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ABSTRACT 

 
The power availability for CubeSat missions critically depends on the efficiency of solar panel 

power generation, control, and regulation, particularly given the constraints of fitting within a 

ten cm³ volume. This thesis focuses on optimizing solar power generation using Maximum 

Power Point Tracking (MPPT) techniques to maximize the utility of the limited solar panel area 

available on a CubeSat. A comprehensive comparative analysis of conventional MPPT 

methods is presented, specifically focusing on the Perturb and Observe (PO) technique 

chosen for its low computational complexity. The PO MPPT technique was implemented using 

a DC-DC boost converter and a PV module based on the Azur Space 3G30C datasheet in 

MATLAB/Simulink. During the implementation, it was observed that without PO MPPT control, 

the output current, voltage, and power exhibited significant ripple between minimum and 

maximum levels. With the application of PO MPPT, these outputs stabilized; however, the 

technique was found to have significant limitations. A critical research gap identified was PO's 

poor tracking of the Maximum Power Point (MPP) under fast-changing meteorological 

conditions, coupled with pronounced oscillations around the Global Maximum Power Point 

(GMPP). The thesis explores advanced MPPT techniques, including a varying step-size PO 

method, to address these issues, as existing literature suggests. Additionally, the potential of 

Artificial Intelligence (AI) algorithms—such as Particle Swarm Optimization (PSO), Grey Wolf 

Optimization (GWO), and Genetic Algorithms (GA)—to enhance PO MPPT performance under 

varying conditions was investigated. These AI-driven approaches have shown promise in 

reducing oscillations and improving tracking accuracy at the GMPP. This research introduces 

a novel hybrid PO-PSO MPPT technique, which combines the simplicity of PO with the global 

search capability of PSO. Simulation results demonstrated that the hybrid PO-PSO MPPT 

method significantly mitigates the oscillations at the GMPP, enhances tracking under varying 

temperature conditions, and stabilizes the output parameters more effectively than 

conventional methods, including GA-tuned PID controllers and standalone PSO MPPT 

functions. These findings validate the hybrid PO-PSO approach as a superior solution for 

optimizing power generation in CubeSat applications, addressing the identified research gaps 

and providing a robust framework for future small satellite power systems. 

 

Keywords: Maximum Power Point Tracking (MPPT); Perturb and Observe (PO); Maximum 

Power Point (MPP); Photo Voltaic (PV); Cube Satellite (CubeSat); Pulse Width Modulation 

(PWM); Proportional Integral derivative (PID) controller; Particle Swarm Optimisation (PSO); 

integral square error (ISE); integral time absolute error (ITAE); Integral absolute error (IAE); 

Integral time square error (ITSE); artificial intelligence (AI); global maximum power point 

(GMPP). 
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CHAPTER 1 

THESIS INTRODUCTION AND RESEARCH OBJECTIVES 

1.1 Introduction 

The smallest Cube Satellite (CubeSat) is a 1U (one unit), and its cubic volume is 10 

cm3. A 1U CubeSat weighs about 1.3 kg. Some of the common 1U extensions are 2U, 

3U, and 6U. In a 1U, all satellite subsystems are fitted in a 10 cm3 cube. The 

subsystems of a satellite include an electric power system (EPS), attitude 

determination and control system (ADCS), onboard computer (OBC), telemetry 

tracking and command (TT&C) system, telecommunication system (TCS), and payload 

system. The famous CubeSat payload examples are remote sensing (camera/Lidar), 

Ionosphere characterization, and interplanetary missions. Because of their small size, 

CubeSats are low-cost and take a short time to develop. Hence, they are used 

extensively for education, research, and scientific exploration. In 2018, NASA launched 

a twin CubeSat mission to occult the radio in the Mars atmosphere (Oudrhiri et al., 

2020).  

 

CubeSat's electric power system (EPS) ensures robust power delivery and voltage 

regulation for all other CubeSat subsystems. To design the EPS for a CubeSat, 

engineers follow one of the two standard architectures: direct energy transfer (DET) or 

maximum power point tracking (MPPT). Each of the two architectures can be modified 

to accommodate mission power requirements. The EPS is comprised of power sources 

(solar panels), power regulation and control (high-frequency switching converters), 

storage (battery charge regulator and batteries), and loads (subsystems) (Kumar et 

al., 2021). 

 

A single CubeSat low earth orbit cycle is approximately ninety minutes. The CubeSat 

experiences a sun and an eclipse period during an orbit cycle. PV power generation, 

control, and regulation are crucial during the sun period to produce regulated power for 

charging the batteries and powering all CubeSats subsystems. The battery powers 

CubeSats subsystems during the eclipse period. The modeling and simulation of the 

battery charge regulator (BCR) and battery systems are essential for EPS design. 

However, the work presented in this thesis focuses on PV power generation, control, 

and regulation for CubeSat power systems. Eliminating the BCR and the battery 

systems modeling and simulation was done to limit the technical deliverables to four 

parts. The technical deliverables achieved in this thesis are as follows: PV module 

modeling, perturb and observe (PO) MPPT, genetic algorithm (GA) PID tunning, 

particle swarm optimization (PSO) MPPT function, hybrid PO PSO MPPT function for 
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generated solar power control and regulation implementation for CubeSat power 

systems. The solar module mounting area is limited to 10 cm3 for a 1U CubeSat 

mission. Hence, implementing the MPPT function to extract the maximum solar power 

generated is crucial for a CubeSat mission. Each module of the Azur space 3G30C 

module has three cells and produces 2.5V, 0.5A, and 2.5W at MPP when operated 

under standard test conditions. The standard test conditions are 1367W/M2 and 28°C. 

The implemented MPPT design architecture provided a boost converter for each 

module on each panel side. Each boost converter has its own MPPT controller and is 

connected either to a 3.3V or a 5V bus line. On each panel side, the Azur space module 

was connected to the next adjacent module in parallel and had its boost converter. This 

design paradigm is also beneficial if a single module fails on a particular side while the 

other module remains functional or is under partial shading conditions (PSC). The 

remaining functional module connected to a boost converter will produce 5V, 0.223A, 

and 1W. When both modules on each panel side are functional, they produce 5V, 0.5A, 

and 2.5W. The direct energy transfer (DET) architecture requires two Azur space 

modules on each panel side to be connected in series to produce 5V, 0.5A, and 2.5W. 

This is not an efficient use of available modules. Also, the DET architecture doesn’t 

cater to single module failure on a side or PSC.  

 

1.2 Awareness of the Problem 

The problem with solar-generated power is varying irradiation and varying temperature. 

These varying irradiations and temperatures are inputs of a PV solar array and produce 

varying DC voltage, current, and power as outputs of a PV solar array. The first worst-

case cube orientation pointing towards the sun is when only one of the four adjacent 

sides points towards the sun. In this first worst case, the expected PV solar array output 

voltage range is 2V to 3V, the current range is 0.45A ~0.85A, and the power range is 

~1.6W to ~2.4W. The second worst-case cube orientation pointing towards the sun is 

when the top or the bottom side points towards the sun. In this second worst case, the 

expected PV solar array output voltage range is 2V to 3V, the current range is 0.45A 

~1.2A, and the power range is~ 2.4W to ~3.6W (Mahdi et al., 2014). The CubeSat’s 

bus loads voltages are 3.3V and 5V. The bus load impedances will vary for each 

subsystem connected to the bus lines. A classical solution to a problem of this nature 

is solved by employing a boost converter between the PV solar arrays and the loads 

(Fathah et al., 2013).  

 

However, the boost converter's output power oscillates and threatens to damage the 

feeding electronics. MPPT algorithms improve the maximum power extraction from a 

solar PV module and dampen the oscillatory output power of boost converters 
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(Murtaza et al., 2013). Accurate bus voltage levels are problematic to achieve through 

boost converter’s theoretical design equations since converters have power losses. 

Hence, a GA is used to tune the PID controller-based closed loop boost converter 

transfer function plant to ensure that bus voltages are achieved. Particle swarm 

optimization is an alternative algorithm to tune the PID controller-based closed-loop 

boost converter plant to ensure bus voltages are achieved (Panduranga Vittal et al., 

2021). This approach, which uses the PID controller and tuning algorithm like the PSO 

or the GA, requires the boost converter to be approximated to a transfer function plant 

and placed before the PID controller. This approximation can be performed through 

either of the three following methods: linearisation in Simulink, State Space averaging 

derivation method, or by AC analysis small signal transfer function derivation method. 

These approximation methods do not accurately represent the nonlinear response of 

the boost converter. 

1.3 Problem Statement 

To supply autonomous power for a CubeSat. The EPS subsystem must be designed 

to efficiently use the PV module's power generation capacity. CubeSat’s bus voltage 

levels must be maintained at 5V and 3.3V independently of PV solar power fluctuations 

due to space radiation and temperature. CubeSat’s bus voltage levels must be 

maintained at 5V and 3.3V independently of the different load impedances that 

influence the current demands of load subsystems. The design architecture must cater 

for PV module partial shading or singular PV module failure on each panel side of the 

CubeSat. 

How can CubeSat's Electrical Power System (EPS) be optimized to maximize power 

generation efficiency from the PV modules under varying space conditions, such as 

radiation and temperature fluctuations? 

What are the most effective strategies for maintaining stable 5V and 3.3V bus voltage 

levels in a CubeSat despite fluctuations in PV solar power caused by environmental 

factors in space? 

How do varying load impedances affect the current demands of CubeSat subsystems, 

and what EPS design architecture best suits these demands while maintaining stable 

bus voltages? 

How can the EPS be designed to maintain optimal power output and voltage levels 

when the CubeSat experiences partial shading or when a singular PV module fails on 

any of its panel sides? 
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What roles do bio-tuning optimization techniques, such as PSO or hybrid algorithms, 

play in enhancing the resilience of CubeSat's EPS to fluctuations in space radiation 

and temperature? 

How can extreme space radiation and temperature conditions impact the performance 

of the PV modules and the overall EPS, and how can these impacts be mitigated? 

1.4 Research Objectives 

Model and simulate the adjacent side of a PV solar panel. Design, model, and simulate 

a boost converter to control and regulate input and output power. Implement a PO 

MPPT function to control the duty cycle of the PWM signal controlling the switching 

element of the boost converter; implement GA PID tuning to a closed loop boost 

converter plant to approximate the response of a closed loop boost converter plant 

controlled by MPPT function, Implement PSO PID tuning to a closed loop boost 

converter plant to approximate the response of a closed loop boost converter plant 

controlled by MPPT function. 

 

Implement a PSO-based MPPT function to control the duty cycle of the PWM signal 

controlling the switching element of the boost converter, implement a novel hybrid PO 

PSO MPPT function to improve the tracking accuracy of both PO MPPT or PSO MPPT 

functions when implemented unconnectedly, and discus and contrast all the developed 

MPPT controllers used to control a PV solar module maximum power extraction and 

regulate the boost coveter output voltage, current and power—benchmark results to 

existing literature. 

1.4.1. Objectives 

• Model the Azur space 3G30C PV module using MATLAB/Simulink. 

• Design, model, and simulate a boost converter using MATLAB/Simulink. 

• Implement PO MPPT function for CubeSat power systems using 

MATLAB/Simulink. 

• Implement GA PID tuning to a closed loop boost converter plant using 

MATLAB/Simulink. 

• Implement PSO PID tuning to a closed loop boost converter plant using 

MATLAB/Simulink. 

• Implement a PSO-based MPPT function using MATLAB/Simulink. 

• Implement a novel hybrid PO PSO MPPT function using MATLAB/Simulink. 

• Discus and contrast all the developed MPPT controllers and benchmark results 

to existing literature. 
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1.5 Hypothesis 

This research work is conducted on the presumption that the application of MPPT 

algorithm or functions will solve the problem of extracting maximum power from a PV 

module, regulate boost converter output voltage to a fixed bus line level independently 

of load current demands, and minimize oscillations on the output voltage, current and 

power produced by boost converters. It also presumes that applying two widely used 

PID controller tuning optimization techniques, i.e., GA and PSO, will achieve the 

CubeSat’s bus setup voltages for a closed loop boost converter with different 

optimization response times. 

1.6 Delimitation of Research 

The study of this project demonstrates the use of a 1U CubeSat model, which can also 

be adjusted for a 3U CubeSat model. Attitude control is necessary to change the three 

dimensions of the CubeSat to maximize solar panel sun exposure. The ADCS 

subsystem performance affects solar power generation. However, this study does not 

cover attitude correction modeling and simulation as the ADCS subsystem is a master’s 

research field. This study focuses on the EPS subsystem. The modeling and simulation 

of the battery charge regulator (BCR) and battery systems are essential for EPS design.  

However, the work presented in this thesis focuses on PV power generation, control, 

and regulation for CubeSat power systems. The CubeSat typically has 5V and 3.3V 

bus lines. However, the design of boost converters, modeling, and simulation only 

demonstrates 5V implementation. Eliminating the BCR and the battery systems 

modeling and simulation was done to limit the technical deliverables to four parts. The 

bio-inspired optimization techniques MATLAB implementation is limited only to GA and 

PSO for the scope of this thesis. The reason for selecting the GA and the PSO is that 

they are the most widely used in the available literature. The conventional selected 

MPPT technique, which is implemented on MATLAB/Simulink modeling and simulation, 

is limited to the PO technique because of its low computational demand on the OBC 

microprocessor of the CubeSat compared to FOCV, FSSC, and InC.  

