

A UNIFIED QUERY PLATFORM FOR NOSQL DATABASES USING POLYGLOT
PERSISTENCE

by

HADWIN MARQUARD VALENTINE

Dissertation submitted in partial fulfilment of the requirements for the degree

Master of Information and Communication Technology

in the Faculty of Informatics and Design

at the Cape Peninsula University of Technology

Supervisor: Dr B. Kabaso

Cape Town
May 2024

CPUT copyright information
The dissertation/thesis may not be published either in part (in scholarly, scientific or technical
journals), or as a whole (as a monograph), unless permission has been obtained from the
University

 ii

DECLARATION

I, Hadwin Marquard Valentine, declare that the contents of this dissertation/thesis represent
my own unaided work, and that the dissertation/thesis has not previously been submitted for
academic examination towards any qualification. Furthermore, it represents my own opinions
and not necessarily those of the Cape Peninsula University of Technology.

 04 May 2024

Signed Date

 iii

ABSTRACT

The advancements in Web application technologies and IoT devices has produced an enormous amount

of ubiquitous data. The increasing complexity and diverse data sources poses significant challenges for

organizations in extracting meaningful insights. A unified query platform has the potential to address

these challenges by providing a consolidated interface for querying and analysing disparate data

sources in a unformed manner. Using design science research as a methodology, this study presents a

systematic approach to designing, developing and evaluating a unified query prototype. The thesis

begins by articulating the research problem in the current domain, describing the adverse impacts

divergent data sources have when collating information. This study proceeds to highlight the key

features necessary to realise an unified query solution.

Using Design Science research as a lens to conduct the research project, a prototype was developed

as middleware to evaluate its effectiveness and efficiency. A number of components were developed

that ultimately enabled the prototype to interrogate data different types of NoSQL database management

systems. The aforementioned components consisted of a query parser, translator and executor

designated as explicit functional features. The solution also incorporated behavioural design patterns to

facilitate the entire query process. A variety of experiments were conducted to evaluate the prototypes

effectiveness and efficiency. The experiments were action by a group of automated participants, each

test representing as subset of a particular goal. The culmination of these results indicated the feasibility

of the proposed solution.

In conclusion, while the prototype enabled the researchers to empirically analyse data, the proposed

solution is a byproduct of the entire research process. Moreover, the findings of this study offers practical

design and architectural insights for stakeholders seeking to enhance their understanding of unified

query systems. The study recognises the challenges and opportunities in unified query systems which

was expressed throughout research endeavour. This forms the basis of the recommendations and

guidelines proposed by this study. Thus, contributing to the advancement of knowledge within the unified

query platform systems.

 iv

ACKNOWLEDGEMENTS

I wish to express my gratitude to my supervisor Dr. Boniface Kabaso for his continuous support during

my Masters studies. Dr Kabaso’s guidance, understanding and patience as I navigated through my

research journey was invaluable. The completion of my research journey would have been possible

without his invaluable knowledge. I would also like to extend my gratitude and appreciation to Dr Corrie

Uys for the insightful analysis she performed on the prototype results.

A special thank you to my wife and daughter, Imelda and Kiera, for their endless support and sacrifices

they made as I embarked on my studies.

 v

DEDICATION

This is dedicated to my parents, my mother Murial Valentine and father, Winston Valentine. Your

continued support and sacrifices made this possible.

 vi

TABLE OF CONTENTS
DECLARATION ... ii

ABSTRACT ... iii

ACKNOWLEDGEMENTS ... iv

TABLE OF CONTENTS .. vi

LIST OF FIGURES ... xi

LIST OF TABLES .. xiii

GLOSSARY ... xvi

CHAPTER ONE : PURPOSE AND SIGNIFICANCE .. 1

1.1 Introduction .. 1

1.2 Background to the Research Problem ... 2

1.3 Research Problem ... 2

1.4 Research Aims and Objectives .. 3

1.5 Research Questions .. 3

1.6 Research Methodology .. 4

1.7 Thesis Significance .. 4

1.8 Ethics... 5

1.9 Delineation .. 5

1.10 Thesis Outline .. 6

1.11 Summary .. 7

CHAPTER TWO : LITERATURE REVIEW .. 8

2.1 Introduction .. 8

2.2 Theoretical Context for NoSQL systems .. 9

2.3 NoSQL Storage Options .. 10

2.3.1 Key-Value ... 10

2.3.2 Column-Family ... 11

2.3.3 Document ... 12

2.3.4 Graph ... 13

2.4 Foundations of a Unified Query System ... 13

2.4.1. Abstract Syntax Tree .. 14

2.4.2. Schema Consolidation .. 14

2.4.3. Query Translation ... 15

2.4.4. Database Integration .. 16

2.4.5. Output Management ... 16

2.5 Approaches to a Unified Query Platform .. 16

2.5.1. Impetus and Selections for a Polyglot Persistent System 17

2.6 Design And Architecture .. 18

2.6.1. Frameworks and Models .. 19

2.6.2. Resource Description Framework ... 19

 vii

2.6.3. Save Our Systems .. 20

2.6.4. NoSQL Abstract Model ... 20

2.6.5. U-Schema Data Model ... 21

2.7 Polyglot Systems ... 22

2.7.1. BigDawg ... 22

2.7.2. Heterogeneous Middleware by Zhang et al ... 23

2.7.3. NoDA .. 24

2.7.4. Translator Query ... 24

2.7.5. Apache Drill .. 24

2.7.6. CloudMdsQL... 25

2.8 Critical Evaluation of Unified Query Systems ... 25

2.9 Systematic Literature Review .. 27

2.9.1. Planning the review .. 27

2.9.2. Conducting the Literature review .. 29

2.9.3. Reporting the review ... 34

2.10 Summary .. 34

CHAPTER THREE : RESEARCH METHODOLOGY ... 36

3.1 Introduction .. 36

3.2 Research Paradigm ... 36

3.2.1. Ontology ... 37

3.2.2. Epistemology .. 37

3.2.3. Axiology .. 37

3.2.4. This Study’s Philosophical Position ... 37

3.2.5. DSR within the Research Paradigm .. 37

3.3 DSR as Strategy .. 39

3.3.1. DSR Process Model ... 40

3.3.2. DSR Guidelines .. 42

3.4 Research Design for the Unified Query Platform ... 43

3.4.1. Guideline 1 : Problem Relevance .. 44

3.4.2. Guideline 2 : Research Rigor .. 44

3.4.3. Guideline 3 : Design as a Search Process .. 44

3.4.4. Guideline 4 : Design as an Artifact .. 45

3.4.5. Guideline 5 : Design Evaluation .. 45

3.4.6. Guideline 6 : Research Contributions ... 46

3.4.7. Guideline 7 : Communication .. 47

3.5 Summary ... 47

CHAPTER FOUR : UNIFIED QUERY PLATFORM DESIGN AND IMPLEMENTATION 48

4.1 Introduction .. 48

4.2 System Design Goals .. 48

 viii

4.3 System Overview ... 49

4.2.1 Conceptual Framework ... 49

4.2.2 Applied Abstraction to the Prototype ... 50

4.4 System Design .. 51

4.4.1. DR1 : Metamodel Repository .. 51

4.4.2. DR2 : Query Parser .. 52

4.4.3. DR3 : Query Translator ... 54

4.4.4. DR4 : Query Executor ... 56

4.4.5. DR5 : Metrics Logger .. 57

4.5 System Construction .. 57

4.5.1. Query Intent .. 57

4.5.2. Query Path ... 59

4.5.3. Query Generator ... 60

4.6 System Review .. 61

4.7 Summary ... 62

CHAPTER FIVE : PROTOTYPE EVALUATION AND RESULTS ... 63

5.1 Introduction .. 63

5.2 The application of DSR to the problem domain .. 63

5.3 Experimental Overview .. 63

5.3.1. Participants ... 64

5.3.2. Procedure ... 65

5.3.3. Hardware .. 65

5.3.4. Software ... 65

5.3.5. Ethical Considerations .. 66

5.4 Experimental Setup ... 66

5.4.1. Data Models ... 66

5.4.2. Data Generation ... 67

5.4.3. Data Load ... 68

5.4.4. Data Metrics ... 69

5.4.5. Automated Tests .. 70

5.5 Experimental Results ... 71

5.5.1. Syntax and Sematic Validations ... 71

5.5.2. Retrieve complete dataset .. 72

5.5.3. Retrieve dataset where a single filter was applied .. 74

5.5.4. Retrieve dataset where a multiples filters were applied 75

5.5.5. Apply a limit to the dataset retrieval process ... 77

5.5.6. Apply sorting to the dataset retrieval process.. 78

5.5.7. Aggregation on a datasets .. 80

5.5.8. Update existing dataset .. 82

 ix

5.5.9. Data inserts .. 83

5.6 Summary ... 84

CHAPTER SIX : FINDINGS AND DISCUSSIONS ... 86

6.1 Introduction .. 86

6.2 Research Questions .. 86

6.3 Results of the Prototype Evaluation ... 87

6.3.1. Syntax and Sematic Validations ... 87

6.3.2. Retrieve complete dataset .. 89

6.3.3. Retrieve dataset where a single filter was applied .. 90

6.3.4. Retrieve dataset where a multiples filters were applied 92

6.3.5. Apply a limit to the dataset retrieval process ... 93

6.3.6. Apply sorting to the dataset retrieval process.. 94

6.3.7. Aggregation on a datasets .. 95

6.3.8. Update existing dataset .. 97

6.3.9. Data inserts .. 98

6.4 Significance of Results .. 99

6.5 Context for the Prototype’s Findings .. 106

6.6 Implications of Findings ... 107

6.6.1. Prototype’s Ethos ... 108

6.6.2. Prototype Abstraction ... 108

6.6.3. Query Intents of the Prototype .. 108

6.6.4. Query Processing ... 109

6.6.5. Prototype Error Handling .. 110

6.7 Contributions to Knowledge ... 110

6.7.1. Contributions to Theory .. 110

6.7.2. Contributions to Practices ... 110

6.8 Limitations ... 110

6.9 Recommendations and Future Research ... 111

6.10 Summary .. 113

REFERENCES .. 114

APPENDICES.. 117

APPENDIX A: Redis Schema .. 117

APPENDIX B: Cassandra Schema .. 118

APPENDIX C: MongoDB Schema ... 119

APPENDIX D: Neo4j Schema .. 120

APPENDIX E: Repository Metamodel .. 121

APPENDIX F: Prototype Unified Query - Template .. 123

APPENDIX G: Lexer Configuration .. 124

APPENDIX H: AST Sample ... 126

 x

APPENDIX I: Data Generation - Province .. 128

APPENDIX J: Test Cases - Syntax and Sematic Validations ... 129

APPENDIX K: Test Cases - Retrieve complete dataset ... 130

APPENDIX L: Test Cases - Retrieve dataset where a single filter was applied 131

APPENDIX M: Test Cases - Retrieve dataset where a multiples filters were applied 133

APPENDIX N: Test Cases - Apply a limit to the dataset retrieval process 135

APPENDIX O: Test Cases - Apply sorting to the dataset retrieval process 137

APPENDIX P: Test Cases - Aggregation on a datasets ... 139

APPENDIX Q: Test Cases - Update existing dataset ... 141

APPENDIX R: Test Cases - Data inserts ... 142

APPENDIX S: Apdex Nonparametric Correlations ... 143

APPENDIX T: Source Code ... 145

 xi

LIST OF FIGURES

Figure. 1.1: Research Framework Adopted from Hevner et al., 2004:p.5 4

Figure. 2.1: NoSQL Data Store Types ... 10

Figure. 2.2: Approaches to Unified Query System (Khine & Wang, 2019:p.18) 17

Figure. 2.3: SOS Architecture (Atzeni, Bugiotti & Rossi, 2012) .. 20

Figure. 2.4: Example of Structural Layout (Atzeni et al, 2020) .. 21

Figure. 2.5: U-Schema Metamodel (Candel, Ruiz & García-Molina, 2022) 21

Figure. 2.6: BigDawg Architecture (Gadepally et al., 2016) .. 22

Figure. 2.7: Unified SQL Query Middleware Architecture (Zhang et al., 2021) 23

Figure. 2.8: Unified SQL Query Middleware Architecture (Tan et al., 2017) 25

Figure. 2.9: Systematic Literature Review process (Xiao & Watson, 2019) 27

Figure. 3.1: Research onion ... 39

Figure. 3.2: Cognition in RSDP Model (Vaishnavi, Kuechler & Petter, 2019:p.59) 41

Figure. 3.3: V & V Measurement Model (Olsen, M. & Raunak, M., 2019) 45

Figure. 4.1: Unified Query Conceptual Framework .. 50

Figure. 4.2: Prototype’s Metamodel ... 52

Figure. 4.4: AST - Add ... 53

Figure. 4.5: AST - Modify ... 53

Figure. 4.6. Chain Of Responsibility Pattern : Prototype Commands 58

Figure. 4.7: Strategy Pattern : Query Generator and Executor ... 59

Figure. 4.8: Visitor Pattern for NoSQL Code Generators .. 60

Figure. 4.9: Verification & Validation Measurement model ... 62

Figure. 5.1: Experimental Overview ... 64

Figure. 6.1: PG 1 - Errors .. 87

Figure. 6.2: PG 1 - Apdex Scores .. 88

Figure. 6.3: PG 1 - Memory Allocations Figure. 6.4: PG 1 - CPU Processing Time 88

Figure. 6.5: PG 1 - Parser Failures .. 88

Figure. 6.6: PG 2 - Apdex Scores .. 89

Figure. 6.7: PG 2 - Memory Allocations Figure. 6.8: PG 2 - CPU Processing Time 90

Figure. 6.9: PG 2 - Parser, Translator and Executor Times .. 90

Figure. 6.10: PG 3 - Errors ... 91

Figure. 6.11: PG 3 - Apdex Scores .. 91

Figure. 6.12: PG 3 - CPU Processing Time Figure. 6.13: PG 3 - Memory Allocations 91

Figure. 6.14: PG 3 - Parser, Translator and Executor Times .. 92

Figure. 6.15: PG 4 - Multiple Filter Errors ... 92

Figure. 6.16: PG 4 - Apdex Scores .. 93

Figure. 6.17: PG 4 - CPU Processing Time .. 93

Figure. 6.19: PG 4 - Parser, Translator and Executor Times .. 93

 xii

Figure. 6.20: PG 5 – Apex Scores.. 94

Figure. 6.22: PG 5 - CPU Processing Times .. 94

Figure. 6.24: PG 6 - Apdex Scores .. 94

Figure. 6.25: PG 6 - Errors ... 95

Figure. 6.26: PG 6 - CPU Processing Times .. 95

Figure. 6.28: PG 6 - Parser, Translator and Executor Times .. 95

Figure. 6.29: PG 7 - Apdex Scores .. 96

Figure. 6.30: PG 7 - Parser, Translator and Executor Times .. 96

Figure. 6.31: PG 7 - CPU Processing Times .. 97

Figure. 6.33: PG 8 - Apdex Scores .. 97

Figure. 6.34: PG 8 - Parser, Translator and Executor Times .. 97

Figure. 6.35: PG 8 - Modification Errors ... 98

Figure. 6.36: PG 8 - CPU Processing Times .. 98

Figure. 6.38: PG 8 - Apdex Scores .. 99

Figure. 6.40: PG 9 - Errors ... 99

Figure. 6.41: PG 9 - CPU Processing Times .. 99

 xiii

LIST OF TABLES

Table 2.1: Alignment between Research Questions and Objectives 8

Table 2.2: SLR Questions .. 27

Table 2.3: SLR Search strategy ... 28

Table 2.4: SLR Search terms ... 28

Table 2.5: SLR Results .. 30

Table 2.6: Criteria for inclusion .. 30

Table 2.6: Criteria for exclusion ... 30

Table 2.7: Quality Assessment Question and Scoring.. 31

Table 2.8: SLR Results .. 31

Table 2.9: Search terms ... 33

Table 3.1: Research Perspectives for DSR (Adapted from Vaishnavi, Kuechler & Petter,
2019) ... 38

Table 3.2: Adapted from DSRP Model Activities (Vaishnavi, Kuechler & Petter, 2019) 41

Table 3.3: Adapted DSR Guidelines (Hevner et al., 2004; Merwe, Gerber & Smuts, 2019) .. 43

Table 3.4: Research Questions and Data Collection .. 43

Table 4.1: Research Questions and Objectives ... 48

Table 4.2: Artifact: Design Requirements ... 49

Table 4.3: Prototype versus Equivalent Native Data Stores Features 55

Table 4.4: Pseudocode : Query Intent .. 58

Table 4.5: Pseudocode : Query Path ... 59

Table 4.6: Pseudocode : Query Generator ... 61

Table 5.1: Research Questions and Objectives ... 63

Table 5.2: Notebook Specifications .. 65

Table 5.3: Development system ... 65

Table 5.4: Database system .. 65

Table 5.5: Student NoSQL Repositories .. 66

Table 5.6: Enriched Data Generation Algorithm ... 67

Table 5.7: Apdex Categories .. 69

Table 5.8: Memory Usage Categories .. 69

Table 5.9: Component Execution Categories .. 70

Table 5.10: Component Error Categories... 70

Table 5.11: Summary of Test Cases .. 71

Table 5.12: Syntax and Sematic Validations - Scenarios ... 72

Table 5.13: Syntax and Sematic Validations - Apdex ... 72

Table 5.14: Syntax and Sematic Validations - CPU & Memory .. 72

Table 5.15: Syntax and Sematic Validations - Timers .. 72

Table 5.16: Syntax and Sematic Validations - Error Rate ... 72

Table 5.17: Retrieve complete dataset - Test Sample .. 72

 xiv

Table 5.18: Retrieve complete dataset - Apdex.. 73

Table 5.19: Retrieve complete dataset - CPU & Memory ... 73

Table 5.20: Retrieve complete dataset - Timers ... 73

Table 5.21: Retrieve complete dataset - Error Rate ... 73

Table 5.22: Retrieve dataset where a single filter was applied - Test Sample 74

Table 5.23: Retrieve dataset where a single filter was applied - Apdex 74

Table 5.24: Retrieve dataset where a single filter was applied - CPU & Memory 74

Table 5.25: Retrieve dataset where a single filter was applied - Timers 75

Table 5.26: Retrieve dataset where a single filter was applied - Error Rate 75

Table 5.27: Retrieve dataset where a multiples filters were applied - Test Sample 75

Table 5.28: Retrieve dataset where a multiples filters were applied - Apdex 76

Table 5.29: Retrieve dataset where a multiples filters were applied - CPU & Memory.......... 76

Table 5.30: Retrieve dataset where a multiples filters were applied - Timers 76

Table 5.31: Retrieve dataset where a multiples filters were applied - Error Rate 77

Table 5.32: Apply a limit to the dataset retrieval process - Test Sample 77

Table 5.33: Apply a limit to the dataset retrieval process - Apdex .. 77

Table 5.34: Apply a limit to the dataset retrieval process - CPU & Memory 78

Table 5.35: Apply a limit to the dataset retrieval process - Timers.. 78

Table 5.36: Apply a limit to the dataset retrieval process - Error Rate 78

Table 5.37: Apply sorting to the dataset retrieval process - Test Sample 78

Table 5.38: Apply sorting to the dataset retrieval process - Apdex 79

Table 5.39: Apply sorting to the dataset retrieval process - CPU & Memory 79

Table 5.40: Apply sorting to the dataset retrieval process - Timers 79

Table 5.41: Apply sorting to the dataset retrieval process - Error Rate 79

Table 5.42: Aggregation on a datasets - Test Sample.. 80

Table 5.43: Aggregation on a datasets - Apdex ... 80

Table 5.44: Aggregation on a datasets - CPU & Memory ... 81

Table 5.45: Aggregation on a datasets - Timers ... 81

Table 5.46: Aggregation on a datasets - Error Rate ... 81

Table 5.47: Update existing dataset - Test Sample .. 82

Table 5.48: Update existing dataset - Apdex .. 82

Table 5.49: Update existing dataset - CPU & Memory ... 82

Table 5.50: Update existing dataset - Timers ... 83

Table 5.51: Update existing dataset - Error Rate ... 83

Table 5.52: Data inserts - Test Sample .. 83

Table 5.53: Data inserts - Apdex .. 84

Table 5.54: Data inserts - CPU & Memory ... 84

Table 5.55: Data inserts - Timers .. 84

Table 5.56: Data inserts - Error Rate ... 84

 xv

Table 6.1: Primary Research Questions... 86

Table 6.2: Apdex : Model Description .. 100

Table 6.3: Apdex : Covariates .. 100

Table 6.4: Apdex : Generalized Linear Model .. 101

Table 6.5: CPU Utilisation : Statistical Descriptives .. 102

Table 6.5: CPU Physical Memory : Model Description ... 102

Table 6.6: CPU Physical Memory : Dependant Variable and Covariates............................ 103

Table 6.7: CPU Physical Memory : Generalized Linear Model ... 103

Table 6.8: CPU Private Memory : Model .. 104

Table 6.9: CPU Private Memory : Dependant Variable and Covariates 104

Table 6.10: CPU Private Memory : Generalized Linear Model ... 105

Correlation Parameters .. 143

 xvi

GLOSSARY

Terms/Acronyms/Abbreviations Definition/Explanation
ACID Atomicity, Consistency, Isolation and Durability
ANTLR ANother Tool for Language Recognition
API Application Programming Interface
BASE Basically Available, Soft State, Eventually Consistent
CRUD Create, Read, Update Delete
DBMS Database Management System
DDD Domain-Driven Design
DSR Design Science Research
DSRP Design Science Research Process
ETL Extract, Transform and Load
GaV Global-as-View
HTTP(S) Hypertext Transfer Protocol (Secure)
IS Information Systems
LaV Local-as-View
MPP Massively Parallel Processing
NoSQL Not only SQL
PG Participant Group
RESTful Representational state transfer

RO Research Objectives
RQ Research Question
TCP/IP Transmission Control Protocol/Internet Protocol
V&V Verification and Validation

 1

CHAPTER ONE : PURPOSE AND SIGNIFICANCE

1.1 Introduction

Information systems in the modern era has shifted the mindset of organisations from application

driven processes to data driven initiatives. The advancements in technology such as Web 2.0,

3.0, mobile devices and recently IoT devices has given rise to a massive amount of structured,

semi-structure and unstructured datasets, i.e. big data (Košmerl, Rabuzin & Šestak, 2020;

Zhang et al., 2021). This has led to the creation and adoption variety of NoSQL database

technologies, each with its own underlying architectural principles (Davoudian, Chen & Liu,

2018; Oussous et al., 2018).

The NoSQL philosophy essentially stems from the shortcomings of the relational database

management systems. NoSQL systems are ideal for storing unstructured and semi-structured

data as it does not make use of the static table row and column concept. These data models

are schema-less in nature, owing to the de-normalize data it holds within the data store

(Ramadhan et al., 2020; Khine & Wang, 2019). This requires data to be interpreted by the

consuming application.

The term NoSQL is often confused with “No SQL”, the implication being that NoSQL is intended

to replace relational SQL database management systems. However, the actual meaning refers

to “Not Only SQL” (Khine & Wang, 2019). Hence, NoSQL technologies supports a variety of

querying techniques when executing data management activities. Certain NoSQL database

systems utilises APIs or RESTful interfaces to interrogate data while others utilise a derivative

of the familiar SQL language (Oussous et al., 2018), i.e. commonly referred to as SQL-like. This

variety empowers developers to take advantage of NoSQL technological principles and apply it

to satisfy their own needs or requirements.

Within the NoSQL technology stack, four fundamental data models are supported: key-value,

column-orientated, document-orientated and graph models (Davoudian, Chen & Liu, 2018). The

unification of data models from four the different categories of NoSQL storage mechanisms

often leads to data querying complexities (Zhang et al., 2021, Koutroumanis et al., 2021).

Challenges start to arise when attempting to collate heterogenous data from disparate sources

since each NoSQL database system have their own respective guidelines and features

(Kolonko & Müllenbach, 2020). This is impart due to the fact that no global schema exist that is

able to encompass the four fundamental data model categories associated with NoSQL. Each

one is tailored to its respective NoSQL database technology serving specific use cases.

Due to this kaleidoscope of these storage technologies that exists; researchers, developers,

data scientist and architects have embarked on creating a singular platform of consolidating

these heterogeneous data models (Khine & Wang, 2019; Kolonko & Müllenbach, 2020). A

common approach is to develop middleware, known as a polyglot persistent solution. Polyglot

persistent solutions refers to a system’s ability to interface with multiple database technologies.

 2

1.2 Background to the Research Problem

As a direct result of big data technologies, organisations face the ultimate challenge; how to

query structured, semi-structured and unstructured data in a uniformed manner? In the absence

of a global schema for diverse data sets (Khine & Wang, 2019; Hewasinghage et al., 2021),

organisations painstakingly develop very specific and rigid implementations to consolidate data

from different databases in order to gain valuable and actionable insights from a particular

business domain. This activity is traditionally accomplished through data warehousing via ETL’s

i.e. extract, load and transform (Ramadhan et al., 2020).

The past decade has seen a rise of proposed and propriety unified query solutions to bridge the

heterogenous querying gap that exists. Organisation look to extract key metrics from data to

support strategic business initiatives (Khan et al., 2019; Endris, 2020; Ramadhan et al., 2020).

While there has been numerous success in these endeavours, the solutions tend to serve very

specific uses case and not easily generalized to the wider IT audience.

Furthermore, Hewasinghage et al. (2021:p.1) states NoSQL unified query solutions becomes

“more complex as the number of participating data store types grows”, often omitting certain

operations of specific NoSQL data stores due feature mismatches between technologies. This

is due to each category of NoSQL data store, including vendor specific artifacts, implements

dissimilar mechanisms and techniques for querying and processing data models (Košmerl,

Rabuzin & Šestak, 2020).

1.3 Research Problem

In the absence of a global query instrument, interrogating heterogenous NoSQL storage

systems presents complexities when attempting present the data as a single unified view (Atzeni

et al, 2020; Candel, Ruiz & García-Molina, 2022). According to Zhang et al. (2021:p.1), the

various NoSQL storage models inherently serves by design “different characteristics supported

by different database systems and the differences in query syntax rules”, thus impeding the

pursuit standardization for uniformed query.

As consequence of the current climate, developers spend an inordinate amount of time learning

each individual NoSQL database’s features. Although a number of research papers have

contributed towards developing a unified query model, not many middleware solutions truly

encapsulates how key-value, column-orientated, document-orientated and graph data models

may be query via a single query mechanism simultaneously.

A prototype, named NoDA developed by Koutroumanis et al. (2021), is able to interrogate the

four primary categories of NoSQL data models via a single interface. However, the prototype is

unable to concurrently query datasets from NoSQL’s heterogenous data models as it is only

able connect and interrogate to a single data model at any given time. An approach adopted by

Zhang et al. (2021) on the other hand, while being able to unify data across limited categories

of NoSQL data models, it does not efficiently map the abstract query to the targeted queries.

 3

Instead it uses wildcards in the respective targeted queries to gather data thus creating

additional complexity to its runtime mapping mechanism. Furthermore, the reckless use of

wildcards inherently increases the risks of error-prone software thus may cause runtime

exceptions during executions (Gobert, 2020). The protype developed by Ramadhan et al.

(2020), demonstrates in detail how abstract queries are mapped to the targeted queries,

however it’s only suited to relational type data models.

The construct of a uniformed query for the four data models of NoSQL technologies is often a

by-product of the research output (Khine & Wang, 2019). Therefore a lot more in depth studies

are required to address the complexities of developing a unified query responsible for

generating NoSQL native queries for heterogenous NoSQL data models (Hewasinghage et al.,

2021; Zhang et al., 2021). An effective and effecient way to overcome this obstacle is to develop

an query platform with a standardize set of features encompassing syntax, semantics and

lexical paradigms. This approach enables developers to easily interface with the heterogeneous

data models while abstracting the technical details of each storage mechanism.

1.4 Research Aims and Objectives

The aim of this research study is to develop an uniformed query platform encompassing data

models for each category of NoSQL storage types using a polyglot persistent technique. In order

to achieve the research aim, the following objectives are set:

1. To determine a prescribed set of guidelines when creating a unified query platform for

each type of NoSQL database.

2. To identify optimal de facto design and architectural principles able to translate a unified

construct to native NoSQL queries.

3. To design and implement a unified query construct as middleware that collectively

transforms, routes and executes an abstract query on each native NoSQL data models.

4. To determine the effectiveness and efficiency of the unified query construct considering

data integration, query execution, and result retrieval.

1.5 Research Questions

The study will addresses the following research question and sub-questions:

• How can a unified query platform be developed for the four primary categories of

NoSQL databases using polyglot persistent technique?

1. What essential guidelines must be applied when building a uniformed query

platform?

2. What are the de facto design and architectural principles for developing a

uniformed query platform?

3. To what extent is the uniformed query platform able to translate abstract

queries to native queries for the identified NoSQL data models?

4. How effective and efficient is the performance of the applied query processing

strategies in the unified query platform?

 4

1.6 Research Methodology

The study adopts a quantitative approach; since the impetus for this research is to generalize

the findings to a broad spectrum within the unified query domain. The intent is to utilize

numerical data generated to objectively concluded the utility of the unified query solution

(Vaishnavi, Kuechler & Petter, 2019; Peffers et al., 2020). The research endeavour conducted

for this study utilised Design Science Research (DSR). Baskerville et al. (2018) posits that within

a technological context; DRS may be used to build on existing knowledge of a particular area,

thus enhancing the efficacy between humans and technology.

Figure. 1.1: Design Science Research Framework Adopted from Hevner et al., 2004:p.5

The theoretical framework, illustrated in Figure. 1.1, serves as the underlying structure for

conducting this study. This provides the necessary research rigor distinguishing the artifact from

an ordinary project endeavour. The theoretical foundations of unified query solutions will

influence the decision-making and construction of the intended artifact. It is iteratively assessed

and refined based on the measurable outcomes at each repetition of the research process.

Hevner et al. (2004) states that a primary motivation for using DRS is to gain understanding and

new knowledge of a problem domain through a novel artifact that is able to clearly demonstrate

its application. Therefore DRS was selected as the research design choice for this study, as it

is most appropriate since the objectives of the study is to design, construct and evaluate an

experimental prototype. The research methodology in chapter 3 articulates this to the reader as

the research recipe used throughout this study.

1.7 Thesis Significance

The collation of data within organisations serves as a key factor in the strategic decision-making

process. Moreover, the ability to organize the data into useful information in an optimal

timeframe can be considered even more crucial. This statement is especially plausible in the

current business context as data plays a huge role in an organisation’s ability to react and predict

market trends effectively. This study contributes to best practices and recommendations when

 5

designing, developing and evaluating a unified query platform for the heterogenous data models

of NoSQL databases. The limitations and constraints placed on the experimental prototype

imposed is expressed throughout this study. The empirical data generated in a measured

environment will be published detailing the input\output complexities.

The outcomes of this research endeavour provides an autonomous framework to consolidate

assorted data from the four types of NoSQL storage models. The framework is essentially

underpinned by exiting literature and inferences made during the research process. It reduces

the need for manual intervention required from developers when interfacing disparate NoSQL

databases while abstracting technical details related to specific NoSQL technology. It

condenses a set of guiding design and architectural methods when developing a unified

querying platform.

In summary, the significance of this study expands on existing knowledge which aids in the

design and development process when creating a unified query platform, thus decreasing

implementation time. More importantly, due to the principle similarities of data models within

each NoSQL technological stack, this prescriptive knowledge attained may be extended to more

NoSQL storage mechanisms.

1.8 Ethics

The findings of this research study will be communicated with honesty, regardless if the data

indicates the unified query platform does not demonstrate its utility. Careful consideration is

given to the software licensing requirements which is required to build the artifact. The software

license should permit the free use and distribution of the intended software. This is important

from an ethical point of view as the illegal use of software (especially propriety) may infringe or

damage the reputation of all stakeholders involved. Depending on the severity, it may even lead

to legality issues. The current defects of the software tools was reviewed as this may

compromise the solution especially if security flaws exists compromising data.

1.9 Delineation

The scope of this study is be limited to one type of data model for each category of NoSQL

databases. The research focuses developing a unified query using open source technologies

which comprises of Redis (key-value store), Cassandra (column store), MongoDB (document

store) and Neo4j (graph store). The actual middleware was written in C# using Visual Studio

.Net Community Edition which permits usage for academic purposes without any licensing

costs. Since there are a vast number of NoSQL database technologies, it will be impractical and

beyond the scope of this research study to develop an all-encompassing solution for all the

different types of NoSQL database technologies. This study is further bounded to specific

versions of the NoSQL database implementations as any vendors changes may adversely

impact the proposed solution.

 6

1.10 Thesis Outline

This research study cover of six chapters. The following sections aims to provide an overview

of what to expected within each of the chapters.

Chapter 1: Purpose and Significance

The first chapter introduces the reader to the purpose and significance of this study. It presents

the reader with the research problem, aims and objectives, research question as well as a high

level view on the research methodology.

Chapter 2: Literature Review

This chapter describes and analyses current literature on unified query solutions. It scrutinises

existing methods, instantiations, processes and principles highlighting deficiencies and ideal

practices.

Chapter 3: Research Methodology

The third chapter deliberates on the chosen research approach, strategy, data collection

analysis techniques utilised in this study. This chapter proceeds to describe the research

process model, guidelines and activities expressing how it pertains to this study.

Chapter 4: Unified Query Platform Design and Implementation

This chapter discusses how the experimental protype for a unified query platform was achieved

by detailing the design and implementation utilized. It illustrated a conceptual framework

highlighting the required components and features necessary to realise the solution. It identifies

and motivates the approaches and design principles choices made to justify the final product.

Chapter 5: Protype Evaluation And Results

This segment of the research paper describes the experimental process conducted to evaluated

the protypes effectiveness and efficiency. The reader is presented with documented evidence

on the prototype’s performance based on the empirical data collected from simulations.

Chapter 6: Findings and Discussions

The final chapter compares the protype’s design implementation choices in comparison to

existing solutions. It continues to meticulously detailing the findings of the research,

communicating the boundaries of the prototype’s performance interpreting the results attained

during the testing process. It furthers acknowledges the challenges and limitations faced

exploring the feasibility of the solution in regard to the problem domain. It draws insights and

posits recommendations for future work on unified query platforms.

References:

The section provides a full list of cited articles, journals and books used to motivate, support

and justify research themes.

 7

Appendices:

The section further supplements research the validity of the research study.

1.11 Summary

This chapter introduces the purpose of the study and its significance. It informs the reader of

the research problem and formulates an ideal resolution. The research problem is based on

contemporary literature exploring the shortcomings of past solutions as a primary motivation for

the research study. In addition, the chapter goes on to substantiate how DSR was used as a

research method to provide the necessary rigor for this study.

 8

CHAPTER TWO : LITERATURE REVIEW

2.1 Introduction

This chapter explores existing literature on unified query solutions. It analyses the current body

of knowledge on the subject matter at hand in order to extrapolate what is known and unknown.

In chapter one, section 1.4 and 1.5, the following RO’s and RQ’s were postulated as the impetus

to describe current approaches, methods, models, instantiations and theories when developing

unified query platforms.

Table 2.1: Alignment between Research Questions and Objectives

RQ’s RO’s
1 What essential guidelines must be

applied when building a uniformed query

platform?

To determine a prescribed set of guidelines

when creating a unified query platform for

each type of NoSQL database.

2 What are the de facto design and

architectural principles for developing a

uniformed query platform?

To identify optimal de facto design and

architectural principles able to translate a

unified construct to native NoSQL queries.

This chapter firstly addresses, RO1 motivated by RQ1 to understand key aspects of the various

types of NoSQL data stores and how to engage with each one. The study intentionally

elaborated on vendor specific NoSQL database systems presented to the reader in the

delineation, section 1.9. This served two purposes, firstly explicitly bring to the reader’s attention

the storage designation for each mentioned vendor specific NoSQL database. Secondly, the

identified vendor DBMS was used in the development of the prototype. The chapter proceeds

to discuss the theoretical and practical building blocks required achieve a unified query system

for NoSQL databases. On this basis, the study starts with the following sections:

• Theoretical Context for NoSQL systems

• NoSQL Storage Options

• Foundations of a Unified Query System

• Approaches to a Unified Query Platform

The second objective, RO2 inspired by RQ2, examined the current design and architectural

practices employed by existing unified query implementations. This section aimed to expropriate

and challenge the de facto standards originating in a typical unified query solution:

• Design and Architecture Practices

• Propriety, Proposed and Open-Source Solutions

• Challenges in Existing Solutions

Finally, at the end of this chapter, the literature considered the suppositions made by the

relevant research works. This study made inferences based on these possibilities to conclude

the ideal practices that may be packaged together to achieve the desired outcomes.

 9

2.2 Theoretical Context for NoSQL systems

Before embarking on an implementation for a unified query solution, it is important to understand

the conceptual paradigms of the BASE model and CAP theorem which directly impacts the

usability and scalability of a distributed NoSQL database system. The BASE model is a concept

used to manage the state of a system contrary to the ACID model. The BASE model is a less

stringent approach to governing the integrity and availability of data within NoSQL databases

(Khine & Wang, 2019). It prioritizes a systems performance over data consistency, hence a

systems state may gradually change even if no input is processed. BASE guarantees the

availability of data even under adverse circumstances:

• Basically Available - the integrity of data is not consistently guaranteed as any read

operations may not provide the most recent data. Any write operations may not be

persisted.

• Soft State - the state of data may change after a period of time has elapse without any

immediate direct input.

• Eventually Consistent - given a set of inputs, the state of the data will eventually attain

the desired or expected state.

The CAP theorem, also referred to as Brewers theorem, named after the scientist Eric Brewer

who first developed it (Davoudian, Chen & Liu, 2018). The CAP theorem is a network principle

affecting the data principles governing NoSQL database technologies (Glake et al., 2022). It is

an extension of the BASE model, which directly influences the availability and more importantly

accuracy of data interrogation techniques. This principle is rooted in the eventual consistency

model comprising of the following concepts:

• Consistency - the most recent write operation will be visible to all consumers.

• Availability - ensures that data is obtainable even if there are faults with the system.

• Partitioning - system ability to operate in the event whereby a cluster may be removed

or added.

This basic premise aims to describe how contending system demands are reconciled (Khine &

Wang, 2019). The CAP theorem states at least one of these principles must be sacrificed as a

system cannot holistically satisfy all the given states at the same time within a distributed

environment (Davoudian, Chen & Liu, 2018). It is imperative to understand that for every NoSQL

database that exist, it aims to satisfy this paradigm. We may reasonably draw the conclusion

that it inherently affects a unified query solution depending on which aspects a NoSQL database

aims to satisfy.

