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Abstract

In this project we are interested in using computers to predict the charac-
teristics of ocean waves where they meet the shore. Waves in the ocean play
an important role in a number of areas as follows: Out in the deep sea they
impact shipping and fishing. The breaking of waves along the coast results
in erosion and beach line changes. The breaking of waves also creates huge
forces on shoreline structures and can be very destructive. Thus a knowledge
of these waves and their characteristics is useful for beach management and
protecting coastal structures and harbours.

In order for numerical models to be valid, they must be comparable to
real world experimental equivalents. This is particularly true for complex
phenomena like Boussinesq beach waves. The Boussinesq equation is highly
nonlinear and is further complicated by the boundary conditions that need
to be satisfied. In this work we aim to numerically solve the equations for
water waves propagating along a narrow and long tank in which a sloping
bottom is introduced at one end. The purpose of the sloping bottom is to
create/simulate breaking waves. By doing so we aim to determine the domain
of validity for the chosen numerical scheme.

As a precursor for solving the Boussinesq equation, we first attempt to
numerically solve the classical one dimensional wave equation, followed by
the numerical solution of the Korteweg-de Vries (KdV) equation. In solving
these two partial di!erential equations we set the scene for the more complex
Boussinesq equation. In solving each of these equations we set up the dis-
cretisation procedure, followed by actual implementation of the discretised
equation using MATLAB.

In the numerical solution of the one dimensional wave equation and the
KdV equation, the accuracy of the numerical techniques is assessed by com-
paring them to analytical solutions or results published in the open literature.
In the case of the Boussinesq equation, the accuracy of the results are as-
sessed by comparing them to a real experiment conducted in a wave tank.
In both the numerical and experimental cases, we examine the changes in
wave profile, wave speed, and spectral content of the waves as they move
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from water of constant depth into a region containing a sloping beach where
breaking occurred.
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Chapter 1

Introduction

1.1 Background information

In the modern world computers are an integral part of our lives. Computers
are used for sending and receiving email messages, drafting documents, ac-
cessing the internet etc. Even our smart cell phones are computers. Business
and banking institutes rely on computers for securely storing and process-
ing personal and financial information. Recent advancements in everything
from self driving autonomous vehicles, drones, and farming machinery have
greatly benefitted from advancements in computing technology. Computing
has been used to enhance the capabilities of existing technology in every area
of our lives from real-time weather data applications on our phones to the
precision controls of aeroplanes that are informed by physical weather mod-
els. Even the oceans are modelled and used to optimise the routes taken by
freighter ships.

During the COVID-19 pandemic, for example, computers were exten-
sively used to predict the propagation and spreading of the coronavirus.
Computers have been used in modelling and predicting weather phenom-
ena for many years. In this project we are interested in applying computers
to solve wave propagation in the ocean. Waves in the ocean play an impor-
tant role in a number of areas as follows: Out in the deep sea they directly
impact shipping and fishing. Along the coast, the breaking of waves results
in erosion and beach line changes. Further, the breaking of waves creates
huge forces on coastal structures. Thus a knowledge of these waves and
their characteristics are useful for beach management and protecting coastal
structures and harbours.

There are many advantages to using computers to model waves propa-
gating up a sloping beach, as opposed to conducting laboratory experiments.
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Laboratory experiments involving beach waves require large experimental
apparatus which can be time consuming to build and maintain and can also
only model a small set of shoreline conditions. Numerical models allow the
study of waves that are described by very di!erent sets of parameters, giving
repeatable and reproducible results. This gives the researcher a high degree
of control over what is naturally a very chaotic phenomenon and can al-
low the investigation of wave phenomena on very di!erent scales, from small
scale surface waves to large ocean and coastal scenarios. This gives numer-
ical methods a naturally superior range of applicability that is simply not
possible in physical experiments.

Wave propagation is usually described mathematically using partial dif-
ferential equations (PDEs). In this thesis I will focus mainly on the following
PDEs:

1. The standard 1D wave equation which is described by:

ϖ
2
u

ϖt2
= c

2ϖ
2
u

ϖx2
, (1.1)

where u represents the displacement of some quantity and x and t are
the spatial and time variables respectively. This equation describes
waves such as those on a string or vibrations along a metal rod.

2. The Korteweg-de Vries equation (KDV) which is described by:

ϖu

ϖt
+ ϑu

ϖu

ϖx
+ µ

2ϖ
3
u

ϖx3
= 0, (1.2)

where u is the height of the wave, x is a spatial dimension, t is time,
and ϑ and µ are two real constants. This equation describes waves such
as those in a plasma and also in shallow water.

3. The Boussinesq equation which is described by:

ϑt+↓·(h+ ϑ)u+↓·
{(

zω

2
→ h

2

6

)
h↓ (↓ · u) +

(
zω +

h

2

)
h↓ [↓ · (hu)]

}
= 0,

(1.3)

ut + g↓ϑ + (u ·↓)u+zω

{
zω

2
↓ (↓ · ut) + ↓ [↓ · (hut)]

}
= 0, (1.4)

where ϑ is the water surface elevation, u = (u, v) is the horizontal
surface velocity at arbitrary depth zω, h is water depth, and g is the



1.2. AIMS AND OBJECTIVES 23

gravitational acceleration. The subscript t refers to time derivatives of
the respective quantity. This equation describes, for example, waves
propagating in shallow water and it is the equation which will be our
primary focus.

The emphasis in this thesis will be the numerical solution of the above equa-
tions, as opposed to their derivation or analytical solutions to these.

1.2 Aims and Objectives

The aim of this project is to simulate the dynamics of classical fluids. In
particular, we will examine water waves propagating in a narrow long tank
and approaching a sloping beach. In order to achieve this aim the following
objectives need to be completed:

1. Solve the 1D wave equation numerically as an introduction to numerical
techniques.

2. Solve the Korteweg-De Vries equation numerically for shallow water
waves.

3. Solve the Boussinesq equation for shallow water waves.

4. Compare results of Boussinesq simulation with existing experimental
data.

The following research design and methodology was adopted to achieve
the above mentioned aims and objectives:

1. Undertake a thorough study of how to use MATLAB to write programs
to solve PDEs numerically.

2. Review and implement current techniques used for solving di!erent
types of PDEs numerically (compare Direct Numerical Simulation (DNS),
Smoothed Particle Hydrodynamics (SPH) and Machine Learning (ML)
techniques).

3. Interpret and understand the theory behind each equation that is sim-
ulated.
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1.3 Outline of the thesis

The thesis is organised as follows:
In Chapter 2 an overview of various numerical techniques are provided.

These include: Finite Di!erence Methods (FDM), Finite Element Methods
(FEM), Smoothed Particle Hydrodynamics (SPH), AI based methods, and
Monte-Carlo methods.

In Chapter 3 I expand on the numerical analysis presented in Chapter 2.
Specifically the numerical solution of the standard 1D wave equation is discre-
tised and solved numerically. Further in this chapter I provide some methods
of assessing the stability of the numerical solutions.

In Chapter 4 the numerical solution of the Korteweg de Vries equation
is examined and its interaction with a standard cyclic boundary condition is
investigated. We then discuss methods for tracking the technique’s stability
using the laws of conservation of momentum and conservation of energy and
we comment on the unique interactions of KdV waves with each other.

In Chapter 5 I describe the discretisation of the Boussinesq equation
using a potential flow model. We then solve these equations numerically
using a predictor-corrector method. The derivation of these equations, and
specifically the conversion to and from velocity potentials is discussed in
detail.

Before examining the numerical solution of the Boussinesq equation, I
digress in Chapter 6 to examine data from a real experiment conducted by my
supervisor and his PhD student (Mukaro, Govender and Mccreadie, 2013).
The experiment involved waves propagating in a long tank and moving up a
sloping beach where breaking occurred. I examined the changes in the wave
profile, wave speed and spectral content of the waves as they move up the
beach. This analysis will be used as a base line in which to examine the
numerical solution of the Boussinesq equation.

In Chapter 7 I numerically simulate the experiment discussed in Chap-
ter 6. The analysis of the numerical results focuses on the same aspects of
the waves as the experimental analysis including changes in wave profiles,
wave speed, and spectral content of the waves. Comparisons are then drawn
between the two sets of results. The algorithms used for these analyses are
included and discussed in the text. Further, the simulation allows us to gen-
erate and analyse data at points along the beach that were outside of the
range of the experimental setup.

Note that each chapter contains detailed citation of references, which
represents the literature that was studied.



Chapter 2

Numerical Methods

2.1 Introduction

In this chapter we will investigate various approaches to solving partial dif-
ferential equations numerically. We will define the types of problems we are
aiming to solve and choose an appropriate class of techniques which we will
then use to solve an example equation. Doing so will allow us to go into
more detail about the specific complexities of numerical simulations and the
common features they share.

When replicating a physical system in a simulation we are naturally most
concerned about real-world accuracy. Does the simulation accurately and
reliably predict phenomena that we see in the physical world? If it does, a
simulation then conforms to all the same principles of a classical experiment,
as long as it takes into account all of the e!ects it is trying to model. How-
ever, the simulation space contains limitations that we do not have in the
real world. For many cases, the real world can be considered to consist of
continuous quantities. However when we simulate it, we are forced to com-
pute discrete quantities. The process of solving equations at specific intervals
in time and space is called discretisation.

The problems we are trying to solve with numerical computing are of-
ten too complex to be solved analytically, and can in many cases be solved
through experimentation. However, real world experiments are costly and
time consuming to run. The problems of ocean waves specifically are good
candidates for numerical simulation because we can solve these equations
with a great degree of control over the experiment itself.

Before going into detail about the equations that will form the subject
of this thesis, let us briefly review some modern numerical simulation tech-
niques.
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2.2 Overview of numerical simulation tech-
niques

2.2.1 Finite di!erence methods

Finite di!erence methods take the simplest and perhaps most obvious ap-
proach to solving di!erential equations. The simulation space is divided into
a grid of points at which computations can take place and the number of
these points is determined by a spatial discretisation step size and the total
size of the domain. In its simplest form, this grid is regularly spaced in all
directions, and does not change with time. The concept of breaking a space
down into finite di!erences was described by Brook Taylor in the 1700’s, and
his work on the Taylor series is the place from which many modern finite
di!erence techniques are derived. It was used to solve the first Boussinesq
equations for water waves on a beach, and newer techniques can solve cou-
pled Schrodinger-Boussinesq equations using the same principles (Deng and
Wu, 2021; Peregrine, 1967). This shows that while it is the oldest of the
numerical methods, it is used extensively in modern literature.

One of the most obvious ine”ciencies of this method is that computation
is spread evenly throughout the simulation space. If more detailed computa-
tion is required in a specific region, the entire space is forced to be computed
at a higher resolution. To combat this dilemma many techniques have been
devised to subdivide regions that require more details into grids of higher
resolution as shown in Figure 2.1. While this type of spatial optimization is
more typical of finite element methods, it is heavily researched and applica-
ble to all types of numerical simulations (Catmull and Clark, 1978; Chong,
1978; Li, Wei and Zhang, 2019; Sederberg, Zheng, Sewell and Sabin, 1999).

2.2.2 Finite element methods

In finite di!erence methods the simulation space is populated by a finite
number of computation points. These points are distributed throughout the
space with areas of high complexity having a correspondingly higher density
of these points. In this way, finite di!erence methods aim to optimize the
number of computation points needed to successfully approximate a solution.
As the simulation evolves, the distribution of these points can be adjusted
in a process called remeshing. Generally a greater density of computation
points is assigned to areas with larger spatial or temporal derivatives. Much
e!ort has been dedicated to this in recent years to make highly e”cient,
highly scalable numerical techniques (Ando, Thurey and Wojtan, 2013; Xiao
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Figure 2.1: Work by Ho-Young Kim and Hyun-Gyu Kim showing a remeshing
technique called adaptive trimmed hexahedral (TH) mesh refinement where
a higher mesh density is achieved surrounding the location of a crack in a
material by subdividing the parts of the grid into smaller regions (Kim and
Kim, 2021).

et al., 2020). This idea can be seen in Figure 2.1 where meshes are fit-
ted to the specific geometry of the problem being solved so as to optimize
the computation of the solution. One modern technique skips the issue of
mesh generation entirely with a novel Monte Carlo based geometry process-
ing technique (Sawhney and Crane, 2020). This technique will be discussed
in Section 2.2.4.

2.2.3 Smoothed Particle Hydrodynamics (SPH)

Smoothed Particle Hydrodynamics is a particle based numerical technique
that developed out of astrophysics in the 1990s. The first versions of the
technique su!ered from weak convergence characteristics, but have since ma-
tured to have fourth order convergence accuracy (Lind and Stansby, 2016).
SPH approaches are typically more complex to implement and more compu-
tationally demanding than finite di!erence and finite element methods, but
have the advantage of being highly parallelizable and e!ective on parallel
processing units (Lind, Rogers and Stansby, 2020). This allows the number
of simulated particles in some studies to exceed one hundred million even
back in 2010 (Maruzewski, Le Touzé, Oger and Avellan, 2010). SPH has
proven to be a versatile numerical method and has been used to solve prob-
lems in many domains including the non-linear Schrödinger equation from
Quantum Mechanics (Mocz and Succi, 2015). These techniques have the less-
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acknowledged advantage of being somewhat more intuitive to understand and
implement. Instead of dealing only with grids of data, this technique lends
itself naturally to conventional object oriented software principles by mod-
elling “particles” directly. This can make this type of software more scalable
and maintainable for the ones implementing it at scale.

SPH is known as a meshless or mesh-free method. One begins with a
number of particles that are analogous to the grid points of mesh based
methods - that is, they act as points at which computations can be carried
out. These particles have mass, experience forces and are free to move about
in the simulation space. Forces are computed between neighbouring particles
subject to a smoothing function. The smoothing function defines the strength
of the interactions and is often chosen to be a Gaussian function centred on
the specified particle as shown in Figure 2.2.

Figure 2.2: Diagram showing two dimensional SPH simulation in a domain #
with surface S. All field calculations are computed for each particle i within
the support domain with radius ωhi. These values are averages over all j
using the smoothing function S. Here rij denotes the distance between the
particle i and the subject particle in particle group j (Liu and Liu, 2010).

This smoothing function is chosen to taper o! to zero at a specific length.
This is called the smoothing length and e!ectively defines a radius around the
particle within which to compute neighbouring particle searches and interac-
tions. As an optimization this smoothing length can be variable (Zeng, Wu,
Deng, Zhu and Chi, 2021). Mesh-free methods have the intrinsic advantage
that computation is limited to areas of the simulation space that actually
contain fluid. This completely avoids the problems of remeshing found in
Sections 2.2.1 and 2.2.2.

Despite these advantages, SPH remains a relatively complex CFD tech-
nique requiring more e!ort to characterise boundary conditions, achieve re-
liable convergence rates, and manage spurious pressure wave fluctuations



2.2. OVERVIEW OF NUMERICAL SIMULATION TECHNIQUES 29

(Lind et al., 2020).

2.2.4 AI based techniques

The approach taken by the Artificial Intelligence pioneers, Deepmind, at-
tempts to merge two highly complex fields of computer science (Pfa! et al.,
2021). The first being general purpose AI, and the second being highly e”-
cient, highly accurate numerical techniques.

In this approach an AI model is trained on real world data then asked to
extrapolate a new, unseen set of data. These methods often involve a finite
element based spatial discretisation coupled with a learning based temporal
extrapolation technique. The unique approach of Pfa! et al. (2021) uses an
AI to predict the change in a system by encoding the system’s state in a
graph network. They call this framework MESHGRAPHNETS. Figure 2.3
below shows the results obtained from the same model for four very di!erent
physical problems.

Figure 2.3: State of the art techniques can predict the evolution of vastly
di!erent physical systems. The technique by Pfa! et al. (2021) is shown to
accurately simulate the interactions between (a) wind and cloth, (b) a metal
plate and actuator, (c) turbulent flow of water around a cylinder in 2D, and
(d) airflow around an airfoil in 2D.

The AI propagates learned changes through the network and the results
are decoded and fed back into the system to compute the next state using Eu-
lerian integration. This method combines finite element and AI based meth-
ods and incorporates a remeshing algorithm to optimize the mesh. AI based
methods tend to be used primarily for film and computer graphics where vi-
sual appeal is valued over physical accuracy. However, MESHGRAPHNETS
has the ability to accurately predict the evolution of a wide range of physical
systems including aerodynamics, fluid dynamics, cloth, and structural me-
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chanics while outperforming other particle and grid based methods. AI based
simulations have reached a point where they can be unconditionally stable,
and in some cases orders of magnitude more e”cient than direct numerical
simulations (Holden et al., 2019; Sanchez-Gonzalez et al., 2020).

2.2.5 Monte Carlo methods

As mentioned previously, one novel technique takes a Monte-Carlo approach
to solving partial di!erential equations. A paper by Sawhney and Krane
(2020) relies on a technique called Monte-Carlo integration which states that
the integral of a function f can be estimated simply by randomly sampling the
domain. The integral will then be the average value of the samples weighted
by the probability distribution from which those samples are drawn.

For an arbitrary probability distribution we have

FN =
1

N

N∑

i=1

f (Xi)

p (Xi)
, (2.1)

where f is the function to be integrated and FN is the approximation of
its integral, N is the number of samples, p is the probability distribution
function of the random numbers, and X is a random sample. The probability
distribution used can be chosen so that samples are more frequently chosen at
“important”1 locations along the function. Monte-Carlo based methods avoid
the use of meshes entirely and are therefore known as mesh-free. Equation 2.1
forms the foundation of Monte-Carlo based techniques and is unique amongst
other numerical techniques in that it allows one to introduce many tools from
the field of statistics into its simulations.

Monte-Carlo techniques have been largely unexplored in the last half-
century as a tool for solving PDEs. Recently, however, there is a renewed
interest in these techniques as described in an exciting paper by Sawhney and
Krane (2020). Their paper develops ideas that were first proposed in 1956
in a paper titled Some Continuous Monte Carlo Methods for the Dirichlet
Problem (Muller, 1956). In this paper, Muller derived an algorithm called
Walk on Spheres (WoS) that combines two statistical principles, known as
Kakutani’s Principle (Kakutani, 1944) and the Mean Value Property (Axler,
Bourdon and Wade, 2013) in order to solve PDEs. With reference to Fig-
ure 2.4, Muller showed that the solution to an elliptic PDE at a point x

1
This idea is known as importance sampling and is analogous to the job of remeshing in

other aforementioned numerical techniques in that it optimizes the position of computation

points.
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within a domain is equal to the average of boundary values reached by re-
cursively choosing a random point on a sphere centred at xi until reaching
the boundary.

With reference to Figure 2.4, we randomly choose a point x0 within the
domain #. We then find the largest possible sphere centred at this point
that fits within the domain. This circle will be touching the boundary of
the domain at least at one point. We then pick a random point x1 on the
surface of this sphere and use this as the centre of our next sphere. This
process is repeated until the randomly chosen point xk is within some min-
imum distance ϖ# from the domain boundary. The quantity simulated (for
example the temperature of a material) is then sampled at this boundary
point. Using Equation 2.1 the a solution can be computed at the point x0

by doing a number of random walk on spheres starting at x0. This process
is then repeated any number of times at random places in the domain. This
technique is unique in that the entire domain does not need to be considered
in order to find a solution at a specific point, meaning that a rough initial
solution can be quickly found and can then be progressively refined in suc-
cessive iterations. This is very useful for simulations running on complex and
time consuming geometries.

Figure 2.4: The walk on spheres algorithm recursively chooses a random
point on the largest sphere as possible at point xi within the simulation
space until it comes within some minimum distance of the boundary.

In a comparison between a FEM technique and their WoS technique on
a highly detailed geometry, the authors found that while the FEM took 14
hours and used 30GB of memory to solve the Poisson equation, their ap-
proach used 1GB of memory and took less than a minute to compute. While
this approach has obvious benefits for many applications, it is however, lim-
ited to elliptic equations with Derichlet boundary conditions (Sawhney and
Crane, 2020). In 2023 the authors published a paper about an evolution of
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the WoS algorithm which they call Walk on Stars (WoSt) which can solve
elliptic PDE’s with Neumann boundary conditions as well as the normal De-
richlet boundary conditions (Sawhney, Miller, Gkioulekas and Crane, 2023).
It remains however unable to support the solution of the more complex, non-
linear hyperbolic equations that are dealt with as the subject of this thesis.

Something very important to note is that while this technique cannot
directly solve fluid equations, it has one application of particular interest
to fluid simulations. This is that it is able to perform Helmholtz-Hodge
Decomposition which is one of the fundamental theorems of fluid dynamics
(Bhatia, Norgard, Pascucci and Bremer, 2013). This o!ers a new and exciting
alternative for this specific part of many existing numerical techniques.

