vﬂ

‘ Cape Peninsula
University of Technology

Temporal and spectral analysis of simulated
and experimental Boussinesq type waves

by

Jordan R. Scarrott

Thesis presented in fulfilment of the requirements for the degree
of Masters in Engineering: FElectrical Engineering in the
Faculty of Engineering at the Cape Peninsula University of
Technology

Supervisor: Dr Kessie Govender

June 2024

Declaration

I, Jordan Ross Scarrott, declare that the contents of this thesis represent my
own unaided work, and that the thesis has not previously been submitted for
academic examination towards any qualification. Furthermore, it represents
my own opinions and not necessarily those of the Cape Peninsula University
of Technology.

Date: November 7, 2024

Sim@l/

Abstract

In this project we are interested in using computers to predict the charac-
teristics of ocean waves where they meet the shore. Waves in the ocean play
an important role in a number of areas as follows: Out in the deep sea they
impact shipping and fishing. The breaking of waves along the coast results
in erosion and beach line changes. The breaking of waves also creates huge
forces on shoreline structures and can be very destructive. Thus a knowledge
of these waves and their characteristics is useful for beach management and
protecting coastal structures and harbours.

In order for numerical models to be valid, they must be comparable to
real world experimental equivalents. This is particularly true for complex
phenomena like Boussinesq beach waves. The Boussinesq equation is highly
nonlinear and is further complicated by the boundary conditions that need
to be satisfied. In this work we aim to numerically solve the equations for
water waves propagating along a narrow and long tank in which a sloping
bottom is introduced at one end. The purpose of the sloping bottom is to
create/simulate breaking waves. By doing so we aim to determine the domain
of validity for the chosen numerical scheme.

As a precursor for solving the Boussinesq equation, we first attempt to
numerically solve the classical one dimensional wave equation, followed by
the numerical solution of the Korteweg-de Vries (KdV) equation. In solving
these two partial differential equations we set the scene for the more complex
Boussinesq equation. In solving each of these equations we set up the dis-
cretisation procedure, followed by actual implementation of the discretised
equation using MATLAB.

In the numerical solution of the one dimensional wave equation and the
KdV equation, the accuracy of the numerical techniques is assessed by com-
paring them to analytical solutions or results published in the open literature.
In the case of the Boussinesq equation, the accuracy of the results are as-
sessed by comparing them to a real experiment conducted in a wave tank.
In both the numerical and experimental cases, we examine the changes in
wave profile, wave speed, and spectral content of the waves as they move

from water of constant depth into a region containing a sloping beach where
breaking occurred.

Acknowledgements

Firstly I would like to thank my supervisor, Dr Kessie Govender, for his
years of mentorship not only during my masters degree but since my first
day at the CPUT campus. He is the reason I have wanted to do my masters
degree since my first year of university and it has been a privilege to have
been under his supervision. All of his students admire his keen insight and
life long curiosity and I can only hope these qualities to be contagious. I
would like to thank my amazing wife, Mieke, for her unwavering support as
we both worked through our respective masters degrees while working full
time during our first year of marriage. I am so proud of everything we have
achieved together and it has only brought us closer. I would like to thank all
of my family and friends who have inevitably suffered the stress of this degree
together with us. I would like to thank the French South African Institute
of Technology (FSATTI) for their financial support during the first two years
of my masters degree.

Contents

1 Introduction
1.1 Background information
1.2 Aims and Objectives
1.3 Outline of the thesis, ...

2 Numerical Methods
2.1 Introduction
2.2 Overview of numerical simulation techniques
2.2.1 Finite difference methods
2.2.2 Finite element methods
2.2.3 Smoothed Particle Hydrodynamics (SPH)
2.2.4 Al based techniques
2.2.5 Monte Carlo methods
2.3 Summary

3 Numerical analysis of the wave equation

3.1 Introduction
3.2 Discretising the Wave Equation
3.3 Initial and Boundary Conditions

3.3.1 Corner points
3.4 Stability Analysis oo
3.5 Numerical Results,

3.5.1 Comparison with analytical solution
3.6 CFL Condition Violation
3.7 Summary

4 The KdV Equation
4.1 Introduction
4.2 Discretisation
4.2.1 Initial and Boundary Conditions
4.2.2 Algorithm

21
21
23
24

25
25
26
26
26
27
29
30
32

33
33
33
36
39
40
42
43
45
49

CONTENTS

4.3 Numerical Results. 56
4.4 Stability Analysis 59
4.5 Summary e 61
The Boussinesq Equation 63
5.1 Imtroduction 63
5.2 Wei and Kirby Technique 64
5.3 The Potential Flow Model 65
5.4 Predictor Corrector Methods 66
5.5 Solving for w from U 68
5.6 The Hot Start Problem 73
5.7 Boundary Conditions 75
5.7.1 Reflective Boundaries 75
5.7.2 Wavemaker boundaries L. 7
5.8 Algorithm 78
5.9 Summary 79
Experimental wave analysis 81
6.1 Introduction 81
6.2 Experimental setup 82
6.3 Data inspection and cleaning 84
6.3.1 Phase adjustment 84
6.4 Analysis of Experimental Results 86
6.4.1 Wave height analysis 86
6.4.2 Near paddle characteristics 88
6.4.3 Mid-sloperegion 89
6.4.4 Breakingregion 90
6.4.5 Final wave height results 90
6.5 Phasevelocity 91
6.5.1 Perfect reconstruction filter upsampler 94
6.5.2 Final phase velocity calculations 97
6.5.3 Future optimisations 101
6.6 Frequency analysis 101
6.6.1 The relationship between Boussinesq waves and saw-
tooth waves L. 104
6.6.2 Addressing spectral leakage 106
6.6.3 Analysis of the a and b coefficients 108
6.6.4 Harmonic analysis 109

6.7 Summary 110

CONTENTS

7 Boussinesq simulation analysis
7.1 Introduction o
7.2 MATLAB simulation results
7.2.1 Validation testing L.
7.2.2 Sloped floor profile validation
7.3 FUNWAVE-TVD results
7.3.1 Configuration
7.3.2 Simulation results
7.3.3 Wave height analysis
74 Phasevelocity
7.5 Frequency Analysis
7.5.1 Analysis of the a and b coefficients
7.5.2 Harmonic analysis
7.6 Summary . o.o. ...

8 Summary and Conclusion

113
113
113
114
115
119
119
123
126
128
130
134
137
139

143

CONTENTS

List of Figures

2.1

2.2

2.3

24

3.1

3.2

Work by Ho-Young Kim and Hyun-Gyu Kim showing a remesh-
ing technique called adaptive trimmed hexahedral (TH) mesh
refinement where a higher mesh density is achieved surround-
ing the location of a crack in a material by subdividing the
parts of the grid into smaller regions (Kim and Kim, 2021).

Diagram showing two dimensional SPH simulation in a domain
Q with surface S. All field calculations are computed for each
particle ¢ within the support domain with radius kh;. These
values are averages over all j using the smoothing function S.
Here 7;; denotes the distance between the particle ¢ and the
subject particle in particle group j (Liu and Liu, 2010).
State of the art techniques can predict the evolution of vastly
different physical systems. The technique by Pfaff et al. (2021)
is shown to accurately simulate the interactions between (a)
wind and cloth, (b) a metal plate and actuator, (c) turbulent
flow of water around a cylinder in 2D, and (d) airflow around
an airfoil in 2D.o

The walk on spheres algorithm recursively chooses a random
point on the largest sphere as possible at point x; within the
simulation space until it comes within some minimum distance
of the boundary.

An example of a discretised simulation space showing the
length of the bar separated into regular intervals in j and
computed each iteration k£ using the computational molecule
described in Figure 3.2. The bar is separated lengthwise into
segments each of length Az shown from left to right, and three
iterations through time are shown each of length At.

The computational molecule for the discretised wave equation
in Equation 3.7. L

27

28

10

3.3

3.4

3.5

3.6

3.7
3.8
3.9

3.10

4.1

4.2

4.3

4.4

4.5
4.6

LIST OF FIGURES

Due to the nature of the computational molecule, we cannot
simply compute the value of u at the boundaries. This pre-
vents us from solving further cells in the grid. 37
The entire simulation space for the 1D wave equation. This
includes the first and second initial conditions, the left and
right boundary conditions, and the solution space where the
explicit numerical scheme will be computed. The first two
iterations are explicitly specified. 38
The path of two waves according to the wave discretised wave
equation where f (z,t,b) = cosh™ (z —t —b). In the figure
above, u represents the amplitude on the vertical axis and z
and t are distance and time, respectively, on the horizontal

1 P 44
The path of two waves according to the discretised wave equa-

tlon. 45
Comparison of Numerical and Analytic solutions 46
Comparison with the analytical solution at n=600 iterations . 47

A series of plots showing an exponentially growing numerical
error on the trough of a wave front. The figure shows how a
large numerical error can appear over an extremely small time
frame. 48
CFL Violation Error Zoomed. Zoomed in section of the er-
ror around the CFL violation showing significant errors only
where At > Ax. 49

Computational molecule/stencil for the explicit numerical scheme
for the KdV equation shown by Wang, Yu-Shun and Hu (2008).
54

Computational molecule being wrapped around the edges of

the simulation space with cyclic boundary conditions. 55
Plot of u as a function of = for various values of t = 0 s (top

left), 0.175 s (top right), 0.325 s (bottom left) and 0.4 s (bot-

tom right). The following parameters used to generate this re-

sult: u(z,0) = cos (wz), Periodic/cyclic boundary conditions,

dt =0.00005, de =2/399. 57
Plot of u as a function of x at t = 1.75s. The following param-

eters were used to generate this result: u(z,0) = cos (7z), Pe-
riodic/cyclic boundary conditions, dt = 0.00005, dx = 2/399,
n=35000. 58
The KdV equation solution at ¢ = 40 s by Wang et al. (2008). 59
My simulation results at the same time of t =40s. 59

LIST OF FIGURES 11

4.7

4.8

4.9

5.1

2.2

5.3

6.1

6.2

6.3

6.4

6.5

6.6

6.7

Plot of u as a function of x for t = 0 s to ¢ = 6 s showing
illustrating the paths followed by each wavefront. The follow-
ing parameters were used to generate this result: wu(x,0) =
cos (mz), Periodic/cyclic boundary conditions, dt = 0.00005,
dr =2/399, n =120000. 60
Plot of the log,, |error F'2| showing the conservation of energy
of the system. The following parameters were used to gener-
ate this result: u(z,0) = cos(nz), Periodic/cyclic boundary
conditions, dt = 0.0001, dx = 0.01, n = 200000. The results
are smoothed using a moving mean of 100 data points. 62

Plot of the unstable solution of the six point scheme from
Wang et al. (2008). 62

Equation 5.28 relates each cell in a row of U to a cell in the
corresponding row of w. 70

Each cell in U is described by three corresponding cells in the
SAME TOW 1N U. « .« .« v v v v e 70

The normals to the boundary walls in the simulation space at

(k) = (J k), (5,00, (G), (0,K). o e 76

Experimental setup showing the water tank with a constant-
slope floor profile beginning at —12.35 m from the shoreline, a
horizontally oscillating paddle on the left of the diagram and
an equilibrium water depth of 0.618 m at its deepest point
where the floor is flat. The positions of probes 2 and 3 were
changed in successive runs of the experiment, shown in Table 6.1 81
Initial data from experiment 20 showing out of phase signals
for time series captured at x = —14 m, —5.9 m, and —3.5 m,
where 7 is the instantaneous wave height. 85
Processed data from Experiment 20 with phase-synchronised
probe signals. oL L 86
Average wave height and standard deviations from all probes
across all experiments. L L. 88
Time series of the water surface from experiment 24 for probe
positions at x = —14 m, —6.3 m and —3.8 m. The series at
—6.3 m corresponds to the mid-slope region 89
The time series from experiment 12 showing breaking waves
on Probe 3 which is located at t = 2.6 m. 90
Average wave heights and standard deviations of all probes
over the length of the tank. 91

12

LIST OF FIGURES

6.8 Time series corresponding to probes at x = —14 m, z = —6
m,and z=-3.6m.

6.9 Cross correlation of time series at x = —14 m and x = 3.6 m
with 4x upsampling. L.

6.10 Filtered and 4x upsampled time series at x = —14 m, z = —6
m, and z = —3.6 m (showing fundamental frequency of the

waves). Note that the amplitude values on the vertical axis are
scaled by a factor of 4 compared to the original signal. This
is a consequence of using MATLAB forward and backwards
FFTs together with interpolation. This is accounted for in
Algorithm 5.
6.11 Cross correlation of fundamental frequency components of © =
—3.6 m and x = —14 m with 4x upsampling and Hann win-
dowing applied. The windowing can be see in the tapering of
the correlation function.
6.12 Comparison of original signal and its fundamental frequency
COMPONENt.« . v v v e
6.13 Phase differenceso
6.14 Phase velocity

6.15 The time series at x = —14m.
6.16 Frequency spectrum for x = —14 m with peak detections and
curve fitted to these peaks.
6.17 The time seriesat x = —6m.
6.18 Frequency spectrum for x = —6 m with peak detections and

a curve fitted to these peaks.
6.19 The time seriesat x = —3.8m
6.20 The frequency spectrum for the time series at + = —3.8 m
with peak detections and a curve fitted to those peaks.
6.21 Sawtooth wave with f=04Hz

6.22 Frequency spectrum of sawtooth wave with f =0.4Hz
6.23 Frequency spectrum of sawtooth wave with f = 0.40089Hz .
6.24 Time series of the wave at t =—-3.7m
6.25 Frequency spectra of the time series at t = —-3.7m
6.26 Time series of the waveat t =—1.5m
6.27 Frequency spectra of the time series at z=—1.5m
6.28 Frequency spectra of the waves at = —3.7 m with the above
mentioned techniques for reducing spectral leakage applied. .
6.29 Frequency spectra of the waves at * = —3.8 m with the above

mentioned techniques for reducing spectral leakage applied. . .
6.30 Best fit amplitude, a
6.31 Best fit harmonic decay rate, b

94

. 105

106
107

. 107

107
107
107
107

. 108

LIST OF FIGURES 13

6.32

6.33
6.34

6.35

6.36
6.37
6.38
6.39

7.1

7.2

7.3

7.4

7.5
7.6

7.7

7.8

7.9

7.10

Plot of the normalised decay coefficient, b, and normalised
wave height across the simulated tank. The wave height was
normalised so that the peak wave height at the break point
was unity, while the decay rate was normalised so that the

peak decay rate at the source was unity. 110
Change in the harmonic decay rate and wave height comparison.110
The unadjusted /uncorrected amplitude of the 0 Hz peak from
the frequency spectra versus position. 111
The unnormalised amplitude of the 0.4 Hz peak from the fre-

quency spectra versus position. L. 111
The amplitude of the 0.8 Hz peak across the length of the tank.112
The amplitude of the 2.8 Hz peak across the length of the tank.112
The amplitude of the 6 Hz peak across the length of the tank. 112
The amplitude of the 11.6 Hz peak across the length of the tank.112

A 3D view of the surface elevation, of an initial Gaussian dis-

tribution that was allowed to evolved for 1 second. 114
The 1D cross section at y = 3.75 m through the 2D space at
=TS . 114

A colour contour plot of the 3D picture shown in Figure 7.1.
These results match those of Wei and Kirby (Wei and Kirby,
1995). o o 115

A 3D view of the Gaussian initial distribution at t =2.5s. . . 116
A 3D view of the Gaussian initial distribution at ¢t = 3.75s. . 116

The 2D sech plane wave that has decayed into two smaller
waves. At this point, the westward wave has reflected off the
west wall, and the eastern wave has increased in height and

changed shape slightly. 117
The waveform over the slope generated by my 1D MATLAB
simulationsat t =1s. L. 118
The waveform over the slope generated by my 1D MATLAB
simulations at t =3s. L. 118
The waveform over the slope generated by my 1D MATLAB
simulationsat t =4s. 0L 118
The waveform over the slope generated by my 1D MATLAB

simulations at t =5s. 118

14

7.11

7.12

7.13

7.14

7.15

7.16

7.17

7.18

7.19

7.20

7.21

7.22

7.23

7.24
7.25

7.26
7.27

7.28

LIST OF FIGURES

FUNWAVE-TVD simulated water tank layout described by
the FUNWAVE-TVD configuration file. This setup is exactly
the same as the experimental setup shown in the previous
chapter in Figure 6.1 except that the simulated setup has a
sponge layer on the left side for absorbing unwanted waves
that move to the left from the wave source. A sponge layer

is also added from x = —1.4 m to shoreline to reduce the
intensity of shoreline reflections. 122
The full simulated waveform showing waves moving from the
oscillating wave maker source at * = —14 m up the slope to
the shoreline between the times of t =0sand t =60s. . .. 123
Top down view of the simulated wavefronts approaching the
shoreline between the times of t =0sand t=60s. 124
A snapshot of the simulated waveform at ¢t =100s. 124
Initial data from simulated experiment 20 showing out of phase
signals for time series captured at = —14 m, x = —5.9 m,
and —3.5 m. Where 7 is the instantaneous wave height. . . . 125
Phase-synchronised time series of experiment 20 showing = =
—14dmzx=-59m,andx=-35m. 126
Phase-synchronised time series of experiment 20 showing « =
—14dmr=—-4dmander=—-15m. 127
Average wave height and standard deviations of all time series
across all simulated experiments. 128
Phase-synchronised time series of experiment 20 showing « =
4dm,z=—-48m,andz=—-23m. 129
Phase-synchronised time series of experiment 20 showing « =
—14dmr=-55bmandr=—-31m. 129
Phase-synchronised time series of experiment 20 showing x =
—14dm,z=63mandz=-38m. 130
The phase velocity of the simulated waves across the length
of the tank with a sponge layer between x = —1.4 m and the
shoreline. 131
The phase velocity of the simulated waves across the length of
the tank with no sponge layer near the shoreline. 131
The simulated time series at t=—14m. 132
The frequency spectrum for x = —14 m with peak detections
and curve fitted to these peaks. 132
The simulated time series at t = —6m. 133
The frequency spectrum for x = —6 m with peak detections
and curve fitted to these peaks. 133
The simulated time series at t = —=3.8m. 134

LIST OF FIGURES 15

7.29

7.30
7.31

7.32
7.33

7.34

7.35
7.36

7.37
7.38

7.39

7.40

7.41

7.42

7.43

7.44

The frequency spectrum for x = —3.8 m with peak detections
and curve fitted to these peaks. 134
The simulated time series at x = —-3.7m. 135
The frequency spectrum for x = —3.7 m with peak detections
and curve fitted to these peaks. 135
The simulated time series at t = —-1.5m. 135
The frequency spectrum for x = —1.5 m with peak detections
and curve fitted to these peaks. 135
Best fit amplitude, a 136
Best fit harmonic decay rate, b. 136
Plot of the normalised decay coefficient, b, and normalised

wave height across the simulated tank. The wave height was
normalised so that the peak wave height at the break point
was unity, while the decay rate was normalised so that the
peak decay rate at the source was unity. 137
Change in the harmonic decay rate and wave height comparison. 137
The 0 Hz peak amplitude when using a sponge layer between
x = —1.4 m and the shoreline. We see that the mean water
level does drop off at the break point, but then only increases
momentarily after this point before dropping again. 139
The 0 Hz peak amplitude when not using a sponge layer near
the shoreline. This appears to more closely match experimen-
tal results as we see a drop in the mean water level at the
break point followed by a sudden increase after the break point.139

The unnormalised amplitude of the 0.4 Hz peak from the fre-
quency spectra versus position. 140
The amplitude of the 0.8 Hz peak across the length of the
simulated tank. L 140
The amplitude of the 2.8 Hz peak across the length of the
simulated tank. oo 140
The amplitude of the 6 Hz peak across the length of the sim-
ulated tank. 141
The amplitude of the 11.6 Hz peak across the length of the

simulated tank. 141

16

LIST OF FIGURES

List of Algorithms

1 Pseudocode for solution of the 1D KdV equation. 56
2 Pseudocode for solving the 2D Boussinesq equation 78
3 Pseudocode for the phase adjustment algorithm 85
4 Pseudocode for computing the average wave height of a signal . 87
5 Pseudocode for perfect reconstruction filter 97
6 Pseudocode for determining the phase velocity 101

17

18

LIST OF ALGORITHMS

Acronyms

ABPC Adams-Bashfourth Predictor Corrector
ABMPC Adams-Bashfourth-Moulton Predictor Corrector
AT Artificial Intelligence

CFD Computational Fluid Dynamics

CFL Courant Friedrichs Lewy

DNS Direct Numerical Simulation

FDM Finite Difference Method

FEM Finite Element Method

FFT Fast Fourier Transform

iFFT Inverse Fast Fourier Transform

KdV Korteweg-De Vries

ML Machine Learning

PDE Partial Differential Equation

SPH Smoothed Particle Hydrodynamics

‘WoS Walk on Spheres

WoSt Walk on Stars

19

20

LIST OF ALGORITHMS

Chapter 1

Introduction

1.1 Background information

In the modern world computers are an integral part of our lives. Computers
are used for sending and receiving email messages, drafting documents, ac-
cessing the internet etc. Even our smart cell phones are computers. Business
and banking institutes rely on computers for securely storing and process-
ing personal and financial information. Recent advancements in everything
from self driving autonomous vehicles, drones, and farming machinery have
greatly benefitted from advancements in computing technology. Computing
has been used to enhance the capabilities of existing technology in every area
of our lives from real-time weather data applications on our phones to the
precision controls of aeroplanes that are informed by physical weather mod-
els. Even the oceans are modelled and used to optimise the routes taken by
freighter ships.

During the COVID-19 pandemic, for example, computers were exten-
sively used to predict the propagation and spreading of the coronavirus.
Computers have been used in modelling and predicting weather phenom-
ena for many years. In this project we are interested in applying computers
to solve wave propagation in the ocean. Waves in the ocean play an impor-
tant role in a number of areas as follows: Out in the deep sea they directly
impact shipping and fishing. Along the coast, the breaking of waves results
in erosion and beach line changes. Further, the breaking of waves creates
huge forces on coastal structures. Thus a knowledge of these waves and
their characteristics are useful for beach management and protecting coastal
structures and harbours.

There are many advantages to using computers to model waves propa-
gating up a sloping beach, as opposed to conducting laboratory experiments.

21

22 CHAPTER 1. INTRODUCTION

Laboratory experiments involving beach waves require large experimental
apparatus which can be time consuming to build and maintain and can also
only model a small set of shoreline conditions. Numerical models allow the
study of waves that are described by very different sets of parameters, giving
repeatable and reproducible results. This gives the researcher a high degree
of control over what is naturally a very chaotic phenomenon and can al-
low the investigation of wave phenomena on very different scales, from small
scale surface waves to large ocean and coastal scenarios. This gives numer-
ical methods a naturally superior range of applicability that is simply not
possible in physical experiments.

Wave propagation is usually described mathematically using partial dif-
ferential equations (PDEs). In this thesis I will focus mainly on the following
PDEs:

1. The standard 1D wave equation which is described by:

0%u 0%u

— =, (1.1)

ot? 0x?
where u represents the displacement of some quantity and z and ¢ are
the spatial and time variables respectively. This equation describes
waves such as those on a string or vibrations along a metal rod.

2. The Korteweg-de Vries equation (KDV) which is described by:

ou ou Bu

= el 22 1.2
ot T Mgy TR s =Y (1.2)

where u is the height of the wave, x is a spatial dimension, ¢ is time,
and 7 and p are two real constants. This equation describes waves such
as those in a plasma and also in shallow water.

3. The Boussinesq equation which is described by:

2a h?

m+V-(h + 1) u+v-{ (2 - 6) WV (V- u) + <za + Z) WV [V - (hu)]} =0,
(1.3)

o

ue + gV + (u~V)u+za{?V(V-ut) + V[V-(hut)]} —0, (1.4)

where 7 is the water surface elevation, u = (u,v) is the horizontal
surface velocity at arbitrary depth z,, h is water depth, and ¢ is the

1.2. AIMS AND OBJECTIVES 23

gravitational acceleration. The subscript ¢ refers to time derivatives of
the respective quantity. This equation describes, for example, waves
propagating in shallow water and it is the equation which will be our
primary focus.

The emphasis in this thesis will be the numerical solution of the above equa-
tions, as opposed to their derivation or analytical solutions to these.

1.2 Aims and Objectives

The aim of this project is to simulate the dynamics of classical fluids. In
particular, we will examine water waves propagating in a narrow long tank
and approaching a sloping beach. In order to achieve this aim the following
objectives need to be completed:

1. Solve the 1D wave equation numerically as an introduction to numerical
techniques.

2. Solve the Korteweg-De Vries equation numerically for shallow water
waves.

3. Solve the Boussinesq equation for shallow water waves.

4. Compare results of Boussinesq simulation with existing experimental
data.

The following research design and methodology was adopted to achieve
the above mentioned aims and objectives:

1. Undertake a thorough study of how to use MATLAB to write programs
to solve PDEs numerically.

2. Review and implement current techniques used for solving different
types of PDEs numerically (compare Direct Numerical Simulation (DNS),
Smoothed Particle Hydrodynamics (SPH) and Machine Learning (ML)
techniques).

3. Interpret and understand the theory behind each equation that is sim-
ulated.

24 CHAPTER 1. INTRODUCTION

1.3 Outline of the thesis

The thesis is organised as follows:

In Chapter 2 an overview of various numerical techniques are provided.
These include: Finite Difference Methods (FDM), Finite Element Methods
(FEM), Smoothed Particle Hydrodynamics (SPH), AI based methods, and
Monte-Carlo methods.

In Chapter 3 I expand on the numerical analysis presented in Chapter 2.
Specifically the numerical solution of the standard 1D wave equation is discre-
tised and solved numerically. Further in this chapter I provide some methods
of assessing the stability of the numerical solutions.

In Chapter 4 the numerical solution of the Korteweg de Vries equation
is examined and its interaction with a standard cyclic boundary condition is
investigated. We then discuss methods for tracking the technique’s stability
using the laws of conservation of momentum and conservation of energy and
we comment on the unique interactions of KdV waves with each other.

In Chapter 5 I describe the discretisation of the Boussinesq equation
using a potential flow model. We then solve these equations numerically
using a predictor-corrector method. The derivation of these equations, and
specifically the conversion to and from velocity potentials is discussed in
detail.

Before examining the numerical solution of the Boussinesq equation, I
digress in Chapter 6 to examine data from a real experiment conducted by my
supervisor and his PhD student (Mukaro, Govender and Mccreadie, 2013).
The experiment involved waves propagating in a long tank and moving up a
sloping beach where breaking occurred. I examined the changes in the wave
profile, wave speed and spectral content of the waves as they move up the
beach. This analysis will be used as a base line in which to examine the
numerical solution of the Boussinesq equation.

In Chapter 7 I numerically simulate the experiment discussed in Chap-
ter 6. The analysis of the numerical results focuses on the same aspects of
the waves as the experimental analysis including changes in wave profiles,
wave speed, and spectral content of the waves. Comparisons are then drawn
between the two sets of results. The algorithms used for these analyses are
included and discussed in the text. Further, the simulation allows us to gen-
erate and analyse data at points along the beach that were outside of the
range of the experimental setup.

