(), key, strlen((char *)key), cipher_str, strlen((char *)cipher_str), 

NULL, NULL); 

  end = clock(); 

  time_hmac= (double)(end - begin) / CLOCKS_PER_SEC; 

 

  begin = clock(); 

  hash = HMAC(EVP_sha256(), key, strlen((char *)key), cipher_str, strlen((char *)cipher_str), 

NULL, NULL); 

  end = clock(); 

  time_hmac= (double)(end - begin) / CLOCKS_PER_SEC; 

 

                //printf(" \n time-spent hmac  =%lf",time_hmac*1000); 

  for (i = 0; i < 32 ; i++) 

   sprintf(&(hash_string[i * 2]), "%02x", hash[i]); 

                printf("\n\n Generated hash string at the receiver:%s\n",hash_string); 

 

  begin=clock(); 

  for (i = 0; i < 32 ; i++) 
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         { 

   //printf(" hash value: \n %02x",hash_recv[h_index]); 

   //printf("  %02x\n",hash[i]); 

    

          if( hash_recv[h_index++] != hash[i]) 

    flag=1; 

         } 

  end=clock(); 

  time_comp= (double)(end - begin) / CLOCKS_PER_SEC; 

         //printf(" \n time-spent comparision  =%lf",time_comp*1000); 

 

  printf("\n flag value=%d",flag); 

  dig=0;  

    if (flag == 0) 

         { 

          printf("\n ** Hash values matched **\n"); 

   for ( i=0; i<9; i++) 

   { 

    for (q=0; q<16; q++) 

               cipher1[q]= cipher[j++]; 

              begin = clock(); 

              plainText1=AESDecryption(cipher1,expandedKey); 

        end = clock(); 

       time_spent= (double)(end - begin) / CLOCKS_PER_SEC; 

              time_decrypt = time_decrypt+time_spent; 

              for (q=0; q<16; q++) 

    { 

               plainText[p]= plainText1[q]; 

     //printf(" %.2x", plainText[p++]);   

    } 

    //printf("\n");    

          } 

   //printf("\n Decryption time =%lf\n",time_decrypt*1000); 

    

         } 

         else 

  { 

          //printf("\n Hash values mis-matched\n"); 

    

  } 

      

          

  j=0;p=0; 

  strcpy(cipher1,"\0"); 

  strcpy(plainText1,"\0"); 
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  strcpy(plainText,"\0"); 

                //printf("packet=%d",count++); 

                printf(" \n MAC Generation time using HMAC-SHA256=%lf",time_hmac*1000); 

                printf(" \n MAC comparision time=%lf",time_comp*1000); 

                printf(" \n Decryption time=%lf\n",time_decrypt*1000); 

                printf("\n-------------------------------------\n\n"); 

                //printf(" Total time  =%lf", (time_hmac+time_comp+time_decrypt) ); 

                time_hmac=0;time_comp=0;time_decrypt=0; 

done: goto repeat; 

 

 close(sockfd); 

 return ret; 

} 



246 | P a g e  
 

APPENDIX G 
 

Attached is the Wireshark capture of the Sampled Value packets from the sending device. 

 