2.3 Summary

In this chapter an overview of the various numerical schemes for solving
PDEs have been provided. These include finite di!erence methods, finite
element methods, smooth particle hydrodynamics, Al based techniques, and
Monte-Carlo based techniques. The advantages and disadvantages were also
discussed.

In the next chapter we will proceed with a worked example. The finite
di!erence technique that will be used in this example will form the founda-
tion of the numerical solution of the Boussinesq equation. We will use the
wave equation as a case study to investigate this technique and its various
properties and how they can be used to solve more complex equations.



Chapter 3

Numerical analysis of the wave
equation

3.1 Introduction

In this chapter I lay out the basic framework for how PDEs are solved nu-
merically. I begin with the wave equation and schemes for discretising it.
Thereafter, I show how these techniques can be used to solve more advanced
equations. I will also discuss the more practical considerations of the sim-
ulations. The handling of boundary and initial conditions, computational
molecules/stencils, and techniques of stability analysis is discussed in this
chapter.

3.2 Discretising the Wave Equation

Suppose we have a one dimensional rod and we want to examine the vibra-
tions propagating along it or the propagation of surface water waves in a long
tank. These waves can be described by the wave equation

ϖ
2
u

ϖt2
= c

2ϖ
2
u

ϖx2
, (3.1)

where u is the height of the wave and c is a measure of the speed of the wave.
Here we have x as the spatial dimension and t as the time dimension. Many
numerical methods exist for solving for u in this equation with their own pros
and cons. The method shown here is known to be one of the most desirable
because of its stability, e”ciency and simplicity - the explicit methods. With
this type of method we attempt to solve for u directly instead of one of its
derivatives. This avoids having to use an extrapolation technique to integrate
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this derivative to solve for u. This reduces the complexity of the simulation
and results in faster and more stable solutions.

At this point it is good to establish a naming convention for our deriva-
tions. When solving for the quantity, u, along the surface of a one dimensional
bar of length, l, we can define the discretisation as follows. Derivatives of u
in the x direction are defined as ux and uxx for the first and second order
derivatives, and similarly for the time derivatives ut and utt. We split up the
length of the bar into J pieces each of length $x, where the j

th region is
j$x distance along the bar as shown in Figure 3.1. We can then solve the
equation for any time k$t in the future up to time K. The disturbance/dis-
placement u from its equilibrium position at time t at position j, k would be
u (j, k) and its first derivative, ux (j, k).

The problem now is to rewrite Equation 3.1 in terms of these discrete
points. We want to find the value of u at (x, t) = (j, k + 1). That is, the
height of the wave at this point on the next iteration. Using the Taylor series
in Equation 3.2 we can get an expression for u (j, k + 1) in terms of u (j, k)
and its derivatives:

u (j, k + 1) = u (j, k) + ux(j, k)$x+
1

2
uxx (j, k)$x

2
. (3.2)

This allows us to solve for the first and second derivatives ux and uxx as
follows. Dividing by $x and ignoring the uxx term we get the forward
di!erence equation:

ux (j, k) ↔
u (j + 1, k)→ u (j, k)

$x
. (3.3)

Similarly we can derive the backward di!erence equation:

ux (j, k) ↔
u (j, k)→ u (j → 1, k)

$x
. (3.4)

We can use the Taylor series in a similar way to find the centred di!erence
for the second derivatives to be

uxx (j, k) ↔
u (j + 1, k)→ 2u (j, k) + u (j → 1, k)

$x2
. (3.5)

In the same way, one can get a similar expression for the time derivative.
Substituting Equation 3.5 and a similar expression for utt (j, k) into Equa-
tion 3.1 we get
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u (j, k + 1)→ 2u (j, k) + u (j, k → 1)

$t2
= c

2u (j + 1, k)→ 2u (j, k) + u (j → 1, k)

$x2
.

(3.6)

Solving for u (j, k) and letting r = c!t
!x , we get

u (j, k + 1) = 2u (j, k)
(
1→ r

2
)
+ r

2 [u (j + 1, k) + u (j → 1, k)]→ u (j, k → 1) .
(3.7)

Figure 3.1: An example of a discretised simulation space showing the length
of the bar separated into regular intervals in j and computed each iteration
k using the computational molecule described in Figure 3.2. The bar is
separated lengthwise into segments each of length $x shown from left to
right, and three iterations through time are shown each of length $t.

Now we have a way to explicitly compute the value of u at any point
on a discrete grid. This is the basic method for discretising PDEs and more
advanced techniques often still draw from these fundamental concepts. There
are many ways to discretise an equation and not all such derivations provide
stable results. However, much e!ort in the scientific community has gone
into finding the methods that do and these methods are examined in the
relevant sections for each equation.

In this section we have discretised the wave equation and shown a basic
scheme for computing the next value of u given any j. We can see that
the scheme developed takes into account the current value of u, u (j, k), the
value to the left, u (j → 1, k), the value to the right, u (j + 1, k), and the
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previous value of u, u (j, k → 1). This is known as a three level scheme and
its computational molecule is shown below in Figure 3.2.

Figure 3.2: The computational molecule for the discretised wave equation in
Equation 3.7.

Since the solution of the next time iteration is dependent on the results
of the previous two iterations, we need two initial conditions in order to com-
pute the first new iteration. These initial conditions, along with the concept
of boundary conditions, will be introduced in Section 3.3.

3.3 Initial and Boundary Conditions

Boundary conditions describe what happens at the edges of our simulation
space and, in the real world, describe how the system interacts with its
surroundings. Boundaries can simply be the borders of the simulation space
or in more complex simulations they can describe the borders of foreign
objects within the space. In our simulations they serve two functions. They
describe what happens at the borders of the space, and they occupy a gap
of cells that the discretisation is not able to fill.

When discretising an equation we often end up with a solution describing
uj,k+1 in terms of uj,k and its left and right neighbours. On their own, these
schemes cannot compute the values at the edges of our simulation space as
they depend on values that lie outside of it. This is shown in Figure 3.3.
When boundary conditions are added we can solve the equation as shown in
Figure 3.4.

Boundary conditions can have various physical meanings. Below I sepa-
rate them into two main types. Those that are dependent on the state of the
system and those that are not.
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Figure 3.3: Due to the nature of the computational molecule, we cannot
simply compute the value of u at the boundaries. This prevents us from
solving further cells in the grid.

1. Independent Boundary Conditions

(a) Function of an external system
The boundary conditions can change entirely independent of the
rest of the system, according to some function f (x). Physically
for the wave equation this corresponds to waves being forcefully
generated at the boundaries of the system. For example by a wave
generator in a wave tank.

(b) Constant / Fixed
These boundary conditions keep the same value through the whole
duration of the simulation. This can be used to simulate reflection
of waves o! of walls. Also used as the bottom boundary in Navier-
Stokes simulations of wall bounded flow to simulate the No-Slip
Boundary condition (Sengupta and Bhaumik, 2019).

2. dependent Boundary Conditions

(a) Cyclic
With this boundary condition waves approaching a boundary on
one side reappear at the other boundary moving in the opposite
direction. Can be thought of as a connection directly from one
end to the other. This has been used by Zabusky and Kruskal in
their original numerical solution of the Korteweg-De Vries equa-
tion (Zabusky and Kruskal, 1965).
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(b) Open ended
The boundary maintains the same value as its nearest neighbour.
Physically this can simulate water waves slipping up a wall as the
waves strike the wall or waves that reach the end of a string that
is not attached to anything.

Figure 3.4: The entire simulation space for the 1D wave equation. This
includes the first and second initial conditions, the left and right boundary
conditions, and the solution space where the explicit numerical scheme will
be computed. The first two iterations are explicitly specified.

As shown in Section 3.2, the explicit scheme for solving the wave equation
is a three level scheme. To compute uj,k+1 we need the data from the previous
two iterations in time. This means we need two initial conditions: the state
of the system at t = t0 and at t = t0+$t = t1. These are shown in Figure 3.3.

In its analytical form, the one dimensional wave equation has two sets of
boundary conditions, one for each of its bases, x, and t:

u (0, t) = 0, (3.8)

and

u (L, t) = 0, (3.9)

where u is the height of the wave from its resting position, t is time, and L is
the distance from the left boundary to the right. These equations state that
the disturbance/displacement at the left and right boundaries must always
remain at the resting position. For all time t, the displacement is zero at
x = 0 and x = L. These equations are in fact just one set of possible
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equations for the boundaries. In the case where the wave is being driven by
an external input from the left, the left boundary could be based on some
time dependent function, f (t):

u (0, t) = f (t) . (3.10)

In the same way that we are unable to solve the wave equation on the left
and right spatial boundaries, we are also limited in the time domain. For
this reason we require that the initial state must be defined by

u (x, 0) = g (x) , (3.11)

where g (x) is some known function. We then also have the option to define
initial conditions for derivatives of u. While it is possible for these to be
initialized as being zero, it is common for them to be defined based on some
function that relates to u:

ϖu

ϖt
= h (u, x) . (3.12)

Equations 3.8, 3.9, and 3.10 translate trivially to their discretised counter-
parts. For the left and right boundaries in a simulation, u is simply set to
zero each iteration. This is normally done directly after the data for the
iteration in question has been computed. This ensures that the boundary
conditions are prepared for use in the following iteration. The initial con-
ditions for derivatives in Equation 3.12 can similarly be set in this fashion.
For Equation 3.11 we simply set the values of the entire first iteration to
the value of g(x). This then gives us the information we need to compute
subsequent iterations.

3.3.1 Corner points

A common boundary condition for water wave equations is the no-slip condi-
tion (Blazek, 2001; Wei and Kirby, 1995). It states that a fluid at a boundary
does not have any velocity in the direction along the surface of the boundary,
i.e. any velocity perpendicular to the boundary normal is always zero. This
is stated generally as

↓u · n = 0, (3.13)
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where u is the water surface height and n is the normal to the wall surface.
In a 2 dimensional simulation this kind of boundary condition results in two
equations being applied to the corner points of the simulation space. One for
the x direction and another for the y direction. For the bottom left corner
of a 2D space we have

ux (x, 0) = 0, (3.14)

because of the bottom boundary condition and

uy (0, y) = 0, (3.15)

due to the left hand boundary. For the corner point at (0, 0) we have a
velocity vector v (0, 0) described by

v (0, 0) = (0, 0) . (3.16)

Similarly this is applied to all other corner points.

3.4 Stability Analysis

Every discretisation has an accompanying truncation error - a measure of
the error that arises from replacing derivatives in an equation with discrete
approximations (Logan, 1987). In addition, details below the resolution of
our discretisation grid are lost and those that occur on time scales shorter
than $t are also lost. There is therefore a need for strict stability analysis of
each numerical technique to determine how well they represent reality. Below,
an analysis is conducted to find the Courant-Friedrichs-Lewy (CFL) stability
condition for the wave equation which determines under which conditions
the numerical solutions converge. When finding a CFL condition our aim
is to determine under what exact conditions our discretisation is valid for
this solution. It can be useful then to solve for some quantity involving our
discretisation variables, $x and $t.

Beginning with Equation 3.1, we assume a solution to the PDE of the
form:

u (j, n) = M
n cosϱx (j) . (3.17)



3.4. STABILITY ANALYSIS 41

The above choice of trial function is based on a method developed by John
von Neumann for examining stability (Long, 2006a). The quantity M above
is called the magnification factor and we want this factor to be less than
one. This will ensure that the solution does not grow with time. The symbol
n refers to the time increments. The goal then is to determine the condi-
tion when |M | < 1. The cosϱx is just a convenient function for the initial
condition which we can control the values of. Substituting the above into
Equation 3.7 (our discretised wave equation) we obtain

M
2 →

(
2→ 4r2 sin2 ϱ$x

2

)
M + 1 = 0. (3.18)

We remind the reader that here, r is a quantity indicating the speed of the
waves, scaled by a constant dependent on our discretisation: r = c!t

!x . Solving
for M we get

M = 1→ 2r2 sin2 ϱ$x

2
± 2r sin

ϱ$x

2

√
r2 sin2 ϱ$x

2
→ 1. (3.19)

There are two cases to consider: if r ↗ 1 and r > 1. Beginning with
the former we can see that the right hand term becomes imaginary when
r
2 sin2 ω!x

2 → 1 ↗ 0. In such a case we get

M = 1→ 2r2 sin2 ϱ$x

2
± i2r sin

ϱ$x

2

√
r2 sin2 ϱ$x

2
→ 1. (3.20)

Taking the absolute value we can remove i from the equation

|M | =

√(
1→ 2r2 sin2 ϱ$x

2

)2

+

(
4r2 sin2 ϱ$x

2

(
1→ r2 sin2 ϱ$x

2

))
= 1.

(3.21)

Here we have one solution for |M |, although it is not immediately obvious
how much this says about the constraints of our simulation. Reminded of
our goal of solving for some quantity containing $x and $t we look at the
second of the two cases in Equation 3.19.

Considering the case where r > 1, we choose ϱ such that ϱ$x = ε. Thus
the sin terms in Equation 3.19 become 1. Then taking the negative sign in
Equation 3.19 gives
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M = 1→ 2r2 sin2 ϱ$x

2
→ 2r sin

ϱ$x

2

√
r2 sin2 ϱ$x

2
→ 1. (3.22)

Thus |M | > 1. Consequently solutions of the di!erence equation remain
bounded for all ϱ only in the case described by:

r =
c$t

$x
↗ 1, (3.23)

which is the Courant-Friedrichs-Lewy (CFL) stability condition for hyper-
bolic equations which can be written as

$x

$t
↘ c. (3.24)

Physically this CFL condition means that the numerical solution cannot
proceed at a slower rate than the speed of the fastest waves in the simulation.
This result allows us to choose values for $x and $t that produce accurate
results.

Here we have produced a reliable mechanism for tracking the convergence
of our numerical scheme. This was done through careful mathematical anal-
ysis of the expected solution of the equations. For more complex systems,
CFL conditions may be notably more di”cult to determine, and in such cases
other methods of stability analysis are used. In later chapters we will see that
we can take advantage of the laws of conservation of mass and momentum, or
other predictable parameters, to keep track of the stability of a system and
is an important area of research today (Yan, Zheng, Lu and Zhang, 2022).

The results of this simulation of the 1D wave equation are discussed in
the next section.

3.5 Numerical Results

Using the explicit scheme shown in Equation 3.7, we can compute the solution
to the wave equation along the length of the bar at each time interval. For
our initial conditions we begin with two wave peaks travelling in opposite
directions. We arbitrarily define the initial condition as the sum of two
hyperbolic functions given by u (x, t0) = f (x, t0, b) +

1
2f (x,→t0, 3b) where

f (x, t, b) = cosh→2 (x→ t→ b) and x is the axis of propagation of the wave, t
is time, and b is a constant controlling a spatial o!set for the waves. As can
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be seen this gives us two wave peaks with one having an o!set three times
that of the other. In order to di!erentiate the two peaks, the second wave
was arbitrarily chosen to have half the amplitude of the other. The inverse
hyperbolic cosine function (or hyperbolic secant function) is often used in the
literature for investigating stability and dispersive properties of solitary wave
propagation (Schember, 1982; Wei and Kirby, 1995). After one iteration, a
time $t has passed and the second initial condition has become u (x, t1) =
f (x, t1, b) +

1
2f (x,→t1, 3b). The boundary conditions are u (0, t0) = u (1, t)

and u (l, t) = 0, where l is the length of the bar. The discretisation parameters
are $t = 0.02,$x = 0.025. We evolve the simulation over 600 iterations
through 12 seconds of time, filling in the solution space at t = (k + 1)$t

each iteration. Cross sections of the results are plotted in Figure 3.5.
Figure 3.5 shows the interaction of two oppositely moving wave fronts.

At time t = 0s, the two wave fronts are far enough away from each other so
that we can consider them to have no overlap. At t = 2s and t = 3s the two
waves are superimposed. The waves have to retain their original amplitudes
before and after the interaction. The smaller of the two waves then reaches
the fixed left boundary between t = 8s and t = 10s and reflects o! it and
inverts its amplitude and velocity.

Next, the paths of the two waves can be seen in a heat map shown in
Figure 3.6. From here we can clearly see the paths of the waves and the point
of their interaction in space-time. The interaction of the two waves does not
alter their phase. This is important to note as the types of waves investigated
later in this study, do not act in this way. Interactions between KdV waves
can result in phase shifts and the state of the waves after an interaction
can depend on the relative velocity of the individual waves. Waves in these
models can reflect or transmit through each other based on their relative
velocities. These will be discussed in more detail in the relevant sections to
follow.

3.5.1 Comparison with analytical solution

In order to measure the accuracy of our numerical solution we can compare
it against an analytical solution. Our initial conditions describe two wave
fronts moving in opposite directions. The large wavefront moving to the
right and the smaller wavefront moving left towards the reflective fixed point
boundary.

Our initial condition can be described by u (x, t) = f (x) + g (x) where
f is the smaller wavefront and g is the larger. We can define the e!ect of
a left boundary condition by adding another term to describe an inverted,
oppositely directed wavefront that meets f at the boundary. Our function
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u (x, t0) = f (x, t0, b) +
1
2f (x,→t0, 3b) u (0, t) = u (1, t)

u (x, t1) = f (x, t1, b) = f (x, t0 + dt, b) u (l, t) = 0
dt = 0.02 dx = 0.025
b = 3

Figure 3.5: The path of two waves according to the wave discretised wave
equation where f (x, t, b) = cosh→2 (x→ t→ b). In the figure above, u repre-
sents the amplitude on the vertical axis and x and t are distance and time,
respectively, on the horizontal axes.

then becomes u (x, t) = f (x) → f (→x) + g (x) which can fully describe the
reflection for all 0 ↗ x < ≃. Using this function we can directly compute
the height of the wave surface at any point in time to use as a comparison
for our numerical solution.

In Figure 3.7 the numerical and analytical solutions are plotted over one
another. It can be seen visually that the solutions are essentially identical,
but for one small area of di!erence. Figure 3.8 shows a zoomed plot over the
region 9 ↗ x ↗ 13 for the case of n = 600 in Figure 3.7d. In Figure 3.8 we
see the only visible di!erences. In the numerical solution there is a distortion
in the trailing edge of the large wavefront. This high frequency oscillation is
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Figure 3.6: The path of two waves according to the discretised wave equation.

a telltale sign of a common problem encountered in numerical simulation.
This numerical error can be traced back to the setup of the initial con-

ditions of this simulation. At the start of the simulation the left side of the
larger peak trailed o! towards the left boundary where it approached some
number close to but greater than zero. Since the left boundary condition
specified the left most point as being zero, this caused a jump from the left
most point to its neighbouring point that was large enough to cause a visible
oscillation.

We can draw two useful conclusions from this observation. One, that ini-
tial conditions can conflict with boundary conditions. And two, that there
is some limit within which the simulation can tolerate these types of in-
consistencies. In this case, the oscillation did not seem to grow during the
simulation, but also did not diminish visibly and was ultimately insignifi-
cant for this this time period. It is however important to acknowledge that
unwanted oscillations can appear in a simulation despite having correctly
derived a numerical technique as well as its initial and boundary conditions.
That alone is not su”cient to guarantee a working simulation. In cases where
smaller oscillations are relevant, these types of errors cannot be present.

3.6 CFL Condition Violation

Until now we have seen results from successful simulations. It is useful,
however to know what to expect when the simulation is unstable so as to
know how to correct for it. What kind of results can we expect when the
CFL condition is violated? Let us choose a value of $t such that the CFL
condition is not violated and then run the simulation multiple times, scanning
through a range of $t until it is. To simulate the e!ect of !x

!t < c, we first
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(a) Numerical and analytic wave

equation solutions at n = 0 itera-

tions.

(b) Numerical and analytic wave

equation solutions at n = 100 itera-

tions.

(c) Numerical and analytic wave

equation solutions at n = 500 itera-

tions.

(d) Numerical and analytic wave

equation solutions at n = 600 itera-

tions.

Figure 3.7: Comparison of Numerical and Analytic solutions

determine c.
Our initial conditions specify two independent wave fronts moving in

opposite directions described by

u (x, 0) = cosh→2 (x→ t0 → b) +
1

2
cosh→2 (x+ t0 → 3b)

u (x, 1) = cosh→2 (x→ t1 → b) +
1

2
cosh→2 (x+ t1 → 3b) ,

(3.25)

where t1 = t0 +$t. Looking at the time dependent components of the wave
positions, we can see they move at velocities of

→t0 →$t+ t0

$t
= →1,

and
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Figure 3.8: Comparison with the analytical solution at n=600 iterations

t0 +$t→ t0

$t
= 1,

respectively. The CFL condition becomes

$x

$t
↗ 1.