The theoretical concepts of governing data, as it relates to interrogation techniques, are

encapsulated using mathematical formulas to justify and describe a query idea. Mathematical

reasoning is a cornerstone in computer science, a rational agent motivated by empirical

deduction (Endris, 2020; Roy-Hubara, Shoval & Sturm, 2022). In pursuit of developing an query

construct, a variety of mathematical constructs have been applied to the diverse data models in

the quest for standardization.

 10

The idea is quite simple, if a mathematical construct is able to fully encapsulate divergent data

into a single representation, this will permit the administration of probing datasets to be

standardized (Oussous et al., 2018). Nevertheless, this pursuit has not been wholistically

realised for heterogeneous data models. It’s been well documented that relational storage

mechanisms utilises relational algebra while certain solutions for non-relational data model

focuses on monoid, a branch of abstract algebra rooted in a calculus to capture data

aggregations (Khan et al., 2019, Hewasinghage et al., 2021; Glake et al., 2022).

Certain NoSQL database implementations are proponents of set theory since aggregations

naturally occurs in these storage mediums. In graph data stores though, this mathematical

model is not applicable as graph theory is the more suitable abstraction to better describe the

strength of relationships between entities (Davoudian, Chen & Liu, 2018). Therefore common

ground must be reached whereby the interchangeable use of applying various mathematical

constructs to heterogeneous data models could be realised.

2.3 NoSQL Storage Options

The characteristics of big data technologies make NoSQL storage technologies an ideal

proponent as it is able to sustain a wide range of complex data structures with data handling

capabilities (Oussous et al., 2018; Candel, Ruiz & García-Molina, 2022). Hence it becomes

imperative to understand how the various data types, features, the degree of complexities and

relationships within the heterogeneous data models operates. By gaining a full comprehension

of the data models dictates on how to engage with underlying databases. Thus providing a

guideline for the development of a unified query platform. While an assortment of NoSQL

databases exists, it is entrenched four distinct types of data stores; key-value, column-family,

document and graph.

Figure. 2.1: NoSQL Data Store Types

2.3.1 Key-Value

The key-value stores are the simplest form of NoSQL database management systems (Candel,

Ruiz & García-Molina, 2022). This database uses a dictionary concept whereby a unique key is

served as an identifier to locate the data value or blob within a database (Oussous et al., 2018).

The data value is defined as an attribute of the key, stored in an encoded or serialised format

thus requiring the consuming application to decode it. Although this storage mechanism is quite

 11

simple, consumers should be aware beforehand of the format of the data, as the model does

not intuitively describe the structures.

Best practices should therefore be applied as the length of the keys directly impacts the

performance and usability (Davoudian, Chen & Liu, 2018). If the length of key is too long,

performance will degrade. Should it also not be in a specific format or application-defined

schema, the consuming applications will be prone to errors during the translation process.

Therefore, applying a format to the data value portion of the model makes for an easier and

more efficient interpretation (Khine & Wang, 2019). Due to the inherent schema-less structure

within key-value data stores, indexing is not supported on data values for fast data retrieval.

While this approach is suited for many use cases where fast access is not required, there is a

need for indexing the values to perform atomic operations. NoSQL data stores such as Redis

has addressed this issue by enhancing the key-value model by introduction data lists where

complex data can be indexed and aggregation operations executed.

Redis is an example of an in-memory key-value database which stores data on computer

machine’s RAM (Atzeni, Bugiotti & Rossi, 2012). Unlike the other data stores, it does not have

a SQL-like engine for performing data manipulations. Instead the Redis offers a list of

commands to retrieved, add, update and remove data (Davoudian, Chen & Liu, 2018).

Additionally, it supports functionalities such as push and range commands commonly

associated with manipulating lists.

Applicable Use Cases : key-value stores are commonly used in applications to manage a

user’s session or personalised data that can be loaded and retrieved efficiently.

2.3.2 Column-Family

Column-family database management systems are known by a variety of names: wide-column,

column-orientated and extensible record stores. Column-family data stores represents data an

in multi-dimensional format consisting of columns and rows. i.e. a two-dimensional key-value or

matrix store (Khine & Wang, 2019). Related of pieces of data are grouped and serialize in a

single column.

The storage method enables compression as missing values does not consumed disk space as

in relational storage methods (Davoudian, Chen & Liu, 2018). The clustering of related

column(s) serves as the primary key enabling the manipulation of columns at the point of

execution. The rows serve as the discretionary secondary key. The embedded data is dynamic

in nature therefore supporting indexes on both column and rows for fast retrieval and quick data

manipulation.

Google encouraged the enrichment of this data store; since then many variations of this

implementation was produced. Apache Cassandra is one such technology. An open source

 12

column-orientated database handling large dataset over many servers. The intrinsic complex

nature of column-orientated data models in general requires an understanding of hashing

algorithms, modelling concepts and integration details of the data store and application

technology (Davoudian, Chen & Liu, 2018). This prompted the development of Cassandra’s

declarative query language, Cassandra Query Language (CQL), to fully realise its potential.

Cassandra Query Language (CQL) is the recommended application programming interface

model for engaging with the Apache Cassandra database (Khine & Wang, 2019). It abstracts

the low-level complexities via command-line or graphical interfaces. The command line

interface, cqlsh, is distributed with each Cassandra database system which connects to a single

node within the distributed network. CQL offers a rich variety data manipulation operations to

engage the database such as creating key space, tables, CRUD operations, various

aggregations and filtering mechanisms.

Applicable Use Cases : Column-family stores are best suited for data-intensive applications

that performs data mining or analysis on large record sets. Due to its distributed clustered

architecture, it’s able to process big data in timeous manner.

2.3.3 Document

The document-orientated database technology can be viewed as an extension of key-value

store DBMS. The fundamental difference between document and key-value data stores are that

in document-orientated; the internal structure utilised describes its data content whereas with

key-value data, it is not clear (Khine & Wang, 2019; Hewasinghage et al., 2021). The

transparency of the data structure permits indexes to be created on attributes thus permitting

efficient query capabilities. It’s proficiency in interrogation techniques extends to partial data

retrieval whereby consumers can specify a subset of data to be retrieved within the document.

(i.e. become extremely complex with embedded structures)

The data store supports dynamic and complex structures to such as JSON, BSON or XML

(Davoudian, Chen & Liu, 2018). These data formats are well supported in programming

languages. Therefore the transformation layer which encapsulates data from the database to

application source code enables a seamless integration. This decreases the object impedance

mismatch, which relates to data not being able to be fully represented within a database due to

the object-orientated programming paradigm. This is common in problem within relational

schemas.

MongoDB is document database offering a flexible storage mechanism for data in a BJSON

format. It closely emulates relational database system functionalities by providing compounded

data to be persisted along a power SQL-like query language (Atzeni, Bugiotti & Rossi, 2012).

As with many NoSQL data stores, MongoDB can be queried via multiple languages but MQL is

the preferred standard as it is tailored for the database. MQL invokes a sense of familiarity since

it so closely resembles the syntax and semantics of JSON, reduces the learning curve

 13

significantly. Besides the basic CRUD operation, it offers an extensive list of grouping and

filtering operators including pre-packaged functions.

Applicable Use Cases : Document data stores are especially utilised in Web 2.0 technologies

such as Content Management Systems or streaming applications. These type of systems allows

consumers to manage and deliver various types content in a timely manner.

2.3.4 Graph

Graph data stores came to fruition to address a need to describe relationships and

dependencies between entities (Khine & Wang, 2019). This data model offers a rich variety

hierarchical concepts hence making it more complex to manage. Graph data stores applies key

mathematical concepts of graph theory such as nodes, edges and properties to manage and

process data entities (Cox et al., 2020; Candel, Ruiz & García-Molina, 2022). The stored data

is viewed as an assortment of nodes, each node contains an edge which describes the

relationship between itself and other nodes. The edges are ranked indicating the strength of the

connection. This bond description or metadata between nodes directly influence the dataset

being queried in a single operation since the relationships are bi-directional.

Neo4j is a graph database enabling data to be represented in diverse of ways based on the

relationships the existing between data. It makes use of the Cypher query language offering the

basic CRUD operations for data manipulations (Diogo et al 2019). It is also worth noting that

Neo4j is one of the older NoSQL database systems in existence, making it well supported and

documented.

Applicable Use Cases : The application of graph data store technology is applied to a wide

range of domains such as Social Networks, Medical field, AI Knowledge Graphs, Fraud

Detection system, Logistics in supply chain and various other areas. The relation mappings with

a graph allows for a 360 view, thus providing a complete picture of status quo.

2.4 Foundations of a Unified Query System

Authors appraising unified query systems are in agreement that there should be certain

elements in place when developing solutions in order for it to be constituted as acceptable

(Gadepally et al., 2016; Glake et al., 2022). This serves as a the backbone of an unified query

resolutions. These guiding principles aims to simplify the heterogeneity that exists between the

different data storage mechanisms (Tan et al., 2017; Ramadhan et al., 2020). It aids in directing

the abstraction process necessary for addressing the complexities associated with the collection

of disparate database technologies. Based on examination of the literature, this study identifies

five key guiding principles:

• Abstract Syntax Tree

• Schema Consolidation

• Query Translation

• Database Integration

 14

• Output Management

2.4.1. Abstract Syntax Tree

An Abstract Syntax Tree (AST) is used throughout computer science since it serves as an

intermediatory to bridge the gap between conceptualisation, design, implementation and

execution irrespective of the underlying technology used. This concept has been applied to

many research areas such as source code compilers, security discovery, anti-plagiarism

detection and code analysis systems (Duracik et al., 2020; Yang, Zhang & Tong, 2022). In the

context of this study, AST applies to query parsers which ensures a command adheres to

syntax, semantic and lexical rules. In other words, the command must be a well-formed

statement (Zhang, 2020).

AST structures are representative of nodes executing logic using an if-condition-then statement

to transverse through its tree structure. It characterises the structure and function of a statement

via it syntactic, semantic and lexical notions. As indicative of its name, ASTs are a tree-based

structure, consisting of terminal and non-terminal nodes. Non-terminal nodes provides the

grammar and mechanical information while the terminal nodes defines the syntax tokens

specifying a range of alphanumeric keys (Zhang et al., 2021; Yang, Zhang & Tong, 2022).

Essentially, syntax tokens are a collection of lexicons which is represent a single token or more

explicitly a word in text-based parsers (Zhang, 2020). The blend of these nodes via recursion

denotes compliance rules for adherence and provides lexical meaning to the intended operation

(Duracik et al., 2020; Guo et al., 2020). Thus, the culmination of a desired set of nodes

generated is super imposed on a query language to ensure it is well-formed. This ideology is

used to build syntax and semantic rulesets instructing how a unified query may be constructed

and validated.

2.4.2. Schema Consolidation

A central feature when developing unified solutions is a complete view on each underlying

storage mechanism’s schema information(Gobert, M., 2020). This generally known as meta-

modelling. NoSQL is promoted as schema-less, due its ability to efficiently manage unstructured

data. However, there is in fact a schema in place. Depending on the vendor, schema constraints

may be dictated which the consuming application must adhere to.

With this in mind, the evolution of schemas are generally delegated to the application layer of a

system i.e. “schema-on-read” (Candel, Ruiz & García-Molina, 2022:p.2) and not within the

database engine itself. The database generally manages the basic schema elements that ought

to be in place. This is exactly why NoSQL storage systems are ideal for unstructured data as

the database engine does not stringently enforce any schema rules on any physical data

changes when compared to relation storage system.

 15

A more pragmatic view classifies the data structure as dynamic which changes over time as the

data evolves. The curation of schemas is of upmost importance across the heterogenous

NoSQL storage mechanisms, as it is needed to determine how and what data to query (Gobert,

2020). Therefore, the amalgamation of each NoSQL data model needs to be reconciled into a

single abstraction often referred to as a global or federated schema (Kolonko & Müllenbach,

2020).

A re-occurring use case within a unified query system is the fact that heterogenous databases

shares data for particular domain (Ramadhan et al., 2020). Inevitably, the data across the

different databases for a domain will indeed have common attributes. Nevertheless, the

structure of each database system will certainly be disjointed since each storage mechanism

will have its specific attributes that are not shared, unique to the database instance, utilised for

its own purposes (Oussous et al., 2018; Glake et al., 2022). A common use case within these

federated systems is to generalize common attributes thereby forming the global schema.

The act of generalizing primarily involves to a two-step process of schema-matching and

schema-mapping. Schema-matching refers to the association of an external structure to internal

structures of targeted databases. Schema-mapping on the other hand describes how data is

translated between external structure to internal structures. This process is quite labour

intensive therefore a number of tools have been developed to efficiently manage it. Thus

concluding that any changes in a schema may adversely affect the functional performance of

an unified implementation. Therefore solutions tend to have a consolidated schema and

maintenance aspect to mitigate potential errors.

2.4.3. Query Translation

This specific feature is arguably the most important aspect of any unified solution. It deals with

the ability to generate native queries able to interrogate of NoSQL storage models (Khan et al.,

2019; Koutroumanis et al., 2021). It should be noted, this feature is highly influenced by the

unified approach discussed in section 2.4. Conceptually though, irrespective of the approach, it

generates native queries that are able to execute on their respective NoSQL databases.

The lack of standard practices existing within this area predominantly has produced a number

of naming variations often confusing readers as to what it actually entails. Zhang et al. (2021)

cites this phenomenon as a computing layer. Hewasinghage et al. (2021) refers to it as a query

representation or generator, whereas Ramadhan et al. (2020) and Shrestha, S., (2021)

describes it as query mediator. Khan et al. (2019), on the other hand, defines this feature as a

query planning component. The variation of terms used suggests how this singular

unambiguous concept is applied differently in each propriety and open-source unified query

solutions. It is therefore reasonable to conclude that this make strong case to further solidifying

a case for standardization.

 16

2.4.4. Database Integration

In section 1.3 of this study, the reader was introduced to the interfacing intricacies that exists

when interacting with an array of NoSQL databases. For every unified query solution that exists,

it inevitably has to make provision to communicate to the targeted databases (Kolonko &

Müllenbach, 2020). This part of the integration is often overlooked as not enough emphasis is

given to how communications with each database should be established and subsequently

managed. NoSQL databases are known for implementing diverse protocols as a communication

medium to access the data source (Koutroumanis et al., 2021; Zhang et al., 2021). These

communication protocols ranges from HTTP(S) to TCP/IP, essentially using an adaptor or driver

which implements a generic interface to connect to a database. An interesting observation made

during the course of this study; there seems to be a direct correlation between primary

communication protocol and query language. Depending on the protocol, the query

interrogation mechanism may either access the data on the database via an API endpoint or

some sort of lower level network protocol where data is streamed.

2.4.5. Output Management

In order for data from various storage systems to be presented in a uniformed manner, there

are generally two approaches employed by unified query systems. This more commonly known

as Global-as-View (GaV) and Local-as-View (LaV) where unification of data is achieved via it

mediator (Endris, 2020; Ramadhan et al., 2020). It should be noted this also serves as input the

aforementioned key features. This feature is classified as a mediator, an intelligent layer that

holds structural knowledge of the local data stores. The GaV is an approach for integrating

schemas of the underlying local data stores thus providing a single view of heterogenous

structures. LaV on the other hand is an approach whereby local schemas are amalgamated to

form a global view.

Each the approaches has its advantages and disadvantages. LaV implementations are loosely

coupled therefore able to easily catalogue a new data store within its mediator (Glake et al.,

2022). However, if it known to render partial results or even omitted if any new data source

information is well defined in the intermediatory layer. GaV is simpler approach, static in nature

providing more control in the mediation process; i.e. requires manual intervention to frame any

new data points to be included.

2.5 Approaches to a Unified Query Platform

Research papers describes a number of approaches when designing and developing unified

query systems (Zhang et al., 2021; Candel, Ruiz & García-Molina, 2022; Glake et al., 2022).

Terms related to this research area are often used interchangeable creating further uncertainty

when attempting to defined exactly which approach is being applied . Due the this subject matter

being open-ended, little attention is given to exact terminology, therefore terms such as

“polystores”, “multi-model”, “multi-store”, “multi-database” and “polyglot systems” are used to

describe approaches to query systems supporting heterogeneous data models. Primarily there

are two methods, multi-model and polyglot persistence. The multi-model approach supports

 17

heterogeneous data models within a single database management system (Košmerl, Rabuzin

& Šestak, 2020; Ramadhan et al., 2020;. Whereas, a polyglot persistent solution makes use of

an abstract layer or middleware to interrogate heterogeneous databases. (Khine & Wang,

2019). This study focuses on a polyglot persistent approach for unified query systems.

2.5.1. Impetus and Selections for a Polyglot Persistent System

The motivation for the polyglot persistent approach is due to the accepted premise that the “one

size fits all” approach is not suitable given the current climate of big data technologies (Khan et

al., 2019:p.9598; Gadepally et al., 2016; Candel, Ruiz & García-Molina, 2022). The “one size

fits all” is an approach multi-model storage mechanisms aims to satisfy. It enables support for

a multitude of data models with less operational overhead when compared to a polyglot

approach (Tan et al., 2017; Glake et al., 2022). However, the multi-model approach implicitly

imposes limitations since any support to accommodate new data models are not easily

extendable as it needs to be natively provisioned.

On the other hand, the foremost resolve for a polyglot persistent system is aimed towards

flexibility and extendibility (Košmerl, Rabuzin & Šestak, 2020). This makes a polyglot persistent

solution a more fluid approach as any additional data stores can be more easily accommodated

and scaled. Additionally, the storage mechanisms do not share resources, making the solution

completely decoupled . As Khine & Wang (2019) suggests, emerging database technologies

will always evolve as the current digital climate continues to reach emerging markets.

Figure. 2.2: Approaches to Unified Query System (Khine & Wang, 2019:p.18)

A polyglot persistent approach as illustrated in Figure. 2.2 have three possible avenues to

explore when pursuing a unified query solution. Application code follows a specific pattern for

data-intensive systems thereby producing an artifact using a Domain-Driven Design (DDD)

approach sourcing data from different storage mechanisms. DDD involves the careful selection

of shared datasets or domains for multiple targeted databases for the purposes of querying.

Based on this premise, it fits the concept of a polyglot system. However, it does not fully realise

 18

the notion of a unified query system as any enquiries to the storage mechanisms are predefined.

Any additions or modifications to its query capabilities requires the application source code to

be adjusted or refactored.

A Universal Query Language effectively condenses heterogeneous database schemas into a

single component (Candel, Ruiz & García-Molina, 2022). The method relies on a well-defined

design model upfront, detailing every aspect of targeted source schemas. The awareness of

the source schema enables the universal query language to translate a query that is

syntactically and semantically adjacent to the targeted storage system (Gobert, M., 2020;

Kolonko & Müllenbach, 2020). Frameworks or middleware has been the most widely adopted

selection for unified queries. It should be noted to the reader that there is a clear distinction

between the two.

Frameworks for a unified query system concentrate strongly on the overall design aspect in

order to deliver a well-suited solution. It comprises of a collection of libraries that are package

in a unique way, providing a set of tools or templates to execute query commands (Ramadhan

et al., 2020). The middleware consists of several independent components, each one with a

clear set of objectives to satisfy. The infrastructure of middleware systems are arranged to

facilitate data exchange with remote or local systems via its interfaces (Zhang et al., 2021). The

operational boundaries are clearly defined for each component thereby reducing redundant

functionality.

2.6 Design And Architecture

The open-ended nature of a polyglot persistent systems permits originators to developed a

unified query platform using a range of methods and techniques (Glake et al., 2022). However,

unified query solutions tends to follow similar design and architectural patterns. Despite the fact

that there are a number of terminologies for these design and architectural segments, this study

attempts to simplify it by categorising these interacting layers as follows:

• Data Layer

• Connector Layer

• Intermediatory Layer

• Application Layer

Each layer has number of components associated with it is responsible of a set number of

operations. The data layer represents the link to the local or remote heterogenous repositories.

This layer may in some instances detail the target repositories domain and schema information

which aids in generating native queries. The repositories are loosely coupled within the data

layer limiting the exposure of query solution to adverse effects of a storage model. Thus a faulty

storage mechanism will not break the entire unified query system. This also provides the storage

engines with similar models the ability to be easily swapped in and out should the need arise

making it more scalable.

 19

The connector layer serves as an adaptor which permits the communication between the

targeted databases and client application (Glake et al., 2022). It’s a generic class containing

interfaces for the supported storage systems to facilitate the exchange of data. The connecting

layer is the bridge between the intermediatory and data layers. The intermediatory is essentially

the middleware that make a unified query possible. Within this layer the components are

primarily segmented into the semantic and syntax rule modules forming the basis of the query

translation module (Zhang et al., 2021). It accepts a query command as input, validates it via its

rules and proceeds to translate it to a well-form native query. Subsequently sending the native

query to the data layer via the connector. Finally, the application layer is a simple interface that

communicates with the middleware (Koutroumanis et al, 2021). It permits the passage of query

inputs to attain the desired the result set.

2.6.1. Frameworks and Models

An important step in developing a unified solution is related to the design choices made right at

the beginning of the development life cycle. Managing unstructured data across heterogeneous

becomes exponentially more complex due to a limited amount of applicable design choices.

Hewasinghage et al., 2021 posits that this area is still in its infancy and requires further research.

Nevertheless, it is imperative to select the ideal design implementation depending on the uses

case.

2.6.2. Resource Description Framework

A widely used approach to unify the assortment of NoSQL data storage models lies within the

Semantic Web technology (Endris, 2020; Santana & Mello, 2020). Specifically, the Resource

Description Framework (RDF) as it is able to represent data on the internet effectively. Its central

objective is to interconnect heterogenous data thus providing a key component within the unified

query model. RDF is able to capture the format of various data models, the traditional relational

and NoSQL models alike.

This is achieved by organising dispersed data as a whole via a concept called triples which

codifies a statement or raw data as subject, predicate and object (Khan et al., 2019; Endris,

2020; Cox et al., 2020). Consider the following statement : “A student has a residency on

campus”, a student being the subject, has a residency being the predicate and finally campus

being the object. The subject and object are considered as unique entities, while the predicate

describes the strength of the relationship.

Triples are categorised into three query patterns; namely star, chain and complex (Cox et al.,

2020). The star pattern is characterised by its single adjacent relationships with surrounding

nodes. Chain patterns uses a series of joins between nodes i.e. a nodes manifests as “friend-

of-a-friend”. Finally a complex pattern is a combination of star and chain patterns. These

concepts are deeply rooted in the mathematical discipline of graph theory whereby vertices and

edges are used to describe the ontologies (Davoudian, Chen & Liu, 2018). The available

patterns RDF offers, enables the structures of data to change over time without changing the

 20

consuming application. This feature makes RDF an ideal design choice for unified query

solutions.

2.6.3. Save Our Systems

The SOS model originally proposed by Paolo Atzeni, Francesca Bugiotti, and Luca Rossi (2012)

to permit unified access to key-value, document and column stores data stores. It provides an

interface to access Redis, MongoDB and HBase storage mechanisms facilitating simple insert,

get and delete operations.

Figure. 2.3: SOS Architecture (Atzeni, Bugiotti & Rossi, 2012)

The solution is based on the meta-model construct, a data model for metadata utilised to

describe external structures (Hewasinghage et al., 2021). It contains rules governing how to

construct a data model or a domain for enquiry. The system is divided into three main modules,

a common interface that serves as the starting point for engagement (Atzeni, Bugiotti & Rossi,

2012). The meta-layer module contains a repository of schema describing of the data models.

Finally, it has separate handlers for responsible for interfacing with the supported NoSQL

databases. The interactions between the modules represents an holistic view of the physical

storage for the underlying NoSQL databases.

2.6.4. NoSQL Abstract Model

The NoAM metamodel is a design method for supporting NoSQL database that makes

provisions for aggregated data models (Atzeni et al, 2020). NoAM is developed by the same

creators who proposed the SOS model. Based on the shortcomings of SOS, NoAM was

designated to improve on scalability, performance and consistency (Candel, Ruiz & García-

Molina, 2022). The methodology establishes a conceptual depiction of a common data domain.

The data models are built using a UML class diagram denoting the static nature of interested

entities, its values and relationships. This information eventually forms part of the NoAM

repository. NoAM catalogues shared attributes of the data across the heterogeneous NoSQL

storage systems. Any variations are offset by the abstraction layer obscuring any finer details

 21

in a particular domain. The abstract layer serves as the gateway to features of the underlying

storage models enabling making a unified query possible.

Figure. 2.4: Example of Structural Layout (Atzeni et al, 2020)

NoAM contains some key concepts which permits it to realise unifying heterogenous storage

systems (Hewasinghage et al., 2021). The model contains a set of named collections within a

set of blocks. The blocks within the collection is key, identified by a unique value. Nested within

each block contains a set of entries with an identifier associated with a simple or complex value.

Each of the forementioned concepts, as illustrated in Figure. 2.4, can be viewed as set of data

models within another set of data models. Each of the data models are associated with

identifiers thus enabling data access on various levels of granularity.

2.6.5. U-Schema Data Model

U-Schema’s are representative of physical schemas for a given set of data model for disparate

storage mechanisms (Candel, Ruiz & García-Molina, 2022). It aims to fully embody the

structural dimensions across heterogenous NoSQL and relational SQL databases. The

metamodel is heavily influenced by the patterns in data; therefore it classifies the organisation

of data in two clusters referred to as its schema types.

Figure. 2.5: U-Schema Metamodel (Candel, Ruiz & García-Molina, 2022)

Firstly, data where aggregation is prevalent utilises the aggregate-based model. The aggregate

model are idyllic for key-value, document and column data store. As in the case of NoAM, every

 22

aggregation is identified with unique keys (Atzeni et al, 2020). Secondly, in data that forms cyclic

relations, the models systematically arranged as graph objects whereby a directed edge

signifies the relationship. The U-Schema model principally is the amalgamation of entities type

which represents data aggregation while relationships types are indicative of graph data. The

structural prominence of documented schemas enables heterogenous data to be queried.

2.7 Polyglot Systems

Polyglot query systems has gained a substantial amount of traction in research years (Tan et

al., 2017; Candel, Ruiz & García-Molina, 2022). This is particular accurate given the current

climate, as data is ubiquitous. The number of unified query systems, while adhering to similar

high-level architectures, each variation encompasses a unique class of problems which it aims

to address (Kolev et al., 2016; Oussous et al., 2018; Roy-Hubara, Shoval & Sturm, 2022). The

differences lies within the variety of approaches, methods, principles and technology

instantiations to satisfy the intended use cases.

2.7.1. BigDawg

BigDAWG is an open source polyglot solution, developed by researchers at MIT with purpose

of facilitating queryable interface for Apache Accumulo, PostgreSQL, Myria and SciDB

databases (Glake et al., 2022). Researchers at MIT states that a polyglot system aims to

“harness the relative strengths of underlying DBMSs” in order to effectively process data

(Gadepally et al., 2016:p.2). The solution subscribes to three types of data models; key-value,

relational and array stores. The architectural topology entails four separate layers:

• Application

• Middleware and API

• Islands

• Storage Engines

Figure. 2.6: BigDawg Architecture (Gadepally et al., 2016)

As illustrated in Figure. 2.6, the BigDawg architecture is more geared toward query processing

instead of query construction. Its goal is to utilise key features in order to achieve the best

possible performance and most complete result set. To realise this goal, the architecture has

 23

features such as islands, shims and cast to support this idea (Gadepally et al., 2016; Glake et

al., 2022). An island is associated with a data model and set query language features for the

store engine it intends to support. A shim serves as the communication bridge between the

island and the storage engines. A cast facilitates data migration from one storage engine to

another.

The API routes enquiries to the middleware which is responsible for query execution as well as

data migration via casts (Kolev et al., 2016). The middleware holds several modules such as

the query planner, performance monitor and executor which validates the semantic correctness

of queries and routes it to the relative storage mechanism for execution. It holds a history of

past queries performances that routes the query workloads to the ideal storage engine (Tan et

al., 2017). The BigDawg solution holds an important feature to ensure elasticity within the unified

query solution where consumer can specify which islands to target. This decision is guided by

the data that exists in the collection of storage engines.

2.7.2. Heterogeneous Middleware by Zhang et al

A solution brought forward by Zhang et al. (2021), proposed the use of middleware to execute

queries on several heterogeneous databases via a single interface using standard SQL syntax.

It’s segmented architecture isolates the initial query from the actual targeted queries via an

abstract syntax tree responsible for determining if the initial query conforms to the specificity of

the respective heterogenous databases. The article mentions that the middleware supports a

pluggable interface for any new data source but it does not elaborate how this will affect the

abstract tree and computing layer.

Figure. 2.7: Unified SQL Query Middleware Architecture (Zhang et al., 2021)

The middleware provides consists of a syntax parsing layer, computing engine and finally a data

layer. The syntax layer validates a unified query based on the customer abstract syntax tree.

Native queries are subsequently generating based its meta store which is delegated to the

 24

computing engine for execution on the data layer. The proposed solution is limited to select

queries and subsequently does not address evolving schemas. Additionally the middleware

utilises wildcards which is not ideal as this would cause runtime issues stemming from datatype

mismatches. It fails to account for schema evolution and does not address everchanging real-

world problems as the solution invariability lacks scalability.

2.7.3. NoDA

NoDA is a lightweight implementation that serves as an abstract layer between the application

and the targeted NoSQL databases which comprises of MongoDB, HBase, Redis, Neo4j

(Koutroumanis et al., 2021). The middleware provides a generic set of operators such as sorting,

filters and aggregations in its pursuit to efficiently execute queries using the Apache Spark open

source data analytical framework. While NoDA is considered to be a polyglot implementation,

it’s less complex as it decouples (i.e. uses a third part tool) the rule engine from the abstract

layer in order to validate syntax and semantics of the unified query.

Furthermore, even though the middleware supports the four primary categories of NoSQL data

models, the system is only able to query one underlying database at any given time. This is

made abundantly clear by the authors since the prototype is more concerned with the system’s

ability to access data through its connector. In addition it lacks a translation engine responsible

for generating a multiple native queries in a single action including an intelligent query routing

mechanism to defer the executable query to the respective heterogenous NoSQL databases.

2.7.4. Translator Query

The Translator Query Language (TranQL) is one such a solution presented by Cox et al. (2020)

that federates Biomedical ontologies within a framework. The paper basis it findings on real

world case studies using natural language to map to TranQL and subsequently targeted queries

on various graph data models. The Translator KGS API, an integral part of the framework, which

uses the shared schema RDF concept expressing a query as Biolink data model, i.e.

hierarchical medical ontology on a high level, mapping a network of knowledge graphs as a

coherent whole. This ultimately forms the basis for TranQL as a uniformed query pattern by

interconnecting federated knowledge graph data models though curated links across entities.

2.7.5. Apache Drill

Apache Drill is fully distributed open-source software framework intended for large scale

analysis on data-intensive applications (Hewasinghage et al., 2021). It focuses on processing a

huge data sets in an efficient manner by executing tasks in parallel. The Apache Drill solution

is influenced by in-memory data representation in JSON and Parquet format for fast data

manipulation operations. Furthermore, its MPP query engine compiles and recompiles data

queries on the fly to maximize performance relying on parallelism (Tan et al., 2017).

 25

Figure. 2.8: Unified SQL Query Middleware Architecture (Tan et al., 2017)

The distributed nature of this polyglot solution results in a number of clusters containing a set of

nodes that hold different data models (Khine & Wang, 2019). The Apache Drill’s support data

models are access through a similar mechanism to the BigDawg’s implementation. Instead, of

islands it uses plugins to connect to the different storage engine and file systems via the Drillbit

component (Glake et al., 2022). Drillbit is a background component, orchestrating the optimal

execution query plan for execution. The query executions are partially rendered on an execution

tree and brought into memory.

2.7.6. CloudMdsQL

CloudMdsQL is considered more of a multistore system, capable of query multiple databases

via its SQL-Like unified query construct (Kolev et al., 2016; Glake et al., 2022). As stated in

Section 2.5, the terminologies used within the polyglot sphere are used interchangeably.

CloudMdsQL supports relational, NoSQL and HDFS storage mechanisms. The originality

introduced by the CloudMdsQL stems from its design traits which exploits each of its supported

heterogeneous data store’s built-in features (Koutroumanis et al, 2021). It’s abstraction layer

catalogues the supported data stores semantics rules enabling native queries to be optimized.

This permits the construction native queries through a relation query framework for targeted

executions. The embedded invocation results are converted into a intermediatory table for

distributed processing.

2.8 Critical Evaluation of Unified Query Systems

It should be stated that this literature review does not cover all unified solutions, as attempting

to describe all possible solutions is not the objective. Instead this study introduces the reader to

the differentiating components that makes up these solutions. Research papers proposing

unified query solutions understandably give focus on the overall utility of the artifact. A lot of

emphasis to given to certain practicalities such as query workloads, indexing and partitioning

i.e. query processing (Khan et al., 2019; Endris, 2020).

At this point it should be apparent that using a polyglot approach, there is an immediate trade-

off in functionality of the native databases full features. Especially in the case of RDF solutions

using federated knowledge graphs, where it’s been well documented that a large amount of

 26

ontologies irrespective of the triple configuration causes huge performance degradation (Cox et

al., 2020). It requires data to be joined on an abstracted layer.

Native processing on the same dataset should always perform better when compared to non-

native since there is no overhead to deal with. Hence the transversal capabilities is limited as

the full feature of the knowledge graph cannot be exploited. This echoes the fact that

scrutinization of querying processing in its entirety is given preference, instead of research on

specific elements of the query process (Santana & Mello, 2020).

An important feature brought to the reader’s attention relates to the visibility of the underlying

heterogenous database structures. While number of approaches exists such as GaV and LaV

to support data modelling of heterogenous structures, it is not made abundantly clear how the

inevitable mismatches between the various storage mechanism should be handled (Candel,

Ruiz & García-Molina, 2022). The mismatches comes in the form of query syntax and

semantics, supported operations of the individual database and of course data discrepancies.

A good starting point is to conceptually split the structure and behaviour for a unified solution

(Roy-Hubara, Shoval & Sturm, 2022). The behaviour model may catalogues the features of the

native database thus providing a unified query system information on which operations are

permitted. The structural model provides the designer an opportunity to consolidate naming,

attribute, precision and domain conflicts. This ensures the data queried in the heterogenous

databases are understood in the same way.

The unified solutions described in this study are aimed to satisfy different use cases. Apache

Drill for example is proficient in processing large amounts of data for analysis. Its requires a

powerful machine as it load data in memory for fast retrieval (Glake et al., 2022). CloudMdsQL

and BigDawg on the other hand uses the full extent of the supported databases native features

to process data. Thus providing users with more capabilities. TranQL is federated query system

for Boilink data using a topology of graph stores. Each of these solutions embeds an collection

of individual isolated components that targets the supporting databases . The component are

operates in silos serving intermediatory between the middleware layer and the database, with

the exception of BiGDawg where data integration between silos are possible.

The other solutions are less intricate following the basic principles described in section 2.6.

These prototypes focuses more on the query construct (Koutroumanis et al., 2021; Zhang et al.,

2021), which this study aim to achieve. However, in both instances, the authors do not quite

elaborate extensively on the knowns and unknowns of unified queries. In general, there are not

a lot of focus is given to the construction of an abstract queries and how it may be decomposed

to fit the needs of a key-value, column, document or graph data models via a single act.

Moreover, when considering RDF which is mainly concerned of classifying shared entities

across heterogeneous storage data models, it loses the granular data specific to a particular

storage which may in fact prove useful.

 27

2.9 Systematic Literature Review

This study embarked on a systematic literature review (SLR) commonly classified as a

secondary study assisting researchers with finding, scrutinizing and cataloguing the applicable

academic papers within a specific domain (Kitchenham et al., 2010). The aim of conducting the

SLR for this research study is to employ a scientific approach without bias. The SLR is

repeatable process engaged in advancing knowledge based on previous research endeavours

(Okoli & Schabram, 2010).

Figure. 2.9: Systematic Literature Review process (Xiao & Watson, 2019)

In order to systematically extrapolate knowledge from research papers on the design and

development of unified query systems, this research project adheres to the eights steps

proposed by Xiao & Watson (2019) to conduct the SLR. The steps are further organised into

three category planning the review, conducting the review and reporting the review.

2.9.1. Planning the review

Authors agrees that a study’s research questions are the driving force for initiating the

systematic literature review process (Kitchenham et al., 2009; Xiao & Watson, 2019). The goal

is to seek answers to the question posed in this study. Xiao & Watson, 2019, further cites a

paper by Cronin, Ryan & Coughlan (2008) that cautions against formulating systematic literature

questions that a too open-ended as this will result in large amount of data returned. Therefore

the SLR questions constructed in this study strived to be specific and relevant to the problem

domain as shown in table 2.2, to reduce the amount of irrelevant and duplicate data.

Table 2.2: SLR Questions

No. Questions
SLRQ1 What are the existing guidelines for developing unified query platform for a polyglot

system?

 28

SLRQ2 What are the typical design and architectural principles for unified query platform

for a polyglot system?

SLRQ3 What the different approaches used to develop a unified query platform?

SLRQ4 How can an optimal unified query system be achieved?

SLR Protocols

To establish the required research rigor, the study engaged in defining the necessary protocols

to remove research bias while increasing the reliability of the review process (Kitchenham et al.,

2009). Conclusively documenting the search strategy, the inclusive and exclusive criteria,

quality assessment and screening procedures provides a solid foundation for extracting the

correct data related to unified query platform systems.

Search Strategy

The search strategy utilised reputable online academic search engines, scholarly databases

and digital libraries to source the relevant articles, journals and conference papers (Table 2.3).

The search process predominantly used google scholar and the university’s (CPUT) library to

access articles that’s not available without a subscription.

Table 2.3: SLR Search strategy

Academic Repository Location
Google Scholar https://scholar.google.com

IEEE Explore https://ieeexplore.ieee.org

ACM Digital Library https://dl.acm.org

Springer https://www.springer.com

Science Direct https://www.sciencedirect.com

The study conducted the search procedure in a manual fashion. While this process was tedious

it provided a measure of control whereby enabling the researcher to dynamically refine the

search criteria. Xiao & Watson, 2019, cites a study conducted by Oppenheim & Rowland (2008),

found that google scholar when compared to other academic databases out performed its

counterpart by providing reliable and relevant data. This paper included academic literature that

was cited by other papers and reviewed authors contributions to determine the validity of the

academic works.

Search Terms

As denoted in section 2.6.1, there are certain aspects of the unified query platform domain that

is still in its infancy stage. The search terms defined for this study required varying and

interchangeable terminology. The preliminary research process indicated that certain keywords

are often loosely used hence adjustments has to be made to ensure that the appropriate papers

were returned.