No. Time Time delta  Source Destination Protocol Length 

1 0 0 HewlettP_

c5:77:a1 

PcsCompu

_f8:42:a7 

IEC61850 

Sampled 

Values 

176 

2 1,0007302

08 

1,0007302

08 

HewlettP_

c5:77:a1 

PcsCompu

_f8:42:a7 

IEC61850 

Sampled 

Values 

176 

3 1,0005675

12 

1,0005675

12 

HewlettP_

c5:77:a1 

PcsCompu

_f8:42:a7 

IEC61850 

Sampled 

Values 

176 

4 1,0198553

42 

1,0198553

42 

HewlettP_

c5:77:a1 

PcsCompu

_f8:42:a7 

IEC61850 

Sampled 

Values 

176 

8 1,0010750

39 

0,0402647

58 

HewlettP_

c5:77:a1 

PcsCompu

_f8:42:a7 

IEC61850 

Sampled 

Values 

176 

10 1,0006489

91 

0,5061951

43 

HewlettP_

c5:77:a1 

PcsCompu

_f8:42:a7 

IEC61850 

Sampled 

Values 

176 

11 1,0005700

27 

1,0005700

27 

HewlettP_

c5:77:a1 

PcsCompu

_f8:42:a7 

IEC61850 

Sampled 

Values 

176 

16 1,0008760

31 

0,1528323

43 

HewlettP_

c5:77:a1 

PcsCompu

_f8:42:a7 

IEC61850 

Sampled 

Values 

176 

21 1,0007067

47 

0,1144432

81 

HewlettP_

c5:77:a1 

PcsCompu

_f8:42:a7 

IEC61850 

Sampled 

Values 

176 

26 1,0018686

98 

0,0759770

39 

HewlettP_

c5:77:a1 

PcsCompu

_f8:42:a7 

IEC61850 

Sampled 

Values 

176 
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27 1,0003342

68 

1,0003342

68 

HewlettP_

c5:77:a1 

PcsCompu

_f8:42:a7 

IEC61850 

Sampled 

Values 

176 

28 1,0005809

7 

1,0005809

7 

HewlettP_

c5:77:a1 

PcsCompu

_f8:42:a7 

IEC61850 

Sampled 

Values 

176 

29 1,0179310

34 

1,0179310

34 

HewlettP_

c5:77:a1 

PcsCompu

_f8:42:a7 

IEC61850 

Sampled 

Values 

176 

31 1,0007171

72 

0,5247796

32 

HewlettP_

c5:77:a1 

PcsCompu

_f8:42:a7 

IEC61850 

Sampled 

Values 

176 

33 1,0009275

11 

0,9084302

05 

HewlettP_

c5:77:a1 

PcsCompu

_f8:42:a7 

IEC61850 

Sampled 

Values 

176 

36 1,0273367

91 

0,0460705

61 

HewlettP_

c5:77:a1 

PcsCompu

_f8:42:a7 

IEC61850 

Sampled 

Values 

176 

40 1,0060995

77 

0,0582979

48 

HewlettP_

c5:77:a1 

PcsCompu

_f8:42:a7 

IEC61850 

Sampled 

Values 

176 

41 1,0007468

23 

1,0007468

23 

HewlettP_

c5:77:a1 

PcsCompu

_f8:42:a7 

IEC61850 

Sampled 

Values 

176 

42 1,0012672

88 

1,0012672

88 

HewlettP_

c5:77:a1 

PcsCompu

_f8:42:a7 

IEC61850 

Sampled 

Values 

176 

45 1,0005557

93 

0,0512975

35 

HewlettP_

c5:77:a1 

PcsCompu

_f8:42:a7 

IEC61850 

Sampled 

Values 

176 

46 1,0148303

43 

1,0148303

43 

HewlettP_

c5:77:a1 

PcsCompu

_f8:42:a7 

IEC61850 

Sampled 

Values 

176 

48 1,0011342

39 

0,5734401

32 

HewlettP_

c5:77:a1 

PcsCompu

_f8:42:a7 

IEC61850 

Sampled 

Values 

176 
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49 1,0013998

45 

1,0013998

45 

HewlettP_

c5:77:a1 

PcsCompu

_f8:42:a7 

IEC61850 

Sampled 

Values 

176 

50 1,0011343

02 

1,0011343

02 

HewlettP_

c5:77:a1 

PcsCompu

_f8:42:a7 

IEC61850 

Sampled 

Values 

176 

51 1,0007696

18 

1,0007696

18 

HewlettP_

c5:77:a1 

PcsCompu

_f8:42:a7 

IEC61850 

Sampled 

Values 

176 

52 1,0012899

92 

1,0012899

92 

HewlettP_

c5:77:a1 

PcsCompu

_f8:42:a7 

IEC61850 

Sampled 

Values 

176 

53 1,0008000

83 

1,0008000

83 

HewlettP_

c5:77:a1 

PcsCompu

_f8:42:a7 

IEC61850 

Sampled 

Values 

176 

54 1,0116789

12 

1,0116789

12 

HewlettP_

c5:77:a1 

PcsCompu

_f8:42:a7 

IEC61850 

Sampled 

Values 