In order to illustrate the e!ect of violating stability conditions we would
like to plot the solution of the wave equation for varying values of $x and
$t such that !x

!t approaches 1 from above. We can then see how strict the
e!ect of this condition is by proceeding for values that are slightly less than
1. We could alter either of these variables and we choose to alter the value
of $t since altering $x means we need to recompute the wave equation on
grids of di!erent resolutions for each value of $t. To prevent the need for
interpolating between functions of di!ering resolutions, we simply alter $t

instead.
The results in Figure 3.9 show an exponentially growing high-frequency

noise on all functions where the value of $t violates Equation 3.24. To
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Figure 3.9: A series of plots showing an exponentially growing numerical
error on the trough of a wave front. The figure shows how a large numerical
error can appear over an extremely small time frame.

generate this amount of unphysical oscillations the CFL only had to be vio-
lated by 0.0016%. Let us take a closer look at the error in the results from
$t = 0.0249992 →0.0250008. The error is computed as f(!t) → f(0.0249992).
This is shown in Figure 3.10. We can clearly see that any violation at all of
the CFL condition leads to unusable results after a few iterations and also
that we can get as close as we need to the CFL condition without these errors
appearing. It is, therefore, useful to know that we can safely use space-time
resolutions in the limit of the CFL condition as long as we stay enough out of
range of the condition that it cannot accidentally be violated by the machine
errors1.

This demonstration makes a valuable point about the importance of be-
ing sure about the stability of a numerical solution. Any error in a fluid
simulation di!uses throughout the space and can both a!ect the quality of
results and also be di”cult to debug.

In many cases, the accuracy of a numerical solution can be checked simply
be comparing it to the analytic solution of the equation. In this thesis we
are, however, investigating the numerical solutions of equations who have
no known analytic solution. This means we need to use other techniques to

1
Machine errors are errors that arise from rounding associated with the computation

of floating point numbers (Kreyszig, 2011).
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Figure 3.10: CFL Violation Error Zoomed. Zoomed in section of the error
around the CFL violation showing significant errors only where $t > $x.

check the accuracy and stability of our results. For example we can use the
constants of motion as indicators for the stability of a scheme (Bridges and
Reich, 2006). Tracking these over time to confirm whether they deviate from
a constant value can be a good indication that the solution is accurate.

3.7 Summary

In this chapter we investigated an explicit numerical technique for solving
PDEs. We used it to solve the wave equation in one and two dimensions.
We were able to confirm the stability of the numerical scheme and use it to
predict future states of the system. In the next chapter we will move on to
techniques for solving the more complex Korteweg-De Vries equation.



50 CHAPTER 3. NUMERICAL ANALYSIS OF THE WAVE EQUATION



Chapter 4

The KdV Equation

4.1 Introduction

In this chapter we will introduce the Korteweg-de Vries (KdV) equation
and its discretisation before comparing its numerical solutions with previous
works. We will then investigate methods of analysing the success of our
simulations without comparing them to analytic solutions or real world data.

Due to the explosion of research into numerical techniques, the software
for solving PDEs has evolved to a point where each component of these algo-
rithms has become its own subfield of computer science. A single fluid simu-
lation can consist of dozens of complex interdependent algorithms. These in-
clude mesh generation, remeshing, temporal extrapolation and interpolation,
tridiagonal matrix solvers, parallel computing, spectral analysis, boundary
condition modelling, linearization of equations, stability analysis and render-
ing. Each of these parts are also free to develop independently of the others
in their own fields. In order to be a good numerical analyst you will need
to understand the basic concepts in each of these fields. To be exceptional
you must master all of them. It is important therefore to learn the lessons of
software engineering and apply the principle of separation of concerns. Pro-
grams can be separated into functional layers with very specific purposes.
Each layer should be treated as a black box with simple inputs and outputs
from those layers. This approach naturally lends itself to object oriented
programming if the researcher wishes to remain sane. This also makes de-
bugging much more e!ective. This is extremely important in a field where
mistakes propagate throughout the entire simulation space and become ex-
tremely di”cult to debug.

One intuitive property of water waves is that they are self dampening.
Over time the energy of a wave is dispersed throughout the medium through

51
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which it propagates. As a wave moves through a medium energy is lost and
therefore the amplitude of the wave decreases. There is however a type of
wave whose amplitude and wavelength is entirely self sustained over large
distances (Brauer, 2000). It was first studied mathematically in the mid
19th century by the Scottish engineer, John Scott Russell and is now known
as the soliton. This surprising phenomenon has been observed in seemingly
unrelated places such as plasmas, anharmonic crystals, and blood vessels in
the human body (Ali, Saha and Chatterjee, 2017; Askar, 1982; Chen et al.,
2020; Elgarayhi et al., 2013).

Solitons have since been modelled mathematically by the KdV equation,
also known as the non-linear shallow water wave equation. This is done by
integrating the Navier Stokes equation over the depth of the fluid. While the
Navier Stokes equation describes the velocity of a fluid, the KdV equation
is an equation describing the position (or height) of a water surface and is
given by Equation 4.1 below

ϖu

ϖt
+ ϑu

ϖu

ϖx
+ µ

2ϖ
3
u

ϖx3
= 0, (4.1)

where u is the height of the wave, x is a spatial dimension, t is time, and
ϑ and µ are two real constants. This equation has solitary wave solutions
called solitons that are caused by a delicate balance between the equation’s
nonlinear and dispersive terms. The nonlinear term in this equation refers
to the second term, ϑuεu

εx . It describes the self-interaction of the di!erent
components of the wave and is what allows this equation to describe soliton
behaviour (Bridges and Reich, 2006).

While in the domain of classical physics, the KdV equation describes
water waves, in the quantum world it can describe something quite di!erent.
Due to the fact that solitons do not lose their shape over time they have
even been modelled as particles as well as waves. They have in fact been
found to exist in superfluids by reducing the Gross-Pitaevskii equation1 to a
KdV equation using the reductive perturbation method2 (Carretero-González
et al., 2017). This method in fact shows that many equations can be broken
down into KdV equations. This further points at the fact that KdV equations
are actually part of a much broader class of equations that apply to a wide
variety of fields.

1
The Gross-Pitaevskii equation is a non-linear wave equation describing the ground

state of a quantum system of multiple identical bosons. It is also conveniently known as

the non linear Schroedinger equation (Antoine, Bao and Besse, 2013).
2
The reductive perturbation method is a method for solving non linear hyperbolic

systems of equations by converting them to a single non linear equation (Taniuti, 1974).
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4.2 Discretisation

We begin by investigating a suitable numerical scheme for solving the KdV
equation. The first to successfully solve the KdV equation numerically was an
explicit finite di!erence scheme developed in 1965 by Zabusky and Kruskal at
Bell Labs (Zabusky and Kruskal, 1965). Their technique solved the equation
in a stable manner up until a point where it produced unrealistic oscillations
that caused the simulation to diverge rapidly from real solutions. It pro-
duced accurate results up until a point where unrealistic oscillations caused
results to become unusable. Modern explicit techniques have been devel-
oped that do not have this problem (Feng and Mitsui, 1998; Wang et al.,
2008). In a comparison of finite di!erence and Chebyshev methods, the
Chebyshev-collocation method was shown to be more e”cient than finite
di!erence schemes for short time integrations. However, it was concluded
that it was not the best candidate in terms of stability due to its spectral
properties (Skogestad and Kalisch, 2009). Due to the simplicity, stability,
and relative e”ciency of the explicit scheme proposed by Wang et al. (2008),
it has been chosen here for solving the KdV equation.

The KdV equation is discretised from

ϖu

ϖt
+ ϑu

ϖu

ϖx
+ µ

2ϖ
3
u

ϖx3
= 0, (4.2)

where u is the height of the wave, and ϑ and µ are two real constants, into
the form shown by Wang et al. (2008) in Equation 4.3.

1

2

(
u(j→1,k+1) → u(j→1,k)

$t
+

u(j+1,k) → u(j+1,k→1)

$t

)

= →ϑ
u(j+1,k) + u(j,k) + u(j→1,k)

3

u(j+1,k) → u(j→1,k)

2$x

→ µ
2

2$x3

(
u(j+2,k) → 2u(j+1,k) + 2u(j→1,k) → u(j→2,k)

)
, (4.3)

where u(j→1,k+1) is the future value of u at j→1 that we would like to compute
at time iteration k + 1, etc. Each cell is separated by a distance $x. We
use the above equation to find the value of u at a particular cell j (or j →
1) using the values of neighbouring cells from the previous time iterations.
Rearranging and solving for u(j→1,k+1) we can solve the KdV equation in
a stable and e”cient manner using appropriate initial conditions. When
solving this equation it can be useful to check the accuracy of the solution
against analytic ones such as (Brauer, 2000). However, since later equations
examined in this work have no such analytical solutions, we would like to
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investigate other methods of measuring numerical accuracy such as tracking
the constants of motion over time. This is discussed in further detail in
Section 4.4. In Figure 4.1, the computational molecule for this three level
scheme is shown.

j j + 1 j + 2j - 1j - 2

k - 1

k

k + 1

Figure 4.1: Computational molecule/stencil for the explicit numerical scheme
for the KdV equation shown by Wang et al. (2008).

4.2.1 Initial and Boundary Conditions

In order to recreate the results from Zabusky and Kruskal (1965), it is im-
portant to understand the type of boundary conditions used in more detail.
These boundary conditions are known as periodic or cyclic. As mentioned
in Section 3.3, this means that changes can propagate freely between the left
and right sides of the simulation space. This results in the computational
molecule being wrapped around from one edge of the simulation space to the
other. In this scheme we compute the u(j→1,k+1) term at each time iteration.
When we compute the upper right cell in Figure 4.2, we can see that most
of the values we need lie outside of the simulation space to the right. We get
these values from their equivalent spots on the left hand side as if the two
ends of the space were connected.

The initial conditions used by Wang et al. (2008) are given by

u(x,0) = cos (εx) . (4.4)

In order to solve Equation 4.3 we require data at time k$t and (k → 1)$t.
Equation 4.4 gives us the data at k → 1, but we also need to compute the
values required at k. This predicament is known as the hot-start problem.
To provide the values at k, the following second initial condition is used
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Figure 4.2: Computational molecule being wrapped around the edges of the
simulation space with cyclic boundary conditions.

1

$t

(
u(j,1) → u(j,0)

)

= →ϑ
u(j+1,0) + u(j,0) + u(j→1,0)

3

u(j+1,0) → u(j→1,0)

2$x

→ µ
2

2$x3

(
u(j+2,0) → 2u(j+1,0) + 2u(j→1,0) → u(j→2,0)

)
. (4.5)

Equation 4.5 can then be rearranged to solve for u(j,1). In addition to the
initial conditions, we also implement the following cyclic boundary conditions
on the left and right boundaries. Figure 4.2 shows how the computational
molecule/stencil overlaps the left boundary at j = →1 and right boundary at
j = J . In this case the stencil is wrapped from one boundary to the other.
So values of cells that are referenced outside the domain on the left are
automatically mapped to cells inside the domain on the right. This mapping
is defined below in the following equations. For computations near the left
boundary we have

u(→1) = u(J) (4.6)

u(→2) = u(J → 1) (4.7)

u(→3) = u(J → 2), (4.8)

and similarly near the right boundary:
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u(J + 1) = u(0) (4.9)

u(J + 2) = u(1) (4.10)

u(J + 3) = u(2). (4.11)

4.2.2 Algorithm

This subsection examines the algorithm used for the explicit solution devised
by Wang et al. (2008). As we can see in Algorithm 1 below, the numerical
technique for solving the KdV equation is extremely simple. Since the ap-
proach of Wang et al. (2008) is an explicit one, the number of steps in the
solution is limited to one mathematical operation per cell per iteration. This
makes it very simple to implement and replicate. What is impressive is that
this technique achieves convergence and long running stability due entirely
to its derivation. Later techniques in this thesis employ the use of complex
filtering techniques in order to maintain stability.

Algorithm 1: Pseudocode for solution of the 1D KdV equation.

Initialise variables;
Set initial conditions;
foreach iteration i in iterations n do

foreach cell j in iteration i do
Update boundary values;
Compute solution u(j,i+1);
Compute error for iteration i;

end
end

4.3 Numerical Results

As mentioned previously, we use the numerical technique devised by Wang
et al. (2008) to solve the KdV equations. In reproducing the results of Wang
et al. (2008), I have also been able to reproduce those of the original paper
by Zabusky and Kruskal (1965). These results are shown in Figure 4.3. We
begin with a cosine wave as the initial condition. In the first two frames we
can see the valley of the wave move towards the left, creating a steeper incline
on the right side of the wavefront. In the third frame we can see the point
where the peak becomes unstable and begins to oscillate. The oscillations
grow in size and begin to gain their own velocities, moving towards the left



4.3. NUMERICAL RESULTS 57

boundary. At t = 0.4 s, the beginnings of these oscillations can be seen as the
instabilities propagate towards the left. From here the oscillations will exit
the simulation space on the left boundary and re-enter on the right boundary
due to the cyclic boundary condition. In Figure 4.4 we see a snapshot of the
waves at t = 1.75 s. The oscillations have grown into their own individual
wave fronts moving in unison and have begun to superimpose with the initial
wavefront.

Figure 4.3: Plot of u as a function of x for various values of t = 0 s (top
left), 0.175 s (top right), 0.325 s (bottom left) and 0.4 s (bottom right).
The following parameters used to generate this result: u(x, 0) = cos (εx),
Periodic/cyclic boundary conditions, dt = 0.00005, dx = 2/399.

As the process progresses, this becomes further complicated as they mix
throughout the space. In Figures 4.5 we can see the final state reached by
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Wang et al. (2008) next to my recreation of those same results shown in
Figure 4.6. This set of results shows the long term stability of the numerical
scheme. While the simulation by Zabusky and Kruskal (1965) produced un-
usable results at t = 6.1275 s, their numerical scheme is still unconditionally
stable at t = 40 s and far beyond. Take note that this scheme uses no form
of error correction during the computation of the solution. An analysis of
the error involved in this scheme follows this section, but this information
is not used in any way to enhance the simulation itself, nor does the the
scheme employ any kind of filtering techniques. This approach is common
place in more complex fluid solvers due to the large number of erroneous high
frequency spectral components that are unavoidable.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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2.5

u

Figure 4.4: Plot of u as a function of x at t = 1.75s. The following param-
eters were used to generate this result: u(x, 0) = cos (εx), Periodic/cyclic
boundary conditions, dt = 0.00005, dx = 2/399, n = 35000.

In Figure 4.7 I show the paths taken by the individual wave peaks through
time. This figure shows a very interesting interaction between the wavefronts.
Each peak appears to reach some stable horizontal velocity indicated by the
angle of the path that is drawn in the figure. As an example of this accel-
eration we can see the left most wavefront at t = 0 s begins to move to the
left before reversing its direction entirely and stabilising on some velocity.
We can also observe that at the points where the larger waves (shown as
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Figure 4.5: The KdV equation
solution at t = 40 s by Wang
et al. (2008).
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Figure 4.6: My simulation re-
sults at the same time of t = 40
s.

brighter shades of yellow) superimpose upon other waves they appear inter-
act, causing a temporary change in their velocities during the interaction.
This can bee seen as a break in the path that is traced by a given wavefront.
While other types of wave phenomena also superimpose upon one another,
they do not, in the process, a!ect each others velocity. This, however, is
what appears to happen when solitons interact with one another, where each
interaction results in a corresponding phase shift. The literature surrounding
soliton interactions is rich and growing continuously. Similar soliton inter-
actions have been thoroughly documented, specifically in the field of optics.
Aitchison et al. (1991) document both attractive and repulsive interactions
between spatial optical solitons. More recently Sun et al. (2023) conducted
a thorough investigation of three-soliton interactions. In contrast, consider
Figure 3.6 in Chapter 3 showing the wave paths traced in a solution of the
wave equation where the superposition of waves does not alter their phase
at all.

4.4 Stability Analysis

As mentioned previously, determining the success of a numerical simulation
is of utmost importance. While a thorough analysis of the CFL condition3

is always useful for determining the usable domain of the simulation and
whether or not the scheme is convergent, it is not the sole predictor of the
success of a numerical scheme. Determining the success of a simulation can
be done by comparing the solutions with experimental results, analytical

3
The Courant–Friedrichs–Lewy condition that defines the conditions under which con-

vergence of the solution is guaranteed.
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Figure 4.7: Plot of u as a function of x for t = 0 s to t = 6 s showing illus-
trating the paths followed by each wavefront. The following parameters were
used to generate this result: u(x, 0) = cos (εx), Periodic/cyclic boundary
conditions, dt = 0.00005, dx = 2/399, n = 120000.

solutions (where available) or by tracking the constants of motion of the sys-
tem over time. For the Korteweg-de Vries equation under periodic boundary
conditions, we know that the system has at least three physical constants of
motion. They are the conservation laws of the system:

F1 (u) =

∫ 2

0

udx

F2 (u) =
1

2

∫ 2

0

u
2
dx

F3 (u) =

∫ 2

0

{
1

2
µ
2
u
2
x →

1

6
u
3

}
dx,

(4.12)
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where F1 (u) is the momentum conservation law, F2 (u) is the energy con-
servation law, and F3 (u) is the Hamiltonian functional for the Hamiltonian
form of the KdV equation (Wang et al., 2008). The discrete versions of these
equations are shown in Equation 4.13

F
h
1 (u) =

n∑

i=1

uih

F
h
2 (u) =

1

2

n∑

i=1

(
ui + ui→1

2

)2

h

F
h
3 (u) =

n∑

i=1

{
1

2
µ
2 |$+ ui|2 →

1

6
u
3
i

}
h,

(4.13)

where $ + ui = (ui+1 → ui→1) /2h and h is the spatial step size. The above
set of equations can be used to determine an estimate of the error and is
given by the following equations

errorF2 (j$t) = F
h
2

(
u
j
)
→ F

h
2

(
u
0
)

errorF3 (j$t) = F
h
3

(
u
j
)
→ F

h
3

(
u
0
) (4.14)

By tracking any one of these errors in each iteration we can get an idea
of the success of our simulation. In Figure 4.8 we can see that the F2 (u)
error remains relatively constant at around 10→2 throughout the simulation
even after 200000 iterations. Throughout this duration the scheme is stable
matching the results by Wang et al. (2008).

In Figure 4.9, below I show the unstable numerical solution of the KdV
equation using what is known as the multi-symplectic six-point scheme. This
result is drawn directly from the paper being discussed by Wang et al. (2008).
This error is very similar to the errors considered in Chapter 3, Figure 3.9
and illustrates the way in which most compounding numerical errors accrue
in the types of simulations considered in this thesis.

4.5 Summary

In this chapter the KdV equation was discretised and solved numerically
using initial conditions of those of Wang et al. (2008). The results compare
favourably with those of Wang et al. (2008). In the next chapter we will
move on to discretising the Boussinesq equation.
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Figure 4.8: Plot of the log10 |errorF2| showing the conservation of energy
of the system. The following parameters were used to generate this result:
u(x, 0) = cos (εx), Periodic/cyclic boundary conditions, dt = 0.0001, dx =
0.01, n = 200000. The results are smoothed using a moving mean of 100
data points.

Figure 4.9: Plot of the unstable solution of the six point scheme from Wang
et al. (2008).



Chapter 5

The Boussinesq Equation

5.1 Introduction

In this chapter we will give an introduction to the Boussinesq equation. This
will be followed by numerical simulations and comparisons with experimental
data. In the previous chapter, we discussed the Korteweg-De Vries (KdV)
equation. We saw that while it can model many wave phenomena, it is
best suited to modelling wave solitons. We move on now to the Boussinesq
equation which is considered as the generalization of the KdV equation. It
models solitary water waves travelling in multiple directions and caters for
the e!ects of variable water depth on the evolution of waves (Kong and
Wang, 2010; Scalerandi, 1997). It has been used for this purpose to simulate
the evolution of deep sea waves and tsunamis (Adytia and Groesen, 2010).
The Boussinesq equations have been used in conjunction with scale wave
tank experiments to study deep sea waves which can be di”cult to study
in nature (Wei and Kirby, 1995). The Boussinesq equation o!ers a model
for simulating near-shore wave evolution without the need for wave-tank
experiments.

The way in which water waves change as they approach shorelines is
remarkably complex. The Boussinesq family of equations attempt to describe
this wave evolution taking into account conservation of mass and momentum
laws as well as the varying depth of the water. They model the non-linear
transformations that surface waves undergo in shallow water (Nwogu, 1993).
Due to the complexity of this problem, many Boussinesq type equations have
been formulated that describe these wave phenomena to di!erent degrees of
detail. The “Good” Boussinesq equation and the time-fractional Boussinesq
equations are two such examples, each with their own limitations (Ismail and
Mosally, 2014; Kong and Wang, 2010; Zhang et al., 2018). The Boussinesq

63
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equation, like most nonlinear equations, will have numerical solutions that are
sometimes highly unstable. It is therefore important to choose a technique
that e!ectively minimizes computational error.