Table 2.4: SLR Search terms

Keywords
K1 Polyglot

https://scholar.google.com/
https://ieeexplore.ieee.org/
https://dl.acm.org/
https://www.springer.com/
https://www.sciencedirect.com/

 29

K2 Polystore

K3 Middleware

K4 Unified Query

K5 Global Query

K6 Non-relational Schemas

K7 Unified Schemas

K8 Non-Relational

K9 Schemas

K10 Big Data

K11 NoSQL

K12 Query(ies)

K13 Data Model

K14 MetaModelling

K15 Review

K16 Survey

K17 Stores

K18 Abstract Syntax Tree

K19 Text-Based

K20 Heterogeneous

K21 System

The researcher applied the following search combinations to retrieve the relevant literature on

unified query platforms:

• S1 – [K1,K2,K3] and [K4,12] and [K5]

• S2 – [K1, K6] and K3 and [K11]

• S3 – [K7] and [K1, K6] and [K10]

• S4 – [K8, K9], [K4, K9] or ([K13] or [K14])

• S5 – ([K15 or K16], K10), ([K11, K17]) and [K1, K6]

• S6 – [K19, 18]

• S7 – [K4, K12] and [K20, K11]

• S8 – [K2, K10, K21]

In pursuit of ensuring the relevant literature was retrieved from academic sources given the

state of unified query domains, the key combinations was appended to create the ideal search

combinations. This was done specifically since unified query systems has not matured when

compared other systems in the engineering domain such as SQL DBMS.

2.9.2. Conducting the Literature review

The initial search was conducted in a crude manner which returned many results irrelevant to

the research question established (Xiao & Watson, 2019). Hence the search terms were refined,

executing the search combinations. To ascertain a reliable and complete collection of academic

literature was given the necessary attention, the researcher additionally conducted a backward

 30

search as well. This was achieved by identifying references cited by the research papers

retrieved from the search process discuss in section 2.9.1.

Literature Search Results

Table 2.5 list the search results obtained from the search strategy which amount to 43

academics papers.

Table 2.5: SLR Results

Year

ACM Digital

Library

Google

Scholar

IEEE

Explore

Springer Science

Direct

2012 1

2013 2

2014 1

2015 2

2016 2 1

2017 2 1

2018 1 1 2 4 1

2019 1 2 3

2020 1 4 1 1

2021 1 3

2022 2 1 2

Academic Inclusion

The process of selecting the relevant research papers on developing a unified query included

academic literature on the foundations of big data, the various NoSQL databased that were

developed to encapsulated these large amount of data and finally the design and principles on

unified query systems. The study efficiently determined the articles to include by initially

scrutinizing the abstracts and subsequently refined the inclusive list by assessing the quality of

the articles (refer to Assessment Quality section).

Table 2.6: Criteria for inclusion

Criteria
C1 Primary studies where data was collected first hand.

C2 Secondary studies that review the current landscape of big data technologies.

C3 Approaches to design and architectural practices for polyglot approaches.

C4 Proposed and Propriety unified query solutions.

C5 Data modelling techniques for a unified query platform.

C6 Text-based query methods for a natural language.

Table 2.6: Criteria for exclusion

Criteria
E1 Research papers that was published before 2012.

E2 Research papers that was published with no citations.

E3 Research papers that does not address the SLRQ’s

 31

E4 Research papers written in other languages.

E5 Research papers that requires a paid subscription

Quality Assessment

The assessment of quality was performed by reviewing the full text of the research papers

identified in the academic inclusion step. The valuation step adopted the standard approach

used to exercise an “internal validity” check based on a score for the inclusive papers (Xiao &

Watson, 2019:p106).

Table 2.7: Quality Assessment Question and Scoring

Enquiry Yes Partial No
QA1 Is the aim of research study clear? 1 0.5 0

QA2 Is the research methodology defined? 1 0.5 0

QA3 Is the context of the study relevant in relation to the

problem domain?

1 0.5 0

QA4 Is the study research outputs valid and reliable? 1 0.5 0

QA5 Is the paper’s findings generalized to the broader

population?

1 0.5 0

This academic enquiry process was decoupled from this study’s DSR methodological approach.

The ideal answer to the all quality assessment questions, except QA4, for this study is score is

‘Yes’. This classification applied to ‘Partial’ ratings as the minimum criteria for the study to be

included in the reporting process. The desired answer to QA4 was an emphatic ‘No’. This study

ignored all research papers where the validity of the study was in question. Even in cases where

it met the assessment criteria of the other categories.

Data extraction

The meta-analyses conducted on the academic papers were concluded by iteratively refining

the search criteria and evaluating it against the system literature review research questions.

Table 2.8 catalogues the list of academic papers that meets the criteria, performed a full text

analysis on the refined data results. The table also includes data as a result of performing

backward searches by research paper in the initial search activity.

Table 2.8: SLR Results

Authors Year Title
P1 Glake, D., Kiehn, F., Schmidt,

M., Panse, F. & Ritter, N.

2022 Towards Polyglot Data Stores--Overview and

Open Research Questions

S1

P2 Tan, R., Chirkova, R.,

Gadepally, V. & Mattson, T.G.

2017 Enabling query processing across

heterogeneous data models: A survey

P3 Hewasinghage, M., Abelló, A.,

Varga, J. & Zimányi, E.

2021 Managing polyglot systems metadata with

hypergraphs

P4 Lindström, O.P. 2021 Integration of SQL and NoSQL database

systems

 32

P5 Khan, Y., Zimmermann, A., Jha,

A., Gadepally, V., D’Aquin, M. &

Sahay, R.

2019 One size does not fit all: Querying web

polystores

P6 Santana, L.H.Z. & Mello, R.D.S. 2020 Persistence of RDF Data into NoSQL: A Survey

and a Unified Reference Architecture.

S2

P7 Kolonko, M. & Müllenbach, S. 2020 Polyglot persistence in conceptual modeling

for information analysis.

P8 Košmerl, I., Rabuzin, K. and

Šestak, M

2020 Multi-model databases-Introducing polyglot

persistence in the big data world.

S3

P9 Candel, C.J.F., Ruiz, D.S. &

García-Molina, J.J.

2022 A unified metamodel for nosql and relational

databases.

S4

P10 Banerjee, S., Bhaskar, S.,

Sarkar, A. & Debnath, N.C.,

2021 A unified conceptual model for data

warehouses.

P11 Vajk, T., Fehér, P., Fekete, K.

and Charaf, H.

2013 Denormalizing data into schema-free

databases.

P12 Davoudian, A., Chen, L. & Liu,

M.

2018 A survey on NoSQL stores. S5

P13 Khine, P.P. & Wang, Z. 2019 A review of polyglot persistence in the Big

Data world.

P14 Oussous, A., Benjelloun, F.Z.,

Lahcen, A.A. & Belfkih, S.

2018 Big Data technologies: A survey.

P15 Roy-Hubara, N., Shoval, P. &

Sturm, A.

2022 Selecting databases for Polyglot Persistence

applications.

P16 Atzeni, P., Bugiotti, F.,

Cabibbo, L. & Torlone, R.

2020 Data modeling in the NoSQL world.

P17 Kazanavičius, J., Mažeika, D.

and Kalibatienė, D.

2022 An Approach to Migrate a Monolith Database

into Multi-Model Polyglot Persistence Based

on Microservice Architecture: A Case Study for

Mainframe Database.

P18 Zhang, M. 2020 A survey of syntactic-semantic parsing based

on constituent and dependency structures.

S6

P19 Duracik, M., Hrkut, P., Krsak,

E. & Toth, S.

2020 Abstract syntax tree based source code

antiplagiarism system for large projects set.

P20 Koutroumanis, N.,

Kousathanas, N., Doulkeridis,

C. & Vlachou, A.

2021 A demonstration of NoDA: unified access to

NoSQL stores.

S7

P21 Zhang, H., Zhang, C., Hu, R.,

Liu, X. & Dai, D.

2021 Unified SQL Query Middleware for

Heterogeneous Databases.

P22 Ramadhan, H., Indikawati, F.I.,

Kwon, J. & Koo, B.

2020 MusQ: A Multi-store query system for iot data

using a datalog-like language.

P23 Amghar, S., Cherdal, S. and

Mouline, S.

2019 Data integration and nosql systems: A state of

the art.

P24 Fathy, N., Gad, W. and Badr,

N.

2019 A unified access to heterogeneous big data

through ontology-based semantic integration.

 33

P25 Gadepally, V., Chen, P.,

Duggan, J., Elmore, A.,

Haynes, B., Kepner, J.,

Madden, S., Mattson, T. &

Stonebraker, M.

2016 The BigDAWG polystore system and

architecture.

S8

P26 Maccioni, A. and Torlone, R. 2018 Augmented access for querying and exploring

a polystore.

Academic literature retrieved via a backward search

P27 Gobert, M. 2020 Schema Evolution in Hybrid Databases

Systems.

P28 Kolev, B., Bondiombouy, C.,

Levchenko, O., Valduriez, P.,

Jimenez-Péris, R., Pau, R. &

Pereira, J.

2016 Design and implementation of the

CloudMdsQL multistore system.

P29 Cox, S., Ahalt, S.C., Balhoff, J.,

Bizon, C., Fecho, K., Kebede,

Y., Morton, K., Tropsha, A.,

Wang, P. & Xu, H.

2020 Visualization Environment for Federated

Knowledge Graphs: Development of an

Interactive Biomedical Query Language and

Web Application.

P30 Endris, K.M. 2020 Federated Query Processing over

Heterogeneous Data Sources in a Semantic

Data Lake.

P31 Guo, J., Liu, Q., Lou, J.G., Li,

Z., Liu, X., Xie, T. and Liu, T.

2020 Benchmarking meaning representations in

neural semantic parsing.

P32 Yang, X., Zhang, X. & Tong, Y. 2022 Simplified abstract syntax tree based semantic

features learning for software change

prediction.

P33 Öztürel, İ.A. 2022 Cross-Level Typing The Logical Form For

open-domain semantic parsing.

Data synthesis

Table 2.7. shows the scores how the researcher scored each paper in relation to the quality

assessment criteria.

Table 2.9: Search terms

Paper QA1 QA2 QA3 QA4 QA5 Total
Score

P1 1 0.5 1 0.5 0.5 3.5

P2 0.5 0.5 0.5 1 1 3.5

P3 1 1 1 1 1 5

P4 0.5 1 0 0 0.5 2

P5 1 1 0.5 0.5 1 4

P6 1 0.5 0.5 1 1 4

P7 1 0.5 1 1 1 4.5

P8 1 1 1 1 1 5

P9 1 1 1 1 1 5

P10 1 0 0 0 0 1

 34

P11 1 1 1 1 1 5

P12 1 1 1 1 1 5

P13 1 1 1 1 1 5

P14 1 1 1 1 1 5

P15 0.5 0.5 0.5 0 0 1.5

P16 1 1 1 1 1 5

P17 0.5 0 0 0 0 0.5

P18 1 1 0.5 1 1 4.5

P19 1 0.5 0.5 0.5 0.5 3

P20 1 1 1 1 1 5

P21 1 1 1 1 1 5

P22 1 1 1 1 1 5

P23 0.5 0 0.5 0 0 1

P24 0.5 0.5 0 0.5 0.5 2

P25 1 1 1 1 1 5

P26 1 0.5 0 0 0.5 2

P27 1 1 1 0 0 3

P28 1 1 0.5 1 1 4.5

P29 1 1 0.5 1 1 4.5

P30 1 1 0.5 1 1 4.5

P31 1 1 1 1 1 5

P32 1 1 0.5 1 1 4.5

P33 0.5 0.5 0.5 0.5 0.5 2.5

2.9.3. Reporting the review

The broad search results consisted of a number of research endeavours amounting to 54

academic papers where matches were found in the title. However upon further review the list

was condense to 43 articles. The researcher proceeded scrutinise the abstracts of the results,

based on the system literature review questions, which then further narrowed do the amount of

data to 33 research papers. A full text analysis was performed against the quality assessment

rating defined in table 2.7. The research papers were scored 2.5 or higher was accepted, hence

the final amount of paper resulted in 27 academic research papers on unified query platforms.

2.10 Summary

The aim of this chapter was to gain a better understanding of unified query solutions. The

chapter draws the reader’s attention back to the research questions and objectives. It

progresses to address these elements of this study be assessing the related works on unified

query systems. Particularly, the general make up and nuisances of existing theories and

instantiations.

In part, a systematic literature review was conducted to establish the research rigour required

for the literature review independent of the research methodology for the study (Okoli &

Schabram, 2010, Xiao & Watson, 2019). This consisted of an eight step process, from

 35

formulating the problem to applying a search strategy to reporting the final result set. Academic

literature on unified query systems supporting different NoSQL data models it still very much in

its infancy (Khine & Wang, 2019; Hewasinghage et al., 2021). A lot of factors are to be consider

when partaking in such an endeavour. The researcher noted due to the level of maturity in the

problem domain, key terms were often misused hence the preliminary results return an

expected amount of data. Through careful planning and understand of the domain, through a

number of iterations the data was restricted to a manageable amount.

Thus the systematic activity provided clarity and context for the study’s problem. Through the

literature analysis, the researcher discovered the certain papers are vague when expressing

where advances are made and in which area of the query processing model it should apply.

According to Santana & Mello (2020), many surveys relating to unified queries are constrained

by artificial and antiquated benchmarks. More importantly, it is not clear how to effectively

develop a unified query for the four NoSQL storage categories.

 36

CHAPTER THREE : RESEARCH METHODOLOGY

3.1 Introduction

This chapter identifies, describes and justifies the research methodology employed in this study

to achieve the research questions outlined in section 1.5. The research methodology is a set of

scientific techniques and methods applied to a field of study (Khaldi, 2017; Mardiana, 2020).

This study adopts a quantitative approach; since the impetus for this research is to generalize

its findings to a broad spectrum within the unified query domain. Therefore the study’s

philosophical stance is that of positivism since the empirical evidence was gathered through an

experimental prototype to reveal a degree of certainty by means of statistical information

(Hevner et al., 2004). This approach is supported by Saunders et al., (2012:113) when

articulating research from a positivists point of view.

“If your research reflects the philosophy of positivism then you will probably adopt the

philosophical stance of the natural scientist. You will prefer ‘working with an observable social

reality and that the end product of such research can be law-like generalisations similar to those

produced by the physical and natural scientists’ (Remenyi et al. 1998:32)”.

This research endeavour applies Design Science Research as its principle research strategy

as it focused on the development of an experimental artifact. Hevner et al. (2004) states that a

primary motivation for using DRS is to gain understanding and new knowledge of a problem

domain through a novel artifact that is able to clearly demonstrate its application. Baskerville et

al. (2018) posits that within a technological context; DRS may be used to build on existing

knowledge of a particular area, thus enhancing the efficacy between humans and technology.

Therefore DRS was selected as the research design choice for this study, as it is most

appropriate since the objectives of the study was to design, construct and evaluate a working

prototype.

3.2 Research Paradigm

A research paradigm is the philosophical ideology of how reality is observed (Khaldi, 2017;

Alharahsheh & Pius, 2020; Mardiana, 2020). Saunders et al., (2012) acknowledges that this

term is often used within a multitude of circumstances, potentially leading to misinterpretation

of its purpose to novice researchers. The research paradigm embodies a set of theories and

practices for engaging in a research endeavour which serves a guide to solving a particular

problem domain (vom Brocke, Hevner & Maedche, 2020). Given a researcher’s philosophical

choice, it steers the research effort in selecting the appropriate practices ensuring the validity of

the study when addressing the research questions. The research paradigm is predominantly

predisposed into three viewpoints:

• Ontology

• Epistemology

• Axiology

 37

These influencing factors innately dictates the practical considerations in a research field of

study. More specifically it guides the research process as it correlates to how knowledge is

attained (Saunders et al., 2012). As a result, the forementioned descriptions underpins the

research strategy utilised in a study.

3.2.1. Ontology

The ontological viewpoint ponders on what constitutes as a factual phenomenon. It is concerned

with how reality or the world is perceived. This branch of philosophy has two opposing aspects,

objectivism and subjectivism (Saunders et al., 2012; Merwe, Gerber & Smuts, 2019).

Objectivism is an unbiased reflection on a particular observation. The act may be independently

substantiated be separate social actors in order for this reflexion to be truly deemed as objective.

Whereas subjectivism is a belief system where social facts, based on a social perception, is

deemed as factual.

3.2.2. Epistemology

Epistemology is a branch of philosophy interested in “what constitutes acceptable knowledge in

a field of study” (Saunders et al., 2012:p.112). It’s an entirely separate field of research

contemplating the theoretical aspects of knowledge. Depending on a researcher’s philosophical

point of view, objective or subjective, the truth of reality is interpreted differently due to what it

deems tangible and intangible (Alharahsheh & Pius, 2020). Objectivists are more concern with

physical evidence to support their theories while subjectivist influences are based off the social

perceptions of reality.

3.2.3. Axiology

Axiology is concerned with the value or validity of a research study. As Saunders et al., (2012)

posited, it encompasses considerations made during the research process which includes

aesthetics and ethics. Its interested in the way a social enquiry was conducted and

characterising whether the value of the knowledge attained is good or bad.

3.2.4. This Study’s Philosophical Position

The research’s study is motivated by deductive reasoning therefore it relies on objectivism to

ascertain unbiased facts. The physical evidence attained during the research process serves

as the pillar to justify its findings and contribute to new knowledge.

3.2.5. DSR within the Research Paradigm

The role of Design Science Research within the research paradigm has evolved as more

researchers have adopted this strategy in an effort to direct the research process (Peffers et al.,

2020). A publication by Merwe, Gerber & Smuts (2019) discovered three philosophical

viewpoints numerous authors holds when applying DSR to a study (Table. 3.1). Firstly, there

has been consensus amongst researchers for DSR to be reimagined as an independent

research paradigm (vom Brocke, Hevner & Maedche, 2020). These authors argues that DSR

contributes affects the social settings through new pioneering artifacts. Hevner et al. (2004) on

 38

the other hand proposes a pragmatic view to be adopted for DSR. The justification provided for

this philosophical posture argues that DSR requires a synergy between theoretical and practical

contributions in order to be considered valid a practice. Merwe, Gerber & Smuts (2019) further

reinforces this idea by citing authors in support of this supposition by emphasising that empirical

clarity can only be realised once in practice. The final school of thought which aligns with this

studies viewpoint, remains grounded in the traditional paradigms such as positivism whereby

DSR remains a strategy which is fortified by philosophical choices.

Table 3.1: Research Perspectives for DSR (Adapted from Vaishnavi, Kuechler & Petter,
2019)

 Ontology Epistemology Methodology Axiology
Positivist

A single reality;

knowable,

probabilistic

Objective Observation;

quantitative,

statistical

Truth;

universal and

beautiful;

prediction

Interpretive

Multiple

realities,

socially

constructed

Subjective Participation;

qualitative.

Hermeneutical,

dialectical.

Understanding:

situated and

description

DSR Multiple,

contextually

situated

alternative

world-states.

Socio-

technologically

enabled

Knowing

through making.

Developmental.

Measure

artefactual

impacts on the

composite

system.

Control;

creation;

progress (i.e.

improvement);

understanding

Hevner et al. (2004:p.4) reasons that DSR is a needed within the research paradigm as it

embodies an innovative spirit to create ‘purposeful artifacts’. The origins of DSR stems from the

natural sciences. Based on the positivistic paradigm made in this study, DRS is an appropriate

strategic choice as it fits the natural scientists viewpoint. Conventionally, positivism is used to

test a hypothesis (Khaldi, 2017). However, this study does not follow to this standard. Instead

the philosophical assumptions are in part influenced by the data this study measures. In

addition, as stated to the reader in Section 1.4, the overarching goal for this study was to create

a decisive artifact that represents ideal practices when developing unified query systems. While

this study does not seek to change organisational and human behaviour, it seeks to introduce

a change in the environment which the forementioned stakeholders operates in (Pries-Heje,

Baskerville & Venable, 2008; Baskerville et al., 2018), indirectly affecting these stakeholders.

DSR thus solves important problems through a combination of design and natural science

paradigms .

An important observation noted, DSR does not form part of the research onion framework

proposed by Saunders et al., (2012). It is a widely used framework for ensuring a researcher

 39

applies an effective research methodology based on their philosophical viewpoint. Mardiana

(2020) argues DRS is excluded from the research onion as it was tailored more towards the

needs of business organisations primarily concerned with human behaviour.

Figure. 3.1: Research onion

Considering that DSR research has made several contributions to the existing body of

knowledge. This study can only speculate the reason for its exclusion from the research onion,

perhaps due to its past failures or that the fact that DSR is fairly new when compared to

traditional practices (Hevner et al., 2004). As stated in the beginning of this section, there has

been many proposed frameworks and seminal papers advocating DSR and its position within

the research paradigm. Merwe, Gerber & Smuts (2019) discussed how authors raised opposing

views on the subject, each with its own theories of what constitutes a good DSR research

endeavour. Perhaps due to this uncertainty it was excluded. Nevertheless, Mardiana (2020)

contends that DSR should be included within the strategic layer of the onion (Figure. 3.1) in IS

research. The research onion in part, together the DSR guidelines in section 3.3.2, was used to

assist in the decision-making process, selecting the most appropriated techniques and methods

to steer this research effort.

3.3 DSR as Strategy

The Design Science Research (DSR) is a problem-solving architype that creates knowledge on

the design process and product concurrently (vom Brocke, Hevner & Maedche, 2020). It seeks

to improve the artificial environment of a particular domain through innovative artifacts. A

revealing trait innately associated with DRS, is that it is required to contribute to the existing

body of knowledge through scientific means via the purposeful artifact (Hevner et al., 2004;

 40

Baskerville et al., 2018; Merwe, Gerber & Smuts, 2019). The absence of this characteristic, will

ultimately render any DSR research effort invalid. The knowledge contribution may affect

existing theories and designs in two ways. Either it enhances the existing knowledge base or it

may render it obsolete, thus introducing a tangible change in the environment under which it

operates.

DSR is differentiated from other strategies in a unique way whereby the actual design is

expressed as both a process and a product (Hevner et al., 2004; Pries-Heje, Baskerville &

Venable, 2008; Baskerville et al., 2018). The process is articulated as an act while the product

is stated as a sense. The culmination of the artifact can be viewed as a step by step guideline

to construct impactful design theories and practices. However the value of the artifact needs to

be assessed by internal controls governed by the research process model to determine if it is

indeed impactful. This is determined by evaluating how deeply-rooted kernel theories and

accepted principles are entrenched in the artifact (Khaldi, 2017). The degree of this alignment

is indicative of its utility. In addition, the applied contributions provides further empirical evidence

of its usefulness.

According to Rittel and Webber (1984) as cited by Hevner et al. (2004:p.6) considered design

science as a “wicked problem”. At the time, this characterisation aptly defined design science

research, as its methodology could not be clearly articulated. Rittel and Webber argued that

design science projects relied too much on human reasoning for complex problems in an ill-

defined environmental context. One might argue that this still exists to a certain extent given the

diverse philosophical views on DSR by authors as cited by Merwe, Gerber & Smuts (2019). The

flexible nature of developing an artifact using DRS integrally opens the research endeavour to

criticism since research boundaries may be transgressed. As opposed to traditional research

methods and techniques which are well-defined and may be easily assessed to determine the

axiological output. To address this uncertainty many authors have proposed a research design

science research process model (DSRP) to guide the research process (Peffers et al., 2020;

vom Brocke, Hevner & Maedche, 2020).

3.3.1. DSR Process Model

As discussed towards the end of the previous section, the reader was introduced to the

uncertainty that exists in DSR when assessing its utility in relation to research methods

employed. Hence, the objective of a design science research model is to provide a mental model

of research outputs at every stage in the research cycle (Peffers et al., 2020). This in turn forms

the basis of the research methodology which operationalises DSR. It provides a full trace of the

research activities performed offering guidance to researchers. This removes any facile

elements of DSR, reinforcing the required research rigor.

The research process model applied to this study is founded on this fundamental building

blockings of DSR, namely of awareness of problem, suggestion, development, evaluation and

conclusion (Vaishnavi, Kuechler & Petter, 2019). It adheres to a set of prescribe guidelines as

 41

described by Hevner et al. (2004) in relation to the proposed experimental prototype to

strengthen the necessary research thoroughness. The build and evaluate loop serves as a

template for conducting the development of the artifact to ascertain applicable new knowledge.

Figure. 3.2: Cognition in RSDP Model (Vaishnavi, Kuechler & Petter, 2019:p.59)

Knowledge contributions in any DSR cycle must always be at the forefront of the researchers

mind as illustrated in Figure 3.2. The research endeavour always starts at the awareness of a

problem based on gaps in the artificial environment (Peffers et al., 2020). This activity in the

research cycle is always revisited due to the very nature of the problem. The initial suggestions

posed to the problem will inevitably be inadequate confirming the fundamental trait of the

research problem. Suggestions are drawn from literature whereby existing kernel theories are

tied together to form a probable creative solution based on the researcher’s motivation

(Baskerville et al., 2018).

The first iteration of the development activity typically reflects these knowledge gaps as the

research discovers which parts of the known knowledge base works after the evaluation activity.

Therefore, an important part of the DSRP model, is the circumscription process. A logical

technique employed to determined which parts of the knowledge base satisfies the gaps

described in the problem (Vaishnavi, Kuechler & Petter, 2019; Peffers et al., 2020). Finally, the

conclusion activity signals the end of the research cycle, reflecting on the observations made

and generalising the applicable findings. Table 3.2 provides a summarised view of the research

cycle.

Table 1.2: Adapted from DSRP Model Activities (Vaishnavi, Kuechler & Petter, 2019)

 42

Activity Description Output
1 Awareness of Problem The identification of the

research problem which is

goal-orientate i.e. problem-

solving paradigm.

Formal or Informal

Proposal

2 Suggestion The envisioned solution

inspired by the research

problem.

Tentative design

3 Development The tentative design is

physically constructed. Note

the novelty lies within the

design not really in the

construction.

Novel Artifact

4 Evaluation The novel artifact assesses its

utility via the identified

variables in relation to the

problem.

Performance metrics,

Suggest a new design

approaches or theories

5 Conclusion Communicates empirical

facts: new learnings,

deviations from hypothetical

predictions, limitations,

justification for results

Report

In order to adhere to the research rigor described above for this study using DSR, existing

literature on unified query solutions was scrutinize; making the necessary inferences to ensure

a purposeful contribution to the existing body of knowledge via the experimental prototype

(Hevner et al., 2004; Vaishnavi, Kuechler & Petter, 2019). A common theme that is expressed

in numerous articles and journals on unified solutions, is simply the over reliance on human

intervention due to its complexity. Thereby establishing the impetus for a DSR pursuit, in what

Hevner et al. (2004:p.85) describes as the “human-machine problem-solving” system. Unified

query solutions fits this description aptly as number of authors have demonstrated this

phenomenon (Cox et al., 2020; Koutroumanis et al., 2021; Zhang et al., 2021).

3.3.2. DSR Guidelines

The research origins of design science is not rooted in the conventional IS research paradigms

(Hevner et al., 2004; vom Brocke, Hevner & Maedche, 2020). For conventional IS research

practitioners, a research study must adhere to scientific methods whereby the study can be

critical reviewed based on its design, implementation and evaluation. This chapter has

introduced the reader to this ideology when describing design science a “wick problem” or the

different philosophical viewpoint authors may have. Considering all of this, the primary argument

has been the lack of research rigour demonstrated in design science. This of course by

association, extended to DSR.

 43

To reduce the gap, Hevner et al. (2004) developed guidelines for DSR research studies. These

guidelines exists to assist researchers to clearly define research boundaries while at the same

time provide context for readers. It serves a template for planning, implementation, evaluating

and reporting (Baskerville et al., 2018). It enables researcher to systematically evaluate an

artifacts utility and usefulness in relation to the research problem, as expressed Table. 3.3

Table 3.3: Adapted DSR Guidelines (Hevner et al., 2004; Merwe, Gerber & Smuts, 2019)

Guideline Description
1 Problem Relevance The problem must pertinent and implementable to a

business environment.

2 Research Rigor The research must demonstrate a degree of planning along

with the appropriate use of research methodologies to

implement and evaluate research artifact.

3 Design as a Search

Process

As illustrated by the DSRP (Figure 3.2), DRS requires a

search strategy in order to extract kernel knowledge to

satisfy laws in the problem domain.

4 Design as an Artifact The artifact is required to demonstrate its usefulness in

comparison to similar products.

5 Design Evaluation The artifact must adhere to well-define methods to measure

its utility while meticulously demonstrating its quality and

efficiency.

6 Research Contributions DSR must clearly deliver new knowledge contributions in

the design artifact, design construction, and/or design

evaluation in a verifiable manner.

7 Communication DSR must effectively present its finding to a stakeholders in

both the artificial and business environment.

3.4 Research Design for the Unified Query Platform

This section of chapter describes how DSR was applied to this research study on unified query

platforms for NoSQL databases. As stated in section 1.5, Table 3.4 intends to provide context

to the reader on how this study addressed the research questions to achieve its objectives by

aligning the research questions to the data collection methods. The subsequent guidelines of

the study demonstrates the research rigor to ensure the design artifact proves its effectiveness

and quality.

Table 3.4: Research Questions and Data Collection

RQ’s Data Collection
1 What essential guidelines must be applied when building an

uniformed query platform?

Literature Review

2 What are the de facto design and architectural principles for

developing an uniformed query platform?

Literature Review

3 To what extent is the uniformed query platform able to translate

abstract queries to native queries for the identified NoSQL data

models?

Literature Review,

Experiment

4 What are the effective and efficiency determining factors that

dictates how

Literature Review,

Experiment

 44

well the unified query construct is able to translate and execute on

each NoSQL database?

3.4.1. Guideline 1 : Problem Relevance

In accordance with this guideline, academic literature on unified query platforms was extensively

assessed. To ensure this study adheres to this guideline, the findings needed to demonstrate

that problem is relevant to consumers and that a technological goal-orientated artifact may

indeed be achieved (Hevner et al., 2004). The research problem articulated in chapter 1, section

1.3, is undoubtedly supported by the current literature on unified query solutions. The ability to

interrogate and organize heterogenous data models of NoSQL storage mechanism in an

uniform manner remains a challenge for stakeholders.

While strides in this field has progressed in recent years through either polyglot or multi-model

native solutions, the various implementations for unified query NoSQL solutions does not fully

encapsulate the four distinct NoSQL data model types as it’s complex in nature. Furthermore,

there is unequivocally no standard that exists today that is able to consolidate the four NoSQL

data modelling types through normalize methods (Gobert, 2020; Zhang et al., 2021).

3.4.2. Guideline 2 : Research Rigor

A careful balancing act was required between research rigor and relevance for DSR studies as

too much emphasis on rigor can adversely affect a studies relevance (Hevner et al., 2004).

Nonetheless, rigor is important in DSR. Therefore in order to ensure that this study adheres

accepted DSR practices within the IS research context. NoSQL vendor specific documentation

and existing academic literature on unified query platforms imposed by the systematic literature

review process were iteratively accessed throughout the study.

The prototype was constantly assessed against the research objectives defined in guideline 4

to ascertain if the requirements were met. This approach aligned perfectly with SCRUM

methodologies, since it’s an iterative approach to managing the software development lifecycle.

This approach required the primary objectives to be translated into stories. Each one

decomposed into a subset of tasks linked to requirements. The study used the V & V model,

discussed in guideline 5, to perform unit and functional tests once the stories or tasks were

completed, verifying if the desired goals were achieved (Olsen & Raunak, 2019). The design

principles or guidelines derived from the literature and the empirical insights acquired during the

research process when constructing the prototype enabled the researcher justify design and

architectural choices made.

3.4.3. Guideline 3 : Design as a Search Process

Inferences made from existing literature based on ideal approaches and current shortfalls on

unified query platforms guides the software development lifecycle of the prototype. The DSR is

an iterative process as indicated by the DSRP model. The circumscription process repeatedly

 45

extracts literature on recommended architectural principles and designs, influencing the

prototype construction until requirements based on the research goal is satisfied.

This activity, within the scope of the research process model, involved identifying the relevant

theories and frameworks used in current unified query solutions. This provided the theoretical

grounding needed to informed the design and development process of the experimental

prototype. The research constantly moved between gathering kernel knowledge extracted from

literature and the applying the knowledge to the prototype. Hence the protype’s composition

was constantly refined to meet the requirements and ultimately the objectives. The conclusion

of this iterative search process is reached when the requirements elicited from the research

problem has been satisfied.

3.4.4. Guideline 4 : Design as an Artifact

The motivation for the study was to extract design and implementation knowledge for unified

query systems that allows stakeholders to query data from multiple NoSQL sources. As

previously mentioned in the guideline 2, the lack of a unified query platform that integrates to

the four NoSQL category types has been discussed throughout this thesis thus far.

The envisage prototype for the unified query platform had the following principle objectives:

• Develop a custom parser that accepts a SQL-like query as input.

• Build a translating layer that accepted the parser output and generated a native query.

• Build a an executing layer that accepts the native queries as input and executes it on

the supported NoSQL data stores.

• Build a reporting mechanism to determine how well the prototype operates.

This study aimed to document and demonstrate to what extent a unified query platform can be

achieved. Therefore the knowledge attained through this research effort can be applied to

the existing principles and practices of unified query solutions.

3.4.5. Guideline 5 : Design Evaluation

The Verification and Validation measurement model (V &V) was used to assess the prototype’s

effectiveness and efficiency. The evaluation method entailed conducting an experiment to

simulate human-behaviour. The experimental process involved predefining a set of unified

queries as input to execute varying test scenarios. The circumstances entailed variations of data

retrieval, modification and insert operations. i.e. Data Manipulation Language (DML)

Figure. 3.3: V & V Measurement Model (Olsen, M. & Raunak, M., 2019)

 46

Figure 3.3 demonstrates interactions between the system under study which in this context is

the unified query prototype. The conceptual model embodies the kernel theories and

assumptions from existing unified query solutions (Olsen & Raunak, 2019). Furthermore, it

encompasses the rules and expected behaviour of the envisage solution. The prototype

achieved this at various levels of granularity through adopting unit tests, integration tests,

functional tests and finally user simulated testing. As the prototype construction incrementally

progressed, more focus was given to simulated testing in preparation for it final evaluation run.

As opposed to the unit testing which gained more focus during the inception phase of

construction.

The conceptual model was operationalised into a physical implementation geared for running

simulations while capturing the data of interest. Each simulated query was cloaked with the App

Metric reporting module to assess its utility in tandem with the problem domain (Vaishnavi,

Kuechler & Petter, 2019; Peffers et al., 2020). The study captured the following metrics:

• Apdex – measuring the performance of the prototypes unified query.

• CPU Usage – the cost in time, taken to utilise the machine’s CPU.

• Memory

o Physical – amount of RAM allocate to the query process.

o Virtual – amount of disk memory allocate to the query process.

• Query Executions

o Parser – time taken to parse the unified query

o Translator – time taken to generate natives queries.

o Executor – time taken to execute respective queries.

• Error Rates

o Parser – error count when parsing the unified queries.

o Translator – error count when generating native queries.

o Executor – error count when executing the native queries.

3.4.6. Guideline 6 : Research Contributions

In its essence, this study contributes to the body of knowledge in two ways which is inherent in

DSR. Firstly, the actual prototype which embodies an solution for querying multiple NoSQL

storage data models via a single interface. Secondly the design and architectural knowledge

attained based the empirical data from this study that can be generalized and ingrained into

best practices and recommendations for unified query platforms. Therefore the contributions

are as follows:

• Design and Architectural patterns applied to the prototype.

o Approach used to translate a unified query

o Approach used to generate and execute native queries.

• The method employed to codify the syntactic, semantic and lexical parser.

• The performance data and actual query processing output will be made public.

 47

3.4.7. Guideline 7 : Communication

This results of this study is intended for a technical audience given the nature of the research

study. The study produced an technological-orientated prototype used to measure the degree

of how a unified query platform. The report was generated from data collected for this study was

synthesised and presented the systematic investigative findings. It draws a conclusion indicating

how the research goal was accomplished.

3.5 Summary

This chapter presented the research methods applied this study and how the systematic

research enquiry was conducted to achieve its objectives. The chapter firstly describes the

philosophical stance the study adheres to. It provides clarity on how this study perceived data

within its philosophical context. The research endeavour makes use of Design Science

Research as a strategy. It justifies why it used and how it fits within the research paradigm.

Using DSR as a mode of enquiry, the study adheres to the guidelines proposed by Hevner et

al. (2004). To ensure the research conforms to the necessary rigor, often criticized in DSR

undertakings, it follows the Research Design Process Model proposed by Vaishnavi, Kuechler

& Petter (2019). The process model safeguards against transgressions demarcating clear

boundaries of each activity in the research cycle.

 48

CHAPTER FOUR : UNIFIED QUERY PLATFORM DESIGN AND
IMPLEMENTATION

4.1 Introduction

This chapter focuses on the design and implementation of the unified query platform artifact

outlined in section 3.4. The creation of the artifact is motivated by the research problem identified

in chapter 1, section 1.3. Guideline 1, section 3.4.1, expanded on the problem describing the

relevance this study has in the current environment.

In chapter 2, the reader was presented with the systematic literature review to emphasise the

current approaches, accepted de facto standards and the shortcomings of current unified query

systems. This is indicative of the two research questions addressed (i.e. RQ1 - RO1; RQ2 -

RO2), whereby the reader’s attention was drawn mostly to the theoretical design and

architectural aspects of unified query solutions.

Chapter 3 provided the reader with the research recipe on how the objectives of this study was

achieved. It set out the DSR guidelines the study adhered to, outlined in section 3.4. This

provided the foundation to transition to the third research sub question in Table. 4.1.

Table 4.1: Research Questions and Objectives

RQ’s RO’s
3 To what extent is the uniformed query

platform able to translate abstract queries

to native queries for the identified NoSQL

data models?

To design and implement a unified query

construct as middleware that collectively

transforms, routes and executes an

abstract query to each native NoSQL data

models.

4.2 System Design Goals

The goal of this prototype was to provide a high-level unified query construct that is database-

agnostic; capable of querying data across the four types of NoSQL storage models (Kolonko &

Müllenbach, 2020). The query language must offer a consistent syntax and a set of operations

that can be used to express queries in a generic manner. The design objectives to support the

aim of this research study was steered by Hevner et al. (2004) DSR guidelines.

Mardiana, 2020 states DSR is utilised, “when a researcher needs to create something (artefacts,

e.g. software, hardware, process) in order to solve the problem in organization or changes the

society toward the better, while at the same time learning and accumulating knowledge during

the process.”

Based in the literature reviewed as directed in guideline 3 of the DSR strategy, several

requirements were identified (Table. 4.2). Each requirement was linked to a component

responsible for a specific functionality in realising a unified query platform. These components

are like a “spoke in a wheel”, thus dependant on each other to achieve the design objectives.