Note that each chapter contains detailed citation of references, which
represents the literature that was studied.

Chapter 2

Numerical Methods

2.1 Introduction

In this chapter we will investigate various approaches to solving partial dif-
ferential equations numerically. We will define the types of problems we are
aiming to solve and choose an appropriate class of techniques which we will
then use to solve an example equation. Doing so will allow us to go into
more detail about the specific complexities of numerical simulations and the
common features they share.

When replicating a physical system in a simulation we are naturally most
concerned about real-world accuracy. Does the simulation accurately and
reliably predict phenomena that we see in the physical world? If it does, a
simulation then conforms to all the same principles of a classical experiment,
as long as it takes into account all of the effects it is trying to model. How-
ever, the simulation space contains limitations that we do not have in the
real world. For many cases, the real world can be considered to consist of
continuous quantities. However when we simulate it, we are forced to com-
pute discrete quantities. The process of solving equations at specific intervals
in time and space is called discretisation.

The problems we are trying to solve with numerical computing are of-
ten too complex to be solved analytically, and can in many cases be solved
through experimentation. However, real world experiments are costly and
time consuming to run. The problems of ocean waves specifically are good
candidates for numerical simulation because we can solve these equations
with a great degree of control over the experiment itself.

Before going into detail about the equations that will form the subject
of this thesis, let us briefly review some modern numerical simulation tech-
niques.

25

26 CHAPTER 2. NUMERICAL METHODS

2.2 Overview of numerical simulation tech-
niques

2.2.1 Finite difference methods

Finite difference methods take the simplest and perhaps most obvious ap-
proach to solving differential equations. The simulation space is divided into
a grid of points at which computations can take place and the number of
these points is determined by a spatial discretisation step size and the total
size of the domain. In its simplest form, this grid is regularly spaced in all
directions, and does not change with time. The concept of breaking a space
down into finite differences was described by Brook Taylor in the 1700’s, and
his work on the Taylor series is the place from which many modern finite
difference techniques are derived. It was used to solve the first Boussinesq
equations for water waves on a beach, and newer techniques can solve cou-
pled Schrodinger-Boussinesq equations using the same principles (Deng and
Wu, 2021; Peregrine, 1967). This shows that while it is the oldest of the
numerical methods, it is used extensively in modern literature.

One of the most obvious inefficiencies of this method is that computation
is spread evenly throughout the simulation space. If more detailed computa-
tion is required in a specific region, the entire space is forced to be computed
at a higher resolution. To combat this dilemma many techniques have been
devised to subdivide regions that require more details into grids of higher
resolution as shown in Figure 2.1. While this type of spatial optimization is
more typical of finite element methods, it is heavily researched and applica-
ble to all types of numerical simulations (Catmull and Clark, 1978; Chong,
1978; Li, Wei and Zhang, 2019; Sederberg, Zheng, Sewell and Sabin, 1999).

2.2.2 Finite element methods

In finite difference methods the simulation space is populated by a finite
number of computation points. These points are distributed throughout the
space with areas of high complexity having a correspondingly higher density
of these points. In this way, finite difference methods aim to optimize the
number of computation points needed to successfully approximate a solution.
As the simulation evolves, the distribution of these points can be adjusted
in a process called remeshing. Generally a greater density of computation
points is assigned to areas with larger spatial or temporal derivatives. Much
effort has been dedicated to this in recent years to make highly efficient,
highly scalable numerical techniques (Ando, Thurey and Wojtan, 2013; Xiao

2.2. OVERVIEW OF NUMERICAL SIMULATION TECHNIQUES 27

e
'QtrH

£ < A
dir \

e
'QlTTH

\[> &
i |
/ [23

\

e

N

a

e
0 TH

Figure 2.1: Work by Ho-Young Kim and Hyun-Gyu Kim showing a remeshing
technique called adaptive trimmed hexahedral (TH) mesh refinement where
a higher mesh density is achieved surrounding the location of a crack in a
material by subdividing the parts of the grid into smaller regions (Kim and
Kim, 2021).

et al.,, 2020). This idea can be seen in Figure 2.1 where meshes are fit-
ted to the specific geometry of the problem being solved so as to optimize
the computation of the solution. One modern technique skips the issue of
mesh generation entirely with a novel Monte Carlo based geometry process-
ing technique (Sawhney and Crane, 2020). This technique will be discussed
in Section 2.2.4.

2.2.3 Smoothed Particle Hydrodynamics (SPH)

Smoothed Particle Hydrodynamics is a particle based numerical technique
that developed out of astrophysics in the 1990s. The first versions of the
technique suffered from weak convergence characteristics, but have since ma-
tured to have fourth order convergence accuracy (Lind and Stansby, 2016).
SPH approaches are typically more complex to implement and more compu-
tationally demanding than finite difference and finite element methods, but
have the advantage of being highly parallelizable and effective on parallel
processing units (Lind, Rogers and Stansby, 2020). This allows the number
of simulated particles in some studies to exceed one hundred million even
back in 2010 (Maruzewski, Le Touzé, Oger and Avellan, 2010). SPH has
proven to be a versatile numerical method and has been used to solve prob-
lems in many domains including the non-linear Schrodinger equation from
Quantum Mechanics (Mocz and Succi, 2015). These techniques have the less-

28 CHAPTER 2. NUMERICAL METHODS

acknowledged advantage of being somewhat more intuitive to understand and
implement. Instead of dealing only with grids of data, this technique lends
itself naturally to conventional object oriented software principles by mod-
elling “particles” directly. This can make this type of software more scalable
and maintainable for the ones implementing it at scale.

SPH is known as a meshless or mesh-free method. One begins with a
number of particles that are analogous to the grid points of mesh based
methods - that is, they act as points at which computations can be carried
out. These particles have mass, experience forces and are free to move about
in the simulation space. Forces are computed between neighbouring particles
subject to a smoothing function. The smoothing function defines the strength
of the interactions and is often chosen to be a Gaussian function centred on
the specified particle as shown in Figure 2.2.

Figure 2.2: Diagram showing two dimensional SPH simulation in a domain 2
with surface S. All field calculations are computed for each particle ¢ within
the support domain with radius xh;. These values are averages over all j
using the smoothing function S. Here 7;; denotes the distance between the
particle ¢ and the subject particle in particle group j (Liu and Liu, 2010).

This smoothing function is chosen to taper off to zero at a specific length.
This is called the smoothing length and effectively defines a radius around the
particle within which to compute neighbouring particle searches and interac-
tions. As an optimization this smoothing length can be variable (Zeng, Wu,
Deng, Zhu and Chi, 2021). Mesh-free methods have the intrinsic advantage
that computation is limited to areas of the simulation space that actually
contain fluid. This completely avoids the problems of remeshing found in
Sections 2.2.1 and 2.2.2.

Despite these advantages, SPH remains a relatively complex CFD tech-
nique requiring more effort to characterise boundary conditions, achieve re-
liable convergence rates, and manage spurious pressure wave fluctuations

2.2. OVERVIEW OF NUMERICAL SIMULATION TECHNIQUES 29
(Lind et al., 2020).

2.2.4 Al based techniques

The approach taken by the Artificial Intelligence pioneers, Deepmind, at-
tempts to merge two highly complex fields of computer science (Pfaff et al.,
2021). The first being general purpose Al, and the second being highly effi-
cient, highly accurate numerical techniques.

In this approach an Al model is trained on real world data then asked to
extrapolate a new, unseen set of data. These methods often involve a finite
element based spatial discretisation coupled with a learning based temporal
extrapolation technique. The unique approach of Pfaff et al. (2021) uses an
Al to predict the change in a system by encoding the system’s state in a
graph network. They call this framework MESHGRAPHNETS. Figure 2.3
below shows the results obtained from the same model for four very different
physical problems.

(a) FlagDynamic (b) DeformingPlate (c) CylinderFlow (d) Airfoil

actuator

wind ——> [clt)}fT =AY

metal plate

VAVAVAVAVAVAY,
AVAVAVAVAVAVAVAVLY.

g ‘VAVAVA&X’X‘XAVEVA
VA %)
AVavy,

VA"
v
-aﬂiﬁv“

N

Figure 2.3: State of the art techniques can predict the evolution of vastly
different physical systems. The technique by Pfaff et al. (2021) is shown to
accurately simulate the interactions between (a) wind and cloth, (b) a metal
plate and actuator, (¢) turbulent flow of water around a cylinder in 2D, and
(d) airflow around an airfoil in 2D.

The AI propagates learned changes through the network and the results
are decoded and fed back into the system to compute the next state using Eu-
lerian integration. This method combines finite element and Al based meth-
ods and incorporates a remeshing algorithm to optimize the mesh. Al based
methods tend to be used primarily for film and computer graphics where vi-
sual appeal is valued over physical accuracy. However, MESHGRAPHNETS
has the ability to accurately predict the evolution of a wide range of physical
systems including aerodynamics, fluid dynamics, cloth, and structural me-

30 CHAPTER 2. NUMERICAL METHODS

chanics while outperforming other particle and grid based methods. Al based
simulations have reached a point where they can be unconditionally stable,
and in some cases orders of magnitude more efficient than direct numerical
simulations (Holden et al., 2019; Sanchez-Gonzalez et al., 2020).

2.2.5 Monte Carlo methods

As mentioned previously, one novel technique takes a Monte-Carlo approach
to solving partial differential equations. A paper by Sawhney and Krane
(2020) relies on a technique called Monte-Carlo integration which states that
the integral of a function f can be estimated simply by randomly sampling the
domain. The integral will then be the average value of the samples weighted
by the probability distribution from which those samples are drawn.

For an arbitrary probability distribution we have

1 N
FN:NZ
i=1

where f is the function to be integrated and Fjy is the approximation of
its integral, N is the number of samples, p is the probability distribution
function of the random numbers, and X is a random sample. The probability
distribution used can be chosen so that samples are more frequently chosen at
“important”! locations along the function. Monte-Carlo based methods avoid
the use of meshes entirely and are therefore known as mesh-free. Equation 2.1
forms the foundation of Monte-Carlo based techniques and is unique amongst
other numerical techniques in that it allows one to introduce many tools from
the field of statistics into its simulations.

f(X3)
p<Xi)7 (21)

Monte-Carlo techniques have been largely unexplored in the last half-
century as a tool for solving PDEs. Recently, however, there is a renewed
interest in these techniques as described in an exciting paper by Sawhney and
Krane (2020). Their paper develops ideas that were first proposed in 1956
in a paper titled Some Continuous Monte Carlo Methods for the Dirichlet
Problem (Muller, 1956). In this paper, Muller derived an algorithm called
Walk on Spheres (WoS) that combines two statistical principles, known as
Kakutani’s Principle (Kakutani, 1944) and the Mean Value Property (Axler,
Bourdon and Wade, 2013) in order to solve PDEs. With reference to Fig-
ure 2.4, Muller showed that the solution to an elliptic PDE at a point z

! This idea is known as importance sampling and is analogous to the job of remeshing in
other aforementioned numerical techniques in that it optimizes the position of computation
points.

2.2. OVERVIEW OF NUMERICAL SIMULATION TECHNIQUES 31

within a domain is equal to the average of boundary values reached by re-
cursively choosing a random point on a sphere centred at z; until reaching
the boundary.

With reference to Figure 2.4, we randomly choose a point xg within the
domain 2. We then find the largest possible sphere centred at this point
that fits within the domain. This circle will be touching the boundary of
the domain at least at one point. We then pick a random point z; on the
surface of this sphere and use this as the centre of our next sphere. This
process is repeated until the randomly chosen point xj is within some min-
imum distance 0f) from the domain boundary. The quantity simulated (for
example the temperature of a material) is then sampled at this boundary
point. Using Equation 2.1 the a solution can be computed at the point z
by doing a number of random walk on spheres starting at xy. This process
is then repeated any number of times at random places in the domain. This
technique is unique in that the entire domain does not need to be considered
in order to find a solution at a specific point, meaning that a rough initial
solution can be quickly found and can then be progressively refined in suc-
cessive iterations. This is very useful for simulations running on complex and
time consuming geometries.

oQ

Figure 2.4: The walk on spheres algorithm recursively chooses a random
point on the largest sphere as possible at point z; within the simulation
space until it comes within some minimum distance of the boundary.

In a comparison between a FEM technique and their WoS technique on
a highly detailed geometry, the authors found that while the FEM took 14
hours and used 30GB of memory to solve the Poisson equation, their ap-
proach used 1GB of memory and took less than a minute to compute. While
this approach has obvious benefits for many applications, it is however, lim-
ited to elliptic equations with Derichlet boundary conditions (Sawhney and
Crane, 2020). In 2023 the authors published a paper about an evolution of

32 CHAPTER 2. NUMERICAL METHODS

the WoS algorithm which they call Walk on Stars (WoSt) which can solve
elliptic PDE’s with Neumann boundary conditions as well as the normal De-
richlet boundary conditions (Sawhney, Miller, Gkioulekas and Crane, 2023).
It remains however unable to support the solution of the more complex, non-
linear hyperbolic equations that are dealt with as the subject of this thesis.
Something very important to note is that while this technique cannot
directly solve fluid equations, it has one application of particular interest
to fluid simulations. This is that it is able to perform Helmholtz-Hodge
Decomposition which is one of the fundamental theorems of fluid dynamics
(Bhatia, Norgard, Pascucci and Bremer, 2013). This offers a new and exciting
alternative for this specific part of many existing numerical techniques.

2.3 Summary

In this chapter an overview of the various numerical schemes for solving
PDEs have been provided. These include finite difference methods, finite
element methods, smooth particle hydrodynamics, Al based techniques, and
Monte-Carlo based techniques. The advantages and disadvantages were also
discussed.

In the next chapter we will proceed with a worked example. The finite
difference technique that will be used in this example will form the founda-
tion of the numerical solution of the Boussinesq equation. We will use the
wave equation as a case study to investigate this technique and its various
properties and how they can be used to solve more complex equations.

Chapter 3

Numerical analysis of the wave
equation

3.1 Introduction

In this chapter I lay out the basic framework for how PDEs are solved nu-
merically. I begin with the wave equation and schemes for discretising it.
Thereafter, I show how these techniques can be used to solve more advanced
equations. I will also discuss the more practical considerations of the sim-
ulations. The handling of boundary and initial conditions, computational
molecules/stencils, and techniques of stability analysis is discussed in this
chapter.

3.2 Discretising the Wave Equation

Suppose we have a one dimensional rod and we want to examine the vibra-
tions propagating along it or the propagation of surface water waves in a long
tank. These waves can be described by the wave equation
2 2

gu_ 02@, (3.1)

ot? Ox?
where u is the height of the wave and ¢ is a measure of the speed of the wave.
Here we have x as the spatial dimension and t as the time dimension. Many
numerical methods exist for solving for u in this equation with their own pros
and cons. The method shown here is known to be one of the most desirable
because of its stability, efficiency and simplicity - the explicit methods. With
this type of method we attempt to solve for u directly instead of one of its
derivatives. This avoids having to use an extrapolation technique to integrate

33

34 CHAPTER 3. NUMERICAL ANALYSIS OF THE WAVE EQUATION

this derivative to solve for u. This reduces the complexity of the simulation
and results in faster and more stable solutions.

At this point it is good to establish a naming convention for our deriva-
tions. When solving for the quantity, u, along the surface of a one dimensional
bar of length, [, we can define the discretisation as follows. Derivatives of u
in the z direction are defined as u, and wu,, for the first and second order
derivatives, and similarly for the time derivatives u; and u;. We split up the
length of the bar into .J pieces each of length Ax, where the j* region is
jAz distance along the bar as shown in Figure 3.1. We can then solve the
equation for any time kAt in the future up to time K. The disturbance/dis-
placement u from its equilibrium position at time ¢ at position j, k& would be
u (j, k) and its first derivative, u, (j, k).

The problem now is to rewrite Equation 3.1 in terms of these discrete
points. We want to find the value of u at (z,t) = (j,k + 1). That is, the
height of the wave at this point on the next iteration. Using the Taylor series
in Equation 3.2 we can get an expression for w (j, k + 1) in terms of u (j, k)
and its derivatives:

1

This allows us to solve for the first and second derivatives u, and u,, as
follows. Dividing by Az and ignoring the wu,, term we get the forward
difference equation:

u(gH+1k) —u(g k)

Similarly we can derive the backward difference equation:

s (j, k) ~ - . (3.4)

We can use the Taylor series in a similar way to find the centred difference
for the second derivatives to be

_u(GH+LE) = 2u(j k) +u(j—1,k)

In the same way, one can get a similar expression for the time derivative.
Substituting Equation 3.5 and a similar expression for wu (7, k) into Equa-
tion 3.1 we get

3.2. DISCRETISING THE WAVE EQUATION 35

=cC .
At? A2
(3.6)
cAt

Solving for u (j, k) and letting r = <, we get

u(jk+1)=2u(ik)(1—r")+r°u(G+1,k) +u(j—1,k)] —u(jk—1).
(3.7)

k+1 }At

-2 J-1 Ji j+1 j+2 j+3 j+4

X

Figure 3.1: An example of a discretised simulation space showing the length
of the bar separated into regular intervals in j and computed each iteration
k using the computational molecule described in Figure 3.2. The bar is
separated lengthwise into segments each of length Az shown from left to
right, and three iterations through time are shown each of length At.

Now we have a way to explicitly compute the value of u at any point
on a discrete grid. This is the basic method for discretising PDEs and more
advanced techniques often still draw from these fundamental concepts. There
are many ways to discretise an equation and not all such derivations provide
stable results. However, much effort in the scientific community has gone
into finding the methods that do and these methods are examined in the
relevant sections for each equation.

In this section we have discretised the wave equation and shown a basic
scheme for computing the next value of u given any j. We can see that
the scheme developed takes into account the current value of u, u (j, k), the
value to the left, u(j — 1,k), the value to the right, u (5 + 1,k), and the

36 CHAPTER 3. NUMERICAL ANALYSIS OF THE WAVE EQUATION

previous value of u, u (j,k — 1). This is known as a three level scheme and
its computational molecule is shown below in Figure 3.2.

k+1 °
k o ®]
k-1 °

1] j+1

Figure 3.2: The computational molecule for the discretised wave equation in
Equation 3.7.

Since the solution of the next time iteration is dependent on the results
of the previous two iterations, we need two initial conditions in order to com-
pute the first new iteration. These initial conditions, along with the concept
of boundary conditions, will be introduced in Section 3.3.

3.3 Initial and Boundary Conditions

Boundary conditions describe what happens at the edges of our simulation
space and, in the real world, describe how the system interacts with its
surroundings. Boundaries can simply be the borders of the simulation space
or in more complex simulations they can describe the borders of foreign
objects within the space. In our simulations they serve two functions. They
describe what happens at the borders of the space, and they occupy a gap
of cells that the discretisation is not able to fill.

When discretising an equation we often end up with a solution describing
Uj k+1 in terms of u;y and its left and right neighbours. On their own, these
schemes cannot compute the values at the edges of our simulation space as
they depend on values that lie outside of it. This is shown in Figure 3.3.
When boundary conditions are added we can solve the equation as shown in
Figure 3.4.

Boundary conditions can have various physical meanings. Below I sepa-
rate them into two main types. Those that are dependent on the state of the
system and those that are not.

3.3. INITIAL AND BOUNDARY CONDITIONS 37

L Unsolvable

t| |unsolved First Solved Iteration Unsolved

Initial Conditions 2

Initial Conditions 1

X

Figure 3.3: Due to the nature of the computational molecule, we cannot
simply compute the value of u at the boundaries. This prevents us from
solving further cells in the grid.

1. Independent Boundary Conditions

(a)

Function of an external system

The boundary conditions can change entirely independent of the
rest of the system, according to some function f (z). Physically
for the wave equation this corresponds to waves being forcefully
generated at the boundaries of the system. For example by a wave
generator in a wave tank.

Constant / Fixed

These boundary conditions keep the same value through the whole
duration of the simulation. This can be used to simulate reflection
of waves off of walls. Also used as the bottom boundary in Navier-
Stokes simulations of wall bounded flow to simulate the No-Slip
Boundary condition (Sengupta and Bhaumik, 2019).

2. dependent Boundary Conditions

(a)

Cyclic

With this boundary condition waves approaching a boundary on
one side reappear at the other boundary moving in the opposite
direction. Can be thought of as a connection directly from one
end to the other. This has been used by Zabusky and Kruskal in
their original numerical solution of the Korteweg-De Vries equa-
tion (Zabusky and Kruskal, 1965).

38 CHAPTER 3. NUMERICAL ANALYSIS OF THE WAVE EQUATION

(b) Open ended
The boundary maintains the same value as its nearest neighbour.
Physically this can simulate water waves slipping up a wall as the
waves strike the wall or waves that reach the end of a string that
is not attached to anything.

Solution Space————F——

Left Boundary Condition
Right Boundary Condition

Initial Condition 2

Initial Condition 1

X

Figure 3.4: The entire simulation space for the 1D wave equation. This
includes the first and second initial conditions, the left and right boundary
conditions, and the solution space where the explicit numerical scheme will
be computed. The first two iterations are explicitly specified.

As shown in Section 3.2, the explicit scheme for solving the wave equation
is a three level scheme. To compute u; 41 we need the data from the previous
two iterations in time. This means we need two initial conditions: the state
of the system at t = ¢y and at t = tg+ At = t;. These are shown in Figure 3.3.

In its analytical form, the one dimensional wave equation has two sets of
boundary conditions, one for each of its bases, z, and ¢:

u(0,t) =0, (3.8)

and

u(L,t) =0, (3.9)

where u is the height of the wave from its resting position, ¢ is time, and L is
the distance from the left boundary to the right. These equations state that
the disturbance/displacement at the left and right boundaries must always
remain at the resting position. For all time ¢, the displacement is zero at
z = 0 and x = L. These equations are in fact just one set of possible

3.3. INITIAL AND BOUNDARY CONDITIONS 39

equations for the boundaries. In the case where the wave is being driven by
an external input from the left, the left boundary could be based on some
time dependent function, f (¢):

w(0,8) = f(¢). (3.10)

In the same way that we are unable to solve the wave equation on the left
and right spatial boundaries, we are also limited in the time domain. For
this reason we require that the initial state must be defined by

u(z,0)=g(x), (3.11)

where g () is some known function. We then also have the option to define
initial conditions for derivatives of u. While it is possible for these to be
initialized as being zero, it is common for them to be defined based on some
function that relates to w:

% =h(u,x). (3.12)
Equations 3.8, 3.9, and 3.10 translate trivially to their discretised counter-
parts. For the left and right boundaries in a simulation, u is simply set to
zero each iteration. This is normally done directly after the data for the
iteration in question has been computed. This ensures that the boundary
conditions are prepared for use in the following iteration. The initial con-
ditions for derivatives in Equation 3.12 can similarly be set in this fashion.
For Equation 3.11 we simply set the values of the entire first iteration to
the value of g(x). This then gives us the information we need to compute
subsequent iterations.

3.3.1 Corner points

A common boundary condition for water wave equations is the no-slip condi-
tion (Blazek, 2001; Wei and Kirby, 1995). It states that a fluid at a boundary
does not have any velocity in the direction along the surface of the boundary,
i.e. any velocity perpendicular to the boundary normal is always zero. This
is stated generally as

Vu-n=0, (3.13)

40 CHAPTER 3. NUMERICAL ANALYSIS OF THE WAVE EQUATION

where u is the water surface height and n is the normal to the wall surface.
In a 2 dimensional simulation this kind of boundary condition results in two
equations being applied to the corner points of the simulation space. One for
the x direction and another for the y direction. For the bottom left corner
of a 2D space we have

uy (,0) = 0, (3.14)

because of the bottom boundary condition and

u, (0,y) =0, (3.15)

due to the left hand boundary. For the corner point at (0,0) we have a
velocity vector v (0, 0) described by

v(0,0) = (0,0). (3.16)

Similarly this is applied to all other corner points.

3.4 Stability Analysis

Every discretisation has an accompanying truncation error - a measure of
the error that arises from replacing derivatives in an equation with discrete
approximations (Logan, 1987). In addition, details below the resolution of
our discretisation grid are lost and those that occur on time scales shorter
than At are also lost. There is therefore a need for strict stability analysis of
each numerical technique to determine how well they represent reality. Below,
an analysis is conducted to find the Courant-Friedrichs-Lewy (CFL) stability
condition for the wave equation which determines under which conditions
the numerical solutions converge. When finding a CFL condition our aim
is to determine under what exact conditions our discretisation is valid for
this solution. It can be useful then to solve for some quantity involving our
discretisation variables, Az and At.
Beginning with Equation 3.1, we assume a solution to the PDE of the
form:
u(j,n) = M"cosax (j). (3.17)

3.4. STABILITY ANALYSIS 41

The above choice of trial function is based on a method developed by John
von Neumann for examining stability (Long, 2006a). The quantity M above
is called the magnification factor and we want this factor to be less than
one. This will ensure that the solution does not grow with time. The symbol
n refers to the time increments. The goal then is to determine the condi-
tion when |M| < 1. The cosax is just a convenient function for the initial
condition which we can control the values of. Substituting the above into
Equation 3.7 (our discretised wave equation) we obtain

A
M2 — (2 — dr?sin? a;) M+1=0. (3.18)

We remind the reader that here, r is a quantity indicating the speed of the

waves, scaled by a constant dependent on our discretisation: r = %. Solving
for M we get
A A A
M =1 2/sin? % + 2rsin 0‘2—35 r2 sin® aTx ~1. (3.19)

There are two cases to consider: if r < 1 and r > 1. Beginning with
the former we can see that the right hand term becomes imaginary when
r?sin® 222 — 1 < 0. In such a case we get

A A A
M =1— 2r?sin? % + i2rsin & x\/ﬂ sin? % ~1. (3.20)

Taking the absolute value we can remove ¢ from the equation

Az’ A A
M| = \/<1 — 272 sin? O‘;) + <4r2sin2a2m (1 — r2sin? a;)) ~1.

(3.21)

Here we have one solution for |M]|, although it is not immediately obvious
how much this says about the constraints of our simulation. Reminded of
our goal of solving for some quantity containing Az and At we look at the
second of the two cases in Equation 3.19.

Considering the case where r > 1, we choose « such that oAz = 7. Thus
the sin terms in Equation 3.19 become 1. Then taking the negative sign in
Equation 3.19 gives

42 CHAPTER 3. NUMERICAL ANALYSIS OF THE WAVE EQUATION

aAx . alAx o @AT

M =1 — 2r?sin? — 2rsin —~5 r2sin — L (3.22)

Thus |M| > 1. Consequently solutions of the difference equation remain
bounded for all a only in the case described by:

cAt
=— <1 2
r Ay <L (3.23)

which is the Courant-Friedrichs-Lewy (CFL) stability condition for hyper-
bolic equations which can be written as

Az
— > . 24
N (3.24)

Physically this CFL condition means that the numerical solution cannot
proceed at a slower rate than the speed of the fastest waves in the simulation.
This result allows us to choose values for Az and At that produce accurate
results.