In this chapter we review the numerical technique of Wei and Kirby for
solving the Boussinesq equation (Wei and Kirby, 1995). We start by defining
the equations of the potential flow model it uses, then proceed into its predic-
tor corrector time integration scheme. We then derive the matrix equations
for solving the horizontal and vertical velocity components in the simulation
- a step that is skipped in the literature I investigated. We then address
the hot start problem, and describe the relevant boundary conditions for
our simulations. The results of the Wei and Kirby technique will then be
compared with experimental data in the chapters to follow.

5.2 Wei and Kirby Technique

The second numerical scheme we will explore is that of the Wei and Kirby
group. Between 1995 and 1998, Wei and Kirby co-authored a number of pa-
pers on their numerical scheme for solving Boussinesq type equations (Kirby
et al., 1998; Wei and Kirby, 1995; Wei et al., 1995). Their model uses the
Boussinesq equations derived by Nwogu (1993) and a more complex time
integration scheme known as the Adams-Bashfourth-Moulton Predictor Cor-
rector method. The spatial domain is discretised using a regular grid of
equally spaced cells. In Nwogu’s Boussinesq equations, velocities are defined
at some distance relative to the still water level. This formulation allows
the equations to apply to a larger range of water depths by improving its
linear dispersion properties (Nwogu, 1993). Modified versions of this model
are still used extensively for Boussinesq simulations today (Mart́ınez-Ferrer
et al., 2018; Mehmood et al., 2016; Patel, Kumar and Rajni, 2020). The
equations of Nwogu have been used extensively for near-shore ocean wave
modelling and have only since been replaced by the more complex models
of Chen (2006) and Shi et al. (2012) when the e!ects of wave breaking and
porous ocean beds are necessary.

The Boussinesq equations are as follows:

ϑt+↓·(h+ ϑ)u+↓·
{(

zω

2
→ h

2

6

)
h↓ (↓ · u) +

(
zω +

h

2

)
h↓ [↓ · (hu)]

}
= 0,

(5.1)

ut + g↓ϑ + (u ·↓)u+ zω

{
zω

2
↓ (↓ · ut) + ↓ [↓ · (hut)]

}
= 0, (5.2)
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where ϑ is the water surface elevation, u = (u, v) is the horizontal surface
velocity at arbitrary depth zω, h is water depth, and g is the gravitational
acceleration. The subscript t refers to time derivatives of the respective
quantity. Here, Equations 5.1 and 5.2 are the conservation of mass and
momentum equations for the system, respectively.

In the next section I will go into more detail on how these equations are
solved using the potential flow model.

5.3 The Potential Flow Model

As shown in the approach of Wei and Kirby (1995), Boussinesq equations
can be modelled in terms of a velocity potential function U = (U, V ), where
U and V are the velocity potential components in the x and y directions
respectively. Doing this simplifies solving for ut in Nwogu’s conservation
of momentum equation (Equation 5.2) as the form the equations take is
more suited to the time integration scheme used (the Adams-Bashfourth-
Moulton Predictor Corrector method). We define the surface elevation ϑ

from Equation 5.1 in terms of a potential, E, and the horizontal components
of Equation 5.2, ut and vt in terms of some potentials Ut, and Vt as

ϑt = E (ϑ, u, v) (5.3)

Ut = F (ϑ, u, v) + [F1 (v)]t (5.4)

Vt = G (ϑ, u, v) + [G1 (u)]t , (5.5)

where the subscript t refers to their time derivatives. The terms E, F , F1,
G, and G1 are spatial derivatives of ϑ, u, and v. For the derivation of these
quantities see (Wei et al., 1995). These quantities are then defined as

E (ϑ, u, v) =→ [(h+ ϑ) u]x → [(h+ ϑ) v]y (5.6)

→
{
a1h

3 (uxx + vxy) + a2h
2
[
(hu)xx + (hv)xy

]}

x

→
{
a1h

3 (vyy + uxy) + a2h
2
[
(hv)yy + (hu)xy

]}

y
,

and
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F (ϑ, u, v) = →gnx → (uux + vuy) (5.7)

G (ϑ, u, v) = →gny → (vvy + uvx) (5.8)

F1 (v) = →h

[
b1hvxy + b2 (hv)xy

]
(5.9)

G1 (u) = →h

[
b1huxy + b2 (hu)xy

]
. (5.10)

The velocity potential functions themselves are defined as

U (u) = u+ [b1huxx + b2 (hu)xx] (5.11)

V (v) = v +
[
b1hvyy + b2 (hv)yy

]
, (5.12)

where a1, a2, b1, and b2 are defined as

a1 = ς
2
/2→ 1/6; a2 = ς + 1/2; b1 = ς

2
/2; b2 = ς, (5.13)

where ς = zω/h, and zω = 0.531h (Nwogu, 1993; Wei and Kirby, 1995).

5.4 Predictor Corrector Methods

We now take a brief aside to discuss the time discretisation scheme used in
the potential flow model known as the predictor corrector method. Predic-
tor corrector methods are used for solving di!erential equations, and they
combine an explicit technique with an iterative implicit technique to approx-
imate a solution. The technique consists of two steps. They first make a
prediction and then attempt to refine this prediction iteratively to converge
on a solution. This is done by feeding the prediction into the corrector equa-
tion and comparing this with the original prediction until an error criterion
is satisfied. The scheme used in this work is known as the fourth order
Adams-Bashforth-Moulton predictor corrector.

Given a function
y
↑ = f (x, y) , (5.14)

we can find the value of y at some time step $t in the future, yi+1 as
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y
1
i+1 = yi +

$t

12
(23fi → 16fi→1 + 5fi→2) , (5.15)

where i = 3, 4, 5, ..., n and the superscript 1 refers to the first estimate of
yi+1, where i is the current time ti = i$t. This is known as the 3rd or-
der Adams-Bashforth predictor method. From here we can use an implicit
multistep/iterative method to better approximate yi+1 as

y
k+1
i+1 = yi +

$x

24

(
9fk

i+1 + 19fi → 5fi→1 + fi→2

)
, (5.16)

where k = 1, 2.3, .... This is known as the 4th order Adams-Moulton corrector
method. The superscript on yi+1 denotes the current prediction of the value
of yi+1.

This numerical method requires values from the previous two time steps
and therefore requires priming in order to work. This can take the form
of three time steps of initial condition or these values can be determined
using a single step numerical scheme that does not depend on so many time
intervals. In this work we follow the approach of Long (2006b) in Section 5.6
and use lower order Adams-Bashforth methods for the first 3 iterations of
the scheme.

The third order predictor scheme is as follows:

ϑ
i+1
jk = ϑ

i
jk +

$t

12

[
23Ei

jk → 16Ei→1
jk + 5Ei→2

jk


(5.17)

U
i+1
jk = U

i
jk+

$t

12

[
23F i

jk → 16F i→1
jk + 5F i→2

jk



+ 2F i
1jk

→ 3F i→1
1jk

+ F
i→2
1jk

(5.18)

V
i+1
jk = V

i
jk+

$t

12

[
23Gi

jk → 16Gi→1
jk + 5Gi→2

jk



+ 2Gi
1jk

→ 3Gi→1
1jk

+G
i→2
1jk

.

(5.19)

The extra terms F1 and G1 in equations 5.18 and 5.19 come from the time
derivatives of F and G from equations 5.4 and 5.5. For the derivation of these
equations see the work of Wen Long in his PhD thesis entitled Boussinesq
Modelling of Waves, Currents and Sediment Transport, (Long, 2006b).
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The fourth order Adams-Moulton corrector scheme is given by

ϑ
i+1
jk = ϑ

i
jk +

$t

24

[
9Ei+1

jk + 19Ei
jk → 5Ejk

i→1 + E
i→2
jk


(5.20)

U
i+1
jk = U

i
jk+

$t

24

[
9F i+1

jk + 19F i
jk → 5F i→1

jk + F
i→2
jk



+ F
i+1
1jk

→ F
i
1jk

(5.21)

V
i+1
jk = V

i
jk+

$t

24

[
9Gi+1

jk + 19Gi
jk → 5Gi→1

jk +G
i→2
jk



+G
i+1
1jk

→G
i
1jk

.

(5.22)

These equations allow us to accurately approximate the values of ϑ, U ,
and V at time $t in the future. However, since equations 5.3, 5.4 and 5.5
are dependent simply on velocity and not the velocity potential, we must
update the values of u each time we compute a new iteration of U . These
new values of u will then be used in further iterations for computing future
states. Transforming from U to u turns out to be a non-trivial operation as
the equations relating the two quantities requires the solution of tridiagonal
systems of equations. This is the topic of following subsection.

5.5 Solving for u from U

We now face the problem of converting back from the velocity potential
to the actual velocity. As we derive a solution it is important to notice the
interdependence of the velocity equations at each point on the grid. We begin
by discretising Equation 5.23 below, and thereafter organise the resulting
set of equations in a way that they can be solved simultaneously. In this
derivation we refer to Figures 5.1 and 5.2 to describe the simulation space.

The horizontal velocity potential at each point (x, y) = (j$x, k$y) is
defined by the linear relation of U to u, and derivatives of u shown below

U = u+ h [b1huxx + b2 (hu)xx] , (5.23)

and

V = v + h

[
b1hvyy + b2 (hv)yy

]
. (5.24)
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Deriving an equation for u is the same for u and v so let us do our
derivation using u. We begin by using a centred second order di!erence
scheme to find uxx and (hu)xx for each point on the grid. We have

uxx =
uj+1k → 2ujk + uj→1k

$x2
, (5.25)

and

(hu)xx =
(hj+1kuj+1k)→ 2 (hjkujk) + (hj→1kuj→1k)

$x2
, (5.26)

Substituting 5.25 and 5.26 into 5.23 we get

Ujk = ujk +hjk


b1hjk

uj+1k → 2ujk + uj→1k

$x2
+ b2

(hj+1kuj+1k)→ 2 (hjkujk) + (hj→1kuj→1k)

$x2


.

(5.27)

Grouping terms uj→1k, ujk, and uj+1k we get the following equation

Ujk = uj→1k
hjk (b1hjk + b2hj→1k)

$x2
+ ujk

(
1→ 2h2

jk

(b1 + b2)

$x2

)
+ uj+1k

hjk (b1hjk + b2hj+1k)

$x2
.

(5.28)

So for a given row, k, we get an equation for three unknowns, uj→1k, ujk,
and uj+1k. For each row in the matrix U we can solve this equation by first
forming a tridiagonal matrix.

Equation 5.28 relates each cell in U to a set of three corresponding cells
in u. Figure 5.2 shows the interdependence of the equations and how each
set of unknowns in u overlap across a given row. Since the edge cells are on
the boundary of the domain, they reference points outside of the simulation
space at j = 0 → 1 and j = J + 1. To deal with this, we use the approach
of Long (2006a) made specifically for wall boundaries. For points along the
left wall, we replace uj→1k with uj+1k, and uJ+1k with uJ→1k, where J is the
total number of cells in a row. Without this we are unable to compute values
along boundaries, and we shrink the simulation space by one column on each
side of the grid per iteration until failure.

Simplifying Equation 5.28, we let ϱj, ςj, and φj be the constants for a
given column j:
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Figure 5.1: Equation 5.28 relates each cell in a row of U to a cell in the
corresponding row of u.
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Figure 5.2: Each cell in U is described by three corresponding cells in the
same row in u.
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ϱj =
hjk

$x2
(b1hjk + b2hj→1k) (5.29)

ςj = 1→ 2h2
jk

(b1 + b2)

$x2
(5.30)

φj =
hjk

$x2
(b1hjk + b2hj+1k) . (5.31)

If we make an equation for ujk for every j in a row k, we get a system of
equations as follows below

u0,kς0 + u1,kφ0 + 0 + 0 + . . . + 0 = U0,k

u0,kϱ1 + u1,kς1 + u2,kφ1 + 0 + . . . + 0 = U1,k

0 + u1,kϱ2 + u2,kς2 + u3,kφ2 + . . . + 0 = U2,k

0 + 0 + u2,kϱ3 + u3,kς3 + . . . + 0 = U3,k
...

. . .
...

...
. . .

...
...

. . .
...

0 + 0 + 0 + 0 + uJ→1,kϱJ + uJ,kςJ = UJ,k

From this we can create a matrix equation to solve simultaneously for uj,k

for all j ⇐ [0, 1, 2, ..., J → 1, J ]. This equation has the form

Ax = b, (5.32)

where we are solving for the matrix x. The coe”cient matrix A is therefore

A =





ς0 φ0 0 0 0 . . . 0 0 0
ϱ1 ς1 φ1 0 0 . . . 0 0 0
0 ϱ2 ς2 φ2 0 . . . 0 0 0
0 0 ϱ3 ς3 φ3 . . . 0 0 0
...

. . . . . . . . .
...

...
. . . . . . . . .

...
...

. . . . . . . . .
...

0 0 0 0 0 . . . ϱJ→1 ςJ→1 φJ→1

0 0 0 0 0 . . . 0 ϱJ ςJ





, (5.33)

the matrix for the dependent variable, x, is
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x =





u0,k

u1,k

u2,k
...
...
...

uJ→1,k

uJ,k





, (5.34)

and b is defined for each row k in U as

b =





U0,k

U1,k

U2,k
...
...
...

UJ→1,k

UJ,k





. (5.35)

The full equation is given as





ς0 φ0 0 0 0 . . . 0 0 0
ϱ1 ς1 φ1 0 0 . . . 0 0 0
0 ϱ2 ς2 φ2 0 . . . 0 0 0
0 0 ϱ3 ς3 φ3 . . . 0 0 0
...

. . . . . . . . .
...

...
. . . . . . . . .

...
...

. . . . . . . . .
...

0 0 0 0 0 . . . ϱJ→1 ςJ→1 φJ→1

0 0 0 0 0 . . . 0 ϱJ ςJ









u0,k

u1,k

u2,k
...
...
...

uJ→1,k

uJ,k





=





U0,k

U1,k

U2,k
...
...
...

UJ→1,k

UJ,k





,

(5.36)

and can be solved for all the values of u in the current row, k. This is then
repeated for all the rows. Each row has an associated J ↑ J sized matrix,
and the entire space is therefore described by a set of these matrices of size
J↑J↑K. This matrix of coe”cients is a function of the constants ϱ, ς, and
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φ, which are in turn only functions of h, b1, and b2, it is constant in time.
Because of this, this matrix can be precomputed for use each iteration.

Similarly we can derive a system of equations for V and v for each column,
j. In this case, we deal with derivatives of u in the y direction. The associated
coe”cient matrix for the entire space will be of size K ↑K ↑ J . For v the
equations become





↼0 ↽0 0 0 0 . . . 0 0 0
⇀1 ↼1 ↽1 0 0 . . . 0 0 0
0 ⇀2 ↼2 ↽2 0 . . . 0 0 0
0 0 ⇀3 ↼3 ↽3 . . . 0 0 0
...

. . . . . . . . .
...

...
. . . . . . . . .

...
...

. . . . . . . . .
...

0 0 0 0 0 . . . ⇀K→1 ↼K→1 ↽K→1

0 0 0 0 0 . . . 0 ⇀K ↼K









vj,0

vj,1

vj,2
...
...
...

vj,K→1

vj,K





=





Vj,0

Vj,1

Vj,2
...
...
...

Vj,K→1

Vj,K





,

(5.37)

where instead of ϱ, ς, and φ we use corresponding variables for the y direc-
tion, ⇀, ↼, and ↽:

⇀k =
hjk

$x2
(b1hjk + b2hjk→1) , (5.38)

↼k = 1→ 2h2
jk

(b1 + b2)

$x2
, (5.39)

↽k =
hjk

$x2
(b1hjk + b2hjk+1) . (5.40)

5.6 The Hot Start Problem

As mentioned in the section above, the predictor corrector scheme for the
main algorithm requires information from two previous iterations in time in
order to make a prediction about the next state of the system in the next
iteration in time. These two initial states are defined by initial condition
equations. To compute values for the first two states we use lower order
ABM schemes as detailed by Long (2006a).

For the first time step we use the 1st order predictor and the 2nd order
corrector, where values at i=1 are known
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ϑ
i+1
jk = ϑ

i
jk +$tE

i
jk (5.41)

U
i+1
jk = U

i
jk +$tF

i
jk (5.42)

V
i+1
jk = V

i
jk +$tG

i
jk, (5.43)

and the corrector

ϑ
i+1
jk = ϑ

i
jk +

$t

2

[
E

i+1
jk + E

i
jk


(5.44)

U
i+1
jk = U

i
jk +

$t

2

[
F

i+1
jk + F

i
jk


+

F

i+1
1jk

→ F
i
1jk


(5.45)

V
i+1
jk = V

i
jk +

$t

2

[
G

i+1
jk +G

i
jk


+

G

i+1
1jk

→G
i
1jk


, (5.46)

For the 2nd time step, we use the 2nd order predictor and 3rd order corrector
where i=2

ϑ
i+1
jk = ϑ

i
jk +

$t

2

[
3Ei

jk → E
i→1
jk


(5.47)

U
i+1
jk = U

i
jk +

$t

2

[
3F i+1

jk → F
i
jk


+

F

i
1jk

→ F
i→1
1jk


(5.48)

V
i+1
jk = V

i
jk +

$t

2

[
3Gi+1

jk →G
i
jk


+

G

i
1jk

→G
i→1
1jk


, (5.49)

and the corrector

ϑ
i+1
jk = ϑ

i
jk +

$t

12

[
5Ei+1

jk + 8Ei
jk → E

i→1
jk


(5.50)

U
i+1
jk = U

i
jk +

$t

12

[
5F i+1

jk + 8F i
jk → F

i→1
jk


+

F

i+1
1jk

→ F
i
1jk


(5.51)

V
i+1
jk = V

i
jk +

$t

12

[
5Gi+1

jk + 8Gi
jk →G

i→1
jk


+

G

i+1
1jk

→G
i
1jk


. (5.52)

Using Equations 5.41 to 5.52, we can approximate the values of ϑ, U , and
V for the first three time intervals. From iteration 3 and onwards we can use
Equations 5.17 to 5.22 defined earlier.
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5.7 Boundary Conditions

The simulations done by Wei and Kirby (1995) use three types of bound-
ary conditions: reflective boundaries that perfectly reflect waves incident on
the boundary; wavemaker boundaries that generate waves moving in to the
simulation space; and open/radiating boundaries that absorb all incoming
waves.

5.7.1 Reflective Boundaries

Reflective boundaries for the Boussinesq equation are described by three
boundary conditions. The first, a Dirichlet condition, states that the hori-
zontal surface velocity component u in the direction of the boundary normals
ϑ must be zero at the boundaries as described by

u · ω = 0, (5.53)

where ϑ is the normal to the walls boundaries as illustrated in Figure 5.3.
Equation 5.54 below is a Neumann condition that describes the gradient

of the water surface. It states that the gradient of ϑ in the direction of the
normals must be zero at the boundaries as described by

↓ϑ · n = 0. (5.54)

To represent this numerically we set the values at the boundary to equal
the adjacent cells in the column or row. Equation 5.55 below, another Neu-
mann condition, states that the gradient of the velocity component perpen-
dicular to the normal (parallel to the boundary) must be zero along the
normal:

ϖuT

ϖn
= 0. (5.55)

This represents the no-shear condition for fluid near the boundary, i.e., fluid
travelling in two adjacent cells parallel to a boundary have the same velocity.

From this we see that the x velocity components must be zero on the
left and right and the y velocity components must be zeros on the top and
bottom boundaries as described by Equations 5.56, 5.58, 5.60, and 5.62 as
described by

ϖϑ

ϖx
(j,K) = 0 (5.56)

ϖv

ϖx
(j,K) = 0, (5.57)
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k

Figure 5.3: The normals to the boundary walls in the simulation space at
(j, k) = (J, k), (j, 0), (j,K), (0, k).

for the right boundary,

ϖϑ

ϖx
(j, 0) = 0 (5.58)

ϖv

ϖx
(j, 0) = 0, (5.59)

for the left boundary,

ϖϑ

ϖy
(J, k) = 0 (5.60)

ϖu

ϖy
(J, k) = 0, (5.61)

for the top boundary,

ϖϑ

ϖy
(0, k) = 0 (5.62)

ϖu

ϖy
(0, k) = 0, (5.63)

and for the bottom boundary.
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5.7.2 Wavemaker boundaries

When injecting waves into the simulation, we use what is known as wave-
maker boundaries. To do this we simply set the surface elevation at the
boundary to be some function of time. From this, the associated horizontal
velocity components are also computed for each corresponding time instance
by the following functions:

ut =
⇁

kh0[1→ (ϱ + 1/3)(kh0)2]
ϑtcosθ, (5.64)

vt =
⇁

kh0[1→ (ϱ + 1/3)(kh0)2]
ϑtsinθ, (5.65)

where k is wave number, h0 is resting water surface depth, and θ is angle of
wave propagation relative to the x axis.