1.7. Motivation of the Research 

Robust power delivery to other CubeSat subsystems is critical for the longevity of the 

space mission life cycle. Hence, it is enhanced by applying MPPT techniques to 

improve PV solar array efficiency(Solihin et al., 2011). The comparative analysis of 

PID controller tuning optimization techniques applied to a closed loop DC-DC boost 

converter Simulink model will benchmark future research work where the latest 
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intelligent controllers and the latest tuning techniques are analyzed in comparative 

studies(Garg et al., 2020). Table 1.2 shows various intelligent controllers and tuning 

optimization techniques that can be used with a closed-loop boost 

converter(Jayakumaran et al., 2018). Regarding bio-tuning optimization techniques 

shown in this table, the list is not exhaustive of all the methods available in the literature, 

although it covers several of them (Achiammal, 2017). 

Table 1. 1: Intelligent controllers and tuning techniques 

Closed Loop Boost Converter 

CubeSat’s PV Panel 

Side Outputs 

▪ Voltage: 2V – 3V 

▪ Current: ~0.45 –

0.8A 

▪ Power: ~1.6W – 

~2.4W 

 

Intelligent controllers 
PID controllers Tuning with 

optimization techniques 

Fuzzy logic controller Genetic Algorithm (GA) 

Radial basis function neural 

network 

Particle swarm optimization 

(PSO) 

Probabilistic neural network Grey wolf optimization 

Adaptive Neuro-Fuzzy 

Inference System (ANFIS) 
Ant-Lion optimisation 

Support vector machine Whale optimisation 

 Bacterial Foraging optimization 

1.8. Assumptions 

These assumptions are the foundation for the research methodology and analysis, particularly 

in optimizing power management in CubeSat systems employing MPPT techniques. 

• This research assumes that the CubeSat is stabilized with its solar panels facing 

the Sun. Minimum exposure occurs when at least two sides are exposed to the 

Sun at any given time (typically one large side if panels are fixed and an 

adjacent side), and maximum exposure occurs if the CubeSat rotates or its 

attitude changes; it can expose up to three sides during different parts of the 

orbit. 

• This research assumes that analyzing the two widely used bio-tuning 

optimization techniques, i.e., GA (Chapter 4) and PSO (Chapters 5 and 6), will 

provide a benchmark for the expected output signal responses of other latest 

bio-tuning optimization techniques like GWO, Ant-colony, bee, colony, etc.  

• This research assumes that the advantage of PO in terms of low hardware and 

software complexity will outweigh its reasonable tracking of the GMPP during 

fast-changing weather conditions. If there is a need to modify the PO function 

for fast-varying weather conditions, AI algorithms will be investigated for 

CubeSat implementation in conjunction with the PO. In Chapter 6, tracking of 
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the global maximum power point (GMPP) by PO is poor under fast-changing 

temperatures, and combining PO and PSO MPPT improved tracking at fast-

changing temperature conditions and oscillations at the GMPP. 

• This research assumes that the maximum power demand by any CubeSat 

subsystem of a 1U to a 3U CubeSat will not exceed 11W, as seen in a paper 

by Ali et al., 2021. It assumes that the maximum CubeSat’s current demand will 

not exceed 2200mA for any 1U to 3U CubeSats for a 5V bus distribution line, 

as seen in Table 2.2 of Chapter 2.  

• The top and the bottom sides are mounted Spectro lab solar cells, and the 

output power of the top or the bottom sides is assumed to be the same as one 

of the adjacent sides (Chapter 2). 

These assumptions underpin the research methodology for developing and optimizing 

MPPT techniques specifically designed for CubeSats, targeting to enhance their 

operational efficiency and extend mission lifetimes in the challenging environment of 

space. 

1.9. Research Methodology 

The diagram in Figure 1.1 shows the development process followed in designing actual 

models in MATLAB/Simulink. Firstly, the PV array model is modeled in Simulink using 

the Azur 3G30C datasheet to model the PV power generated by the modules mounted 

on the four adjacent sides of the cube. Secondly, the boost converter for a 4x1 array 

side is developed in Simulink. Thirdly, the GA and the PSO tunned PID controllers and 

the closed loop boost converter transfer function plant are modeled in Simulink, and 

fourthly, PO, PSO, and hybrid MPPT controllers are designed in Simulink. 
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Figure 1. 1: MATLAB/Simulink model’s development process
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1.9.1. Model development 

• The solar PV array modeling and simulation are conducted using Simulink.  

• Modelling of the boost converter is conducted using Simulink.  

• Modelling of PO MPPT control implementation is conducted using Simulink.  

The Simulink Model in Figure 1.2 shows the PV model measurements on the far left, the PV array and the boost converter plant on the bottom, the 

PO MPPT on the top, and the boost converter outputs on the far left. 

 

Figure 1. 2: PV array modeling and PO MPPT control modeling 
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• A closed-loop boost converter transfer function plant was developed using MATLAB/Simulink linearisation for GA/PSO-tuned PID-

controlled transfer function closed-loop plant. 

• The setup of the GA-tuned PID controlled transfer function closed loop plant was used (substituting the GA algorithm with the PSO 

algorithm) with the ITAE cost function as the objecting function of the PSO algorithm in a MATLAB script file. 

Figure 1.3 shows the GA-tuned PID-controlled transfer function closed loop plant. 

 

Figure 1. 3: GA-tuned PID controlled transfer function closed loop plant modeling 

 



11 

• PSO MPPT algorithm was implemented as a MATLAB function in the boost converter plant without converting the boost converter into 

a transfer function in MATLAB/Simulink. 

• The hybrid PO PSO MPPT model was developed in MATLAB/Simulink. 

Figure 1.4 shows the hybrid PO-PSO MPPT MATLAB/Simulink model, PV model measurements on the far left, the PV array and the boost converter 

plant on the bottom, the hybrid PO-PSO MPPT on the top, and the boost converter outputs on the far left. 

 

Figure 1. 4: PV array modeling and Hybrid PO PSO MPPT control modeling 
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1.9.2. Algorithm development 

In PO, the duty cycle is perturbed in one direction, and if the PV panel power continues 

to increase, the perturbing continues in that direction. If the new power is less than the 

old power, it will perturb in the opposite direction. Once the algorithm reaches the 

maximum power point (MPP), it oscillates around it. Figure 1.5 shows the PO flowchart, 

where the delta is the perturbed dutycycle. 

 

Figure 1. 5: The basic flowchart of the PO MPPT function 

 

 

Figure 1.6: The GA and the PSO ITAE flow chart 

In Figure 1.6, the GA optimization is implemented using the ITAE performance index 

as an objective function to minimize an error of the closed loop boost converter plant. 
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This error is taken before the Simulink model PID controller and sent to the MATLAB 

script function using the “To workspace” function block. The ITAE objective function is 

then called to the GA application program for minimization. Similarly, PSO optimization 

is implemented using the ITAE performance index as an objective function to minimize 

an error of the closed loop boost converter plant. This error is taken before the Simulink 

model PID controller and sent to the MATLAB script function using the “To workspace” 

function block. The ITAE objective function is then called to the PSO script file for 

minimization. 

 

1.9.3. System simulation and performance analysis 

• In the PO MPPT, PSO MPPT, and hybrid PO PSO MPPT, the Simulink models’ 

simulation is performed by pressing “run” on the Simulink model, and the boost 

converter output results of voltage, current, and power can be viewed on the 

output displays and output characteristics curves viewed on the scopes. Also, 

MPPT can be viewed from the output of the PV array (input of the boost 

converter) using scopes and displays. 

 

• In the GA and PSO PID tuning, the PID gain values are optimized on the 

MATLAB script file using the ITAE cost reduction code. The results of the 

optimized gain values replace the gain variables K(1), K(2), and K(3) on the PID 

Simulink block. The operator presses run on the Simulink model, and the output 

results of voltage, current, and power can be viewed on the output displays. 

Output characteristic curves can be viewed from the scope. 

1.10. Main Research Outputs 

• Published a paper in the proceedings of the SAPEC 2024 conference; the paper 

is titled “Application Perturb and Observe Maximum Power Point Tracking 

Technique for CubeSat Power Systems.” The conference proceeding was 

published by IEEE Explore as follows: 

• K. Dwaza and S. Krishnamurthy, "Application Perturb and Observe Maximum 

Power Point Tracking Technique for CubeSat Power Systems," 2024 32nd 

Southern African Universities Power Engineering Conference (SAUPEC), 

Stellenbosch, South Africa, 2024, pp. 1-5, doi: 

10.1109/SAUPEC60914.2024.10445093. 

• Compiled a comprehensive literature review on the modeling and simulation of 

PV solar modules and the modeling and simulation of the power regulation and 

control system for a CubeSat EPS. 
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• Modelled and simulated one diode/ two resistors (1D/2R) PV array Simulink 

mathematical model using 3G30C datasheet. 

• The PO MPPT technique was implemented in Simulink, and the percentage 

increase in the output power yield was assessed by comparing the output of the 

MPPT-controlled PV array with that without the MPPT controller. 

• A closed-loop boost converter transfer function plant model was developed 

using MATLAB/Simulink linearisation tool. The PID controller was placed before 

the plant to create a dynamic response and reduce the steady-state error. The 

PID controller gains were automatically tuned using GA and PSO algorithms to 

minimize the system's steady-state error. 

• PSO MPPT algorithm was implemented as a MATLAB controller function with 

the boost converter powered by a PV array. The analysis was simulated without 

converting the boost converter into a transfer function. 

• The hybrid PO PSO MPPT model was developed and simulated in 

MATLAB/Simulink. 

1.11. Thesis Outline 

Chapter 2 discusses and presents previous work concerning the modeling and 

simulation of PV solar modules and the modeling and simulation of the power regulation 

and control system for a CubeSat EPS. The literature reviewed focuses firstly on PV 

solar module mathematical modeling using Simulink, secondly on the MPPT functions 

comparison, thirdly on PID controllers used to minimize the steady-state error of a 

closed-loop boost converter plant, and tuning of those PID controllers using artificial 

intelligent (AI) techniques like particle swarm optimization (PSO), genetic algorithm 

(GA), fuzzy logic (FL), etc., Fourthly on MPPT algorithms which use AI algorithms like 

PSO, and lastly on MPPT enhancement techniques which are implemented as a hybrid 

combination of the MPPT functions like PO function and AI algorithms like PSO, for a 

CubeSat EPS. 

 

Chapter 3 implements the Azur Space 3G30C solar module's mathematical modeling 

in MATLAB/Simulink. One side of the four adjacent sides of the 1U cube is mounted 

with two modules to form one side panel. One side panel is connected to a PO MPPT 

controller for maximum power extraction from any PV side panels in the CubeSat 

architecture. Boost converter designs are implemented for a 3.3V and a 5V bus. At the 

end of Chapter 3. a comparison of how the power, voltage, and current characteristics 

respond to the application of the PO function and without it is demonstrated. Chapter 4 

is about representing the PV generation, boost converter control, and regulation to 

maintain the fixed 5V and 3.3V bus lines in the event of boost converter current loads 
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variation demanded by satellite subsystems by a model with a DC battery, GA-tunned 

PID controller, a closed loop boost converter transfer function plant and a reference set 

point bus level of either 5V or 3.3V. A battery replaced the Simulink PV side panel 

model. The battery is set to the minimum input voltage position of the voltage range. 

For example, if the PV input voltage range is 2V to 3V, the battery in the boost converter 

is set to 2V. The approximation of the boost converter into a transfer function is 

performed using the linearisation in MATLAB/Simulink. The boost converter transfer 

function plant becomes the controlled device while the PID controller is placed before 

it to develop a dynamic response and to reduce the steady-state error. The output of 

the boost converter plant is connected as a negative unity feedback loop. The PID 

controller gains parameters Kp, Ki, and Kd, which are tuned by the genetic algorithm 

(GA); the steady-state error is minimized using integral time absolute error (ITAE). The 

model is simulated in MATLAB/Simulink, and the results are obtained.  

 

Chapter 5 begins with the state space averaging derivation method and AC analysis 

small signal transfer function derivation method to obtain a transfer function for a closed 

loop boost converter plant. Then, the theoretically derived state space and transfer 

functions are compared to the linearisation of Simulink-generated state space and 

transfer function. Approaching the end of the chapter, the GA tuning in Chapter 4 is 

replaced by PSO tuning using the same model. At the end of the Chapter, the PSO 

algorithm is used as the MPPT function in MATLAB/Simulink. The models were 

simulated, and the results were obtained. 

 

Chapter 6 implements a hybrid MPPT. This hybrid MPPT is comprised of the PO 

function and the PSO algorithm, and together, they control the duty cycle of the PWM. 

The PWM is connected to the boost converter’s MOSFET. The boost converter is a 

power regulator that solves the fluctuating PV output voltage, current, and power, which 

are subject to meteorological conditions; it also solves the load, voltage, current, and 

energy, which are variable and are subject to the load current demand of each 

connected subsystem of the CubeSat.  

 

The results of the PO MPPT (implemented in Chapter 3) are compared with the novel 

hybrid PO PSO MPPT (implemented here in Chapter 6). The results of the GA-tuned 

PID controlled transfer function closed loop plant (implemented in Chapter 4) are 

compared with the hybrid PO PSO MPPT (implemented in Chapter 6). Also, the results 

of the PSO algorithm (implemented in Chapter 5) are compared with the results of the 

hybrid PO PSO MPPT (implemented in Chapter 6). Chapter 7 briefly discusses the 
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primary outcomes of this research thesis, as per the projected research outputs as 

enumerated in Section 1.4, Chapter 1. 