The component related to the requirement as follows:

 49

• R1 - Repository Metamodel

• R2 - Query Language Construct

• R3 - Query Processing Engine

• R4 - Query Executor

Table 4.2: Artifact: Design Requirements

Requirements\Stories Tasks
DR1 Create a metamodel repository. Create a metadata schema denoting Redis.

Create a metadata schema denoting Cassandra.

Create a metadata schema denoting MongoDB.

Create a metadata schema denoting Neo4j.

Create a global metadata schema.

Link global schema to native schemas.

DR2 Create query parser for the unified

query.

Build a lexer for input characters.

Build a query syntax tree.

Build a semantic engine.

DR3 Create a query translator. Build Syntax and Semantic Matching engine.

Build Feature Mapping engine.

Build Query Optimization engine.

DR4 Create query executor Build a database adapter for NoSQL databases.

Map native results to a global view.

DR5 Create a logger. Integrate App Metrics into unified query system.

4.3 System Overview

The overall system architecture of the unified query platform is depicted in the conceptual

framework providing a high level view of the various components based on the specified

requirements, DR1 to DR5. The conceptual framework served as the starting point since it’s

independent of the underlying database technology (Hewasinghage et al., 2021; Atzeni et al,

2020; Candel, Ruiz & García-Molina, 2022). Essentially, the scope of this study was bounded

by the polyglot system shown conceptual framework illustrating how a unified query model for

multiple variants of NoSQL database technologies may be achieved.

4.2.1 Conceptual Framework

The conceptual framework in Figure 4.1 illustrates the rudimentary path a query follows when

navigating through the components which makes up the unified query platform. As the query

transverse through the components the interactions are audited at each point thus providing

transparency to its inner workings. For the sake of completeness and better understanding to

the reader; the entire query platform is grouped into four categories namely query commands,

query results, data streams and monitors.

 50

Figure. 4.1: Unified Query Conceptual Framework

• Query Commands

o A1 - Represents the query request, Fetch, Modify or Add.

o A2 - Validates query against the unified parser.

o A3 - Translates the abstract query into natives queries.

o A4 - Directs native to the respective NoSQL database instances.

o A5 - Connects to the targeted NoSQL instance.

o A6 - Sends query request for execution.

• Query Output

o B1 - Represents the query output.

o B2 - Binds query output to an object representing the data queried.

• Data Stream

o C1,C2,C3 - Novel applications the feeds the repository with data.

• Logs

o D1 - Determines which metrics to log.

o D2 - Logs the performance metrics.

4.2.2 Applied Abstraction to the Prototype

As noted by a Ramadhan et al. (2020), constructs of unified query solutions are primarily

abstractions of mathematical formulas to encapsulate heterogenous data models coupled with

an algorithms to generate abstract syntax trees and dictate execution logic. In fact this study is

based on the following mathematical abstractions whereby q(n) represents the native or

targeted query for each instance category of a NoSQL database. DS represents the data source

which consolidates the four types data storage models. i.e., GR - Graph, KV - Key-Value, DO –

Document-Orientated, CO - Column- Orientated data stores.

 51

The data source is represented by 𝐷𝑆 → 𝐺𝑅 ∪ 𝐾𝑉 ∪ 𝐷𝑂 ∪ 𝐶𝑂, indicating which the NoSQL data

storage models are supported. The query parser ensures the unified query conforms to the

signature, 𝑆𝑙𝑠𝑠 = ∑ 𝑘𝑖 , 𝑘 < (𝑙𝑒𝑥𝑖𝑐𝑎𝑙[𝑖] ∧ 𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐[𝑖] ∧ 𝑠𝑦𝑛𝑡𝑎𝑥[𝑖,]) 𝑛−1
𝑖=0 , whereby the unified is

required to prove it conforms to the lexical, semantic and syntactic rules of the unified platform.

The query translator verifies if the targeted data model, dm(k), specified in the unified query is

an element of the data source:

𝑑𝑚(𝑘) = {
1, 𝑖𝑓(𝑘 ∈ 𝐷𝑆)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Once the system has established that the data model is supported by one or more elements of

the data sources, it is required to generate the targeted or native query, t(k):

𝑡(𝑘) = {
1, 𝑖𝑓(𝑑𝑚(𝑘) ⊢ (𝐺𝑅 | 𝐾𝑉 | 𝐷𝑂 | 𝐶𝑂))
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The query executor subsequently directs t(k) to appropriate NoSQL database instance to be

executed. If 𝑞(𝑛) = ∏ 𝑘, ∃𝑛[∅, 𝑛]. 𝑡(𝑘).
𝐷𝑆𝑛
𝑘=1 𝑑𝑚(𝑘) ℎ𝑜𝑙𝑑𝑠, the native query successfully executed

on the target storage model. Finally, the object mapper wraps the output of each target query

into a result, 𝑟𝑖 = 𝑜 ∈ [𝑞(0), … 𝑞(𝑛)]. (𝑘 ≥ 𝑞(𝑘)).

4.4 System Design

This section details the core features of the prototype for the unified query platform. In addition,

it also aims to rationalise and justify on certain choices that were made during the design and

construction phase underpinned by the RSDP Model in section 3.3.1. The design encompasses

a collection of underlying theoretical concepts discussed in the literature review.

4.4.1. DR1 : Metamodel Repository

The metamodel is one of the most critical components of any unified query system. Its primary

is purpose was to serve as an intermediatory between the unified and the native schemas

(Kolonko & Müllenbach, 2020, Hewasinghage et al., 2021; Glake et al., 2022). The prototype

required a meta model repository cataloguing each the storage mechanisms schematics, data

types, and indexes (Appendix E). The metadata assists in the prototype’s query parsing

mechanism, performing basic validations to ensure that the specified fields are support by the

unified query data model.

It aids the query translator resolving native references at runtime and assist in generating the

appropriate native query constructs. It informs the query processing engine the optimal query

to create by inspecting the relevant native storage mechanism schematic information such as

indexes and unique keys.

 52

Figure. 4.2: Prototype’s Metamodel

Figure 4.2 aims to illustrates a high-level interaction view of the prototype’s repository

metamodel in relation to the other components within the polyglot resolution. The design choice

for the metamodel approach is that of a Global-as-View described in section 2.4.6. The global

schema for the prototype is expressed as a function of the local NoSQL databases (Endris,

2020). The GAV mediator acts as an intermediary between the unified query language and the

underlying NoSQL databases, abstracting the intricacies of data source integration.

The Global-as-View serves the prototype in two ways. Firstly, its ensures that the attribute and

model references in unified query actually exists natively. Secondly, it guides the native query

construction process by analysing their relationships, as well as constraints and modelling rules

but not the concrete syntax of the language.

4.4.2. DR2 : Query Parser

A core feature of the query language construct for the prototype is the AST for the unified query

platform. The AST encapsulates the syntactic hierarchical structure of the custom designed

abstract query construct, denoting the essential mechanisms and relationships between various

elements in the query, such as keywords, operators, identifiers, literals, and expressions

(Zhang, 2020; Yang, Zhang & Tong, 2022). The AST abstracts away the specific syntax of

different vendor specific query mechanisms and provides a common structure that facilitates

query construction and processing.

Structure of the Prototype’s Abstract Syntax Tree Structure

The prototype syntax supports three query statements, each adhering to a specific structure.

The AST consists of the FETCH statement representing the retrieval of data, the ADD statement

for inserting data and the MODIFY statement for updating data. The statements are comprise

of nodes connected through a parent-child relationship forming a tree-like hierarchical structure

as illustrated in Figure 4.3, 4.4 and 4.5. The root node represents the overall query, while the

child nodes represent the constituent parts of the query.

 53

Figure. 4.3: AST - Fetch

Figure. 4.4: AST - Add

Figure. 4.5: AST - Modify

Abstract Syntax Tree

The first step in the design process of the protype’s AST was to determine how context and

meaning can be given to the query language (Duracik et al., 2020; Zhang, 2020). Part of the

design phase was determining what the basic units of the language ought to be, ultimately

producing in the abstract or unified query. This was achieve by arranging elements of the query

into an organised structure as in shown in Appendix F. The decomposition of the query elements

forms the lexical analysis phase whereby tokens are generated, i.e. the basic units of the query

language.

 54

To achieve this, the prototype employed a lightweight library called Superpower that facilitates

the construction of token-driven parsers embedded directly in the source code (Blumhardt,

2022). This library is an extension of Sprache, a text-based parsing framework that does not

require any additional build tools or runtime configurations. According to its documentation “it

fits somewhere in between regular expressions and a full-featured toolset like ANTLR”

(Blumhardt, 2021). A demonstration of the lexical activity in Appendix G reveals how the tokens

are generated by the prototype as per a given input.

The tokenization of the query input string involved recognizing keywords, identifiers, literals, and

operators. Hence the prototype has a lexer feature embedded in the query parser component

which scans the text; spawning a stream of tokens that serves as input for the subsequent

parsing phase (Appendix H). The parsing phase examines the stream of tokens generated by

the lexer, systematically building the AST based on the grammar rules of the unified query

language.

The prototypes applies a parser combinator technique whereby multiple parsers are accepted

as input to create a new parser as output. In computer science (Öztürel, 2022), this approach

embodies the mathematical concept called a Higher-Order function (HOF). HOF states that a

function must at least take one or more functions as an argument which in turn yields as a

function result. The parser combinator enables the protype to modularise the sections of the

query language using the demarcating locations from the token stream by recursively traversing

through the text. The demarcated locations assists the program indicating where the parser

should start and stop. This recursive decent strategy, follows a top-down procedure inspecting

the terminal and non-terminal symbols based on the syntactic rules governing the grammar of

the unified query; resulting in grouping a disjointed set of nodes (Guo et al., 2020).

The semantic analysis performed by the prototype extracts the meaning from the text in

preparation for the actual invocation on the unified query. The pattern recognition of links

between the keywords, identifiers, literals, and operators validates the AST’s to ensure its

correctness and consistency. In summation, while the syntax feature ensured the input is well-

formed; the protype’s semantic feature determines if the intent of the query is aligned to the

correct action of the native data store. Furthermore, it provides supplementary annotations

should the input transgress any semantic rules, i.e. parser errors.

4.4.3. DR3 : Query Translator

The prototype’s unified query expression stated in a high-level language encapsulated by the

AST, which is responsible for inspecting the query intent and translates into native queries that

can be executed by the targeted data store. The translation process required several features

to come to fruition for the processing engine to be able to successfully create the native query

language:

• Syntax and Semantics Matching

• Feature Mapping

 55

• Query Optimization

Syntax and Semantic Matching

A unified query intended to target multiple types of databases, will innately have different syntax

and semantics compared to the native query languages (Candel, Ruiz & García-Molina, 2022).

The query processing engine requires the ability to find the equivalent meaning and grammar

in order to successfully execute converted queries. Therefore, the semantics of the unified query

must map to the corresponding semantics in the native query language of the target NoSQL

database.

Finding the equivalent match ensures the intended meaning and functionality is preserved

during the conversion process of unified query. In addition, the syntactic translation involves

transforming the syntax of a unified query into the specific syntax supported by the native query

language of the target NoSQL database. Rewriting the unified query's expressions, keywords,

identifiers, literals and operators to match the syntax of the native query language safeguards

and ensures adherence (Koutroumanis et al, 2021).

Feature Mapping

The high-level query language created for this prototype in some instances does not have the

direct equivalent features or constructs in the targeted native query language. It attempts to

preserves the anticipated functionality while still creating a converted query that may be

executed. In the cases where it is unable to, it defaults to a rudimentary intent of the native

query. In general, features for database management systems are naturally influence by the

applicable use cases (Davoudian, Chen & Liu, 2018; Oussous et al., 2018). In the instance of

the key-value database, Redis, aggregation amongst other features are not natively supported

in its database management as shown in Table 4.3. Therefore the prototype requires an

additional abstraction layer for the Redis data store to circumvent this issue which it currently

does not support.

Table 4.3: Prototype versus Equivalent Native Data Stores Features

Prototype Redis Cassandra MongoDB Neo4j
Aggregation

NSUM X X X

NAVG X X X

NMIN X X X

NMAX X X X

NCOUNT X X X

Filtering

WHERE X X X X

AND X X X

OR X X X

JOIN X

RESTRICT X X X

Sorting

 56

ASC X X X

DESC X X X

Projections

*No explicit command X X

Operators

’=’, ’+’, ’ -’, ’*’, ‘/’ X (only ‘=’) X X X

Comparators

’<’, ’<=’, ’>=’, ’>’ X X X

The processing engine maps these features to appropriate native constructs or techniques in

the native query language, ensuring the preservation of the expected functionality. Since the

numerous NoSQL data stores for the prototype, as covered in section 1.9, aims to provide a

single query interface; the approach to decoding the individual native queries depends on the

degree of complexity of the supported models. Specialized strategies for each of the inherent

data stores were built. Thus establishing clear boundaries between the various NoSQL

translation layers. The design approaches are further discussed in section 4.5.

Query Optimization

The query optimizer plays an key role in the efficiency of a unified query language for the NoSQL

polyglot solution. The prototype employs an approach concerned with delegating the heaving

lifting to the targeted database of query filtering, sorting, projections and aggregation where

applicable (Khan et al., 2019;). As a consequence, it aims to shift the I/O, memory and CPU

processing power to the respective DBMS reduces the computational footprint on the prototype.

Additionally, pushing operations such as projections and filtering closer to the data source,

reduces the network bottleneck when data is transferred between the prototype and the

corresponding NoSQL data stores (Khine & Wang, 2019).

Once the query has parsed the unified construct rules, the next step is to rewrite the query

expression into an equivalent, more efficient form. To do this, instructions are extracted from

the unified query language while unpacking the metadata from the metamodel (section 4.4.2)

to find the suitable native tables, collections, nodes with the corresponding

attributes/relationships. The query optimizer relies heavily on the metamodel to produce a native

query in the most effective form.

4.4.4. DR4 : Query Executor

The query executor is responsible for natively running queries produced by the query processing

engine against the respective NoSQL data sources. It takes care of establishing the database

connections, the authentication procedures and data transfer between the unified query

platform and the data source, similar approaches to BigDawg, NoDA (Koutroumanis et al., 2021;

Zhang et al., 2021). The prototype’s query executor coordinates the concurrent executions of

the respective native queries amongst the NoSQL data stores based on the targets specified in

the unified query.

 57

It splits the executable queries into multiple processing units by creating threads for each one.

For each data source, the executor collects the query results. It performs any necessary data

mapping to present a consolidated result. For clarification sake, it does not merge the different

data sources but rather ensure that each one conforms to the unified data model. Any errors

and exceptions that may occur during query execution process provides the appropriate error

messages back to the query interface.

4.4.5. DR5 : Metrics Logger

The metrics used in this the experiment was programmatically embedded into to prototype. The

protype utilised is an open source library called App Metrics to measure various performance

aspects of components that makes up the unified query solution (app-metrics.io, 2021). The

report modules provided a set of libraries whereby unified query parser, the translator and the

executor could be scoped.

4.5 System Construction

At this point of the chapter, the researcher delves into how the system design requirements

created in the previous section were tied together which eventually produced a testable

instantiation. Although these aspects were not explicitly expressed in section 4.2, due to the

very nature of this study, it is an important non-functional requirement. The prototype for the

unified query platform applied various design patterns to address different aspects of

functionality within its architecture.

While these design patterns have existed for almost thirty years at this present moment, it’s still

relevant today and has become the corner stone of solve object orientated programming

problems. The design patterns used in this study are classified as a behavioural design patterns

(Gahlyan & Singh, 2018). As the prototypes main concern was how objects interface with one

another in an efficient way by finding common interfacing patterns. It enhanced the modularity,

extensibility, scalability and maintainability of the unified query platform (Wedyan & Abufakher,

2020).

4.5.1. Query Intent

An intrinsic functionality of the prototype was determining the intent of the unified query to

produce the expected result. The chain of responsibility design pattern was chosen, where at

runtime the prototype decides which command to execute (El Maghawry & Dawood, 2010). The

prototypes defines Fetch, Add and Modify commands as handlers each responsible for its own

interpretation of the request. It shares a common interface which is responsible for dispatching

client query request to the appropriate command handler depending on the data enquiry

(Gahlyan & Singh, 2018). The command handlers contains the query parser and translator logic

discussed in section 4.4.2 and 4.4.4.

 58

Figure. 4.6. Chain Of Responsibility Pattern : Prototype Commands

Figure 4.6 provides an illustrative view on how the pattern is applied to the protype. This pattern

has been widely used in cases whereby system messages dictates the execution result

(Wedyan, F. & Abufakher, S., 2020). New instances of each command type are create as the

program starts up resulting in a chain of objects. To improve the efficiency of the executing

processing chain of objects; the collection of concrete handlers, i.e. commander handlers , was

set up as a dictionary where the command type is the unique key. The query request passed to

handlers is tagged with the appropriate command type which is used to find the corresponding

handler in the chain to execute (Table 4.4). When the command is not found in the dictionary,

this prevents an action from being taken, unified query request is aborted with an error message.

Table 4.4: Pseudocode : Query Intent

𝑄 → 𝑎 𝑞𝑢𝑒𝑟𝑦 𝑖𝑛𝑡𝑒𝑛𝑡 // represents a query intent

𝑁 → {𝑛1, … , 𝑛𝑛} // AST := Terminal and Non-Terminal nodes

𝑓 → 𝑓𝑒𝑡𝑐ℎℎ𝑎𝑛𝑑𝑙𝑒𝑟(𝑁) // fetch command

𝑚 → 𝑚𝑜𝑑𝑖𝑓𝑦ℎ𝑎𝑛𝑑𝑙𝑒𝑟(𝑁) // modify command

𝑎 → 𝑎𝑑𝑑ℎ𝑎𝑛𝑑𝑙𝑒𝑟(𝑁) // add command

𝑐𝑚𝑑 → { 𝑓 | 𝑚 | 𝑎} // command handlers

𝑐𝑚𝑑 ⊆ 𝑄 // command handlers is a subset of a query

≔ 𝑸𝒖𝒆𝒓𝒚𝑰𝒏𝒕𝒆𝒏𝒕(𝒒)

𝒊𝒇 𝑞 ∈ 𝑄 𝒅𝒐

 𝒊𝒇 𝑞. 𝑐𝑚𝑑 ∈ 𝑓 𝒅𝒐

 𝑓(𝑁)

 𝒆𝒍𝒔𝒆 𝒊𝒇 𝑞. 𝑐𝑚𝑑 ∈ 𝑚 𝒅𝒐

 𝑚(𝑁)

 𝒆𝒍𝒔𝒆 𝒊𝒇 𝑞. 𝑐𝑚𝑑 ∈ 𝑎 𝒅𝒐

 𝑎(𝑁)

 𝒆𝒍𝒔𝒆

 𝐼𝑛𝑣𝑜𝑘𝑒𝐸𝑟𝑟𝑜𝑟

// if q represent a query

// loop through each command type

// invoke fetch command

// invoke modify command

// invoke add command

//return error message

 59

4.5.2. Query Path

In the next non-functional requirement, the prototype needed to ensure the correct native query

path is taken based on the unified query intent. A strategy pattern was applied which selected

and ensured the correct algorithm was enforced based on query elements specified in target

clause within the AST. Each of the supported NoSQL data storage models were defined as

descendants as part of a family algorithms shared by the same ancestor (El Maghawry &

Dawood, 2010).

Figure. 4.7: Strategy Pattern : Query Generator and Executor

Each of the supported NoSQL data models are deemed as specialised classes in the prototype,

liable for building a collection of visitors, described in section 4.5.3, to be executed by the query

generator. The prototype receives the query intent as input; matches the command and storage

target to the relevant strategy (Table 4.5). In preparation for the native query generators, during

the translation process the repository metamodel is used to find the unified field’s equivalent

native field contained in the AST. If no matches are found then the field will be excluded. The

prototype consciously builds a collection of class instantiations represented as visitors to closely

resemble the structure of native query languages it needs to create. Finally, once the native

queries has been created by the query generator, the strategy pattern send the output back to

the calling method for execution.

Table 4.5: Pseudocode : Query Path

𝑟𝑠 → 𝑟𝑒𝑑𝑖𝑠 // redis strategy

𝑚𝑠 → 𝑚𝑜𝑛𝑔𝑑𝑏 // mongodb strategy

𝑐𝑠 → 𝑐𝑎𝑠𝑠𝑎𝑛𝑑𝑟𝑎 // cassandra strategy

𝑛𝑠 → 𝑛𝑒𝑜4𝑗 // neo4j strategy

𝑇 → 𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑏𝑒𝑟\𝑐𝑜𝑛𝑣𝑒𝑟𝑡 // represents the conversion process

𝑆𝑃 → {𝑠𝑝1, … , 𝑠𝑝𝑛} // represents collection of query path strategies

𝑠𝑝𝑛 ∈ (𝑟𝑠 | 𝑚𝑠 | 𝑐𝑠 | 𝑛𝑠) // each native strategy is an member the query path strategy

𝑠𝑝𝑛 ∋ 𝑇 // represent a member of the transcriber

𝐷𝑆 → (𝐺𝑅 | 𝐾𝑉 |𝐷𝑂 | 𝐶𝑂) // prototype data sources

 60

𝑞 → 𝑄𝑢𝑒𝑟𝑦 // represent a query

𝑛 → 𝑁𝑎𝑡𝑖𝑣𝑒 𝑄𝑢𝑒𝑟𝑦 // represents a generated native query

𝐷𝑆 ⊆ 𝑄 // data source is a subset of the query

𝐼 → 𝑄𝑢𝑒𝑟𝑦𝐼𝑛𝑡𝑒𝑛𝑡(𝑞) // query intent function (see 4.5.1)

≔ 𝑸𝒖𝒆𝒓𝒚𝑷𝒂𝒕𝒉(𝒒)

𝒊𝒇 𝑞 ∈ 𝐼 𝒅𝒐

𝒊𝒇 𝑒 → ∃(𝑞. 𝑐𝑚𝑑) 𝒅𝒐

𝑡𝑎𝑟𝑔𝑒𝑡 𝑠𝑡𝑜𝑟𝑎𝑔𝑒 → 𝑞. 𝐷𝑆

𝒇𝒐𝒓 𝑒𝑎𝑐ℎ 𝑠𝑝 ∈ 𝑆𝑃(𝑡𝑎𝑟𝑔𝑒𝑡 𝑠𝑡𝑜𝑟𝑎𝑔𝑒) 𝒅𝒐

 𝒊𝒇 𝑠𝑝 ⊆ 𝐾𝑉 𝒅𝒐

𝑛 → 𝑇. 𝑅𝑢𝑛(𝑟𝑠)

 𝒊𝒇 𝑠𝑝 ⊆ 𝐶𝑂 𝒅𝒐

𝑛 → 𝑇. 𝑅𝑢𝑛(𝑐𝑠)

 𝒊𝒇 𝑠𝑝 ⊆ 𝐷𝑂 𝒅𝒐

𝑛 → 𝑇. 𝑅𝑢𝑛(𝑚𝑠)

 𝒊𝒇 𝑠𝑝 ⊆ 𝐺𝑅 𝒅𝒐

𝑛 → 𝑇. 𝑅𝑢𝑛(𝑛𝑠)

// loop through each strategy members

// determine if command is valid

// set targeted storage

// match strategy to targeted storage

// invoke redis strategy

// invoke cassandra strategy

// invoke mongodb strategy

// invoke neo4j strategy

𝑟𝑒𝑡𝑢𝑟𝑛 𝒏

4.5.3. Query Generator

The visitor pattern was harnessed to generate the native NoSQL queries for the prototype. It is

triggered by the query translator component which is discussed in section 4.5.2. The native

query elements are represent as “Visitors” which directly correlates to elements of the tokens

generated by the query parser. This pattern is quite powerful as it allows a class instantiation to

add functionality without changing the structure of the class, making it scalable (El Maghawry &

Dawood, 2010).

Figure. 4.8: Visitor Pattern for NoSQL Code Generators

The supported NoSQL data storage models in the scope of this study each has its own unique

code generating implementation, shown in Figure 4.8. It decouples the processing logic from

 61

query components thus isolating query elements enabling new features to be added without

affecting existing parts. This pattern enables the prototype to traverse through the different

elements of the query expressions, building parts of the native query while maintaining its

internal state, i.e. the ‘whole part’ or native query (Table 4.6). As the prototype navigates through

the organised parts, it invokes other visitors hence complex query structures able to be built in

a systematic and controlled manner.

Table 4.6: Pseudocode : Query Generator

𝑟𝑔 → 𝑟𝑒𝑑𝑖𝑠 // redis code generator

𝑚𝑔 → 𝑚𝑜𝑛𝑔𝑑𝑏 // mongodb code generator

𝑐𝑔 → 𝑐𝑎𝑠𝑠𝑎𝑛𝑑𝑟𝑎 // cassandra code generator

𝑛𝑔 → 𝑛𝑒𝑜4𝑗 // neo4j code generator

𝑉𝑆 → {𝑣𝑠1, … , 𝑣𝑠𝑛} // collection of visitors, i.e. query elements

𝐺 → (𝑟𝑔 | 𝑚𝑔 | 𝑐𝑔 | 𝑛𝑔)

𝐺 ⊆ 𝑣𝑠𝑛 // each storage generator has a subset of visitors

𝑆𝐸 → {𝑞𝑒1, … , 𝑞𝑒𝑛} // parts the supported storage query elements

𝐼 → 𝑄𝑢𝑒𝑟𝑦𝑃𝑎𝑡ℎ(𝑞 → 𝑄𝑢𝑒𝑟𝑦) // query path function (see 4.5.2)

≔ 𝑸𝒖𝒆𝒓𝒚𝑮𝒆𝒏𝒆𝒓𝒂𝒕𝒐𝒓(𝒊)

𝒊𝒇 𝑖 ⊢ 𝐼 𝒅𝒐

𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 𝑝𝑎𝑡ℎ → 𝑖. 𝐷𝑆

𝑉𝑆 → 𝐵𝑢𝑖𝑙𝑑𝑉𝑖𝑠𝑖𝑡𝑜𝑟𝑠(𝑖. 𝑞𝑢𝑒𝑟𝑦_𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠)

𝒇𝒐𝒓 𝑒𝑎𝑐ℎ 𝑝𝑎𝑟𝑡 𝑖𝑛 𝑉𝑆 𝒅𝒐

 𝒊𝒇 𝑝𝑎𝑟𝑡 ∈ 𝑟𝑔 𝒅𝒐

 𝑟𝑔. 𝐴𝑐𝑐𝑒𝑝𝑡(𝑝𝑎𝑟𝑡)

 𝒊𝒇 𝑝𝑎𝑟𝑡 ∈ 𝑐𝑔 𝒅𝒐

 𝑐𝑔. 𝐴𝑐𝑐𝑒𝑝𝑡(𝑝𝑎𝑟𝑡)

 𝒊𝒇 𝑝𝑎𝑟𝑡 ∈ 𝑚𝑔 𝒅𝒐

 𝑚𝑔. 𝐴𝑐𝑐𝑒𝑝𝑡(𝑝𝑎𝑟𝑡)

 𝒊𝒇 𝑝𝑎𝑟𝑡 ∈ 𝑛𝑔 𝒅𝒐

 𝑛𝑔. 𝐴𝑐𝑐𝑒𝑝𝑡(𝑝𝑎𝑟𝑡)

// determine if query path has been established

// set strategy path based on specified data source

// build visitor parts

// loop through parts

// build native redis parts

// build native cassandra parts

// build native mongodb parts

// build native neo4j parts

4.6 System Review

At the start of the prototype construction process, this study had to ascertain that the

requirements specified in section 4.3 were satisfied. In this phase of the research process as

outlined in section 3.4.5, illustrated by Figure. 4.9; the three stages of the V & V measurement

model were satisfied. To ensure the objectives were met during the development phase, unit

tests were created for each critical component to validate and verify the expected output and

minimize any software bugs. A total of 179 units were created, safeguarding all the fundamental

test scenarios.

 62

Figure. 4.9: Verification & Validation Measurement model

The unit tests were followed by integration tests to confirm that the components are able to

communicate with each other. This included establishing database connections, loading

libraries to determine compatibility and how well programming modules work together given

varying inputs. The functional tests conducted determined whether the prototype features

operates as per the requirements. The verification process checked that the prototype was

developed in the right way according to the defined specifications. It substantiated whether the

developed artifact fulfilled the requirements. The validation process checked and compared

that the actual versus the expected output. Any deviation from the expected output was deemed

a failure and subject to the source code being refined through multiple iterations until it achieved

the desired result. The question asked throughout this process, ‘is the correct product being

built ?’.

4.7 Summary

This chapter delved into the design and implementation process of the unified query platform.

It lists the design requirements stating how it aligned to the aims and objectives of this research

study. A conceptual framework was illustrated to the reader to visually articulate and clearly

demonstrate the system boundaries of each component that makes up the unified query

prototype. Throughout this chapter the researchers justified certain design and architectural

decisions made during the development of the prototype.

It makes a distinction between the functional and non-functional design requirements of the

prototype. The functional requirement comprised of components shown in the conceptual

framework, i.e. the parse, translator, executor and repository model. The non-functional

requirements dealt how the research employed object orientated design programming patterns

to efficiently mapped the functional to the non-functional requirements. This demonstrates how

the prototype bridged the gap between the unified query and native queries.

 63

CHAPTER FIVE : PROTOTYPE EVALUATION AND RESULTS

5.1 Introduction

In chapter 4, the design and implementation for the unified query platform was discussed,

 describing key features for each of the components. Chapter 4 covered how the physical

 implementation was attain through varying design and architectural approaches. This chapter

evaluates the validity of the prototype by examining the results from the simulations conducted.

The prototype was subjected to varying test scenarios whereby each query output and

performance metrics were collected over a time series.

Table 5.1: Research Questions and Objectives

RQ’s RO’s
4 How effective and efficient is the

performance of the applied query

processing strategies in the unified query

platform?

To determine the effectiveness and

efficiency of the unified query construct

considering data integration, query

execution, and result retrieval.

The study evaluates and synthesises the results of a unified query platform in accordance to its

effectiveness and efficiency with respect to the problem domain. The chapter begins by drawing

the reader’s attention to the problem domain of for this undertaking then proceeds to the

research objectives as shown in Table 5.1 as well as the methods used to gather data and

document the results.

5.2 The application of DSR to the problem domain

The iterative nature of the DSR process aligned with the technological goals of prototype in the

design and implementation process. The existing body of knowledge as it relates to unified

query platforms provided the scientific and technical grounds to refined the prototype and

observe outputs in a meaningful way (Vaishnavi, Kuechler & Petter, 2019). Since this research

study adheres to the guidelines of Hevner et al., 2004, the objective for this study is “to grow

the prescriptive knowledge base of purposefully designed artifacts to improve human

capabilities”.

5.3 Experimental Overview

 To achieve the aim and objectives of the study as articulated in Chapter 1, section 1.4; an

 experiment was conducted to answer the associated sub questions posed. The prototype

personifies the objectives of the study inspired by the research questions. The objective of this

experiment is to evaluate the efficiency and effectiveness for the unified query platform

prototype as discussed in Chapter 3, section 3.4.5. The developed prototype and simulations

were conducted under system conditions conducive to meet the technological goals.

The unified query platform was designed to retrieve data from one or more of the targeted native

storage options. As illustrated in Figure. 5.1, this experiment requires no human participants

due to the technical nature of the research study. The research conducted was more focused

on the architectural makeup of the prototype’s unified query platform.

 64

The experiment was controlled through a predefined set of queries which forms part of the test

automation process which is discussed in further detail in section 5.4.5. Considerations were

also made in terms of the machine’s hardware capabilities and software requirements to realise

the envisage solution.

Figure. 5.1: Experimental Overview

5.3.1. Participants

The participants in this study was a subsystem within the prototype. The subsystem builds a

collection of executable unified queries and delegates it to the entry point of the unified platform

system. It is responsible for simulating human user interactions and plays a critical role in

evaluating how well the prototypes operates (Olsen & Raunak, 2019). The participants

subjected the unified query platform to various scenarios to emulate human behaviour. This

consisted of defining data retrieval, modification and data insert query commands. The

deterministic result which participants invoked was encapsulated as output files which

highlighted performance and the correctness of the prototype.

 65

5.3.2. Procedure

An key step in the experiment was to assign tasks to participants. The tasks captured behaviour

and intention of the unified query. Each task was uniquely labelled, for the purposes of

identifying metrics to the associated participant. The intention of the tasks was to set goal for

the participants. The behaviour on the other hand, contained the characteristics of the unified

query. This involved query types such a FETCH, MODIFY and ADD commands; the level of

complexity which directly correlates to the intricacies of generating a native query depending

which NoSQL data stores were targeted.

As part of the procedural process, the research had to ensure the experiment goals were aligned

with the research objectives. Therefore the individual of participant’s represents a subset of

research objectives. This enabled the researcher to assess to what degree a query goal was

reached. Subsequently, the researcher could judge whether or not the intention of the query

match the actual behaviour and the overall utility of the of the prototype.

5.3.3. Hardware

The prototype simulations performed were conducted on a notebook with following

specifications:

Table 5.2: Notebook Specifications

Specifications
Processor Intel(R) Core(TM) i7-10610U CPU @ 1.80GHz 2.30 GHz

Installed RAM 16,0 GB (15,6 GB usable)

System type 64-bit operating system, x64-based processor

Cores 4

5.3.4. Software

The prototype was developed within the context of the following software environmental

arrangement as indicated by Table. 5.3 and Table. 5.4.

Table 5.3: Development system

Application Description
1 IDE Microsoft Visual Studio 2022 Community Edition

2 Programming Language C#

3 Framework .Net Core 6 (platform independent)

4 Reporting App Metrics

Table 5.4: Database system

Database Version
1 Redis 3.0.504

2 Apaches Cassandra 3.11.13

3 MongoDB 6.0.0

4 Neo4j 4.4.5

 66

5.3.5. Ethical Considerations

There were no human participants in this study, therefore ethical aspects such as data privacy

and security for the working datasets does not apply. Section 5.4.2 elaborates on how the

datasets were gathered. However, the research still had to comply with any relevant guidelines

and regulations. This related to the use of the development and distributed software tools used

to develop and evaluate the unified query prototype. Firstly, the researcher specifically sought

out distributed software that is governed by open source technology principles. Secondly, the

software that requires a paid subscription such as the Microsoft Visual Studio IDE, does permit

it use on condition for academic purposes. Finally, careful consideration has thus been given to

guiding principles like fair distribution and use, compliance standards and regulations; and

respect for intellectual property. Throughout this experiment the use of distributed software and

tools are also mentioned to inform and to enable the reader to distinguish what has been

intellectual property has been incorporated.

5.4 Experimental Setup

This section provides a detailed description of how the experiment was created to evaluate the

unified query platform. It outlines the activities executed such as the how the database models

were created, how data was sourced and generated, the participants involved and the metrics

gathered during the experimental process.

5.4.1. Data Models

Before embarking on the experimental process, a student database was created for each of the

targeted NoSQL data stores in scope for the research study (Appendix A, B, C and D). The

purpose of the database was to construct a real-world scenario containing student information,

shown in Table. 5.4. The models were necessary beforehand, as it directly served as input to

the metamodel and the query processing engine discussed in Chapter 4, section 4.4.3 and 4.4.2

respectively.

Table 5.5: Student NoSQL Repositories

Database Ideal
1 Redis A student profile the manages user online sessions.

2 Apache Cassandra Serves as a repository for student information.

3 MongoDB Contains student registration information

4 Neo4j Contains student transcript information

While the varying data models exists in different NoSQL databases, the impetus was to create

models that shared common data reflecting similar concepts. Even though the respective

databases shared common data concepts, the properties in most instances had different naming

conventions and more importantly different schema structures. Consequently, requiring the

metamodel to serve as a bridge to the native storage databases (Glake et al., 2022). Once the

respective storage models were created, an additional data model layer represent as a file was

required to encapsulate all of the native storage option for the prototype in a single view, i.e. - a

Global-as-View.

 67

5.4.2. Data Generation

The data generation process was gathered in two phases. The first phase was obtaining student

data for the experiment from an online source (onlinedatagenerator.com, 2023). The latter

phase supplemented the initial dataset by computing additional data via the prototype itself. The

initial dataset consisted of the two files in JavaScript Object Notation (json) format namely,

students and faculty.

Student data:

Properties: first name, last name, gender, identity number, email address, phone number, IP

address, data of birth, street address, language, city, street name and postal address.

Faculty data:

Properties: unique course identifier, course name, faculty name, unique subject identifier,

subject description, subject cost.

Furthermore when the initial data was obtain, it was enriched with dimensions via a module

within the prototype. Since the data model was already defined in the design phase of the

prototype, the following properties were identified. Table. 5.6 provides a high level description

of the different algorithms applied to populate the additional dimensions identified. After the

algorithm was applied to the dimensions, the enriched data was stored in a pipe delimited files.

Additional data:

Properties: unique faculty identifier, subject term (in months), subject mark, subject graded

symbol, gender title, street number, street address, postal code, province, unique country

identifier, country name, unique student identifier, username, password, registration date,

enrolment type.

Table 5.6: Enriched Data Generation Algorithm

Property Algorithm
unique faculty identifier Generated and concatenated three ASCII character codes

from 65-90 which represents characters A-Z.

subject term (in months) Generated a random number between 3 and 12.

subject mark Generated a random number between 0 and 100.

subject graded symbol Assigned a graded symbol based on the assigned subject

mark :

>= 80 : "A", >= 70 : "B", >= 60 : "C", >= 50 : "D",

>= 40 : "E", >= 30 : "F", <= 29 : "G"

gender title If the gender property is “Female” then assign “F” else assign

“M”.

street number Generated a random number between 0 and 150.

street address Assigned postal address to street address

postal code Generated a random number between 1000 and 4000.

 68

province Assigned a province base on the assigned country. See

Appendix I.

country name Assigned country based on the following list:

"South Africa", "Angola", "Nigeria", "Namibia", "Botswana",

"Egypt", "Tunisia"

unique country identifier Based on randomly assigned country the following country

codes apply:

"South Africa" = "ZA", "Angola" = "AO", "Nigeria" = "NG",

"Namibia" = "NA", "Botswana" = "BW", "Egypt" = "EG",

"Tunisia" = "TN"

unique student identifier Generated a random number between 100000000 and

99999999.

username Concatenated the first letter of the student’s last name and

first name.

password Generated an unique password based on the following

character sets :

“abcdefghijklmnopqursuvwxyz”,

“ABCDEFGHIJKLMNOPQRSTUVWXYZ”

“123456789”,

“!@£$%^&*()#€"”

registration date Generated a date between the current date and 48 months in

the past.

enrolment type Generated a random number between 0 and 100. If the

random number return an integer > 20 then assign “Full-

Time” else assign “Part-Time”

5.4.3. Data Load

Once the data models were defined and the data prepared; loading the data into the native

structures was the next step in the experimental set up. In essence, Extract, Transform, Load

(ETL) approach was employed to facilitate this process of populating the underlying storage

models. Before loading the enrich dataset into the native storage models, the physical schema

was required. This was achieved programmatically via the prototype using the programming

drivers and APIs to communicated with the locally install NoSQL database management

systems.