Another point to note is that the boundary of a simulation space often
consists of more than one border point. In order for changes to be propa-
gated across a set of cells, boundary conditions must be specified over two
or more adjacent boundary points. For this reason, the boundary condition
is specified as

n(d→i) = Asin (2εf (t+ idt)) , (5.66)

where d is the boundary depth, i is the cell index from the x axis, and t is the
current time for the simulation step. With all of the theory now established,
the algorithm can be implemented using Algorithm 2.
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5.8 Algorithm

Algorithm 2: Pseudocode for solving the 2D Boussinesq equation

foreach iteration i in iterations n do
// Prediction steps;
if first iteration then

Compute E, F , G, F1, and G1 at i;
Make 1st order Adams-Bashfourth prediction for ϑ, U , and V

at i+ 1;
end
else if second iteration then

Make 2nd order Adams-Bashfourth prediction for ϑ, U , and
V at i+ 1;

end
else

Make 3rd order Adams-Bashfourth prediction for ϑ, U , and V

at i+ 1;
end
Compute u from U at i+ 1 and u coe”cient matrix;
Compute v from V at i+ 1 and v coe”cient matrix;
Apply boundary conditions;
// Corrector steps;
while Error in ϑ or u < some tolerance do

if first iteration then
Apply 2nd order Adams-Moulton correction to ϑ, U , and
V at i+ 1;

end
else if second iteration then

Apply 3rd order Adams-Moulton correction to ϑ, U , and
V at i+ 1;

end
else

Apply 4th order Adams-Moulton correction to ϑ, U , and
V at i+ 1;

end
Compute u from U at i+ 1 and u coe”cient matrix;
Compute v from V at i+ 1 and v coe”cient matrix;
Apply boundary conditions;
Compute E, F , G, F1, and G1 at i+ 1;
Store current estimates for ϑ, u, and v for i+ 1;
Compute error for i+ 1 using estimates;
if number of corrector iterations > iteration limit then

Fail due to non-convergeance;
end
Apply filtering to ϑ, u, and v;

end
end
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5.9 Summary

In this chapter we derived the equations used for solving Boussinesq equa-
tion numerically using the potential flow model described by Wei and Kirby
(1995). This will be used in Chapter 7 to attempt to solve the Boussinesq
equation numerically. Until then we take a brief aside in the next chapter to
analyse Boussinesq wave data captured from a physical wave tank experiment
that was done by Mukaro et al. (2013).
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Chapter 6

Experimental wave analysis

6.1 Introduction

We will now use the theory developed in this chapter to simulate waves in a
wavetank. The simulation will be for the following case. Figure 6.1 shows a
schematic of a real wave tank that was used by Mukaro et al. (2013) to create
Boussinesq type beach waves by oscillating a paddle at one end and letting
the resulting waves approach a sloped embankment on the right. The results
of this simulation will be discussed in this chapter and Chapter 7, but before
we go into the simulation results it will be worthwhile to examine results from
the experimental case of Mukaro et al. (2013). The experimental setting will
be used to explain the techniques for analysing Boussinesq waves and these
same techniques will be applied in Chapter 7 to the simulated data.

Probe 1

Probe 2 Probe 3

0.618 m

-14 m -12.35 m -6.3 m -1.5 m 0 m

-x

y
Still water line

Break point

-3.8 m-4 m

Figure 6.1: Experimental setup showing the water tank with a constant-
slope floor profile beginning at →12.35 m from the shoreline, a horizontally
oscillating paddle on the left of the diagram and an equilibrium water depth
of 0.618 m at its deepest point where the floor is flat. The positions of probes
2 and 3 were changed in successive runs of the experiment, shown in Table 6.1

81
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In this chapter I will introduce a physical experiment that was done by
Dr Mukaro and Dr Govender to generate Boussinesq type beach waves in
a wave tank with an oscillating paddle at one end (Mukaro et al., 2013). I
will then present the results of my own independent analysis of their data. I
will explain the physical apparatus used as well as the method by which the
data was collected from the experiment. Along with my analysis, I will also
detail each algorithm that was used to conduct my analysis. This analysis
will act as a reference for my own numerical simulation and the aim is that
the simulation should be able to predict similar results to what was seen in
the real experiment. I will do my own independent analysis of Dr Mukaro’s
data including wave height analysis, phase velocity calculations and, further,
I will also undertake a frequency analysis of the data, which was not done
by Mukaro et al. (2013).

6.2 Experimental setup

The physical experiment consists of a rectangular wave tank with a movable
paddle at one end. The paddle oscillates horizontally with a frequency of 0.4
Hz producing waves that propagate down the length of the tank. The floor
of the tank has a constant upward slope preceded by a small flat region. The
slope protrudes above the water surface at one end creating a shoreline as
shown in Figure 6.1.

This apparatus is able to generate Boussinesq type waves that begin as
sinusoidal waves on one end of the tank and form breaking waves on the shore
at the other end of the tank. Along the length of the tank are three probes
that constantly sample the height of the water surface about its equilibrium
position. Over multiple runs these probes are used to capture the time series
of the surface elevation for a 2 minute period at various positions along the
tank. The experiments were started with probes initially located as indicated
in Figure 6.1 at x = →14 m, x = →4 m, and x = →1.5 m. A time series was
capture at these positions, then probes 2 and 3 were moved 10 cm toward
the paddle while keeping probe 1 fixed. Then a new set of time series was
captured. By repeating this over multiple runs the time series of the surface
elevation was captured every 10 cm between →1.5 m and →6.3 m. In each of
these runs the time series of the wave was sampled every 20 ms. Since each
experiment run lasted for 2 minutes, only subsections of the data are shown
in all figures shown below.

Table 6.1 below shows the probe positions for all runs of the experiment.
Probe 1 was kept at the same position for each run, while Probe 2 and Probe 3
were moved further away from the shoreline with each run. The experiments
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are numbered 1 through 24, followed by a 25th documented experiment that
is a rerun of experiment 13 except with Probe 3 being measured at 2.7 m
from the shoreline instead of 2.8 m.

Table 6.1: Experiment probe positions (m)

Experiment Probe 1 Probe 2 Probe 3
1 14 4.0 1.5
2 14 4.1 1.6
3 14 4.2 1.7
4 14 4.3 1.8
5 14 4.4 1.9
6 14 4.5 2.0
7 14 4.6 2.1
8 14 4.7 2.2
9 14 4.8 2.3
10 14 4.9 2.4
11 14 5.0 2.5
12 14 5.1 2.6
13 14 5.2 2.8
14 14 5.3 2.9
15 14 5.4 3.0
16 14 5.5 3.1
17 14 5.6 3.2
18 14 5.7 3.3
19 14 5.8 3.4
20 14 5.9 3.5
21 14 6.0 3.6
22 14 6.1 3.7
23 14 6.2 3.8
24 14 6.3 3.8
30 14 5.2 2.7

In the rest of the chapter we will refer to the time series at a particular
horizontal position along the tank relative to the still water mark on the
beach, which we take as x = 0 m. The equilibrium position of the water
surface is the still water level of 0.618 m.
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6.3 Data inspection and cleaning

The output from Dr Govenders experiments were plain text files generated
by the data acquisition units used for the experiments. In order to import all
of the data into MATLAB I needed to do some preprocessing on the original
text files to transpose them into a more modern tab delimited format. This
was done using a simple Python script that looped through all of the data and
applied the required formatting rules to all rows of data across all of the files.
Once this was done I began creating a comprehensive object oriented data
model in MATLAB to represent the data and metadata of each experiment.
This was then used in the following sections for further analysing the data. In
the next section I detail a simple phase adjustment algorithm that I wrote to
synchronise the phases of the signals from the three probes in order to more
clearly present the signal data. In Figure 6.2 we see a 10 second subplot of
the original data captured by Dr Govender’s experimental apparatus. The
figure shows the height of the water at three di!erent probes positioned in
the tank over time. Each probe captures unique characteristics about the
waves as they travel along the tank. Since waves travel from the left of the
tank towards the right, the signals measured on the probes are flipped as the
front of each wave is recorded first. This is why the steep side of the waves
appears on the left in the figure. Here you can see the shapes of three waves
- one for each probe. On Probe 3 (yellow) you can already see waves with
the distinctive nonlinear shape with a steep slope on one side followed by a
tapering slope on the other.

MATLAB was used for all of the following analysis in this chapter with
a strict emphasis on not using external packages. This ensured I had full
control over and understanding of all of the software I wrote. This code can
be found on my GitHub account by searching for my name or going to the
following URL: https://github.com/JordanScarrott/boussinesq-waves.

6.3.1 Phase adjustment

Upon inspection of the initial data it was apparent that the signals from
each probe were not in phase. Naturally the position of the probes in the
experimental setup meant that waves did not arrive at each one in the same
phase. In order to present more usable data I wrote a phase correcting
algorithm to shift all the signals into the same phase so that, for plotting
and comparison purposes, they all begin on a zero crossing position with a
positive gradient. The algorithm finds the first zero crossing of each signal
that has a positive gradient and uses this to shift all signals into the same
phase. The pseudocode for the simple phase adjustment algorithm is shown
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Experiment 20 showing wave height over time for each probe.
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Figure 6.2: Initial data from experiment 20 showing out of phase signals for
time series captured at x = →14 m, →5.9 m, and →3.5 m, where ϑ is the
instantaneous wave height.

in Algorithm 3.

Algorithm 3: Pseudocode for the phase adjustment algorithm

foreach signal in experiment do
Take the sign of each data point;
Compute the forward di!erence of this signed data;
Find the first element where the sign changes from →1 to 1;
Crop out all data before this point;

end
Crop ends of all signals to the same length;

This algorithm is well suited to MATLAB and makes use of its e”cient
vectorizing operations. When applying this algorithm to the initial data we
get the following more usable result shown in Figure 6.3. This wave phase
synchronisation algorithm was applied to all 25 experiment datasets. This
work benefited greatly from the the object oriented data model that was used
and as a result, applying this algorithm (or any other in this chapter) to any
number of the datasets became trivial.

Further analysis of this data will be discussed in the following section.
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Figure 6.3: Processed data from Experiment 20 with phase-synchronised
probe signals.

6.4 Analysis of Experimental Results

In this section I will present my own independent analysis of the probe data
from di!erent runs of Dr Govender’s experiments. We will discuss the charac-
teristics of the waves at three regions along the tank: near the paddle where
the waves are generated, a region half way up the slope, and the region where
the waves begin to break. I will refer to these regions as the near-paddle re-
gion, the near-breaking region, and the breaking region respectively. An
analysis of the frequency spectra in these regions will follow in Section 6.6.

6.4.1 Wave height analysis

In this section, an independent analysis of the average wave height1, H, is
presented at every probe position along the wave tank. The results from
this analysis are shown in Figures 6.4 and 6.7 and referenced throughout this
section.

Algorithm 4 below shows the pseudocode for computing the average wave
height of each signal. Given a signal, we determine the locations of all the

1
The wave height is defined as the distance from the bottom of the trough of the wave

to the top of the crest.
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positive gradient zero crossings and divide the signal into subregions each
containing a single wave period. The goal is then to compute the di!erence
between the maximum and minimum values in each subregion and average
them to get the average wave height for the signal. Due to the fact that there
are often oscillations around the y = 0 m line, I wrote a minimum distance
zero crossing detection algorithm to remove unwanted zero crossings near the
expected zero crossing location for each period. For a given signal, I com-
pute the Fourier transform and determine the dominant, non-zero frequency
component of the wave (the fundamental frequency of the wave). This allows
us to know how often to expect a zero crossing to occur2 . We can then limit
the number of zero crossings that occur within some area, ⇀(f), around the
expected boundary crossing to one, where ⇀ is a function of the dominant
frequency, f , given by

⇀ (f) =
(1→ φ)

f
, (6.1)

where the tolerance φ is between 0 and 1 and ⇀ is measured in seconds. This
tolerance allows us to accommodate slight variations in the exact location of
the zero crossing.

Algorithm 4: Pseudocode for computing the average wave height
of a signal

Take the sign of each data point;
Compute the forward di!erence of this signed data;
Find all the array indices where the sign changes from →1 to 1;
Compute dominant non-zero frequency component from its FFT;
Compute the period of the wave;
foreach zeroCrossing z in zeroCrossings do

if any two zero crossings are within ⇀s of each other then
Remove one of them.

end
end
foreach wave period in periods do

Compute wave height as di!erence between max and min values;
end
Average all of the wave heights;
Compute all of the standard deviations;

2
Although we know from observations of Figure 6.2 that the wave period is around 2.5

s or 0.4 Hz, using the FFT
3
allows us to treat each signal individually.

3
A high performance algorithm for computing the Discrete Fourier Transform of a

signal, thus giving it the name Fast Fourier Transform
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Figure 6.4: Average wave height and standard deviations from all probes
across all experiments.

This algorithm ensures that every wave height calculation is done using
exactly a single wave period within some error range of ±⇀/2. For this
analysis, ⇀ was set to 0.1. This algorithm was then used to compute the
average wave height and standard deviation for every position along the
length of the tank. Plotting the average wave height for each experiment
gives us Figure 6.4 and plotting the average wave height across the length of
the tank gives us Figure 6.7. These results will be discussed in the following
sub sections.

6.4.2 Near paddle characteristics

We know that the paddle oscillates sinusoidally with a constant frequency
of 0.4 Hz. This oscillation creates a sinusoidal surface level oscillation that
propagates along the length of the tank. This generated wave is the wave we
expect to see at x = →14 m. However, when examining the blue signal at
this point nearest to the paddle in Figure 6.3 it is clear that there is a subtle
asymmetry to the wave and appears to slope to the left. It has narrower peaks
and wider troughs than a perfect sine wave. This asymmetry is reflected
in the frequency spectrum for this wave in Figure 6.16 in a later section
(Section 6.6) where we do a more in-depth analysis of the spectra. Even
though the signal is measured as close to the wave source as possible, it has
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Figure 6.5: Time series of the water surface from experiment 24 for probe
positions at x = →14 m, →6.3 m and →3.8 m. The series at →6.3 m corre-
sponds to the mid-slope region

still undergone some nonlinear wave distortion. We know that the nonlinear
features of Boussinesq waves are primarily caused by the relationship between
the wave height and the water depth. In this case the water is shallow enough
even at this deepest point for there to be an interaction between the wave
and the floor of the tank, causing the nonlinear e!ects seen in the figure. If,
for example, the wave source was out in the deep sea region where the ratio
of the wave height to the water depth was much smaller, this e!ect would
not be so prominent.

6.4.3 Mid-slope region

In Figure 6.5, we see that the waves have grown in height as they move from
the paddle to a point near the centre of the wave tank, x = →6.3 m. We
can see that the troughs of this signal are wider than at x = →14 m. At this
point, no wave breaking has yet occurred as can be seen from the smooth
wave profile. From Figure 6.7 we can see that the standard deviation of the
wave height is relatively low at this position. From this we know that the
wave height in this region is predictable and has a low variability.
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Figure 6.6: The time series from experiment 12 showing breaking waves on
Probe 3 which is located at x = →2.6 m.

6.4.4 Breaking region

Below you can also see results in Figure 6.6 showing the waveform at x = →2.6
m. This time series shows a good example of breaking waves. The signal is far
more chaotic than at x = →6.3 m and has lost most of its smooth beach-wave
shape. This is a clear indication of wave breaking. Another characteristic of
the breaking region is clear from Figure 6.7. That is the sudden increase in
the standard deviation of the average wave height. In this region, the wave
height is less predictable and varies more across each wave period. Another
significant feature is that more of the wave appears to be above the zero line.
This means that the water in this region has gained potential energy during
this process.

6.4.5 Final wave height results

The reader will remember that 0 m represents the shoreline on the right of
Figure 6.1 and distance is measured in metres from the shoreline. Figure 6.7
illustrates the average wave heights of waves moving in the same way, from
the source on the left to the shoreline on the right. We can see that the
average wave height increases predictably from x = →6.3 m to x = →4 m.
At x = →3.8 m we see that the average wave height reaches a maximum
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Figure 6.7: Average wave heights and standard deviations of all probes over
the length of the tank.

and begins to decrease at a relatively predictable rate before the standard
deviation shows any significant increases. It is at x = →3.2 m that we see the
standard deviation of the waves suddenly increase and we see a corresponding
increase in the rate of decay of the wave height. From here the average wave
height falls o! dramatically. As can be seen from the figure, the probes
were well situated in these experiments in order to record data about the
transition from the mid-slope region to the breaking region. It is clear from
Figure 6.7 that the waves begin to break somewhere between x = →3.8 m
and x = →4.1 m.

6.5 Phase velocity

In the beginning of this chapter we mentioned that the signals on the three
probes were shifted out of phase. While we synchronised the signals in order
to better display the waveforms, we can actually make use of this phase
information to determine the phase velocity of the waves. In this section I
will analyse the phase information of the waveforms and use this to compute
the phase velocity of the waves as they progress up the slope. We will first
develop the core concepts then show the final phase velocity algorithm at the
end of this section.
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We would like to work out the phase velocity of the waves at each point
along the slope. If we had access to the entire waveform at every point in
time, we could simply use a peak tracking algorithm to work out the velocity
at each instant for each wave peak in the tank. However what we have is only
a series of cross sections of that data. Each probe represents a cross section
through time of the water surface at a specific position. While data was
recorded at di!erent positions along the tank, this means that the data from
each experiment was recorded at a di!erent time and there is no guarantee
that the signals from one experiment will begin in the same phase as those
from another experiment. In order to work out the phase velocity it helps to
clarify the question we are asking. That is By how much has the phase of a
wave measured at some position changed since the time it was generated at
the source?. We happen to know the source signal for every experiment. We
can therefore simply compute the phase di!erence between any signal and
the source signal from the same experiment. Doing this for each signal in
each experiment will give us a set of o!sets, and working out the di!erence
between these o!sets will allow us to calculate the average velocity over a
small range. We will now go through each step of this process, investigating
the signals involved at each stage in the process.

Figure 6.8 shows a five second sub plot of the signals for x = →3.6 m,
x = →6 m, and x = →14 m. We will first manually work out the phase
di!erence between two sets of peaks then show how we use a cross correlation
to do the same thing more accurately. This allows us to highlight a few key
di!erences between these two ideas.
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Experiment 21 showing wave height over time for each probe.
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Figure 6.8: Time series corresponding to probes at x = →14 m, x = →6 m,
and x = →3.6 m.
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In Figure 6.8 we can see three signals with the peak values of two of the
signals shown. To work out the phase di!erence between these two waves
we could simply find the average di!erence between the peaks of the waves.
This approach gives an average phase o!set of 0.36 s between the signals at
x = →14 m and x = →3.6 m. We will now compute the phase o!set using
the cross correlation. In order to compute the cross correlation of the two
signals, each of length N samples, we first pad the ends with N extra zero
samples to increase their length to 2N samples. This ensures that our cross
correlation avoids making unwanted circular correlations. We then take the
2N point Fast Fourier Transform (FFT) of both signals and compute the
frequency domain correlation function according to the following equation:

C(f) = f1f
↓
2 , (6.2)

where f1 is the frequency spectrum of the signal at x = →3.6 m and and f
↓
2

is the complex conjugate of the frequency spectrum at x = →14 m.
Taking the real component of the inverse FFT (iFFT) of Equation 6.2

we get the correlation function which is shown in Figure 6.9 below. From
this correlation function we can find the maximum correlation to be at the
31st index. Since we know each sample of the input signals corresponds
to 20 ms we deduce that the phase o!set between the two signals is 20
ms ↑ 31 samples = 0.62 s. This result di!ers greatly from our manual
calculation of 0.36 s above and is outside of a reasonable error range of about
±20 ms. In this case the cross correlation we are computing is between
two signals that are not purely of one frequency. Specifically, the signal
at x = →3.6 m is made up of many harmonic frequencies and since the
cross correlation is most heavily weighted by the fundamental frequency of
the signal, it is more accurate to know that we are finding the di!erence
mainly between the fundamental frequency components of the waves being
compared since the peaks of the dominant frequency component of the signal
are not necessarily in the same place as the peaks of the original wave. This is
especially true for waves with more harmonic components. It is for this reason
that we pass our signals through what is know as a perfect reconstruction
filter upsampler before we do our cross correlations. The details of this
filter are discussed in Section 6.5.1 below. This filter allows us to isolate
a single frequency component of each wave as shown in Figure 6.10 where
only the fundamental frequency of each wave is present. It can be seen
from the figure that the peaks of these waves are closer than those of peaks
of the original signal. In this context it is now a satisfactory approach to
simply compare the peak positions. This di!erence can be clearly seen in
Figure 6.12, where the fundamental frequency component of the time series
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Figure 6.9: Cross correlation of time series at x = →14 m and x = 3.6 m
with 4↑ upsampling.

at x = 3.8 m is compared against the original unfiltered signal. As well as
filtering the signals down to their fundamental frequency component of 0.4
Hz, the perfect reconstruction filter upsampler has also upscaled the signals
in the figure to 4 times their original resolution (increasing their resolution
from 20 ms to 5 ms). For reasons that will be discussed in Section 6.6, we
have also used a Hann window function as well as zero padding in our cross
correlation to reduce spectral leakage. Figure 6.11 shows the improved cross
correlation function. Applying the Hann window function is a step that was
not included in the analysis by Dr Govender and Dr Mukaro according to
their paper (Mukaro et al., 2013). When computing the phase o!set for
Figure 6.10 by looking at the di!erence between the peaks (corresponding to
the waves x = →14 m and x = →3.6 m) we get an average phase o!set of
103 ms and when computing the cross correlation of the same filtered and
upscaled signals we get cross correlation of 5 ms ↑ 22 samples = 110 ms.
This is of course a much more accurate result.