1.12. Conclusion 

This thesis presents control and regulation strategies used to extract the maximum 

solar power source for an EPS of a CubeSat. The control and regulation strategies are 

PO MPPT function, GA/PSO tuned PID controller for a closed loop transfer function 

plant, PSO MPPT function, and a hybrid PO PSO MPPT function. This chapter 

conceptualizes the research by stating the problem the study seeks to solve, the 

research aim, the envisaged research outcomes, and the methodology followed in 

achieving the research objectives. The following chapter provides an overview of the 

literature work consulted for the modeling of PV array, mathematical calculation of 

boost converter component values, state space and transfer function modeling of boost 

converter, overview performance comparison MPPT algorithms, overview comparison 

of intelligent PID controllers, and overview comparison PID tuning bio-inspired 

algorithms. 
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CHAPTER 2 

REVIEW OF THE MODELLING, CONTROL, AND REGULATION OF SOLAR POWER 
GENERATION FOR CubeSat POWER SYSTEMS  

2.1. Introduction 

This Chapter aims to discuss and present previous work concerning the modeling of 

both PV solar modules and power regulation and control of a CubeSat EPS. The 

literature reviewed focuses firstly on solar panel mathematical modeling using Simulink, 

secondly on the classical MPPT techniques comparison for application in a CubeSat 

EPS, thirdly on MPPT enhancement techniques which are implemented using PID 

controllers in a closed loop boost converter/buck converter, and tuning of those PID 

controllers using artificial intelligent methods like particle swarm optimization (PSO), 

genetic algorithm (GA), fuzzy logic (FL), etc. The literature based on battery charge 

regulator storage systems has not been reviewed since it is outside the scope of the 

thesis. Subsection 2.2 discusses PV mathematical modeling and simulation in 

MATLAB/Simulink. Subsection 2.3 discusses power regulation and control using switch 

power converters. Subsection 2.4 discusses conventional MPPT objective functions, 

hybrid MPPT techniques, and PID controllers applied to boost converters transfer 

function plants, and finally, subsection 2.5 discusses various Cube Satellite missions. 

 

2.2. Solar PV Mathematical Modelling and Simulation in MATLAB/Simulink 

The modeling of solar PV cell blocks in the Simulink library is crucial. Simulink makes 

it possible to accurately model the behavior and performance of the solar cell blocks in 

the library for various irradiations and temperatures (Nair & Linda, 2019). The benefit 

of mathematical modeling is that it gives access to adjust the performance 

characteristics of the solar PV cell blocks the same way the manufacturer would create 

the solar PV cell blocks in Simulink using the manufacturer data sheet specifications. 

This modeling allows for adjusting solar PV cell block parameters like ideality factor for 

polycrystalline and mono-crystalline PV cells according to CubeSat manufacturer 

specifications. 

 

If the number of cells in a series is equal to one and the number of cells in parallel is 

equal to one, then that is a PV cell. If the number of cells in a series is more significant 

than one and the number of cells in parallel equals one, then that is a PV module. 

However, if the number of cells in both series and parallel is more significant than one, 

we have a PV array (Hoarca, 2021). A gap is identified in the 202a Simulink library, and 

numerous PV cell blocks are available for various PV cell manufacturers. The dominant 

PV cell manufacturers for CubeSat applications are Spectrolab and AZUR SPACE, but 
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neither PV cell block is currently available in the Simulink library. Creating Spectrolab 

and AZUR SPACE PV cells in the Simulink library will benefit the users doing research 

and CubeSat space mission applications for education and scientific explorations. 

Hence, in Chapter 3, the mathematical modeling of the Spectrolab and AZUR SPACE 

PV cells is modeled using Simulink/MATLAB according to the manufacturer’s 

datasheet. A PV module connects two or more PV cells in series and no cells in parallel. 

It can be modeled in Simulink using the physics principle of a PN junction (Weixiang 

et al., 2011). 

 

The IV and the PV characteristic curves of the PV module are nonlinear and vary with 

the rate of change of the irradiation and the rate of change of the temperature exposed 

to the sun (Krismadinata et al., 2012). Numerous PV modules are available in the 

Simulink library, but AZUR space and Spectrolab PV modules are unavailable. Most 

CubeSat launched in orbit used the AZUR space and Spectrolab PV modules 

(Rabochová et al., 2018). Hence, the mathematical modeling of the AZUR space and 

Spectrolab PV modules in Simulink is a research gap addressed in this thesis.  

 

The PV solar cell is modeled from first principles using five algebraic current equations: 

Photocurrent, Diode saturation current, Reverse saturation current, Shunt Resistor 

current, and Output current. Photocurrent (Iph) is current directly proportional to the 

incident solar irradiation from the sun. The diode saturation current (ID) is the forward 

bias current present only when the photocurrent is present. The reverse saturation 

current (Irs) is the avalanche current in the reverse bias condition that must not be 

exceeded. The shunt resistor current (Ish) is the nonideality current that flows through 

the shunt resistor and represents the slope of the current on the IV characteristic curve.  

 

The output current (I) is the generated nonideality current that flows through the series 

resistor. It also represents the voltage slopes across the maximum point of the IV 

characteristic curve (Hoarca, 2021). Table 2.1 shows a summarised previous work 

reviewed in this thesis. Figure 2. 1 shows the same information in terms of a bar graph. 

Table 2.2 and Figure 2.2 show the list and the bar graph for the number of publications 

reviewed for each subsection of Chapter 2: solar PV mathematical modeling and 

simulation in MATLAB/Simulink, power regulation and control using switch power 

converters, PID controllers and MPPT functions, and various CubeSat missions 

(Kabaca et al., 2015). 
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Table 2.1 summary of the reviewed work 

 

 

Figure 2.1: Bar graph of the publications reviewed 

Source Year of 

plublication

No. of 

sources 

consulted

Mohan 1995 1

Midya et al, 1996 1

Brambilla et al, 1999 1

Kim et al, 2001 1

Dahlquist 2002 1

Park 2003 1

Rashid 2004 1

Esram et al, Cheikh et al 2007 2

Asif, Tsai et al, Liu et al, 2008 3

Larbes et al, Villalva et al 2009 2

Weixiang et al, Solihin, Neji et al, Rai et al, Bazzi et al 2011 5

Ali et al, 2012 1

Murtaza et al, Fathah, Haripriya et al, Krismadinataa et al, Reisi et al, Hemmo, Moradi et al, Chen et al 2013 8

Mahdi et al, Lowe et al, Abdulkadir et al, Jayachitra et al 2014 4

Singh et al, Kabaca et al, Sirin, Sheard, Harrag et al, 2015 5

Shrivastav at al, Viswambaran et al, Waghulde et al, Agarwal et al, Sheik Mohammed et al, Ahmed et 

al, 2016 6

Achiammal, Guter et al, Lasheen et al, Mohanty et al, Manickam et al, Robles Algarín et al, 2017 6

Jayakumaran et al, Salman et al, Kler et al, Priyadarshi et al, Batarseh et al, Dhieb et al, 2018 6

Sher & Baig, Bani Salim et al, Bjaoui et al, Yang et al, Priyadarshi et al, Bani Salim et al, Acharya et al, 

Ammar et al, 2019 8

Chen et al, Pathak et al, Garg et al, Yaqoob et al, Oudrhiri et al, Haji et al, Kamran et al, Parvaneh et al, 

Mirza et al, Garud etal, Erikson, Bollipo et al, Da Rocha et al, Pilakkat et al, Ali et al, Refaat et al, 

Zečević et al, 2020 17

Routray et al, Hoarcă, Aoughlis et al,  Ali et al, Kumar et al, Fathi et al, Saidi et al, Aminnejhad et al, Tao 

et al, Banakhr et al, Sudharshan et al, Jihad et al, Fahim et al, Villegas-Mier et al, Nkambule et al, 2021 16

Edpuganti et al, Radi et al, Mohammed et al, Shinde et al, Mataifa et al, Yaqoob et al, Devarakonda et 

al, Priyadarshi et al, Allahabadi et al, Devarakonda et al, Mahfoud et al, 2022 11

Takano et al, Jumshudlu et al, Ibrahim et al, Saleem et al, Mirza et al, Tadj et al, Elmetwaly et al, 

Manna et al, Kayisli et al, Aguila-Leon et al, Vankadara et al, Aika, Sulthana et al, Katche et al, Hassan 

et al, Mohamed et al, Wang et al, Sharma et al, 2023 18

Kumar et al, Jasim et al, Radeen et al, Veerasamy et al, Jiang et al 2024, Chandrashekar et al, Oubbati 

et al , Murugesan et al, 2024 8

1 1 1 1 1 1 1
2

3
2

5

1

8

4
5

6 6 6

8

17
16

11

18

8

0

2

4

6

8

10

12

14

16

18

20

1
9

9
5

1
9

9
6

1
9

9
9

2
0

0
1

2
0

0
2

2
0

0
3

2
0

0
4

2
0

0
7

2
0

0
8

2
0

0
9

2
0

1
1

2
0

1
2

2
0

1
3

2
0

1
4

2
0

1
5

2
0

1
6

2
0

1
7

2
0

1
8

2
0

1
9

2
0

2
0

2
0

2
1

2
0

2
2

2
0

2
3

2
0

2
4

N
U

M
B

ER
 O

F 
P

U
B

LI
C

A
TI

O
N

S

YEAR

Bar graph of publications reviewed



20 

Table 2.2 shows the list of reviewed papers for each subsection of Chapter 2. The 

subsections of Chapter 2: solar PV mathematical modeling and simulation in 

MATLAB/Simulink, power regulation and control using switch power converters, PID 

controllers and MPPT functions, and various CubeSat missions. 

Table 2.2: Number of Reviewed Papers for each subsection of Chapter 2 

 

Figure 2.2 shows the bar graph for the subsections of Chapter 2. 

 

Figure 2.2: Papers Reviewed per subsection of Chapter 2 

Source Number of Sources Reviewed Subsections

Krismadinata et al (2012), Chek et al (2021),  

Álvarez (2021),  Rabochová (2018), Villalva 

(2009), Dahbi (2015), Weixiang (2011), 

Keskin (2015), Essaadi (2016), Hoarcă (2005), 

Tsai (2008) 11

2.2. Solar PV mathematical modelling and simulation in 

MATLAB/Simulink

Fathah (2013), Haripriya et al  (2013), 

Kazimierczuk et al  (2016), Godina et al  

(2020), Nguyen et al (2020), Blaabjerg 

(2019), Tan and Hoo (2015), Al-Baidhani et 

al (2018), Sarif et al (2018),  Mocci et al 

(2014), Cao (2023) 11 2.3. Power Regulation and Control using Switch Power Converters

 Abdulkadir et al (2014), Aguila-Leon et al 

(2023),  Allahabadi et al (2022), Aminnejhad 

et al (2021),  Ammar et al  (2019),  Aoughlis 

et al (2021),  Moradi (2013),  Ali et al (2020), 

Pilakkat and Kanthalakshmi (2020), 

Manickam et al,  (2017), Mohanty and 

Subudhi (2017), Chandrashekar et al (2024), 

Veerasamy et al (2024),  Ali et al (2020), 13 2.4. PID controllers and MPPT Functions

Yaqoob et al (2022), Oudrhiri et al (2020), 

Kumar et al (2021), Nasir et al (2020),  Neji 

et al (2011), Salehinia et al (2017),  Park 

(2003), Hernandez (2015),  Siciliano (2022), 

Hemmo (2013), Ali (2020) 11 2.5. Cube Satellites Missions
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2.3. Power Regulation and Control using Switch Power Converters 

DC-to-DC converters can be used to step up or step down DC voltage. Hence, they are 

used for voltage regulation. These DC-to-DC converters, also known as choppers, are 

used for traction motor control in electric automobiles, trolley cars, marine hoists, forklift 

trucks, and mine haulers. They deliver high efficiency, reasonable acceleration control, 

fast dynamic response, and are less bulky than linear converters (Mohamed et al., 

2016). 

 

To achieve the step-down, the switching component, i.e., power BJT, power MOSFET, 

GTO, forced commutated thyristor, must be connected in series to the output load 

resistor and diode connected in parallel to the load to prevent load current from flowing 

back to the source. To achieve the step-up, the switching component must be 

connected in parallel to the load resistor and the diode in series to the load to prevent 

the load current from flowing back to the source voltage. In step up and step down, the 

duty cycle must be varied between 0 and 1 to control the output voltage (Fathah, 2013). 

 

2.3.1. Recent Developments in DC-DC Converter Technologies 

2.3.1.1. Overview of DC-DC Converter Topologies 

DC-DC converters are critical components of modern power electronics, providing 

effective voltage conversion across various applications. The three primary topologies- 

buck, boost, and buck-boost converters—remain subject to intensive study and 

development. These converters are critical in delivering controlled voltage levels 

required for operating a wide range of electronic equipment, from portable gadgets to 

sophisticated industrial systems. 

 

2.3.1.2. Buck Converter: Advancements and Applications 

The buck converter, a step-down regulator, remains widely used due to its efficiency, 

simplicity, and reliability. Its principle of operation involves the high-frequency switching 

of a transistor (usually a MOSFET), which controls energy transfer from input to output, 

with an inductor storing energy when the switch is on and delivering it to the load when 

the switch is off. Recent studies have highlighted the continuous evolution of buck 

converters, particularly in terms of reducing size, improving efficiency, and enhancing 

control strategies. 

Recent Advancements: 
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• Buck Converter Synchronous Rectification: This technique, which replaces the 

diode with a low-RDS (on) MOSFET, has been shown to reduce conduction 

losses, thereby improving overall converter efficiency notably (Wang et al., 

2023). 

• Buck Converter Digital Control Techniques: The change towards digital control 

methods, such as adaptive on-time control and predictive control, has improved 

the dynamic response and adaptability of buck converters in several 

applications (Albira and Zohdy, 2021). 

• Integrated Circuits: The integration of multiple components into a single chip 

has not only reduced the physical size of converters but also enhanced their 

reliability and performance in high-frequency applications(Cheon et al., 2024)  

Applications: 

Buck converters are important in consumer electronics, electric vehicles, and 

renewable energy systems' power management systems. They are particularly valued 

for their ability to provide stable and efficient power conversion in environments where 

space and energy efficiency are at a premium (Sharma et al., 2023). 