Here we have produced a reliable mechanism for tracking the convergence
of our numerical scheme. This was done through careful mathematical anal-
ysis of the expected solution of the equations. For more complex systems,
CFL conditions may be notably more difficult to determine, and in such cases
other methods of stability analysis are used. In later chapters we will see that
we can take advantage of the laws of conservation of mass and momentum, or
other predictable parameters, to keep track of the stability of a system and
is an important area of research today (Yan, Zheng, Lu and Zhang, 2022).

The results of this simulation of the 1D wave equation are discussed in
the next section.

3.5 Numerical Results

Using the explicit scheme shown in Equation 3.7, we can compute the solution
to the wave equation along the length of the bar at each time interval. For
our initial conditions we begin with two wave peaks travelling in opposite
directions. We arbitrarily define the initial condition as the sum of two
hyperbolic functions given by u (z,t) = f (x,t0,b) + 5 f (x, —to, 3b) where
f(x,t,b) = cosh™ (z —t — b) and x is the axis of propagation of the wave, ¢
is time, and b is a constant controlling a spatial offset for the waves. As can

3.5. NUMERICAL RESULTS 43

be seen this gives us two wave peaks with one having an offset three times
that of the other. In order to differentiate the two peaks, the second wave
was arbitrarily chosen to have half the amplitude of the other. The inverse
hyperbolic cosine function (or hyperbolic secant function) is often used in the
literature for investigating stability and dispersive properties of solitary wave
propagation (Schember, 1982; Wei and Kirby, 1995). After one iteration, a
time At has passed and the second initial condition has become u (x,t;) =
f(z,t1,b) + 5 f (z,—t1,3b). The boundary conditions are u (0,%y) = u(1,t)
and u (I, t) = 0, where [is the length of the bar. The discretisation parameters
are At = 0.02, Az = 0.025. We evolve the simulation over 600 iterations
through 12 seconds of time, filling in the solution space at t = (k+ 1) At
each iteration. Cross sections of the results are plotted in Figure 3.5.

Figure 3.5 shows the interaction of two oppositely moving wave fronts.
At time t = Os, the two wave fronts are far enough away from each other so
that we can consider them to have no overlap. At ¢ = 2s and ¢t = 3s the two
waves are superimposed. The waves have to retain their original amplitudes
before and after the interaction. The smaller of the two waves then reaches
the fixed left boundary between t = 8s and t = 10s and reflects off it and
inverts its amplitude and velocity.

Next, the paths of the two waves can be seen in a heat map shown in
Figure 3.6. From here we can clearly see the paths of the waves and the point
of their interaction in space-time. The interaction of the two waves does not
alter their phase. This is important to note as the types of waves investigated
later in this study, do not act in this way. Interactions between KdV waves
can result in phase shifts and the state of the waves after an interaction
can depend on the relative velocity of the individual waves. Waves in these
models can reflect or transmit through each other based on their relative
velocities. These will be discussed in more detail in the relevant sections to
follow.

3.5.1 Comparison with analytical solution

In order to measure the accuracy of our numerical solution we can compare
it against an analytical solution. Our initial conditions describe two wave
fronts moving in opposite directions. The large wavefront moving to the
right and the smaller wavefront moving left towards the reflective fixed point
boundary.

Our initial condition can be described by u (z,t) = f (z) + g (x) where
f is the smaller wavefront and ¢ is the larger. We can define the effect of
a left boundary condition by adding another term to describe an inverted,
oppositely directed wavefront that meets f at the boundary. Our function

44 CHAPTER 3. NUMERICAL ANALYSIS OF THE WAVE EQUATION

Wave equation superposition and reflection from fixed boundary

Amplitude (AU)

u(z,to) = f(x,t0,0) + 5 f (x,—t0,3b) | w(0,t) =u(1,1)
u(x,t1) = f(z,t1,0) = f(x,to+dt,b) u(l,t)=0
dt = 0.02 dzr = 0.025

b=3

Figure 3.5: The path of two waves according to the wave discretised wave
equation where f (z,t,b) = cosh™(z —t — b). In the figure above, u repre-
sents the amplitude on the vertical axis and x and ¢ are distance and time,
respectively, on the horizontal axes.

then becomes u (z,t) = f(x) — f (—z) 4+ g () which can fully describe the
reflection for all 0 < x < oo. Using this function we can directly compute
the height of the wave surface at any point in time to use as a comparison
for our numerical solution.

In Figure 3.7 the numerical and analytical solutions are plotted over one
another. It can be seen visually that the solutions are essentially identical,
but for one small area of difference. Figure 3.8 shows a zoomed plot over the
region 9 < x < 13 for the case of n = 600 in Figure 3.7d. In Figure 3.8 we
see the only visible differences. In the numerical solution there is a distortion
in the trailing edge of the large wavefront. This high frequency oscillation is

3.6. CFL CONDITION VIOLATION 45

We%(ye Paths showing superposition and reflection

15
500
1
05
3 0
0 05

0 01 02 03 04 05 08 07 08 09 1
Distance (AU)

8

Time (iterations)

200

Figure 3.6: The path of two waves according to the discretised wave equation.

a telltale sign of a common problem encountered in numerical simulation.

This numerical error can be traced back to the setup of the initial con-
ditions of this simulation. At the start of the simulation the left side of the
larger peak trailed off towards the left boundary where it approached some
number close to but greater than zero. Since the left boundary condition
specified the left most point as being zero, this caused a jump from the left
most point to its neighbouring point that was large enough to cause a visible
oscillation.

We can draw two useful conclusions from this observation. One, that ini-
tial conditions can conflict with boundary conditions. And two, that there
is some limit within which the simulation can tolerate these types of in-
consistencies. In this case, the oscillation did not seem to grow during the
simulation, but also did not diminish visibly and was ultimately insignifi-
cant for this this time period. It is however important to acknowledge that
unwanted oscillations can appear in a simulation despite having correctly
derived a numerical technique as well as its initial and boundary conditions.
That alone is not sufficient to guarantee a working simulation. In cases where
smaller oscillations are relevant, these types of errors cannot be present.

3.6 CFL Condition Violation

Until now we have seen results from successful simulations. It is useful,
however to know what to expect when the simulation is unstable so as to
know how to correct for it. What kind of results can we expect when the
CFL condition is violated? Let us choose a value of At such that the CFL
condition is not violated and then run the simulation multiple times, scanning
through a range of At until it is. To simulate the effect of ﬁ—f < ¢, we first

46 CHAPTER 3. NUMERICAL ANALYSIS OF THE WAVE EQUATION

Amplitude

[; 1"3 1‘5 20
Distance

(a) Numerical and analytic wave

equation solutions at n = 0 itera-

tions.

12 i
Numerical Solution
1 — = Analytical Solution | -

08

Amplitude

0 5 10 15 20
Distance

(¢) Numerical and analytic wave
equation solutions at n = 500 itera-
tions.

Amplitude

0 5 10 15 20
Distance

(b) Numerical and analytic wave
equation solutions at n = 100 itera-
tions.

08+

Amplitude
5 2 &

0 5 10 15 20
Distance

(d) Numerical and analytic wave
equation solutions at n = 600 itera-
tions.

Figure 3.7: Comparison of Numerical and Analytic solutions

determine c.

Our initial conditions specify two independent wave fronts moving in

opposite directions described by

1
u(x,0) = cosh™? (z — tg — b) + 3 cosh™ (z + to — 3b)

1
u(x,1) = cosh™ (x —t; — b) + 3 cosh™ (z +t, — 3b),

(3.25)

where t; =ty + At. Looking at the time dependent components of the wave
positions, we can see they move at velocities of

—tg — At +to
At

and

= —]_’

3.6. CFL CONDITION VIOLATION 47

0.08 F T T T T T T T T
Numerical Solution
= = = Analytical Solution

0.02

Amplitude

9 9.5 10 10.5 11 11.5 12 12.5
Distance

Figure 3.8: Comparison with the analytical solution at n=600 iterations

to+At—t071
At 7

respectively. The CFL condition becomes

Az
— < 1.
At —

In order to illustrate the effect of violating stability conditions we would
like to plot the solution of the wave equation for varying values of Az and
At such that %f approaches 1 from above. We can then see how strict the
effect of this condition is by proceeding for values that are slightly less than
1. We could alter either of these variables and we choose to alter the value
of At since altering Ax means we need to recompute the wave equation on
grids of different resolutions for each value of At. To prevent the need for
interpolating between functions of differing resolutions, we simply alter At
instead.

The results in Figure 3.9 show an exponentially growing high-frequency

noise on all functions where the value of At violates Equation 3.24. To

48 CHAPTER 3. NUMERICAL ANALYSIS OF THE WAVE EQUATION

CFL Condition Violation

Amplitude (AU)

07’

Distance (AU)

Figure 3.9: A series of plots showing an exponentially growing numerical
error on the trough of a wave front. The figure shows how a large numerical
error can appear over an extremely small time frame.

generate this amount of unphysical oscillations the CFL only had to be vio-
lated by 0.0016%. Let us take a closer look at the error in the results from
At = 0.0249992 —0.0250008. The error is computed as fiay — f(0.0249992)-
This is shown in Figure 3.10. We can clearly see that any violation at all of
the CFL condition leads to unusable results after a few iterations and also
that we can get as close as we need to the CFL condition without these errors
appearing. It is, therefore, useful to know that we can safely use space-time
resolutions in the limit of the CFL condition as long as we stay enough out of
range of the condition that it cannot accidentally be violated by the machine
errors’.

This demonstration makes a valuable point about the importance of be-
ing sure about the stability of a numerical solution. Any error in a fluid
simulation diffuses throughout the space and can both affect the quality of
results and also be difficult to debug.

In many cases, the accuracy of a numerical solution can be checked simply
be comparing it to the analytic solution of the equation. In this thesis we
are, however, investigating the numerical solutions of equations who have
no known analytic solution. This means we need to use other techniques to

'Machine errors are errors that arise from rounding associated with the computation
of floating point numbers (Kreyszig, 2011).

3.7. SUMMARY 49

CFL Condition Violation - Error

Amplitude (AU)

e

- = 0.0250004

n&/)r T o -
Distance (AU) o ooz

Figure 3.10: CFL Violation Error Zoomed. Zoomed in section of the error
around the CFL violation showing significant errors only where At > Ax.

check the accuracy and stability of our results. For example we can use the
constants of motion as indicators for the stability of a scheme (Bridges and
Reich, 2006). Tracking these over time to confirm whether they deviate from
a constant value can be a good indication that the solution is accurate.

3.7 Summary

In this chapter we investigated an explicit numerical technique for solving
PDEs. We used it to solve the wave equation in one and two dimensions.
We were able to confirm the stability of the numerical scheme and use it to
predict future states of the system. In the next chapter we will move on to
techniques for solving the more complex Korteweg-De Vries equation.

<" oozs0008

50 CHAPTER 3. NUMERICAL ANALYSIS OF THE WAVE EQUATION

Chapter 4

The KdV Equation

4.1 Introduction

In this chapter we will introduce the Korteweg-de Vries (KdV) equation
and its discretisation before comparing its numerical solutions with previous
works. We will then investigate methods of analysing the success of our
simulations without comparing them to analytic solutions or real world data.

Due to the explosion of research into numerical techniques, the software
for solving PDEs has evolved to a point where each component of these algo-
rithms has become its own subfield of computer science. A single fluid simu-
lation can consist of dozens of complex interdependent algorithms. These in-
clude mesh generation, remeshing, temporal extrapolation and interpolation,
tridiagonal matrix solvers, parallel computing, spectral analysis, boundary
condition modelling, linearization of equations, stability analysis and render-
ing. Each of these parts are also free to develop independently of the others
in their own fields. In order to be a good numerical analyst you will need
to understand the basic concepts in each of these fields. To be exceptional
you must master all of them. It is important therefore to learn the lessons of
software engineering and apply the principle of separation of concerns. Pro-
grams can be separated into functional layers with very specific purposes.
Each layer should be treated as a black box with simple inputs and outputs
from those layers. This approach naturally lends itself to object oriented
programming if the researcher wishes to remain sane. This also makes de-
bugging much more effective. This is extremely important in a field where
mistakes propagate throughout the entire simulation space and become ex-
tremely difficult to debug.

One intuitive property of water waves is that they are self dampening.
Over time the energy of a wave is dispersed throughout the medium through

51

52 CHAPTER 4. THE KDV EQUATION

which it propagates. As a wave moves through a medium energy is lost and
therefore the amplitude of the wave decreases. There is however a type of
wave whose amplitude and wavelength is entirely self sustained over large
distances (Brauer, 2000). It was first studied mathematically in the mid
19th century by the Scottish engineer, John Scott Russell and is now known
as the soliton. This surprising phenomenon has been observed in seemingly
unrelated places such as plasmas, anharmonic crystals, and blood vessels in
the human body (Ali, Saha and Chatterjee, 2017; Askar, 1982; Chen et al.,
2020; Elgarayhi et al., 2013).

Solitons have since been modelled mathematically by the KdV equation,
also known as the non-linear shallow water wave equation. This is done by
integrating the Navier Stokes equation over the depth of the fluid. While the
Navier Stokes equation describes the velocity of a fluid, the KdV equation
is an equation describing the position (or height) of a water surface and is
given by Equation 4.1 below

u
= Fnugs o =0, (4.1)

where u is the height of the wave, x is a spatial dimension, ¢ is time, and
7 and u are two real constants. This equation has solitary wave solutions
called solitons that are caused by a delicate balance between the equation’s
nonlinear and dispersive terms. The nonlinear term in this equation refers
to the second term, r]ug—;. It describes the self-interaction of the different
components of the wave and is what allows this equation to describe soliton
behaviour (Bridges and Reich, 2006).

While in the domain of classical physics, the KdV equation describes
water waves, in the quantum world it can describe something quite different.
Due to the fact that solitons do not lose their shape over time they have
even been modelled as particles as well as waves. They have in fact been
found to exist in superfluids by reducing the Gross-Pitaevskii equation! to a
KdV equation using the reductive perturbation method? (Carretero-Gonzélez
et al., 2017). This method in fact shows that many equations can be broken
down into KdV equations. This further points at the fact that KdV equations
are actually part of a much broader class of equations that apply to a wide
variety of fields.

!The Gross-Pitaevskii equation is a non-linear wave equation describing the ground
state of a quantum system of multiple identical bosons. It is also conveniently known as
the non linear Schroedinger equation (Antoine, Bao and Besse, 2013).

2The reductive perturbation method is a method for solving non linear hyperbolic
systems of equations by converting them to a single non linear equation (Taniuti, 1974).

4.2. DISCRETISATION 53

4.2 Discretisation

We begin by investigating a suitable numerical scheme for solving the KdV
equation. The first to successfully solve the KdV equation numerically was an
explicit finite difference scheme developed in 1965 by Zabusky and Kruskal at
Bell Labs (Zabusky and Kruskal, 1965). Their technique solved the equation
in a stable manner up until a point where it produced unrealistic oscillations
that caused the simulation to diverge rapidly from real solutions. It pro-
duced accurate results up until a point where unrealistic oscillations caused
results to become unusable. Modern explicit techniques have been devel-
oped that do not have this problem (Feng and Mitsui, 1998; Wang et al.,
2008). In a comparison of finite difference and Chebyshev methods, the
Chebyshev-collocation method was shown to be more efficient than finite
difference schemes for short time integrations. However, it was concluded
that it was not the best candidate in terms of stability due to its spectral
properties (Skogestad and Kalisch, 2009). Due to the simplicity, stability,
and relative efficiency of the explicit scheme proposed by Wang et al. (2008),
it has been chosen here for solving the KdV equation.
The KdV equation is discretised from

ou ou A

- - 27 —
T —I—nuax + 9 0, (4.2)

where v is the height of the wave, and 1 and p are two real constants, into
the form shown by Wang et al. (2008) in Equation 4.3.

1 <U(z‘17k+1) — UG-k | UGk T “(j+1,k1)>
2 At At
L UGLE) T UGER) T UG-k UG+ T UG-1k)
N 3 2Ax

2
7
BBV (urary = 2urip) + 2uG 1k — uG-2k), (4.3)

where (1, x11) is the future value of u at j—1 that we would like to compute
at time iteration k + 1, etc. Each cell is separated by a distance Az. We
use the above equation to find the value of u at a particular cell j (or j —
1) using the values of neighbouring cells from the previous time iterations.
Rearranging and solving for w;_i41) we can solve the KdV equation in
a stable and efficient manner using appropriate initial conditions. When
solving this equation it can be useful to check the accuracy of the solution
against analytic ones such as (Brauer, 2000). However, since later equations
examined in this work have no such analytical solutions, we would like to

54 CHAPTER 4. THE KDV EQUATION

investigate other methods of measuring numerical accuracy such as tracking
the constants of motion over time. This is discussed in further detail in
Section 4.4. In Figure 4.1, the computational molecule for this three level
scheme is shown.

[

j-2 j-1 j j+1 j+2

Figure 4.1: Computational molecule/stencil for the explicit numerical scheme
for the KAV equation shown by Wang et al. (2008).

4.2.1 Initial and Boundary Conditions

In order to recreate the results from Zabusky and Kruskal (1965), it is im-
portant to understand the type of boundary conditions used in more detail.
These boundary conditions are known as periodic or cyclic. As mentioned
in Section 3.3, this means that changes can propagate freely between the left
and right sides of the simulation space. This results in the computational
molecule being wrapped around from one edge of the simulation space to the
other. In this scheme we compute the ug;_; x41) term at each time iteration.
When we compute the upper right cell in Figure 4.2, we can see that most
of the values we need lie outside of the simulation space to the right. We get
these values from their equivalent spots on the left hand side as if the two
ends of the space were connected.

The initial conditions used by Wang et al. (2008) are given by

U(z,0) = COS (TT) . (4.4)

In order to solve Equation 4.3 we require data at time kAt and (k — 1) At.
Equation 4.4 gives us the data at k& — 1, but we also need to compute the
values required at k. This predicament is known as the hot-start problem.
To provide the values at k, the following second initial condition is used

4.2. DISCRETISATION 55

4

3

2 Second Initial Condition
—t—+—+—

1 First Initial Condition
| | | | |

1 2 3 > J2 U1y
X

Figure 4.2: Computational molecule being wrapped around the edges of the
simulation space with cyclic boundary conditions.

1
At (w0 — ugo)
— o) T UG0) + UG-1,0) U+1,0) ~ U(-1,0)

3 2Ax

2
7
BEYNE] (u(+2.0) = 2ug11,0) + 2u(-10) — UG-20)) - (4.5)

Equation 4.5 can then be rearranged to solve for u(;;). In addition to the
initial conditions, we also implement the following cyclic boundary conditions
on the left and right boundaries. Figure 4.2 shows how the computational
molecule /stencil overlaps the left boundary at j = —1 and right boundary at
j = J. In this case the stencil is wrapped from one boundary to the other.
So values of cells that are referenced outside the domain on the left are
automatically mapped to cells inside the domain on the right. This mapping
is defined below in the following equations. For computations near the left
boundary we have

u(—1) =u(J) (4.6)
w(—2) =u(J —1) (4.7)
u(=3) =u(J —2), (4.8)

and similarly near the right boundary:

56 CHAPTER 4. THE KDV EQUATION

u(J + 1) = u(0) (4.9)
w(J +2) = u(l) (4.10)
u(J +3) = u(2). (4.11)

4.2.2 Algorithm

This subsection examines the algorithm used for the explicit solution devised
by Wang et al. (2008). As we can see in Algorithm 1 below, the numerical
technique for solving the KdV equation is extremely simple. Since the ap-
proach of Wang et al. (2008) is an explicit one, the number of steps in the
solution is limited to one mathematical operation per cell per iteration. This
makes it very simple to implement and replicate. What is impressive is that
this technique achieves convergence and long running stability due entirely
to its derivation. Later techniques in this thesis employ the use of complex
filtering techniques in order to maintain stability.

Algorithm 1: Pseudocode for solution of the 1D KdV equation.

Initialise variables;
Set initial conditions;
foreach iteration i in iterations n do
foreach cell j in iteration i do
Update boundary values;
Compute solution wu;;41;
Compute error for iteration i;

end
end

4.3 Numerical Results

As mentioned previously, we use the numerical technique devised by Wang
et al. (2008) to solve the KAV equations. In reproducing the results of Wang
et al. (2008), I have also been able to reproduce those of the original paper
by Zabusky and Kruskal (1965). These results are shown in Figure 4.3. We
begin with a cosine wave as the initial condition. In the first two frames we
can see the valley of the wave move towards the left, creating a steeper incline
on the right side of the wavefront. In the third frame we can see the point
where the peak becomes unstable and begins to oscillate. The oscillations
grow in size and begin to gain their own velocities, moving towards the left

4.3. NUMERICAL RESULTS o7

boundary. At t = 0.4 s, the beginnings of these oscillations can be seen as the
instabilities propagate towards the left. From here the oscillations will exit
the simulation space on the left boundary and re-enter on the right boundary
due to the cyclic boundary condition. In Figure 4.4 we see a snapshot of the
waves at t = 1.75 s. The oscillations have grown into their own individual
wave fronts moving in unison and have begun to superimpose with the initial

wavefront.
25 T .
n=0 | n=3500
: t=0s t=0.175s
3 15
<
=1
1~ —
05
0 - \
-05 | \\\
-1 L L L ~ L L L L L L ‘\\N — L
0 02 04 06 08 1 12 14 16 18 2 0 02 04 06 08 1 12 14 16 18 2
x(AU) X(AU)
25 :
n=6500 n=8000
27 t=0.325s | | /f\ t=0.4s
|
1.5 / \
2 N ’/A\ /\\ | |
r —/\/] [\ /|
5 / \V} s‘ J \/ \ ‘/ ‘
05 | | {1t \/ |
x "
\ |
0 \\ b r \“
\ I
05 | \ Il \\ //
\ \
-1 I L \\\,_//// N
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
X(AU)

x(AU)
Figure 4.3: Plot of u as a function of z for various values of ¢ = 0 s (top
left), 0.175 s (top right), 0.325 s (bottom left) and 0.4 s (bottom right).
The following parameters used to generate this result: u(z,0) = cos (7wz),
Periodic/cyclic boundary conditions, dt = 0.00005, dx = 2/399.

As the process progresses, this becomes further complicated as they mix
throughout the space. In Figures 4.5 we can see the final state reached by

58 CHAPTER 4. THE KDV EQUATION

Wang et al. (2008) next to my recreation of those same results shown in
Figure 4.6. This set of results shows the long term stability of the numerical
scheme. While the simulation by Zabusky and Kruskal (1965) produced un-
usable results at ¢t = 6.1275 s, their numerical scheme is still unconditionally
stable at ¢t = 40 s and far beyond. Take note that this scheme uses no form
of error correction during the computation of the solution. An analysis of
the error involved in this scheme follows this section, but this information
is not used in any way to enhance the simulation itself, nor does the the
scheme employ any kind of filtering techniques. This approach is common
place in more complex fluid solvers due to the large number of erroneous high
frequency spectral components that are unavoidable.

Figure 4.4: Plot of u as a function of x at ¢ = 1.75s. The following param-
eters were used to generate this result: u(z,0) = cos (mz), Periodic/cyclic
boundary conditions, dt = 0.00005, dz = 2/399, n = 35000.

In Figure 4.7 I show the paths taken by the individual wave peaks through
time. This figure shows a very interesting interaction between the wavefronts.
Each peak appears to reach some stable horizontal velocity indicated by the
angle of the path that is drawn in the figure. As an example of this accel-
eration we can see the left most wavefront at ¢ = 0 s begins to move to the
left before reversing its direction entirely and stabilising on some velocity.
We can also observe that at the points where the larger waves (shown as

4.4. STABILITY ANALYSIS

a
-

Figure 4.5: The KdV equation
solution at ¢t = 40 s by Wang
et al. (2008).

59

0 02 04 06 08 1 12 14 16 18 2
X

Figure 4.6: My simulation re-
sults at the same time of t = 40
S.

brighter shades of yellow) superimpose upon other waves they appear inter-
act, causing a temporary change in their velocities during the interaction.
This can bee seen as a break in the path that is traced by a given wavefront.
While other types of wave phenomena also superimpose upon one another,
they do not, in the process, affect each others velocity. This, however, is
what appears to happen when solitons interact with one another, where each
interaction results in a corresponding phase shift. The literature surrounding
soliton interactions is rich and growing continuously. Similar soliton inter-
actions have been thoroughly documented, specifically in the field of optics.
Aitchison et al. (1991) document both attractive and repulsive interactions
between spatial optical solitons. More recently Sun et al. (2023) conducted
a thorough investigation of three-soliton interactions. In contrast, consider
Figure 3.6 in Chapter 3 showing the wave paths traced in a solution of the
wave equation where the superposition of waves does not alter their phase
at all.

4.4 Stability Analysis

As mentioned previously, determining the success of a numerical simulation
is of utmost importance. While a thorough analysis of the CFL condition®
is always useful for determining the usable domain of the simulation and
whether or not the scheme is convergent, it is not the sole predictor of the
success of a numerical scheme. Determining the success of a simulation can
be done by comparing the solutions with experimental results, analytical

3The Courant-Friedrichs-Lewy condition that defines the conditions under which con-
vergence of the solution is guaranteed.

60 CHAPTER 4. THE KDV EQUATION

Plot of wave height over time showing soliton interactions.

&
:
=
.
k.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x (AU)

Figure 4.7: Plot of uw as a function of x for ¢t = 0 s to t = 6 s showing illus-
trating the paths followed by each wavefront. The following parameters were

used to generate this result: wu(z,0) = cos (rz), Periodic/cyclic boundary
conditions, dt = 0.00005, dz = 2/399, n = 120000.

solutions (where available) or by tracking the constants of motion of the sys-
tem over time. For the Korteweg-de Vries equation under periodic boundary
conditions, we know that the system has at least three physical constants of
motion. They are the conservation laws of the system:

Fy (u) =5 /0 udx (4.12)

4.5. SUMMARY 61

where Fi (u) is the momentum conservation law, F, (u) is the energy con-
servation law, and Fj (u) is the Hamiltonian functional for the Hamiltonian
form of the KdV equation (Wang et al., 2008). The discrete versions of these
equations are shown in Equation 4.13

Fl(u) = Z u;h
i=1

1o~ [u; + 2
Fl (u):2z<l2l_> h (4.13)
=1

1 1
Fy (u) = Z {QMZ A+ uf” — 6“?} h,

i=1

where A + u; = (u;41 — w;—1) /2h and h is the spatial step size. The above
set of equations can be used to determine an estimate of the error and is
given by the following equations

errorFy (jAt) = F} (u!) — F} (u”) L14
errorFz (jAt) = F?fl (uj) — F?f‘ (uo) (4.14)
By tracking any one of these errors in each iteration we can get an idea
of the success of our simulation. In Figure 4.8 we can see that the F5 (u)
error remains relatively constant at around 1072 throughout the simulation
even after 200000 iterations. Throughout this duration the scheme is stable
matching the results by Wang et al. (2008).