The characteristics of each native storage models were taken into account, such as the

particular language paradigms governing its creation and usage. The dataset is then loaded into

memory from the pipe delimited files to an object structure representing the enrich data. For

each of the native storage option, language-specific statement are created to insert the data set

into the respective databases. Appropriate indexes were applied after the data load was

completed for specific native databases to optimize query performance. This in itself had an

impact on the experiment which is covered in section 5.5.

 69

5.4.4. Data Metrics

 This study is only concerned with the following metrics for data analysis:

Apdex:

The Apdex or Application Performance Index enabled the researcher to examine the satisfaction

levels of participants in the experiment based on a score between 0 and 1. Zero being the worst

possible score to achieve while 1 represent the best possible outcome. The number of

participants directly correlates to the sample size of the Apdex metric. The satisfaction level for

the unified query in the experiment was set at a target threshold of two seconds. The Apdex

contained three categories to measure user satisfaction:

Table 5.7: Apdex Categories

Category Description
1 Satisfied The response time of the unified query is less than 2 seconds.

2 Tolerating The response time of the unified query between 2 and (4 * 2) seconds.

3 Frustrating The response time of the unified query is greater than (4 * 2) seconds.

According to the libraries documentation the formula to calculate the Apdex score is (app-

metrics.io, 2021):

let’s say

 sr is satisfied requests

 tr is tolerating requests

 s is the total number of requests (i.e. sample size)

then

𝐴𝑝𝑑𝑒𝑥 𝑠𝑐𝑜𝑟𝑒 = (𝑠𝑟 + (
𝑡𝑟

2
)) /𝑠

CPU Usage:

The CPU usage metric measured the time the CPU was busy processing the unified query

producing a percentage value based on the total CPU available.

let’s say

 st is the start time of CPU utilisation

 et is the end time of CPU utilisation

 pa is the number of processors available to the current process

 pt is the total processing time since the processor was initiated

then

𝐶𝑃𝑈 𝑈𝑠𝑎𝑔𝑒 =
(𝑒𝑡 − 𝑠𝑡)

(𝑝𝑎 ∗ 𝑝𝑡)

Memory Usage:

The memory usage metric was split into two categories as shown in Table. 5.9. These metrics

measure the amount of memory consumed during the execution of the unified query platform.

Table 5.8: Memory Usage Categories

 70

Category Description
1 Virtual

(VM)

The amount of memory accessed via the physical disk.

2 Physical

(PM)

The amount of memory accessed via the machines RAM (Random

Access Memory).

let’s say

 virtual memory:

 ivm is the initial amount of virtual memory allocated to associate process

 fvm is the final amount of virtual memory allocated to associate process

 physical memory:

 ipm is the initial amount of physical memory allocated to associate process

 fpm is the final amount of physical memory allocated to associate process

then

𝑣𝑖𝑟𝑡𝑢𝑎𝑙 𝑚𝑒𝑚𝑜𝑟𝑦 = 𝑓𝑣𝑚 − 𝑖𝑣𝑚

𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 𝑚𝑒𝑚𝑜𝑟𝑦 = 𝑓𝑝𝑚 − 𝑖𝑝𝑚

 Query Execution Times:

The fundamental components of the unified query was subjected to performance tests, measure

the amount of time taken to complete actions based on what has been described in Table. 5.9.

Table 5.9: Component Execution Categories

Category Description
1 Parser The time taken for the global parser to validate the query measured in

milliseconds.

2 Translator The time taken for the translator to generate the native NoSQL queries

measured in milliseconds.

3 Executor The time taken to execute the native query via the NoSQL drivers.

Error Rates:

Table. 5.10 describes how the error rate for each category are measured. The errors generated

by the prototype for the unified query platform permits the researcher to know exactly where the

failure occurred for a given unified query.

Table 5.10: Component Error Categories

Category Description
1 Parser The number of errors\exceptions the parser producers.

2 Translator The number of errors\exceptions the translator producers.

3 Executor The number of errors\exceptions the executor producers.

5.4.5. Automated Tests

The prototype incorporates a collection of autonomous tests to simulate human behaviour. The

purpose of the automated tests was to assist the research in developing several scenarios to

test the overall functionality of the unified query platform. Each automated test was assigned a

 71

participant designated to perform a specific scenario. Setting up the scenarios delivered the

researcher the required level of control in the test executions, providing a consistent and stable

environment.

Collectively these tests were a key factor in evaluating if the unified query platform functions

efficiently and in a reliable manner. Additionally, the automated tests encapsulated the results

of each participant which aided the research to check its correctness. This procedures employed

in this study enabled the researcher to conduct rigorous experiments, testing the system bounds

of the unified query platform.

5.5 Experimental Results

 According to Hevner et al 2004, the effectiveness of an artefact must be meticulously

demonstrated by using the appropriated evaluation methods. As discussed in section 5.3 and

experiment was carried out to access the utility of the unified query platform. The experiment

executed ninety-one individual test cases whereby the metrics and query results were

documented. Table. 5.11. shows a condensed view of the test cases executed in the

experimented.

Table 5.11: Summary of Test Cases

Summary Test Cases
1 Syntax and Sematic Validations. 87, 88, 89, 90, 91

2 Retrieve complete dataset. 1, 9, 28, 45, 66

3 Retrieve dataset where a single filter was applied. 2, 3, 4, 10, 16, 17, 54, 67,

77, 78, 79

4 Retrieve dataset where a multiples filters were applied. 11,12, 15, 29, 30, 55, 56,

68, 69, 70, 80, 81

5 Apply a limit to the dataset retrieval process. 13, 31, 46, 47, 48, 49, 50,

51, 52, 53

6 Apply sorting to the dataset retrieval process. 14, 32, 33, 34, 35, 36, 57,

71

7 Aggregation on a datasets. 18, 19, 20, 21, 22, 37, 38,

39, 40, 41, 58, 59, 60, 61,

62, 72, 73, 74, 75, 76

8 Update existing dataset. 5, 6, 23, 24, 25, 42, 43,

63, 64, 82, 83, 84, 85

9 Data inserts. 7, 8, 26, 27, 44, 65, 86

5.5.1. Syntax and Sematic Validations

This group of participants performed basic syntax and sematic validations on the prototype’s

unified query (Appendix J). Participants were given the basic elements of unified query

constructs and obliged to specify the query in a way that contradicts the rules governing the

prototype’s unified query. In certain cases, the unified query was not deemed as well-defined or

the basic elements were not specified in order by the participants. While in other instances,

fields were specific that was not defined in the unified queries metamodel.

 72

Table 5.12: Syntax and Sematic Validations - Scenarios

Scenarios Result
Incorrect syntax specified. Syntax error occurred.

Incorrect fields specified. Invalid fields specified: newproperty1, newproperty2

The basic query elements are
not in the expected order.

Syntax error occurred.

Table 5.13: Syntax and Sematic Validations - Apdex

Test # Frustrating Tolerating Satisfied Score
87 0 0 1 1

88 0 0 1 1

89 0 0 1 1

90 0 0 1 1

91 0 0 1 1

Table 5.14: Syntax and Sematic Validations - CPU & Memory

Test # CPU Usage (%) VM(Bytes) PM (Bytes)
87 0.000203429 65536 28672

88 0.000203428 65536 4096

89 0.000203428 0 0

90 0.000203428 0 0

91 0.000203428 0 0

Table 5.15: Syntax and Sematic Validations - Timers

Test # Parser (ms) Translator (ms) Executor (ms)
87 6.755032094 - -

88 6.78337294 - -

89 6.802833852 - -

90 6.844081612 - -

91 7.018673661 - -

Table 5.16: Syntax and Sematic Validations - Error Rate

Test # Parser Translator Executor
87 - - 1

88 - - 1

89 - - 1

90 - - 1

91 1 - -

5.5.2. Retrieve complete dataset

The goal was to interrogate the entire schema of the underlying native storage models and

return the associated dataset. The participants attempted to perform a Fetch queries that

retrieved all data from the all the supported NoSQL storage systems (Appendix K). The unified

query specified no conditional statements except for a data restrictions in certain instances. The

prototype generated native queries supported by the underlying storage driver which executed

successfully, shown in Table 5.17. While the other tests results are not shown in that table

below, the queries generated similar outputs.

Table 5.17: Retrieve complete dataset - Test Sample

Target Generated Query
Redis KEYS| *

Cassandra SELECT title, idno, aka, initials, firstname, lastname, dob, genderid,
address.streetno, address.streetname, address.postalcode,
address.postalcode, address.city, address.country, email, cellno, studentno,

 73

registered.faculty, registered.course, registered.subject.descr,
registered.subject.price, registered.subject.period, registered.registerdate,
grades.subject, grades.marks, grades.symbol FROM student LIMIT 1000;

MongoDB { aggregate: 'students', pipeline: [{ $unwind : {path: '$enroll.subject'}},{
$project : { _id: '$_id', title : '$title', id_number : '$id_number', init : '$init', name
: '$name', surname : '$surname', date_of_birth : '$date_of_birth',
gender_identity : '$gender_identity', a_street : '$address.street', a_code :
'$address.code', a_country : '$address.country', c_email_address :
'$contact.email_address', c_phone : '$contact.phone', student_no :
'$student_no', e_f_short_code : '$enroll.faculty.short_code', e_f_name :
'$enroll.faculty.name', e_c_short_code : '$enroll.course.short_code',
e_c_name : '$enroll.course.name', e_s_short_code :
'$enroll.subject.short_code', e_s_name : '$enroll.subject.name', e_s_price :
'$enroll.subject.price', e_s_duration : '$enroll.subject.duration',
e_enrollment_type : '$enroll.enrollment_type', e_enrollment_date :
'$enroll.enrollment_date'}},{$limit: 1000}],cursor: { }}

Neo4j MATCH (pupi:pupil) WITH pupi MATCH (city:city)<-[:LIVES_IN]-(pupi)-
[:CITIZEN_OF]->(coun:country) WITH pupi, city, coun MATCH
(cour:course)<-[:ENROLLED_IN]-(pupi)-[:TRANSCRIPT]->(prog:progress)
WITH pupi, city, coun, cour, prog MATCH (facu:faculty)<-[:OFFERED_IN]-
(cour)-[:CONTAINS]->(subj:subject) WITH pupi, city, coun, cour, prog, facu,
subj UNWIND apoc.convert.fromJsonList(prog.results) as res RETURN
pupi.title, pupi.idnum, pupi.alias, pupi.initial, pupi.name, pupi.surname,
pupi.dob, pupi.gender, city.description, coun.key, coun.description, pupi.email,
pupi.mobile, pupi.studentnum, facu.key, facu.description, cour.key,
cour.description, subj.key, subj.description, subj.cost, subj.term, res.subject,
res.score, res.grade LIMIT 1000

Table 5.18: Retrieve complete dataset - Apdex

Test # Frustrating Tolerating Satisfied Score
1 0 1 0 1

9 0 1 0 1

28 0 1 0 1

45 0 0 1 1

66 0 1 0 1

Table 5.19: Retrieve complete dataset - CPU & Memory

Test # CPU Usage (%) VM(bytes) PM (bytes)
1 0.000203434289649587 952733696 1123409920

9 0.000203428 915255296 1035886592

28 0.000203433 899678208 1028513792

45 0.000203432 333918208 543137792

66 0.00020343 318636032 537882624

Table 5.20: Retrieve complete dataset - Timers

Test # Parser (ms) Translator (ms) Executor (ms)
1 0.699863213951067 0.700318929559155 0.700819814463631

9 0.755861983683434 0.755857418805569 0.756049445527891

28 0.903427925815745 0.903326589142185 0.903797082009779

45 1.1823484317691 1.18316836282101 1.1821881298606

66 1.29285453476938 5.17086469565111 5.17208321450023

Table 5.21: Retrieve complete dataset - Error Rate

Test # Parser Translator Executor
1 - - -

9 - - -

28 - - -

45 - - -

66 - - -

 74

5.5.3. Retrieve dataset where a single filter was applied

In the next set of tests, participants were instructed to employ a single condition to when

querying data (Appendix L). Each native storage conceptually enforces these filters in a similar

way. A number of variations were used with the aim of assessing how well the native query

generators were able create executable queries. This relied heavily on the metamodel which

binds to the schema of each native models influencing how the filters are applied to the dataset.

Table 5.22: Retrieve dataset where a single filter was applied - Test Sample

Target Generated Query
Redis GET|67101803610

Cassandra SELECT title, idno, aka, initials, firstname, lastname, dob,
 genderid, address.streetno, address.streetname, address.postalcode,
 address.postalcode, address.city, address.country, email, cellno,
 studentno, registered.faculty, registered.course,
 registered.subject.descr, registered.subject.price,
 registered.subject.period, registered.registerdate
FROM student
WHERE idno = '67101803610'
ALLOW FILTERING;

MongoDB { aggregate: 'students', pipeline: [{ $match : { id_number : '67101803610' }},{
$unwind : {path: '$enroll.subject'}},{ $project : { _id: '$_id', title : '$title',
id_number : '$id_number', init : '$init', name : '$name', surname : '$surname',
date_of_birth : '$date_of_birth', gender_identity : '$gender_identity', a_street :
'$address.street', a_code : '$address.code', a_country : '$address.country',
c_email_address : '$contact.email_address', c_phone : '$contact.phone',
student_no : '$student_no', e_f_short_code : '$enroll.faculty.short_code',
e_f_name : '$enroll.faculty.name', e_c_short_code :
'$enroll.course.short_code', e_c_name : '$enroll.course.name',
e_s_short_code : '$enroll.subject.short_code', e_s_name :
'$enroll.subject.name', e_s_price : '$enroll.subject.price', e_s_duration :
'$enroll.subject.duration', e_enrollment_type : '$enroll.enrollment_type',
e_enrollment_date : '$enroll.enrollment_date'}}],cursor: { }}

Neo4j MATCH (pupi:pupil) WITH pupi MATCH (city:city)<-[:LIVES_IN]-(pupi)-
[:CITIZEN_OF]->(coun:country) WITH pupi, city, coun MATCH
(cour:course)<-[:ENROLLED_IN]-(pupi) MATCH (facu:faculty)<-
[:OFFERED_IN]-(cour)-[:CONTAINS]->(subj:subject) WITH pupi, city, coun,
cour, facu, subj WHERE pupi.idnum = "67101803610" RETURN pupi.title,
pupi.idnum, pupi.alias, pupi.initial, pupi.name, pupi.surname, pupi.dob,
pupi.gender, city.description, coun.key, coun.description, pupi.email,
pupi.mobile, pupi.studentnum, facu.key, facu.description, cour.key,
cour.description, subj.key, subj.description, subj.cost, subj.term

Table 5.23: Retrieve dataset where a single filter was applied - Apdex

Test # Frustrating Tolerating Satisfied Score
2 0 0 1 1

3 0 1 0 1

4 0 0 1 1

10 0 0 1 1

16 0 1 0 1

17 0 0 1 1

54 0 0 1 1

67 0 0 1 1

77 0 0 1 1

78 0 0 1 1

79 0 0 1 1

Table 5.24: Retrieve dataset where a single filter was applied - CPU & Memory

Test # CPU Usage (%) VM(Bytes) PM (Bytes)
2 0.000203433 919515136 1057464320

3 0.000203433 919449600 1056145408

 75

4 0.000203432 915386368 1037086720

10 0.000203434 900005888 988917760

16 0.000203434 899940352 988184576

17 0.000203434 899940352 1028591616

54 0.000203431 319094784 538710016

67 0.00020343 317063168 741629952

77 0.000203429 578879488 762114048

78 0.000203429 577306624 728104960

79 0.000203429 577306624 757444608

Table 5.25: Retrieve dataset where a single filter was applied - Timers

Test # Parser (ms) Translator (ms) Executor (ms)
2 0.725417023 0.725685535 0.725770987

3 0.729511974 0.729449715 0.729496134

4 0.750931779 0.750869246 0.750914423

10 0.818308132 0.818226444 0.818415541

16 0.848941559 0.848853868 0.848928108

17 0.88948269 0.889388597 0.889467468

54 1.241112071 1.240922368 1.241158599

67 1.365838095 5.46250671 5.463745806

77 1.629576833 6.517032522 6.518756728

78 1.70707669 6.826893089 6.82893176

79 1.803357054 7.211848996 7.214023897

Table 5.26: Retrieve dataset where a single filter was applied - Error Rate

Test # Parser Translator Executor
2 - - -

3 - - -

4 - - -

10 - - -

16 - - -

17 - - -

54 - - -

67 - - -

77 - - 1

78 - - 1

79 - - 1

5.5.4. Retrieve dataset where a multiples filters were applied

Participants in this part of the experiment extended test scenarios in section 5.5.2 by applying

more than one filter to the to the query intent (Appendix M). The aimed was to reveal how the

prototype was able to restrict the dataset when more than one condition were imposed on

queries by participants.

Table 5.27: Retrieve dataset where a multiples filters were applied - Test Sample

Target Generated Query
Redis GET|67101803610

Cassandra SELECT title, idno, aka, initials, firstname, lastname, dob, genderid,
address.streetno, address.streetname, address.postalcode,
address.postalcode, address.city, address.country, email, cellno, studentno,
registered.faculty, registered.course, registered.subject.descr,
registered.subject.price, registered.subject.period, registered.registerdate
FROM student WHERE genderid IN ('F', AND idno IN ('67101803610');

MongoDB { aggregate: 'students', pipeline: [{ $match : { id_number : '67101803610',
gender_identity : 'F' }},{ $unwind : {path: '$enroll.subject'}},{ $project : { _id:
'$_id', title : '$title', id_number : '$id_number', init : '$init', name : '$name',
surname : '$surname', date_of_birth : '$date_of_birth', gender_identity :
'$gender_identity', a_street : '$address.street', a_code : '$address.code',
a_country : '$address.country', c_email_address : '$contact.email_address',

 76

c_phone : '$contact.phone', student_no : '$student_no', e_f_short_code :
'$enroll.faculty.short_code', e_f_name : '$enroll.faculty.name',
e_c_short_code : '$enroll.course.short_code', e_c_name :
'$enroll.course.name', e_s_short_code : '$enroll.subject.short_code',
e_s_name : '$enroll.subject.name', e_s_price : '$enroll.subject.price',
e_s_duration : '$enroll.subject.duration', e_enrollment_type :
'$enroll.enrollment_type', e_enrollment_date :
'$enroll.enrollment_date'}}],cursor: { }}

Neo4j MATCH (pupi:pupil) WITH pupi MATCH (city:city)<-[:LIVES_IN]-(pupi)-
[:CITIZEN_OF]->(coun:country) WITH pupi, city, coun MATCH
(cour:course)<-[:ENROLLED_IN]-(pupi) MATCH (facu:faculty)<-
[:OFFERED_IN]-(cour)-[:CONTAINS]->(subj:subject) WITH pupi, city, coun,
cour, facu, subj WHERE pupi.idnum = "67101803610" AND pupi.gender =
"F" RETURN pupi.title, pupi.idnum, pupi.alias, pupi.initial, pupi.name,
pupi.surname, pupi.dob, pupi.gender, city.description, coun.key,
coun.description, pupi.email, pupi.mobile, pupi.studentnum, facu.key,
facu.description, cour.key, cour.description, subj.key, subj.description,
subj.cost, subj.term

Table 5.28: Retrieve dataset where a multiples filters were applied - Apdex

Test # Frustrating Tolerating Satisfied Score
11 0 0 1 1

12 0 0 1 1

15 0 0 1 1

29 0 0 1 1

30 0 0 1 1

55 0 0 1 1

56 0 0 1 1

68 0 0 1 1

69 0 1 0 1

70 0 0 1 1

80 1 0 0 0

81 1 0 0 0

Table 5.29: Retrieve dataset where a multiples filters were applied - CPU & Memory

Test # CPU Usage (%) VM(Bytes) PM (Bytes)
11 0.000203434 900005888 988688384

12 0.000203434 900005888 988655616

15 0.000203434 899940352 988184576

29 0.000203433 615460864 744546304

30 0.000203433 615329792 744284160

55 0.000203431 319094784 538652672

56 0.000203431 319029248 538607616

68 0.00020343 310771712 741445632

69 0.00020343 310771712 741896192

70 0.00020343 579207168 762544128

80 0.000203429 575733760 758886400

81 0.000203429 307298304 494813184

Table 5.30: Retrieve dataset where a multiples filters were applied - Timers

Test # Parser (ms) Translator (ms) Executor (ms)
11 0.823237238 0.823164432 0.823238242

12 0.82833822 0.828254384 0.828317399

15 0.843936171 0.843850231 0.843918157

29 0.997038414 0.996928902 0.997432128

30 1.004696105 1.004579686 1.00473217

55 1.243998395 1.243804839 1.243922862

56 1.246823517 1.246629105 1.246742022

68 1.384250142 5.53613422 5.537546084

69 1.403454922 5.61293171 5.614385662

70 1.537482434 6.148871197 6.150464124

80 1.908067914 7.630522787 7.632712962

 77

81 2.852472965 11.40603636 11.41123184

Table 5.31: Retrieve dataset where a multiples filters were applied - Error Rate

Test # Parser Translator Executor
11 - - 1

12 - - 1

15 - - 1

29 - - -

30 - - -

55 - - -

56 - - -

68 - - 1

69 - - 1

70 - - 1

80 - - 1

81 - - 1

5.5.5. Apply a limit to the dataset retrieval process

Restrictions were stated in the unified query platform; which is support by each targeted storage

model except Redis. Participants specified the data limits ensuring the data returned reflect the

amount of records requested to be returned (Appendix N). The purpose of these tests was to

enable participants to control the number of data being returned.

Table 5.32: Apply a limit to the dataset retrieval process - Test Sample

Target Generated Query
Redis -

Cassandra SELECT title, idno, aka, initials, firstname, lastname, dob, genderid,
address.streetno, address.streetname, address.postalcode,
address.postalcode, address.city, address.country, email, cellno, studentno,
registered.faculty, registered.course, registered.subject.descr,
registered.subject.price, registered.subject.period, registered.registerdate,
grades.subject, grades.marks, grades.symbol FROM student LIMIT 10;

MongoDB { aggregate: 'students', pipeline: [{ $unwind : {path: '$enroll.subject'}},{
$project : { _id: '$_id', title : '$title', id_number : '$id_number', init : '$init',
name : '$name', surname : '$surname', date_of_birth : '$date_of_birth',
gender_identity : '$gender_identity', a_street : '$address.street', a_code :
'$address.code', a_country : '$address.country', c_email_address :
'$contact.email_address', c_phone : '$contact.phone', student_no :
'$student_no', e_f_short_code : '$enroll.faculty.short_code', e_f_name :
'$enroll.faculty.name', e_c_short_code : '$enroll.course.short_code',
e_c_name : '$enroll.course.name', e_s_short_code :
'$enroll.subject.short_code', e_s_name : '$enroll.subject.name', e_s_price :
'$enroll.subject.price', e_s_duration : '$enroll.subject.duration',
e_enrollment_type : '$enroll.enrollment_type', e_enrollment_date :
'$enroll.enrollment_date'}},{$limit: 10}],cursor: { }}

Neo4j MATCH (pupi:pupil) WITH pupi RETURN pupi.title, pupi.idnum, pupi.alias,
pupi.initial, pupi.name, pupi.surname, pupi.dob, pupi.gender, pupi.email,
pupi.mobile LIMIT 100

Table 5.33: Apply a limit to the dataset retrieval process - Apdex

Test # Frustrating Tolerating Satisfied Score
13 0 0 1 1

31 0 0 1 1

46 0 0 1 1

47 0 0 1 1

48 0 0 1 1

49 0 0 1 1

50 0 0 1 1

51 0 0 1 1

52 0 0 1 1

 78

53 0 0 1 1

Table 5.34: Apply a limit to the dataset retrieval process - CPU & Memory

Test # CPU Usage (%) VM(Bytes) PM (Bytes)
13 0.000203434 988651520 900005888

31 0.000203433 745390080 615329792

46 0.000203432 538890240 320733184

47 0.000203431 538886144 320733184

48 0.000203431 538824704 319160320

49 0.000203431 538779648 319160320

50 0.000203431 538779648 319160320

51 0.000203431 538779648 319160320

52 0.000203431 538779648 319160320

53 0.000203431 538759168 319094784

Table 5.35: Apply a limit to the dataset retrieval process - Timers

Test # Parser (ms) Translator (ms) Executor (ms)
13 0.833045067 0.832973656 0.833040369

31 1.011702719 1.011577607 1.011679184

46 1.199600382 1.199428542 1.19956104

47 1.208681877 1.208504997 1.208635624

48 1.21618074 1.216000246 1.216131979

49 1.223323951 1.223139826 1.223272824

50 1.229190657 1.229004693 1.229139689

51 1.232823066 1.232639427 1.232766074

52 1.235600599 1.235406371 1.23552967

53 1.238518221 1.238326487 1.238451466

Table 5.36: Apply a limit to the dataset retrieval process - Error Rate

Test # Parser Translator Executor
13 - - -

31 - - -

46 - - -

47 - - -

48 - - -

49 - - -

50 - - -

51 - - -

52 - - -

53 - - -

5.5.6. Apply sorting to the dataset retrieval process

In this simulation group, the participants specified that one or more fields on the dataset to be

sorted (Appendix O). The query parser component enabled participant, not only to specify the

sort field but also the sorting direction.

Table 5.37: Apply sorting to the dataset retrieval process - Test Sample

Target Generated Query
Redis GET|67101803610

Cassandra SELECT title, idno, aka, initials, firstname, lastname, dob, genderid,
address.streetno, address.streetname, address.postalcode,
address.postalcode, address.city, address.country, email, cellno, studentno,
registered.faculty, registered.course, registered.subject.descr,
registered.subject.price, registered.subject.period, registered.registerdate
FROM student WHERE genderid IN ('M') AND idno IN ('67101803610', AND
studentno IN ('979883209') ORDER BY lastname ASC , idno ASC ;

MongoDB { aggregate: 'students', pipeline: [{ $match : { $or : [{ id_number :
'67101803610' }, { gender_identity : 'M' }], student_no : '979883209' }},{

 79

$unwind : {path: '$enroll.subject'}},{ $project : { _id: '$_id', title : '$title',
id_number : '$id_number', init : '$init', name : '$name', surname : '$surname',
date_of_birth : '$date_of_birth', gender_identity : '$gender_identity', a_street :
'$address.street', a_code : '$address.code', a_country : '$address.country',
c_email_address : '$contact.email_address', c_phone : '$contact.phone',
student_no : '$student_no', e_f_short_code : '$enroll.faculty.short_code',
e_f_name : '$enroll.faculty.name', e_c_short_code :
'$enroll.course.short_code', e_c_name : '$enroll.course.name',
e_s_short_code : '$enroll.subject.short_code', e_s_name :
'$enroll.subject.name', e_s_price : '$enroll.subject.price', e_s_duration :
'$enroll.subject.duration', e_enrollment_type : '$enroll.enrollment_type',
e_enrollment_date : '$enroll.enrollment_date'}},{$sort: {surname : 1 ,
id_number : 1 }}],cursor: { }}

Neo4j MATCH (pupi:pupil) WITH pupi MATCH (city:city)<-[:LIVES_IN]-(pupi)-
[:CITIZEN_OF]->(coun:country) WITH pupi, city, coun MATCH
(cour:course)<-[:ENROLLED_IN]-(pupi) MATCH (facu:faculty)<-
[:OFFERED_IN]-(cour)-[:CONTAINS]->(subj:subject) WITH pupi, city, coun,
cour, facu, subj WHERE pupi.idnum = "67101803610" OR pupi.gender = "M"
AND pupi.studentnum = "979883209" RETURN pupi.title, pupi.idnum,
pupi.alias, pupi.initial, pupi.name, pupi.surname, pupi.dob, pupi.gender,
city.description, coun.key, coun.description, pupi.email, pupi.mobile,
pupi.studentnum, facu.key, facu.description, cour.key, cour.description,
subj.key, subj.description, subj.cost, subj.term ORDER BY pupi.surname
ASC, pupi.idnum ASC

Table 5.38: Apply sorting to the dataset retrieval process - Apdex

Test # Frustrating Tolerating Satisfied Score
14 0 0 1 1

32 0 1 0 1

33 0 0 1 1

34 0 0 1 1

35 0 0 1 1

36 0 0 1 1

57 0 0 1 1

71 0 0 1 1

Table 5.39: Apply sorting to the dataset retrieval process - CPU & Memory

Test # CPU Usage (%) VM(Bytes) PM (Bytes)
14 0.000203434 900005888 988622848

32 0.000203433 615329792 745381888

33 0.000203432 332476416 543109120

34 0.000203432 332476416 543096832

35 0.000203432 332476416 544456704

36 0.000203432 334049280 544477184

57 0.000203431 318767104 539201536

71 0.00020343 579207168 762544128

Table 5.40: Apply sorting to the dataset retrieval process - Timers

Test # Parser (ms) Translator (ms) Executor (ms)
14 0.838279989 0.838233091 0.838366485

32 1.019247682 1.019120228 1.019263099

33 1.135520321 1.135370823 1.135494587

34 1.145365865 1.145243427 1.145369575

35 1.155385082 1.155229619 1.155394427

36 1.166003315 1.165874238 1.166003396

57 1.250216694 1.250023287 1.250215787

71 1.563632595 6.253444736 6.255122

Table 5.41: Apply sorting to the dataset retrieval process - Error Rate

Test # Parser Translator Executor

 80

14 - - 1

32 - - -

33 - - -

34 - - -

35 - - -

36 - - -

57 - - -

71 - - 1

5.5.7. Aggregation on a datasets

Participants commanded the unified queries to perform various aggregated functions on the

existing datasets (Appendix P). The aggregation could be only specified as part of the Fetch

clause properties on a set of values. The intent is to condense a set of values into a single

calculated value. Participants only used these functions in the following circumstances:

• NCOUNT - when counting the number of rows on a field.

• NSUM - adding the numerical values of a specified field together.

• NMIN - retrieving the lowest value in the set of values on a particular field.

• NMAX - retrieving the highest value in the set of values on a particular field.

• NAVG - calculating the average values based in set of values returned.

Table 5.42: Aggregation on a datasets - Test Sample

Target Generated Query
Redis GET|21708702176

Cassandra SELECT idno, initials, firstname, lastname, SUM(grades.marks) as
g_marks FROM student WHERE idno = '21708702176' ALLOW
FILTERING;

MongoDB { aggregate: 'students', pipeline: [{ $match : { id_number :
'58602700606' }},{ $unwind : {path: '$enroll.subject'}},{ $project : { _id:
'$_id', id_number : '$id_number', init : '$init', name : '$name', surname :
'$surname', subject : '$enroll.subject'}},{ $group : { _id: '$_id',
id_number : { '$first' : '$id_number'}, init : { '$first' : '$init'}, name : {
'$first' : '$name'}, surname : { '$first' : '$surname'}, s_price: { $sum:
'$subject.price'}}}],cursor: { }}

Neo4j MATCH (pupi:pupil) WITH pupi MATCH (prog:progress)<-
[:TRANSCRIPT]-(pupi) UNWIND apoc.convert.fromJsonList(
prog.results) as res WITH pupi, res WHERE pupi.idnum =
"21708702176" RETURN pupi.idnum, pupi.initial, pupi.name,
pupi.surname, SUM(res.score) as score

Table 5.43: Aggregation on a datasets - Apdex

Test # Frustrating Tolerating Satisfied Score
18 0 0 1 1

19 0 0 1 1

20 0 0 1 1

21 0 0 1 1

22 0 0 1 1

37 0 0 1 1

38 0 0 1 1

39 0 0 1 1

40 0 0 1 1

41 0 0 1 1

58 0 0 1 1

59 0 0 1 1

60 0 0 1 1

61 0 0 1 1

62 0 0 1 1

72 0 0 1 1

73 0 0 1 1

 81

74 0 0 1 1

75 0 0 1 1

76 0 0 1 1

Table 5.44: Aggregation on a datasets - CPU & Memory

Test # CPU Usage (%) VM(Bytes) PM (Bytes)
18 0.000203434 899940352 1029087232

19 0.000203434 899874816 1028747264

20 0.000203433 899874816 1028747264

21 0.000203433 899809280 1028706304

22 0.000203433 899743744 1028657152

37 0.000203432 335622144 544497664

38 0.000203432 335622144 543531008

39 0.000203432 335622144 543490048

40 0.000203432 335556608 543469568

41 0.000203432 335556608 543444992

58 0.000203431 318767104 539164672

59 0.000203431 318767104 538882048

60 0.00020343 318767104 538247168

61 0.00020343 318767104 538206208

62 0.00020343 318767104 538157056

72 0.00020343 579207168 762507264

73 0.00020343 579207168 762433536

74 0.000203429 579207168 762380288

75 0.000203429 579207168 762363904

76 0.000203429 579207168 762241024

Table 5.45: Aggregation on a datasets - Timers

Test # Parser (ms) Translator (ms) Executor (ms)
18 0.893656921 0.89359346 0.893795558

19 0.894454023 0.894366719 0.894433827

20 0.894983046 0.894876652 0.894943118

21 0.895515273 0.895409303 0.895476333

22 0.89604188 0.895936584 0.896002538

37 1.16716482 1.166990141 1.167314267

38 1.168287499 1.168111197 1.168260032

39 1.169303526 1.169127095 1.169273718

40 1.170235607 1.170059616 1.170168914

41 1.171168191 1.170995799 1.171110667

58 1.252296723 1.25209541 1.252275625

59 1.257363089 1.257163027 1.257299425

60 1.263207194 1.263006052 1.263112447

61 1.268023555 1.267819842 1.267934575

62 1.273273995 1.273067771 1.273174284

72 1.578624909 6.313261195 6.314792484

73 1.588028804 6.350857337 6.352112004

74 1.597840904 6.390106377 6.391008124

75 1.607189223 6.427486486 6.42915054

76 1.618573017 6.473022826 6.474262152

Table 5.46: Aggregation on a datasets - Error Rate

Test # Parser Translator Executor
18 - - -

19 - - -

20 - - -

21 - - -

22 - - -

37 - - -

38 - - -

39 - - -

40 - - -

 82

41 - - -

58 - - -

59 - - -

60 - - -

61 - - -

62 - - -

72 - - -

73 - - -

74 - - -

75 - - -

76 - - -

5.5.8. Update existing dataset

The test sample below, Table 5.47, shows how the differentiating NoSQL code generators

produced modification statements for underlying storage models. Participants performed these

tests on a subset of data within each NoSQL store guided by the base data used in the data

load process, section 5.4.3 (Appendix Q). The purpose of this test was to update on one or more

fields. Furthermore, the conditional statements set in the unified query played in important role

in determining whether are not the generated native queries would be accepted or not.

Table 5.47: Update existing dataset - Test Sample

Target Generated Query
Redis GET|34502402028||;SET|34502402028||%gender=M

Cassandra MODIFY { student }
PROPERTIES { name = 'Test 1', surname = 'Test 2', initial = 'TT'}
FILTER_ON { identifier = '5' }
TARGET { cassandra }

MongoDB { update: 'students',updates: [{q:{ id_number : '83604407222' }, u:
{$set: {name : 'Jane', surname : 'Doe', init : 'JD'}}}]}

Neo4j MATCH (pupi:pupil) WITH pupi WHERE pupi.idnum = "83604407222"
SET pupi.name= "Jane", pupi.surname= "Doe", pupi.initial= "JD"

Table 5.48: Update existing dataset - Apdex

Test # Frustrating Tolerating Satisfied Score
5 0 0 1 1

6 0 0 1 1

23 0 0 1 1

24 0 0 1 1

25 0 0 1 1

42 0 0 1 1

43 0 0 1 1

63 0 0 1 1

64 0 0 1 1

82 0 0 1 1

83 0 0 1 1

84 0 0 1 1

85 0 0 1 1

Table 5.49: Update existing dataset - CPU & Memory

Test # CPU Usage (%) VM(Bytes) PM (Bytes)
5 0.000203431 915386368 1037041664

6 0.000203431 915320832 1036414976

23 0.000203433 899743744 1028595712

24 0.000203433 899743744 1028579328

25 0.000203433 899743744 1028575232

42 0.000203432 335491072 543395840

43 0.000203432 335491072 543285248

63 0.00020343 318701568 538128384

 83

64 0.00020343 318636032 538058752

82 0.000203429 65536 37429248

83 0.000203429 65536 37421056

84 0.000203429 65536 36290560

85 0.000203429 65536 32768

Table 5.50: Update existing dataset - Timers

Test # Parser (ms) Translator (ms) Executor (ms)
5 0.751188216 0.751151683 0.751209113

6 0.751793928 0.751722453 0.751760518

23 0.896530068 0.896423185 0.896520147

24 0.896834127 0.896727531 0.896826733

25 0.89728965 0.897181775 0.897271576

42 1.171949394 1.171773513 1.171921426

43 1.17268572 1.172510024 1.172613813

63 1.278380189 1.278172 1.278383654

64 1.279771416 1.279565 1.279667931

82 5.699773656 22.78313456 22.79966534

83 5.758787651 23.01965019 23.0454284

84 5.905735194 23.60591669 23.63827692

85 - - -

Table 5.51: Update existing dataset - Error Rate

Test # Parser Translator Executor
5 - - -

6 - - -

23 - - -

24 - - 1

25 - - 1

42 - - -

43 - - -

63 - - -

64 - - -

82 - - 1

83 - - 1

84 - - -

85 1 - -

5.5.9. Data inserts

Participants were provided conditional instructions to added new data to the existing storage

models (Appendix R). These instructions were:

• Insert data referencing one or more non-indexed fields which included the primary key.

• Insert data referencing one or more indexed fields with the primary key

• Insert data referencing one or more fields (indexed and non-indexed) without the

primary key.