2.3.1.3. Boost Converter: Enhancements and Use Cases 

The boost converter, reliable for stepping up voltage from input to output, continues to 

be a research subject due to its importance in applications requiring higher output 

voltages. The operation involves energy storage in an inductor during the "on" phase 

and release during a switch's "off" phase. 

Key Developments: 

• Boost Converter High-Frequency Operation: Recent advancements have 

focused on increasing the switching frequency, which allows for smaller 

inductors and capacitors, thereby reducing the overall size and improving the 

power density of the converters (Kumar et al., 2024). 

• Advanced Switching Devices: The use of GaN and SiC transistors has 

enhanced the performance of boost converters, enabling them to operate at 

higher efficiencies and temperatures, making them suitable for more demanding 

applications (Mehrotra et al., 2024). 

• Enhanced Control Algorithms: Researchers have developed more 

sophisticated control algorithms to improve boost converters' stability and 
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transient response, especially under varying load conditions (Mohammed, 

2024). 

Applications: 

Boost converters are critical in applications such as battery-powered devices, where 

they ensure that the voltage level is maintained even as the battery discharges, and in 

renewable energy systems, where they step up the voltage from solar panels to suitable 

levels for storage or grid connection (Abdul Zahra et al., 2024). 

2.3.1.4. Buck-Boost Converter: Versatility and Innovations 

The buck-boost converter's capability to either step up or step down the input voltage 

makes it highly flexible, especially in applications where input voltage can vary 

significantly. This converter combines the principles of both buck and boost converters 

and operates by switching a transistor to control the energy transfer through an 

inductor. 

Recent Innovations: 

Buck-boost Multi-Mode Operation: Advanced buck-boost converters can dynamically 

switch between buck, boost, and buck-boost modes, providing greater flexibility and 

efficiency across a wider range of input conditions (Salah Hilo Mohammed Al-Attwani 

et al., 2024). 

Improved Efficiency: Researchers have developed techniques such as zero-voltage 

switching (ZVS) and zero-current switching (ZCS) to minimize switching losses, thereby 

improving the efficiency of buck-boost converters (Koushki et al., 2024). 

Integrated Power Modules: The trend towards integrating multiple power stages into a 

single module has reduced the size and improved the performance of buck-boost 

converters in compact applications (Fekik et al., 2024). 

Applications: 

The versatility of buck-boost converters makes them ideal for battery management 

systems, portable electronic devices, and renewable energy systems where they are 

required to manage fluctuating input voltages and maintain stable output (Sharma et 

al., 2023). 
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2.4. Conventional MPPT, AI MPPT, and PID Controller-based MPPTs 

This section will discuss traditional MPPT first, second, AI MPPT, and finally, 

PID controller-based MPPTs. 

2.4.1. Requirements for the Implementation of MPPT Techniques 

The output voltage of an AZUR space solar module varies according to temperature 

and radiation. The 4G32C AZUR space PV solar module, which is 8X4cm, produces 

3.025V and 433.5mA at maximum power point (MPP = 1.31W) under the radiation of 

1367W/m2 and 28°C standard test conditions. The change in maximum point voltage 

per temperature change is -8.4mV/°C at the beginning of life (BOL), and the change in 

maximum current per temperature change is 0.03mA/°C at the BOL. If the space 

radiation is kept constant at 1367W/m2 and the expected space maximum temperature 

is 125°C, then the maximum point voltage at 125°C is calculated to be 3.84V. Similarly, 

If the space radiation is kept constant at 1367W/m2 and the expected space minimum 

temperature is -65°C, the maximum point voltage is calculated to be 2.24V. These solar 

modules are connected in parallel so that even when only one module is exposed to 

the sun, a voltage not under 2V may be expected. Generally, the bus voltages of a 

CubeSat are 3.3V and 5V, respectively, and the load current demand will vary for each 

CubeSat subsystem. 

 

Therefore, boost converters must increase the DC PV module output voltage range of 

2.24V – 3.84V to 3.3V and 5V bus voltages. The DC PV module output voltage ranges 

between 2.24mV for -65°C to 3.84mV for 125°C when space radiation is kept constant 

at 1367W/m2. The four control and regulation methods extracted from a vast literature 

study which are implemented in this Thesis are the PO MPPT function, GA/PSO tuned 

PID controller for a closed loop transfer function plant, PSO MPPT function, and a 

hybrid PO&PSO MPPT function. It is now clear that two boost converters for the 3.3V 

bus and the 5V bus must be designed. It is now clear that each module is connected 

to a 3.3V and 5V boost converters, and all the modules are connected in parallel so 

that even when only one module is exposed to the sun, a voltage not under 2V may be 

expected. Table 2. 2 depicts the maximum current demand per CubeSat consulted 

research paper. According to Table 2. 2, the 3.3V converter must produce a minimum 

current of 1.304mA and 4.303W, and the 5V converter must produce a minimum current 

of 2.2A and 11W to support the current demands of all CubeSat subsystems in Table 

2.2. 
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Table 2. 3: Maximum Current demand per CubeSat research paper 

CubeSat 
Research Paper 

Author(s) 

Maximum current 
(mA) Demand for 

5V Bus 

Maximum Power 
Demand for 5V 

Bus 

Maximum current 
Demand for 3.3V 

Bus 

Maximum Power 
Demand for 3.3V 

Bus 

(Mahd et al., 
2014) 

100mA - Payload 0.5W 850mA – TX 
coms 

2.81W 

(Kumar et al., 
2021) 

626.2mA – RF 
coms 

3.131W 1304.1mA – 
TT&C and OBC 

4.303W 

(Chen et al., 
2021) 

600mA – UHF RX 3W 151.5mA - OBC 0.5W 

(Agarwal et al., 
2016) 

750mA – Battery 
charging 

3.75W 300mA - Payload 1W 

(A. J. Ali et al., 
2021) 

2200mA - Coms 11W - - 

(Acharya et al., 
2019) 

240mA - ADCS 1.2W 121.2mA - OBC 0.4W 

(M. B. O. E. Ali 
et al., 2021) 

245mA - ADCS 1.225W 568mA - Coms 1.874W 

 

All EPS architectures can be divided into two classes from the viewpoint of energy 

transfer techniques: Maximum Power Point Trackers (MPPT) and Direct Energy 

Transfer (DET) subsystem (Shekoofa and Kosari, 2013). With certain modifications, 

these two architectures are implemented based on the satellite project requirements 

(Kumar et al., 2021). Figure 2. 6 depicts the direct energy transfer architecture. This 

architecture has four major sections: source, storage, power distribution unit (PDU), 

and loads. This architecture requires a shunt regulator (SR) and a battery charging 

regulator (BCR). 

 

Figure 2.3: DET architecture (adapted from Kumar et al., 2021) 

The MPPT architecture (Figure 2.7: MPPT architecture) is also comprised of four 

primary categories, which are the source, storage, power distribution, and loads, but it 

doesn’t have a shunt regulator. However, it does have a battery charge regulator. Solar 

photovoltaic (PV) systems are widely utilized; However, their efficiency depends on 

variables such as irradiation variations, temperature variations, load variations, and 
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partial shading conditions. MPPT techniques have been developed to address the 

meteorological and load variability subjectivity of PV modules (Aguila-Leon et al., 

2023). The requirement for higher proficiency from the PV system to reap the maximum 

energy requires MPPT functions (Banakhr and Mosaad, 2021). Tracking the 

maximum output power of a PV cell is an essential problem in harvesting more energy 

under different weather and load conditions (Bani Salim et al., 2019a). The research 

scope is to maintain a constant output voltage from the boost converter despite 

variations in the boost converter's input voltage derived from the solar PV module and 

variations of the boost converter loads  ((Mohammed et al., 2022). 

 

Figure 2.4: MPPT architecture (adapted from Kumar et al., 2021) 

2.4.2. Conventional Maximum Power Point Tracking Functions 

This sub-section will discuss the application of conventional MPPTs, AI MPPTs, and 

PID controllers to minimize the steady-state error of the boost converter closed loop 

and unity feedback loop. 

2.4.2.1. Perturb and Observe MPPT Objective Function 

The Perturb and Observe (PO) technique is a method used for Maximum Power Point 

Tracking (MPPT) in photovoltaic (PV) arrays or modules. In this technique, the voltage 

or the duty ratio of the DC-DC converter that interfaces the PV module to the load is 

adjusted in one direction. If the power increases, the adjustment continues in that 

direction. If the power decreases, the adjustment is made in the opposite direction. It 

involves adjusting the operating voltage or current of the PV array to achieve maximum 

power output under specific meteorological conditions. PO responds to changes in 
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irradiance and temperature to optimize power output, adapting to array or module 

changes over time. It can oscillate around the Maximum Power Point (MPP), and 

strategies like fuzzy logic control or variable perturbation size are used to optimize 

tracking under rapid meteorological conditions. PO may struggle with rapid atmospheric 

changes, but methods like three-point weight comparison or high sampling rates can 

address this issue (Larbes et al., 2009). Typically, PO requires two sensors for voltage 

and current measurement, with DSP or microcomputer control commonly used for 

implementation (Viswambaran et al., 2017). 

 

Figure 2.5: Flow Chart of the PO function (Adapted from Jayakumaran, 2018) 

2.4.2.2. Incremental Conductance MPPT Objective Function 

The Incremental Conductance (Inc) method is used for MPPT in photovoltaic systems. 

It explains how the algorithm adjusts the reference voltage by analyzing the 

conductance of the solar panel to accurately track the MPP and optimize system 

efficiency in changing environmental conditions. This method involves perturbing the 

insolation for the PV panel to efficiently track the maximum power point by comparing 

conductance with incremental conductance. It is effective in scenarios with sudden 

changes in climatic conditions and attempts to optimize power output, although it does 

not settle precisely at the MPP. It exhibits oscillations at the MPP. The PV power curve 

has a positive slope on the left side of the MPP, a negative slope on the right side, and 

a zero slope at the MPP.  

 
𝑰𝒑𝒗

𝑽𝒑𝒗
+

∆𝑰𝒑𝒗

∆𝑽𝒑𝒗
          (2.1) 

The first term on the left-hand side of Equation (2.1) is instantaneous 
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conductance, while the second is incremental conductance. The objective of the 

incremental conductance MPPT function is to drive the sum of the instantaneous 

conductance and the incremental conductance towards zero and consequently bring 

the PV module operating point to the MPP (Reza Reisi et al., 2013). 

 

Figure 2.6: Flow Chart of the INC function (Adapted from Jayakumaran, 2018) 

2.4.2.3. Fractional Open Circuit Voltage MPPT Objective Function 

The close linear relationship between VMPP and VOC of the PV array, under varying 

irradiance and temperature levels, has ushered in the fractional VOC method. 

𝑽𝑴𝑷𝑷 ≈  𝒌𝟏 × 𝑽𝑶𝑪         (2.2) 

In equation 2.2, k1 is a constant of proportionality. Since k1 depends on the 

characteristics of the PV array being used, it is usually computed beforehand by 

empirically determining VMPP and VOC for the specific PV array at different irradiance 

and temperature levels. The factor k1 has been reported to be between 0.71 and 0.78. 

Once k1 is determined, VMPP can be computed using (2.2), with VOC measured 

periodically by momentarily shutting down the power converter. This incurs some 

disadvantages, including temporary loss of power. Pilot cells are used to obtain VOC to 

prevent temporal loss of power. These pilot cells must be carefully chosen to represent 

the PV array's characteristics closely. It is claimed that the voltage generated by pn-

junction diodes is approximately 75% of VOC (Esram and Chapman, 2007). 
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This eliminates the need to measure VOC and compute VMPP. Once VMPP has been 

approximated, a closed-loop control on the power converter can reach this desired 

voltage asymptotically. Since VMPP is only an approximation, the PV module technically 

never operates at the MPP. Depending on the application of the PV system, this can 

sometimes be adequate. Even if fractional VOC is not an actual MPPT function, it is 

straightforward and cheap to implement as it does not necessarily require DSP or 

microcontroller control. However, k1 is no longer valid in the presence of partial shading 

(which causes multiple local maxima) of the PV array, and the PV array voltage is 

proposed to be swept to update k1. This adds to the implementation complexity and 

incurs more power loss (Wang et al., 2010). 

2.4.2.4. Fractional Short Circuit Current MPPT Objective Function 

Fractional ISC is formulated because, under varying atmospheric conditions, IMPP is 

approximately linearly related to the short circuit current ISC of the PV module. 

𝑰𝑴𝑷𝑷  ≈  𝒌𝟐𝑰𝑺𝑪          (2.3) 

k2 is a proportionality constant. For example, k2 must be determined according to the 

PV module used in the fractional VOC function. The constant k2 is generally found to 

be between 0.78 and 0.92. Measuring ISC during operation is problematic. An additional 

switch must be added to the power converter to periodically short the PV array so that 

ISC can be measured using a current sensor. This increases the number of components 

and costs. A boost converter can be used, where the converter switch can short the PV 

array. (Yuvarajan and Shanguang Xu, 2003). Power output is reduced when finding 

ISC, and the MPP is never perfectly matched. (Koutroulis et al., 2001). A method of 

compensating k2 is proposed so that the MPP can be better tracked while atmospheric 

conditions change. (Noguchi et al., 2000). 
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To guarantee proper MPPT in multiple local maxima, periodically sweeping the PV array voltage from open circuit to short-circuit to update k2 

must be done. Most PV systems in the literature using fractional ISC use a DSP. In some cases, a simple current feedback control loop is used 

instead. 

2.4.2.5. Previous Research Heritage of Implemented Conventional MPPT Objective Functions 

Table 2.4.: sources reviewed from the literature that implemented conventional MPPTs' objective functions, summarising how those conventional 

MPPTs' objective functions were implemented. 