In Figure 4.9, below I show the unstable numerical solution of the KdV
equation using what is known as the multi-symplectic six-point scheme. This
result is drawn directly from the paper being discussed by Wang et al. (2008).
This error is very similar to the errors considered in Chapter 3, Figure 3.9
and illustrates the way in which most compounding numerical errors accrue
in the types of simulations considered in this thesis.

4.5 Summary

In this chapter the KdV equation was discretised and solved numerically
using initial conditions of those of Wang et al. (2008). The results compare
favourably with those of Wang et al. (2008). In the next chapter we will
move on to discretising the Boussinesq equation.

62 CHAPTER 4. THE KDV EQUATION

102

log10JerrorF2|
3 3
E- w

-
<
a

10-6 I I I I I I I I

Figure 4.8: Plot of the log,, |errorF2| showing the conservation of energy
of the system. The following parameters were used to generate this result:
u(z,0) = cos (rz), Periodic/cyclic boundary conditions, dt = 0.0001, dz =
0.01, n = 200000. The results are smoothed using a moving mean of 100
data points.

Figure 4.9: Plot of the unstable solution of the six point scheme from Wang
et al. (2008).

Chapter 5

The Boussinesq Equation

5.1 Introduction

In this chapter we will give an introduction to the Boussinesq equation. This
will be followed by numerical simulations and comparisons with experimental
data. In the previous chapter, we discussed the Korteweg-De Vries (KdV)
equation. We saw that while it can model many wave phenomena, it is
best suited to modelling wave solitons. We move on now to the Boussinesq
equation which is considered as the generalization of the KdV equation. It
models solitary water waves travelling in multiple directions and caters for
the effects of variable water depth on the evolution of waves (Kong and
Wang, 2010; Scalerandi, 1997). It has been used for this purpose to simulate
the evolution of deep sea waves and tsunamis (Adytia and Groesen, 2010).
The Boussinesq equations have been used in conjunction with scale wave
tank experiments to study deep sea waves which can be difficult to study
in nature (Wei and Kirby, 1995). The Boussinesq equation offers a model
for simulating near-shore wave evolution without the need for wave-tank
experiments.

The way in which water waves change as they approach shorelines is
remarkably complex. The Boussinesq family of equations attempt to describe
this wave evolution taking into account conservation of mass and momentum
laws as well as the varying depth of the water. They model the non-linear
transformations that surface waves undergo in shallow water (Nwogu, 1993).
Due to the complexity of this problem, many Boussinesq type equations have
been formulated that describe these wave phenomena to different degrees of
detail. The “Good” Boussinesq equation and the time-fractional Boussinesq
equations are two such examples, each with their own limitations (Ismail and
Mosally, 2014; Kong and Wang, 2010; Zhang et al., 2018). The Boussinesq

63

64 CHAPTER 5. THE BOUSSINESQ EQUATION

equation, like most nonlinear equations, will have numerical solutions that are
sometimes highly unstable. It is therefore important to choose a technique
that effectively minimizes computational error.

In this chapter we review the numerical technique of Wei and Kirby for
solving the Boussinesq equation (Wei and Kirby, 1995). We start by defining
the equations of the potential low model it uses, then proceed into its predic-
tor corrector time integration scheme. We then derive the matrix equations
for solving the horizontal and vertical velocity components in the simulation
- a step that is skipped in the literature I investigated. We then address
the hot start problem, and describe the relevant boundary conditions for
our simulations. The results of the Wei and Kirby technique will then be
compared with experimental data in the chapters to follow.

5.2 Wei and Kirby Technique

The second numerical scheme we will explore is that of the Wei and Kirby
group. Between 1995 and 1998, Wei and Kirby co-authored a number of pa-
pers on their numerical scheme for solving Boussinesq type equations (Kirby
et al., 1998; Wei and Kirby, 1995; Wei et al., 1995). Their model uses the
Boussinesq equations derived by Nwogu (1993) and a more complex time
integration scheme known as the Adams-Bashfourth-Moulton Predictor Cor-
rector method. The spatial domain is discretised using a regular grid of
equally spaced cells. In Nwogu’s Boussinesq equations, velocities are defined
at some distance relative to the still water level. This formulation allows
the equations to apply to a larger range of water depths by improving its
linear dispersion properties (Nwogu, 1993). Modified versions of this model
are still used extensively for Boussinesq simulations today (Martinez-Ferrer
et al., 2018; Mehmood et al., 2016; Patel, Kumar and Rajni, 2020). The
equations of Nwogu have been used extensively for near-shore ocean wave
modelling and have only since been replaced by the more complex models
of Chen (2006) and Shi et al. (2012) when the effects of wave breaking and
porous ocean beds are necessary.
The Boussinesq equations are as follows:

2o h?

e+ V-(h+ 1) u+V-{ (2 - 6) IV (V- u) + <za + Z) AR (hu)}} =0,
(5.1)

w + gV + (u-V)u+za{5V(V-ut) + V[V~(hut)]}=(), (5.2)

5.3. THE POTENTIAL FLOW MODEL 65

where 7 is the water surface elevation, u = (u,v) is the horizontal surface
velocity at arbitrary depth z,, h is water depth, and ¢ is the gravitational
acceleration. The subscript ¢ refers to time derivatives of the respective
quantity. Here, Equations 5.1 and 5.2 are the conservation of mass and
momentum equations for the system, respectively.

In the next section I will go into more detail on how these equations are
solved using the potential flow model.

5.3 The Potential Flow Model

As shown in the approach of Wei and Kirby (1995), Boussinesq equations
can be modelled in terms of a velocity potential function U = (U, V'), where
U and V are the velocity potential components in the x and y directions
respectively. Doing this simplifies solving for u; in Nwogu’s conservation
of momentum equation (Equation 5.2) as the form the equations take is
more suited to the time integration scheme used (the Adams-Bashfourth-
Moulton Predictor Corrector method). We define the surface elevation 7
from Equation 5.1 in terms of a potential, F/, and the horizontal components
of Equation 5.2, u; and v; in terms of some potentials Uy, and V; as

n = E (n,u,v) (5.3)
U=F (777 u, U) + [Fl (U)]t (54)
Vi =G (n,u,v) + Gy (u)];, (5.5)

where the subscript ¢ refers to their time derivatives. The terms E, F', F1,
G, and G are spatial derivatives of 1, u, and v. For the derivation of these
quantities see (Wei et al., 1995). These quantities are then defined as

E(n,u,v) = —=[(h+n)ul, = [(h+n)v], (5.6)
— {@rh® (s + v2y) + a2h? | (h), + (ho),, | §
J

_ {a1h3 (Vyy + Usy) + azh® [(hv)yy + (hu)w]

x

)

Y

and

66 CHAPTER 5. THE BOUSSINESQ EQUATION

F(n,u,v) = —gng, — (uu, + vuy) (5.7)
G (n,u,v) = —gn, — (vv, + uvy) (5.8)
Fi(v) = —h [blhvxy + by (hv)zy} (5.9)
Gi (u) = —h [blhuw + by (hu)zy} . (5.10)

The velocity potential functions themselves are defined as

U (u) = u+ [bihug, + by (hu),,] (5.11)
V) =uv+ [blhvyy +by (ho),,| (5.12)

where ap, as, by, and by are defined as
ar = B2~ 1/6:a3 = B+ 1/2b = B/2b, = B, (5.13)

where = z,/h, and z, = 0.531h (Nwogu, 1993; Wei and Kirby, 1995).

5.4 Predictor Corrector Methods

We now take a brief aside to discuss the time discretisation scheme used in
the potential flow model known as the predictor corrector method. Predic-
tor corrector methods are used for solving differential equations, and they
combine an explicit technique with an iterative implicit technique to approx-
imate a solution. The technique consists of two steps. They first make a
prediction and then attempt to refine this prediction iteratively to converge
on a solution. This is done by feeding the prediction into the corrector equa-
tion and comparing this with the original prediction until an error criterion
is satisfied. The scheme used in this work is known as the fourth order
Adams-Bashforth-Moulton predictor corrector.
Given a function

y/ = f (‘T7y)7 (514)

we can find the value of y at some time step At in the future, y;,1 as

5.4. PREDICTOR CORRECTOR METHODS 67

At
Y =i + e (23fi = 16fi1 +5fi-2) (5.15)

where i = 3,4,5,...,n and the superscript 1 refers to the first estimate of
Yir1, Where i is the current time ¢; = ¢A¢. This is known as the 3rd or-
der Adams-Bashforth predictor method. From here we can use an implicit
multistep /iterative method to better approximate ;.1 as

Ax
Yt =yt o0 (9fF1 +19fi =5fic1 + fia) (5.16)

where k = 1, 2.3, Thisis known as the 4th order Adams-Moulton corrector
method. The superscript on y;,; denotes the current prediction of the value
of Yit1.

This numerical method requires values from the previous two time steps
and therefore requires priming in order to work. This can take the form
of three time steps of initial condition or these values can be determined
using a single step numerical scheme that does not depend on so many time
intervals. In this work we follow the approach of Long (2006b) in Section 5.6
and use lower order Adams-Bashforth methods for the first 3 iterations of
the scheme.

The third order predictor scheme is as follows:

1] i At i i— i—
k' =y + T (235 — 165}, + 5E 7] (5.17)

) At . , .
i+1 i P i—1 i—2
Uit = Uit 35 [23F, — 16F, ' 4+ 5F} 7]

. . . (5.18)
+2F — 3Ff_;j + Ff_;f
yist vy g B [23G%, — 16G " + 5G]
jk T Vjk 19 jk jk jk (519)

) i—1 i—2
+2G 3G+ G2,

The extra terms F; and G in equations 5.18 and 5.19 come from the time
derivatives of I’ and G from equations 5.4 and 5.5. For the derivation of these
equations see the work of Wen Long in his PhD thesis entitled Boussinesq
Modelling of Waves, Currents and Sediment Transport, (Long, 2006b).

68 CHAPTER 5. THE BOUSSINESQ EQUATION

The fourth order Adams-Moulton corrector scheme is given by

, At , , .
it =+ oy [V +19E), — SEjKT + B (5.20)
Uit = i 2t [9F ' +19F), —5F ' + Fi,.%)
+ R - F
Virl = Vier 26 [oGi! + 1967, — 5Gi! + Gi?
ik = ViR oy [9G k= Ok) (5.22)
i+1 i
+ Gyl -G,

These equations allow us to accurately approximate the values of n, U,
and V' at time At in the future. However, since equations 5.3, 5.4 and 5.5
are dependent simply on velocity and not the velocity potential, we must
update the values of u each time we compute a new iteration of U. These
new values of u will then be used in further iterations for computing future
states. Transforming from U to u turns out to be a non-trivial operation as
the equations relating the two quantities requires the solution of tridiagonal
systems of equations. This is the topic of following subsection.

5.5 Solving for u from U

We now face the problem of converting back from the velocity potential
to the actual velocity. As we derive a solution it is important to notice the
interdependence of the velocity equations at each point on the grid. We begin
by discretising Equation 5.23 below, and thereafter organise the resulting
set of equations in a way that they can be solved simultaneously. In this
derivation we refer to Figures 5.1 and 5.2 to describe the simulation space.
The horizontal velocity potential at each point (z,y) = (jAz, kAy) is
defined by the linear relation of U to u, and derivatives of u shown below

and

V=vth [blhvyy +b (ho),, | - (5.24)

5.56. SOLVING FOR U FROM U 69

Deriving an equation for u is the same for v and v so let us do our
derivation using u. We begin by using a centred second order difference
scheme to find wu,, and (hu),, for each point on the grid. We have

Uik — 2Ujp + Uk

Upy = A2 , (5.25)
and
)) Y s
(hu)m = (h’]+1k'uj+1k) (}ZI;ZJ/C) + (h] L] 1k>’ (5.26)

Substituting 5.25 and 5.26 into 5.23 we get

Ujp1k — 2Ujk + Uj—1k) (hjrirtjrir) — 2 (hjpugr) + (hj1kuj—1x)
Ax? 2 Ax?
(5.27)

Ujr = wji +hji |bihjg

Grouping terms w;_1j, Uk, and uj 1 we get the following equation

R (b1l + bahj— by +b Rk (b1hjr + bah;
Uik = s 1h ji (b1 JZmQ ol 1k)+ujk (1—2h§k(1A$22)) . ik (b1 JZxQ 2hj1k)

(5.28)

So for a given row, k, we get an equation for three unknowns, w;_ 15, s,
and w;q1x. For each row in the matrix U we can solve this equation by first
forming a tridiagonal matrix.

Equation 5.28 relates each cell in U to a set of three corresponding cells
in u. Figure 5.2 shows the interdependence of the equations and how each
set of unknowns in u overlap across a given row. Since the edge cells are on
the boundary of the domain, they reference points outside of the simulation
space at j = 0—1 and j = J + 1. To deal with this, we use the approach
of Long (2006a) made specifically for wall boundaries. For points along the
left wall, we replace u;_1x with w1k, and w41, with w;_q;, where J is the
total number of cells in a row. Without this we are unable to compute values
along boundaries, and we shrink the simulation space by one column on each
side of the grid per iteration until failure.

Simplifying Equation 5.28, we let «;, §;, and 7; be the constants for a
given column j:

70 CHAPTER 5. THE BOUSSINESQ EQUATION

Jj—= J

-
-

K| K]

Figure 5.1: Equation 5.28 relates each cell in a row of U to a cell in the
corresponding row of w.

Figure 5.2: Each cell in U is described by three corresponding cells in the
same row in u.

5.56. SOLVING FOR U FROM U

b
o = SeLb (blhjk + bohj_1k)

Ax?
o (b1 +bo)
B] =1- 2h]k A2
hs
Vi = ﬁ; (brhjk + bahjgak) -

71

(5.29)

(5.30)

(5.31)

If we make an equation for wj; for every j in a row k, we get a system of

equations as follows below

u07k60 + uwikYo + 0 + 0 +
ury + upfi + ugm + 0 +
0 + gy A+ ugpfo + uzpye +
+ 0 + Ug O3 + U3,k53 +

0 + 0 + 0 + 0 + Uj-1,k0F

++ 4+ +

|

0 = Uy
0 = Ui
0 = U
0 = Usy
uJ,k/BJ = UJ,k

From this we can create a matrix equation to solve simultaneously for w;
for all j € [0,1,2,...,J — 1, J]. This equation has the form

Ax = b,

(5.32)

where we are solving for the matrix x. The coefficient matrix A is therefore

-ﬁo Yo 0 0 0 0 0
ar B 0 0 0 0
0 ar B 72 O 0 0
0 0

0 0 az B3 73

0 0 0 0 0
000 0 0 0 ... 0 a

the matrix for the dependent variable, z, is

O O OO

a1 B Y-

By |

: (5.33)

72 CHAPTER 5. THE BOUSSINESQ EQUATION

U,k
U1,k
U2 k
a’: =
Uj—-1k
| UJk
and b is defined for each row k in U as
" U]
Uik
Uk
b p—
Ur—1k
L Uik
The full equation is given as
Bo % 0 0 0 0 0
ap B 0 0 0 0
0 az B2 7 O 0 0
0 0

0 0 a3 B3 73

0o 0 0 0o 0 ... O

Qg

- O O O O

aj_1 Bro1 Yo

Uo, k
U,k
U2 k

Uj-1,k

By |

L Wik

(5.34)

(5.35)

Uo k
Uik
Us e

Ur—ik

| Ui |
(5.36)

and can be solved for all the values of u in the current row, k. This is then
repeated for all the rows. Fach row has an associated J x J sized matrix,
and the entire space is therefore described by a set of these matrices of size
J x J x K. This matrix of coefficients is a function of the constants «, 3, and

5.6. THE HOT START PROBLEM

73

~, which are in turn only functions of h, by, and by, it is constant in time.
Because of this, this matrix can be precomputed for use each iteration.
Similarly we can derive a system of equations for V' and v for each column,
j. In this case, we deal with derivatives of u in the y direction. The associated
coefficient matrix for the entire space will be of size K x K x J. For v the

equations become

€ G 0 0
0p & G 0
0 02 € G2
0 0 (53 €3
0O 0 0 O
(00 0 0

o O O

0o 0 0
0 0 0 “il Vio
0 0 0 vl Vi
0 0 0 V2 Vi
Ox—1 ex—1 (x| | 2571 Vir—s
0 6[((376 L Uik - V}’K -
. (5.37)

where instead of «, 8, and v we use corresponding variables for the y direc-

tion, §, €, and (:

B
O = 1og (bahe + bahjin) (5.38)
_ o (b1 +b2)
e =1- 2hjkW: (5.39)
hjk
CGe = 5 (bihj + bahjriq) - (5.40)

Az?

5.6 The Hot Start Problem

As mentioned in the section above, the predictor corrector scheme for the
main algorithm requires information from two previous iterations in time in
order to make a prediction about the next state of the system in the next
iteration in time. These two initial states are defined by initial condition

equations.

To compute values for the first two states we use lower order

ABM schemes as detailed by Long (2006a).
For the first time step we use the 1st order predictor and the 2nd order
corrector, where values at i=1 are known

74 CHAPTER 5. THE BOUSSINESQ EQUATION

W =+ ALEY, (5.41)
Uit = Uy + ALF), (5.42)
Vi = Vi + AtGY,, (5.43)
and the corrector
i i At i

77]751 =Nt 5 [E]f + Ejk] (5.44)
Uit = U + At [Fit+ Fh] + (F”“ — F}) (5.45)

gk = Yk T Ty Lk Jk Lik Lik '
Vil =V + At (Gt + G + (G”l -Gt) (5.46)

ik = Vik 9 ik ik Lik Lik) '

For the 2nd time step, we use the 2nd order predictor and 3rd order corrector
where i=2

i i At i i

M =M+ = [3Ej — '] (5.47)
Ui+1 _7TTt g 3Fi+l _ Fi Fi _ Fi—l 5.48
gk = Ujpt 5 [jk)+ 1k 1 (5.48)
yirt _yi o At 3G - Gi] + (Gi - GH) (5.49)

gk — Vijk 9 ik jk Lik Lik))

and the corrector
i i t i i i

i =M+ 7y PEL +8E) — B (5.50)
Ui—‘rl _ g 5Fi+1 8Fz _ Fi—l Fi+1 _ Fi 5 51
Vi+1 . i g 5Gi+l 8G7, _ Gi—l Gi+1 _ Gi 5 52
ik = Vgt D [ik TG ik]+ Lk 1) - (5.52)

Using Equations 5.41 to 5.52, we can approximate the values of n, U, and
V' for the first three time intervals. From iteration 3 and onwards we can use
Equations 5.17 to 5.22 defined earlier.

5.7. BOUNDARY CONDITIONS 0]

5.7 Boundary Conditions

The simulations done by Wei and Kirby (1995) use three types of bound-
ary conditions: reflective boundaries that perfectly reflect waves incident on
the boundary; wavemaker boundaries that generate waves moving in to the
simulation space; and open/radiating boundaries that absorb all incoming
waves.

5.7.1 Reflective Boundaries

Reflective boundaries for the Boussinesq equation are described by three
boundary conditions. The first, a Dirichlet condition, states that the hori-
zontal surface velocity component u in the direction of the boundary normals
1 must be zero at the boundaries as described by

u-n=0, (5.53)

where 7 is the normal to the walls boundaries as illustrated in Figure 5.3.

Equation 5.54 below is a Neumann condition that describes the gradient
of the water surface. It states that the gradient of n in the direction of the
normals must be zero at the boundaries as described by

Vn-n=0. (5.54)

To represent this numerically we set the values at the boundary to equal
the adjacent cells in the column or row. Equation 5.55 below, another Neu-
mann condition, states that the gradient of the velocity component perpen-
dicular to the normal (parallel to the boundary) must be zero along the
normal:

6’LLT

o 0. (5.55)

This represents the no-shear condition for fluid near the boundary, i.e., fluid

travelling in two adjacent cells parallel to a boundary have the same velocity.
From this we see that the x velocity components must be zero on the

left and right and the y velocity components must be zeros on the top and

bottom boundaries as described by Equations 5.56, 5.58, 5.60, and 5.62 as

described by

LK) =0 (5.56)

- (U, K) =0, (5.57)

76 CHAPTER 5. THE BOUSSINESQ EQUATION

(07'1>

) l

?T‘_>
—>

(0,1) J

Figure 5.3: The normals to the boundary walls in the simulation space at

(J:k) = (k). (5,0), (4, K), (0, k).

J—

for the right boundary,

I (7,0)=0 (5.58)
ov .
for the left boundary,
dn
ay (J,k)=0 (5.60)
ou
(] k) = .61
e (15 =0, (5.61)
for the top boundary,
on
hds = .62
5 (0.8) =0 (562)
ou

and for the bottom boundary.

5.7. BOUNDARY CONDITIONS 7

5.7.2 Wavemaker boundaries

When injecting waves into the simulation, we use what is known as wave-
maker boundaries. To do this we simply set the surface elevation at the
boundary to be some function of time. From this, the associated horizontal
velocity components are also computed for each corresponding time instance
by the following functions:

= Fho[l — (o + 1/3)(kho)?] "

Uy

¢ cost, (5.64)

" o[l — (a + 1/3)(kho)?]

Uy nesind, (5.65)

where k is wave number, hg is resting water surface depth, and 6 is angle of
wave propagation relative to the x axis.

Another point to note is that the boundary of a simulation space often
consists of more than one border point. In order for changes to be propa-
gated across a set of cells, boundary conditions must be specified over two
or more adjacent boundary points. For this reason, the boundary condition
is specified as

N(d—i) = Asin (27 f (t +idt)) (5.66)

where d is the boundary depth, 7 is the cell index from the z axis, and ¢ is the
current time for the simulation step. With all of the theory now established,
the algorithm can be implemented using Algorithm 2.

78 CHAPTER 5. THE BOUSSINESQ EQUATION

5.8 Algorithm

Algorithm 2: Pseudocode for solving the 2D Boussinesq equation

foreach iteration i in iterations n do
// Prediction steps;
if first iteration then
Compute E, F', G, I}, and G, at i;
Make 1st order Adams-Bashfourth prediction for n, U, and V
at ¢ + 1;
nd

Ise if second iteration then
Make 2nd order Adams-Bashfourth prediction for n, U, and
Vati+1;

® @

end
else
Make 3rd order Adams-Bashfourth prediction for n, U, and V
at ¢+ 1;
end
Compute u from U at i + 1 and u coefficient matrix;
Compute v from V at i + 1 and v coefficient matrix;
Apply boundary conditions;
// Corrector steps;
while Error in n or u < some tolerance do
if first iteration then
Apply 2nd order Adams-Moulton correction to 7, U, and
Vati+1;

end

else if second iteration then

Apply 3rd order Adams-Moulton correction to n, U, and
Vati+1;

end

else

Apply 4th order Adams-Moulton correction to n, U, and
Vati+1;

end

Compute v from U at ¢ + 1 and u coefficient matrix;
Compute v from V' at ¢ 4+ 1 and v coefficient matrix;

Apply boundary conditions;

Compute E, F', G, Fy, and Gy at i + 1;

Store current estimates for n, u, and v for ¢ + 1;

Compute error for ¢ + 1 using estimates;

if number of corrector iterations > iteration limit then
‘ Fail due to non-convergeance;

end

Apply filtering to 7, u, and v;

end

end

5.9. SUMMARY 79

5.9 Summary

In this chapter we derived the equations used for solving Boussinesq equa-
tion numerically using the potential flow model described by Wei and Kirby
(1995). This will be used in Chapter 7 to attempt to solve the Boussinesq
equation numerically. Until then we take a brief aside in the next chapter to
analyse Boussinesq wave data captured from a physical wave tank experiment
that was done by Mukaro et al. (2013).

80

CHAPTER 5. THE BOUSSINESQ EQUATION

Chapter 6

Experimental wave analysis

6.1 Introduction

We will now use the theory developed in this chapter to simulate waves in a
wavetank. The simulation will be for the following case. Figure 6.1 shows a
schematic of a real wave tank that was used by Mukaro et al. (2013) to create
Boussinesq type beach waves by oscillating a paddle at one end and letting
the resulting waves approach a sloped embankment on the right. The results
of this simulation will be discussed in this chapter and Chapter 7, but before
we go into the simulation results it will be worthwhile to examine results from
the experimental case of Mukaro et al. (2013). The experimental setting will
be used to explain the techniques for analysing Boussinesq waves and these
same techniques will be applied in Chapter 7 to the simulated data.

Probe 2 Probe 3

Probe 1 f_)% f_)%
: . Ly
T Still water line : T T T

Break point

05618 m

-14m -12.35m —6.53 m -4m -3.8m —1.5 m 0m

Figure 6.1: Experimental setup showing the water tank with a constant-
slope floor profile beginning at —12.35 m from the shoreline, a horizontally
oscillating paddle on the left of the diagram and an equilibrium water depth
of 0.618 m at its deepest point where the floor is flat. The positions of probes
2 and 3 were changed in successive runs of the experiment, shown in Table 6.1

81

82 CHAPTER 6. EXPERIMENTAL WAVE ANALYSIS

In this chapter I will introduce a physical experiment that was done by
Dr Mukaro and Dr Govender to generate Boussinesq type beach waves in
a wave tank with an oscillating paddle at one end (Mukaro et al., 2013). I
will then present the results of my own independent analysis of their data. I
will explain the physical apparatus used as well as the method by which the
data was collected from the experiment. Along with my analysis, I will also
detail each algorithm that was used to conduct my analysis. This analysis
will act as a reference for my own numerical simulation and the aim is that
the simulation should be able to predict similar results to what was seen in
the real experiment. I will do my own independent analysis of Dr Mukaro’s
data including wave height analysis, phase velocity calculations and, further,
I will also undertake a frequency analysis of the data, which was not done
by Mukaro et al. (2013).

6.2 Experimental setup

The physical experiment consists of a rectangular wave tank with a movable
paddle at one end. The paddle oscillates horizontally with a frequency of 0.4
Hz producing waves that propagate down the length of the tank. The floor
of the tank has a constant upward slope preceded by a small flat region. The
slope protrudes above the water surface at one end creating a shoreline as
shown in Figure 6.1.

This apparatus is able to generate Boussinesq type waves that begin as
sinusoidal waves on one end of the tank and form breaking waves on the shore
at the other end of the tank. Along the length of the tank are three probes
that constantly sample the height of the water surface about its equilibrium
position. Over multiple runs these probes are used to capture the time series
of the surface elevation for a 2 minute period at various positions along the
tank. The experiments were started with probes initially located as indicated
in Figure 6.1 at z = —14 m, x = —4 m, and x = —1.5 m. A time series was
capture at these positions, then probes 2 and 3 were moved 10 cm toward
the paddle while keeping probe 1 fixed. Then a new set of time series was
captured. By repeating this over multiple runs the time series of the surface
elevation was captured every 10 cm between —1.5 m and —6.3 m. In each of
these runs the time series of the wave was sampled every 20 ms. Since each
experiment run lasted for 2 minutes, only subsections of the data are shown
in all figures shown below.