6.5.1 Perfect reconstruction filter upsampler

We will now discuss the perfect reconstruction filter upsampler technique
that was used to preprocess signals before computing our cross correlation
functions. It is a basic frequency domain filtering and resampling technique
that allows us to reconstruct the original signal using only a specific subset of
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Experiment 21 showing wave height over time for each probe (upsampled 4x).
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Figure 6.10: Filtered and 4↑ upsampled time series at x = →14 m, x = →6
m, and x = →3.6 m (showing fundamental frequency of the waves). Note
that the amplitude values on the vertical axis are scaled by a factor of 4
compared to the original signal. This is a consequence of using MATLAB
forward and backwards FFTs together with interpolation. This is accounted
for in Algorithm 5.
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Figure 6.11: Cross correlation of fundamental frequency components of x =
→3.6 m and x = →14 m with 4↑ upsampling and Hann windowing applied.
The windowing can be see in the tapering of the correlation function.
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Figure 6.12: Comparison of original signal and its fundamental frequency
component.

frequencies while increasing the sample resolution of the signal. It works by
first taking some N -point FFT of the input signal, then in our case applying
both a low pass and high pass filter to the frequency spectrum on either
side of the fundamental frequency component of the signal. In our case this
means simply setting every frequency bin to zero either side of the 0.4 Hz
peak. Since we are using this to determine a cross correlation between waves
that all have the same frequency, it allows us to e!ectively track the phase
o!set of waves even as the rest of their frequency spectrum changes over
time. Once this is done, we then move on to resampling the signal. Since we
are in the frequency domain already, we can simply split the full spectrum
in the centre into two parts and insert a number of zeros proportional to
the upsampling factor such M/N = k, where M is the number of output
samples, N is the number of input samples, and k is the upsampling factor.
Then we compute the M point inverse FFT to reconstruct the signal using
only the fundamental frequency component of the signal at an upsampled
sample rate of k. This process is analogous to time domain sinc function
interpolation.

The number of zeros, Z, needed to pad the centre of the full spectrum
FFT in order to upscale an N -point input signal by an upsample factor of k
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is given by Equation 6.3:

Z = N (k → 1) . (6.3)

The pseudocode for this perfect reconstruction upsampler is shown in
Algorithm 5. While this algorithm does not include a windowing step for
addressing spectral leakage, I found that in this case it did not a!ect the
final phase velocity calculations4.

Algorithm 5: Pseudocode for perfect reconstruction filter

foreach signal S in experiment do
Compute the FFT of the signal;
Zero all frequency components outside of a desired range;
Pad right side of FFT with zeros proportional to the upsampling
factor;
Scale magnitude of remaining frequency components based on
upsample factora;
Compute the iFFT;

end

a
When filtering out frequencies from the spectrum we are also removing energy from

the system. To compensate for this it can be convenient to amplify the resulting wave.

This does not a!ect the final correlation results.

6.5.2 Final phase velocity calculations

So far in this chapter we have investigated how to work out the phase o!set
of each signal in our dataset relative to its source signal. We have discussed
the problem of finding a reference point for the phase o!set of each signal, the
algorithm for computing the cross correlation of two signals. We investigated
the discrepancy between the phase di!erence between the peaks of two signals
and a more accurate definition of the phase di!erence between two signals.
We investigated how a perfect reconstruction filter can help solve this problem
and at the same time be used to upsample our signals for increased accuracy.
Since we can now compute the phase di!erence between a signal and its
reference signal, we can simply do this for each signal in our dataset, then
use the di!erence between these o!sets to compute the phase velocity at each
point.

4
An appropriate windowing function for this is the Hamming function since it tapers

o! to a non-zero value on both sides. This means it can be applied before doing the FFT

to decrease spectral leakage, and when the reconstruction step is done using the iFFT,

one can divide by the Hamming function again to reproduce the original non-windowed

signal without any tapering on the ends.
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Figure 6.13: Phase di!erences

Figure 6.13 shows the phase o!set for each signal captured along the
length of the tank. The o!sets for points where data was captured by more
than one experiment have been averaged. The phase o!set computed between
two signals can only be within ±ε rad even if the o!set between the functions
is larger in reality. The o!sets in the figure have therefore been accounted
for by adding a 2ε rad shift to portions of the data. According to the figure,
the phase o!set of the waves decreases as the waves approach the shore.
This may appear contradictory to the results of Mukaro et al. (2013), as
the o!sets they show increase as the waves approach the shore instead of
decrease. However, this is actually a matter of interpreting the time shifts
calculated by the cross correlation. The cross correlation measures the time
between two nearest peaks in the two signals, and it may not be the two
correct peaks that are compared. We can correct this by simply subtracting
the measured time shifts between signals from one period.

We can now compute the phase velocity using Equation 6.4 below, where
f is the fundamental frequency of the wave, $x is the distance between the
positions of two phase di!erences, and $% is the change in phase di!erence
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between the two points. This is given by

c =
2εf$x

$%
. (6.4)

When calculating $x and $%, the centred di!erence was used. Once the
phase velocity was computed at each point, a five-point moving mean was
taken of this resulting data. This algorithm is shown in Algorithm 6. The
final result is shown in Figure 6.14 along with the two theoretical curves,
one derived from linear theory (

⇒
gh), and the other using the roller model

concept (1.3
⇒
gh) of Schä!er, Madsen and Deigaard (1993). As can be seen

from the figure, the experimental velocity matches that of linear theory very
closely up until just before 4.2 m from the shoreline. At this point, the ve-
locity begins to increase until it reaches a maximum of about 1.81 m/s at 2.9
m from the shoreline. During this increase it crosses the line predicted by
the roller model at 3.4 m. After reaching a maximum, the velocity decreases
again, following the roller model’s curve. The sudden increase in wave veloc-
ity between x = →4.2 m and x = →2.9 m occurs in the same region that we
know the waves begin to break. This suggests that the increase in velocity is
due to the breaking of these waves in this transition region. This knowledge
also separates the graph into three distinct regions: pre-breaking, breaking,
and post-breaking regions. In the pre-breaking region, the waves seem to
follow the curve derived from linear theory. After this the waves break and
they then appear to follow the curve derived by the roller model. This seems
logical as the roller model is intended to describe waves in the post break-
ing region. Another significant attribute of the breaking and post-breaking
regions is the apparent increase in variation of the velocity.
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Figure 6.14: Phase velocity
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Algorithm 6: Pseudocode for determining the phase velocity

foreach signal in experiment do
- Filter and upsample signal using perfect reconstruction
upsampler from Algorithm 5;
- Apply Hann window function to signal;
- Pad right sides of inputs to prevent circular correlations;
- Compute the FFT of the padded data;
- Compute correlation;
- Compute the iFFT to get the correlation function;
- Return index of max correlation;
- Compute the time o!set as dt / resampleFactor;
- Adjust points that are o! by +-pi rad;
- Average duplicate o!sets;
- Compute the centered di!erence of the o!sets;
- Compute the 5 point moving mean;

end

6.5.3 Future optimisations

A natural optimisation is to combine the perfect reconstruction code with
the cross correlation code and compute both quantities while still in the fre-
quency domain when doing the perfect reconstruction filter. This minimises
the number of times you need to transform the signals between the frequency
and time domains. However, this was not done in my code for a number of
reasons. Firstly, keeping these two operations separate allows them to be
run independent of one another. This made my code far more readable and
made analysis of the di!erent stages of data processing far more accessible.
This follows a simple separation of concerns and a standard functional pro-
gramming principle. Secondly, the scale of the data involved meant that the
value of this optimisation was simply not valid and even premature. With
only about 75 signals to analyse, all processing was done in a matter of a few
seconds. However, this optimisation is good to note if one wishes to make a
highly optimised version of this type of algorithm.

In the next section I will show my analysis of the frequency spectra of
the waves as they travel up the slope.

6.6 Frequency analysis

In this section we will investigate the spectral properties of the experimental
beach wave data. We will investigate three main regions along the length of
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the tank. The wave source, the near-breaking region and the breaking region.
We will first look at the frequency spectrum of the source region to establish
a reference for the rest of the results, then proceed to analyse the remain-
ing regions. For each frequency spectrum, I have run a minimum-distance
peak detection algorithm and used this data to identify the location of the
harmonic peaks in the data. This information was then used to compute an
exponential curve of best fit for the peaks. Note that the zeroth index in the
FFT data was excluded from all peak detection and curve fitting analysis 5.

In Figure 6.16 we see the frequency spectrum for waves at x = →14 m (the
wave source). The reader will remember that the wave generator was set to
generate waves with a frequency of 0.4 Hz. This can be seen in the diagram
with the largest peak at 0.4 Hz on the far left of the diagram. However,
this is not the only frequency component that appears in the spectrum. As
well as the fundamental frequency, we also see other prominent harmonic
peaks followed by a number of small peaks that appear to have the same
regular spacing. It is clear that the waves measured at the source are not
purely sinusoidal, as seen previously, and this is proven by the fact that there
is clearly more than one frequency component forming a significant portion
of the spectrum. As discussed previously, this can be due to the nonlinear
interaction of the water surface with the floor of the tank at the paddle due
to the relatively shallow depth of the tank. As for the relationship between
the magnitude of the di!erent peaks in Figure 6.16, we can see that they fit
an exponentially decaying curve very closely. From the fitted curve in the
figure we can see there is very minimal di!erence between the exponential
curve and the peaks of the frequency spectrum. The fitted curve equation is
shown to be the following for waves at the source:

y = 7.2079e(→4.8768f)
, (6.5)

where y is the normalised spectral amplitude and f is the frequency.
In Figure 6.18 we see the frequency spectrum for waves at x = →6.0 m.

This is one of the points furthest from the shore besides the wave source for
which we have data. At this point along the length of the tank, the waves
are still in the non-breaking region. Here we can see the peak at 0.8 Hz has
grown from a magnitude of about 0.25 to a magnitude of 0.425. The same
pattern can be seen for other low frequency harmonic peaks in the spectrum.

5
Non zero values at the 0 Hz index of a frequency spectrum indicate a constant o!set to

the signal. While this information is useful and is shown in the spectra, it is excluded from

curve fitting. These curves represent the decay of energy from the fundamental component

of the wave into non-zero frequency components of the waves.
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Experiment 1 showing wave height over time for each probe.

Figure 6.15: The time series at x =
→14 m.
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Figure 6.16: Frequency spectrum for x =
→14 m with peak detections and curve fit-
ted to these peaks.

It can be seen that energy is now distributed in a wider range of low frequency
harmonic peaks than in Figure 6.16. This is evident in the changes to the
equation of best fit given by Equation 6.6 for x = →6 m. Note that both
the magnitude of the exponential and magnitude of the decay rate have both
decreased. Notice that the peak at 0 Hz has also increased slightly. The
peaks appear to still fit an exponential curve very closely according to the
equation of best fit:

y = 2.3534e(→2.1383f)
. (6.6)

We will now examine the frequency spectrum of waves that form part
of the near-breaking and breaking regions, where the waves have reached
their peak height and begin to collapse under their own weight. Figure 6.20
shows the frequency spectrum and fitted curve for x = →3.8 m from the
shoreline. From Figure 6.7 we know that at this point the waves have al-
ready reached their peak wave height and are about to enter the most chaotic
region known as the breaking region. As can be seen from the figure, the
frequency spectrum at this point has become very interesting. The magni-
tude of the peaks in this figure oscillate along the frequency axis, creating
six frequency bands. The frequency pattern that we see is due to the fact
that in the breaking region the wave has a more saw-tooth shape. The spec-
trum of a saw-tooth signal has shape which is proportional to a sinc function
squared. While the distribution of peak magnitudes follows a more compli-
cated pattern compared to those seen previously, it does generally follow an
exponentially decaying curve with the following equation:
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Experiment 21 showing wave height over time for each probe.

Figure 6.17: The time series at x =
→6 m.
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Figure 6.18: Frequency spectrum
for x = →6 m with peak detections
and a curve fitted to these peaks.

y = 1.6845e(→1.315f)
. (6.7)

6.6.1 The relationship between Boussinesq waves and
sawtooth waves

While the spectrum shown does correspond correctly to a sawtooth wave it
is possible that some of its shape is influenced by spectral leakage. Spectral
leakage tends to occur when the fundamental frequency of the input signal
to the FFT does not fall exactly on a bin in the FFT result. In other words
leakage occurs when the input signal does not contain an integral number of
cycles in N samples, where N is the size of the FFT to be computed. Readers
who are experienced with working with Fourier transforms may notice that
the spectrum of the wave in the breaking region is similar to a sawtooth wave
in the frequency domain. Equation 6.8 describes a reverse sawtooth wave
made up of the sum of K sinusoids, each of frequency kf and amplitude 2a

kϑ :

y (t) =
2a

ε

K∑

k=1

(→1)k
sin (2εkft)

k
. (6.8)

This similarity is due to the fact that as the Boussinesq waves become
more deformed by nonlinear e!ects, the trailing side of each peak tends to
drop o! slowly while the rising edge of each wave tends to become increasingly
steep, forming what begins to look like sawtooth waves. To demonstrate this
point, a sawtooth wave and its Fourier transform are shown in Figures 6.21,
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Experiment 23 showing wave height over time for each probe.

Figure 6.19: The time series at x
= →3.8 m
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Figure 6.20: The frequency spec-
trum for the time series at x =
→3.8 m with peak detections and
a curve fitted to those peaks.

6.22, and 6.23 below. Interestingly, when constructing a sawtooth wave with
the same parameters as the Boussinesq waves (f = 0.4 Hz, dt = 0.02 s,
t = 120 s) we do not see the same frequency banding e!ect. Figure 6.22 shows
a relatively smooth exponential decay of frequencies. However, if we vary the
frequency of the sawtooth wave by only 0.22% from 0.4 Hz to 0.40089 Hz, we
see the same banding e!ects present for our Boussinesq waves. For a sawtooth
wave with a frequency of 0.40089 Hz, we get a frequency spectrum with
many of the same properties to what we see at x = →3.8 m in Figure 6.20.
Varying the frequency of the sawtooth wave I have noticed that we get smooth
exponential decay of the spectral peaks with harmonic frequencies (that is
frequencies that are multiples of 0.4 Hz). Figure 6.22 shows the FFT results
of the saw-tooth wave using a signal frequency of 0.4 Hz, sample time of
dt = 20 ms and an FFT length of N = 6000. While Figure 6.23 shows
the same result but using a signal frequency of 0.40089 Hz, sample time of
dt = 20 ms and a FFT of length N = 6000. Since both spectra is that of
a saw-tooth waveform we know from theoretical analysis that we expect the
spectra to have a sinc function squared profile. Thus the plot in Figure 6.22
appears to have a smearing of the spectra which is a sign of leakage.

Figures 6.24, 6.25, 6.26 and 6.27 show more examples of the very di!er-
ent spectra obtained at di!erent points along the tank when not addressing
spectral leakage. With this in mind, we can apply a few di!erent techniques
to decrease the amount of spectral leakage in our FFT results.
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Sawtooth wave with f = 0.4Hz and dt = 0.02s

Figure 6.21: Sawtooth wave with f = 0.4Hz

6.6.2 Addressing spectral leakage

One technique for decreasing the amount of spectral leakage when working
with FFTs is to apply a windowing function to the input signals for the
FFT. There are various well studied window functions available including
the Hann, Hamming, Flat Top, simple triangular, Blackman, and Riemann
window functions to choose from, to name a few (Jai Krishna Gautam and
Saxena, 1995). While they all have slightly di!erent spectral properties,
they are all used to taper the ends of the input signal to the FFT in order
to reduce the amount of spectral leakage and amplify important features
of the spectrum. I have chosen to use the Hann window function as it is
well suited to waves that are made up of a sum of harmonic frequencies
(Harris, 1978). While newer techniques have been developed that use hybrid
windowing techniques that better capture the spectral properties of signals
with sharp spectral peaks, I have chosen to use the classic Hann window for
simplicity (Kallel, Hu and Kanoun, 2022).

Another technique for addressing spectral leakage is to pad the end of the
input signal to the FFT with zeros. Normally the number of zeros is chosen
such that the new length is a power of 2 since many FFT algorithms rely
heavily on this for optimisations. Since spectral leakage is caused by doing
the FFT of a signal with a non-integer number of wave lengths, we also ran
our minimum distance zero crossing detection algorithm from Algorithm 4
on the input signals and trimmed both ends of the signals so that they
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Figure 6.22: Frequency spectrum
of sawtooth wave with f = 0.4Hz
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Figure 6.23: Frequency spectrum
of sawtooth wave with f =
0.40089Hz
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Experiment 22 showing wave height over time for each probe.

Figure 6.24: Time series of the
wave at x = →3.7 m
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Figure 6.25: Frequency spectra of
the time series at x = →3.7 m
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Figure 6.26: Time series of the
wave at x = →1.5 m
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Figure 6.27: Frequency spectra of
the time series at x = →1.5 m
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Figure 6.28: Frequency spectra of
the waves at x = →3.7 m with the
above mentioned techniques for re-
ducing spectral leakage applied.
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Figure 6.29: Frequency spectra of
the waves at x = →3.8 m with the
above mentioned techniques for re-
ducing spectral leakage applied.

started and ended on the rising edge of the waves. We then combined all
of these techniques by first cropping our input signals to an integer number
of wavelengths, then multiplying this signal of sample length N by a Hann
window of the same length N . We then pad this windowed signal with zeros,
increasing its length to 4N samples and use this as the input to our FFT.
With these improvements, we get the following results shown in Figures 6.28
and 6.29.

6.6.3 Analysis of the a and b coe”cients

With the improved results from the previous section we can much more
accurately fit a curve of best fit to the harmonic peaks of the frequency
spectra. We can then do this for each frequency spectrum along the length of
the tank. This fitted curve is represented by the simple exponential equation

y = a
→bx

, (6.9)

where a is the exponential amplitude, b is the decay rate of the harmonic
frequencies, and x is the frequency axis. Plotting the constants, a and b

from Equation 6.9 over the length of the tank gives us Figures 6.30 and
6.31. The curves in these figures have been smoothed using a 5 point moving
mean. From Figure 6.31, we can see that at x = →6.3 m the decay rate of
the harmonic frequencies was about →2.18. As we move along the length
of the tank the decay rate increases linearly to its maximum of about →0.7
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Figure 6.30: Best fit amplitude, a

-6.5 -6 -5.5 -5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5

Distance from shoreline (m)

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

D
e
ca

y 
ra

te
, 
b

Harmonic frequencies best fit decay rate, b

Figure 6.31: Best fit harmonic de-
cay rate, b

at x = →3.6 m. This means that at this point the waves have their widest
spread of harmonic frequency components. This appears to happen around
the breaking point of the waves where the waves have just reached their
maximum height. Because of the wide spread of harmonics this is also the
point at which the original wave most resembles a sawtooth wave. After
this point the decay rate decreases to around →1.05 and begins to oscillate.
The curve for a in Figure 6.30 seems to follow the same but inverse pattern,
decreasing at a constant rate from around 2.35 to a local minimum of 1.2
at 3.6 m from the shoreline. It then follows the same oscillation pattern as
it increases again to about 1.6 then decreasing again to a new minimum of
about 1.15.

If we plot the harmonic decay rate and average wave height along the
length of the tank, we get Figure 6.32. This further illustrates the relation-
ship between the average wave height and the range of harmonic frequencies
contained in the waves. It is shown that the average wave height peaks
around the same position as when the waves have the widest range of har-
monic components and that this occurs near the breaking point of the waves.
Figure 6.33 shows the rate of change of these two quantities over the length
of the tank. This shows that a change in the average wave height at a spe-
cific position along the slope is associated with a corresponding change in
the number of harmonic components in the wave.