176 

55 1,0008834

13 

1,0008834

13 

HewlettP_

c5:77:a1 

PcsCompu

_f8:42:a7 

IEC61850 

Sampled 

Values 

176 

57 1,0019459

73 

0,5899194

5 

HewlettP_

c5:77:a1 

PcsCompu

_f8:42:a7 

IEC61850 

Sampled 

Values 

176 

58 1,0029376

33 

1,0029376

33 

HewlettP_

c5:77:a1 

PcsCompu

_f8:42:a7 

IEC61850 

Sampled 

Values 

176 

59 1,0010649

42 

1,0010649

42 

HewlettP_

c5:77:a1 

PcsCompu

_f8:42:a7 

IEC61850 

Sampled 

Values 

176 

60 1,0011825

93 

1,0011825

93 

HewlettP_

c5:77:a1 

PcsCompu

_f8:42:a7 

IEC61850 

Sampled 

Values 

176 

61 1,0005739

51 

1,0005739

51 

HewlettP_

c5:77:a1 

PcsCompu

_f8:42:a7 

IEC61850 

Sampled 

Values 

176 
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62 1,0034861

31 

1,0034861

31 

HewlettP_

c5:77:a1 

PcsCompu

_f8:42:a7 

IEC61850 

Sampled 

Values 

176 

63 1,0028297

43 

1,0028297

43 

HewlettP_

c5:77:a1 

PcsCompu

_f8:42:a7 

IEC61850 

Sampled 

Values 

176 

65 1,0234456

45 

0,0396710

99 

HewlettP_

c5:77:a1 

PcsCompu

_f8:42:a7 

IEC61850 

Sampled 

Values 

176 

67 1,0010971

58 

0,6238734

34 

HewlettP_

c5:77:a1 

PcsCompu

_f8:42:a7 

IEC61850 

Sampled 

Values 

176 

68 1,0095398

06 

1,0095398

06 

HewlettP_

c5:77:a1 

PcsCompu

_f8:42:a7 

IEC61850 

Sampled 

Values 

176 

70 1,0004541

55 

0,0496144

54 

HewlettP_

c5:77:a1 

PcsCompu

_f8:42:a7 

IEC61850 

Sampled 

Values 

176 

71 1,0043009

96 

1,0043009

96 

HewlettP_

c5:77:a1 

PcsCompu

_f8:42:a7 

IEC61850 

Sampled 

Values 

176 

72 1,0012359

77 

1,0012359

77 

HewlettP_

c5:77:a1 

PcsCompu

_f8:42:a7 

IEC61850 

Sampled 

Values 

176 

74 1,0010892

41 

0,0557182

82 

HewlettP_

c5:77:a1 

PcsCompu

_f8:42:a7 

IEC61850 

Sampled 

Values 

176 

76 1,0014006

57 

0,3002351

73 

HewlettP_

c5:77:a1 

PcsCompu

_f8:42:a7 

IEC61850 

Sampled 

Values 

176 

77 1,0046292

04 

1,0046292

04 

HewlettP_

c5:77:a1 

PcsCompu

_f8:42:a7 

IEC61850 

Sampled 

Values 

176 
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APPENDIX H 
 

Attached is the Wireshark capture of the Sampled Value packets from the receiving device. 

 

No. Time Source Destination Protocol Length 

1 0.000000000 HewlettP_c5:

77:a1 

PcsCompu_f

8:42:a7 

IEC61850 

Sampled 

Values 

176 

5 1.001302427 HewlettP_c5:

77:a1 

PcsCompu_f

8:42:a7 

IEC61850 

Sampled 

Values 

176 

7 1.000630852 HewlettP_c5:

77:a1 

PcsCompu_f

8:42:a7 

IEC61850 

Sampled 

Values 

176 

8 1.000355431 HewlettP_c5:

77:a1 

PcsCompu_f

8:42:a7 

IEC61850 

Sampled 

Values 

176 

13 1.000876148 HewlettP_c5:

77:a1 

PcsCompu_f

8:42:a7 

IEC61850 

Sampled 

Values 

176 

18 1.000772328 HewlettP_c5:

77:a1 

PcsCompu_f

8:42:a7 

IEC61850 

Sampled 

Values 

176 

23 1.001844746 HewlettP_c5:

77:a1 

PcsCompu_f

8:42:a7 

IEC61850 

Sampled 

Values 

176 

24 1.000285075 HewlettP_c5:

77:a1 

PcsCompu_f

8:42:a7 

IEC61850 

Sampled 

Values 

176 

25 1.000931510 HewlettP_c5:

77:a1 

PcsCompu_f

8:42:a7 

IEC61850 

Sampled 

Values 

176 

26 1.017946027 HewlettP_c5:

77:a1 

PcsCompu_f

8:42:a7 

IEC61850 

Sampled 

Values 

176 
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28 1.000394877 HewlettP_c5:

77:a1 

PcsCompu_f

8:42:a7 

IEC61850 

Sampled 

Values 

176 

30 1.001198878 HewlettP_c5:

77:a1 

PcsCompu_f

8:42:a7 

IEC61850 

Sampled 

Values 

176 

33 1.027394484 HewlettP_c5:

77:a1 

PcsCompu_f

8:42:a7 

IEC61850 

Sampled 

Values 

176 

37 1.005958011 HewlettP_c5:

77:a1 

PcsCompu_f

8:42:a7 

IEC61850 

Sampled 

Values 

176 

38 1.000609014 HewlettP_c5:

77:a1 

PcsCompu_f

8:42:a7 

IEC61850 

Sampled 

Values 

176 

39 1.001205644 HewlettP_c5:

77:a1 

PcsCompu_f

8:42:a7 

IEC61850 

Sampled 

Values 

176 

42 1.000941860 HewlettP_c5:

77:a1 

PcsCompu_f

8:42:a7 

IEC61850 

Sampled 

Values 

176 

43 1.014430880 HewlettP_c5:

77:a1 

PcsCompu_f

8:42:a7 

IEC61850 

Sampled 

Values 

176 

45 1.001542392 HewlettP_c5:

77:a1 

PcsCompu_f

8:42:a7 

IEC61850 

Sampled 

Values 

176 

46 1.001165932 HewlettP_c5:

77:a1 

PcsCompu_f

8:42:a7 

IEC61850 

Sampled 

Values 

176 

47 1.001046078 HewlettP_c5:

77:a1 

PcsCompu_f

8:42:a7 

IEC61850 

Sampled 

Values 

176 

48 1.000869278 HewlettP_c5:

77:a1 

PcsCompu_f

8:42:a7 

IEC61850 

Sampled 

Values 

176 
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49 1.001141924 HewlettP_c5:

77:a1 

PcsCompu_f

8:42:a7 

IEC61850 

Sampled 

Values 

176 

50 1.000891396 HewlettP_c5:

77:a1 

PcsCompu_f

8:42:a7 

IEC61850 

Sampled 

Values 

176 

51 1.012036862 HewlettP_c5:

77:a1 

PcsCompu_f

8:42:a7 

IEC61850 

Sampled 

Values 

176 

52 1.000375548 HewlettP_c5:

77:a1 

PcsCompu_f

8:42:a7 

IEC61850 

Sampled 

Values 

176 

54 1.002338513 HewlettP_c5:

77:a1 

PcsCompu_f

8:42:a7 

IEC61850 

Sampled 

Values 

176 

55 1.002676293 HewlettP_c5:

77:a1 

PcsCompu_f

8:42:a7 

IEC61850 

Sampled 

Values 

176 

56 1.001021821 HewlettP_c5:

77:a1 

PcsCompu_f

8:42:a7 

IEC61850 

Sampled 

Values 

176 

57 1.001131982 HewlettP_c5:

77:a1 

PcsCompu_f

8:42:a7 

IEC61850 

Sampled 

Values 

176 

58 1.000966325 HewlettP_c5:

77:a1 

PcsCompu_f

8:42:a7 

IEC61850 

Sampled 

Values 

176 

59 1.002994688 HewlettP_c5:

77:a1 

PcsCompu_f

8:42:a7 

IEC61850 

Sampled 

Values 

176 

60 1.003122324 HewlettP_c5:

77:a1 

PcsCompu_f

8:42:a7 

IEC61850 

Sampled 

Values 

176 

62 1.023360673 HewlettP_c5:

77:a1 

PcsCompu_f

8:42:a7 

IEC61850 

Sampled 

Values 

176 
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64 1.001145123 HewlettP_c5:

77:a1 

PcsCompu_f

8:42:a7 

IEC61850 

Sampled 

Values 

176 

65 1.009552273 HewlettP_c5:

77:a1 

PcsCompu_f

8:42:a7 

IEC61850 

Sampled 

Values 

176 

67 1.000342314 HewlettP_c5:

77:a1 

PcsCompu_f

8:42:a7 

IEC61850 

Sampled 

Values 

176 

68 1.004276707 HewlettP_c5:

77:a1 

PcsCompu_f

8:42:a7 

IEC61850 

Sampled 

Values 

176 

69 1.001357436 HewlettP_c5:

77:a1 

PcsCompu_f

8:42:a7 

IEC61850 

Sampled 

Values 

176 

71 1.000897365 HewlettP_c5:

77:a1 

PcsCompu_f

8:42:a7 

IEC61850 

Sampled 

Values 

176 

73 1.001407896 HewlettP_c5:

77:a1 

PcsCompu_f

8:42:a7 

IEC61850 

Sampled 

Values 

176 

74 1.004875002 HewlettP_c5:

77:a1 

PcsCompu_f

8:42:a7 

IEC61850 

Sampled 

Values 

176 

77 1.000592307 HewlettP_c5:

77:a1 

PcsCompu_f

8:42:a7 

IEC61850 

Sampled 

Values 

176 
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APPENDIX I 
 

Attached are the computational times of generating MAC and encryption for Sampled Value 

packets from the sending device. 