Table 2. 4: Previous Research Heritage of Implementation of Conventional MPPT Objective Functions 

Source The principal focus of the work Method(s) Used to Implement the 
Objective Function 

Objective 
Function 
Implemented 

Comments 

(Bollipo et al., 
2020) 

Discusses the application of 
constant voltage (CV) in uniform 
irradiation conditions and 
neglects the effect of both 
irradiation/insolation and 
temperature. 

This technique requires measuring the 
Voc at regular intervals. Moreover, this 
technique applies to conditions where 
temperature variation is low. Leedy et al. 
did hardware implementation of this 
technique using TL494IN from Texas 
Instruments for PWM generation. 

Constant 
Voltage (CV) 

This CV technique estimates MPP a bit 
far away from the genuine MPP. Thus, 
the working point does not coordinate 
the MPP, and considering different 
topographical positions is necessary for 
the optimum reference voltage to 
decrease the error value. The method is 
simple, fast, and easy to implement but 
has limited precision. 

(Devarakonda 
et al., 2022) 

Discusses the application of 
perturb and observe (PO) under 
various irradiation levels, loads, 
and temperatures. 

If the operating voltage is perturbed and 
if the power is increased (dp/dv > 0), 
then we can see that the point is now 
moving towards the MPP, whereas if it 
decreases (dp/dv < 0), then the direction 
of perturbation is reversed. The process 
will continue until the MPP is reached at 
every point. Based on the previous duty 
ratio, the following duty ratio is 
calculated by checking the differences 
between the power and voltage values. 

Perturb and 
Observe (PO) 

Owing to its simple design and ease of 
operation and execution, the perturbation 
and observation technique is the most 
widely used technique. However, the P&O 
algorithm doesn’t track the MPP under 
rapidly varying atmospheric 
changes. It uses both voltage and 
current sensors. 
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(Hassan et al., 
2023) 

Fractional open circuit voltage 
(FOCV) is founded on estimating 
the KV value. Hence, it is most 
appropriate for low voltage, high 
current applications.  

If the value of Kv is known and the Voc of 
the PV array can be measured using a 
voltage sensor, VMPP can easily be 
calculated from VMPP = Kv.Voc. Kv is 
somewhere in the range of 0.7–0.8 and 
can be known with the help of the data 
sheet provided by the manufacturer. 

Fractional 
Open Circuit 
Voltage 
(FOCV) 

It is a simple and fast way of tracking 
MPP. However, it is still looking for the 
exact MPP. As the operation of this 
method depends on the estimation, it is 
viable for uniform irradiation conditions. 

(Fahim et al., 
2021) 

FSCC is founded on the 
estimation of the k value. Hence, it 
is most appropriate for low-current 
and high-voltage applications. 

This method works on the principle that 
the current at the maximum power point 
is equal to the short circuit current time 
k., where k is a constant of 
proportionality that depends on the 
characteristics of the PV panels. k 
ranges between 0.75 and 0.9. if k is 
known, the current at MPP can be 
calculated by Impp = k ∗ Isc. It is measured 
using a current sensor. 

Fractional 
Short Circuit 
Current 
(FSCC) 

It is a simple and fast way of tracking 
MPP. However, it is still looking for the 
exact MPP. As the operation of this 
method depends on the estimation, it is 
viable for uniform irradiation conditions. 

(Katche et al., 
2023) 

The technique uses the current 
and voltage of the PV modules to 
find the MPP and can track the 
MPP with varying weather 
conditions. 

The derivative of the output power, P, 
concerning the panel voltage, V, is 
equivalent to zero at the MPP. If the 
ratio of the increment in conductance is 
higher than the negative conductance, 
the reference voltage is increased to 
track MPP. If the ratio of the increment 
in conductance is less than the negative 
conductance, the reference voltage is 
decreased to track MPP. 

Incremental 
Conductance 
(InC/IC) 

This strategy tracks more quickly than 
P&O and tracks under dynamic weather 
conditions. Yet, it cannot discover global 
MPP in nearby MPPs like P&O. The 
basic microcontroller is good enough to 
execute this technique. Both voltage 
and current sensors are utilized, as in 
the case of P&O. 

(Lasheen et 
al., 2017) 

Proposes an Adaptive Reference 
Voltage (ARV) MPPT technique to 
improve the performance of the 
constant voltage (CV) technique 
by making it adaptable to 
changing weather conditions. 

The reference voltage (RV) for MPPT is 
adapted according to the measured 
radiation and temperature levels. The 
operating range of the radiation at a 
given temperature is divided into several 
divisions, and the corresponding RV is 
recorded off-line in a truth table. The 
difference between the reference and 
measured voltages is compensated 
using a proportional-integral controller to 
generate a suitable duty ratio that 
controls the pulse width of the boost 
converter. 

Adaptive 
Reference 
Voltage (ARV) 

Adaptive Reference 
Voltage (ARV) improves the time 
response and MPPT efficiency, damps 
oscillation, and provides better power 
source stability. 

(Esram et al., 
2007) 

Ripple correlation control (RCC) 
correlates the time derivative of 
the time-varying PV array power 

If v or i is increasing (dv > 0 or di > 0) 
and p is increasing (dp > 0), then the 
operating point is below the MPP (V 

Ripple 
correlation 
control (RCC). 

Simple and inexpensive analog circuits can 
be used to implement RCC. RCC accurately 
and quickly tracks the MPP, even under 
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(p)˙ with the time derivative of the 
time-varying PV array current˙(i) or 
voltage (v) to drive the power 
gradient to zero, thus reaching the 
MPP. 

<VMPP or I < IMPP). On the other hand, if v 
or i is increasing and p is decreasing (dp 
< 0), then the operating point is above 
the MPP (V >VMPP or I > IMPP). 
Combining these observations, we see 
that ˙ dp.dv or dp.di are favorable to the 
left of the MPP, negative to the right of 
the MPP, and zero at the MPP. 

varying irradiance levels. The time taken to 
converge to the MPP is limited by the power 
converter's switching frequency and the 
RCC circuit's gain. Another advantage of 
RCC is that it does not require prior 
information about the PV array 
characteristics, making its adaptation to 
different PV systems straightforward. 

(Ali et al., 
2012) 

It is designed to work with a PV 
system that is connected in 
parallel with an AC system line. 

The current going in the inverter 
increases the power coming out of the 
boost converter and consequently 
increases the power out of the PV array. 
While the current increases, the voltage 
Vlink can be kept constant as long as the 
power required by the inverter does not 
exceed the maximum power available 
from the PV array. If that is not the case, 
Vlink starts drooping. Right before that 
point, the current control command Ipeak 

of the inverter is at its maximum, and the 
PV array operates at the MPP. 

DC-link 
capacitor droop 
control 

DC-link capacitor droop control does not 
require the computation of the PV array 
power. However, its response 
deteriorates when compared to a 
method that detects the power directly; 
this is because its response directly 
depends on the reaction of the DC-
voltage control loop of the inverter. This 
control of the scheme can be easily 
implemented with analog operational 
amplifiers and decision-making logic 
units. 
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2.4.2.6. Discussion of Conventional Objective MPPT Functions 

 The significant drawbacks of the conventional objective MPPT functions are the low 

velocity of convergence, poor tracking of the global maximum power point (GMPP) 

under rapid irradiation changes, rapid load changes and rapid temperature changes, 

oscillation at MPP, inability to find a GMPP but finding multiple local maxima and a 

general low tracking velocity because of constant/fixed step size (Jately et al., 

2021).The benefits of the conventional objective MPPT functions are that they are 

simple to implement and implement with analog and logic decision circuits. Another 

advantage of the FOCV and FSCC is that they have low computation requirements and 

don’t require a microprocessor to implement them (Ilyas et al., 2015). Early 

improvements of the traditional MPPTs were variable step size hill climbing techniques 

like variable step size PO and variable step size InC (Malathy and Ramaprabha, 

2013). The current hybrid techniques are tabulated in Table 2. 4, where in formulating 

the hybrid MPPT, conventional MPPTs are combined with AI techniques, or two AIs 

are combined to form a hybrid. 

2.4.3. AI MPPT Algorithms 

The AI algorithms tune PID controllers and minimize the steady-state error of power 

converter transfer function plants. In some applications, AI Algorithms are used as 

MPPT functions solely to optimize the duty ratio of the PWM in power converters. 

Sometimes, AI algorithms are combined with conventional true-seeking objective 

functions like perturb and observe (PO), incremental conductance (INC), fractional 

open circuit voltage (FOCV), and fractional short circuit current (FSCC) to optimize the 

duty ratio of the PWM in power converters. The reason for combining the conventional 

objective MPPT functions and artificial intelligence (AI) is to improve the drawbacks of 

the true-seeking traditional methods, such as low tracking speed, power oscillation at 

MPP, and improper search during rapidly varying environmental conditions.  

AI techniques, which are computationally intelligent and bioinspired MPPT algorithms, 

often offer quicker responses and greater accuracy. However, the quasi-seeking/AI 

algorithms are complex in such that they have a high computing load and, 

consequently, require expensive high-performance computing devices. In addition, 

specialized knowledge, extensive sensory gadgets, and large amounts of historical 

data are needed to model, train, test, and develop the AI MPPT systems. In some 

literature consulted, two AI techniques are combined to form a hybrid technique instead 

of improving the conventional objective MPPT function by introducing an AI technique 

(Sulthan et al., 2023). 
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2.4.3.1. The PSO Algorithm 

The PSO algorithm introduced by J. Kennedy and R.C. Eberhart in 1995 is widely used 

to optimize system performance. A modified PSO was introduced in 1998 to improve 

the performance of the original PSO. A linearly decreasing inertia weight (ω) is added 

to the enhanced PSO during each iteration. Clerc reported another widely used PSO. 

In this thesis, the PSO used is the 1998 PSO (Aoughlis et al., 2021). A PSO is a 

stochastic, population-based evolutionary algorithm search method. It is modeled after 

the behavior of a bird swarm or a fish school (Abdulkadir and Yatim, 2014). The 

algorithm's methodology focuses on the attitude of a swarm of birds or a school of fish 

when searching for food. 

In the PSO, a particle represents a potential solution to a problem. Particles imitate the 

success of neighboring particles and their own achieved success. Therefore, the 

position of a particle is influenced by the position of the best particle (Pbest) in a 

neighborhood, as well as the best solution found by all the particles in the entire 

population (Gbest). Each particle is treated as a point in a D-dimensional space. The ith 

particle is represented as XI= (xi1, xi2, …, xiD). The best previous position giving the 

minimum fitness value of any particle is recorded and described as PI= (pi1, pi2, …, piD); 

this is called Pbest. The position of the best particle among all particles in the population 

is called Gbest. The velocity for the particle ith is represented as VI = (vi1, vi2, …, viD). The 

particle position, xi, is adjusted using equation 2.3.: 

 𝑿𝒌+𝟏
𝒊 =  𝑿𝒌

𝒊 +  𝑽𝒌+𝟏
𝒊 × ∆𝒕       (2.4) 

where the velocity component represents the step size vi. The velocity is calculated 

using equation 2.4. 

𝒗𝒌+𝟏
𝒊 =  𝝎 ∗ 𝒗𝒌

𝒊 + 𝒄𝟏 × 𝒓𝒂𝒏𝒅𝟏 ×
(𝒑𝒊−𝒙𝒌

𝒊 )

∆𝒕
+ 𝒄𝟐 × 𝒓𝒂𝒏𝒅 ×

(𝑷𝒌
𝒈

−𝒙𝒌
𝒊 )

∆𝒕
   (2.5) 

Where: i = 1, 2, …… N 

Where: 𝑿𝒌+𝟏
𝒊  denotes the ith particle position; the velocity of the ith particle is represented 

by 𝒗𝒌+𝟏
𝒊 ; The number of iterations is denoted by k; the inertia weight is defined by ω; 

rand1 and rand2 are uniformly distributed random variables within [0, 1]; the cognitive 

and social coefficients are denoted by c1 and c2, respectively. In the velocity equation, 

𝒄𝟏 × 𝒓𝒂𝒏𝒅𝟏 ×
(𝒑𝒊−𝒙𝒌

𝒊 )

∆𝒕
 is called the cognitive part, representing the particle's personal 

experience or individual memory that brings it back to the most satisfying place it 
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passed through in the past. The term 𝒄𝟐 × 𝒓𝒂𝒏𝒅 ×
(𝑷𝒌

𝒈
−𝒙𝒌

𝒊 )

∆𝒕
 reflects social behavior. It 

makes each particle follow the best position found by its neighbors. 

2.4.3.2. The GA Algorithm Tuning PID Controllers  

The application of Genetic Algorithms (GAs) for PID tuning has been extensively 

studied and is a focal point in control system optimization. Genetic Algorithms are 

preferred for efficiently searching and optimizing PID parameters, overcoming the 

limitations of traditional tuning methods such as Ziegler-Nichols or manual tuning. 

Recent literature highlights various enhancements and applications of GAs for PID 

tuning: 

• Improved Genetic Algorithm advances include modifications to avoid premature 

convergence and maintain population diversity. Techniques such as local 

stochastic search capabilities and dynamic adjustment strategies have been 

introduced to accelerate convergence and improve search stability (Chen et 

al., 2021). 

• Hybrid Approaches, which combine GAs with other optimization techniques like 

Particle Swarm Optimization (PSO), have shown promising results. By 

leveraging the strengths of different methods, these hybrid algorithms 

significantly enhance tuning performance and robustness in various industrial 

applications. 

• Specific studies have shown that GA-tuned PID controllers offer practical 

benefits in specific applications, such as controlling brushless DC (BLDC) 

motors, hydraulic servo systems, and automatic voltage regulators. These 

studies demonstrate GA-tuned PID controllers' superior performance and 

stability compared to conventional methods. 

• Metaheuristic comparison reviews comparing GAs with other metaheuristic 

algorithms, such as Ant Colony Optimization (ACO) and Bacterial Foraging 

Optimization (BFO), highlight each method's unique advantages and limitations 

in PID tuning contexts (Mohamed et al., 2023). 