Table 6.1 below shows the probe positions for all runs of the experiment.
Probe 1 was kept at the same position for each run, while Probe 2 and Probe 3
were moved further away from the shoreline with each run. The experiments

6.2. EXPERIMENTAL SETUP 83

are numbered 1 through 24, followed by a 25th documented experiment that
is a rerun of experiment 13 except with Probe 3 being measured at 2.7 m
from the shoreline instead of 2.8 m.

Table 6.1: Experiment probe positions (m)

Experiment Probe 1 Probe 2 Probe 3

1 14 4.0 1.5
2 14 4.1 1.6
3 14 4.2 1.7
4 14 4.3 1.8
) 14 4.4 1.9
6 14 4.5 2.0
7 14 4.6 2.1
8 14 4.7 2.2
9 14 4.8 2.3
10 14 4.9 2.4
11 14 5.0 2.5
12 14 5.1 2.6
13 14 5.2 2.8
14 14 5.3 2.9
15 14 5.4 3.0
16 14 5.5 3.1
17 14 5.6 3.2
18 14 5.7 3.3
19 14 5.8 3.4
20 14 5.9 3.5
21 14 6.0 3.6
22 14 6.1 3.7
23 14 6.2 3.8
24 14 6.3 3.8
30 14 5.2 2.7

In the rest of the chapter we will refer to the time series at a particular
horizontal position along the tank relative to the still water mark on the
beach, which we take as x = 0 m. The equilibrium position of the water
surface is the still water level of 0.618 m.

84 CHAPTER 6. EXPERIMENTAL WAVE ANALYSIS

6.3 Data inspection and cleaning

The output from Dr Govenders experiments were plain text files generated
by the data acquisition units used for the experiments. In order to import all
of the data into MATLAB I needed to do some preprocessing on the original
text files to transpose them into a more modern tab delimited format. This
was done using a simple Python script that looped through all of the data and
applied the required formatting rules to all rows of data across all of the files.
Once this was done I began creating a comprehensive object oriented data
model in MATLAB to represent the data and metadata of each experiment.
This was then used in the following sections for further analysing the data. In
the next section I detail a simple phase adjustment algorithm that I wrote to
synchronise the phases of the signals from the three probes in order to more
clearly present the signal data. In Figure 6.2 we see a 10 second subplot of
the original data captured by Dr Govender’s experimental apparatus. The
figure shows the height of the water at three different probes positioned in
the tank over time. Each probe captures unique characteristics about the
waves as they travel along the tank. Since waves travel from the left of the
tank towards the right, the signals measured on the probes are flipped as the
front of each wave is recorded first. This is why the steep side of the waves
appears on the left in the figure. Here you can see the shapes of three waves
- one for each probe. On Probe 3 (yellow) you can already see waves with
the distinctive nonlinear shape with a steep slope on one side followed by a
tapering slope on the other.

MATLAB was used for all of the following analysis in this chapter with
a strict emphasis on not using external packages. This ensured I had full
control over and understanding of all of the software I wrote. This code can
be found on my GitHub account by searching for my name or going to the
following URL: https://github.com/JordanScarrott /boussinesq-waves.

6.3.1 Phase adjustment

Upon inspection of the initial data it was apparent that the signals from
each probe were not in phase. Naturally the position of the probes in the
experimental setup meant that waves did not arrive at each one in the same
phase. In order to present more usable data I wrote a phase correcting
algorithm to shift all the signals into the same phase so that, for plotting
and comparison purposes, they all begin on a zero crossing position with a
positive gradient. The algorithm finds the first zero crossing of each signal
that has a positive gradient and uses this to shift all signals into the same
phase. The pseudocode for the simple phase adjustment algorithm is shown

6.3. DATA INSPECTION AND CLEANING 85

Experiment 20 showing wave height over time for each probe.
T T T T T T T

0.2
14m
5.9m
3.5m
0.15 1~ -
0.1 - _
oS ™\ | ™\
= /\ | / [AN AN
Eoos \ | | [N] /AR i\ g
= / \ / \ / \ / \ | \
[0 s [\ POV
\ | \ | [\ \ |
\ | \/ \ \
\ A A\)
or A\ / \ A
\ I\ N\ \
\ \ N\ \\
A A (/ A A
NN NN S N S N
005 D \\\4/ ~ N/ N ~_ ~__/ ~/
-0.1 L 1 1 L L L L L L
0 1 2 3 4 5 6 7 8 9 10
Time (s)

Figure 6.2: Initial data from experiment 20 showing out of phase signals for
time series captured at * = —14 m, —5.9 m, and —3.5 m, where 7 is the
instantaneous wave height.

in Algorithm 3.

Algorithm 3: Pseudocode for the phase adjustment algorithm

foreach signal in experiment do
Take the sign of each data point;
Compute the forward difference of this signed data;
Find the first element where the sign changes from —1 to 1;
Crop out all data before this point;
end
Crop ends of all signals to the same length;

This algorithm is well suited to MATLAB and makes use of its efficient
vectorizing operations. When applying this algorithm to the initial data we
get the following more usable result shown in Figure 6.3. This wave phase
synchronisation algorithm was applied to all 25 experiment datasets. This
work benefited greatly from the the object oriented data model that was used
and as a result, applying this algorithm (or any other in this chapter) to any
number of the datasets became trivial.

Further analysis of this data will be discussed in the following section.

86 CHAPTER 6. EXPERIMENTAL WAVE ANALYSIS

02 Experiment 20 showing wave height over time for each probe.
- T T T T T T T

14m
5.9m
3.5m

01F n R 4

s‘“‘ \\ ’ I\\\ /“ \)
/ h 1\\\ ‘,‘:\" \\
\, \ /
,,,/ \\// N\ e / \ J g il
0.1 L 1 1 1 I I 1 1 |
0 1 2 3 4 5 6 7 8 9 10
Time (s)

Figure 6.3: Processed data from Experiment 20 with phase-synchronised
probe signals.

6.4 Analysis of Experimental Results

In this section I will present my own independent analysis of the probe data
from different runs of Dr Govender’s experiments. We will discuss the charac-
teristics of the waves at three regions along the tank: near the paddle where
the waves are generated, a region half way up the slope, and the region where
the waves begin to break. I will refer to these regions as the near-paddle re-
gion, the near-breaking region, and the breaking region respectively. An
analysis of the frequency spectra in these regions will follow in Section 6.6.

6.4.1 Wave height analysis

In this section, an independent analysis of the average wave height!, H, is
presented at every probe position along the wave tank. The results from
this analysis are shown in Figures 6.4 and 6.7 and referenced throughout this
section.

Algorithm 4 below shows the pseudocode for computing the average wave
height of each signal. Given a signal, we determine the locations of all the

IThe wave height is defined as the distance from the bottom of the trough of the wave
to the top of the crest.

6.4. ANALYSIS OF EXPERIMENTAL RESULTS 87

positive gradient zero crossings and divide the signal into subregions each
containing a single wave period. The goal is then to compute the difference
between the maximum and minimum values in each subregion and average
them to get the average wave height for the signal. Due to the fact that there
are often oscillations around the y = 0 m line, I wrote a minimum distance
zero crossing detection algorithm to remove unwanted zero crossings near the
expected zero crossing location for each period. For a given signal, I com-
pute the Fourier transform and determine the dominant, non-zero frequency
component of the wave (the fundamental frequency of the wave). This allows
us to know how often to expect a zero crossing to occur? . We can then limit
the number of zero crossings that occur within some area, é(s), around the
expected boundary crossing to one, where § is a function of the dominant
frequency, f, given by

(6.1)

where the tolerance v is between 0 and 1 and § is measured in seconds. This
tolerance allows us to accommodate slight variations in the exact location of
the zero crossing.

Algorithm 4: Pseudocode for computing the average wave height
of a signal

Take the sign of each data point;

Compute the forward difference of this signed data;

Find all the array indices where the sign changes from —1 to 1;
Compute dominant non-zero frequency component from its FFT;
Compute the period of the wave;

foreach zeroCrossing z in zeroCrossings do

if any two zero crossings are within §s of each other then
| Remove one of them.

end
end
foreach wave period in periods do
‘ Compute wave height as difference between max and min values;
end
Average all of the wave heights;
Compute all of the standard deviations;

2Although we know from observations of Figure 6.2 that the wave period is around 2.5
s or 0.4 Hz, using the FFT3allows us to treat each signal individually.

3A high performance algorithm for computing the Discrete Fourier Transform of a
signal, thus giving it the name Fast Fourier Transform

88 CHAPTER 6. EXPERIMENTAL WAVE ANALYSIS

0.22 Average wave height and standard deviation bars across all experiments
- T T T T

02 IS I i
N
0.18 + N
. =
_ =y
é + +—=
2016 + . i
5 [
e
(;u 0.14 - B
& R e o S S e
© 0.12]
>
53
041+ N
—J— Probe 1
0.08 - —J—Probe 2 | 7|
Probe 3
0.06 L L L L
5 10 15 20 25

Experiment number

Figure 6.4: Average wave height and standard deviations from all probes
across all experiments.

This algorithm ensures that every wave height calculation is done using
exactly a single wave period within some error range of +6/2. For this
analysis, 0 was set to 0.1. This algorithm was then used to compute the
average wave height and standard deviation for every position along the
length of the tank. Plotting the average wave height for each experiment
gives us Figure 6.4 and plotting the average wave height across the length of
the tank gives us Figure 6.7. These results will be discussed in the following
sub sections.

6.4.2 Near paddle characteristics

We know that the paddle oscillates sinusoidally with a constant frequency
of 0.4 Hz. This oscillation creates a sinusoidal surface level oscillation that
propagates along the length of the tank. This generated wave is the wave we
expect to see at * = —14 m. However, when examining the blue signal at
this point nearest to the paddle in Figure 6.3 it is clear that there is a subtle
asymmetry to the wave and appears to slope to the left. It has narrower peaks
and wider troughs than a perfect sine wave. This asymmetry is reflected
in the frequency spectrum for this wave in Figure 6.16 in a later section
(Section 6.6) where we do a more in-depth analysis of the spectra. Even
though the signal is measured as close to the wave source as possible, it has

6.4. ANALYSIS OF EXPERIMENTAL RESULTS 89

02 Experiment 24 showing wave height over time for each probe.
- T T T T T T T

14m
6.3m
3.8m

0.15 - -

0.1 - \ " B

-0.1 L 1 1 L L L L L L

Figure 6.5: Time series of the water surface from experiment 24 for probe
positions at z = —14 m, —6.3 m and —3.8 m. The series at —6.3 m corre-
sponds to the mid-slope region

still undergone some nonlinear wave distortion. We know that the nonlinear
features of Boussinesq waves are primarily caused by the relationship between
the wave height and the water depth. In this case the water is shallow enough
even at this deepest point for there to be an interaction between the wave
and the floor of the tank, causing the nonlinear effects seen in the figure. If,
for example, the wave source was out in the deep sea region where the ratio
of the wave height to the water depth was much smaller, this effect would
not be so prominent.

6.4.3 Mid-slope region

In Figure 6.5, we see that the waves have grown in height as they move from
the paddle to a point near the centre of the wave tank, x = —6.3 m. We
can see that the troughs of this signal are wider than at x = —14 m. At this
point, no wave breaking has yet occurred as can be seen from the smooth
wave profile. From Figure 6.7 we can see that the standard deviation of the
wave height is relatively low at this position. From this we know that the
wave height in this region is predictable and has a low variability.

90 CHAPTER 6. EXPERIMENTAL WAVE ANALYSIS

02 Experiment 12 showing wave height over time for each probe.
- T T T T T T T

14m
51m
2.6m

0.15 - -

01 [M fl i

-0.05 -

Figure 6.6: The time series from experiment 12 showing breaking waves on
Probe 3 which is located at x = —2.6 m.

6.4.4 Breaking region

Below you can also see results in Figure 6.6 showing the waveform at x = —2.6
m. This time series shows a good example of breaking waves. The signal is far
more chaotic than at z = —6.3 m and has lost most of its smooth beach-wave
shape. This is a clear indication of wave breaking. Another characteristic of
the breaking region is clear from Figure 6.7. That is the sudden increase in
the standard deviation of the average wave height. In this region, the wave
height is less predictable and varies more across each wave period. Another
significant feature is that more of the wave appears to be above the zero line.
This means that the water in this region has gained potential energy during
this process.

6.4.5 Final wave height results

The reader will remember that 0 m represents the shoreline on the right of
Figure 6.1 and distance is measured in metres from the shoreline. Figure 6.7
illustrates the average wave heights of waves moving in the same way, from
the source on the left to the shoreline on the right. We can see that the
average wave height increases predictably from r = —6.3 m to x = —4 m.
At £ = —3.8 m we see that the average wave height reaches a maximum

6.5. PHASE VELOCITY 91

Average wave height and standard deviation bars across wavetank length
0.22 -

—&— Probe 2
—&— Probe 3

0.2
0.18 -

0.16 -

014 &

Average Waveheight (m)

1 1 1 1 1 1 1 1 1 1
6 5.5 5 4.5 4 3.5 3 25 2 15
Distance from shoreline (m)

Figure 6.7: Average wave heights and standard deviations of all probes over
the length of the tank.

and begins to decrease at a relatively predictable rate before the standard
deviation shows any significant increases. It is at * = —3.2 m that we see the
standard deviation of the waves suddenly increase and we see a corresponding
increase in the rate of decay of the wave height. From here the average wave
height falls off dramatically. As can be seen from the figure, the probes
were well situated in these experiments in order to record data about the
transition from the mid-slope region to the breaking region. It is clear from
Figure 6.7 that the waves begin to break somewhere between x = —3.8 m
and z = —4.1 m.

6.5 Phase velocity

In the beginning of this chapter we mentioned that the signals on the three
probes were shifted out of phase. While we synchronised the signals in order
to better display the waveforms, we can actually make use of this phase
information to determine the phase velocity of the waves. In this section I
will analyse the phase information of the waveforms and use this to compute
the phase velocity of the waves as they progress up the slope. We will first
develop the core concepts then show the final phase velocity algorithm at the
end of this section.

92 CHAPTER 6. EXPERIMENTAL WAVE ANALYSIS

We would like to work out the phase velocity of the waves at each point
along the slope. If we had access to the entire waveform at every point in
time, we could simply use a peak tracking algorithm to work out the velocity
at each instant for each wave peak in the tank. However what we have is only
a series of cross sections of that data. Each probe represents a cross section
through time of the water surface at a specific position. While data was
recorded at different positions along the tank, this means that the data from
each experiment was recorded at a different time and there is no guarantee
that the signals from one experiment will begin in the same phase as those
from another experiment. In order to work out the phase velocity it helps to
clarify the question we are asking. That is By how much has the phase of a
wave measured at some position changed since the time it was generated at
the source?. We happen to know the source signal for every experiment. We
can therefore simply compute the phase difference between any signal and
the source signal from the same experiment. Doing this for each signal in
each experiment will give us a set of offsets, and working out the difference
between these offsets will allow us to calculate the average velocity over a
small range. We will now go through each step of this process, investigating
the signals involved at each stage in the process.

Figure 6.8 shows a five second sub plot of the signals for x = —3.6 m,
r = —6 m, and x = —14 m. We will first manually work out the phase
difference between two sets of peaks then show how we use a cross correlation
to do the same thing more accurately. This allows us to highlight a few key
differences between these two ideas.

02 Experiment 21 showing wave height over time for each probe.
T T T T T T T

X254 14m

X0.04 Y 0.1623
Y 0.15303 .

015 % -

01 X0.4 . X2.9 . 7
Y 0.07388 \ ¥ 0073206 / \

3.6m

E L ,//.‘ \ ,// \
= ,/ \\\

Figure 6.8: Time series corresponding to probes at x = —14 m, x = —6 m,
and r = —3.6 m.

6.5. PHASE VELOCITY 93

In Figure 6.8 we can see three signals with the peak values of two of the
signals shown. To work out the phase difference between these two waves
we could simply find the average difference between the peaks of the waves.
This approach gives an average phase offset of 0.36 s between the signals at
x =—14m and z = —3.6 m. We will now compute the phase offset using
the cross correlation. In order to compute the cross correlation of the two
signals, each of length N samples, we first pad the ends with N extra zero
samples to increase their length to 2N samples. This ensures that our cross
correlation avoids making unwanted circular correlations. We then take the
2N point Fast Fourier Transform (FFT) of both signals and compute the
frequency domain correlation function according to the following equation:

Ciy = hits, (6.2)
where f; is the frequency spectrum of the signal at x = —3.6 m and and f5
is the complex conjugate of the frequency spectrum at z = —14 m.

Taking the real component of the inverse FFT (iFFT) of Equation 6.2
we get the correlation function which is shown in Figure 6.9 below. From
this correlation function we can find the maximum correlation to be at the
31st index. Since we know each sample of the input signals corresponds
to 20 ms we deduce that the phase offset between the two signals is 20
ms X 31 samples = 0.62 s. This result differs greatly from our manual
calculation of 0.36 s above and is outside of a reasonable error range of about
420 ms. In this case the cross correlation we are computing is between
two signals that are not purely of one frequency. Specifically, the signal
at £ = —3.6 m is made up of many harmonic frequencies and since the
cross correlation is most heavily weighted by the fundamental frequency of
the signal, it is more accurate to know that we are finding the difference
mainly between the fundamental frequency components of the waves being
compared since the peaks of the dominant frequency component of the signal
are not necessarily in the same place as the peaks of the original wave. This is
especially true for waves with more harmonic components. It is for this reason
that we pass our signals through what is know as a perfect reconstruction
filter upsampler before we do our cross correlations. The details of this
filter are discussed in Section 6.5.1 below. This filter allows us to isolate
a single frequency component of each wave as shown in Figure 6.10 where
only the fundamental frequency of each wave is present. It can be seen
from the figure that the peaks of these waves are closer than those of peaks
of the original signal. In this context it is now a satisfactory approach to
simply compare the peak positions. This difference can be clearly seen in
Figure 6.12, where the fundamental frequency component of the time series

94 CHAPTER 6. EXPERIMENTAL WAVE ANALYSIS

25 : Correla‘tion (i for(ime ser‘ies alx‘=3.6m :
v
1y i
“w I
ln\ ‘ J MH
1 l
-%2.5 "2 '1‘.5 -1 Ozﬁset(samples()).s 1 e é x10%
Figure 6.9: Cross correlation of time series at © = —14 m and x = 3.6 m

with 4x upsampling.

at z = 3.8 m is compared against the original unfiltered signal. As well as
filtering the signals down to their fundamental frequency component of 0.4
Hz, the perfect reconstruction filter upsampler has also upscaled the signals
in the figure to 4 times their original resolution (increasing their resolution
from 20 ms to 5 ms). For reasons that will be discussed in Section 6.6, we
have also used a Hann window function as well as zero padding in our cross
correlation to reduce spectral leakage. Figure 6.11 shows the improved cross
correlation function. Applying the Hann window function is a step that was
not included in the analysis by Dr Govender and Dr Mukaro according to
their paper (Mukaro et al., 2013). When computing the phase offset for
Figure 6.10 by looking at the difference between the peaks (corresponding to
the waves © = —14 m and * = —3.6 m) we get an average phase offset of
103 ms and when computing the cross correlation of the same filtered and
upscaled signals we get cross correlation of 5 ms x 22 samples = 110 ms.
This is of course a much more accurate result.

6.5.1 Perfect reconstruction filter upsampler

We will now discuss the perfect reconstruction filter upsampler technique
that was used to preprocess signals before computing our cross correlation
functions. It is a basic frequency domain filtering and resampling technique
that allows us to reconstruct the original signal using only a specific subset of

6.5. PHASE VELOCITY 95

21 showing wave height over time for each probe 4x).
T T T T T T

14m

X0.47994 X 2.97963 36m

Y 0.0291481 Y 0.0291473

X0.374953 | - X2.86964 | o
VUUZ1B12 \ /\ ‘/00218126 \ /\
X

-0.03
-0.04
0.05 I I I I I I I I
0 0.5 1 15 2 25 3 35 4 4.5 5
Time (s)

Figure 6.10: Filtered and 4x upsampled time series at © = —14 m, x = —6
m, and 2 = —3.6 m (showing fundamental frequency of the waves). Note
that the amplitude values on the vertical axis are scaled by a factor of 4
compared to the original signal. This is a consequence of using MATLAB
forward and backwards FFTs together with interpolation. This is accounted
for in Algorithm 5.

Ci i i for time series atx=3.6m
02 . : : :
X22
015 Y 0.181487
0.1 } “

s H
3 005f
°
S N ‘\ H [T—
g \
£ o] mm HM i
: \H L‘
5 i
5 I H
2 -0.05 H J i
o
S

0.1 F 1 ‘ l

0.15 | ’

02 \ \ \ \

25 2 15 Bl -0.5 o 0.5 1 1.5 2 25

Offset (samples) x10%

Figure 6.11: Cross correlation of fundamental frequency components of z =
—3.6 m and z = —14 m with 4x upsampling and Hann windowing applied.
The windowing can be see in the tapering of the correlation function.

96 CHAPTER 6. EXPERIMENTAL WAVE ANALYSIS

Fund fr y and original signal comparison (3.8m)
T T T T

02 ‘

Fundamental frequency component (3.8m)
Original signal (3.8m)
T

0.15 -

Vo / h
N o/ \ \ S N y'/ \ \\
005] g) \ I A
0.05 | \ | / \
/ / \ / \
o4k / ‘\\ / “\\ / \ / \d
L/ \/ N % NV
0.15 | | | | | | | | | |
0 1 2 3 4 5 6 7 8 9 10

Figure 6.12: Comparison of original signal and its fundamental frequency

component.

frequencies while increasing the sample resolution of the signal. It works by
first taking some N-point FFT of the input signal, then in our case applying
both a low pass and high pass filter to the frequency spectrum on either
side of the fundamental frequency component of the signal. In our case this
means simply setting every frequency bin to zero either side of the 0.4 Hz
peak. Since we are using this to determine a cross correlation between waves
that all have the same frequency, it allows us to effectively track the phase
offset of waves even as the rest of their frequency spectrum changes over
time. Once this is done, we then move on to resampling the signal. Since we
are in the frequency domain already, we can simply split the full spectrum
in the centre into two parts and insert a number of zeros proportional to
the upsampling factor such M/N = k, where M is the number of output
samples, N is the number of input samples, and & is the upsampling factor.
Then we compute the M point inverse FF'T to reconstruct the signal using
only the fundamental frequency component of the signal at an upsampled
sample rate of k. This process is analogous to time domain sinc function
interpolation.

The number of zeros, Z, needed to pad the centre of the full spectrum
FFT in order to upscale an N-point input signal by an upsample factor of k

6.5. PHASE VELOCITY 97

is given by Equation 6.3:
Z=N(k-1). (6.3)

The pseudocode for this perfect reconstruction upsampler is shown in
Algorithm 5. While this algorithm does not include a windowing step for
addressing spectral leakage, I found that in this case it did not affect the
final phase velocity calculations®.

Algorithm 5: Pseudocode for perfect reconstruction filter

foreach signal S in experiment do

Compute the FE'T of the signal;

Zero all frequency components outside of a desired range;

Pad right side of FFT with zeros proportional to the upsampling
factor;

Scale magnitude of remaining frequency components based on
upsample factor?;

Compute the iFFT;

end

“When filtering out frequencies from the spectrum we are also removing energy from
the system. To compensate for this it can be convenient to amplify the resulting wave.
This does not affect the final correlation results.

6.5.2 Final phase velocity calculations

So far in this chapter we have investigated how to work out the phase offset
of each signal in our dataset relative to its source signal. We have discussed
the problem of finding a reference point for the phase offset of each signal, the
algorithm for computing the cross correlation of two signals. We investigated
the discrepancy between the phase difference between the peaks of two signals
and a more accurate definition of the phase difference between two signals.
We investigated how a perfect reconstruction filter can help solve this problem
and at the same time be used to upsample our signals for increased accuracy.
Since we can now compute the phase difference between a signal and its
reference signal, we can simply do this for each signal in our dataset, then
use the difference between these offsets to compute the phase velocity at each
point.

4An appropriate windowing function for this is the Hamming function since it tapers
off to a non-zero value on both sides. This means it can be applied before doing the FFT
to decrease spectral leakage, and when the reconstruction step is done using the iFFT,
one can divide by the Hamming function again to reproduce the original non-windowed
signal without any tapering on the ends.

98 CHAPTER 6. EXPERIMENTAL WAVE ANALYSIS

45 Phase difference between the wave source and waves further up the slope.
o T T T T T T T T T

35 * 7

)
T
*
Il

Phase offset (rad)
N
(6]
T
*
*
Il

1 I I I I I I
-6.5 -6 -5.5 -5 -4.5 -4 -3.5 -3 2.5 -2 -1.5

Distance from shoreline (m)

Figure 6.13: Phase differences

Figure 6.13 shows the phase offset for each signal captured along the
length of the tank. The offsets for points where data was captured by more
than one experiment have been averaged. The phase offset computed between
two signals can only be within +7 rad even if the offset between the functions
is larger in reality. The offsets in the figure have therefore been accounted
for by adding a 27 rad shift to portions of the data. According to the figure,
the phase offset of the waves decreases as the waves approach the shore.
This may appear contradictory to the results of Mukaro et al. (2013), as
the offsets they show increase as the waves approach the shore instead of
decrease. However, this is actually a matter of interpreting the time shifts
calculated by the cross correlation. The cross correlation measures the time
between two nearest peaks in the two signals, and it may not be the two
correct peaks that are compared. We can correct this by simply subtracting
the measured time shifts between signals from one period.

We can now compute the phase velocity using Equation 6.4 below, where
f is the fundamental frequency of the wave, Az is the distance between the
positions of two phase differences, and A® is the change in phase difference

6.5. PHASE VELOCITY 99

between the two points. This is given by

_ 2nfAzx
=g

When calculating Az and A®, the centred difference was used. Once the
phase velocity was computed at each point, a five-point moving mean was
taken of this resulting data. This algorithm is shown in Algorithm 6. The
final result is shown in Figure 6.14 along with the two theoretical curves,
one derived from linear theory (1/gh), and the other using the roller model
concept (1.3y/gh) of Schiffer, Madsen and Deigaard (1993). As can be seen
from the figure, the experimental velocity matches that of linear theory very
closely up until just before 4.2 m from the shoreline. At this point, the ve-
locity begins to increase until it reaches a maximum of about 1.81 m/s at 2.9
m from the shoreline. During this increase it crosses the line predicted by
the roller model at 3.4 m. After reaching a maximum, the velocity decreases
again, following the roller model’s curve. The sudden increase in wave veloc-
ity between £ = —4.2 m and « = —2.9 m occurs in the same region that we
know the waves begin to break. This suggests that the increase in velocity is
due to the breaking of these waves in this transition region. This knowledge
also separates the graph into three distinct regions: pre-breaking, breaking,
and post-breaking regions. In the pre-breaking region, the waves seem to
follow the curve derived from linear theory. After this the waves break and
they then appear to follow the curve derived by the roller model. This seems
logical as the roller model is intended to describe waves in the post break-
ing region. Another significant attribute of the breaking and post-breaking
regions is the apparent increase in variation of the velocity.