 

No. MAC Generation Time (ms) Encryption Time (ms) 

1 0,002 0,008 

2 0,002 0,008 

3 0,002 0,01 

4 0,002 0,008 

5 0,002 0,008 

6 0,002 0,01 

7 0,002 0,008 

8 0,002 0,009 

9 0,002 0,01 

10 0,002 0,009 

11 0,002 0,008 

12 0,002 0,009 

13 0,002 0,01 

14 0,002 0,011 

15 0,002 0,008 

16 0,003 0,014 

17 0,004 0,014 

18 0,002 0,011 

19 0,002 0,01 

20 0,002 0,01 

21 0,002 0,01 

22 0,002 0,01 

23 0,002 0,011 

24 0,002 0,008 

25 0,002 0,01 

26 0,002 0,009 

27 0,002 0,018 

28 0,002 0,01 

29 0,002 0,011 
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30 0,003 0,01 

31 0,004 0,015 

32 0,003 0,011 

33 0,002 0,01 

34 0,003 0,012 

35 0,004 0,014 

36 0,002 0,01 

37 0,002 0,009 

38 0,002 0,009 

39 0,002 0,009 

40 0,002 0,01 

41 0,002 0,008 

42 0,002 0,009 

43 0,002 0,008 

44 0,002 0,021 

45 0,002 0,019 

46 0,003 0,008 

47 0,002 0,009 

48 0,003 0,008 

49 0,002 0,008 

50 0,003 0,015 
   

 
Average (MAC Generation) Average (Encryption) 

 
0,00226 0,01044 
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APPENDIX J 
 

Attached are the computational times of generating MAC and decryption for Sampled Value 

packets from the receiving device. 

 

No. MAC Generation 

Time (ms) 

MAC comparison 

time (ms) 

Decryption time 

1 0,002 0,000 0,001 

2 0,005 0,001 0,001 

3 0,012 0,001 0,001 

4 0,011 0,002 0,001 

5 0,011 0,002 0,001 

6 0,011 0,002 0,001 

7 0,008 0,001 0,001 

8 0,007 0,001 0,001 

9 0,011 0,002 0,001 

10 0,019 0,002 0,001 

11 0,011 0,001 0,001 

12 0,011 0,002 0,001 

13 0,007 0,001 0,001 

14 0,011 0,002 0,001 

15 0,012 0,001 0,001 

16 0,011 0,002 0,001 

17 0,007 0,002 0,001 

18 0,018 0,002 0,001 

19 0,006 0,001 0,001 

20 0,001 0,001 0,001 

21 0,007 0,000 0,001 

22 0,011 0,001 0,001 

23 0,011 0,002 0,001 

24 0,012 0,002 0,001 

25 0,001 0,000 0,001 

26 0,002 0,000 0,001 

27 0,002 0,000 0,001 
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28 0,003 0,000 0,001 

29 0,002 0,001 0,001 

30 0,006 0,000 0,001 

31 0,011 0,001 0,001 

32 0,009 0,002 0,001 

33 0,011 0,001 0,001 

34 0,011 0,002 0,001 

35 0,011 0,002 0,001 

36 0,007 0,001 0,001 

37 0,002 0,000 0,001 

38 0,005 0,001 0,001 

39 0,002 0,000 0,001 

40 0,002 0,000 0,001 

41 0,003 0,000 0,001 

42 0,002 0,001 0,001 

43 0,006 0,000 0,001 

44 0,011 0,001 0,001 

45 0,009 0,002 0,001 

46 0,011 0,001 0,001 

47 0,011 0,002 0,001 

48 0,011 0,002 0,001 

49 0,006 0,001 0,001 

50 0,006 0,001 0,001 
    

 
Average (MAC 

Generation) 

Average (MAC 

Comparison) 

Average (Decryption) 

 
0,008 0,001 0,001 

 