2.4.3.3. Ant Colony Optimisation (ACO) Tuning PID Controllers 

Ant Colony Optimization (ACO) for PID tuning is a notable research area that has 

garnered significant attention. This approach leverages the foraging behavior of ants 

to optimize the PID controller parameters, enhancing the controller's performance in 

various applications. A comprehensive summary of the current literature on the subject: 
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• PID Controller Tuning for Load Frequency Control: ACO has been employed to 

tune PID controllers in load frequency control problems for interconnected 

thermal power systems with renewable energy sources. The results 

demonstrate that ACO can effectively improve the stability and performance of 

these systems (Murugesan et al., 2024). 

• Ant Colony Optimization for Induction Motors: A study applied ACO to optimize 

PID controllers for induction motors to minimize speed ripple and harmonics. 

The optimization process was validated using MATLAB/Simulink, showing 

enhanced motor performance compared to conventional methods (Yin et al., 

2018). 

• Direct Torque Control for Doubly Fed Induction Motors: A hybrid ACO-based 

PID tuning method was developed for doubly fed induction motors' direct torque 

control (DTC). The approach improved torque and speed control, reducing 

overshoots and torque ripples (Mahfoud et al., 2022). 

• Comparative Studies and Hybrid Approaches: Recent reviews have highlighted 

the integration of ACO with other optimization techniques and its application in 

various fields, including electrical machine control and power system 

stabilization. These studies underscore the robustness and effectiveness of 

ACO in PID tuning (Wang et al., 2023). 

• Theoretical and Practical Implementations: The theoretical foundations of ACO, 

such as its global optimization capabilities and robustness, have been 

extensively documented. The practical implementations in PID tuning not only 

demonstrate the algorithm's ability to handle non-linear systems and complex 

optimization problems but also provide valuable insights for real-world 

applications (Yin et al., 2018). 

2.4.3.4. Adaptive Fuzzy Logic Control for MPPT 

Fuzzy Logic Control (FLC) is a dependable choice for MPPT in PV systems with its 

widely recognized robustness and adaptability. Power converters, the usual regulators 

of these systems, ensure efficient energy conversion and stable power supply under 

varying environmental conditions. FLC utilizes a set of rules and membership functions 

to handle the non-linear and uncertain nature of PV systems. FLC does not require a 

precise mathematical model, which is advantageous in dynamic environments. 

Adaptive fuzzy logic controllers adjust the membership functions and rules based on 

real-time data. 
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This provides better performance under varying irradiance and temperature conditions 

compared to conventional MPPT techniques like Perturb and Observe (PO) (Refaat et 

al., 2020). Studies demonstrate that FLC-based MPPT systems, modeled in 

environments like MATLAB/Simulink, show improved efficiency, reduced power loss, 

and faster response times than traditional methods like INC. (Robles Algarín et al., 

2017). Comparative studies indicate that FLC significantly reduces the oscillations at 

the maximum power point and improves the overall system stability and reliability. 

2.4.3.5. Artificial Neural Networks-Based MPPT Techniques 

Among various MPPT techniques, Artificial Neural Networks (ANNs) have shown 

significant promise due to their ability to handle nonlinear relationships and adapt to 

varying meteorological conditions. ANNs are used to model the PV characteristics and 

predict the MPP under different irradiance and temperature conditions. The ANN-based 

MPPT algorithms can quickly adapt to changes in the environment, providing accurate 

tracking of the MPP with minimal oscillations around the MPP. (Zečević and Rolevski, 

2020). Hybrid algorithms combining ANN with other techniques, such as Fuzzy Logic 

(FL) or Particle Swarm Optimization (PSO), enhance the performance of MPPT 

systems. These hybrid methods leverage the strengths of each approach to improve 

convergence speed and tracking accuracy. (Villegas-Mier et al., 2021). The 

effectiveness of ANN-based MPPT algorithms depends on the training dataset and the 

neural network's architecture. A well-trained ANN can generalize unseen data well, 

ensuring robust performance across different environmental conditions. Techniques 

such as supervised learning are commonly used to train the ANNs with historical 

weather and PV performance data. (Sharma et al., 2023). Listed below are the key 

performance advantages of using ANN MPPT: 

• Efficiency: ANN-based MPPT systems demonstrate high efficiency, with studies 

reporting an average performance of around 98% under uniform conditions. The 

ability of ANNs to learn and predict the optimal MPP voltage and current under 

varying conditions is a critical factor in their superior performance (Villegas-

Mier et al., 2021). 

• Speed and Accuracy: Compared to traditional MPPT techniques, ANN-based 

methods exhibit faster convergence to the MPP and fewer oscillations around 

the MPP. This results in more stable and reliable energy extraction from PV 

systems (Nkambule et al., 2021). Adaptability: ANNs can be trained to account 

for partial shading conditions and other non-ideal scenarios that typically 

challenge conventional MPPT objective functions. 
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• This adaptability ensures consistent and fixed performance even under suboptimal conditions, enhancing the overall reliability of the PV 

system (Nkambule et al., 2021). 

2.4.3.6. Previous Research Heritage of Implementation of AI MPPTs' Algorithms 

Table 2.5.: sources reviewed from the literature that implemented AI MPPTs' Algorithms, and it summarises how those algorithms were implemented. 

Table 2. 5: Previous Research Heritage of Implementation of AI MPPTs' Algorithms 

Source The principal focus of the 
work 

Method(s) Used to Implement the 
Objective Function &/ Algorithm 

Objective Function 
Implemented &/ 
Algorithm 

Comments 

(Abdulkadir and 
Yatim, 2014) 

Partial shading prohibits 
conventional InC from finding 
global maxima. Thus, PSO is 
employed in traditional InC to 
find global maxima. The 
advantage of using InC with 
PSO is that it narrows the 
search space for PSO and 
reduces the response time of 
the hybrid MPPT compared to 
the response time when PSO is 
used alone. 

In the first stage, the incremental 
conductance method is employed to 
search for the first local maximum 
quickly. In the second stage, the PSO 
is activated to search for the global 
maximum point. 
 

Incremental 
Conductance (InC) + 
particle swarm 
optimization (PSO) 

Simulation results show that the 
proposed hybrid method can track 
the global maximum point without 
difficulty, has a faster response 
time, and has a better dynamic 
response than the plain PSO 
method. 
 

(Moradi et al., 
2013) 

A robust hybrid is proposed to 
mitigate irradiance, poor 
sensitivity, and decreasing 
convergence speed when the 
battery is not connected or has 
sizeable internal resistance of 
the first MPPT they developed. 

In the first stage, the MPP is 
estimated using analytical equations 
and a model of the PV system while 
considering ambient temperature, 
irradiation, and load model (set point 
tuning). The classic perturbation and 
observation (P&O) method will follow 
the maximum power point in the 
second phase. 

Sensors, analytical 
equations, a model of 
the PV system, and 
Thevenin model of the 
load + Perturb and 
observe (PO). 

In the first phase, the influence of 
temperature and light intensity on 
MPP was formulated, and the 
effects of load and battery 
characteristics modeled by 
equivalent Thevenin circuits were 
considered. Therefore, the MPP 
approximated in this phase is 
robust regarding load changes and 
battery conditions. 

(Ammar et al., 
2019) 

The PV and the DC-DC 
converter are nonlinear, so 
fractional order calculus 
describes the nonlinearity of the 
PV and converter system in this 

In the 1st case study, irradiation is set 
to 800W/m2, the temperature is set to 
25°C, and a performance comparison 
of plane InC, variable step InC, FO-
InC fixed step + PSO, FO-InC fixed 

Incremental 
Conductance (InC) and 
Fractional Order (FO) 

The efficiency of the eight different 
MPPT techniques under testing 
was compared, and it was 
revealed that the plane InC has 
the worst efficiency of 75.9%, and 
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fractional order incremental 
conductance (FO-InC) 
technique. 
 

step + ACO, FO-InC fixed step + 
ALO, FO-InC variable step + PSO, 
FO-InC variable step + ACO, FO-InC 
variable step + ALO is done. In the 
2nd case study, the irradiation is 
increased to 1000W/m2, and the 
performance comparison is repeated. 

the best efficiency is that of the 
variable step FO-InC + ALO, with 
the efficiency of 98.1%. 
 

(Aguila-Leon et 
al., 2023) 

These four metaheuristic 
algorithms, the Grey Wolf 
Optimizer algorithm, Wolf 
Optimizer Algorithm, Simulated 
Annealing, and Particle Swarm 
Optimization, are compared to 
the Perturb and Observe and 
Incremental Conductance 
algorithms. 
 

The MPPT techniques are analyzed 
for the transient state and full-day 
operation scenarios for constant and 
variable irradiations, temperatures, 
and loads. 
 

Grey Wolf Optimizer 
(GWO) + Discrete PID 
MPPT Controller + InC 

 

The comparative results show that 
the Maximum Power Point 
Tracking controller optimized by 
the Grey Wolf Optimizer algorithm 
has superior performance, giving 
an average 6% output power 
higher than the other controllers 
under the test scenarios 
evaluated. 

(Allahabadi et 
al., 2022) 

Proposes an artificial neural 
network in the 1st stage to 
estimate the GMPP and uses a 
hill climbing method, PO/InC, in 
the second stage to accurately 
track the GMPP. 

It doesn’t use the voltage and current 
sensors but samples the IV curve at 
specific points for training data 
(reflecting changes in temperature 
and irradiation) of the ANN for stage 1 
of the MPPT. A feed-forward ANN 
estimates the position of the GMPP, 
and the 2nd stage hill-climbing 
technique tracks the exact location of 
the global MPP. 

ANN+Hill Climbing 
(PO/InC) 

The results showed that the proposed 
ANN-based tracker provides accurate 
tracking even under complicated partial 
shading patterns and is about 1.7−7.9 
times faster than the methods 
compared with them. The proposed 
method is an excellent fit for vehicle-
integrated PV (such as cars, buses, 
and boats) subjected to complicated 
and rapidly changing partial shading 
conditions. 

(Aminnejhad et 
al., 2021) 

A robust sliding-mode controller 
with quantized inputs is 
proposed for MPPT in 
photovoltaic power generation 
systems. 
 

The PV panel's output current and 
voltage are inputs for the QISMC. 
Sliding surface, control law, and 
hysteresis quantizer comprise the 
QISM controller design. The 
controller’s output is then applied to 
the boost converter PWM. 

Adaptive sliding mode 
controller with 
quantized hysteresis 
inputs (QISM) 
 

Using hysteresis quantized inputs, 
the chattering phenomena, as the 
main weakness of the sliding 
mode controllers, is removed. 
Also, the external disturbances, 
model uncertainties, and 
environmental and load variation 
effects are attenuated in the 
proposed controller scheme. 

(Aoughlis et al., 
2021) 

Proposes an MPPT technique 
that ends oscillations at MPP of 
PO MPPT technique by 
employing a PID controller 
tuned by PSO technique 

The PSO tunes the PID controller 
gains using the integral square error 
performance index as an objective 
function that calculates the difference 
between theoretical and generated 
power. In the 1st structure, the PID 

PO+PID+PSO The second structure can extract 
the maximum energy from the 
TEG for each temperature gradient 
change more efficiently. The 
second structure is more stable 
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controller is used to tune the step size 
of the PO algorithm by observing at 
each sample time the difference 
between the maximum TEG Power 
and the actual power generated. The 
PO tunes the duty cycle of the boost 
converter PWM. In the 2nd structure, 
the PSO tunes the step size of the 
PO, then tunes the PID gains using 
the tuned step size, and then the PID 
drives the duty cycle of the PWM. 

and more precise than the first 
structure. 
 

(Larbes et al., 
2009) 

Proposed an improved fuzzy 
logic controller tuned by a 
genetic algorithm, and its 
performance is compared to that 
of the PO technique under 
varying weather conditions. 

FLC doesn’t require knowledge of the 
exact model. The FLC has two inputs, 
i.e., error (E) and change of error CE, 
computed at sample time k, and the 
output is the duty cycle that drives the 
PWM of the boost converter. 

Improved FLC using 
GA 

The enhanced algorithm is 
compared to the PO technique. 
Compared to the PO technique, 
the FLC demonstrates improved 
rise and settling time for a fast 
solar irradiance increase from 500 
to 100W/m2. 

(Kamran et al., 
2020) 

The proposed algorithm 
confines the search space of the 
power curve to a 10% area that 
contains the MPP and starts 
perturbation and observation 
within that limited search space. 
 

Enslin et al. (1997) and Huynh and 
Dunnigan (2016) state that the VMPP 
is about 76% of the open circuit 
voltage. It first measures the voltages 
V1 and V2 to find the MPP-containing 
region to restrict the operating point of 
the solar panel to 10% of the power 
curve and then starts perturbation and 
observation. In a few perturbations, 
MPP is achieved and maintained. 
Under uniform weather conditions, it 
sticks to the maximum power point, 
while as the irradiance changes, it 
finds new local maxima in the same 
way described for the constant 
irradiance and then maintains it. 

PO + sun tracker + V1 
and V2 Calculator. 

The confinement of the algorithm’s 
search space lessened the 
response time to the changing 
weather conditions, decreasing the 
steady-state oscillations at the 
MPP. Integrating the solar tracker 
and improved P&O MPPT 
algorithm provides better quality 
and conditioned electricity for the 
load. The proposed system was 
experimentally steered, whose 
results verified the effectiveness of 
the proposed P&O algorithm. 
According to the simulation results, 
the oscillations at the MPP have 
not been eliminated. 
 

(Banakhr and 
Mosaad, 2021) 

The paper proposes an adaptive 
MPPT of a stand-alone PV 
system using an updated PI 
controller optimized by harmony 
search (HS). 
 