100 CHAPTER 6. EXPERIMENTAL WAVE ANALYSIS

Wave velocity along the length of the tank

24l T T T T]
—*— Experimental results
Vgh

ool 1.3xVgh

Wave velocity (m.s-1)

0.8 4

0.6

1 1 1 1 1 1
7 6 5 -4 -3 2
Distance from shoreline (m)

Figure 6.14: Phase velocity

6.6. FREQUENCY ANALYSIS 101

Algorithm 6: Pseudocode for determining the phase velocity

foreach signal in experiment do
- Filter and upsample signal using perfect reconstruction

upsampler from Algorithm 5;
- Apply Hann window function to signal,
- Pad right sides of inputs to prevent circular correlations;
- Compute the FFT of the padded data;
- Compute correlation;
- Compute the iFFT to get the correlation function;
- Return index of max correlation;
- Compute the time offset as dt / resampleFactor;
- Adjust points that are off by 4+-pi rad;
- Average duplicate offsets;
- Compute the centered difference of the offsets;
- Compute the 5 point moving mean;
end

6.5.3 Future optimisations

A natural optimisation is to combine the perfect reconstruction code with
the cross correlation code and compute both quantities while still in the fre-
quency domain when doing the perfect reconstruction filter. This minimises
the number of times you need to transform the signals between the frequency
and time domains. However, this was not done in my code for a number of
reasons. Firstly, keeping these two operations separate allows them to be
run independent of one another. This made my code far more readable and
made analysis of the different stages of data processing far more accessible.
This follows a simple separation of concerns and a standard functional pro-
gramming principle. Secondly, the scale of the data involved meant that the
value of this optimisation was simply not valid and even premature. With
only about 75 signals to analyse, all processing was done in a matter of a few
seconds. However, this optimisation is good to note if one wishes to make a
highly optimised version of this type of algorithm.

In the next section I will show my analysis of the frequency spectra of
the waves as they travel up the slope.

6.6 Frequency analysis

In this section we will investigate the spectral properties of the experimental
beach wave data. We will investigate three main regions along the length of

102 CHAPTER 6. EXPERIMENTAL WAVE ANALYSIS

the tank. The wave source, the near-breaking region and the breaking region.
We will first look at the frequency spectrum of the source region to establish
a reference for the rest of the results, then proceed to analyse the remain-
ing regions. For each frequency spectrum, I have run a minimum-distance
peak detection algorithm and used this data to identify the location of the
harmonic peaks in the data. This information was then used to compute an
exponential curve of best fit for the peaks. Note that the zeroth index in the
FFT data was excluded from all peak detection and curve fitting analysis °.

In Figure 6.16 we see the frequency spectrum for waves at * = —14 m (the
wave source). The reader will remember that the wave generator was set to
generate waves with a frequency of 0.4 Hz. This can be seen in the diagram
with the largest peak at 0.4 Hz on the far left of the diagram. However,
this is not the only frequency component that appears in the spectrum. As
well as the fundamental frequency, we also see other prominent harmonic
peaks followed by a number of small peaks that appear to have the same
regular spacing. It is clear that the waves measured at the source are not
purely sinusoidal, as seen previously, and this is proven by the fact that there
is clearly more than one frequency component forming a significant portion
of the spectrum. As discussed previously, this can be due to the nonlinear
interaction of the water surface with the floor of the tank at the paddle due
to the relatively shallow depth of the tank. As for the relationship between
the magnitude of the different peaks in Figure 6.16, we can see that they fit
an exponentially decaying curve very closely. From the fitted curve in the
figure we can see there is very minimal difference between the exponential
curve and the peaks of the frequency spectrum. The fitted curve equation is
shown to be the following for waves at the source:

y = 7.2079¢(~48768F) (6.5)

where y is the normalised spectral amplitude and f is the frequency.

In Figure 6.18 we see the frequency spectrum for waves at © = —6.0 m.
This is one of the points furthest from the shore besides the wave source for
which we have data. At this point along the length of the tank, the waves
are still in the non-breaking region. Here we can see the peak at 0.8 Hz has
grown from a magnitude of about 0.25 to a magnitude of 0.425. The same
pattern can be seen for other low frequency harmonic peaks in the spectrum.

5Non zero values at the 0 Hz index of a frequency spectrum indicate a constant offset to
the signal. While this information is useful and is shown in the spectra, it is excluded from
curve fitting. These curves represent the decay of energy from the fundamental component
of the wave into non-zero frequency components of the waves.

6.6. FREQUENCY ANALYSIS 103

Frequency spectrum with fitted curves for x = 14m

Frequency Spectrum
ool Harmonic Peaks

Fitted Curve (7.2079¢"48768)

0 5 10 15
Frequency (Hz)

Figure 6.15: The time series at x =

—ldm. Figure 6.16: Frequency spectrum for x =

—14 m with peak detections and curve fit-
ted to these peaks.

It can be seen that energy is now distributed in a wider range of low frequency
harmonic peaks than in Figure 6.16. This is evident in the changes to the
equation of best fit given by Equation 6.6 for x = —6 m. Note that both
the magnitude of the exponential and magnitude of the decay rate have both
decreased. Notice that the peak at 0 Hz has also increased slightly. The
peaks appear to still fit an exponential curve very closely according to the
equation of best fit:

y = 2.3534¢(7213830) (6.6)

We will now examine the frequency spectrum of waves that form part
of the near-breaking and breaking regions, where the waves have reached
their peak height and begin to collapse under their own weight. Figure 6.20
shows the frequency spectrum and fitted curve for + = —3.8 m from the
shoreline. From Figure 6.7 we know that at this point the waves have al-
ready reached their peak wave height and are about to enter the most chaotic
region known as the breaking region. As can be seen from the figure, the
frequency spectrum at this point has become very interesting. The magni-
tude of the peaks in this figure oscillate along the frequency axis, creating
six frequency bands. The frequency pattern that we see is due to the fact
that in the breaking region the wave has a more saw-tooth shape. The spec-
trum of a saw-tooth signal has shape which is proportional to a sinc function
squared. While the distribution of peak magnitudes follows a more compli-
cated pattern compared to those seen previously, it does generally follow an
exponentially decaying curve with the following equation:

104 CHAPTER 6. EXPERIMENTAL WAVE ANALYSIS

Frequency spectra with fitted curves for x = 6m

Frequency Spectrum
H P

s
Fitted Curve (2.3534e21383%)

Normalized Amplitude

1 f

0 5 10 15
Frequency (Hz)

°

Figure 6.17: The time series at z =
—6 m. Figure 6.18: Frequency spectrum

for £ = —6 m with peak detections
and a curve fitted to these peaks.

y = 1.6845¢(71-3150) (6.7)

6.6.1 The relationship between Boussinesq waves and
sawtooth waves

While the spectrum shown does correspond correctly to a sawtooth wave it
is possible that some of its shape is influenced by spectral leakage. Spectral
leakage tends to occur when the fundamental frequency of the input signal
to the FFT does not fall exactly on a bin in the FFT result. In other words
leakage occurs when the input signal does not contain an integral number of
cycles in N samples, where NN is the size of the FFT to be computed. Readers
who are experienced with working with Fourier transforms may notice that
the spectrum of the wave in the breaking region is similar to a sawtooth wave
in the frequency domain. Equation 6.8 describes a reverse sawtooth wave
made up of the sum of K sinusoids, each of frequency kf and amplitude 2—::

yi1) = 2037 (e BT, (6:5)

This similarity is due to the fact that as the Boussinesq waves become
more deformed by nonlinear effects, the trailing side of each peak tends to
drop off slowly while the rising edge of each wave tends to become increasingly
steep, forming what begins to look like sawtooth waves. To demonstrate this
point, a sawtooth wave and its Fourier transform are shown in Figures 6.21,

6.6. FREQUENCY ANALYSIS 105

Frequency spectrum with fitted curves for x = 3.8m

Frequency Spectrum
Harmonic Peaks

Fitted Curve (1.6845¢(3151¥)

Normalized Amplitude (AU)
&

|
‘ .l‘l“‘ l‘\t‘i,l.\‘l\,_l,liw

0 5 10 15
Frequency (Hz)

Figure 6.19: The time series at x

Figure 6.20: The frequency spec-
=—-38m

trum for the time series at =z =
—3.8 m with peak detections and
a curve fitted to those peaks.

6.22, and 6.23 below. Interestingly, when constructing a sawtooth wave with
the same parameters as the Boussinesq waves (f = 0.4 Hz, dt = 0.02 s,
t = 120 s) we do not see the same frequency banding effect. Figure 6.22 shows
a relatively smooth exponential decay of frequencies. However, if we vary the
frequency of the sawtooth wave by only 0.22% from 0.4 Hz to 0.40089 Hz, we
see the same banding effects present for our Boussinesq waves. For a sawtooth
wave with a frequency of 0.40089 Hz, we get a frequency spectrum with
many of the same properties to what we see at x = —3.8 m in Figure 6.20.
Varying the frequency of the sawtooth wave I have noticed that we get smooth
exponential decay of the spectral peaks with harmonic frequencies (that is
frequencies that are multiples of 0.4 Hz). Figure 6.22 shows the FFT results
of the saw-tooth wave using a signal frequency of 0.4 Hz, sample time of
dt = 20 ms and an FFT length of N = 6000. While Figure 6.23 shows
the same result but using a signal frequency of 0.40089 Hz, sample time of
dt = 20 ms and a FFT of length N = 6000. Since both spectra is that of
a saw-tooth waveform we know from theoretical analysis that we expect the
spectra to have a sinc function squared profile. Thus the plot in Figure 6.22
appears to have a smearing of the spectra which is a sign of leakage.

Figures 6.24, 6.25, 6.26 and 6.27 show more examples of the very differ-
ent spectra obtained at different points along the tank when not addressing
spectral leakage. With this in mind, we can apply a few different techniques
to decrease the amount of spectral leakage in our FFT results.

106 CHAPTER 6. EXPERIMENTAL WAVE ANALYSIS

Sawtooth wave with f = 0.4Hz and dt = 0.02s
T T - T T T

Amplitude (AU)
S S S o) o o
> = b o o = > ®
T T T T T T

S
=

Figure 6.21: Sawtooth wave with f = 0.4Hz

6.6.2 Addressing spectral leakage

One technique for decreasing the amount of spectral leakage when working
with FFTs is to apply a windowing function to the input signals for the
FFT. There are various well studied window functions available including
the Hann, Hamming, Flat Top, simple triangular, Blackman, and Riemann
window functions to choose from, to name a few (Jai Krishna Gautam and
Saxena, 1995). While they all have slightly different spectral properties,
they are all used to taper the ends of the input signal to the FFT in order
to reduce the amount of spectral leakage and amplify important features
of the spectrum. I have chosen to use the Hann window function as it is
well suited to waves that are made up of a sum of harmonic frequencies
(Harris, 1978). While newer techniques have been developed that use hybrid
windowing techniques that better capture the spectral properties of signals
with sharp spectral peaks, I have chosen to use the classic Hann window for
simplicity (Kallel, Hu and Kanoun, 2022).

Another technique for addressing spectral leakage is to pad the end of the
input signal to the FFT with zeros. Normally the number of zeros is chosen
such that the new length is a power of 2 since many FFT algorithms rely
heavily on this for optimisations. Since spectral leakage is caused by doing
the FFT of a signal with a non-integer number of wave lengths, we also ran
our minimum distance zero crossing detection algorithm from Algorithm 4
on the input signals and trimmed both ends of the signals so that they

6.6. FREQUENCY ANALYSIS

Frequency spectrum with fitted curves for sawtooth wave

Frequency Spectrum
Harmonic Peaks
Fitted Curve (1.32316096611)

Normalized Ampiitude (AU)

‘\
1]

Frequency (Hz)

Figure 6.22: Frequency spectrum
of sawtooth wave with f = 0.4Hz

Figure 6.24: Time series of the
wave at x = —3.7 m

Experiment 1 showing wave height over time for each probe.

w
P

i
/
/ﬂ

Figure 6.26: Time series of the
wave at x = —1.5 m

107

Frequency spectrum with fitted curves for sawtooth wave

Frequency Spectrum
09 Harmonic Peaks
Fitted Curve (2.9378e/27™)

Normalized Amplitude (AU)

" . [JJH“‘IE. Ll1T5es il

Frequency (Hz)

Figure 6.23: Frequency spectrum
of sawtooth wave with f =
0.40089Hz

Frequency spectrum with fitted curves for x = 3.7m

Frequency Spectrum
0ol Harmonic Peaks]
Fitted Curve (0.86432¢!-45838x))

2

>

Normalized Amplitude (AU)
& 8 &

®

Frequency (Hz)

Figure 6.25: Frequency spectra of
the time series at = —3.7 m

Frequency spectrum with fitted curves for x = 1.5m

Frequency Spectrum
Harmonic Peaks

Fitted Curve (0.58541¢"0-82882x)

5 I = @

Normalized Amplitude (AU)
g &

®

Frequency (Hz)

Figure 6.27: Frequency spectra of
the time series at + = —1.5 m

108 CHAPTER 6. EXPERIMENTAL WAVE ANALYSIS

Frequency spectrum with ftted curves for x = 3.7m

F eque y Spec\ um

Fitted Curve 11 21Ase‘ 0691884)

Normalized Amplitude (AU)
s o

"l ‘\‘
‘ \‘HHIHLAHHJH
10

4 15

Frequency (Hz)

Figure 6.28: Frequency spectra of
the waves at * = —3.7 m with the
above mentioned techniques for re-
ducing spectral leakage applied.

Frequency spectrum with ftted curves for x = 3.8m

F requer cy SDecl um

Fitted Curve(1 2465e‘° 72971x))

Normalized Amplitude

m’k M !‘HHHHH

0 10 15
Frequency (Hz)

Figure 6.29: Frequency spectra of
the waves at x = —3.8 m with the
above mentioned techniques for re-
ducing spectral leakage applied.

started and ended on the rising edge of the waves. We then combined all
of these techniques by first cropping our input signals to an integer number
of wavelengths, then multiplying this signal of sample length N by a Hann
window of the same length N. We then pad this windowed signal with zeros,
increasing its length to 4N samples and use this as the input to our FFT.
With these improvements, we get the following results shown in Figures 6.28
and 6.29.

6.6.3 Analysis of the a and b coefficients

With the improved results from the previous section we can much more
accurately fit a curve of best fit to the harmonic peaks of the frequency
spectra. We can then do this for each frequency spectrum along the length of
the tank. This fitted curve is represented by the simple exponential equation

y=a"", (6.9)

where a is the exponential amplitude, b is the decay rate of the harmonic
frequencies, and x is the frequency axis. Plotting the constants, ¢ and b
from Equation 6.9 over the length of the tank gives us Figures 6.30 and
6.31. The curves in these figures have been smoothed using a 5 point moving
mean. From Figure 6.31, we can see that at © = —6.3 m the decay rate of
the harmonic frequencies was about —2.18. As we move along the length
of the tank the decay rate increases linearly to its maximum of about —0.7

6.6. FREQUENCY ANALYSIS 109

22
Harmonic frequencies best fit amplitude, a \
2
18

.
/ "
m / . \
g % \
E H
-3 B
/

Harmonic frequencies best fit decay rate, b

Ampi
>
/

>

45 4 35 -
Distance from shoreline (m)

45 4 a5
Distance from shoreline (m)

Figure 6.31: Best fit harmonic de-

Figure 6.30: Best fit amplitude, a cay rate, b

at x = —3.6 m. This means that at this point the waves have their widest
spread of harmonic frequency components. This appears to happen around
the breaking point of the waves where the waves have just reached their
maximum height. Because of the wide spread of harmonics this is also the
point at which the original wave most resembles a sawtooth wave. After
this point the decay rate decreases to around —1.05 and begins to oscillate.
The curve for a in Figure 6.30 seems to follow the same but inverse pattern,
decreasing at a constant rate from around 2.35 to a local minimum of 1.2
at 3.6 m from the shoreline. It then follows the same oscillation pattern as
it increases again to about 1.6 then decreasing again to a new minimum of
about 1.15.

If we plot the harmonic decay rate and average wave height along the
length of the tank, we get Figure 6.32. This further illustrates the relation-
ship between the average wave height and the range of harmonic frequencies
contained in the waves. It is shown that the average wave height peaks
around the same position as when the waves have the widest range of har-
monic components and that this occurs near the breaking point of the waves.
Figure 6.33 shows the rate of change of these two quantities over the length
of the tank. This shows that a change in the average wave height at a spe-
cific position along the slope is associated with a corresponding change in
the number of harmonic components in the wave.

6.6.4 Harmonic analysis

As mentioned previously, the 0 Hz peak in the frequency spectrum represents
any offset that the signals have from the x axis. Plotting the unnormalised
amplitude of this peak we get Figure 6.34. For reference, the average am-

110 CHAPTER 6. EXPERIMENTAL WAVE ANALYSIS

//
d
S

Normalised decay rate and wave height (AU)

45 4 a5 3 25 2
Distance from shoreline (m)

//
Normalised rate of change of decay rate and wave height (AU)

Figure 6.32: Plot of the nor-
malised decay coefficient, b, and I e s
normalised wave height across the

simulated tank. The wave height Figure 6.33: Change in the har-
was normalised so that the peak monic decay rate and wave height
wave height at the break point was comparison.

unity, while the decay rate was
normalised so that the peak decay
rate at the source was unity.

plitude of the 0 Hz peak at x = —14 is 4.755. In the figure we can see that
the offset of the wave increases from this value to about 15 m just before
the breaking point. At this point the 0 Hz peak drops to almost zero before
increasing rapidly to a maximum of 41 at x = —1.5. Figure 6.35 shows how
the amplitude of the fundamental frequency component of the wave changes
over the length of the tank. Figures 6.36, 6.37, 6.38, and 6.39 show the un-
normailsed harmonic peak amplitudes of four peaks along the length of the
tank.

6.7 Summary

In this chapter a detailed analysis of the experimental data captured by Dr
Govender and his PhD student (now Dr Mukaro) was undertaken. These
include examining the shape of the wave at various positions along the tank,
changes in wave height and phase speed as the waves move up the sloping
beach. The wave height was found to increase steadily as the wave moves
up the beach, until they became unstable and breaking followed thereafter.

6The spectra computed using the FFT in MATLAB needs to be scaled by a factor
proportional to N. The spectra presented in this thesis have not been scaled. Therefore
the units of the spectral components are unscaled and therefore represent relative numbers.

6.7. SUMMARY 111

5 OHz fi peak i along length of the tank
T T T T T

35 J 1

N N @
S o S
T T T

I I

Amplitude (AU)

o
T

10 -

-6.5 -6 -5.5 -5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5
Distance from shoreline (m)

Figure 6.34: The unadjusted/uncorrected amplitude of the 0 Hz peak from
the frequency spectra versus position.

0.4|‘-|z y pea‘k i alor‘g Iength‘ of the t?nk

90

GeoePotttes
sl “Seg

Amplitude (AU)
3
T

30 | | | | | | | | |
-6.5 -6 -5.5 -5 -45 -4 -3.5 -3 -25 -2 -1.5
Distance from shoreline (m)

Figure 6.35: The unnormalised amplitude of the 0.4 Hz peak from the fre-
quency spectra versus position.

112 CHAPTER 6. EXPERIMENTAL WAVE ANALYSIS

0.8Hz frequency peak amplitude along length of the tank 3 2.8Hz frequency peak amplitude along length of the tank
S

\11
4

7~
u_“jfi‘;?;;)

Ampiitude (AU)
Amplitude (AU)
-

Figure 6.36: The amplitude of the Figure 6.37: The amplitude of the
0.8 Hz peak across the length of 2.8 Hz peak across the length of
the tank. the tank.
Mz frequency peak amplitude along length of the tank___ » __11.6Hz frequency peak amplitude along %engif‘l of the tank
. « ‘|l
: [F I
- ° [“ il
/ [
’/‘ /) / /
1 { " u\/\
° 7’/ R /
Figure 6.38: The amplitude of the Figure 6.39: The amplitude of the
6 Hz peak across the length of the 11.6 Hz peak across the length of
tank. the tank.

A detailed analysis of the spectral changes was also examined. In the next
chapter we will analyse the data from my numerical simulations and compare
with the experimental analysis from this chapter.

Chapter 7

Boussinesq simulation analysis

7.1 Introduction

In this chapter I will introduce the results of my simulations that were devel-
oped using the techniques described in Chapter 5. In the previous chapter
we analysed experimental results from a real wave tank experiment and a
similar analysis will be conducted using this simulated data. While I spent a
great deal of time and effort attempting to write my own Boussinesq equation
solver, it was unfortunately too unstable to be used for analysis and compar-
ison with real world data. We will briefly discuss my MATLAB simulations
(first in 2D then followed by a 1D simulation), discuss their limitations (where
they become unstable), then proceed with the simulation of using the Fortran
based numerical solver called FUNWAVE-TVD developed by Wei and Kirby
(1995, 1998) as a replacement. These FUNWAVE-TVD results will then be
compared with those of the previous chapter. As many of the algorithms for
analysing the data were discussed in Chapter 6, this chapter will deal mainly
with the presentation and discussion of the simulation results.

7.2 MATLAB simulation results

In Chapter 5 we investigated the theory behind the fully nonlinear Boussi-
nesq model developed by the Wei and Kirby group. By studying the papers
written by Wei and Kirby between 1995 and 1998 shown in Wei and Kirby
(1995); Wei et al. (1995), as well as the PhD thesis of Long (2006a), I de-
rived the equations necessary to implement this model in MATLAB. This
was implemented without the use of any external MATLAB packages. The
results of my simulations are shown in the next subsection starting with some
validation tests.

113

114 CHAPTER 7. BOUSSINESQ SIMULATION ANALYSIS

7.2.1 Validation testing

Once my simulation was written, I began recreating some of the results from
the 1995 paper by Wei and Kirby (1995). I started with the evolution of an
initial Gaussian distribution within a rectangular basin, then moved on to
the evolution of a solitary wavefront over a flat bottom.

The initial Gaussian distribution is described by Equation 7.1:

no (z,y) = A0672((173.75)2+(y73‘75)2)7 (7.1)

where Ay is the amplitude, and the centre of the peak of the wave is set to be
in the centre of the 7.5 m by 7.5 m enclosure. The boundary conditions are
given by the standard reflective boundary conditions defined in Chapter 5.
The initial wave amplitude is Ag = 0.045 m and the water depth at rest is
0.45 m. The discretisation variables are as follows: dz = dy = 0.075 m, and
dt = 0.05 s. It is also worth remembering that a low pass filter is applied
every 50 iterations. All four boundaries of the simulation used reflective
boundary conditions.

In Figures 7.1, and 7.2, I show the stable results of my simulation at t = 1
s in a 3D view as well as a 1D cross section. When viewing the contour plot
of these results in Figure 7.3, we can see they match up with the simulations
by Wei and Kirby (1995).

Wave evolution in flat bottom closed rectangular basin

Horizonatal cross section

Amplitude (AU)

Amoplitude (AU)

’ 77///%\, T / I

0 15 25 45 45 75
x (m)

Figure 7.1: A 3D view of the sur-
face elevation, of an initial Gaus-
sian distribution that was allowed

Figure 7.2: The 1D cross section at
y = 3.75 m through the 2D space
att =1s.

to evolved for 1 second.

As can be seen from the figures, we can see that the central peak of
the Gaussian waveform has dropped downwards then sprung back upwards
during the 1 second time frame. However, I found that if I increased the
simulation time and let the waves hit the boundaries my simulation would

7.2. MATLAB SIMULATION RESULTS 115

Contour plot showing rotational symmetry

075 15 225 3 375 45 525 6 675 75
x (m)

Figure 7.3: A colour contour plot of the 3D picture shown in Figure 7.1.
These results match those of Wei and Kirby (Wei and Kirby, 1995).

become unstable. This is shown in Figures 7.4 and 7.5. High frequency
oscillations can be seen at all corner boundaries, particularly the north-east
and south-east boundaries’. Although I took great care to implement the
simulation as correctly, it is possible that there was a programming error in
the calculation of the corner boundary conditions.

With these results, I moved on to simulating waves moving up a constant
slope beach in order to recreate the results of Mukaro et al. (2013). This
required having a sloped floor profile, as well as using a rectangular simulation
space and more complex boundary conditions. This is where I hit the first
major issues with my simulations. To avoid the boundary condition issues
from the previous simulation I increased the size of the simulation domain
by moving the north and east boundaries further away from the wave source.
This ensured that as few waves as possible reached these unstable boundaries.

7.2.2 Sloped floor profile validation

The beach waves simulation has a number of properties that make it a more
complex simulation than the Gaussian evolution example of the previous
example. This includes the introduction of a wave maker boundary condition
on the west boundary (the vertical boundary on the left in Figure 7.3), the
addition of a sloped floor profile, as well as the existence of a breaking region
in the simulation domain. Using my 2D MATLAB simulation I started by

IThe top and bottom of the page is considered to be north and south, respectively.

116 CHAPTER 7. BOUSSINESQ SIMULATION ANALYSIS

tion in flat bottom inatt=25s Wave evolution i inatt =3,

Amplitude (AU)

Figure 7.4: A 3D view of the Gaus- Figure 7.5: A 3D view of the Gaus-
sian initial distribution at ¢t = 2.5 sian initial distribution at t = 3.75
S. S.

creating a plane hyperbolic secant wave initial condition. The wave then
decays into two smaller waves, one moving towards the west boundary (before
reflecting from this boundary) and one towards the shoreline in the east. This
is shown in Figures 7.6.

While this simple simulation is relatively stable, unfortunately the addi-
tion of a wavemaker boundary caused the simulations to become very unsta-
ble and therefore unusable. While my MATLAB simulations were stable for
small time periods, I found that they became unstable at the north and east
boundaries of the simulation space for more complex scenes. Additionally, we
were consistently seeing that the waveforms were not evolving as in the ex-
perimental setup. For this analysis, it unfortunately made these simulations
unusable for analysis and comparison purposes.

I tried many things to address this including rewriting my entire sim-
ulation in a more object oriented manner in order to make debugging the
simulation more manageable. 1 also investigated and implemented more ad-
vanced filtering techniques such as the truly two dimensional Shapiro filters
of Falissard (Falissard, 2013). Unfortunately this did not improve the sta-
bility of my simulations. After this investigation I decided to rather write
a one dimensional version of the simulation to simplify the problem further.
Some results from this 1D simulation are shown below in Figures 7.7, 7.8,
7.9, and 7.10 below in order to illustrate the quality of the results from a
typical simulation. In this 1D simulation I found that I could get a working
wavemaker boundary to be more stable than in my 2D simulations. How-
ever, for my wavemaker boundary I found that I could only specify an initial
wave velocity that equated to i gh instead of the the desired \/gh. Faster
moving waves would simply cause the simulation to blow up. The results

7.2. MATLAB SIMULATION RESULTS 117

The waveform for the 2D MATLAB simulation at t = 50s

0.1 -

0.08 -

0.06

n (AU)

800

y (AU) 0 X (AU)

Figure 7.6: The 2D sech plane wave that has decayed into two smaller waves.
At this point, the westward wave has reflected off the west wall, and the
eastern wave has increased in height and changed shape slightly.