Table 5.52: Data inserts - Test Sample

Target Generated Query
Redis GET|34502402028||;SET|34502402028||%gender=M

Cassandra INSERT INTO student(id, idno, title, firstname, lastname, studentno)
VALUES ('323323995', '876765564431', 'Miss', 'Lauren', 'Cole',
'7149222') ;

MongoDB { insert: 'students',documents: [{id_number : '6062390', title : 'Miss',
name : 'Lauren', surname : 'Cole', student_no : '53012'}]}

Neo4j CREATE (pupi:pupil { idnum : "8078891", title : "Miss", name :
"Lauren", surname : "Cole" })

 84

Table 5.53: Data inserts - Apdex

Test # Frustrating Tolerating Satisfied Score
7 0 0 1 1

8 0 0 1 1

26 0 0 1 1

27 0 0 1 1

44 0 0 1 1

65 0 0 1 1

86 0 0 1 1

Table 5.54: Data inserts - CPU & Memory

Test # CPU Usage (%) VM(Bytes) PM (Bytes)
7 0.00020343 915255296 1036345344

8 0.000203429 915255296 1036210176

26 0.000203433 899743744 1028571136

27 0.000203433 899743744 1028530176

44 0.000203432 335491072 543285248

65 0.00020343 318636032 538034176

86 0.000203429 65536 28672

Table 5.55: Data inserts - Timers

Test # Parser (ms) Translator (ms) Executor (ms)
7 0.752062291 0.752000786 0.752043709

8 0.752182168 0.752111545 -

26 0.897776388 0.897670266 0.897763045

27 0.898043596 0.897937356 0.898008268

44 1.173134963 1.172958539 1.173086296

65 1.28123429 1.281026048 1.281167449

86 - - -

Table 5.56: Data inserts - Error Rate

Test # Parser Translator Executor
7 - - -

8 - - 1

26 - - -

27 - - 1

44 - - -

65 - - -

86 1 - -

5.6 Summary

This chapter provides the reader a detailed description of the experimental activities undertaken

to assess the efficiency and effectiveness of the unified query platform. The experimental

endeavour was informed by guideline 5 (section 3.4.5) of the DSR strategy. The chapter starts

by providing the reader an overview of the experiment, identifying the participants and the

procedures utilised to evaluate the prototype within the controlled test environment.

The researcher discussed how the participants executed varying test scenarios subjected to

different conditions. Fundamentally, the test scenarios covered the three commands used

throughout the experiments, namely: Fetch, Modify and Add. The automated tests ranged in the

instance of Fetch commands ranged from simple to more complex queries that required more

system resources. The purpose of the experiment articulated and the results documented aimed

 85

to provide key insights on the inner workings of the prototype which is covered in the next

chapter.

 86

CHAPTER SIX : FINDINGS AND DISCUSSIONS

6.1 Introduction

In this chapter the researcher presents the results of the experiment conducted on the prototype

as stated in chapter 5. This study commenced by identifying the research problem for unified

query platforms. Subsequently, the researcher set the aim of the endeavour defining actionable

objectives which essentially served as the motivation for the prototype development. The

research questions posed in the study was the driving force to seek answers when developing

unified query platforms using a polyglot persistent approach. Moreover, this chapter aims to

provide a clear and concise summation of the what was discovered as well as the implications

and significance of the research findings.

6.2 Research Questions

The research outputs produced by the prototype and the systematic literature review conducted

in chapter 2 answers the primary research questions inquired in section 1.5. as shown in Table

6.1. In chapter 2, the reader’s focus was drawn to research questions RQ1 and RQ2, to provide

context and the necessary design and architectural principles when developing a unified query

platform. The chapter starts with the theoretical aspects to the essential components required

to develop such a system. Chapter 4 proceeds to demonstrate how sub question, RQ3, was

addressed. Essentially building the prototype based on the fundamental learnings gathered in

systematic literature review while making inferences to realise the solution (Vaishnavi, Kuechler

& Petter, 2019). The entire process was guided by the DSR process models adhering to the

guidelines discussed in Chapter 3 – specifically guidelines 3 and 4 (section 3.4.3 and section

3.4.4).

Table 6.1: Primary Research Questions

Research Question
1 How can a unified query platform be developed for the four primary categories of

NoSQL databases using polyglot persistent technique?

Seeking answers to the these questions informed the primary research question as each of the

RQ’s was align to specific objectives. Chapter 5, motivated by RQ 4, proceeded to evaluated

the utility of the prototype construct addressing how well the prototype implemented the

foundations, design and architectural principles of the unified query platform. The objectives

associated with the sub research questions was to determine a set of guidelines; making

informed design and architectural choices when creating an unified query platform. Data

collected from the literature review process interrogated published articles, journals and

conference papers where these types of systems were constructed using a polyglot approach

commonly known as middleware. Several papers discussed the varying methods applied in

building a unified query platform (Koutroumanis et al., 2021; Zhang et al., 2021; Ramadhan et

al., 2020). A common thread was determined whereby this study summarized the findings. While

authors of these papers may have different terminology in certain instances, the respective

fundamental concepts are the same.

 87

Once the essential guidelines for a unified query platform was determined, the researcher

address the second research question to determine which design and architectural principles

should apply in the construction process of the prototype. Before embarking on the actually

system inner workings of a unified query platform, careful planning was carried out to evaluate

the data landscape which the creator wanted to abstract (Kolonko & Müllenbach, 2020). De

facto design and architectural principles for unified queries directed the development process

(see section 2.6). Therefore it was important to determine which widely accepted industry

practices should apply to these systems.

RQ3 addressed the degree at which an abstract query can be translated into native queries.

While the research outputs discovered during the systematic literature informed the construction

phase of the prototype, insights were attained during the simulated tests conducted on the

prototype by the automated participants. The influencing factors affecting the capabilities of the

prototype invariably depended on the complexity of the unified query; the underlying native

storage models the supported features for each of the target databases (Cox et al. 2020;

Ramadhan et al., 2020).

6.3 Results of the Prototype Evaluation

The next section discusses the results obtained from the automates test simulations. The

researcher imposed a number of varying tests on the prototype to determine the

implementations efficiency and effectiveness. The participant groups (PG) were tasked to

execute pre-determined queries encapsulating a full spectrum of scenarios. Participants were

able to choose which storage models to target. This was determine how well each aspect of the

unified query performed individually as well as a collective (see Appendix J through to R).

6.3.1. Syntax and Sematic Validations

To establish the initial boundaries of unified query, participants in this test group were

intentionally assign queries that were expected fail. These queries were either not syntactically

correct or the order of the query elements where specified incorrectly. In some cases the

participants specified data fields that was not supported by the unified data model. In each of

the cases, except for test case 89, the prototype correctly produced an error stating that “Syntax

error occurred”. However, even though the context of the error message given to the user, it

does not hone in on the exact cause of the error. Test case 89 provides a more perceptive

message stating exactly what was wrong with the query by stating “Invalid fields specified:

newproperty1,newproperty2”.

Figure. 6.1: PG 1 - Errors

 88

Based on the metrics produced, the queries adheres to consuming the minimum possible

amount resources in the call stack which resulted in an optimal execution path. This is also

reflected in the Apdex scores as each one indicated that the result produced was given in the

acceptable timeframe.

Figure. 6.2: PG 1 - Apdex Scores

Figure. 6.3: PG 1 - Memory Allocations Figure. 6.4: PG 1 - CPU Processing Time

Figure. 6.5: PG 1 - Parser Failures

These tests were expected to fail upfront as shown in Figure 6.5, hence the prototype did not

perform any translations or executions. The research observed that the error was documented

by the execution metric instead of the parser metric (except test case 89). This is due to the fact

that error threw an exception which was handled by the parser and delegated back to the calling

 89

method hiding the actual parser error. This was not the expected behaviour from a logging

standpoint as this error should have been logged by the parser.

6.3.2. Retrieve complete dataset

The goal for this test group was to determine if all the full results was returned when a participant

request the all fields supported in the unified data model. As shown in Appendix E, not all native

fields were mapped to the unified model since some of the properties were not present in the

native storage schemas. Thus, the researcher expected that certain fields would not be mapped

to the value of the unified data model. The prototype enabled the supported storage options to

be specified interchangeably, providing participants the flexibility to target native databases they

wanted to interrogate.

The participants started off by targeting only one of the supported NoSQL databases to

determine how well the results returned are mapped for each storage option. The researcher

observed all the native fields in Redis and Cassadra, were able to successful bind to unified

results model. In the case of MongoDB, the “postalcode” field was not able to bind and was

unable to map the country “name” field in the case of the Neo4j. While the results in both

scenarios were successfully retrieved and available, a bug in the code prevented these values

to be presented to the participants. The particular bug was not localized to these tests only but

rather to all simulations where these fields were specified in the “Fetch” intent. The prototype

failed to detect and report this issue in the reporting metrics.

Figure. 6.6: PG 2 - Apdex Scores

The Apdex indicated that the execution path of the unified query was deemed acceptable and

provided the result in an acceptable timeframe (Figure 6.6). It should be noted that most for the

test scenarios were classified as tolerable. Test case 45, which targeted the Neo4j database,

was the only scenario whereby the reporting metrics classified the unified query to be satisfied.

However this was due a row restriction placed on the query as preliminary checks discovered

that retrieving a large amount of connected nodes degraded performance drastically as

observed by Cox et al. (2020).

 90

 Figure. 6.7: PG 2 - Memory Allocations Figure. 6.8: PG 2 - CPU Processing Time

Figure. 6.9: PG 2 - Parser, Translator and Executor Times

The test scenarios produced no errors as expected by the researcher other than the mapping

errors previously mentioned. The researcher observed that while Redis target generally

outperformed its counterparts in terms of speed, it was allocated more memory and held onto

the CPU longer since that storage model is not able to compress data as well as the other target

stores, i.e. Redis has more individual records (Figure 6.7 and 6.8). Over a Gigabyte was

allocated to the process indicating perhaps a need to hash the values to reduce the its footprint.

Neo4j, although within the acceptable Apdex range, it took much longer when compared to the

other target stores to produce a result. Due to its intrinsic complex nature, connecting entities

or nodes to one other via vertices and edges, the prototype required a more complex algorithm

to translate the unified query to the corresponding native query, as shown in Figure 6.9. Even

though, it took longer to produce a result, the CPU and memory footprint within the prototype

was relatively low as most of the work was delegated to the database. The Cassandra and

MongoDB targets did not show a significant variation in performance to the forementioned stores

and produced results reliably and efficiently.

6.3.3. Retrieve dataset where a single filter was applied

Filtering plays an important role in large datasets. Participants added a single filter to the “Fetch”

intent to determined how well each of the targeted storage translators are able to successfully

generate the respective native queries and how well the data matched the intent. Once the filters

were applied, the results from simulations highlighted quite a few inconsistencies, Figure 6.10.

 91

The general efficiency of the prototype demonstrated that the overall performance was

acceptable, Figure 6.11. However, a number of use cases produced the incorrect outputs.

Figure. 6.10: PG 3 - Errors

Figure. 6.11: PG 3 - Apdex Scores

Test case 3 demonstrated that if the filter is not applied on the Redis key, the full result set

returned. Figure 6.11 and 6.12 respective shows that Redis consumed more resources as a

result of these cases. Test cases 77, 78 and 79 produced partially correct results. In all three

instances the native query’s generator for Cassandra was not able to executed successfully.

This is due to system constraints imposed on the Cassandra database management system.

The reason the generated query produced errors was due to the prototype not following the

search index principles Cassandra enforces. The researcher assert’s that the prototype should

prevent a query from being generated if the search indexes are not present in the unified query.

Based on the empirical data, this participant group demonstrated that the feature mismatches

either results in the misuse of the machines resources or invalid output are generated.

Figure. 6.12: PG 3 - CPU Processing Time Figure. 6.13: PG 3 - Memory Allocations

 92

Figure. 6.14: PG 3 - Parser, Translator and Executor Times

6.3.4. Retrieve dataset where a multiples filters were applied

The simulated tests conducted by participants in this group compounded the errors and

inaccuracies observed in section 6.3.3, resulting in more errors being generated by the

prototype shown 6.15. In these scenarios the “AND\OR” operators were utilised to control the

result set to very specific data points. The failed tests were localised to specific native storage

systems as the prototype created native queries that was not assimilated to rules governing the

these storage option.

Figure. 6.15: PG 4 - Multiple Filter Errors

The first notable observation relates to how individual native queries; once an “OR” operator

was applied to the search filter, the Apdex score was negatively affected; depending on the

ontology and the relations within the data resulted in performance degradation. This is

highlighted in Figure 6.16 where test case 69, 80 and 81 experienced a performance

degradation.

 93

Figure. 6.16: PG 4 - Apdex Scores

Based on the error rate, the prototype generated the native queries which consistently failed to

executed on the specific storage mechanisms. For the Redis executable queries, the prototype

determined if one of the filters was configured as key index. If so, it applied the filter on the

recognised index and ignored any other filters.

 Figure. 6.17: PG 4 - CPU Processing Time Figure. 6.18: PG 4 - Memory Allocations

Figure. 6.19: PG 4 - Parser, Translator and Executor Times

In Cassandra, the “OR” operator is not supported. Furthermore, the prototype is unable to

generate a well-formed query for Cassandra if the search filter is applied to multiple fields

producing an error, irrespective if the “OR” or “AND” operator was used. MongoDB and Neo4j

that consistently produced results correctly and without errors. Although, a number errors were

reported, the prototype as minimum expectation correctly released the resources resulting in

lower memory and CPU footprint.

6.3.5. Apply a limit to the dataset retrieval process

The next test cases dealt with data restrictions enforced by the participants. The Redis target

was intentionally ignored as it does not support this feature. The other storage targets were able

to restrict the rows based on the specified unified query without errors. The performance was

satisfactory, producing effective results in a timely manner, highlighting no errors.

 94

 Figure. 6.20: PG 5 – Apex Scores Figure. 6.21: PG 5 - Processing Times

Figure. 6.22: PG 5 - CPU Processing Times Figure. 6.23: PG - Memory Allocations

6.3.6. Apply sorting to the dataset retrieval process

Participants were tasked to arrange data in an expressive way. The prototype provided a sorting

mechanism which enabled participants to examine data in a meaningful way. The overall

performance of the automated tests operated within the bounds of the expected outputs.

Figure. 6.24: PG 6 - Apdex Scores

Test case 32 was the only test that performed tolerable due to the volume of data that required

sorting, as shown in Figure 6.24. While participants were not specifically tasked to perform

search initiatives on the data, the idea was to determine how well different features co-operate.

This resulted in errors as discussed in section 6.3.3 and section 6.3.4.

 95

Figure. 6.25: PG 6 - Errors

Test case 14 outright failed whereas test case 71 resulted in a partial failure. In the instance of

test case 71, the prototype was able sort the fields for the other specified target storage models

to match the participants intent. The prototypes inability to successfully generate a well-defined

Cassandra query with filters was the primary reason for the partial failure.

 Figure. 6.26: PG 6 - CPU Processing Times Figure. 6.27: PG 6 - Memory Allocations

Test case 71 included the Redis storage option as a target in the unified query; however the

intent of the query does not match the result. This caused the memory allocations to spike as

the prototype performed additional tasks it was not expected to perform, Figure 6.27. This

impact was not significant in this case as the Apdex was still within the acceptable bounds. It

should be noted that the prototype does not explicitly cater for Redis sorting as it is not supported

natively. This is not a use case normally associated with Redis; the results return are

incidentally, Thus the Redis query process was not reported as shown in Figure 6.28.

Figure. 6.28: PG 6 - Parser, Translator and Executor Times

6.3.7. Aggregation on a datasets

The aggregation performed by means of the unified query intent through simulations indicated

the translation mechanism was able to handle complex queries in with the optimal timeframe.

The Apdex scores reported no frustrating results considering how the prototype applied unique

intricate algorithms specifically for Cassandra, MongoDB and Neo4j.

 96

Figure. 6.29: PG 7 - Apdex Scores

Each of the forementioned storage models interprets the unified query in a special manner to

ensure the native is well-defined. The participants performed a number of AVERAGE, COUNT,

MAX, MIN and SUM actions (see Table 4.3) as part of the aggregation tests. The target model,

Neo4j, was the worst performing storage option relative to MongoDB and Cassandra as

indicated by Figure 6.30. This was influenced by the relations due to the complex relations that

exist within this schema model. The prototype mapping and discovery mechanism for Neo4j

informed by the metamodel repository, is more intricate than the other supported storage

models. For MongoDB, Cassandra and Redis can view as more ‘relational’, i.e. tabular. Neoj4

on the other hand, required additional processing logic to firstly ensure the correct nodes where

gathered even though it may not be explicitly specified in the participant’s unified query intent.

Finally based on the query intent, the optimal vertices and edges (i.e. relationship) had to be

retrieved in order for the native query to return the correct result.

Figure. 6.30: PG 7 - Parser, Translator and Executor Times

The researcher observed when aggregated functions were specified on a field which does not

exist in the underlying storage model, the prototype created a native query without completely

fulfilling the user intent. As in the occurrence of test cases 72 to 76, the MongoDB storage does

not contain data regarding student transcripts. This ultimately produced an aggregated result

without the intended fields which obfuscated the output, leading to misrepresentation of the

actual data. Figure 6.32, illustrates this fact as the prototype produced more data than expected

resulting in an increase memory allocations.

 97

Figure. 6.31: PG 7 - CPU Processing Times Figure. 6.32: PG 7 - Memory Allocations

6.3.8. Update existing dataset

The prototype only supports rudimentary updates. As shown in Table 6.33, the performance of

the modification intent indicates no prolonged time allocated to the query processing. All updates

specified by participants, included a filter which contributed to the optimal results shown in the

apdex scores.

Figure. 6.33: PG 8 - Apdex Scores

Figure. 6.34: PG 8 - Parser, Translator and Executor Times

The researcher observed specifying a date value in the “Modify” intent resulted in an error and

produced an unexpected result whereby no native queries were generated. The researcher

determined that the prototype’s parsing mechanism was unable to parse date values (test case

85).

 98

Figure. 6.35: PG 8 - Modification Errors

The Redis storage model does not explicitly support an update function, therefore the prototype

firstly gets the record then applies the update in memory then execute the “set” command on

Redis to invoke an update. Test case 5 and 6 in Figure 6.36 and Figure 6.37 illustrates the

increase in resources when the intent was actioned.

Figure. 6.36: PG 8 - CPU Processing Times Figure. 6.37: PG 8 - Memory Allocations

As emphasised in 6.3.3 and 6.3.4, the failures detected in test case 24, 25, 82 and 83 relates to

the filter not being specified in the primary index for Cassandra. While the “Fetch” intent in the

instance of Cassandra does allow for search filters to be places on non-indexed fields, for the

“Modify” intent the search filter on updates are only permitted on the primary index. Targeting

multiple data stores for modifications the prototype shown an increase in the amount of time

taken which was expected (Figure 6.34) but amount of memory allocate to the process

decreased significantly. Initially, the researcher concluded that the modification algorithm

required a smaller memory a footprint when compared to “Fetch” intents. However the decrease

in resources utilised correlates with errors occurring.

6.3.9. Data inserts

The final participation group perform simple data inserts. The results obtained were similar to

the participation group in section 6.3.8.

 99

 Figure. 6.38: PG 8 - Apdex Scores Figure. 6.39: PG 8 - Execution Times

The Redis and Cassandra data storage models requires the primary keys to be present in the

“Add” intent. This was proven in the test cases 8 and 27 where the native generated queries

failed to adhere to the respective storage models principles. The parser in test case 86 also

failed due to the date format. As with the “Modify” intent, the native queries was not generated

for any of the targeted storage models.

Figure. 6.40: PG 9 - Errors

The researcher observed that no new discoveries were made after analysing the data besides

the fact that a the primary key of the underlying schemas must be present in the intent. When

targeting multiple storage models, there were instances where the specified fields that was not

utilized by each of the supported storage options i.e. not defined in the schema. As indicated,

below that did not have a significant impact on the overall performance.

Figure. 6.41: PG 9 - CPU Processing Times Figure. 6.42: PG 9 - Memory Allocations

6.4 Significance of Results

The significance of the prototype results was attained through generalized estimating equations

(GEE). The statistical design choice is an extension of general linear model (GLM), as the

necessary observations, i.e. simulated tests conducted, entailed group of correlated data

produced by the prototype. The study’s final objective, RO4, was to determine how effective and

efficient the prototype handled the various simulated queries. Therefore the observations was

examined from two perspectives; the overall response times of the simulated tests and the

amount of resources consumed during the execution.

 100

Apdex Case Summary

In the instance of evaluating the response times of the prototype, the Apdex score was taken

into account as it provides the perceived satisfaction levels of the end users’ experience

interacting with the unified query platform. A binomial and multinomial distribution method was

applied to the Apdex to provide insights into the relationships between the correlated parameters

and the final outcome. In the case of the GEE relating to the Apdex, two models were procured.

The first model treated the “Frustrating” and “Tolerant” category as the response and the

“Satisfied” category as the reference, hence a binomial distribution method with a logit link

function was utilised. The second model treated the three categories as separate outcomes

which is closer to how the prototype represents these results. Hence a multinominal method

was chosen with a cumulative logit. In addition, this model produced a more consistent

significant predictors and was be more interpretable due to the threshold structure as described

in 6.2.

Table 6.2: Apdex : Model Description

Description Value

Probability Distribution Multinomial

Link Function Cumulative logit

Working Correlation Matrix Structure Independent

Degrees of Freedom 1

Dependant variable ApDexFrustrating_tolerating_satisfied

Number of observation 256

Scale 1

Threshold

Frustrating 1

Tolerating 2

Satisfied 3

Table 6.3: Apdex : Covariates

Description N Minimum Maximum Mean
Std.
Deviation

Max 256 0.0078 56.28 0.9701 4.8445

Min 256 0.0036 56.28 0.967 4.8451

StdDev 256 0 0.0312 0.0013 0.0036

Sum 256 0.0078 56.28 0.9725 4.844

Fifteen Minute Rate 256 10.979 47.734 16.521 12.516

Five Minute Rate 256 9.1911 47.207 15.01 11.934

Mean Rate 256 0.6999 23.638 2.4598 3.8206

One Minute Rate 256 3.1632 44.162 8.7514 9.2592

The model answers the probable success outcomes relating to effectiveness of the prototype.

Table 6.3. shows the covariates calculated which was subsequently used in conjunction with

the Wald Chi-Square to measure the significance predictors. In short, the model was design to

determine the likelihood the simulated tests will result in the “Frustrated” and “Tolerating”

category. This speaks directly to the user experience. The data indicates that in both cases, if

 101

the individual response times of the each component (parser, translator and executor) take

longer than expected, the user is likely to experience a frustrating or tolerating outcome.

Table 6.4: Apdex : Generalized Linear Model

Parameter B Std. Error 95% Wald Confidence
Interval

Hypothesis 95% Wald Confidence
Interval for Exp(B)

 Lower Upper Wald
Chi-
Square

Signifi
cance

Exp(B) Lower Upper

 Frustrating -4.46 0.9387 -6.299 -2.62 22.569 <0.001 0.012 0.002 0.073

Tolerating -2.518 0.8762 -4.235 -0.8 8.257 0.004 0.081 0.014 0.449

Max -1304.257 882.9744 -3034.855 426.341 2.182 0.14 <.001 0 1.44E+185

Min 1529.621 916.9917 -267.649 3326.892 2.783 0.095 .a 5.77E-117 .a

StdDev 3741.393 2152.4454 -477.323 7960.108 3.021 0.082 .a 5.03E-208 .a

Sum -225.38 91.0728 -403.879 -46.881 6.124 0.013 <.001 3.96E-176 4.37E-21

Fifteen Minute Rate -13.155 3.7252 -20.457 -5.854 12.472 <0.001 <.001 1.31E-09 0.003

Five Minute Rate
17.044 4.8689 7.501 26.587 12.254 <0.001

252350

16.45
1809.495

3.51925E+

11

Mean Rate 1.786 0.6559 0.5 3.071 7.414 0.006 5.965 1.649 21.571

One Minute Rate -4.874 1.5008 -7.815 -1.932 10.545 0.001 0.008 0 0.145

* .a - set to system missing due to overflow

The threshold parameter for the category "Frustrating" is -4.46. The odds of an observation

falling into the "Frustrating" category increases by approximately 1.2% for each one-unit

increase in the predictor variable. The threshold parameter for the category "Tolerating" is -

2.518. The odds of an observation falling into the "Tolerating" category increase by

approximately 8.1% for each one-unit increase in the predictor variable. Hence, probabilities

favour a more tolerant and by default a more satisfied user experience. The thresholds relates

to the continuous predictor variables, listed as parameters in the model. The thresholds, in

combination with these predictors, determine the transition points between the three satisfaction

categories. The data with a smaller p-value (< 0.05) indicates that the parameters are

statistically significant. The Exp(B) values provide insight into the direction and magnitude of the

effect for each variable. For the mean and five minute rate, the data suggests that a positive

coefficient implies a positive association with the dependent variable. It indicates that odds of

an observation falling into a specific category increase as the independent increases. This often

happens when dealing with extremely large or small values. Based on data, hypothesis and

ultimately significance, the model indicates that it is significant enough where the prototype’s

unified query has a high probability of being effective.

CPU Case Summary

The CPU was evaluated to determine if the prototype recklessly consumed the physical

machine’s resources during the simulated tests. The statistical analysis was inspected from

three viewpoints; the CPU physical memory, private memory and utilisation. The data was

subjected to descriptive statistics providing a concise summary of the main features of a dataset;

making data more understandable, meaningful, and interpretable. This entails characteristics

 102

such as the variability, the shape and distribution and frequency of data in question. This

afforded the researcher, the foundation for further statistical analyses and help in making

informed decisions based on data. The gamma distribution was selected, shown in Table 6.6

and 6.8, as it is versatile and can represent a range of shapes, from exponential to normal-like

distributions, depending on its parameters. The flexibility gamma offers enables the researcher

to accommodate different shaped data patterns.

The descriptive analysis performed on the CPU utilisation suggest a consistently low and stable

level of CPU usage. The usage operated at 0.0203% during the simulations. The prototype data

shows an extremely low mean and variance suggesting that the CPU utilization is very stable

and consistently low across all the observed cases (Table 6.5). This could also indicate that the

system was not under heavy computational load at the time of the simulations or in the extreme

case that more varying test was required. The varying responses was close to the mean value

therefore suggesting the inner workings of the prototypes components are consistent and stable.

However, the normality tests indicate that the data doesn't follow a normal distribution, which is

expected for CPU utilisation data. Further analysis, considering the context of the system and

objective, would provide a more complete understanding of the system's efficiency and CPU

utilization.

Table 6.5: CPU Utilisation : Statistical Descriptives

 Statistic Std. Error

 Mean 0.000203 0.0000000

95% Confidence

Interval for Mean

Lower Bound 0.000203

Upper Bound 0.000203

 5% Trimmed Mean 0.000203

Median 0.000203

Variance 0.000

Std. Deviation 0.0000000

Minimum 0.0002

Maximum 0.0002

Range 0.0000

Interquartile Range 0.0000

Skewness -0.056 0.152

Kurtosis -1.069 0.303

The data on physical memory indicates significant variability, non-normality, and a skewed

distribution. The choice of the gamma distribution in the GLM reflects an attempt to model these

characteristics. The statistics reveal that physical memory values vary widely, with a substantial

range and high standard deviation. The negative skewness suggests that there might be a

concentration of lower values, and the positive kurtosis indicates heavier tails in the distribution.

The non-normality tests reinforce that the data does not follow a normal distribution, which is

expected for physical memory values in many systems.

Table 6.5: CPU Physical Memory : Model Description

Description Value

 103

Probability Distribution Gamma

Link Function Log

Working Correlation Matrix Structure Independent

Degrees of Freedom 1

Dependant variable CPU_Physical_Memory

Number of observation 256

Table 6.6: CPU Physical Memory : Dependant Variable and Covariates

Description N Minimum Maximum Mean

Std.
Deviation

D
e

p
e

n
d
a

n
t CPU_Physical_Me

mory

253 4096.0000 112340992

0.0000

722200810

.750988

256289565.7

031443

C
o
v
a

ri
a

te
s

Max 253 0.0078 56.2799 0.835374 4.6131766

Min 253 0.0036 56.2799 0.832257 4.6137301

StdDev 253 0.0000 0.0312 0.001323 0.0036085

Sum 253 0.0078 56.2799 0.837824 4.6127493

Fifteen Minute Rate 253 10.9794 47.7341 16.575332 12.5797433

Five Minute Rate 253 9.1911 47.2066 15.047585 12.0001477

Mean Rate 253 0.6999 23.6383 2.407274 3.8123871

One Minute Rate 253 3.1632 44.1621 8.724255 9.3107710

Table 6.7. documents the intercept parameter which serves as the baseline value for the

physical memory when everything else is zero. It is significantly different from zero, meaning

even when other factors are zero, there's still some memory being used. This would account for

other processes running concurrently when the prototype was subjected to the simulated tests.

When analysing the different rates, the data shows that changes in the “FifteenMinuteRate”,

“FiveMinuteRate”, “MeanRate” and “OneMinuteRate” parameters have a significant impact on

physical memory. When these rates go up or down, physical memory usage tends to change.

The other parameters in the model indicated no impact on the physical memory.

Table 6.7: CPU Physical Memory : Generalized Linear Model

Parameter B Std.
Error

95% Wald
Confidence Interval

Hypothesis 95% Wald Confidence Interval
for Exp(B)

 Lower Upper Wald
Chi-
Square

Signifi
cance

Exp(B) Lower Upper

Intercept 20.074 .0621 19.953 20.196 104425.6

59

<0.001 5225986

81.314

462690895.64

1

590263141.732

Max 15.689 87.7493 -156.296 187.675 0.032 0.858 6514094.

855

1.323E-68 3.207E+81

Min -21.324 89.8984 -197.522 154.874 0.056 0.813 <0.001 1.650E-86 1.823E+67

StdDev -44.786 207.9218 -452.305 362.733 0.046 0.829 <0.001 3.685E-197 3.413E+157

Sum 5.621 8.0305 -10.118 21.361 0.490 0.484 276.247 4.034E-5 1891872346.476

 104

Fifteen Minute

Rate

4.839 0.2902 4.270 5.407 278.053 <0.001 126.288 71.510 223.026

Five Minute

Rate

-6.200 0.3814 -6.947 -5.452 264.293 <0.001 0.002 0.001 0.004

Mean Rate -0.781 0.0520 -0.883 -0.679 225.684 <0.001 0.458 0.414 0.507

One Minute

Rate

1.741 0.1204 1.505 1.976 209.141 <0.001 5.701 4.503 7.217

The CPU private model followed the same approach as the physical memory model as shown

in Table 6.8. In simple terms, the regression model attempted to discover how much private

memory was consumed by the prototype. However, there is room for further refinement of the

model, as the distribution is slightly positively skewed and has a negative kurtosis, indicating a

relatively flat distribution. It's crucial to interpret these results in the context of the prototype

system and consider what the practical implications are for determining the efficiency of its

resource use.

Table 6.8: CPU Private Memory : Model

Description Value

Probability Distribution Gamma

Link Function Log

Working Correlation Matrix Structure Independent

Degrees of Freedom 1

Dependant variable CPU_Private_Memory

Number of observation 256

Table 6.9: CPU Private Memory : Dependant Variable and Covariates

Description N Minimum Maximum Mean

Std.
Deviation

D
e
p

e
n

d
a

n
t CPU_Private_Mem

ory

253 65536.000

0

952733696

.0000

547800934

.197629

280354780.3

088633

C
o
v
a

ri
a

te
s

Max 253 0.0078 56.2799 0.835374 4.6131766

Min 253 0.0036 56.2799 0.832257 4.6137301

StdDev 253 0.0000 0.0312 0.001323 0.0036085

Sum 253 0.0078 56.2799 0.837824 4.6127493

Fifteen Minute Rate 253 10.9794 47.7341 16.575332 12.5797433

Five Minute Rate 253 9.1911 47.2066 15.047585 12.0001477

Mean Rate 253 0.6999 23.6383 2.407274 3.8123871

One Minute Rate 253 3.1632 44.1621 8.724255 9.3107710

As part of the statistical test, goodness of fit model was applied to the data to determine whether

a set of observed values match those expected under the GLM. The test highlighted that the

model may need improvement to better capture the patterns in private memory utilization. The

Quasi Likelihood under Independence Model Criterion (QIC) produced a value of 575.823 while

the Corrected QIC produced a value 85.409. In this case, the model may need improvement to

 105

better capture the patterns in private memory utilization. In certain instances, there were factors

had no impact, while others, such as the “FifteenMinuteRate”, “FiveMinuteRate”, “MeanRate”

and “OneMinuteRate” parameters, were significant enough in predicting changes in private

memory usage. This pattern correlates to the discoveries made in the usage of physical

memory.

Table 6.10: CPU Private Memory : Generalized Linear Model

Parameter B Std.
Error

95% Wald
Confidence Interval

Hypothesis 95% Wald Confidence Interval
for Exp(B)

 Lower Upper Wald
Chi-
Square

Signifi
cance

Exp(B) Lower Upper

Intercept 19.907 0.0980 19.715 20.099 41223.55

8

<0.001 4421829

66.444

364874493.74

8

535871317.846

Max 161.251 138.49

83

-110.201 432.702 1.356 0.244 1.072E+7

0

1.381E-48 8.322E+187

Min -206.616 141.89

04

-484.716 71.484 2.120 0.145 <0.001 3.095E-211 1109992398426

0454000000000

000000.000

StdDev -474.907 328.17

16

-

1118.111

168.298 2.094 0.148 <0.001 0.000 1.232E+73

Sum 45.345 12.674

9

20.503 70.188 12.799 <0.001 4933557

3067586

990000.0

00

802161403.53

4

3034300527529

0106000000000

00000.000

Fifteen Minute

Rate

9.010 0.4580 8.112 9.908 387.038 <0.001 8185.440 3335.820 20085.447

Five Minute

Rate

-11.661 .6019 -12.841 -10.482 375.327 <0.001 <.001 2.649E-6 2.805E-5

Mean Rate -1.853 0.0821 -2.014 -1.692 509.983 <0.001 .157 0.133 0.184

One Minute

Rate

3.482 0.1900 3.109 3.854 335.932 <0.001 32.518 22.409 47.188

In summation, the data model for the Apex revealed correlations with significant relationships

among the metrics, indicating that certain aspects of the query prototype, such as response

times and rates, were interrelated. Some of the parameter estimates have been set to system

missing due to overflow, indicating that the calculated values were too large to be represented

in the output which may require further analysis. However, since the timer-related metrics

suggest that there is a notable relationship between these metrics and user satisfaction. This

implies that the Apdex, which incorporates these metrics to measure the overall user

experience, is responsive to variations in system performance. Thus concluding that the

prototype probability of the prototypes effectiveness has been realised.

The CPU statistical data varies in terms the researcher supposition that the prototype is able to

efficiently utilise the machines resources. The normality tests (Kolmogorov-Smirnova and

Shapiro-Wilk) indicate that CPU utilization does not follow a normal distribution. Hence a model

 106

could not be constructed as the related data was insufficient. Therefore this study cannot

definitively conclude the efficient use of the CPU utilisation. The data does show low and stable

CPU utilization which is generally considered efficient, as it indicates that the system is not

overburdened. However, further analysis and possibly additional simulations might be needed

to understand the specifics of the system's workload and whether this low utilization is optimal.

The CPU physical and private memory on the other hand suggests that the patterns in timers

and rates correlates with the memory consumption. These indicators demonstrate a wide range

of memory consumption whereby the researcher concluded that sufficient memory was

consumed and release by the CPU. This speaks to the general efficiency of the prototype. At

the same time the wide range of variability suggests optimizing the system based on these

predictors might enhance overall efficiency.

6.5 Context for the Prototype’s Findings

The significance of the results outlines a number of revealing straits in evaluating the efficacy of

the prototype. The comprehensive statistical methodology applied to the result set from the

automated tests uncovered how well the prototypes performed its designed capabilities under

varying scenarios. The testing focused on the prototype’s ability to create executable queries

along with its error handling capabilities, resource consumption and storage model compatibility.

This precipitated the researcher to analyse and dissect its performance metrics relating to its

efficacy in error handling, filtering capabilities, aggregation functions, data mapping and

manipulation outputs across different storage targets.

The performance varied across the targeted storage models, with each exhibiting strengths and

weaknesses. The storage system, Neo4j performed relatively worse when compared to the

other targeted storage models. However, this was highly dependent on the extent of the intricate

relationships between nodes. This discovery essentially highlighted areas for improvement in

the Neo4j storage’s translation component. MongoDB and Cassandra showed a more reliable

and stable performance, even with complex schemas, indicating that applied transformative

algorithms were efficient. Redis on the other hand consumed more memory due to its inability

to compress data efficiently. This is in part due to the prototypes default query mechanism

whereby the prototype will attempt to produce a query regardless of the intent, as articulated in

section 6.6.3. In most cases, the data analysed demonstrated that the prototype chosen the

optimal path execution path, as indicated in section 6.4, in the Apdex Case Summary.

The prototype generally handled errors well, however in certain cases there were instances

where the error messages are inaccurate leading to unexpected load on machine’s resources.

This behaviour caused the incorrect error messages to be rendered deviating from the intended

logging process. This is especially true when the unified queries targeted Redis and Cassandra

storage models. Errors were also generated by the prototype, especially in cases where

participants applied the filtering mechanism, i.e. "AND/OR" operators. Cassandra specifically

raised errors in generating incompatible native queries when applying search filters. In the case

of Redis, where such operations were not supported, the prototype returned incorrect results.

 107

This is primarily due to compatibility issues observed by the researcher, particularly with

unsupported operations or incorrectly mapped fields in the metamodel pertaining to certain

storage models.

Throughout the experiment, a recurring theme emerged, leading to two distinct reflections.

Firstly, instances where the prototype yielded unfavourable outcomes or exhibited unexpected

behaviour. Secondly, on the occasions when errors occurred, either due to query syntax and

semantic faults or due to a mismatch in query intent. These factors resulted in the misuse of the

machine’s resources whereby either where more memory was utilised or the prototype held onto

CPU for a longer time period. Thus allowing the prototype to generate an inefficient query path.

Thereby making a strong case to improve areas within the prototype such as the data and

feature mapping within the metamodel as well as the translation and execution mechanism

leading to efficient query generation.

As pointed out in section 2.8 and observed in section 6.4, there is an immediate performance

penalty when the prototype is executing the native queries simultaneously. To mitigate this in

future, the solution may require additional infrastructure such as more CPU cores and memory;

quite possibly improved networking speed, should the prototype be deployed on a client-server

type Architectural model. Data quality could also be a concern should the translation process

via the Modify and Add intents not be managed appropriately. In spite of all of these factors the

prototype provided improved data accessibility and efficiency. Overall, the prototype

demonstrated several positive attributes, including robust evaluation methodologies, adaptable

performance across storage models, reliable operation, and satisfactory error handling.

Considering, that in order to access the data without the prototype, multiple systems or tools

would be required to interrogate the individual NoSQL databases, increasing the time to

consolidate and analyse the data. Thus, the prototype abstracts away the complexities of each

NoSQL database in this study enabling data to be processed into information at a faster rate.