A lookup table is formed for the 
temperature and irradiance with the 
corresponding voltage at MPP 
(VMPP). This is the updated 
reference voltage required for MPP at 
each temperature and irradiance. A 
comparator computes the error 
between the measured PV and 

PI + Hill climbing + 
Harmony search (HS) 

Compared to IC and PO, the 
fluctuations at the MPP are 
eliminated by the proposed PI-HS 
MPPT—the proposed adaptive 
technique performed better than 
P&O and IC techniques regarding 
system efficiency. 
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updated reference voltage. This error 
is minimized using HS optimization. 
The HS finds the optimized gains for 
the PI controller, and the PI controller 
tunes the duty cycle of the PWM of 
the DC-DC converter. 

(Bani Salim et 
al., 2019b) 

The main goal of the Roburst 
direct adaptive controller 
(RDAC) is that the Boost 
converter (main plant) output 
yp(t) will follow the reference 
plant output ym(t) by use of the 
adaptive gains. 

The proposed RDAC uses only the 
boost converter inputs and outputs 
and does not need any estimations or 
identification of boost converter 
parameters. The RDAC comprises a 
reference model, a compensator, and 
three adaptive gains (Ke, Kx, Ku). Ke is 
the adaptive gain of the error, Kx is 
the adaptive gain of the states, and Ku 
is the adaptive gain of the input. To 
implement the RDAC, the plant Gp(s) 
has to be almost strictly positive real 
(ASPR), and if the plant Gp(s) is not 
ASPR, then a compensator Gc(s) has 
to be added in the feedforward path to 
the plant so that the new plant, called 
augmented plant Ga(s), becomes 
ASPR. 

Robust direct adaptive 
controller (RDAC) 

The results show that the 
response time for the adaptive 
controller is less than 0.3 s, which 
is fast. Also, the adaptive controller 
can track the MPP for various 
irradiance values. During the 
steady-state operation, some 
prominent peaks occur in the duty 
cycle because of the high steady-
state at the beginning of the RDAC 
operation. The controller can adapt 
to the changes within the boost 
converter parameters, i.e., the 
algorithm presented in this paper 
can be used with different MPPT 
types, leading to a stable system 
and maximum output power 
values. 
 

(Mohammed et 
al., 2022) 

This paper presents the design 
of a maximum power point 
tracking-based (MPPT) DC 
converter controller.  

 
 

The PSO algorithm tunes the PID 
controller to find optimum PID gain 
values through the integral time 
square error cost function 
performance index. The incremental 
Conductance (IC) algorithm has been 
employed as an MPPT with an 
optimized PID. 

InC MPPT + PID + PSO The results illustrated that the 
voltage, current, and power 
system responses with the 
proposed controller under different 
disturbances had less overshoot, 
lower steady-state error, and 
shorter settling time compared with 
the optimized PID controller, 
noticing that the results were 
obtained by using the same 
optimization technique for the two 
controllers. The effectiveness of 
the proposed controller has been 
tested by implementing different 
disturbances, including variable 
temperature, variable irradiation, 
and load change disturbances. 
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(Saidi et al., 
2021) 

The paper proposes a Neural 
Network Estimator-based MPPT 
controller that calculates the 
position of the MPP based on 
open circuit voltage (VOC) and 
uses the PO technique to 
search for the GMPP within the 
estimated region. 
 

The system comprises a Neural 
Network Estimator (NNE), a 
conversion coefficient, and an optimal 
duty cycle calculation stage. The 
proposed NNE technique, 
implemented in MATLAB/Simulink, 
calculates the ratio of open circuit 
voltage (VCO) corresponding to each 
solar radiation for various temperature 
values to the standard open circuit 
voltage. A regularisation coefficient is 
determined, which estimates the 
voltage corresponding to the MP 
directly from the open circuit voltage 
for each solar radiation. Finally, the 
optimal duty cycle is evaluated from 
the input/output equation of the boost 
converter. 

PO + NNE It is demonstrated that this 
controller can achieve almost 99% 
of the real PV maximum power. 
The Simulation results indicate 
that optimizing the P&O MPPT 
control with an NNE algorithm 
provides better results and 
performance regarding accuracy 
and complexity. 
 

(Harrag and 
Messalti, 2015) 

It presents a new modified PO 
MPPT algorithm with an 
adaptive duty cycle step using a 
PID controller tuned by a 
genetic algorithm. 

The reference power of a closed-loop 
feedback system is derived from the 
PV cell or module. The output power 
produced by the DC-DC converter is 
the negative feedback power 
compared to the reference power at 
the summation point. The output of 
the summing point produces an error 
that is used as an objective function of 
the GA algorithm. A performance 
index is applied to the error as a cost 
function to be reduced by the GA 
algorithm. The GA algorithm 
minimizes the cost function by finding 
the optimum gain values of the PID 
controller and placing them into the 
workspace. The optimized PID 
controls the step size of the PO MPPT 
and, thus, improves its adaptability 
and response time. 

GA+ PID+PO The efficiency and improvements 
of the proposed algorithm in 
transient, steady-state, and 
dynamic responses, especially 
under rapidly changing 
atmospheric conditions, have been 
demonstrated by measuring the 
related ripple, overshoot, and 
response time. Algorithm 
robustness was verified using 
different schemes for temperature 
and insolation, proving its ability to 
track MP in random and fast-
changing atmospheric conditions. 

(Ahmed and 
Salam, 2016) 

Proposes an adaptable step 
size of the PO and sets a 
tracking boundary for the PO, 
and that boundary reduces 
convergence speed.  

It modifies the PO step size by 
calculating the locus of the MPP as a 
function of open circuit voltage. The 
step size is reduced at positions 
closer to the MPP and increased at 

Modified PO 
MPPT+PID 

The proposed method is validated 
experimentally using a buck-boost 
converter fed by a solar PV array 
simulator. Based on the EN 50530 
dynamic irradiance tests, the 
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positions further to the MPP. The 
MPP is estimated using open circuit 
voltage. 

proposed method achieved an 
average MPPT efficiency of almost 
1.1% higher than the conventional 
PO when irradiance changes 
slowly and about 12% higher 
under fast-change irradiance. 

(Da Rocha et 
al., 2020) 

It proposes combining the Bat-
based algorithm with traditional 
algorithms (P&O, IC, and Beta) 
To overcome oscillations at the 
MPP due to partial shading 
conditions and find GMPP under 
partial shading. 
  

The proposed MPPT algorithms, 
named in this paper as Bat-P&O, Bat-
Beta, and Bat-IC, are evaluated and 
compared using a DC-DC Boost 
converter. Finally, experimental and 
simulation results assess the 
performance and effectiveness of the 
Bat-based MPPT techniques. 

BAT algorithm + Hill 
climbing MPPT 
traditional/classical 
algorithms 

The proposed Bat-P&O, Bat-Beta, 
and Bat-IC MPPT algorithms 
presented the best overall 
performance compared to other 
MPPT algorithms. The comparison 
tests also evaluated the algorithms 
considering a scenario with three 
different patterns of solar 
irradiance and temperature, which 
included a slight variation in solar 
irradiance and the transition from 
STC to partial shading condition. 
In particular, the Bat-Beta MPPT 
algorithm improved performance 
for all test conditions. 

(Mohanty et al., 
2017) 

It proposes a new MPPT 
algorithm combining grey wolf 
optimization (GWO). It perturbs 
& observes (P&O) technique for 
efficient extraction of MP from a 
PV system subjected to rapid 
variation of solar irradiance and 
partial shading conditions. 

GWO handles the initial stages of 
MPPT, followed by applying the PO 
algorithm at the final stage for faster 
convergence with the GMPP. This 
MPPT thus overcomes the 
computational overhead encountered 
in the case of a GWO-based MPPT 
algorithm reported earlier by Mohanty 
et al. The idea behind using the hybrid 
technique is to scale down the search 
space of GWO, which will help speed 
up convergence toward the GMPP. 
The proposed MPPT algorithm is first 
implemented using 
MATLAB/Simulink, and subsequently, 
an experimental setup is prepared for 
practical implementation. 

GWO + PO The results confirmed that the 
proposed hybrid GWO-PO MPPT 
provides superior tracking 
performance in weather conditions 
compared to both GWO and 
PSO+PO-based MPPT algorithms. 
 

(Ali et al., 2020) Proposes an online grid-
connected PV-inverter system. 
Its MPPT is controlled by an 
SMC whose parameters are 

To compare the proposed method 
with PO MPPT, InC MPPT, and Fuzy 
logic controller MPPT, the setup takes 
the output from the DC-DC converter 
through a negative feedback loop and 

Sliding mode controller 
(SMC) + θ Modified Krill 
herd algorithm 

Results show desirable limitation 
of oscillations at GMPP and an 
efficiency of 99.5% in tracking the 
MPP. 
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optimized using a modified Krill 
herd method. 

compares it to PV reference power. 
The comparator's output error 
(difference between power output and 
power PV) is fed to the SMC, whose 
coefficients (Ka, Kb, Kc, Kd, and Ke) 
are optimized by the θ Modified Krill 
herd algorithm. 

(Pilakkat and 
Kanthalakshmi, 
2020) 

Proposes an online grid-
connected PV system that has 
two parts. The first part is an 
Artificial Bee Colony PO MPPT 
installed between the PV and 
Boost converter output power. 
The second part is the DC–AC 
inverter, LC filter, and Phase 
Locked Loop (PLL) to 
synchronize with the grid. The 
system is tested under PSC and 
varying meteorological 
conditions. 

The first stage of the Artificial Bee 
Colony algorithm + PO MPPT is to 
determine the minimum change in 
irradiation using the ABC algorithm. If 
the condition of minimum change in 
irradiation is satisfied, then the PO 
starts the search for the GMPP using 
a small step size. The primary benefit 
of the ABC algorithm is eliminating 
convergence during partial shading 
conditions at the local maximum 
power point. 

Artificial Bee Colony 
algorithm + PO MPPT 

Even though the ABC-PO 
algorithm 
contributes to more excellent 
performance and precision in 
tracking GMPP, its complexity 
in real-time implementation 
remains a demerit of this method. 

(Manickam et 
al., 2017) 

Proposes a PSC detection 
scheme to eliminate power loss 
caused by unnecessary broad 
search under uniform irradiance. 
This paper proposes a scheme 
for detecting the type of 
irradiation, viz., uniform or non-
uniform. 

This partial shading detection scheme 
is implemented in a GMPPT control 
strategy combining the conventional 
PO algorithm and the Fireworks 
Algorithm (FWA). Under uniform 
irradiation conditions, the PO 
algorithm is used owing to the lower 
magnitude of power oscillations 
during tracking than the FWA. On the 
other hand, under partial shading 
conditions, the FWA is employed due 
to its global search and fast-tracking 
capability. 

PO + Fireworks 
algorithm 

Global maximum power point 
tracking (GMPPT) strategies for 
photovoltaic systems are effective 
under non-uniform 
irradiation conditions but cause 
unnecessary power loss due to 
broad search under uniform 
irradiance.  

(Sheik 
Mohammed et 
al., 2016) 

Proposes an enhanced PO 
MPPT that combines 
conventional PO algorithm and 
Learning Automata (LA) 
optimization.  
A unique PV system model is 
designed to evaluate the 
proposed algorithm for several 
scenarios with various weather 
conditions. 

Initially, Learning Automata identifies 
the zone for the given temperature 
and irradiation value and selects the 
optimal duty cycle of the 
corresponding zone. Next, the PO 
increased the duty cycle and reached 
the MPP in a few steps. But, in the 
case of conventional 
P&O MPPT, the duty cycle value rises 
from 0.1 until it reaches MPP. 

PO +Learning 
Automata (LA) 

The results demonstrate that the 
proposed MPPT method has 
significantly improved the tracking 
performance, response to fast-
changing weather conditions, and 
Also, there is less oscillation at 
MPP than at the conventional PO 
MPPT and Modified P&O MPPT. 



45 

2.4.3.7. Discussion of AI MPPT Algorithms 

High accuracy, fast tracking speed, ease of implementation, and the ability to track the 

Global Maximum Power Point (GMPP) even under partial shading conditions (PSC) 

are the most essential and desirable features. Yet, they are complementary features of 

any individual MPPT technique because high accuracy is typically associated with slow 

tracking speed, as in the Perturb and Observe (PO) objective function. Most single or 

individual MPPT techniques achieve one or two desirable features while failing to reach 

the others. As a result, Hybrid MPPT techniques are produced, which combine two 

separate MPPT techniques to achieve the overall benefits of one while removing the 

shortcomings of the other. The hybrid MPPT techniques improve settling time and 

overall PV system response time (Batarseh and Za’ter, 2018). Hybrid methods aim to 

reduce the oscillation at MPP, accelerate the convergence speed, improve the tracking 

accuracy, reduce the power loss, and improve the conversion efficiency of the PV 

system (Fan et al., 2021). 