118 CHAPTER 7. BOUSSINESQ SIMULATION ANALYSIS

Waveform of 1D MATLAB simulations at t = 35

Figure 7.7: The waveform over the)

slope generated by my 1D MAT- Figure 7.8: The waveform over the

LAB simulations at ¢t =1 s. slope generated by my 1D MAT-
LAB simulations at ¢t = 3 s.

Waveform of 1D MATLAB simulations at t = 4s

015 ‘Waveform of 1D MATLAB simulations at t = 5s

| “ 1
‘ 01 M

1N " m‘v‘\

I [i

‘ W

n(m)

8 5
8 6 2 o Distance from shoreline(m)
Distance from shoreline(m)

Figure 7.10: The waveform over
the slope generated by my 1D
MATLAB simulations at ¢t = 5 s.

Figure 7.9: The waveform over the
slope generated by my 1D MAT-
LAB simulations at ¢t =4 s.

below are as close as I could get to recreating the physical experiments by
Mukaro et al. (2013) in 1D.

From these simulations it appears that the waves could propagate all the
way to just before the expected breaking region without exploding. Interest-
ingly, these waves appear to pick up high frequency oscillations fairly close
to the FUNWAVE-TVD results breakpoint as will be seen later in this chap-
ter. However, the shape of the waves appears to not exactly match what is
expected. Although we see the leading edge of the waves steepen and grow
in height, and the trailing edge flattens out, the peak is not sharp enough
to resemble the waves in the experimental data. It is also obvious that my
MATLAB simulations were not stable in the wave breaking region. In this
case the addition of a sponge layer over the entire breaking region may have
been worth investigation in order to get some usable results across the pre-
breaking region.

7.3. FUNWAVE-TVD RESULTS 119

However, due to the instability of my MATLAB simulation and the time
commitment that would be involved in debugging it and making it useful
enough for comparisons with experimental data, I decided to put my own
numerical simulation to rest. As its replacement I decided to start using
a brilliant, well known Boussinesq solver called FUNWAVE-TVD that will
allow us to more successfully simulated the experimental setup from the pre-
vious chapter. The FUNWAVE-TVD program is based on the discretisation
scheme discussed in Chapter 5. This will be the central focus of the following
section.

7.3 FUNWAVE-TVD results

In this section we will discuss what FUNWAVE-TVD is and how I configured
it to replicate the physical experiment by Mukaro et al. (2013). We will then
analyse the simulation results in detail.

FUNWAVE-TVD is a software package written in FORTRAN that is
used for modelling ocean wave phenomena such as deep sea waves, tsunamis,
ship wakes, and beach wave shoaling and even wave breaking and is used
extensively in coastal engineering for harbour design. The original version
of FUNWAVE used a fully nonlinear Boussinesq equation solver developed
by Wei and Kirby (1995). This is the same model used in my MATLAB
simulations. However, it is now called FUNWAVE-TVD because it uses a
Total Variational Diminishing version of the fully nonlinear Boussinesq wave
model developed by Shi et al. (2012).

7.3.1 Configuration

FUNWAVE-TVD configuration is done using variables in a .fxt config file.
The following configuration was used to replicate the experimental setup of
Mukaro et al. (2013). The meaning of the variables in the configurations files
are explained in the configuration script using comments below, as well as in
the discussion in the next paragraph.

I INPUT FILE FOR FUNWAVE_TVD

DEPTH_TYPE = SLOPE

DEPTH_FLAT = 0.618 %, water depth in the flat section near the paddle

SLP = 0.05 % slope of the beach

Xslp = 10.5 % distance from the left boundary to the start of the slope

120 CHAPTER 7. BOUSSINESQ SIMULATION ANALYSIS

I e DIMENSION--——--——=————————————————————
! global grid dimension

Mglob = 229 % number of x discretisation points

Nglob = 3 % number of y discretisation points

TOTAL_TIME = 120.0
PLOT_INTV = 0.02

WAVEMAKER = WK_REG
DEP_WK = 0.618 % wave maker depth

Xc_WK = 7.0 % distance from left x boundary to the wave maker
Yc_WK = 0.0

Tperiod = 2.5 7 generated wave period

AMP_WK .06 % generated wave amplitude

= 0.0
Delta_WK = 3.0 % degree of wave nonlinearity

| PERIODIC BOUNDARY CONDITION -------—-
! South-North periodic boundary condition
PERIODIC = F

DIFFUSION_SPONGE = F
FRICTION_SPONGE = T
DIRECT_SPONGE = T

Csp = 0.0

CDsponge = 1.0
Sponge_west_width = 5.0
Sponge_east_width = 1.4
Sponge_south_width = 0.0
Sponge_north_width = 0.0

I this line

| ommmmmm PHYSICS--------———————————m -
! parameters to control type of equations

7.3. FUNWAVE-TVD RESULTS 121

Cd = 0.0

I NUMERICS----—-——————————————————————
CFL = 0.5

FroudeCap = 3.0

I WET-DRY-—-——————————————mmmmm

I MinDepth for wetting-drying
MinDepth=0.01

| oo BREAKING —-——————————————————mm— o
VISCOSITY_BREAKING = T
Cbrki = 0.65
Cbrk2 = 0.35
| oo QUTPUT---——————————————————————————

ETA = T 7 output the waveform at each iteration to a .txt file

On the website for FUNWAVE-TVD, a base configuration file is pro-
vided with all necessary configuration needed for running a basic simulation.
What is shown above are the configuration parameters relevant to the sur-
face wave simulation. For more information regarding the configuration of
FUNWAVE-TVD as well as the base configuration file, please see the defi-
nition of parameters page on the FUNWAVE-TVD website at the following
link: https://fengyanshi.github.io/build /html/indez. html.

Up until now we have defined all measurements on the x axis relative to
the shoreline. However, FUNWAVE-TVD expects values to be defined from
the left boundary where the left boundary is at x = 0 m. This configuration
file specifies that we would like to simulate a wavetank with a flat bottom at
a depth of 0.618 m (DEPTH_FLAT) for the first 5.5 m (Xslp) from the left
boundary, followed by a constant slope with a value of 0.05 (SLP) or 1:20.
The value for Az (DX) was chosen to be 0.1 m and Ay (DY) was set at 1.0
m as it is recommended that DY is much larger than DX for the 1D surface
waves simulation. Mglob is then used to define 229 points along the x axis
and Nglob defines the required 3 points on the y axis. The simulation is then
configured to save a file with the entire water surface waveform every 0.02 s
(PLOT_INTYV) for a time period of 120 s (TOTAL_TIME). The wavemaker
was then set to be at 2.0 m from the left boundary at a water depth of
0.618 m generating waves with a period of 2.5 s (Tperiod) and an amplitude
of 0.06 m (AMP_WK) or wave height of 0.12 m. Delta. WK is a constant

122 CHAPTER 7. BOUSSINESQ SIMULATION ANALYSIS

Probe 2 Probe 3

Sponge A A :
layer Probe 1 ! 0 v
: : T Still water line : T : TI T
T N = " =
L p— . 10:618 m O i
| 1 I | Sponge :
[, layer :
| | ! 1
] : I : e i t

17.85'm : -15.85 m-14 m-12.35 m -63m -4m-38m -15m_j,,, Om
-16.85 m

Figure 7.11: FUNWAVE-TVD simulated water tank layout described by
the FUNWAVE-TVD configuration file. This setup is exactly the same as
the experimental setup shown in the previous chapter in Figure 6.1 except
that the simulated setup has a sponge layer on the left side for absorbing
unwanted waves that move to the left from the wave source. A sponge layer
is also added from x = —1.4 m to shoreline to reduce the intensity of shoreline
reflections.

that determines the nonlinearity of the waves that is found by trial and
error. Finally we have a sponge layer on the left boundary from x = 0 m to
x = 1 m defined by CDsponge and Sponge_west_width, as well as a sponge
at the shoreline positioned at + = 1.4 m from the shoreline just after our
last probe that is at x = —1.5 m (see in Figure 7.11). This sponge layer
was added after finding that the simulated waves were reflecting too strongly
from the shoreline and travelling back towards the source which interfered
with our analysis later in the chapter. The remaining parameters are simply
the default physics based parameters for the surface wave example provided
with the software package.

In the following section we will discuss the processing of the simulation
data as well as its analysis.

7.3. FUNWAVE-TVD RESULTS 123

Wavefronts shown moving from the wave source to the shoreline over time.

n (m)

Time (s)

Distance from shoreline (m)

Figure 7.12: The full simulated waveform showing waves moving from the
oscillating wave maker source at * = —14 m up the slope to the shoreline
between the times of t =0 s and ¢t = 60 s.

7.3.2 Simulation results

When run with the configuration file from the previous section, FUNWAVE-
TVD generates 6000 text files each containing 229 data points with a spacing
of 0.1 m along the tank. Slices of this data are then taken through time
at the exact same locations that were used in the real experimental setup,
where each slice represents a probe placed in the wavetank measuring the
wave height at a specific location for the duration of the experiment. After
this stage of processing we end up with 25 text files in the same format
as the experimental setup, where each file contains four columns (one time
column, and three probe data columns). This approach allowed me to feed my
simulation results into the exact same MATLAB code as for the experimental
analysis.

FUNWAVE-TVD was successful at generating stable results and the full
waveform between t = 0 s and ¢ = 60 s is shown below in Figure 7.12. In
Figure 7.13 below, a top down view of the same wavefronts is shown. In this
figure it can be seen that the velocity of the waves decreases as they approach
the shoreline. This is shown by the fact that the curve traced by the waves
slopes slightly upwards. The phase velocity of these waves will be analysed
in the same manner as the previous chapter in Section 7.4.

124 CHAPTER 7. BOUSSINESQ SIMULATION ANALYSIS

60 Wavefronts shown moving from the wave source to the shoreline over time.

50

40

Time (s)

20

-14 -12 -10 -8 -6 -4 -2 0
Distance from shoreline (m)

Figure 7.13: Top down view of the simulated wavefronts approaching the
shoreline between the times of t = 0 s and ¢t = 60 s.

FUNWAVE-TVD full waveformatt=100s

0.06
0.04

E 0.02 -

-0.02 -

-0.06 = 1 1 1 1 | |

14 12 -10 -8 6 -4 2
Distance from shoreline (m)

Figure 7.14: A snapshot of the simulated waveform at ¢ = 100 s.

7.3. FUNWAVE-TVD RESULTS 125

Experiment 20 showing wave height over time for each probe.
T T T T T T T

T T T
012 - 14m |4
5.9m
IR N [\ | 3.5m
| [[\ | I\ ,
o1 [[[[
|| |\ | |1
| \
0.08 [|| 2 [[) [A A
\ | [M [[[\
\ \ / [
006\ x c‘ | | /A
\ | \ | / [
ool |\ | | \ [/ | [[0 [/Y
\ | / \ | \ \ [\ \ [
= \ | \ / \ | \ \ ‘\ \ \ [|
= 002 \ | | |
| i |
\ |
or \ | B
\) \/ |y \/ \ Y \
\|) \ A \) [N
oel | Y AN AN W AN N G
N / \ |/ | \ |/ [\ \ | [\
J\ \ \ I \/ { N \/ [\
004~ /) / \\ A / AN X } \ \ / \ b
\\ / A / . / \ / \ . \ /5 N\
I / AN
-0.06 |- \ / \)/ ./ <\)
\/ \ / \ /
AN _/ A\
-0.08 - =
1 1 1
0 1 2 3 4 5 6 7 8 9 10
Time (s)

Figure 7.15: Initial data from simulated experiment 20 showing out of phase
signals for time series captured at x = —14 m, + = —5.9 m, and —3.5 m.
Where 7 is the instantaneous wave height.

Figure 7.14 shows a snapshot of the water surface height across the length
of the simulated tank. In this figure the wave source is at x = —16 m and
Probe 1 is at x = —14 m. Figure 7.15 shows the simulated results of the time
series of surface elevation for £ = 14 m, 5.9 m and 3.5 m, corresponding to
experiment 20, followed by Figure 7.16 which shows the same signals after
being passed through the phase adjustment algorithm (Algorithm 3) from the
previous chapter. These signals are comparable to the physical experiment
results in Figures 6.3. However one can see in Figure 7.16 that the peak
positions after phase synchronisation across the three probes appear to be in
relatively the same position. In the previous chapter we saw in Figure 6.3
that peaks of waves closer to the shoreline were generally offset to the left
of the source wave peaks. This is likely due to the distribution of harmonic
peaks in the simulated waves.

From Figure 7.15, we can see that the source time series in blue at = =
—14 m appear to match those of the physical experiment, having a slightly
asymmetrical sine wave shape, and a slightly pointier peak than trough. The
red time series at x = —5.9 m show an increase in the peak height, as well
as a further widening of the trailing edges of the waves and a steepening of
the leading edges of the waves. The yellow curve at * = —3.5 m shows the

126 CHAPTER 7. BOUSSINESQ SIMULATION ANALYSIS

Experiment 20 showing wave height over time for each probe.
T T T T T T T

o12f ||

14m |4
5.9m

| N N
01 F[] A [[85m

[\
-0.02 - A\] A\
N\ [N
\ N\ /] AN
-0.04 - I \
VN ‘\\ G
0.06 - o/ \/
\,// \\\77/ 3
-0.08 - 4
L L L L L L L L L L L
0 1 2 3 4 5 6 7 8 9 10

Figure 7.16: Phase-synchronised time series of experiment 20 showing z =
—14m, x=-59m, and x = —3.5 m.

same effect and also stabilises later in the time series. As can be seen, the
mean height of the wave in the yellow trace waves is greater than the other
time series in the figure and has a lower peak height than the wave in the red
trace. This is because it is measured in middle of the breaking region where
the wave height decreases. In Figure 6.3 in the previous chapter we saw a
much more chaotic signal at x = —3.5 m than we see here. While the model
does support wave breaking, this signal would be highly dependent on the
resolution of the simulation and even so, the simulation might not model the
same intricacies of water splashing that is seen in real life, therefore producing
a smoother output with nonetheless a good representation of the wave profile.
Figures 7.17, 7.19, 7.20, and 7.21 show four simulated experiments in order
to better convey the shapes of the simulated waves at different points along
the simulated tank.

In Section 7.3.3 we will discuss the results of the wave height analysis of
this simulated data.

7.3.3 Wave height analysis

As in Chapter 6, an analysis of the wave heights of the simulated time series
data was conducted. The results are shown in Figure 7.18. Since we are sim-
ulating the waves in these experiments, we can sample from anywhere along

7.3. FUNWAVE-TVD RESULTS 127

Experiment 01 showing wave height over time for each probe.
T T T T T T T

01|

|
“\ |
N\ [
\ N\ [
0.02 1 N [
|\ /
“\ \\
-0.04 N
\ _
\\\ /
-0.06 \ /
Y,
-0.08 i
L L L L L L L L L L
0 1 2 3 4 5 6 7 8 9 10

Figure 7.17: Phase-synchronised time series of experiment 20 showing =z =
—14m, x=—4m, and x = —1.5 m.

the simulated wavetank. So as well as sampling at all the same points as in
the experimental setup we also sample all the way up to just before the wave
generator. The simulated domain now goes from x = —=12.9mtoxr = —1.5m
in intervals of 0.1 m. We can see in Figure 7.18 that the average wave height
across the tank increases almost linearly until it reaches a maximum aver-
age height at * = —5.5 m of 0.175 m. When compared to the experimental
results we note the following: we can see that the peak average wave height
is reached earlier on the slope than in the experimental results. We can also
see that the maximum that was reached in the simulation is also less than
the experiments. After this point the average wave height then decreases
rapidly down to a minimum of 0.0775 m at = —1.5 m. This is comparable
to the minimum of 0.08 m in the experimental analysis. During this sudden
decrease we can also see two upward oscillations at = —5.1 m and = = 3.8
m. We can also see that the standard deviation in the average wave height
also increases near and after the break point while the average wave height
remains relatively constant in the entire pre-breaking region. This is con-
sistent with the experimental results in the breaking region. However, the
increase in standard deviation just before the breaking region was something
that was not present in the experimental results.

128 CHAPTER 7. BOUSSINESQ SIMULATION ANALYSIS

048 Average wave height and standard deviation bars across wavetank length
. T T T T T

o
o

e
=
T

Average Waveheight and standard deviation (m)
° 2
- n
T T

e

o

@
T

0.06 I I I I I I
-14 -12 -10 -8 -6 -4 -2 0
Distance from shoreline (m)

Figure 7.18: Average wave height and standard deviations of all time series
across all simulated experiments.

7.4 Phase velocity

In this section we will analyse the phase velocity of the simulated waves in
the same manner as in the previous chapter. In Figure 7.22 we can see the
phase velocity across the entire length of the tank plotted along with two
theoretical curves for the beach wave velocity in red and yellow. We can
notice a few key things about the simulated wave velocity. Firstly, we notice
that the phase velocity in the pre-breaking region mostly falls between the
two theoretical curves. Secondly, the velocity at the break point of x = —5 m
suddenly increases. This is the same phenomenon seen in the experimental
analysis. The velocity after this point oscillates up and down until the break
point. In this region the velocity no longer follows the theoretical curves.
We can compare these observations to Figure 7.23 which shows the phase
velocity of simulated waves when the sponge layer between x = —1.4 m and
the shoreline is removed. The reader will remember from the start of this
chapter that the shoreline sponge layer was added to reduce the amount of
interference of waves reflected from the shoreline. We can see how these
reflected waves affect the phase velocity in the pre-breaking region. In this
region we see a large, steady oscillation in the phase velocity of the waves.
However if we look at the breaking region, we see a steep increase in the wave
velocity at the break point. After this point the phase velocity continues to

7.4. PHASE VELOCITY 129

Experiment 09 showing wave height over time for each probe.
T T T T T T T

14m
4.8m | |
n | | 2.3m

-0.06 -

-0.08 |-) R

Time (s)

Figure 7.19: Phase-synchronised time series of experiment 20 showing x = 14
m, r = —4.8 m, and x = —2.3 m.

Experiment 16 showing wave height over time for each probe.
T T T T T T T

012 -1 I\ 14m |9
| I\ 5.5m

Time (s)

Figure 7.20: Phase-synchronised time series of experiment 20 showing = =
—14m, z=-55m, and x = —3.1 m.

130 CHAPTER 7. BOUSSINESQ SIMULATION ANALYSIS

Experiment 24 showing wave height over time for each probe.
T T T T T T T

L[1am | |
012 I\ N 6.3m
[N [A 3.8m

01F | [\ Il Al 8

002 - N \ \
[/ \ /] A [
\ /] \ /] \ /| \ /
-0.04 - \ N\ \ N\ [/ x\ / N\ /A
N \ N Y RN \\. /
/ \ N N/ N\
~ \ A \
-0.06 - \ \ \/ \\/ /1
/ L/
_/ _/ \/ S
-0.08 |- 4
L L L L L L L L L L
0 1 2 3 4 5 6 7 8 9 10
Time (s)

Figure 7.21: Phase-synchronised time series of experiment 20 showing z =
—14 m, x =6.3 m, and x = —3.8 m.

oscillate but does seem to follow the theoretical curves slightly better than
when a shoreline sponge layer is used.

In Figures 7.22 and 7.23 the phase velocity of the waves is higher than the
experimental results. While the simulation results that were obtained with a
shoreline sponge layer approximately fit between the two theoretical curves,
and show a sudden increase in wave velocity at the break point, which is
similar to the experimental results, the phase velocity after the break point
does not appear to match experiment. Without a shoreline sponge layer,
the phase velocity in the breaking region appears to follow a more similar
shape to the experimental results. However in both cases, the magnitude of
the phase velocity is larger than that of the experiment, with peak velocities
of 2.2 m/s and 2.5 m/s just after the break point in Figures 7.22 and 7.23
respectively, whereas it reached a value of 1.81 m/s at this point in the
experimental results.

7.5 Frequency Analysis

In this section we analyse the frequency spectra of the time series generated
by FUNWAVE-TVD. As in the previous chapter, we will examine the spectra
at the wave source, near-breaking region, and the breaking region. The

7.5. FREQUENCY ANALYSIS 131

Wave velocity along the length of the tank
T T T T

T
3 —¥— Experimental results | |
—Vgh
1.3 xvgh
25 ¥ ,
LT Sl S, Vof
) L ~{ MW% f‘*[X f Lo
o : F X f
£ e] #oL
> **\Sf | B 3
3 v
3 15 * | # 4
2
2 \\
@
= .
1 \\\ 4
N\
05 \\ |
0 L L L L L L \
14 12 -10 8 6 -4 2 0

Distance from shoreline (m)

Figure 7.22: The phase velocity of the simulated waves across the length of
the tank with a sponge layer between = —1.4 m and the shoreline.

Wave velocity along the length of the tank
T T T T

T 7
Vgh
1.3 xvgh
A
25 j% ﬁ”’z *‘f - " |
f L £ \‘X
ya \ /X J
= LA X A SN o S 1L S
o 2f \’&* & # X | % \ 7
| ## o ¥
£ # d * | [\
g) WU |
S 15F ~_ % # I ,
e AR
g SO L
L \\\ | i
05} \\\ J
% 2 0 s s p 2 0

Distance from shoreline (m)

Figure 7.23: The phase velocity of the simulated waves across the length of
the tank with no sponge layer near the shoreline.

132 CHAPTER 7. BOUSSINESQ SIMULATION ANALYSIS

Frequency spectrum with fitted curves for x = 14m

Frequency Spectrum
H P

s]
Fitted Curve (7.2079¢!48768)

Normalized Amplitude

0 5 10 15
Frequency (Hz)

Figure 7.24: The simulated time Figure 7.25: The frequency spec-

series at v = —14 m. trum for x = —14 m with peak de-
tections and curve fitted to these
peaks.

figures shown all examine the exact same points in the wave tank as in the
previous chapter (z = —14 m, x = =6 m, x = —3.8 m, z = —3.7 m, and
x = —1.5 m). The same minimum distance peak detection algorithm from
the experimental analysis was run on this simulated data. Exponential curves
with equation y = ae~® have also been fitted in the same manner where y
is the fitted curve amplitude, f is the frequency and a and b are constants.

In Figure 7.25 we see the frequency spectrum for waves from Figure 7.24
at © = —14 m (the wave source). The reader will remember that the time
period of the signal was configured as 2.5 s (i.e. a frequency of 0.4 Hz).
This can be seen in the diagram with the largest peak at 0.4 Hz on the far
left of the diagram. In the previous section we commented on the fact that
waves at the wave source (z = —14 m) are not perfectly sinusoidal, with
their peaks appearing pointier than their troughs as shown in Figure 7.24.
This is reflected in the accompanying frequency spectra in Figure 7.25 by
the existence of the harmonic peaks in the spectra. We can also see a 0 Hz
peak indicating a slight offset to the signal. The curve fitted to the peaks is
described by Equation 7.2:

y = 7.2079¢(~ 457680 (7.2)

where y is the normalised spectral amplitude and f is the frequency. The
coefficients of this fitted exponential curve very closely match those of the
physical experimental results in Equation 6.5 from the previous chapter (y =
4.0694¢(—3-505441))

In Figure 7.27 we see the frequency spectrum for waves from Figure 7.26

7.5. FREQUENCY ANALYSIS 133

Frequency spectra with fitted curves for x = 6m

Frequency Spectrum
Harmonic Peal

Fitted Curve (1.6814¢(3%8%%)

..

Normalized Amplitude (AU)
&

oL hlu..s...u.. s !
Frsquancy ()
Figure 7.26: The simulated time Figure 7.27: The frequency spec-
series at ¥ = —6 m. trum for x = —6 m with peak de-
tections and curve fitted to these
peaks.

at x = —6.0 m. This is one of the points furthest from the shore besides the
wave source for which we have data. At this point along the length of the
tank, the waves are still in the near-breaking region. Here we can see the
peak at 0.8 Hz has grown from a magnitude of about 0.25 to a magnitude of
0.425. The same pattern can be seen for other low frequency harmonic peaks
in the spectrum. It can be seen that energy is now distributed in a wider
range of low frequency harmonic peaks than in Figure 7.25. This is evident
in the changes to the equation of best fit given by Equation 7.3 for x = —6
m given by

y = 1.6814¢(71-33860), (7.3)

Note that both the magnitude of the exponential and magnitude of the decay
rate have both decreased. Notice that the peak at 0 Hz has also increased
slightly. The peaks appear to still fit an exponential curve very closely.

From Figure 7.29 we get the following equation of best fit shown in Equa-
tion 7.4 given by

= 1.4872¢(70-93419), (7.4)

From Equations 7.2, 7.3, and 7.4, we can see that the amplitude coefficient of
these equations appears to decrease as we measure closer to the shoreline. We
notice that the decay rate constant b is also decreasing indicating a widening
in the range of harmonic components present in the waves. More precisely,
for a given change in the decay rate constant b in our best fit equations,
the constant a describes by how much the intensity of the FFT peaks in the

134 CHAPTER 7. BOUSSINESQ SIMULATION ANALYSIS

Frequency spectrum with fitted curves for x = 3.8m

Frequency Spectrum
H P

S 4
Fitted Curve (1.4872¢(09341

Normalized Amplitude

NN NN ::
) 0;7 ‘[h... AAAAA
Figure 7.28: The simulated time Figure 7.29: The frequency spec-
series at ¥ = —3.8 m. trum for x = —3.8 m with peak
detections and curve fitted to these
peaks.

spectrum will change. We notice that both a and b appear to be decreasing in
magnitude as waves approach the shoreline. This indicates that the range of
harmonic frequencies that are appearing in the waves as they progress along
the slope is increasing and at the same time, the intensity of these peaks is
decreasing. This relation between the two constants is related to the fact
that the total energy in the system should remain relatively constant. This
trend will be further investigated in Section 7.5.2 on Harmonic analysis.

Figures 7.29, 7.31, and 7.33, show the spectra for the waves in Fig-
ures 7.28, 7.30, and 7.32 respectively described by their well defined ex-
ponentially decaying harmonic peaks. It can be seen that a wider spectral
envelope is present for waves at x+ = —3.7 m than at x = —1.5 m from the
shoreline.

In Section 7.5.1 we analyse how the relative amplitude of the harmonic
peaks changes over the course of the tank.

7.5.1 Analysis of the a and b coefficients

Fitting an exponential curve to each frequency spectrum along the length of
the tank allows us to track how the energy contained in the wave is distributed
amongst its different harmonic frequencies. This fitted curve is represented
by the simple exponential equation

y=a" (7.5)

)

7.5. FREQUENCY ANALYSIS

Figure 7.30: The simulated time
series at x = —3.7 m.

nm

Figure 7.32: The simulated time
series at x = —1.5 m.