6.6.4 Harmonic analysis

As mentioned previously, the 0 Hz peak in the frequency spectrum represents
any o!set that the signals have from the x axis. Plotting the unnormalised
amplitude of this peak we get Figure 6.34. For reference, the average am-
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Figure 6.32: Plot of the nor-
malised decay coe”cient, b, and
normalised wave height across the
simulated tank. The wave height
was normalised so that the peak
wave height at the break point was
unity, while the decay rate was
normalised so that the peak decay
rate at the source was unity.
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Figure 6.33: Change in the har-
monic decay rate and wave height
comparison.

plitude of the 0 Hz peak at x = →14 is 4.756. In the figure we can see that
the o!set of the wave increases from this value to about 15 m just before
the breaking point. At this point the 0 Hz peak drops to almost zero before
increasing rapidly to a maximum of 41 at x = →1.5. Figure 6.35 shows how
the amplitude of the fundamental frequency component of the wave changes
over the length of the tank. Figures 6.36, 6.37, 6.38, and 6.39 show the un-
normailsed harmonic peak amplitudes of four peaks along the length of the
tank.

6.7 Summary

In this chapter a detailed analysis of the experimental data captured by Dr
Govender and his PhD student (now Dr Mukaro) was undertaken. These
include examining the shape of the wave at various positions along the tank,
changes in wave height and phase speed as the waves move up the sloping
beach. The wave height was found to increase steadily as the wave moves
up the beach, until they became unstable and breaking followed thereafter.

6
The spectra computed using the FFT in MATLAB needs to be scaled by a factor

proportional to N . The spectra presented in this thesis have not been scaled. Therefore

the units of the spectral components are unscaled and therefore represent relative numbers.
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Figure 6.34: The unadjusted/uncorrected amplitude of the 0 Hz peak from
the frequency spectra versus position.
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Figure 6.35: The unnormalised amplitude of the 0.4 Hz peak from the fre-
quency spectra versus position.
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Figure 6.36: The amplitude of the
0.8 Hz peak across the length of
the tank.
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Figure 6.37: The amplitude of the
2.8 Hz peak across the length of
the tank.
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Figure 6.38: The amplitude of the
6 Hz peak across the length of the
tank.
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Figure 6.39: The amplitude of the
11.6 Hz peak across the length of
the tank.

A detailed analysis of the spectral changes was also examined. In the next
chapter we will analyse the data from my numerical simulations and compare
with the experimental analysis from this chapter.



Chapter 7

Boussinesq simulation analysis

7.1 Introduction

In this chapter I will introduce the results of my simulations that were devel-
oped using the techniques described in Chapter 5. In the previous chapter
we analysed experimental results from a real wave tank experiment and a
similar analysis will be conducted using this simulated data. While I spent a
great deal of time and e!ort attempting to write my own Boussinesq equation
solver, it was unfortunately too unstable to be used for analysis and compar-
ison with real world data. We will briefly discuss my MATLAB simulations
(first in 2D then followed by a 1D simulation), discuss their limitations (where
they become unstable), then proceed with the simulation of using the Fortran
based numerical solver called FUNWAVE-TVD developed by Wei and Kirby
(1995, 1998) as a replacement. These FUNWAVE-TVD results will then be
compared with those of the previous chapter. As many of the algorithms for
analysing the data were discussed in Chapter 6, this chapter will deal mainly
with the presentation and discussion of the simulation results.

7.2 MATLAB simulation results

In Chapter 5 we investigated the theory behind the fully nonlinear Boussi-
nesq model developed by the Wei and Kirby group. By studying the papers
written by Wei and Kirby between 1995 and 1998 shown in Wei and Kirby
(1995); Wei et al. (1995), as well as the PhD thesis of Long (2006a), I de-
rived the equations necessary to implement this model in MATLAB. This
was implemented without the use of any external MATLAB packages. The
results of my simulations are shown in the next subsection starting with some
validation tests.

113
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7.2.1 Validation testing

Once my simulation was written, I began recreating some of the results from
the 1995 paper by Wei and Kirby (1995). I started with the evolution of an
initial Gaussian distribution within a rectangular basin, then moved on to
the evolution of a solitary wavefront over a flat bottom.

The initial Gaussian distribution is described by Equation 7.1:

n0 (x, y) = A0e
→2((x→3.75)2+(y→3.75)2)

, (7.1)

where A0 is the amplitude, and the centre of the peak of the wave is set to be
in the centre of the 7.5 m by 7.5 m enclosure. The boundary conditions are
given by the standard reflective boundary conditions defined in Chapter 5.
The initial wave amplitude is A0 = 0.045 m and the water depth at rest is
0.45 m. The discretisation variables are as follows: dx = dy = 0.075 m, and
dt = 0.05 s. It is also worth remembering that a low pass filter is applied
every 50 iterations. All four boundaries of the simulation used reflective
boundary conditions.

In Figures 7.1, and 7.2, I show the stable results of my simulation at t = 1
s in a 3D view as well as a 1D cross section. When viewing the contour plot
of these results in Figure 7.3, we can see they match up with the simulations
by Wei and Kirby (1995).

Figure 7.1: A 3D view of the sur-
face elevation, of an initial Gaus-
sian distribution that was allowed
to evolved for 1 second.
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Figure 7.2: The 1D cross section at
y = 3.75 m through the 2D space
at t = 1 s.

As can be seen from the figures, we can see that the central peak of
the Gaussian waveform has dropped downwards then sprung back upwards
during the 1 second time frame. However, I found that if I increased the
simulation time and let the waves hit the boundaries my simulation would
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Figure 7.3: A colour contour plot of the 3D picture shown in Figure 7.1.
These results match those of Wei and Kirby (Wei and Kirby, 1995).

become unstable. This is shown in Figures 7.4 and 7.5. High frequency
oscillations can be seen at all corner boundaries, particularly the north-east
and south-east boundaries1. Although I took great care to implement the
simulation as correctly, it is possible that there was a programming error in
the calculation of the corner boundary conditions.

With these results, I moved on to simulating waves moving up a constant
slope beach in order to recreate the results of Mukaro et al. (2013). This
required having a sloped floor profile, as well as using a rectangular simulation
space and more complex boundary conditions. This is where I hit the first
major issues with my simulations. To avoid the boundary condition issues
from the previous simulation I increased the size of the simulation domain
by moving the north and east boundaries further away from the wave source.
This ensured that as few waves as possible reached these unstable boundaries.

7.2.2 Sloped floor profile validation

The beach waves simulation has a number of properties that make it a more
complex simulation than the Gaussian evolution example of the previous
example. This includes the introduction of a wave maker boundary condition
on the west boundary (the vertical boundary on the left in Figure 7.3), the
addition of a sloped floor profile, as well as the existence of a breaking region
in the simulation domain. Using my 2D MATLAB simulation I started by

1
The top and bottom of the page is considered to be north and south, respectively.
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Figure 7.4: A 3D view of the Gaus-
sian initial distribution at t = 2.5
s.

Figure 7.5: A 3D view of the Gaus-
sian initial distribution at t = 3.75
s.

creating a plane hyperbolic secant wave initial condition. The wave then
decays into two smaller waves, one moving towards the west boundary (before
reflecting from this boundary) and one towards the shoreline in the east. This
is shown in Figures 7.6.

While this simple simulation is relatively stable, unfortunately the addi-
tion of a wavemaker boundary caused the simulations to become very unsta-
ble and therefore unusable. While my MATLAB simulations were stable for
small time periods, I found that they became unstable at the north and east
boundaries of the simulation space for more complex scenes. Additionally, we
were consistently seeing that the waveforms were not evolving as in the ex-
perimental setup. For this analysis, it unfortunately made these simulations
unusable for analysis and comparison purposes.

I tried many things to address this including rewriting my entire sim-
ulation in a more object oriented manner in order to make debugging the
simulation more manageable. I also investigated and implemented more ad-
vanced filtering techniques such as the truly two dimensional Shapiro filters
of Falissard (Falissard, 2013). Unfortunately this did not improve the sta-
bility of my simulations. After this investigation I decided to rather write
a one dimensional version of the simulation to simplify the problem further.
Some results from this 1D simulation are shown below in Figures 7.7, 7.8,
7.9, and 7.10 below in order to illustrate the quality of the results from a
typical simulation. In this 1D simulation I found that I could get a working
wavemaker boundary to be more stable than in my 2D simulations. How-
ever, for my wavemaker boundary I found that I could only specify an initial
wave velocity that equated to 1

4

⇒
gh instead of the the desired

⇒
gh. Faster

moving waves would simply cause the simulation to blow up. The results
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Figure 7.6: The 2D sech plane wave that has decayed into two smaller waves.
At this point, the westward wave has reflected o! the west wall, and the
eastern wave has increased in height and changed shape slightly.
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Figure 7.7: The waveform over the
slope generated by my 1D MAT-
LAB simulations at t = 1 s.

-14 -12 -10 -8 -6 -4 -2 0

Distance from shoreline(m)

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1
Waveform of 1D MATLAB simulations at t = 3s

Figure 7.8: The waveform over the
slope generated by my 1D MAT-
LAB simulations at t = 3 s.
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Figure 7.9: The waveform over the
slope generated by my 1D MAT-
LAB simulations at t = 4 s.
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Figure 7.10: The waveform over
the slope generated by my 1D
MATLAB simulations at t = 5 s.

below are as close as I could get to recreating the physical experiments by
Mukaro et al. (2013) in 1D.

From these simulations it appears that the waves could propagate all the
way to just before the expected breaking region without exploding. Interest-
ingly, these waves appear to pick up high frequency oscillations fairly close
to the FUNWAVE-TVD results breakpoint as will be seen later in this chap-
ter. However, the shape of the waves appears to not exactly match what is
expected. Although we see the leading edge of the waves steepen and grow
in height, and the trailing edge flattens out, the peak is not sharp enough
to resemble the waves in the experimental data. It is also obvious that my
MATLAB simulations were not stable in the wave breaking region. In this
case the addition of a sponge layer over the entire breaking region may have
been worth investigation in order to get some usable results across the pre-
breaking region.
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However, due to the instability of my MATLAB simulation and the time
commitment that would be involved in debugging it and making it useful
enough for comparisons with experimental data, I decided to put my own
numerical simulation to rest. As its replacement I decided to start using
a brilliant, well known Boussinesq solver called FUNWAVE-TVD that will
allow us to more successfully simulated the experimental setup from the pre-
vious chapter. The FUNWAVE-TVD program is based on the discretisation
scheme discussed in Chapter 5. This will be the central focus of the following
section.

7.3 FUNWAVE-TVD results

In this section we will discuss what FUNWAVE-TVD is and how I configured
it to replicate the physical experiment by Mukaro et al. (2013). We will then
analyse the simulation results in detail.

FUNWAVE-TVD is a software package written in FORTRAN that is
used for modelling ocean wave phenomena such as deep sea waves, tsunamis,
ship wakes, and beach wave shoaling and even wave breaking and is used
extensively in coastal engineering for harbour design. The original version
of FUNWAVE used a fully nonlinear Boussinesq equation solver developed
by Wei and Kirby (1995). This is the same model used in my MATLAB
simulations. However, it is now called FUNWAVE-TVD because it uses a
Total Variational Diminishing version of the fully nonlinear Boussinesq wave
model developed by Shi et al. (2012).

7.3.1 Configuration

FUNWAVE-TVD configuration is done using variables in a .txt config file.
The following configuration was used to replicate the experimental setup of
Mukaro et al. (2013). The meaning of the variables in the configurations files
are explained in the configuration script using comments below, as well as in
the discussion in the next paragraph.

! INPUT FILE FOR FUNWAVE_TVD
! --------------------DEPTH-------------------------------------
DEPTH_TYPE = SLOPE
DEPTH_FLAT = 0.618 % water depth in the flat section near the paddle
SLP = 0.05 % slope of the beach
Xslp = 10.5 % distance from the left boundary to the start of the slope



120 CHAPTER 7. BOUSSINESQ SIMULATION ANALYSIS

! ------------------DIMENSION-----------------------------
! global grid dimension
Mglob = 229 % number of x discretisation points
Nglob = 3 % number of y discretisation points

!-----TIME-----
TOTAL_TIME = 120.0
PLOT_INTV = 0.02

! -----------------GRID----------------------------------
DX = 0.1
DY = 1.0

!-----WAVEMAKER-----
WAVEMAKER = WK_REG
DEP_WK = 0.618 % wave maker depth
Xc_WK = 7.0 % distance from left x boundary to the wave maker
Yc_WK = 0.0
Tperiod = 2.5 % generated wave period
AMP_WK = 0.06 % generated wave amplitude
Delta_WK = 3.0 % degree of wave nonlinearity

! ---------------- PERIODIC BOUNDARY CONDITION ---------
! South-North periodic boundary condition
PERIODIC = F

!-----SPONGE LAYER-----
DIFFUSION_SPONGE = F
FRICTION_SPONGE = T
DIRECT_SPONGE = T
Csp = 0.0
CDsponge = 1.0
Sponge_west_width = 5.0 ! this line
Sponge_east_width = 1.4
Sponge_south_width = 0.0
Sponge_north_width = 0.0

! ----------------PHYSICS------------------------------
! parameters to control type of equations
!----------------Friction-----------------------------
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Cd = 0.0

! ----------------NUMERICS----------------------------
CFL = 0.5
FroudeCap = 3.0

! --------------WET-DRY-------------------------------
! MinDepth for wetting-drying
MinDepth=0.01

! -------------- BREAKING ----------------------------
VISCOSITY_BREAKING = T
Cbrk1 = 0.65
Cbrk2 = 0.35

! -----------------OUTPUT-----------------------------
ETA = T % output the waveform at each iteration to a .txt file

On the website for FUNWAVE-TVD, a base configuration file is pro-
vided with all necessary configuration needed for running a basic simulation.
What is shown above are the configuration parameters relevant to the sur-
face wave simulation. For more information regarding the configuration of
FUNWAVE-TVD as well as the base configuration file, please see the defi-
nition of parameters page on the FUNWAVE-TVD website at the following
link: https://fengyanshi.github.io/build/html/index.html.

Up until now we have defined all measurements on the x axis relative to
the shoreline. However, FUNWAVE-TVD expects values to be defined from
the left boundary where the left boundary is at x = 0 m. This configuration
file specifies that we would like to simulate a wavetank with a flat bottom at
a depth of 0.618 m (DEPTH FLAT) for the first 5.5 m (Xslp) from the left
boundary, followed by a constant slope with a value of 0.05 (SLP) or 1:20.
The value for $x (DX) was chosen to be 0.1 m and $y (DY) was set at 1.0
m as it is recommended that DY is much larger than DX for the 1D surface
waves simulation. Mglob is then used to define 229 points along the x axis
and Nglob defines the required 3 points on the y axis. The simulation is then
configured to save a file with the entire water surface waveform every 0.02 s
(PLOT INTV) for a time period of 120 s (TOTAL TIME). The wavemaker
was then set to be at 2.0 m from the left boundary at a water depth of
0.618 m generating waves with a period of 2.5 s (Tperiod) and an amplitude
of 0.06 m (AMP WK) or wave height of 0.12 m. Delta WK is a constant
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Figure 7.11: FUNWAVE-TVD simulated water tank layout described by
the FUNWAVE-TVD configuration file. This setup is exactly the same as
the experimental setup shown in the previous chapter in Figure 6.1 except
that the simulated setup has a sponge layer on the left side for absorbing
unwanted waves that move to the left from the wave source. A sponge layer
is also added from x = →1.4 m to shoreline to reduce the intensity of shoreline
reflections.

that determines the nonlinearity of the waves that is found by trial and
error. Finally we have a sponge layer on the left boundary from x = 0 m to
x = 1 m defined by CDsponge and Sponge west width, as well as a sponge
at the shoreline positioned at x = 1.4 m from the shoreline just after our
last probe that is at x = →1.5 m (see in Figure 7.11). This sponge layer
was added after finding that the simulated waves were reflecting too strongly
from the shoreline and travelling back towards the source which interfered
with our analysis later in the chapter. The remaining parameters are simply
the default physics based parameters for the surface wave example provided
with the software package.

In the following section we will discuss the processing of the simulation
data as well as its analysis.
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Figure 7.12: The full simulated waveform showing waves moving from the
oscillating wave maker source at x = →14 m up the slope to the shoreline
between the times of t = 0 s and t = 60 s.

7.3.2 Simulation results

When run with the configuration file from the previous section, FUNWAVE-
TVD generates 6000 text files each containing 229 data points with a spacing
of 0.1 m along the tank. Slices of this data are then taken through time
at the exact same locations that were used in the real experimental setup,
where each slice represents a probe placed in the wavetank measuring the
wave height at a specific location for the duration of the experiment. After
this stage of processing we end up with 25 text files in the same format
as the experimental setup, where each file contains four columns (one time
column, and three probe data columns). This approach allowed me to feed my
simulation results into the exact same MATLAB code as for the experimental
analysis.

FUNWAVE-TVD was successful at generating stable results and the full
waveform between t = 0 s and t = 60 s is shown below in Figure 7.12. In
Figure 7.13 below, a top down view of the same wavefronts is shown. In this
figure it can be seen that the velocity of the waves decreases as they approach
the shoreline. This is shown by the fact that the curve traced by the waves
slopes slightly upwards. The phase velocity of these waves will be analysed
in the same manner as the previous chapter in Section 7.4.
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Figure 7.13: Top down view of the simulated wavefronts approaching the
shoreline between the times of t = 0 s and t = 60 s.
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Figure 7.14: A snapshot of the simulated waveform at t = 100 s.
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Figure 7.15: Initial data from simulated experiment 20 showing out of phase
signals for time series captured at x = →14 m, x = →5.9 m, and →3.5 m.
Where ϑ is the instantaneous wave height.

Figure 7.14 shows a snapshot of the water surface height across the length
of the simulated tank. In this figure the wave source is at x = →16 m and
Probe 1 is at x = →14 m. Figure 7.15 shows the simulated results of the time
series of surface elevation for x = 14 m, 5.9 m and 3.5 m, corresponding to
experiment 20, followed by Figure 7.16 which shows the same signals after
being passed through the phase adjustment algorithm (Algorithm 3) from the
previous chapter. These signals are comparable to the physical experiment
results in Figures 6.3. However one can see in Figure 7.16 that the peak
positions after phase synchronisation across the three probes appear to be in
relatively the same position. In the previous chapter we saw in Figure 6.3
that peaks of waves closer to the shoreline were generally o!set to the left
of the source wave peaks. This is likely due to the distribution of harmonic
peaks in the simulated waves.

From Figure 7.15, we can see that the source time series in blue at x =
→14 m appear to match those of the physical experiment, having a slightly
asymmetrical sine wave shape, and a slightly pointier peak than trough. The
red time series at x = →5.9 m show an increase in the peak height, as well
as a further widening of the trailing edges of the waves and a steepening of
the leading edges of the waves. The yellow curve at x = →3.5 m shows the
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Figure 7.16: Phase-synchronised time series of experiment 20 showing x =
→14 m, x = →5.9 m, and x = →3.5 m.

same e!ect and also stabilises later in the time series. As can be seen, the
mean height of the wave in the yellow trace waves is greater than the other
time series in the figure and has a lower peak height than the wave in the red
trace. This is because it is measured in middle of the breaking region where
the wave height decreases. In Figure 6.3 in the previous chapter we saw a
much more chaotic signal at x = →3.5 m than we see here. While the model
does support wave breaking, this signal would be highly dependent on the
resolution of the simulation and even so, the simulation might not model the
same intricacies of water splashing that is seen in real life, therefore producing
a smoother output with nonetheless a good representation of the wave profile.
Figures 7.17, 7.19, 7.20, and 7.21 show four simulated experiments in order
to better convey the shapes of the simulated waves at di!erent points along
the simulated tank.

In Section 7.3.3 we will discuss the results of the wave height analysis of
this simulated data.

7.3.3 Wave height analysis

As in Chapter 6, an analysis of the wave heights of the simulated time series
data was conducted. The results are shown in Figure 7.18. Since we are sim-
ulating the waves in these experiments, we can sample from anywhere along
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Figure 7.17: Phase-synchronised time series of experiment 20 showing x =
→14 m, x = →4 m, and x = →1.5 m.

the simulated wavetank. So as well as sampling at all the same points as in
the experimental setup we also sample all the way up to just before the wave
generator. The simulated domain now goes from x = →12.9 m to x = →1.5 m
in intervals of 0.1 m. We can see in Figure 7.18 that the average wave height
across the tank increases almost linearly until it reaches a maximum aver-
age height at x = →5.5 m of 0.175 m. When compared to the experimental
results we note the following: we can see that the peak average wave height
is reached earlier on the slope than in the experimental results. We can also
see that the maximum that was reached in the simulation is also less than
the experiments. After this point the average wave height then decreases
rapidly down to a minimum of 0.0775 m at x = →1.5 m. This is comparable
to the minimum of 0.08 m in the experimental analysis. During this sudden
decrease we can also see two upward oscillations at x = →5.1 m and x = 3.8
m. We can also see that the standard deviation in the average wave height
also increases near and after the break point while the average wave height
remains relatively constant in the entire pre-breaking region. This is con-
sistent with the experimental results in the breaking region. However, the
increase in standard deviation just before the breaking region was something
that was not present in the experimental results.
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Figure 7.18: Average wave height and standard deviations of all time series
across all simulated experiments.