This facilitates consumers to make informed decisions effectively and efficiently, i.e. real-time

insights despite the initial performance trade-off. Additionally, the evaluation process provided

valuable insights into areas for further refinement and improvement, paving the way for future

enhancements to optimize performance and usability. Considering all factors, the prototype's

demonstrated a high probability of efficacy.

6.6 Implications of Findings

The implications of the findings discussed provides valuable insights into the approach taken to

develop the prototype for a unified platform based on the results attained in section 6.3. The

findings played an important role in evaluating the performance and overall effectiveness of the

prototype in relation to its objectives. The observations made will assist in further improvements

and guide the decision making for future research endeavours in unified query system domains.

Although the results indicated that a number of shortcomings, this study concludes that the

prototype demonstrated its effectiveness and efficiency. This was achieve through the

prototypes ethos, the level of abstraction it adhered to, the results returned based on the

 108

participants intents, the query processing, the error handling approach and finally the

performance.

6.6.1. Prototype’s Ethos

Firstly, the goal of the developed unified query platform using the polyglot approach was to be

agnostic and interoperable. This ethos was applied to the prototype to suppressed the

complexities of the supported physical NoSQL storage systems from the users (Kolonko &

Müllenbach, 2020). Essentially the prototype in this study served as a spokesperson for the

unified query directing requests to the native databases through its supported protocols; relaying

the results back to the callers or users. This was achieved by using a natural language with

coherent lexical, syntactical and sematic paradigms represented as the unified query (Yang,

Zhang & Tong, 2022). The text-based language, even though it was not specifically tested in

Chapter 5, the study makes the assertion that humans are able to understand the query

language. While this requires additional efforts in future research, the aim is that the natural

language should make learning the elements of the unified query easier, resulting in greater

adoption.

6.6.2. Prototype Abstraction

An abstract unified data model was implemented that served as a delegate to the underlying

disparate native storage models. This entailed a comprehensive representation of each native

data schemas that promoted accessibility (Kolonko & Müllenbach, 2020). The unified data

model had to be query able; clearly separating the structural complexities of each native storage

data models. A metamodel was utilised which uniformly catalogued the abstract and native

schemas was the fundamental concept that serves as the first step for data exchange between

the abstract and physical models. It served as the glue aimed to bridge the relationship gap

between abstract and source. It indexed the data fields, attributes and schemas or ontology of

both the unified and native data models linking the properties of the abstract schema to the

physical native schemas (Hewasinghage et al., 2021). Without the metamodel, the prototype’s

objectives would not have come to fruition.

6.6.3. Query Intents of the Prototype

The prototype provided a clear and actionable directive that matched the intent of a given

instruction by the participants. By extension, this entailed converting the natural language into

an abstract syntax tree that captures the data fields, attributes and schemas (Zhang, 2020). The

abstract syntax tree was superimposed on natural language, encapsulating set a mechanical

instructions for the middleware to execute. While the majority of automated tests produced

results that match the intent, in certain instances especially with the Redis target model, the

user received an invalid result set.

A common theme to transpired, relates to the fact that if the prototype is unable to exactly match

the users instructions, it either tries to offer the “next best” result or defaults to it a basic intent.

This occurs without any indication to the user or participant that the query does not matched the

 109

user’s request. Alternatively, the researcher had to analysed the results to determine if the intent

matches the dataset returned. This occurred in a few instances especially where either the data

field was not supported natively or the feature was not supported by the underlying storage

model.

6.6.4. Query Processing

The goal was to interrogate the entire schema of the underlying native storage models and

return the associated dataset. The unified query system isolated certain key features of the

system, such as query parser, query translators, data retrieval mechanisms and output bindings.

This modularised approach promoted scalability, flexibility and maintainability (El Maghawry &

Dawood, 2010). A strategy that was not explicitly expressed, related to the ability for

components to discover each other at the runtime. Selecting the appropriate design pattern

reflected this in the most apt way as the intent of the user, consequently built a programmatic

call stack that matched the query directive (Gahlyan & Singh, 2018). The suitable features of

each component was matched together in a linear way which form the query executable path.

The unified query platform for the prototype naturally required a translator accountable for

converting the abstract query represented by the AST into suitable native queries. Each targeted

model implemented its own mechanisms for accomplishing this. The translation components of

each targeted model may have shared certain constructs but how it used those constructs was

unique to the respective storage models. The objective was to generate desirable and well-

defined queries over the target models that was required to be executable. In order to reduce

the memory and CPU footprint on the application, the researcher took the approach of

delegating most of the query execution labour to the supported NoSQL DBMS. The overall

performance in the results reflect this as not a single automated test scored an Apdex of zero.

This approach serve well, however the prototype does not make any definitive mitigation for

features that are not supported natively, which result in adverse output. The query executor

does not perform a native parsing check before it attempts to run the generated query. It relies

on the translator as ‘all knowing’. This gap was made notably visible by the automated tests,

given the errors and invalid results obtained from Cassandra, Redis and MongoDB. In certain

instances as discussed in section 5.5, either the featured intent was not incorporated in the

native query or the translator generated a native query that was destined to fail and finally a

completely different result to the one expected.

The significance of the results suggests that further analysis is required to determine the efficacy

of the prototype. This implies that more tests are required in order to reached an unbiased

conclusion. Based on the probable outcomes for this study, the data leans more towards

suggesting that the prototype is indeed is effective and efficient. While the current data patterns

suggest that more analysis may be required, the probabilities does not unequivocally advocate

that the prototype is not fit for use. On this basis, the researchers concludes that the prototype

operates in a manner that is fit for purpose.

 110

6.6.5. Prototype Error Handling

The prototype ideally segregated key features in a such a way that certain parts could remain

operational even in adverse circumstances. In short the unified system was fault-tolerant in

order to gracefully handle failures. Errors should be clearly communicated to users if

encountered during the query process. Since the prototype compromised of a number of

components, it was important to provide context as to which part of the system has manifested

the error. The prototype in this regard needs a lot more attention as the result shown that the

error messages encounter, while it provide context, it failed to render an actionable messages.

6.7 Contributions to Knowledge

This study contributes to the existing body of knowledge in under two different circumstances.

Firstly, it contributes to the theory of information systems as it used DSR as a methodology to

gain understanding of the problem domain (Hevner et al., 2004). Secondly, it contributes to

practical procedures encompassed through the developed prototype.

6.7.1. Contributions to Theory

The study applied the DSR method to guide the research endeavour with aim of evaluating

how well a unified query platform prototype may be developed effectively and efficiently. It

used the DSR process model to provide the necessary research rigour removing any inane

actions, carefully detailing how the research activities relates to the study problem (Vaishnavi,

Kuechler & Petter, 2019). Moreover, it operated under the guidelines set out by Hevner et al.

(2004), to create a purposeful artifact through scientific means and enhance the existing

information systems body of knowledge.

6.7.2. Contributions to Practices

The practical contributions for the research study is embodied in the proposed prototype’s data

and physical implementation to address the lack of a guidelines and practices around the

development of unified query systems. The prototype consists of a range of design and

architectural principles which will assist practitioners pursuing these types of systems. The data

obtained through the automated tests should enables futures researchers to analyse this data

and propose meaningful enhancements. This study provides valuable insights on the guidelines,

design and architectural implementations exercised during the construction process of the

artifact. The prototype attempts differentiate itself from similar solutions by amalgamating a set

of established physical architectural principles in a unique way that firstly produces a working

prototype; and subsequently a solution that promotes modification and easily is extensible.

6.8 Limitations

The study experienced the following limitations and challenges during the course of the research

endeavour:

 111

• The study initially proposed an automated schema identifier that’s able to successfully

affect the underlying native schemas through the prototype. Due to times constraints,

this feature was excluded from the scope of the research project.

• The data utilised in the study was restrict to text-based data, thus excluding media type

information such as images and videos.

• Any schemas updates were done manually, which opens the prototype to errors.

• The prototype was unable to handle complex data additions and updates, especially in

the case of nested query processing based off existing data models.

• Updates could not be performed on complex fields within Cassandra database

management system as it requires the entire object to be retrieved, update the identified

field(s) then send the entire field back for modification.

• The study was limited to specific versions of the supported NoSQL data storage options.

Any change in versions of the respective NoSQL database management system may

render the solution obsolete or result in unified queries that previously operated

successfully throw errors.

• The adaptors develop for the prototype relies a rudimentary security mechanism for the

respective NoSQL database that needed connections to be authenticated.

6.9 Recommendations and Future Research

Based on the results obtained from the automated tests on the prototype the study proposes

the following recommendations in the form of guidelines for developing a unified query platform.

The guidelines are as follows:

• The unified query platform should start with a conceptual model, identifying the native

schemas and properties then proceed to establish an unified data model that is able to

represent the native schemas in a common way.

• The metamodel representing the unified and native schemas should be separated

isolating any inconsistencies or errors to the individual storage catalogues.

• A natural language should serve as input to create an AST. A text-based language is

the preferred method to serve as a unified query as its familiar to consumers of

interrogating data and will most likely drive greater adoption.

• Compartmentalise the query intents, the query generators and query executable path

with the appropriate design patterns. The researcher endeavour found that the chain of

responsibility design pattern was deemed useful for the query intent, i.e. “Fetch”,

“Modify” and “Add”. The query generators the applied the visitor design pattern where

the elements of the AST was inspected and each element generated a part of the query.

Finally the executable path for the query applied the strategy pattern which informed

the prototype exactly which NoSQL targeted model to translate and execute.

• The design and architectural patterns applied must fundamentally advocate for the

unified query platform to be easily extendable and adaptive to change, i.e. new storage

data models should be easily added without having adverse effects on the existing

integration.

 112

• Decomposing the unified query platform into independent features enables parts of the

system to be tested in isolation. By compartmentalising the features enables segments

of the unified query platform to be built in such a way whereby a set of targeted systems

tests around a single unified concept can be developed, improving the robustness and

effectiveness of the solution.

• The error messages should be intuitive, guiding the user on how to resolve the issues

that occurs during the query execution path.

• Infrastructure components must versioned and be viewed as immutable. With this in

mind, the components should be viewed as disposable which is replaced when new

versions are developed rather than updating an existing version. This serves the system

two-fold, firstly it enables the system to be backwards compatible should the new

versions of the implementation manifest adverse outputs. Secondly, it enables a degree

of control when introducing new features to allow for a smooth transition between

system updates.

• Since each of the native query results are wrapped in a format unique to each targeted

databases drivers, a mapping mechanism is required that’s able deserialize and map

the results to the unified data model. A concrete class object is required to represent

the unified data model.

• The unified platform’s features should be explicitly mapped to the native features to

provide some sort or indication to users, what functionality can be delegated via the

abstract query to the individual target storage systems.

• A comprehensive monitoring system is required to provide ongoing awareness of how

well the unified data platform is operating. The purpose of a clear reporting system is to

proactively identify performance degradation or unforeseen errors that might occur.

Future works

There are a number of areas that requires improvements and further research. In particular, the

metamodel in this study only catalogues the schemas along with the respective fields and

attributes. It comprises a of collection of static files within this study’s prototype. An ideal

approach to defining a more dynamic metamodel which exists within a persisted repository. It

should only be accessed through well-defined interfaces to provide a measure of control when

maintaining or adding target systems. This will enable data to be accessed that may not have

been in the original scope of work.

As indicated by this study, the data results in some of the test scenarios were unable to match

the participants intent. Greater focus should be given to the unified query’s feature mappings in

relation to the native storage models capabilities. This will aid in defining an optimal query thus

increasing the efficiency and more importantly returning the requested result. Defining the ideal

constraints will aid in the development of optimized queries. In addition, native features that

cannot be realized by the query generator, due the native storage option not supporting the use

case, should be delegated to the middleware. The middleware should strive to enhance the

 113

query execution path by include a decision engine that assert whether or not the expected

features embedded in the unified query should be handled natively or via the middleware.

Future researchers should consider adding another level abstraction within the unified query

domain. This abstraction should handle features that are not supported natively, thus providing

complete and consistent traits to the unified query platform. This addition will of course require

more resources, conversely it will enrich the user experience.

6.10 Summary

In this final chapter, the researcher reached the climax of the study, drawing the conclusion on

the efficacy of the artifact. The reader’s attention is drawn back to the primary research question

with the aim of establishing how the research endeavour addressed the research problem

through Design Science Research as a methodology. It highlighted the research rigor that was

attained through the DSR process model and guidelines. By means of a systematic literature

review under the stewardship of the circumscription process within the DSR process model, the

research project was able to gather and identify knowledge from the relevant academic papers

and existing solutions within the problem domain. The knowledge attained from past studies

served to inform the decision-making process throughout the development of the prototype.

The researcher argues in favour of the prototypes utility based on the reporting metrics during

a methodical evaluation. The finding indicates that the greater part of the protype’s results

demonstrated the desired outcomes thus fulfilling its objectives. The evaluation of the prototype

proceeded to enhance existing knowledge on unified query platform initiatives. This effectively

reached the philosophy of DSR as method for this study where a purposeful artifact was created.

Furthermore the study encapsulates the learnings through a set of guidelines to aid in the

development of unified query systems. It recognises the shortcomings throughout the study,

especially those revealed in the evaluation of the prototype. The researcher brought to light the

shortcomings of the solution and recommended how this may be addressed future research

programs.

 114

REFERENCES

Alharahsheh, H.H. & Pius, A., 2020. A review of key paradigms: Positivism VS interpretivism. Global
Academic Journal of Humanities and Social Sciences, 2(3), 39-43.

Atzeni, P., Bugiotti, F., Cabibbo, L. & Torlone, R., 2020. Data modeling in the NoSQL
world. Computer Standards & Interfaces, 67, p.103149. 1-10.

Atzeni, P., Bugiotti, F. & Rossi, L., 2012. SOS (save our systems) a uniform programming interface
for non-relational systems. In Proceedings of the 15th International Conference on Extending
Database Technology, 582-585.

app-metrics.io, 2021. Metric Types. Available from: https://www.app-metrics.io/getting-
started/metric-types [Accessed 25th April 2023].

Baskerville, R., Baiyere, A., Gregor, S., Hevner, A. & Rossi, M., 2018. Design science research
contributions: finding a balance between artifact and theory. Journal of the Association for
Information Systems. 19(5), 1-16.

Blumhardt N., 2022. Superpower. Available from: https://github.com/datalust/superpower
[Accessed 23th January 2023].

Blumhardt N., 2021. Sprache. Available from: https://github.com/sprache/Sprache [Accessed 23th
January 2023].

Candel, C.J.F., Ruiz, D.S. & García-Molina, J.J., 2022. A unified metamodel for nosql and relational
databases. Information Systems, 104, p.101898, 2-25.

Cox, S., Ahalt, S.C., Balhoff, J., Bizon, C., Fecho, K., Kebede, Y., Morton, K., Tropsha, A., Wang, P.
& Xu, H., 2020. Visualization Environment for Federated Knowledge Graphs: Development of an
Interactive Biomedical Query Language and Web Application Interface. JMIR Medical
Informatics, 8(11), p.e17964, 1-7.

Davoudian, A., Chen, L. & Liu, M., 2018. A survey on NoSQL stores. ACM Computing Surveys
(CSUR). 51(2), 3-36.

Duracik, M., Hrkut, P., Krsak, E. & Toth, S., 2020. Abstract syntax tree based source code
antiplagiarism system for large projects set. IEEE Access, 8, 175350-175354.

El Maghawry, N. & Dawood, A.R., 2010. Aspect oriented GoF design patterns. In 2010 The 7th
International Conference on Informatics and Systems (INFOS). IEEE. 1-7.

Endris, K.M., 2020. Federated Query Processing over Heterogeneous Data Sources in a Semantic
Data Lake (Doctoral dissertation, Universitäts-und Landesbibliothek Bonn), 58-69.

Gadepally, V., Chen, P., Duggan, J., Elmore, A., Haynes, B., Kepner, J., Madden, S., Mattson, T. &
Stonebraker, M., 2016. The BigDAWG polystore system and architecture. In 2016 IEEE High
Performance Extreme Computing Conference (HPEC), IEEE, 1-6.

Gahlyan, P. and Singh, S.N., 2018. Analysis of catalogue of GoF software design patterns. In 2018
8th International Conference on Cloud Computing, Data Science & Engineering (Confluence) . IEEE.
814-818.

Glake, D., Kiehn, F., Schmidt, M., Panse, F. & Ritter, N., 2022. Towards Polyglot Data Stores--
Overview and Open Research Questions. arXiv preprint arXiv:2204.05779, 1-27.

Gobert, M., 2020. Schema Evolution in Hybrid Databases Systems. In [Provisoire] Proceedings of
the 46th International Conference on Very Large Data Bases (VLDB 2020): PhD workshop track.
ACM Press, 1-3.

Guo, J., Liu, Q., Lou, J.G., Li, Z., Liu, X., Xie, T. and Liu, T., 2020. Benchmarking meaning
representations in neural semantic parsing. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP), 1520-1528.

https://github.com/datalust/superpower

 115

Hevner, A., March, S.T., Park, J. & Ram, S., 2004. Design science research in information
systems. MIS quarterly, 28(1), 75-105.

Hewasinghage, M., Abelló, A., Varga, J. & Zimányi, E., 2021. Managing polyglot systems metadata
with hypergraphs. Data & Knowledge Engineering, 134, p.101896, 1-14.

Kitchenham B, Pretorius R, Budgen D, Brereton OP, Turner M, Niazi M & Linkman S., 2010.
Systematic literature reviews in software engineering–a tertiary study. Information and software
technology, 52(8), 792-805.

Kitchenham, B., Brereton, O.P., Budgen, D., Turner, M., Bailey, J. & Linkman, S., 2009. Systematic
literature reviews in software engineering–a systematic literature review. Information and software
technology, 51(1), 7-15.

Khaldi, K., 2017. Quantitative, qualitative or mixed research: Which research paradigm to
use?. Journal of Educational and Social Research, 7(2), 15-19.

Khan, Y., Zimmermann, A., Jha, A., Gadepally, V., D’Aquin, M. & Sahay, R., 2019. One size does
not fit all: Querying web polystores. Ieee Access, 7, 9598-9605.

Khine, P.P. & Wang, Z., 2019. A review of polyglot persistence in the Big Data
world. Information, 10(4), 1-19.

Kolev, B., Bondiombouy, C., Levchenko, O., Valduriez, P., Jimenez-Péris, R., Pau, R. & Pereira, J.,
2016. Design and implementation of the CloudMdsQL multistore system. In CLOSER: Cloud
Computing and Services Science, 1, 352-359.

Kolonko, M. & Müllenbach, S., 2020. Polyglot persistence in conceptual modeling for information
analysis. In 2020 10th International Conference on Advanced Computer Information Technologies
(ACIT) , IEEE, 590-594.

Košmerl, I., Rabuzin, K. & Šestak, M., 2020. Multi-Model Databases-Introducing Polyglot Persistence
in the Big Data World. In 2020 43rd International Convention on Information, Communication and
Electronic Technology (MIPRO). IEEE, 1724-1728.

Koutroumanis, N., Kousathanas, N., Doulkeridis, C. & Vlachou, A., 2021. A demonstration of NoDA:
unified access to NoSQL stores. Proceedings of the VLDB Endowment, 14(12), 2851-2854.

Mardiana, S., 2020. Modifying Research Onion for Information Systems Research. Solid State
Technology, 63(4), 1202-1210.

Merwe, A.V.D., Gerber, A. & Smuts, H., 2019. Guidelines for conducting design science research in
information systems. In Annual Conference of the Southern African Computer Lecturers' Association.
Springer, Cham, 167-178.

Okoli, C., Schabram, K., 2010. A Guide to Conducting a Systematic Literature Review of Information
Systems Research, Sprouts: Working Papers on Information Systems, 10(26).
http://sprouts.aisnet.org/, 10-26.

Olsen, M. & Raunak, M., 2019. Quantitative Measurements of Model Credibility. In Model
Engineering for Simulation., Academic Press, 163-175.

onlinedatagenerator.com, 2023. Data generation demo page. Available from:
https://www.onlinedatagenerator.com/home/demo [Accessed 10th January 2023].

Oussous, A., Benjelloun, F.Z., Lahcen, A.A. & Belfkih, S., 2018. Big Data technologies: A
survey. Journal of King Saud University-Computer and Information Sciences, 30(4), 432-436.

Öztürel, İ.A., 2022. Cross-Level Typing The Logical Form For open-domain semantic parsing, 31-
38.

http://sprouts.aisnet.org/

 116

Peffers, K., Tuunanen, T., Gengler, C.E., Rossi, M., Hui, W., Virtanen, V. & Bragge, J., 2020. Design
Science Research Process: A Model for Producing and Presenting Information Systems
Research. arXiv preprint arXiv:2006.02763, 84-93.

Pries-Heje, J., Baskerville, R. & Venable, J.R., 2008. Strategies for design science research
evaluation. ECIS 2008 Proceedings, 87, 1-12

Ramadhan, H., Indikawati, F.I., Kwon, J. & Koo, B., 2020. MusQ: A Multi-store query system for iot
data using a datalog-like language. IEEE Access, 8, 58032-58050.

Roy-Hubara, N., Shoval, P. & Sturm, A., 2022. Selecting databases for Polyglot Persistence
applications. Data & Knowledge Engineering, 137,p.101950, 2-18.

Santana, L.H.Z. & Mello, R.D.S., 2020. Persistence of RDF Data into NoSQL: A Survey and a Unified
Reference Architecture. IEEE Transactions on Knowledge and Data Engineering, 1-18.

Saunders, M., Lewis, P. & Thornhill, A., 2012. Research Methods for Business Students (Fifth
edit). Essex: Pearson Education Limited, 106-128.

Tan, R., Chirkova, R., Gadepally, V. & Mattson, T.G., 2017. Enabling query processing across
heterogeneous data models: A survey. In 2017 IEEE International Conference on Big Data (Big
Data). IEEE, 3211-3219.

Vaishnavi, V., Kuechler, W. & Petter, S., 2019. Design science research in information systems, 46-
74. Available from: http://desrist.org/desrist/content/design-science-research-in-information-
systems.pdf. [Accessed 10th September 2020].

vom Brocke, J., Hevner, A. & Maedche, A., 2020. Introduction to design science research. In Design
Science Research. Cases. Springer, Cham, 1-17.

Wedyan, F. & Abufakher, S., 2020. Impact of design patterns on software quality: a systematic
literature review. IET Software, 14(1), 1-17.

Yang, X., Zhang, X. & Tong, Y., 2022. Simplified abstract syntax tree based semantic features
learning for software change prediction. Journal of Software: Evolution and Process, 34(4), p.e2445,
1-9.

Zhang, H., Zhang, C., Hu, R., Liu, X. & Dai, D., 2021. Unified SQL Query Middleware for
Heterogeneous Databases. In Journal of Physics: Conference Series, IOP Publishing, p.012065,
1873(1), 1-6.

Zhang, M., 2020. A survey of syntactic-semantic parsing based on constituent and dependency
structures. Science China Technological Sciences, 63(10), 1898-1920.

Xiao, Y. & Watson, M., 2019. Guidance on conducting a systematic literature review. Journal of
planning education and research, 39(1), 93-112.

http://desrist.org/desrist/content/design-science-research-in-information-systems.pdf
http://desrist.org/desrist/content/design-science-research-in-information-systems.pdf

 117

APPENDICES

APPENDIX A: Redis Schema

 118

APPENDIX B: Cassandra Schema

 119

APPENDIX C: MongoDB Schema

 120

APPENDIX D: Neo4j Schema

 121

APPENDIX E: Repository Metamodel

 Property Neo4j MongoDB Cassandra Redis
models pupil students student user

student identifier pupilid student_id id user_id

idnumber id id_number idno identity_number

title title title title title

preferredname alias aka other_name

initial initial init initials

name name name firstname first_name

surname surname surname lastname last_name

dateofbirth dob date_of_birth dob birth_date

gender gender gender_identity gendered gender

address x

contact x

register x

transcript x

 faculty faculty

faculty code key short_code x x

name description name registered.faculty x

 course course

course code key short_code x x

name description name registered.course x

 subject subject subject

subject code key short_code x x

name description name descr x

cost cost price price x

duration term duration period x

 address address

address streetno x x streetno x

street x street streetname x

postaladdress x x postalcode x

postalcode x code postalcode x

suburb x x suburb x

city city.description city city user.city

province x x province x

country x

 contact

contact email pupil.email email_addrress student.email x

mobile pupil.mobile phone student.cellno x

register studentno pupil.studentnu

m

student.student_

no

student.studentn

o

user.student_nu

mber

 faculty faculty faculty faculty x

 course course course course x

 122

 subject subject subject subject x

 username x x x user.user_name

 password x x x user.psw

 type x enroll.enollment_t

ype

x x

 ipaddress x x x user.ip_address

 date x enroll.enrollment_

date

register.registerd

ate

x

 progress grades

transcript subject results.subject.d

escription

x subject x

 result results.score x grades.mark x

 symbol results.grade x grades.symbol x

* Text in italics or bold denotes a class or complex object

 123

APPENDIX F: Prototype Unified Query - Template

Fetch Statement:

FETCH { <property>, <function<property>,…}

DATA_MODEL { <data>}

FILTER_ON { <term> <operator> <term> <comparator>}

RESTRICT_TO { <number> }

ORDER_BY { <property>}

TARGET { <database vendors>,… }

Add Statement:

ADD { <data>}

PROPERTIES { <property> <operator> <property> }

TARGET { <database vendors>,… }

Modify Statement:

MODIFY { <data>}

PROPERTIES { <property> <operator> <property> }

FILTER_ON { <term> <operator> <term> <comparator >}

TARGET { <database vendors>,… }

 124

APPENDIX G: Lexer Configuration

 Lexicons Input Text
Keywords FETCH FETCH

MODIFY MODIFY

ADD ADD

PROPERTIES PROPERTIES

DATA_MODEL DATA_MODEL

FILTER_ON FILTER_ON

ORDER_BY ORDER_BY

RESTRICT_TO RESTRICT_TO

TARGET TARGET

ASC ASC

DESC DESC

LAND AND

LOR OR

Identifiers REFERENCE_ALIAS Identifier preceding ‘DOT’; example: t.property

REFERENCE_ALIAS_NAME Identifier succeeding ‘AS’; example: t.property AS alias

REFERENCE_MODEL Identifier succeeding ‘AS’ in DATA_MODEL; example

DATA_MODEL { data AS dataAlias }

PROPERTY Referenced column\attribute name

JSON_PROPERTY A JSON referenced column\attribute name

TERM Identifier succeeding ‘FILTER_ON’; example

FILTER_ON { term = ‘1’ }

DATA Identifier succeeding ‘DATA_MODEL’; example

DATA_MODEL { data }

NAMED_VENDOR Identifier of database vendor; example neo4j,

mongodb, cassandra, redis

AS AS

LEFT_CURLY_BRACKET {

RIGHT_CURLY_BRACKET }

LEFT_BRACKET [

RIGHT_BRACKET]

LEFT_PAREN (

RIGHT_PAREN)

COMMA ,

DOT .

NSUM Nsum

NAVG Navg

NCOUNT Ncount

NMIN Nmin

NMAX Nmax

Operators EQL =

LSS <

GTR >

 125

GTE >=

LTE <=

Literals NUMBER 1,2,3,4,5,6,7,8,9,0

STRING Aa,Bb,Cc,….Zz

 126

APPENDIX H: AST Sample

Command Input Tokens
FETCH FETCH { id, name, surname,

idnumber, dateofbirth }

DATA_MODEL { student }

TARGET { cassandra }

{FETCH@0 (line 1, column 1): FETCH}

{PROPERTY@8 (line 1, column 9): id}

{COMMA@10 (line 1, column 11): ,}

{PROPERTY@12 (line 1, column 13): name}

{COMMA@16 (line 1, column 17): ,}

{PROPERTY@18 (line 1, column 19): surname}

{COMMA@25 (line 1, column 26): ,}

{PROPERTY@27 (line 1, column 28): idnumber}

{COMMA@35 (line 1, column 36): ,}

{PROPERTY@37 (line 1, column 38): dateofbirth}

{DATA_MODEL@72 (line 2, column 21): DATA_MODEL}

{DATA@85 (line 2, column 34): student}

{TARGET@115 (line 3, column 21): TARGET}

{NAMED_VENDOR@125 (line 3, column 31): cassandra}

ADD ADD { student }

PROPERTIES { name = 'Chuck T'}

TARGET { cassandra }

{ADD@0 (line 1, column 1): ADD}

{DATA@6 (line 1, column 7): student}

{PROPERTIES@43 (line 2, column 27): PROPERTIES}

{TERM@56 (line 2, column 40): name}

{EQL@61 (line 2, column 45): =}

{STRING@64 (line 2, column 48): Chuck T}

{TARGET@101 (line 3, column 27): TARGET}

{NAMED_VENDOR@110 (line 3, column 36): cassandra}

MODIFY MODIFY { student }

PROPERTIES { name = 'Chuck T'}

TARGET { cassandra }

{MODIFY@0 (line 1, column 1): MODIFY}

{DATA@9 (line 1, column 10): student}

{PROPERTIES@48 (line 2, column 29): PROPERTIES}

{TERM@61 (line 2, column 42): name}

{EQL@66 (line 2, column 47): =}

{STRING@69 (line 2, column 50): Chuck T}

{TARGET@108 (line 3, column 29): TARGET}

{NAMED_VENDOR@117 (line 3, column 38): cassandra}

 127

 128

APPENDIX I: Data Generation - Province

Country Province\Region
South Africa

"Eastern Cape", "Free State", "Gauteng", "KwaZulu-Natal",

"Limpopo", "Mpumalanga", "Northern Cape", "North West",

"Western Cape"

Angola

"Bengo", "Benguela", "Bié", "Cabinda", "Cuando Cubango",

"Cuanza Norte", "Cuanza Sul", "Cunene", "Huambo", "Huíla",

"Luanda", "Lunda Norte", "Lunda Sul", "Malanje", "Moxico",

"Namibe", "Uíge", "Zaire"

Nigeria

"Bauchi", "Bida", "Bornu", "Kabba", "Kontagora", "Lower

Benue or Nassarawa", "Illorin", "Muri", "Sokoto", "Upper

Bema", "Zaria"

Namibia

"Caprivi", "Erongo", "Hardap", "Karas", "Kavango West",

"Kavango East", "Khomas", "Kunene", "Ohangwena",

"Omaheke", "Omusati", "Oshana", "Oshikoto", "Otjozondjupa"

Botswana "Central", "Ghanzi", "Kgalagadi", "Kgatleng", "Kweneng",

"North East", "North West", "South East", "Southern"

Egypt "Alexandria Governorate", "Aswan Governorate", "Asyut

Governorate", "Beheira Governorate", "Beni Suef

Governorate", "Cairo Governorate", "Dakahlia Governorate",

"Damietta Governorate", "Faiyum Governorate", "Gharbia

Governorate", "Giza Governorate", "Ismailia Governorate",

"Kafr El Sheikh Governorate", "Luxor Governorate", "Matruh

Governorate", "Minya Governorate", "Monufia Governorate",

"New Valley Governorate", "North Sinai Governorate", "Port

Said Governorate[5]", "Qalyubia Governorate", "Qena

Governorate", "Red Sea Governorate", "Sharqia

Governorate", "Sohag Governorate", "South Sinai

Governorate", "Suez Governorate"

Tunisia

"Ariana", "Béja", "Ben Arous", "Bizerte", "Gabès", "Gafsa",

"Jendouba", "Kairouan", "Kasserine", "Kebili", "Kef", "Mahdia",

"Manouba", "Medenine", "Monastir", "Nabeul", "Sfax", "Sidi

Bouzid", "Siliana", "Sousse", "Tataouine", "Tozeur", "Tunis",

"Zaghouan"

 129

APPENDIX J: Test Cases - Syntax and Sematic Validations

Unified Query
87 FETCH { s.title,s.idnumber,s.preferredname,s.initial,s.name, s.surname,

 s.dateofbirth, s.gender, s.address.streetno,s.address.street,s.address.postalcode,
 s.address.postaladdress,s.address.city,s.address.country.code,
 s.address.country.name, s.contact.email, s.contact.mobile,s.register.studentno,
 s.register.faculty.code, s.register.faculty.name, s.register.course.code,
 s.register.course.name, s.register.subject.code, s.register.subject.name,
 s.register.subject.cost, s.register.subject.duration,s.register.username,
 s.register.password, s.register.type, s.register.ipaddress,
 s.register.date,s.transcript.subject, s.transcript.result, s.transcript.symbol }
RESTRICT_TO { 1000 }
DATA_MODEL { student AS s}
TARGET { redis, cassandra, mongodb, neo4j }

88 FETCH { s.title,s.idnumber,s.preferredname,s.initial,s.name, s.surname, s.dateofbirth, }
DATA_MODEL { student AS s}
TARGET { redis, cassandra, mongodb, neo4j }

89 FETCH { s.title,s.idnumber,s.newproperty1,s.newproperty2 }
DATA_MODEL { student AS s}
TARGET { redis, cassandra, mongodb, neo4j }

90 MODIFY { student }
FILTER_ON { identifier = '10000' }
PROPERTIES { name = 'Tony'}
TARGET { redis, cassandra, mongodb, neo4j }

91 PROPERTIES
{
 identifier='9522896',
 idnumber = '286266761',
 surname = 'Banner',
 name = 'Bruce',
 initial = 'BB',
 gender = 'M',
 title = 'Mr',
 preferredname = 'Hulk'
}
ADD { student }
TARGET { redis, cassandra, mongodb, neo4j }

 130

APPENDIX K: Test Cases - Retrieve complete dataset

Unified Query
1 FETCH {

s.title,s.idnumber,s.preferredname,s.initial,s.name, s.surname, s.dateofbirth,
 s.gender, s.address.streetno, s.address.street,

s.address.postalcode,s.address.postaladdress,s.address.city,s.address.country.code,
s.address.country.name, s.contact.email, s.contact.mobile,s.register.studentno,
s.register.faculty.code, s.register.faculty.name, s.register.course.code,
s.register.course.name, s.register.subject.code, s.register.subject.name,
s.register.subject.cost, s.register.subject.duration,
s.register.username,s.register.password, s.register.type, s.register.ipaddress,

 s.register.date,s.transcript.subject, s.transcript.result, s.transcript.symbol }
DATA_MODEL { student AS s}
TARGET { redis }

9 FETCH {
s.title,s.idnumber,s.preferredname,s.initial,s.name, s.surname, s.dateofbirth,

 s.gender, s.address.streetno, s.address.street,
s.address.postalcode,s.address.postaladdress,s.address.city,s.address.country.code,
s.address.country.name, s.contact.email, s.contact.mobile,s.register.studentno,
s.register.faculty.code, s.register.faculty.name, s.register.course.code,
s.register.course.name, s.register.subject.code, s.register.subject.name,
s.register.subject.cost, s.register.subject.duration,
s.register.username,s.register.password, s.register.type, s.register.ipaddress,

 s.register.date,s.transcript.subject, s.transcript.result, s.transcript.symbol }
DATA_MODEL { student AS s}
TARGET { cassandra }

28 FETCH {
s.title,s.idnumber,s.preferredname,s.initial,s.name, s.surname, s.dateofbirth,

 s.gender, s.address.streetno, s.address.street,
s.address.postalcode,s.address.postaladdress,s.address.city,s.address.country.code,
s.address.country.name, s.contact.email, s.contact.mobile,s.register.studentno,
s.register.faculty.code, s.register.faculty.name, s.register.course.code,
s.register.course.name, s.register.subject.code, s.register.subject.name,
s.register.subject.cost, s.register.subject.duration,
s.register.username,s.register.password, s.register.type, s.register.ipaddress,

 s.register.date,s.transcript.subject, s.transcript.result, s.transcript.symbol }
DATA_MODEL { student AS s}
TARGET { mongodb }

45 FETCH {
s.title,s.idnumber,s.preferredname,s.initial,s.name, s.surname, s.dateofbirth,

 s.gender, s.address.streetno, s.address.street,
s.address.postalcode,s.address.postaladdress,s.address.city,s.address.country.code,
s.address.country.name, s.contact.email, s.contact.mobile,s.register.studentno,
s.register.faculty.code, s.register.faculty.name, s.register.course.code,
s.register.course.name, s.register.subject.code, s.register.subject.name,
s.register.subject.cost, s.register.subject.duration,
s.register.username,s.register.password, s.register.type, s.register.ipaddress,

 s.register.date,s.transcript.subject, s.transcript.result, s.transcript.symbol }
DATA_MODEL { student AS s}
RESTRICT_TO { 100 }
TARGET { neo4j }

66 FETCH {
s.title,s.idnumber,s.preferredname,s.initial,s.name, s.surname, s.dateofbirth,

 s.gender, s.address.streetno, s.address.street,
s.address.postalcode,s.address.postaladdress,s.address.city,s.address.country.code,
s.address.country.name, s.contact.email, s.contact.mobile,s.register.studentno,
s.register.faculty.code, s.register.faculty.name, s.register.course.code,
s.register.course.name, s.register.subject.code, s.register.subject.name,
s.register.subject.cost, s.register.subject.duration,
s.register.username,s.register.password, s.register.type, s.register.ipaddress,

 s.register.date,s.transcript.subject, s.transcript.result, s.transcript.symbol }
DATA_MODEL { student AS s}
RESTRICT_TO { 1000 }
TARGET { redis, cassandra, mongodb, neo4j }

 131

APPENDIX L: Test Cases - Retrieve dataset where a single filter was applied

Unified Query
2 FETCH {

s.title,s.idnumber,s.preferredname,s.initial,s.name, s.surname, s.dateofbirth,
 s.gender, s.address.streetno, s.address.street,

s.address.postalcode,s.address.postaladdress,s.address.city,s.address.country.code,
s.address.country.name, s.contact.email, s.contact.mobile,s.register.studentno,
s.register.faculty.code, s.register.faculty.name, s.register.course.code,
s.register.course.name, s.register.subject.code, s.register.subject.name,
s.register.subject.cost, s.register.subject.duration,
s.register.username,s.register.password, s.register.type, s.register.ipaddress,

 s.register.date,s.transcript.subject, s.transcript.result, s.transcript.symbol }
DATA_MODEL { student AS s}
FILTER_ON {s.idnumber = '32502601866'}
TARGET { redis }

3 FETCH {
s.title,s.idnumber,s.preferredname,s.initial,s.name, s.surname, s.dateofbirth,

 s.gender, s.address.streetno, s.address.street,
s.address.postalcode,s.address.postaladdress,s.address.city,s.address.country.code,
s.address.country.name, s.contact.email, s.contact.mobile,s.register.studentno,
s.register.faculty.code, s.register.faculty.name, s.register.course.code,
s.register.course.name, s.register.subject.code, s.register.subject.name,
s.register.subject.cost, s.register.subject.duration,
s.register.username,s.register.password, s.register.type, s.register.ipaddress,

 s.register.date,s.transcript.subject, s.transcript.result, s.transcript.symbol }
DATA_MODEL { student AS s}
FILTER_ON {s.gender = 'F'}
TARGET { redis }