135

Frequency spectrum with fitted curves for x = 3.7m

Frequency Spectrum
Harmonic Peaks |
Fitted Curve (1.4862¢(0974420)

S

>

Normalized Amplitude (AU)
g &

®

llklu

0 5 10 15
Frequency (Hz)

Figure 7.31: The frequency spec-
trum for = —3.7 m with peak
detections and curve fitted to these
peaks.

Frequency spectrum with fitted curves for x = 1.5m

Frequency Spectrum
Harmonic Peaks

Fitted Curve (1.5764e!"1-1919%)

Normalized Amplitude (AU)
g &

| hh

Figure 7.33: The frequency spec-
trum for = —1.5 m with peak
detections and curve fitted to these
peaks.

Frequency (Hz)

136 CHAPTER 7. BOUSSINESQ SIMULATION ANALYSIS

Harmonic frequencies best fit decay rate, |b|

Harmonic frequencies best fit amplitude, a

E) 10 8) N 2 o
1 Distance from shoreline (m)
n 12 10 8 6 4 2 o

Distance from shoreline (m)

Figure 7.35: Best fit harmonic de-

Figure 7.34: Best fit amplitude, a cay rate, b

where a is the exponential amplitude, b is the decay rate of the harmonic
frequencies, and f is the frequency axis.

Plotting the constants, a and b from Equation 7.5 over the length of the
tank gives us Figures 7.34 and 7.35 below. The curves in these figures have
been smoothed using a 5 point moving mean. In Figure 7.34 we see that
the best fit exponential curve amplitude a, starts at 5.1 at x = —13.8 m. It
then decreases down to a minimum value of 1.5 just after the break point
at x = —5.2 m. The value of a then begins to oscillate and increase slightly
for the remainder of the slope. This curve appears to be directly related to
the following curve in Figure 7.35 of the value of b, the decay rate. This
curve starts at a value of 4.1 at x = —13.8 m and follows the same pattern
of reaching a minimum value around 1 just after the break point before
increasing and oscillating upwards. As previously mentioned, the decrease of
the decay rate b corresponds to a widening of the exponential curve and an
increase in the intensity and number of harmonic components present in the
waves. This decrease in b is accompanied by a decrease in ¢ which has the
opposite effect. These two opposing curve adjustments correspond to keeping
the total energy in the spectra relatively constant. The point x = —5 m is
also the point at which the original wave most resembles a sawtooth wave,
because at this point the waves have the widest spread of harmonics. It is in
this region that the waves have the highest average wave height as we saw in
Figure 7.18.

If we plot the harmonic decay rate and average wave height along the
length of the tank, we get Figure 7.38 below. This further illustrates the
relationship between the average wave height and the range of harmonic
frequencies contained in the waves. It is shown that the average wave height
peaks around the same position as when the waves have the widest range

7.5. FREQUENCY ANALYSIS 137

Harmonic decay rate and average wave height compared

‘ g

{ {
. \ ,__Rate of change of harmonic decay rate and we height compared

Vs
/

Normalised decay
lised decay rate and wave height (AU)

ay rate and wave height (AU)
J

12 10 E
Distance from shoreline (m)

Figure 7.36: Plot of the nor-
malised decay coefficient, b, and I S S B
normalised wave height across the

Rate of change of normalised decay rate and wave height

simulated tank. The wave height Figure 7.37: Change in the har-
was normalised so that the peak monic decay rate and wave height
wave height at the break point was comparison.

unity, while the decay rate was
normalised so that the peak decay
rate at the source was unity.

of harmonic components and that this occurs near the breaking point of the
waves. We see that at the point of maximum average wave height, we have
the some of the highest spreads of harmonic components in the waves. After
the break point, the decay rate b remains high, but due to the breaking of the
waves, the same energy contained in the waves is not used to make the wave
peaks taller. In the experimental analysis this corresponds to an increase in
the amount of noise on the spectra as well as an increase in the amplitude
of the 0 Hz peak. In the next section we will further investigate if the same
phenomenon is present in the simulation results. Figure 7.37 shows the rate
of change of the decay rate and average wave height over the length of the
tank. This shows that a change in the average wave height at a specific
position along the slope is correlated to the average wave height. Specifically
in the breaking region we can see that the changes in b are accompanied by
corresponding changes in the average wave height.

7.5.2 Harmonic analysis

In this subsection I will examine the behaviour of the various spectral com-
ponents beginning with the 0 Hz component.
As mentioned previously, the 0 Hz peak in the frequency spectrum rep-

138 CHAPTER 7. BOUSSINESQ SIMULATION ANALYSIS

resents any offset that the signals have from the the zero point on the y axis.
Plotting the unnormalised amplitude of this peak we get Figure 7.38. We
can see that the amplitude of the 0 Hz peak increases up to a maximum at
the break point of x = —5 m then drops off rapidly before spiking one more
time then dropping to a minimum at z = —1.5 m. What we would have
expected to see here is a drop in the 0 Hz peak just before the break point,
called the set down of the mean water level, followed by an increase in the
0 Hz peak after wave breaking known as the set up of the wave. That is
the expected behaviour of real breaking waves and is exactly what was seen
in the experimental analysis. However, in Figure 7.41 we see that this same
behaviour does not occur when using a shoreline sponge later. Although we
do see a decrease in the 0 Hz peak at the break point in Figure 7.38, fol-
lowed by an upward spike, we do not see pattern of increasing mean water
level after the break point. It appears that in the breaking region, that the
mean water level decreases with the average wave height. The reader will
remember from the beginning of this chapter that we added a sponge layer
between x = —1.4m and the shoreline. This was done to reduce the intensity
of reflections from the shoreline that were interfering with the rest of our
analysis. This gives us accurate results for all our other analysis except for
the amplitude of the 0 Hz peak amplitude. After some testing we found that
if we removed the sponge layer at the shoreline we would get the correct 0
Hz peak amplitude results shown in Figure 7.39. This shows the peak wave
height decreasing at the break point followed by a sudden increase. However,
the effect of the shoreline reflections can be seen by looking at the oscillations
in the pre-breaking region of the figure.

We will now move on to analysing the fundamental frequency component
of the waves as well as some other harmonic frequencies. Figure 7.40 shows
how the amplitude of the fundamental frequency component of the wave
changes over the length of the tank. This figure appears to match the exper-
imental results with a decrease in the amplitude of the fundamental frequency
component of the wave as energy is consistently lost to the other harmonics
of the waves. What we expect to see when looking at other harmonic compo-
nents of the waves therefore is to see increases in their amplitude as they gain
energy that was lost by the 0.4 Hz peak. Figures 7.41, 7.42, 7.43, and 7.44
below show the unnormalised harmonic peak amplitudes of four harmonic
peaks along the length of the tank. What we can notice is that during the
breaking region higher harmonic frequencies gain more energy and the lower
harmonics lose energy. The 0.8 Hz peak gains energy consistently during
the formation of the wave, then loses most of it during wave breaking. The
higher harmonics gain a smaller amount of energy during wave formation
then increase in energy during wave breaking. This is the same trend that is

7.6. SUMMARY

OHz frequency peak amplitude along length of the tank

Amplitude (AU)

. b,

14 12 10) © 4 2 0
Distance from shoreline (m)

Figure 7.38: The 0 Hz peak ampli-
tude when using a sponge layer be-
tween r = —1.4 m and the shore-
line. We see that the mean wa-
ter level does drop off at the break
point, but then only increases mo-
mentarily after this point before
dropping again.

139

0Hz frequency peak amplitude along length of the tank

Amplitude (AU)

.

12 10) 6 4 2 0
Distance from shoreline (m)

Figure 7.39: The 0 Hz peak am-
plitude when not using a sponge
layer near the shoreline. This ap-
pears to more closely match exper-
imental results as we see a drop
in the mean water level at the
break point followed by a sudden
increase after the break point.

seen in the experimental results in the previous chapter.

7.6 Summary

In this chapter we analysed the results of numerical simulations of the Boussi-
nesq equation and discussed how they compare to the experimental results of
the previous chapter. The results and limitations of my own MATLAB simu-
lation were shown and the decision was made to instead use FUNWAVE-TVD
for my simulations. This software was introduced and configured before an
analysis of its results was conducted. We saw that the average wave heights
matched those from the previous chapter on experimental data analysis. We
found that the phase velocity of the simulated waves also matched that of the
experimental data. We found that the distribution of harmonic components
was comparable to experimental data except for the 0 Hz peak that did not
present the same decrease at the break point and subsequent increase after
the break point that was seen in the experimental data. However we did see
that when there is no sponge layer near the shoreline, that the 0 Hz peak
behaved as in the experimental results.

140 CHAPTER 7. BOUSSINESQ SIMULATION ANALYSIS

% 0.4Hz freq peak i along length of the tank
T T T T T T

80 -

~
=)
T

Amplitude (AU)
3
T

50
40 - -
&
. ‘ ‘ ‘ ‘ ‘ Lo
-14 -12 -10 8 -6 4 -2 0

Distance from shoreline (m)

Figure 7.40: The unnormalised amplitude of the 0.4 Hz peak from the fre-
quency spectra versus position.

w© 0.8Hz frequency peak amplitude along length of the tank

R 2.8Hz frequency peak amplitude along length of the tank
Rvar .5
wo R [
Py P e A
3 7 1 i . M s
4) ae
Ao W | IV
P v 38 { ‘f‘j“
4 PR & |
5% f WY 5 / |
< ‘/)/,4 \\ < 4 {
s p f
3 A % 228 b
s A’\r y H “,‘ \
S 7 4 . # & #
4 & A !
7 v | s L Y
j ! \
s | # {7
20 : 1 1 ¥ ¥
| 4
9
¥ 05
&
15 0
1a 12 E) s 6 2 o 14

Distance from shoreline (m)

Figure 7.41: The amplitude of the
0.8 Hz peak across the length of
the simulated tank.

Figure 7.42: The amplitude of the
2.8 Hz peak across the length of
the simulated tank.

7.6. SUMMARY 141

08 6Hz frequency peak amplitude along length of the tank 022 11.6Hz frequency peak amplitude along length of the tank
P
02 5

o7 i

o018
08

016
05

Ampiitude (AU)
Ampiitude (AU)

03
008
02
006 'mw
01 T
004 P /L‘H\ |
0 0.02 i V KVJ
14 12 10 4 2 o 18 12 10 4 2 o
Distance from shoreline (m) Distance from shoreline (m)

Figure 7.43: The amplitude of the Figure 7.44: The amplitude of the
6 Hz peak across the length of the 11.6 Hz peak across the length of
simulated tank. the simulated tank.

142 CHAPTER 7. BOUSSINESQ SIMULATION ANALYSIS

Chapter 8

Summary and Conclusion

In this thesis I have examined the numerical solution of the Boussinesq equa-
tion for water waves propagating in a long tank and driven by an oscillating
paddle at one end. In preparation for this main objective I have exam-
ined various numerical schemes for discretising partial differential equations.
This was then applied to the familiar one dimensional wave equation and the
Korteweg-de Vries equation. Thereafter I have examined the discretisation
of the Boussinesq equation and its simulation. Further I have also indepen-
dently analysed the data from a real experiment for comparison with the
simulation. Below an examination of the main findings of these analyses is
provided.

In order for numerical models to be valid, they must be comparable to real
world experimental equivalents. Furthermore, all aspects of the real world
experimental data must be exhaustive and comprehensively understood. This
is particularly true for complex phenomena like Boussinesq beach waves.
Since being certain of a numerical schemes validity is so crucial, this thesis
analysed both the temporal and spectral data from a real world wave tank
experiment and compared it with numerical simulations using FUNWAVE-
TVD. Using the numerical model we were able to calculate the average wave
heights, phase velocities, and spectral properties at points along the tank
that were outside of the range of the experimental data.

We found that while the simulations appeared to follow the same pattern
of wave heights over the lengths of the tank, the break point of the waves in
our simulation was at x = —5 m instead of the z = —4 m in the experiments.
The peak average wave height reached was 17.5 cm in the simulation while
the analysis of experimental data found a value of 21.5 cm.

We conducted two simulations, one with a sponge layer between our last
probe point at z = —1.4 m and the shoreline and another with no shoreline
sponge layer. The simulation without the sponge layer had large wave reflec-

143

144 CHAPTER 8. SUMMARY AND CONCLUSION

tions from the shoreline that presented as oscillations in our phase velocity
calculations. We obtained cleaner results with the sponge layer, but at the
cost of slightly different phase velocity results and mean water level results
in the breaking region of the simulation than without a sponge layer. The
sponge and no-sponge simulations phase velocities both spiked at the break
point as is seen in the experimental data, but reached higher peak velocities
of 2.2 m/s and 2.5 m/s respectively compared the the experimental results
of 1.81 m/s. In the pre-breaking region the phase velocities appear to fol-
low between the linear and non-linear theoretical curves of v/gh and 1.3/gh
respectively.

By analysing the height of spectral peaks of waves at different points
along the slope we showed how the range of harmonic frequency components
contained in the waves increases as the waves progress up the slope, up until
the break point where this range of harmonics decreases and oscillates. We
showed how this distribution of harmonics matched experiment closely and
was related to the wave height along the slope. We found that the simulation
without the shoreline sponge layer had a mean water level (described by the
0 Hz peak of the spectra) more comparable to experimental data than that
of the simulation with the shoreline sponge layer. However this had the
drawback of shoreline reflections affecting spectra in the pre breaking region.

In future work more investigation could be done into reducing shoreline
reflections in the simulations without the need for a sponge layer. There are
numerous optimisations to the phase velocity code that can be done includ-
ing merging the perfect reconstruction upsampler and cross correlation steps
into a single function to reduce the number of FFT / iFFT steps needed.
A thorough investigation can be done into determining the set of simulation
conditions that allow the simulated waves to break at x = —4 m from the
shoreline instead of x = —5 m and whether or not these changes are mean-
ingful for predicting beach wave breaking regions. A thorough analysis of
the error between the numerical and experimental data can be conducted.
This will be easier to conduct if the simulated waves have the same breaking
point as the experimental data.

Bibliography

Adytia, D. and Groesen, E. (2010), ‘Variational boussinesq model for simu-
lation of coastal waves and tsunamis’, 1, 122-128.

Aitchison, J. S. et al. (1991), ‘Experimental observation of spatial soliton
interactions’, Opt. Lett. 16(1), 15-17.
URL: https://opg.optica.org/ol/abstract.cfm?URI=0l-16-1-15

Ali, R., Saha, A. and Chatterjee, P. (2017), ‘Analytical electron acoustic soli-
tary wave solution for the forced kdv equation in superthermal plasmas’,
Physics of Plasmas 24, 122106.

Ando, R., Thurey, N. and Wojtan, C. (2013), ‘Highly adaptive liquid sim-
ulations on tetrahedral meshes’, ACM Trans. Graph. (Proc. SIGGRAPH
2013) .

Antoine, X., Bao, W. and Besse, C. (2013), ‘Computational methods for
the dynamics of the nonlinear schrédinger/gross—pitaevskii equations’,
Computer Physics Communications 184(12), 2621-2633.

URL: https://www.sciencedirect.com/science/article/pii/S0010465513002403

Askar, A. (1982), ‘A generalization of the korteweg-de vries equation for
anharmonic lattices and vectorial solitons’, International Journal of Engi-
neering Science 20, 169-179.

Axler, S., Bourdon, P. and Wade, R. (2013), Harmonic Function Theory,
Vol. 137, Springer Science & Business Media.

Bhatia, H., Norgard, G., Pascucci, V. and Bremer, P.-T. (2013), ‘The
helmholtz-hodge decomposition—a survey’, IEEE Transactions on Visu-
alization and Computer Graphics 19(8), 1386-1404.

Blazek, J. (2001), Computational Fluid Dynamics: Principles and Applica-
tions, first edn.

145

146 BIBLIOGRAPHY

Brauer, K. (2000), ‘The korteweg-de vries equation: history, exact solutions,
and graphical representation’, University of Osnabrick/, Germany .

Bridges, T. J. and Reich, S. (2006), ‘Numerical methods for hamiltonian
pdes’, Journal of Physics A: Mathematical and General 39(19), 5287-5320.

Carretero-Gonzélez, R. et al. (2017), ‘A korteweg—de vries description of
dark solitons in polariton superfluids’, Physics Letters A 381(45), 3805~
3811.

URL: https://www.sciencedirect.com/science/article/pii/S0375960117309490

Catmull, E. and Clark, J. (1978), ‘Clark, j.: Recursively generated b-spline
surfaces on arbitrary topological meshes. computer-aided design 10(6), 350-
3557, Computer-Aided Design 10, 350-355.

Chen, Q. (2006), ‘Fully nonlinear boussinesq-type equations for waves and
currents over porous beds’, Journal of Engineering Mechanics-asce - J
ENG MECH-ASCFE 132.

Chen, Y. et al. (2020), ‘Reduction and analytic solutions of a variable-
coefficient korteweg de vries equation in a fluid, crystal or plasma’.

Chong, T. (1978), ‘A variable mesh finite difference method for solving a class
of parabolic differential equations in one space variable’, Siam Journal on
Numerical Analysis - SIAM J NUMER ANAL 15.

Deng, D. and Wu, Q. (2021), ‘Analysis of the linearly energy- and mass-
preserving finite difference methods for the coupled schrodinger-boussinesq
equations’, Applied Numerical Mathematics 170.

Elgarayhi, A. et al. (2013), ‘Propagation of nonlinear pressure waves in
blood’, ISRN Computational Biology 2013.

Falissard, F. (2013), ‘Genuinely multi-dimensional explicit and implicit gen-
eralized shapiro filters for weather forecasting, computational fluid dynam-
ics and aeroacoustics’, Journal of Computational Physics 253, 344-367.

Feng, B.-F. and Mitsui, T. (1998), ‘A finite difference method for the
korteweg-de vries and the kadomtsev-petviashvili equations’, Journal of
Computational and Applied Mathematics 90(1), 95-116.

URL: https://www.sciencedirect.com/science/article/pii/S0377042798000065

Harris, F. J. (1978), ‘On the use of windows for harmonic analysis with the
discrete fourier transform’, Proceedings of the IEEE 66(1), 51-83.

BIBLIOGRAPHY 147

Holden, D. et al. (2019), Subspace neural physics: Fast data-driven interac-
tive simulation, in ‘Proceedings of the 18th annual ACM SIGGRAPH/Eu-
rographics Symposium on Computer Animation’, pp. 1-12.

Ismail, M. S. and Mosally, F. (2014), ‘A fourth order finite difference method
for the good boussinesq equation’, Abstract and Applied Analysis 2014.

Jai Krishna Gautam, A. K. and Saxena, R. (1995), ‘Windows: A tool in
signal processing’, IETE Technical Review 12(3), 217-226.

Kakutani, S. (1944), ‘Two-dimensional brownian motion and harmonic func-
tions’, Proceedings of the Imperial Academy 20(10), 706-714.

Kallel, A. Y., Hu, Z. and Kanoun, O. (2022), ‘Comparative study of ac signal
analysis methods for impedance spectroscopy implementation in embedded
systems’, Applied Sciences 12(2).

URL: https://www.mdpi.com/2076-3417/12/2/591

Kim, H.-Y. and Kim, H.-G. (2021), ‘A novel adaptive mesh refinement
scheme for the simulation of phase-field fracture using trimmed hexahe-
dral meshes’, International Journal for Numerical Methods in Engineering
122(6), 1493-1512.

URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.6587

Kirby, J. et al. (1998), ‘Funwave 1.0: Fully nonlinear boussinesq wave model
- documentation and user’s manual’, Research report NO. CACR-98-06 .

Kong, L. and Wang, L. (2010), ‘Numerical studies on boussinesq-type equa-
tions via a split-step fourier method’, Int. J. Comput. Math. 87, 1768-1784.

Kreyszig, E. (2011), Advanced Engineering Mathematics, tenth edn, John
Wiley and Sons, Inc.

Li, X., Wei, X. and Zhang, Y. (2019), ‘Hybrid non-uniform recursive sub-
division with improved convergence rates’, Computer Methods in Applied
Mechanics and Engineering 352.

Lind, S., Rogers, B. and Stansby, P. (2020), ‘Review of smoothed particle hy-
drodynamics: towards converged lagrangian flow modelling’, Proceedings
of the Royal Society A: Mathematical, Physical and Engineering Sciences
476, 20190801.

Lind, S. and Stansby, P. (2016), ‘High-order eulerian incompressible
smoothed particle hydrodynamics with transition to lagrangian free-
surface motion’, Journal of Computational Physics 326.

148 BIBLIOGRAPHY

Liu, M. and Liu, G. (2010), ‘Smoothed particle hydrodynamics (sph): an
overview and recent developments’, Archives of Computational Methods in
Engineering 17, 25-76.

Logan, J. D. (1987), Applied Mathematics - A Contemporary Approach, John
Wiley and Sons, Inc.

Long, W. (2006a), Boussinesq Modeling of Waves, Currents and Sediment
Transport, PhD thesis.

Long, W. (2006b), Boussinesq Modeling of Waves, Currents and Sediment
Transport, PhD thesis.

Martinez-Ferrer, P. J. et al. (2018), ‘Improved numerical wave generation
for modelling ocean and coastal engineering problems’; Ocean Engineering
152, 257-272.
URL: https://www.sciencedirect.com/science/article/pii/S0029801818300520

Maruzewski, P., Le Touzé, D., Oger, G. and Avellan, F. (2010), ‘Sph high-
performance computing simulations of rigid solids impacting the free-
surface of water’, Journal of Hydraulic Research 48.

Mehmood, A. et al. (2016), Numerical simulation of nonlinear water waves
based on fully nonlinear potential flow theory in openfoam(®)-extend,
in ‘The 26th International Ocean and Polar Engineering Conference’,
OnePetro.

Mocz, P. and Succi, S. (2015), ‘Numerical solution of the non-linear
schrodinger equation using smoothed-particle hydrodynamics’, Physical
Review E 91.

Mukaro, R., Govender, K. and Mccreadie, H. (2013), ‘Wave height and wave
velocity measurements in the vicinity of the break point in laboratory
plunging waves’, Journal of Fluids Engineering 135.

Muller, M. (1956), ‘Some continuous monte carlo methods for dirichlet prob-
lem’, The Annals of Mathematical Statistics 27.

Nwogu, O. (1993), ‘An alternative form of the boussinesq equations for
nearshore wave propagation’, Journal of Waterway Port Coastal and Ocean
Engineering 119.

Patel, P., Kumar, P. and Rajni (2020), The numerical solution of boussinesq
equation for shallow water waves, Vol. 2214, p. 020019.

BIBLIOGRAPHY 149

Peregrine, D. (1967), ‘Long waves on beach’, Journal of Fluid Mechanics
27, 815 — 827.

Pfaff, T. et al. (2021), Learning mesh-based simulation with graph networks,
in ‘International Conference on Learning Representations’.

Sanchez-Gonzalez et al. (2020), Learning to simulate complex physics
with graph networks, in ‘International Conference on Machine Learning’,
PMLR, pp. 8459-8468.

Sawhney, R. and Crane, K. (2020), ‘Monte carlo geometry processing: A
grid-free approach to pde-based methods on volumetric domains’, ACM
Trans. Graph. 39(4).

Sawhney, R., Miller, B., Gkioulekas, I. and Crane, K. (2023), Walk on stars:
A grid-free monte carlo method for pdes with neumann boundary condi-
tions, Technical report.

URL: http://arziv.org/abs/2302.11815

Scalerandi, M. (1997), ‘A stable finite-difference scheme for the boussinesq
equation’.

Schember, H. (1982), A New Model for Three-Dimensional Nonlinear Dis-
persive Long Waves, PhD thesis.
URL: https://resolver.caltech.edu/CaltechETD:etd-09232005-155011

Schéffer, H. A., Madsen, P. A. and Deigaard, R. (1993), ‘A boussinesq model
for waves breaking in shallow water’, Coastal Engineering 20(3), 185-202.
URL: https://www.sciencedirect.com/science/article /pii/037838399390001 O

Sederberg, T., Zheng, J., Sewell, D. and Sabin, M. (1999), ‘Non-uniform
recursive subdivision surfaces’, Proceedings of the 25th Annual Conference
on Computer Graphics and Interactive Techniques, SIGGRAPH 1998 .

Sengupta, T. and Bhaumik, S. (2019), DNS of Wall-Bounded Turbulent
Flows.

Shi, F. et al. (2012), ‘A high-order adaptive time-stepping tvd solver for
boussinesq modeling of breaking waves and coastal inundation’, Ocean
Modelling 43-44, 36-51.

Skogestad, J. O. and Kalisch, H. (2009), ‘A boundary value problem for the
kdv equation: Comparison of finite-difference and chebyshev methods’,
Mathematics and Computers in Simulation 80(1), 151-163. Nonlinear

150 BIBLIOGRAPHY

Waves: Computation and Theory VII.
URL: https://www.sciencedirect.com/science/article/pii/S03784 75409001888

Sun, Y. et al. (2023), ‘Analytical study of three-soliton interactions with
different phases in nonlinear optics’, Nonlinear Dynamics 111(19), 18391—
18400.

URL: https://doi.org/10.1007/s11071-023-08786-z

Taniuti, T. (1974), ‘Reductive Perturbation Method and Far Fields of Wave
Equations’, Progress of Theoretical Physics Supplement 55, 1-35.
URL: https://doi.org/10.1143/PTPS.55.1

Wang, H.-P., Yu-Shun, W. and Hu, Y.-Y. (2008), ‘An explicit scheme for the
kdv equation’, Chinese Physics Letters 25(7), 2335.

Wei, G. and Kirby, J. (1995), ‘Time-dependent numerical code for ex-
tended boussinesq equations’, Journal of Waterway Port Coastal and
Ocean Engineering-asce - J WATERW PORT COAST OC-ASCE 121.

Wei, G. et al. (1995), ‘A fully nonlinear boussinesq model for surface waves.
i: Highly nonlinear unsteady waves’, Journal of Fluid Mechanics 294, 71
- 92.

Xiao, Y. et al. (2020), ‘An adaptive staggered-tilted grid for incompressible
flow simulation’; ACM Trans. Graph. 39(6).
URL: https://doi.org/10.1145/3414685.3417837

Yan, J., Zheng, L., Lu, F. and Zhang, Q. (2022), ‘Efficient energy-preserving
methods for the schrodinger-boussinesq equation’, Mathematical Methods
in the Applied Sciences pp. n/a—n/a.

Zabusky, N. J. and Kruskal, M. D. (1965), ‘Interaction of ”solitons” in a
collisionless plasma and the recurrence of initial states’, Physical review
letters 15(6), 240.

Zeng, R., Wu, Z., Deng, S., Zhu, J. and Chi, X. (2021), ‘Adaptive smooth-
ing length method based on weighted average of neighboring particle
density for sph fluid simulation’, Virtual Reality and Intelligent Hardware
3(2), 129-141. Special issue on simulation and interaction of fluid and
solid dynamics.

URL: https://www.sciencedirect.com/science/article/pii/S2096579621000115

Zhang et al. (2018), ‘Spectral method for solving the time fractional boussi-
nesq equation’, Applied Mathematics Letters 85, 164-170.