7.4 Phase velocity

In this section we will analyse the phase velocity of the simulated waves in
the same manner as in the previous chapter. In Figure 7.22 we can see the
phase velocity across the entire length of the tank plotted along with two
theoretical curves for the beach wave velocity in red and yellow. We can
notice a few key things about the simulated wave velocity. Firstly, we notice
that the phase velocity in the pre-breaking region mostly falls between the
two theoretical curves. Secondly, the velocity at the break point of x = →5 m
suddenly increases. This is the same phenomenon seen in the experimental
analysis. The velocity after this point oscillates up and down until the break
point. In this region the velocity no longer follows the theoretical curves.
We can compare these observations to Figure 7.23 which shows the phase
velocity of simulated waves when the sponge layer between x = →1.4 m and
the shoreline is removed. The reader will remember from the start of this
chapter that the shoreline sponge layer was added to reduce the amount of
interference of waves reflected from the shoreline. We can see how these
reflected waves a!ect the phase velocity in the pre-breaking region. In this
region we see a large, steady oscillation in the phase velocity of the waves.
However if we look at the breaking region, we see a steep increase in the wave
velocity at the break point. After this point the phase velocity continues to
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Figure 7.19: Phase-synchronised time series of experiment 20 showing x = 14
m, x = →4.8 m, and x = →2.3 m.
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Figure 7.20: Phase-synchronised time series of experiment 20 showing x =
→14 m, x = →5.5 m, and x = →3.1 m.
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Figure 7.21: Phase-synchronised time series of experiment 20 showing x =
→14 m, x = 6.3 m, and x = →3.8 m.

oscillate but does seem to follow the theoretical curves slightly better than
when a shoreline sponge layer is used.

In Figures 7.22 and 7.23 the phase velocity of the waves is higher than the
experimental results. While the simulation results that were obtained with a
shoreline sponge layer approximately fit between the two theoretical curves,
and show a sudden increase in wave velocity at the break point, which is
similar to the experimental results, the phase velocity after the break point
does not appear to match experiment. Without a shoreline sponge layer,
the phase velocity in the breaking region appears to follow a more similar
shape to the experimental results. However in both cases, the magnitude of
the phase velocity is larger than that of the experiment, with peak velocities
of 2.2 m/s and 2.5 m/s just after the break point in Figures 7.22 and 7.23
respectively, whereas it reached a value of 1.81 m/s at this point in the
experimental results.

7.5 Frequency Analysis

In this section we analyse the frequency spectra of the time series generated
by FUNWAVE-TVD. As in the previous chapter, we will examine the spectra
at the wave source, near-breaking region, and the breaking region. The
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Figure 7.22: The phase velocity of the simulated waves across the length of
the tank with a sponge layer between x = →1.4 m and the shoreline.
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Figure 7.23: The phase velocity of the simulated waves across the length of
the tank with no sponge layer near the shoreline.
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Figure 7.24: The simulated time
series at x = →14 m.
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Figure 7.25: The frequency spec-
trum for x = →14 m with peak de-
tections and curve fitted to these
peaks.

figures shown all examine the exact same points in the wave tank as in the
previous chapter (x = →14 m, x = →6 m, x = →3.8 m, x = →3.7 m, and
x = →1.5 m). The same minimum distance peak detection algorithm from
the experimental analysis was run on this simulated data. Exponential curves
with equation y = ae

→bf have also been fitted in the same manner where y

is the fitted curve amplitude, f is the frequency and a and b are constants.
In Figure 7.25 we see the frequency spectrum for waves from Figure 7.24

at x = →14 m (the wave source). The reader will remember that the time
period of the signal was configured as 2.5 s (i.e. a frequency of 0.4 Hz).
This can be seen in the diagram with the largest peak at 0.4 Hz on the far
left of the diagram. In the previous section we commented on the fact that
waves at the wave source (x = →14 m) are not perfectly sinusoidal, with
their peaks appearing pointier than their troughs as shown in Figure 7.24.
This is reflected in the accompanying frequency spectra in Figure 7.25 by
the existence of the harmonic peaks in the spectra. We can also see a 0 Hz
peak indicating a slight o!set to the signal. The curve fitted to the peaks is
described by Equation 7.2:

y = 7.2079e(→4.8768f)
, (7.2)

where y is the normalised spectral amplitude and f is the frequency. The
coe”cients of this fitted exponential curve very closely match those of the
physical experimental results in Equation 6.5 from the previous chapter (y =
4.0694e(→3.50544f)).

In Figure 7.27 we see the frequency spectrum for waves from Figure 7.26
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Figure 7.26: The simulated time
series at x = →6 m.
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Figure 7.27: The frequency spec-
trum for x = →6 m with peak de-
tections and curve fitted to these
peaks.

at x = →6.0 m. This is one of the points furthest from the shore besides the
wave source for which we have data. At this point along the length of the
tank, the waves are still in the near-breaking region. Here we can see the
peak at 0.8 Hz has grown from a magnitude of about 0.25 to a magnitude of
0.425. The same pattern can be seen for other low frequency harmonic peaks
in the spectrum. It can be seen that energy is now distributed in a wider
range of low frequency harmonic peaks than in Figure 7.25. This is evident
in the changes to the equation of best fit given by Equation 7.3 for x = →6
m given by

y = 1.6814e(→1.3386f)
. (7.3)

Note that both the magnitude of the exponential and magnitude of the decay
rate have both decreased. Notice that the peak at 0 Hz has also increased
slightly. The peaks appear to still fit an exponential curve very closely.

From Figure 7.29 we get the following equation of best fit shown in Equa-
tion 7.4 given by

y = 1.4872e(→0.9341f)
. (7.4)

From Equations 7.2, 7.3, and 7.4, we can see that the amplitude coe”cient of
these equations appears to decrease as we measure closer to the shoreline. We
notice that the decay rate constant b is also decreasing indicating a widening
in the range of harmonic components present in the waves. More precisely,
for a given change in the decay rate constant b in our best fit equations,
the constant a describes by how much the intensity of the FFT peaks in the
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Figure 7.28: The simulated time
series at x = →3.8 m.
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Figure 7.29: The frequency spec-
trum for x = →3.8 m with peak
detections and curve fitted to these
peaks.

spectrum will change. We notice that both a and b appear to be decreasing in
magnitude as waves approach the shoreline. This indicates that the range of
harmonic frequencies that are appearing in the waves as they progress along
the slope is increasing and at the same time, the intensity of these peaks is
decreasing. This relation between the two constants is related to the fact
that the total energy in the system should remain relatively constant. This
trend will be further investigated in Section 7.5.2 on Harmonic analysis.

Figures 7.29, 7.31, and 7.33, show the spectra for the waves in Fig-
ures 7.28, 7.30, and 7.32 respectively described by their well defined ex-
ponentially decaying harmonic peaks. It can be seen that a wider spectral
envelope is present for waves at x = →3.7 m than at x = →1.5 m from the
shoreline.

In Section 7.5.1 we analyse how the relative amplitude of the harmonic
peaks changes over the course of the tank.

7.5.1 Analysis of the a and b coe”cients

Fitting an exponential curve to each frequency spectrum along the length of
the tank allows us to track how the energy contained in the wave is distributed
amongst its di!erent harmonic frequencies. This fitted curve is represented
by the simple exponential equation

y = a
→bf

, (7.5)
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Figure 7.30: The simulated time
series at x = →3.7 m.
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Figure 7.31: The frequency spec-
trum for x = →3.7 m with peak
detections and curve fitted to these
peaks.
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Figure 7.32: The simulated time
series at x = →1.5 m.
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trum for x = →1.5 m with peak
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Figure 7.34: Best fit amplitude, a
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cay rate, b

where a is the exponential amplitude, b is the decay rate of the harmonic
frequencies, and f is the frequency axis.

Plotting the constants, a and b from Equation 7.5 over the length of the
tank gives us Figures 7.34 and 7.35 below. The curves in these figures have
been smoothed using a 5 point moving mean. In Figure 7.34 we see that
the best fit exponential curve amplitude a, starts at 5.1 at x = →13.8 m. It
then decreases down to a minimum value of 1.5 just after the break point
at x = →5.2 m. The value of a then begins to oscillate and increase slightly
for the remainder of the slope. This curve appears to be directly related to
the following curve in Figure 7.35 of the value of b, the decay rate. This
curve starts at a value of 4.1 at x = →13.8 m and follows the same pattern
of reaching a minimum value around 1 just after the break point before
increasing and oscillating upwards. As previously mentioned, the decrease of
the decay rate b corresponds to a widening of the exponential curve and an
increase in the intensity and number of harmonic components present in the
waves. This decrease in b is accompanied by a decrease in a which has the
opposite e!ect. These two opposing curve adjustments correspond to keeping
the total energy in the spectra relatively constant. The point x = →5 m is
also the point at which the original wave most resembles a sawtooth wave,
because at this point the waves have the widest spread of harmonics. It is in
this region that the waves have the highest average wave height as we saw in
Figure 7.18.

If we plot the harmonic decay rate and average wave height along the
length of the tank, we get Figure 7.38 below. This further illustrates the
relationship between the average wave height and the range of harmonic
frequencies contained in the waves. It is shown that the average wave height
peaks around the same position as when the waves have the widest range
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Figure 7.37: Change in the har-
monic decay rate and wave height
comparison.

of harmonic components and that this occurs near the breaking point of the
waves. We see that at the point of maximum average wave height, we have
the some of the highest spreads of harmonic components in the waves. After
the break point, the decay rate b remains high, but due to the breaking of the
waves, the same energy contained in the waves is not used to make the wave
peaks taller. In the experimental analysis this corresponds to an increase in
the amount of noise on the spectra as well as an increase in the amplitude
of the 0 Hz peak. In the next section we will further investigate if the same
phenomenon is present in the simulation results. Figure 7.37 shows the rate
of change of the decay rate and average wave height over the length of the
tank. This shows that a change in the average wave height at a specific
position along the slope is correlated to the average wave height. Specifically
in the breaking region we can see that the changes in b are accompanied by
corresponding changes in the average wave height.

7.5.2 Harmonic analysis

In this subsection I will examine the behaviour of the various spectral com-
ponents beginning with the 0 Hz component.

As mentioned previously, the 0 Hz peak in the frequency spectrum rep-
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resents any o!set that the signals have from the the zero point on the y axis.
Plotting the unnormalised amplitude of this peak we get Figure 7.38. We
can see that the amplitude of the 0 Hz peak increases up to a maximum at
the break point of x = →5 m then drops o! rapidly before spiking one more
time then dropping to a minimum at x = →1.5 m. What we would have
expected to see here is a drop in the 0 Hz peak just before the break point,
called the set down of the mean water level, followed by an increase in the
0 Hz peak after wave breaking known as the set up of the wave. That is
the expected behaviour of real breaking waves and is exactly what was seen
in the experimental analysis. However, in Figure 7.41 we see that this same
behaviour does not occur when using a shoreline sponge later. Although we
do see a decrease in the 0 Hz peak at the break point in Figure 7.38, fol-
lowed by an upward spike, we do not see pattern of increasing mean water
level after the break point. It appears that in the breaking region, that the
mean water level decreases with the average wave height. The reader will
remember from the beginning of this chapter that we added a sponge layer
between x = →1.4m and the shoreline. This was done to reduce the intensity
of reflections from the shoreline that were interfering with the rest of our
analysis. This gives us accurate results for all our other analysis except for
the amplitude of the 0 Hz peak amplitude. After some testing we found that
if we removed the sponge layer at the shoreline we would get the correct 0
Hz peak amplitude results shown in Figure 7.39. This shows the peak wave
height decreasing at the break point followed by a sudden increase. However,
the e!ect of the shoreline reflections can be seen by looking at the oscillations
in the pre-breaking region of the figure.

We will now move on to analysing the fundamental frequency component
of the waves as well as some other harmonic frequencies. Figure 7.40 shows
how the amplitude of the fundamental frequency component of the wave
changes over the length of the tank. This figure appears to match the exper-
imental results with a decrease in the amplitude of the fundamental frequency
component of the wave as energy is consistently lost to the other harmonics
of the waves. What we expect to see when looking at other harmonic compo-
nents of the waves therefore is to see increases in their amplitude as they gain
energy that was lost by the 0.4 Hz peak. Figures 7.41, 7.42, 7.43, and 7.44
below show the unnormalised harmonic peak amplitudes of four harmonic
peaks along the length of the tank. What we can notice is that during the
breaking region higher harmonic frequencies gain more energy and the lower
harmonics lose energy. The 0.8 Hz peak gains energy consistently during
the formation of the wave, then loses most of it during wave breaking. The
higher harmonics gain a smaller amount of energy during wave formation
then increase in energy during wave breaking. This is the same trend that is
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Figure 7.38: The 0 Hz peak ampli-
tude when using a sponge layer be-
tween x = →1.4 m and the shore-
line. We see that the mean wa-
ter level does drop o! at the break
point, but then only increases mo-
mentarily after this point before
dropping again.
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Figure 7.39: The 0 Hz peak am-
plitude when not using a sponge
layer near the shoreline. This ap-
pears to more closely match exper-
imental results as we see a drop
in the mean water level at the
break point followed by a sudden
increase after the break point.

seen in the experimental results in the previous chapter.

7.6 Summary

In this chapter we analysed the results of numerical simulations of the Boussi-
nesq equation and discussed how they compare to the experimental results of
the previous chapter. The results and limitations of my own MATLAB simu-
lation were shown and the decision was made to instead use FUNWAVE-TVD
for my simulations. This software was introduced and configured before an
analysis of its results was conducted. We saw that the average wave heights
matched those from the previous chapter on experimental data analysis. We
found that the phase velocity of the simulated waves also matched that of the
experimental data. We found that the distribution of harmonic components
was comparable to experimental data except for the 0 Hz peak that did not
present the same decrease at the break point and subsequent increase after
the break point that was seen in the experimental data. However we did see
that when there is no sponge layer near the shoreline, that the 0 Hz peak
behaved as in the experimental results.
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Figure 7.40: The unnormalised amplitude of the 0.4 Hz peak from the fre-
quency spectra versus position.
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Figure 7.41: The amplitude of the
0.8 Hz peak across the length of
the simulated tank.
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Figure 7.42: The amplitude of the
2.8 Hz peak across the length of
the simulated tank.
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Figure 7.43: The amplitude of the
6 Hz peak across the length of the
simulated tank.
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Figure 7.44: The amplitude of the
11.6 Hz peak across the length of
the simulated tank.
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Chapter 8

Summary and Conclusion

In this thesis I have examined the numerical solution of the Boussinesq equa-
tion for water waves propagating in a long tank and driven by an oscillating
paddle at one end. In preparation for this main objective I have exam-
ined various numerical schemes for discretising partial di!erential equations.
This was then applied to the familiar one dimensional wave equation and the
Korteweg-de Vries equation. Thereafter I have examined the discretisation
of the Boussinesq equation and its simulation. Further I have also indepen-
dently analysed the data from a real experiment for comparison with the
simulation. Below an examination of the main findings of these analyses is
provided.

In order for numerical models to be valid, they must be comparable to real
world experimental equivalents. Furthermore, all aspects of the real world
experimental data must be exhaustive and comprehensively understood. This
is particularly true for complex phenomena like Boussinesq beach waves.
Since being certain of a numerical schemes validity is so crucial, this thesis
analysed both the temporal and spectral data from a real world wave tank
experiment and compared it with numerical simulations using FUNWAVE-
TVD. Using the numerical model we were able to calculate the average wave
heights, phase velocities, and spectral properties at points along the tank
that were outside of the range of the experimental data.

We found that while the simulations appeared to follow the same pattern
of wave heights over the lengths of the tank, the break point of the waves in
our simulation was at x = →5 m instead of the x = →4 m in the experiments.
The peak average wave height reached was 17.5 cm in the simulation while
the analysis of experimental data found a value of 21.5 cm.

We conducted two simulations, one with a sponge layer between our last
probe point at x = →1.4 m and the shoreline and another with no shoreline
sponge layer. The simulation without the sponge layer had large wave reflec-
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tions from the shoreline that presented as oscillations in our phase velocity
calculations. We obtained cleaner results with the sponge layer, but at the
cost of slightly di!erent phase velocity results and mean water level results
in the breaking region of the simulation than without a sponge layer. The
sponge and no-sponge simulations phase velocities both spiked at the break
point as is seen in the experimental data, but reached higher peak velocities
of 2.2 m/s and 2.5 m/s respectively compared the the experimental results
of 1.81 m/s. In the pre-breaking region the phase velocities appear to fol-
low between the linear and non-linear theoretical curves of

⇒
gh and 1.3

⇒
gh

respectively.
By analysing the height of spectral peaks of waves at di!erent points

along the slope we showed how the range of harmonic frequency components
contained in the waves increases as the waves progress up the slope, up until
the break point where this range of harmonics decreases and oscillates. We
showed how this distribution of harmonics matched experiment closely and
was related to the wave height along the slope. We found that the simulation
without the shoreline sponge layer had a mean water level (described by the
0 Hz peak of the spectra) more comparable to experimental data than that
of the simulation with the shoreline sponge layer. However this had the
drawback of shoreline reflections a!ecting spectra in the pre breaking region.

In future work more investigation could be done into reducing shoreline
reflections in the simulations without the need for a sponge layer. There are
numerous optimisations to the phase velocity code that can be done includ-
ing merging the perfect reconstruction upsampler and cross correlation steps
into a single function to reduce the number of FFT / iFFT steps needed.
A thorough investigation can be done into determining the set of simulation
conditions that allow the simulated waves to break at x = →4 m from the
shoreline instead of x = →5 m and whether or not these changes are mean-
ingful for predicting beach wave breaking regions. A thorough analysis of
the error between the numerical and experimental data can be conducted.
This will be easier to conduct if the simulated waves have the same breaking
point as the experimental data.
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Maruzewski, P., Le Touzé, D., Oger, G. and Avellan, F. (2010), ‘Sph high-
performance computing simulations of rigid solids impacting the free-
surface of water’, Journal of Hydraulic Research 48.

Mehmood, A. et al. (2016), Numerical simulation of nonlinear water waves
based on fully nonlinear potential flow theory in openfoam®-extend,
in ‘The 26th International Ocean and Polar Engineering Conference’,
OnePetro.

Mocz, P. and Succi, S. (2015), ‘Numerical solution of the non-linear
schrodinger equation using smoothed-particle hydrodynamics’, Physical
Review E 91.

Mukaro, R., Govender, K. and Mccreadie, H. (2013), ‘Wave height and wave
velocity measurements in the vicinity of the break point in laboratory
plunging waves’, Journal of Fluids Engineering 135.

Muller, M. (1956), ‘Some continuous monte carlo methods for dirichlet prob-
lem’, The Annals of Mathematical Statistics 27.

Nwogu, O. (1993), ‘An alternative form of the boussinesq equations for
nearshore wave propagation’, Journal of Waterway Port Coastal and Ocean
Engineering 119.

Patel, P., Kumar, P. and Rajni (2020), The numerical solution of boussinesq
equation for shallow water waves, Vol. 2214, p. 020019.



BIBLIOGRAPHY 149

Peregrine, D. (1967), ‘Long waves on beach’, Journal of Fluid Mechanics
27, 815 – 827.

Pfa!, T. et al. (2021), Learning mesh-based simulation with graph networks,
in ‘International Conference on Learning Representations’.

Sanchez-Gonzalez et al. (2020), Learning to simulate complex physics
with graph networks, in ‘International Conference on Machine Learning’,
PMLR, pp. 8459–8468.

Sawhney, R. and Crane, K. (2020), ‘Monte carlo geometry processing: A
grid-free approach to pde-based methods on volumetric domains’, ACM
Trans. Graph. 39(4).

Sawhney, R., Miller, B., Gkioulekas, I. and Crane, K. (2023), Walk on stars:
A grid-free monte carlo method for pdes with neumann boundary condi-
tions, Technical report.
URL: http://arxiv.org/abs/2302.11815

Scalerandi, M. (1997), ‘A stable finite-di!erence scheme for the boussinesq
equation’.

Schember, H. (1982), A New Model for Three-Dimensional Nonlinear Dis-
persive Long Waves, PhD thesis.
URL: https://resolver.caltech.edu/CaltechETD:etd-09232005-153011
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