4 FETCH {
s.title,s.idnumber,s.preferredname,s.initial,s.name, s.surname, s.dateofbirth,

 s.gender, s.address.streetno, s.address.street,
s.address.postalcode,s.address.postaladdress,s.address.city,s.address.country.code,
s.address.country.name, s.contact.email, s.contact.mobile,s.register.studentno,
s.register.faculty.code, s.register.faculty.name, s.register.course.code,
s.register.course.name, s.register.subject.code, s.register.subject.name,
s.register.subject.cost, s.register.subject.duration,
s.register.username,s.register.password, s.register.type, s.register.ipaddress,

 s.register.date,s.transcript.subject, s.transcript.result, s.transcript.symbol }
DATA_MODEL { student AS s}
FILTER_ON { s.idnumber = '11807003413' AND s.gender = 'F'}
TARGET { redis }

10 FETCH {
s.title,s.idnumber,s.preferredname,s.initial,s.name, s.surname, s.dateofbirth,

 s.gender, s.address.streetno, s.address.street,
s.address.postalcode,s.address.postaladdress,s.address.city,s.address.country.code,
s.address.country.name, s.contact.email, s.contact.mobile,s.register.studentno,
s.register.faculty.code, s.register.faculty.name, s.register.course.code,
s.register.course.name, s.register.subject.code, s.register.subject.name,
s.register.subject.cost, s.register.subject.duration,
s.register.username,s.register.password, s.register.type, s.register.ipaddress,

 s.register.date,s.transcript.subject, s.transcript.result, s.transcript.symbol }
DATA_MODEL { student AS s}
FILTER_ON {s.identifier = '200'}
TARGET { cassandra }

16 FETCH {
s.title,s.idnumber,s.preferredname,s.initial,s.name, s.surname, s.dateofbirth,

 s.gender, s.address.streetno, s.address.street,
s.address.postalcode,s.address.postaladdress,s.address.city,s.address.country.code,
s.address.country.name, s.contact.email, s.contact.mobile,s.register.studentno,
s.register.faculty.code, s.register.faculty.name, s.register.course.code,
s.register.course.name, s.register.subject.code, s.register.subject.name,
s.register.subject.cost, s.register.subject.duration,
s.register.username,s.register.password, s.register.type, s.register.ipaddress,

 s.register.date,s.transcript.subject, s.transcript.result, s.transcript.symbol }
DATA_MODEL { student AS s }
FILTER_ON { s.gender = 'F'}
TARGET { cassandra }

 132

17 FETCH {
s.title,s.idnumber,s.preferredname,s.initial,s.name, s.surname, s.dateofbirth,

 s.gender, s.address.streetno, s.address.street,
s.address.postalcode,s.address.postaladdress,s.address.city,s.address.country.code,
s.address.country.name, s.contact.email, s.contact.mobile,s.register.studentno,
s.register.faculty.code, s.register.faculty.name, s.register.course.code,
s.register.course.name, s.register.subject.code, s.register.subject.name,
s.register.subject.cost, s.register.subject.duration,
s.register.username,s.register.password, s.register.type, s.register.ipaddress,

 s.register.date,s.transcript.subject, s.transcript.result, s.transcript.symbol }
DATA_MODEL { student AS s }
FILTER_ON { s.name = 'Matthew'}
TARGET { cassandra }

54 FETCH {
s.title,s.idnumber,s.preferredname,s.initial,s.name, s.surname, s.dateofbirth,
s.gender, s.address.streetno,
s.address.street,s.address.postalcode,s.address.postaladdress, s.contact.email,
s.contact.mobile}

DATA_MODEL { student AS s}
FILTER_ON { s.idnumber = '72800706875'}
TARGET { neo4j }

67 FETCH {
s.title,s.idnumber,s.preferredname,s.initial,s.name, s.surname, s.dateofbirth,
s.gender, s.address.streetno, s.address.street,s.address.postalcode,
s.address.postaladdress, s.address.city, s.address.country.code,
s.address.country.name, s.contact.email, s.contact.mobile,s.register.studentno,
s.register.faculty.code, s.register.faculty.name, s.register.course.code,
s.register.course.name, s.register.subject.code, s.register.subject.name,
s.register.subject.cost, s.register.subject.duration,
s.register.username,s.register.password, s.register.type, s.register.ipaddress,
s.register.date }

DATA_MODEL { student AS s}
FILTER_ON { s.idnumber = '67101803610'}
TARGET { redis, cassandra, mongodb, neo4j }

77 FETCH {
s.title,s.idnumber,s.preferredname,s.initial,s.name, s.surname,
s.register.date,s.transcript.subject, s.transcript.result, s.transcript.symbol }

DATA_MODEL { student AS s}
FILTER_ON { s.transcript.result > 50}
TARGET { redis, cassandra, mongodb, neo4j }

78 FETCH {
s.title,s.idnumber,s.preferredname,s.initial,s.name, s.surname,
s.register.date,s.transcript.subject, s.transcript.result, s.transcript.symbol }

DATA_MODEL { student AS s}
FILTER_ON { s.transcript.result < 50}
TARGET { redis, cassandra, mongodb, neo4j }

79 FETCH {
s.title,s.idnumber,s.preferredname,s.initial,s.name, s.surname,
s.register.date,s.transcript.subject, s.transcript.result, s.transcript.symbol }

DATA_MODEL { student AS s}
FILTER_ON { s.transcript.result >= 20 AND s.transcript.result <= 70}
TARGET { redis, cassandra, mongodb, neo4j }

 133

APPENDIX M: Test Cases - Retrieve dataset where a multiples filters were
applied

Unified Query
11 FETCH {

s.title,s.idnumber,s.preferredname,s.initial,s.name, s.surname, s.dateofbirth, s.gender,
s.address.streetno, s.address.street,
s.address.postalcode,s.address.postaladdress,s.address.city,s.address.country.code,
s.address.country.name, s.contact.email, s.contact.mobile,s.register.studentno,
s.register.faculty.code, s.register.faculty.name, s.register.course.code,
s.register.course.name, s.register.subject.code, s.register.subject.name,
s.register.subject.cost, s.register.subject.duration, s.register.username,s.register.password,
s.register.type, s.register.ipaddress, s.register.date,s.transcript.subject, s.transcript.result,
s.transcript.symbol }

DATA_MODEL { student AS s}
FILTER_ON { s.idnumber = '71100307130' AND s.gender = 'M'}
TARGET { cassandra }

12 FETCH {
s.title,s.idnumber,s.preferredname,s.initial,s.name, s.surname, s.dateofbirth, s.gender,
s.address.streetno, s.address.street,
s.address.postalcode,s.address.postaladdress,s.address.city,s.address.country.code,
s.address.country.name, s.contact.email, s.contact.mobile,s.register.studentno,
s.register.faculty.code, s.register.faculty.name, s.register.course.code,
s.register.course.name, s.register.subject.code, s.register.subject.name,
s.register.subject.cost, s.register.subject.duration, s.register.username,s.register.password,
s.register.type, s.register.ipaddress, s.register.date,s.transcript.subject, s.transcript.result,
s.transcript.symbol }

DATA_MODEL { student AS s}
FILTER_ON { s.idnumber = '71100307130' OR s.gender = 'M'}
TARGET { cassandra }

15 FETCH {
s.identifier, s.title,s.idnumber,s.preferredname,s.initial,s.name, s.surname, s.dateofbirth,
s.gender, s.address.streetno, s.address.street, s.address.postalcode,
s.address.postaladdress, s.address.city,s.address.country.code,s.address.country.name,
s.contact.email, s.contact.mobile,s.register.studentno, s.register.faculty.code,
s.register.faculty.name, s.register.course.code, s.register.course.name,
s.register.subject.code, s.register.subject.name, s.register.subject.cost,
s.register.subject.duration, s.register.username,s.register.password, s.register.type,
s.register.ipaddress, s.register.date,s.transcript.subject, s.transcript.result,
s.transcript.symbol }

DATA_MODEL { student AS s }
FILTER_ON { s.idnumber = '71100307130' OR s.gender = 'M'}
ORDER_BY { s.identifier}
TARGET { cassandra }

29 FETCH {
s.identifier, s.title,s.idnumber,s.preferredname,s.initial,s.name, s.surname, s.dateofbirth,
s.gender, s.address.streetno, s.address.street, s.address.postalcode,
s.address.postaladdress, s.address.city,s.address.country.code,s.address.country.name,
s.contact.email, s.contact.mobile,s.register.studentno, s.register.faculty.code,
s.register.faculty.name, s.register.course.code, s.register.course.name,
s.register.subject.code, s.register.subject.name, s.register.subject.cost,
s.register.subject.duration, s.register.username,s.register.password, s.register.type,
s.register.ipaddress, s.register.date,s.transcript.subject, s.transcript.result,
s.transcript.symbol }

DATA_MODEL { student AS s}
FILTER_ON {s.idnumber = '00503100763'}
TARGET { mongodb }

30 FETCH {
s.identifier, s.title,s.idnumber,s.preferredname,s.initial,s.name, s.surname, s.dateofbirth,
s.gender, s.address.streetno, s.address.street, s.address.postalcode,
s.address.postaladdress, s.address.city,s.address.country.code,s.address.country.name,
s.contact.email, s.contact.mobile,s.register.studentno, s.register.faculty.code,
s.register.faculty.name, s.register.course.code, s.register.course.name,
s.register.subject.code, s.register.subject.name, s.register.subject.cost,
s.register.subject.duration, s.register.username,s.register.password, s.register.type,
s.register.ipaddress, s.register.date,s.transcript.subject, s.transcript.result,
s.transcript.symbol }

DATA_MODEL { student AS s}

 134

FILTER_ON { s.idnumber = '51701205088' AND s.gender = 'M'}
TARGET { mongodb }

55 FETCH {
s.title,s.idnumber,s.preferredname,s.initial,s.name, s.surname, s.dateofbirth, s.gender,
s.address.streetno, s.address.street,s.address.postalcode,s.address.postaladdress,
s.contact.email, s.contact.mobile}

DATA_MODEL { student AS s}
FILTER_ON { s.idnumber = '67101803610' AND s.gender = 'F'}
TARGET { neo4j }

56 FETCH {
s.title,s.idnumber,s.preferredname,s.initial,s.name, s.surname, s.dateofbirth, s.gender,
s.address.streetno, s.address.street,s.address.postalcode,s.address.postaladdress,
s.contact.email, s.contact.mobile}

DATA_MODEL { student AS s}
FILTER_ON { s.idnumber = '67101803610' OR s.gender = 'M'}
RESTRICT_TO { 100 }
TARGET { neo4j }

68 FETCH {
s.title,s.idnumber,s.preferredname,s.initial,s.name, s.surname, s.dateofbirth, s.gender,
s.address.streetno, s.address.street, s.address.postalcode, s.address.postaladdress,
s.address.city,s.address.country.code, s.address.country.name, s.contact.email,
s.contact.mobile,s.register.studentno, s.register.faculty.code, s.register.faculty.name,
s.register.course.code, s.register.course.name, s.register.subject.code,
s.register.subject.name, s.register.subject.cost, s.register.subject.duration,
s.register.username,s.register.password, s.register.type, s.register.ipaddress, s.register.date
}

DATA_MODEL { student AS s}
FILTER_ON { s.idnumber = '67101803610' AND s.gender = 'F'}
TARGET { redis, cassandra, mongodb, neo4j }

69 FETCH {
s.title,s.idnumber,s.preferredname,s.initial,s.name, s.surname, s.dateofbirth, s.gender,
s.address.streetno, s.address.street, s.address.postalcode, s.address.postaladdress,
s.address.city,s.address.country.code, s.address.country.name, s.contact.email,
s.contact.mobile,s.register.studentno, s.register.faculty.code, s.register.faculty.name,
s.register.course.code, s.register.course.name, s.register.subject.code,
s.register.subject.name, s.register.subject.cost, s.register.subject.duration,
s.register.username,s.register.password, s.register.type, s.register.ipaddress, s.register.date
}

DATA_MODEL { student AS s}
FILTER_ON { s.idnumber = '67101803610' OR s.gender = 'M'}
TARGET { redis, cassandra, mongodb, neo4j }

70 FETCH {
s.title,s.idnumber,s.preferredname,s.initial,s.name, s.surname, s.dateofbirth, s.gender,
s.address.streetno, s.address.street, s.address.postalcode, s.address.postaladdress,
s.address.city,s.address.country.code, s.address.country.name, s.contact.email,
s.contact.mobile,s.register.studentno, s.register.faculty.code, s.register.faculty.name,
s.register.course.code, s.register.course.name, s.register.subject.code,
s.register.subject.name, s.register.subject.cost, s.register.subject.duration,
s.register.username,s.register.password, s.register.type, s.register.ipaddress, s.register.date
}

DATA_MODEL { student AS s}
FILTER_ON { s.idnumber = '67101803610' OR s.gender = 'M'

AND s.register.studentno = '979883209'}
TARGET { redis, cassandra, mongodb, neo4j }

80 FETCH {
s.title,s.idnumber,s.preferredname,s.initial,s.name, s.surname, s.register.faculty.code,
s.register.faculty.name, s.register.course.code, s.register.course.name,
s.register.subject.code, s.register.subject.name }

DATA_MODEL { student AS s}
FILTER_ON { s.transcript.symbol = 'A' OR s.transcript.symbol = 'B'}
TARGET { redis, cassandra, mongodb, neo4j }

81 FETCH {
s.title,s.idnumber,s.preferredname,s.initial,s.name, s.surname, s.register.faculty.code,
s.register.faculty.name, s.register.course.code, s.register.course.name,
s.register.subject.code, s.register.subject.name, s.transcript.symbol }

DATA_MODEL { student AS s}
FILTER_ON { s.transcript.symbol = 'A' OR s.transcript.symbol = 'B'}
TARGET { redis, cassandra, mongodb, neo4j }

 135

APPENDIX N: Test Cases - Apply a limit to the dataset retrieval process

Unified Query
13 FETCH {

s.title,s.idnumber,s.preferredname,s.initial,s.name, s.surname, s.dateofbirth,
s.gender, s.address.streetno, s.address.street, s.address.postalcode,
s.address.postaladdress, s.address.city, s.address.country.code,
s.address.country.name, s.contact.email,
s.contact.mobile,s.register.studentno, s.register.faculty.code,
s.register.faculty.name, s.register.course.code, s.register.course.name,
s.register.subject.code, s.register.subject.name, s.register.subject.cost,
s.register.subject.duration, s.register.username,s.register.password,
s.register.type, s.register.ipaddress, s.register.date,s.transcript.subject,
s.transcript.result, s.transcript.symbol }

DATA_MODEL { student AS s }
RESTRICT_TO { 10 }
TARGET { cassandra }

31 FETCH {
s.title,s.idnumber,s.preferredname,s.initial,s.name, s.surname, s.dateofbirth,
s.gender, s.address.streetno, s.address.street, s.address.postalcode,
s.address.postaladdress, s.address.city, s.address.country.code,
s.address.country.name, s.contact.email,
s.contact.mobile,s.register.studentno, s.register.faculty.code,
s.register.faculty.name, s.register.course.code, s.register.course.name,
s.register.subject.code, s.register.subject.name, s.register.subject.cost,
s.register.subject.duration, s.register.username,s.register.password,
s.register.type, s.register.ipaddress, s.register.date,s.transcript.subject,
s.transcript.result, s.transcript.symbol }

 DATA_MODEL { student AS s }
 RESTRICT_TO { 10 }
 TARGET { mongodb }

46 FETCH {
s.title,s.idnumber,s.preferredname,s.initial,s.name, s.surname, s.dateofbirth,
s.gender, s.address.streetno, s.address.street, s.address.postalcode,
s.address.postaladdress, s.address.city,s.address.country.code,
s.address.country.name, s.contact.email,
s.contact.mobile,s.register.studentno, s.register.faculty.code,
s.register.faculty.name, s.register.course.code, s.register.course.name,
s.register.subject.code, s.register.subject.name, s.register.subject.cost,
s.register.subject.duration, s.register.username,s.register.password,
s.register.type, s.register.ipaddress, s.register.date }

DATA_MODEL { student AS s}
RESTRICT_TO { 100 }
TARGET { neo4j }

47 FETCH {
s.title,s.idnumber,s.preferredname,s.initial,s.name, s.surname, s.dateofbirth,
s.gender, s.address.streetno, s.address.street, s.address.postalcode,
s.address.postaladdress,
s.address.city,s.address.country.code,s.address.country.name,
s.contact.email, s.contact.mobile,s.register.studentno, s.register.faculty.code,
s.register.faculty.name, s.register.course.code, s.register.course.name,
s.register.username,s.register.password, s.register.type, s.register.ipaddress,
s.register.date }

DATA_MODEL { student AS s}
RESTRICT_TO { 100 }
TARGET { neo4j }

48 FETCH {
s.title,s.idnumber,s.preferredname,s.initial,s.name, s.surname, s.dateofbirth,
s.gender, s.address.streetno, s.address.street, s.address.postalcode,
s.address.postaladdress,
s.address.city,s.address.country.code,s.address.country.name,
s.contact.email, s.contact.mobile,s.register.studentno, s.register.faculty.code,
s.register.faculty.name, s.register.username,s.register.password,
s.register.type, s.register.ipaddress, s.register.date }

DATA_MODEL { student AS s}
RESTRICT_TO { 100 }
TARGET { neo4j }

49 FETCH {

 136

s.title,s.idnumber,s.preferredname,s.initial,s.name, s.surname, s.dateofbirth,
s.gender, s.address.streetno, s.address.street, s.address.postalcode,
s.address.postaladdress, s.address.city,s.address.country.code,
s.address.country.name, s.contact.email,
s.contact.mobile,s.register.studentno, s.register.course.code,
s.register.course.name, s.register.username,s.register.password,
s.register.type, s.register.ipaddress, s.register.date }

DATA_MODEL { student AS s}
RESTRICT_TO { 100 }
TARGET { neo4j }

50 FETCH {
s.title,s.idnumber,s.preferredname,s.initial,s.name, s.surname, s.dateofbirth,
s.gender, s.address.streetno, s.address.street, s.address.postalcode,
s.address.postaladdress, s.address.city, s.address.country.code,
s.address.country.name, s.contact.email, s.contact.mobile,
s.register.studentno, s.register.username,s.register.password, s.register.type,
s.register.ipaddress, s.register.date }

DATA_MODEL { student AS s}
RESTRICT_TO { 100 }
TARGET { neo4j }

51 FETCH {
s.title,s.idnumber,s.preferredname,s.initial,s.name, s.surname, s.dateofbirth,
s.gender, s.address.streetno, s.address.street, s.address.postalcode,
s.address.postaladdress, s.address.country.code, s.address.country.name,
s.contact.email, s.contact.mobile}

DATA_MODEL { student AS s}
RESTRICT_TO { 100 }
TARGET { neo4j }

52 FETCH {
s.title,s.idnumber,s.preferredname,s.initial,s.name, s.surname, s.dateofbirth,
s.gender, s.address.streetno,
s.address.street,s.address.postalcode,s.address.postaladdress,s.address.city,
s.contact.email, s.contact.mobile}

DATA_MODEL { student AS s}
RESTRICT_TO { 100 }
TARGET { neo4j }

53 FETCH {
s.title,s.idnumber,s.preferredname,s.initial,s.name, s.surname, s.dateofbirth,
s.gender, s.address.streetno, s.address.street, s.address.postalcode,
s.address.postaladdress, s.contact.email, s.contact.mobile}

DATA_MODEL { student AS s}
RESTRICT_TO { 100 }
TARGET { neo4j }

54 FETCH {
s.title,s.idnumber,s.preferredname,s.initial,s.name, s.surname, s.dateofbirth,
s.gender, s.address.streetno, s.address.street, s.address.postalcode,
s.address.postaladdress, s.contact.email, s.contact.mobile}

DATA_MODEL { student AS s}
FILTER_ON { s.idnumber = '72800706875'}
TARGET { neo4j }

 137

APPENDIX O: Test Cases - Apply sorting to the dataset retrieval process

Unified Query
14 FETCH {

s.title,s.idnumber,s.preferredname,s.initial,s.name, s.surname, s.dateofbirth, s.gender,
s.address.streetno, s.address.street, s.address.postalcode, s.address.postaladdress,
s.address.city, s.address.country.code, s.address.country.name, s.contact.email,
s.contact.mobile,s.register.studentno, s.register.faculty.code, s.register.faculty.name,
s.register.course.code, s.register.course.name, s.register.subject.code,
s.register.subject.name, s.register.subject.cost, s.register.subject.duration,
s.register.username,s.register.password, s.register.type, s.register.ipaddress,
s.register.date,s.transcript.subject, s.transcript.result, s.transcript.symbol }

DATA_MODEL { student AS s }
FILTER_ON { s.idnumber = '71100307130' OR s.gender = 'M'}
ORDER_BY { s.name}
TARGET { cassandra }

32 FETCH {
s.title,s.idnumber,s.preferredname,s.initial,s.name, s.surname, s.dateofbirth, s.gender,
s.address.streetno, s.address.street, s.address.postalcode, s.address.postaladdress,
s.address.city,s.address.country.code, s.address.country.name, s.contact.email,
s.contact.mobile,s.register.studentno, s.register.faculty.code, s.register.faculty.name,
s.register.course.code, s.register.course.name, s.register.subject.code,
s.register.subject.name, s.register.subject.cost, s.register.subject.duration,
s.register.username,s.register.password, s.register.type, s.register.ipaddress,
s.register.date,s.transcript.subject, s.transcript.result, s.transcript.symbol }

DATA_MODEL { student AS s }
ORDER_BY { s.name}
TARGET { mongodb }

33 FETCH {
s.title,s.idnumber,s.preferredname,s.initial,s.name, s.surname, s.dateofbirth, s.gender,
s.address.streetno, s.address.street, s.address.postalcode, s.address.postaladdress,
s.address.city,s.address.country.code, s.address.country.name, s.contact.email,
s.contact.mobile,s.register.studentno, s.register.faculty.code, s.register.faculty.name,
s.register.course.code, s.register.course.name, s.register.subject.code,
s.register.subject.name, s.register.subject.cost, s.register.subject.duration,
s.register.username,s.register.password, s.register.type, s.register.ipaddress,
s.register.date,s.transcript.subject, s.transcript.result, s.transcript.symbol }

DATA_MODEL { student AS s }
FILTER_ON { s.idnumber = '58308108421'}
ORDER_BY { s.name}
TARGET { mongodb }

34 FETCH {
s.title,s.idnumber,s.preferredname,s.initial,s.name, s.surname, s.dateofbirth, s.gender,
s.address.streetno, s.address.street, s.address.postalcode, s.address.postaladdress,
s.address.city,s.address.country.code, s.address.country.name, s.contact.email,
s.contact.mobile,s.register.studentno, s.register.faculty.code, s.register.faculty.name,
s.register.course.code, s.register.course.name, s.register.subject.code,
s.register.subject.name, s.register.subject.cost, s.register.subject.duration,
s.register.username,s.register.password, s.register.type, s.register.ipaddress,
s.register.date,s.transcript.subject, s.transcript.result, s.transcript.symbol }

DATA_MODEL { student AS s }
FILTER_ON { s.idnumber = '78702504377' AND s.register.studentno = '779529903'}
ORDER_BY { s.name}
TARGET { mongodb }

35 FETCH {
s.title,s.idnumber,s.preferredname,s.initial,s.name, s.surname, s.dateofbirth, s.gender,
s.address.streetno, s.address.street, s.address.postalcode, s.address.postaladdress,
s.address.city,s.address.country.code, s.address.country.name, s.contact.email,
s.contact.mobile,s.register.studentno, s.register.faculty.code, s.register.faculty.name,
s.register.course.code, s.register.course.name, s.register.subject.code,
s.register.subject.name, s.register.subject.cost, s.register.subject.duration,
s.register.username,s.register.password, s.register.type, s.register.ipaddress,
s.register.date,s.transcript.subject, s.transcript.result, s.transcript.symbol }

DATA_MODEL { student AS s }
FILTER_ON { s.idnumber = '24106105288' OR s.idnumber = '88404705416'}
ORDER_BY { s.name}
TARGET { mongodb }

36 FETCH {

 138

s.title,s.idnumber,s.preferredname,s.initial,s.name, s.surname, s.dateofbirth, s.gender,
s.address.streetno, s.address.street, s.address.postalcode, s.address.postaladdress,
s.address.city,s.address.country.code, s.address.country.name, s.contact.email,
s.contact.mobile,s.register.studentno, s.register.faculty.code, s.register.faculty.name,
s.register.course.code, s.register.course.name, s.register.subject.code,
s.register.subject.name, s.register.subject.cost, s.register.subject.duration,
s.register.username,s.register.password, s.register.type, s.register.ipaddress,
s.register.date,s.transcript.subject, s.transcript.result, s.transcript.symbol }

DATA_MODEL { student AS s }
FILTER_ON { s.idnumber = '24106105288' OR s.idnumber = '88404705416' AND s.gender = 'F' }
ORDER_BY { s.name}
TARGET { mongodb }

57 FETCH {
s.title,s.idnumber,s.preferredname,s.initial,s.name, s.surname, s.dateofbirth, s.gender,
s.address.streetno, s.address.street,s.address.postalcode,s.address.postaladdress,
s.contact.email, s.contact.mobile}

DATA_MODEL { student AS s}
FILTER_ON { s.gender = 'M'}
RESTRICT_TO { 100 }
ORDER_BY { s.surname, s.name}
TARGET { neo4j }

71 FETCH {
s.title,s.idnumber,s.preferredname,s.initial,s.name, s.surname, s.dateofbirth, s.gender,
s.address.streetno, s.address.street, s.address.postalcode,
s.address.postaladdress,s.address.city,s.address.country.code,s.address.country.name,
s.contact.email, s.contact.mobile,s.register.studentno, s.register.faculty.code,
s.register.faculty.name, s.register.course.code, s.register.course.name,
s.register.subject.code, s.register.subject.name, s.register.subject.cost,
s.register.subject.duration, s.register.username,s.register.password, s.register.type,
s.register.ipaddress, s.register.date }

DATA_MODEL { student AS s}
FILTER_ON { s.idnumber = '67101803610' OR s.gender = 'M' AND s.register.studentno =
'979883209'}
ORDER_BY { s.surname, s.idnumber}
TARGET { redis, cassandra, mongodb, neo4j }

 139

APPENDIX P: Test Cases - Aggregation on a datasets

Unified Query
19 FETCH{

s.idnumber, s.initial,s.name,
s.surname,s.transcript.subject,NAVG(s.transcript.result)}

DATA_MODEL { student AS s }
FILTER_ON { s.idnumber = '77607500615'}
TARGET { cassandra }

20 FETCH {
s.idnumber, s.initial, s.name, s.surname, s.transcript.subject,
NCOUNT(s.transcript.result) }

DATA_MODEL { student AS s }
FILTER_ON { s.idnumber = '77607500615'}
TARGET { cassandra }

21 FETCH {
s.idnumber, s.initial, s.name, s.surname, s.transcript.subject,
NMIN(s.transcript.result) }

DATA_MODEL { student AS s }
FILTER_ON { s.idnumber = '77607500615'}
TARGET { cassandra }

22 FETCH {
s.idnumber, s.initial, s.name, s.surname, s.transcript.subject,
NMAX(s.transcript.result) }

DATA_MODEL { student AS s }
FILTER_ON { s.idnumber = '77607500615'}
TARGET { cassandra }

37 FETCH {s.idnumber, s.initial, s.name, s.surname, NSUM(s.register.subject.cost) }
DATA_MODEL { student AS s }
FILTER_ON { s.idnumber = '58602700606'}
TARGET { mongodb }

38 FETCH {s.idnumber, s.initial,s.name, s.surname,NAVG(s.register.subject.cost)}
DATA_MODEL { student AS s }
FILTER_ON { s.idnumber = '58602700606'}
TARGET { mongodb }

39 FETCH{s.idnumber,s.initial,s.name,s.surname,COUNT(s.register.subject.cost) }
DATA_MODEL { student AS s }
FILTER_ON { s.idnumber = '58602700606'}
TARGET { mongodb }

40 FETCH {s.idnumber, s.initial,s.name, s.surname, NMIN(s.register.subject.cost)}
DATA_MODEL { student AS s }
FILTER_ON { s.idnumber = '58602700606'}
TARGET { mongodb }

41 FETCH {s.idnumber, s.initial, s.name, s.surname, MAX(s.register.subject.cost) }
DATA_MODEL { student AS s }
FILTER_ON { s.idnumber = '58602700606'}
TARGET { mongodb }

58 FETCH {s.idnumber, s.initial, s.name, s.surname, NSUM(s.transcript.result) }
DATA_MODEL { student AS s }
FILTER_ON { s.idnumber = '88404705416'}
TARGET { neo4j }

59 FETCH {s.idnumber, s.initial, s.name, s.surname, NAVG(s.transcript.result) }
DATA_MODEL { student AS s }
FILTER_ON { s.idnumber = '88404705416'}
TARGET { neo4j }

60 FETCH {s.idnumber, s.initial, s.name, s.surname, NCOUNT(s.transcript.result) }
DATA_MODEL { student AS s }
FILTER_ON { s.idnumber = '88404705416'}
TARGET { neo4j }

61 FETCH {s.idnumber, s.initial, s.name, s.surname, NMIN(s.transcript.result) }
DATA_MODEL { student AS s }
FILTER_ON { s.idnumber = '88404705416'}
TARGET { neo4j }

62 FETCH {s.idnumber, s.initial, s.name, s.surname, NMAX(s.transcript.result) }
DATA_MODEL { student AS s }
FILTER_ON { s.idnumber = '88404705416'}
TARGET { neo4j }

72 FETCH {s.idnumber, s.initial, s.name, s.surname, NSUM(s.transcript.result) }

 140

DATA_MODEL { student AS s }
FILTER_ON { s.idnumber = '21708702176'}
TARGET { redis, cassandra, mongodb, neo4j }

73 FETCH {s.idnumber, s.initial, s.name, s.surname, NAVG(s.transcript.result) }
DATA_MODEL { student AS s }
FILTER_ON { s.idnumber = '21708702176'}
TARGET { redis, cassandra, mongodb, neo4j }

74 FETCH {s.idnumber, s.initial, s.name, s.surname, NCOUNT(s.transcript.result) }
DATA_MODEL { student AS s }
FILTER_ON { s.idnumber = '21708702176'}
TARGET { redis, cassandra, mongodb, neo4j }

75 FETCH {s.idnumber, s.initial, s.name, s.surname, NMIN(s.transcript.result) }
DATA_MODEL { student AS s }
FILTER_ON { s.idnumber = '21708702176'}
TARGET { redis, cassandra, mongodb, neo4j }

76 FETCH {s.idnumber, s.initial, s.name, s.surname, NMAX(s.transcript.result) }
DATA_MODEL { student AS s }
FILTER_ON { s.idnumber = '21708702176'}
TARGET { redis, cassandra, mongodb, neo4j }

 141

APPENDIX Q: Test Cases - Update existing dataset

Unified Query
5 MODIFY { student }

PROPERTIES { gender = 'M'}
FILTER_ON { idnumber = '34502402028||'}
TARGET { redis }

6 MODIFY { student }
PROPERTIES { register.username = 'newuser', password = 'newpassword'}
FILTER_ON { idnumber = '47803702771'}
TARGET { redis }

23 MODIFY { student }
PROPERTIES { name = 'Test 1', surname = 'Test 2', initial = 'TT'}
FILTER_ON { identifier = '5' }
TARGET { cassandra }

24 MODIFY { student }
PROPERTIES { name = 'Micheal', surname = 'Corleone', initial = 'M'}
FILTER_ON { idnumber = '65500804135'}
TARGET { cassandra }

25 MODIFY { student }
PROPERTIES { name = 'John', surname = 'Doe', initial = 'JD'}
FILTER_ON { name = 'Micheal'}
TARGET { cassandra }

42 MODIFY { student }
PROPERTIES { name = 'Jane', surname = 'Doe', initial = 'JD'}
FILTER_ON { idnumber = '83604407222'}
TARGET { mongodb }

43 MODIFY { student }
PROPERTIES { name = 'Jane-Anne', surname = 'Jenkins', initial = 'JA'}
FILTER_ON { idnumber = '57508002711'

AND register.studentno = '391050029'}
TARGET { mongodb }

63 MODIFY { student }
PROPERTIES { name = 'Jane', surname = 'Doe', initial = 'JD'}
FILTER_ON { idnumber = '83604407222'}
TARGET { neo4j }

64 MODIFY { student }
PROPERTIES { name = 'Jane-Anne', surname = 'Jenkins', initial = 'JA'}
FILTER_ON { idnumber = '57508002711'

AND register.studentno = '391050029'}
TARGET { neo4j }

82 MODIFY { student }
PROPERTIES { name = 'Mary', surname = 'Poppins', initial = 'MP'}
FILTER_ON { idnumber = '85208201670'}
TARGET { redis, cassandra, mongodb, neo4j }

83 MODIFY { student }
PROPERTIES {

name = 'Clark',
surname = 'Kent',

 initial = 'Mel',
 title = 'MR',

preferredname = 'Superman'}
FILTER_ON { idnumber = '75602501070'}
TARGET { redis, cassandra, mongodb, neo4j }

84 MODIFY { student }
PROPERTIES {

name = 'Clark', surname = 'Kent',
 initial = 'Mel',
 gender = 'M',
 title = 'MR',
 preferredname = 'Superman'
}
FILTER_ON { identifier = '10000' }
TARGET { redis, cassandra, mongodb, neo4j }

85 MODIFY { student }
PROPERTIES { dateofbirth ='1970/10/13'}
FILTER_ON { identifier = '10000' }
TARGET { redis, cassandra, mongodb, neo4j }

 142

APPENDIX R: Test Cases - Data inserts

Unified Query
7 ADD { student }

PROPERTIES {
idnumber = '564379484',
name = 'Chuck T',
surname = 'Tester'}

TARGET { redis }

8 ADD { student }
PROPERTIES { name = 'Chuck T', surname = 'Tester'}
TARGET { redis }

26 ADD { student }
PROPERTIES {

identifier = '323323995',
idnumber = '876765564431',
title = 'Miss',
name = 'Lauren',
surname = 'Cole',
register.studentno = '7149222' }

TARGET { cassandra }

44 ADD { student }
PROPERTIES {

idnumber = '6062390',
title = 'Miss',
name = 'Lauren',
surname = 'Cole',
register.studentno = '53012' }

TARGET { mongodb }

 ADD { student }
PROPERTIES {

idnumber = '8078891',
title = 'Miss',
name = 'Lauren',
surname = 'Cole'}

TARGET { neo4j }

86 ADD { student }
PROPERTIES {

identifier='2913511',
idnumber = '980180616',
surname = 'Banner',
name = 'Bruce',
initial = 'BB',
gender = 'M',
title = 'Mr',
dateofbirth ='1970/10/13'
preferredname = 'Hulk'}

TARGET { redis, cassandra, mongodb, neo4j }

 143

APPENDIX S: Apdex Nonparametric Correlations

Correlation Parameters

 Max Mean Median Min Perc
entil
e

stdDev Sum Fifteen
Minute
Rate

Five
Minute
Rate

Mean
Rate

One
Minute
Rate

 1 .894** .877** .868** 1.00

0**

-.159* .946** -0.021 -0.021 -0.008 -0.021

 . <.001 <.001 <.001 . 0.011 <.001 0.738 0.738 0.894 0.738

 256 256 256 256 256 256 256 256 256 256 256

 .894** 1 .992** .994** .894

**

-.569** .758** -.288** -.288** -.266** -.288**

 <.001 . <.001 <.001 <.00

1

<.001 <.001 <.001 <.001 <.001 <.001

 256 256 256 256 256 256 256 256 256 256 256

 .877** .992** 1 .992** .877

**

-.584** .747** -.295** -.295** -.273** -.295**

 <.001 <.001 . <.001 <.00

1

<.001 <.001 <.001 <.001 <.001 <.001

 256 256 256 256 256 256 256 256 256 256 256

 .868** .994** .992** 1 .868

**

-.611** .732** -.312** -.312** -.289** -.312**

 <.001 <.001 <.001 . <.00

1

<.001 <.001 <.001 <.001 <.001 <.001

 256 256 256 256 256 256 256 256 256 256 256

 1.000

**

.894** .877** .868** 1 -.159* .946** -0.021 -0.021 -0.008 -0.021

 . <.001 <.001 <.001 . 0.011 <.001 0.738 0.738 0.894 0.738

 256 256 256 256 256 256 256 256 256 256 256

 -.159* -

.569**

-.584** -

.611**

-

.159

*

1 0.083 .621** .621** .592** .621**

 0.011 <.001 <.001 <.001 0.01

1

. 0.186 <.001 <.001 <.001 <.001

 256 256 256 256 256 256 256 256 256 256 256

 .946** .758** .747** .732** .946

**

0.083 1 .157* .157* .163** .157*

 <.001 <.001 <.001 <.001 <.00

1

0.186 . 0.012 0.012 0.009 0.012

 256 256 256 256 256 256 256 256 256 256 256

 -

0.021

-

.288**

-.295** -

.312**

-

0.02

1

.621** .157* 1 1.000** .987** 1.000**

 0.738 <.001 <.001 <.001 0.73

8

<.001 0.012 . . <.001 .

 144

 256 256 256 256 256 256 256 256 256 256 256

 -

0.021

-

.288**

-.295** -

.312**

-

0.02

1

.621** .157* 1.000** 1 .987** 1.000**

 0.738 <.001 <.001 <.001 0.73

8

<.001 0.012 . . <.001 .

 256 256 256 256 256 256 256 256 256 256 256

 -

0.008

-

.266**

-.273** -

.289**

-

0.00

8

.592** .163** .987** .987** 1 .987**

 0.894 <.001 <.001 <.001 0.89

4

<.001 0.009 <.001 <.001 . <.001

 256 256 256 256 256 256 256 256 256 256 256

 -

0.021

-

.288**

-.295** -

.312**

-

0.02

1

.621** .157* 1.000** 1.000** .987** 1

 0.738 <.001 <.001 <.001 0.73

8

<.001 0.012 . . <.001 .

 256 256 256 256 256 256 256 256 256 256 256

 145

APPENDIX T: Source Code

Project Name Unified Query Prototype

Description This project was created as part of the researcher MICT degree at
CPUT.

Location https://github.com/hadwinv/CPUT.Polyglot.NoSql.git

https://github.com/hadwinv/CPUT.Polyglot.NoSql.git