2.5. Various Cube Satellite missions 

Table 2. 6: Various Cube Satellite missions 

Mission 
Name 

 

Year 
 

Organization 
 

Purpose 
 

References 
 

Artemis 1 
CubeSats 

2022 NASA Multiple lunar and 
deep space 
exploration 

https://www.nasa.gov/ 

REAL 2021 Dartmouth 
College 

Characterise particle 
loss from Earth’s Van 
Allen belts 

https://www.nasa.gov/ 

LunIR 2022 Lockheed 
Martin 

Moon surface mapping 
and composition 
characterization 

https://www.space.com/ 

OMOTENASHI 2022 JAXA Demonstrate lunar 
landing and measure 
surface radiation 

https://www.space.com/ 

NEA Scout 2022 NASA Near-Earth asteroid 
reconnaissance 

https://www.space.com/ 

EQUULEUS 2022 JAXA and the 
University of 
Tokyo 

Study Earth's 
plasmasphere and 
radiation environment 

https://www.space.com/ 

BioSentinel 2022 NASA Ames Study the effects of 
deep-space radiation 
on yeast cells 

https://www.space.com/ 

RainCube 2018 NASA JPL Relay data from the 
Mars InSight lander 

https://science.nasa.gov/ 

Mars Cube One 
(MarCO) 

2018 NASA JPL Relay data from the 
Mars InSight lander 

https://science.nasa.gov/ 

https://www.nasa.gov/
https://www.nasa.gov/
https://www.space.com/
https://www.space.com/
https://www.space.com/
https://www.space.com/
https://www.space.com/
https://science.nasa.gov/
https://science.nasa.gov/
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Q-PACE 2021 University of 
Central Florida 

Study collisions in 
protoplanetary disks 

https://science.nasa.gov/ 

PREFIRE 
Mission 

2023 NASA A pair of CubeSats 
designed to study how 
much heat is radiated 
from Earth's polar 
regions into space. 
Polar Radiant Energy 
in the Far-InfraRed 
Experiment 
(PREFIRE) 

https://www.jpl.nasa.gov/news/nasa-
launches-second-small-climate-
satellite-to-study-earths-poles 

TROPICS 
Constellation 

2023 NASA Time-Resolved 
Observations of 
Precipitation structure 
and storm Intensity 
with a Constellation of 
Smallsats mission. 

https://scitechdaily.com/nasa-tropics-
constellation-rocket-lab-successfully-
launches-final-cubesat-duo/ 

VISORS 
Mission 

2024 University of 
Illinois, 

The Virtual Super-
Resolution Optics with 
Reconfigurable 
Swarms (VISORS) will 
use a formation of 
CubeSats to image the 
solar corona. 

https://scitechdaily.com/nasa-
announces-latest-candidates-for-
cubesat-space-missions/ 

 

CubeSat missions, in Table 2.5, represent a range of objectives, from deep space 

exploration to studying Earth's atmosphere. They highlight small satellites' versatility 

and importance in advancing our understanding of space. 

2.6. Conclusion 

The advantages that the hybrid MPPT offers are as follows: tracking of the global 

maximum power point (GMPP) even under partial shading conditions and fast-

changing weather conditions, damping of oscillations around the GMPP, increased 

efficiency of PV power extraction, fast response time and fast convergence time and 

generally decrease power losses. In the hybrid MPPT, faster response time is 

proportional to huge oscillations around the MPP and inversely proportional to the 

tracking efficiency of the GMPP.  

The disadvantages of the hybrid MPPT techniques are high computation complexity 

since they employ bio-inspired AI algorithms, and hardware implementation of hybrid 

includes additional hardware components such as PID controllers and slide mode 

controllers; thus, hardware complexity is increased. Increased hardware and software 

complexities are non-ideal for CubeSat applications with limited volume and mass. The 

absence of a dedicated microprocessor for EPS is another limitation to implementing 

hybrid MPPTs for a CubeSat application. Hence, a low-complexity classical MPPT such 

as PO is desirable to be combined with a low-complexity AI technique. 

https://science.nasa.gov/
https://www.jpl.nasa.gov/news/nasa-launches-second-small-climate-satellite-to-study-earths-poles
https://www.jpl.nasa.gov/news/nasa-launches-second-small-climate-satellite-to-study-earths-poles
https://www.jpl.nasa.gov/news/nasa-launches-second-small-climate-satellite-to-study-earths-poles
https://scitechdaily.com/nasa-tropics-constellation-rocket-lab-successfully-launches-final-cubesat-duo/
https://scitechdaily.com/nasa-tropics-constellation-rocket-lab-successfully-launches-final-cubesat-duo/
https://scitechdaily.com/nasa-tropics-constellation-rocket-lab-successfully-launches-final-cubesat-duo/
https://scitechdaily.com/nasa-announces-latest-candidates-for-cubesat-space-missions/
https://scitechdaily.com/nasa-announces-latest-candidates-for-cubesat-space-missions/
https://scitechdaily.com/nasa-announces-latest-candidates-for-cubesat-space-missions/
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CHAPTER 3 

PV MODULE MODELLING AND PO MPPT CONTROL IMPLEMENTATION FOR A CUBE 
SATELLITE POWER SYSTEM 

3.1. Introduction 

This Chapter begins with the mathematical modeling of a PV module using the Azur 

Space 3G30C solar module datasheet. The module model uses the single-diode PV 

model method as opposed to the double-diode PV method. The model is implemented 

in MATLAB/Simulink using the five algebraic equations labeled in the single-diode PV 

model circuit diagram in Figure 3.2. An orthographic drawing showing an exploded two-

dimensional view of how two Azur space 3G30C solar modules are connected in 

parallel in each X-configuration side panel or Y-configuration side panel is depicted in 

Figure 3.3 of this chapter. Also, Figure 3.3 illustrates a two-dimensional view of the four 

Spectrolab solar cells in each Z-configuration side panel connected in parallel. 

Subsections 3.2 and 3.3 describe the mathematical modeling of the Azur Space 3G30C 

solar module in MATLAB/Simulink.  

The X and Y-configuration side panels are connected to an MPPT controller for 

maximum power extraction from the PV side panels in the CubeSat architecture shown 

in Figure 3.1. Subsection 3.4 begins with a comparative analysis of the four 

conventional MPPT functions. The comparative analysis reveals how each 

conventional MPPT function performs under standard test conditions (STC) and 

varying irradiation or temperature. The PO function was implemented because of its 

low complexity demand in the CubeSat microprocessor power (one OBC). At the end 

of subsection 3.4. a comparison of how the power, voltage, and current characteristics 

respond to the application of the PO function and without it is demonstrated. 

3.2. Photovoltaic Solar Module Mathematical Modelling Requirements 

The PV solar module is modeled using five algebraic current equations from the first 

principles. A single-diode PV equivalent solar cell circuit is depicted in Figure 3.1. The 

five current equations are labeled on the equivalent circuit in Figure 3.1. The equivalent 

circuit in Figure 3.1 concerns the solar PV panel part. The reviewed literature on PV 

modeling generally agrees that the single-diode model (Figure 3.2) suffices for 

representing the electrical characteristics of the PV solar cell (Mataifa, 2015). Table 3.1 

shows values of the parameters used on the five mathematical equations of a PV solar 

cell as well as values of inputs as per Azur Space 3G30C solar cell datasheet. 
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Figure 3. 1: PV solar model of 1D/2R cell (Adapted from Hoarca, 2005) 

To calculate the output current of the one diode/two resistor (1D/2R) PV model shown 

in Figure 3.2, five parameters must be predetermined using measured experimental 

data and data provided by the manufacturers. These five parameters are photovoltaic 

current (Iph), diode saturation current (IS/Io), diode ideality factor (A), series resistance 

(RS), and parallel resistance (RP). In this thesis, the parameters obtained by Alvarez et 

al., 2021, where a 1D/2R model equivalent circuit was analytically fitted to I-V curves 

corresponding to data from Azrur Space 3G30C solar cells datasheet. Numerically 

fitting demands the I-V curve to have enough large number of points for it to be 

accurate, whereas analytical fitting uses the characteristic points (, Isc), (Vmpp, Impp), (Voc, 

0) and the maximum power point where; −
𝑰𝒎𝒑𝒑

𝑽𝒎𝒑𝒑
 to find the values of the five parameters 

listed in Table 3.1. Alvarez et al., 2021 also numerically fitted to I-V curves 

corresponding to data from Azrur Space 3G30C solar cells datasheet and obtained 

distinct values of the five parameters. However, this thesis does not use the numerically 

fitted values to model the Azur 3G30C solar PV cell mathematically (Álvarez et al., 

2021). 

Table 3. 1: Parameters of mathematical equations (Alvarez, 2021) 

Parameter  Parameter full name  Parameter value at (STC) 

Iph (*) [A] Photovoltaic current 457mA 

T Operating Temperature –65 ºC to +125 ºC at LEO 

Io (*) [A] Diode saturation current 5.012e-28 

q Electron charge  1.6e-19C 

A Ideality factor of diode 0.56 

k Boltzmann constant 1.38e-23 J/K 

Eg Band gap energy 1.1eV 

RS [Ω] Series resistance 0.653 

Rp [Ω] Shunt resistance 160.7 

Vt Thermal Voltage 0.0257V 
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The electrical data of the solar module used on the four adjacent sides of the 1U cube 

satellite is provided in Table 3.2. 

Table 3. 2: Electrical data of the Azur Space 3G30C module BOL (Alvarez, 2021) 

Parameter Parameter name Parameter value 

VOC (*)  Open circuit voltage 2.7V 

ISC (*)  Short circuit current 457mA 

Ns Number of cells in series 3 

Np Number of cells in parallel 1 

Vmpp (*)  Maximum point voltage 2.411V 

Impp (*)  Maximum point current 442.8mA 

Ki [A/°C] 
Coefficient with temperature of the short circuit current @ 

STC 
3.2e-4 BOL 

Tn Nominal Temperature 28°C, at STC 

G Solar irradiance 
1367W/m2 at 

STC 

_____________________________________________ 

Symbols listed with (*) imply that values of the quantities at standard test conditions (STC) also apply. 

3.3. Mathematical Equations of a PV solar module 

Based on the single diode/ two resistor (1D/2R) model (Figure 3.1), a five-parameter 

determination of the solar module listed in Table 3.1., the mathematical expressions of 

the PV module were derived: 

The photovoltaic current (𝑰𝒑𝒉) depends on the irradiance and temperature of the cell: 

𝑰𝒑𝒉 = [𝑰𝑺𝑪 + 𝒌𝒊(𝑻 − 𝟑𝟎𝟏)] ×
𝑮

𝟏𝟑𝟔𝟕
       (3.1) 

The module reverse saturation current 𝑰𝒔,𝒓:  

𝑰𝒓𝒔 =
𝑰𝒔𝒄

𝒆𝒙𝒑(
𝒒×𝑽𝑶𝑪

𝑵𝒔×𝒌×𝑨×𝑻
)−𝟏

         (3.2) 

The saturation/diode saturation current of the cell 𝑰𝒔/𝑰𝒐 varies with the temperature: 

𝑰𝒔 = 𝑰𝒓𝒔 [
𝑻

𝑻𝒏
]

𝟑

𝒆𝒙𝒑 [
𝒒×𝑬𝒈

𝑨×𝑲
 (

𝟏

𝑻𝒏
−

𝟏

𝑻
)]       (3.3) 

The current through the parallel resistance or the shunt resistor: 
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𝑰𝑷 = [
𝑽+𝑰𝑹𝑺

𝑹𝑷
]          (3.4) 

The current through the diode 𝑰𝒅 given by the following equation: 

𝑰𝒅 =  𝑰𝑺 [𝒆𝒙𝒑 (
𝑽+𝑰×𝑹𝒔

𝑨×
𝒌×𝑻

𝒒

) − 𝟏]        (3.5) 

The following equation gives the output current of the PV array: 

𝑰 = 𝑰𝒑𝒉 − 𝑰𝒅 − 𝑰𝒔 [𝒆𝒙𝒑 (
𝒒(𝑽+𝑰𝑹𝒔)

𝑨𝒌𝑵𝒔𝑻
)]       (3.6) 

Photocurrent (Iph) is current directly proportional to the incident solar irradiation and 

temperature from the sun. The diode saturation current (ID) is the forward bias current 

present only when the photocurrent is present. The reverse saturation current (Irs) is 

the avalanche current in the reverse bias condition that must not be exceeded. The 

shunt resistor current (Ish) is the nonideality current that flows through the shunt resistor 

and represents the slope of the current on the IV characteristic curve. The output 

current (I) is the generated nonideality current that flows through the series resistor, 

and it also represents the voltage slopes across the maximum point of the IV 

characteristic curve. Each side of the cube satellite is fitted with two Azur Space 3G30C 

solar modules connected in series to form one large panel on each side. All large panels 

on opposite sides will be connected in parallel to form two groups: the (+X, -X) group 

and the (+Y, -Y) group. 

 

Figure 3. 2: Exploded view of a 1U CubeSat exterior design (Mahdi et al., 2014)
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An exploded view of the six sides, including the top and bottom sides, is depicted in Figure 3.3. Each Azur Space 3G30C module MPP outputs: 

2411mV, 442.8mA, operated under STC (1367W/m2, 28°C). Each panel side in the X-configuration or the Y-configuration is fitted with two Azur 

Space 3G30C modules that are connected in parallel and give a voltage output of 2411mV, a total current output of 885.6mA, at MPP. The 

opposite panel sides in the X-configuration are connected in parallel and form a (+X, -X) group, and the opposite panel sides in the Y-

configuration are connected in parallel and form a (+Y, -Y) group. All eight small Spectrolab TASC cells on the top and bottom sides will be 

connected parallel to form a (+Z, -Z) group. The Z-configuration's top or bottom side gives a voltage output of 2.2V, a total current of 112mA, at 

MPP. The (+Z, -Z) group gives a voltage output of 2.2V and a total current of 224mA. 

3.4. Photovoltaic Solar module modeling in MATLAB Simulink. 

Depicted Figure 3.3 is the photovoltaic current model: 𝑰𝒑𝒉 = [𝑰𝒔𝒄 + 𝑲𝒊(𝑻 − 𝟑𝟎𝟏)
𝑮

𝟏𝟑𝟔𝟕
] 

 

Figure 3. 3: Photocurrent model 
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Figure 3.3 shows the photocurrent (Iph), which is modeled based on the incident solar 

irradiance (G) and temperature (T). The photocurrent equation is given by equation 

3.1., where 𝑰𝒔𝒄is the short-circuit current, 𝑲𝒊 is the temperature coefficient of the short-

circuit current, 𝑻 is the cell temperature and 𝑮 is the solar irradiance. This model is 

fundamental as it establishes the initial current generated by the PV cell when exposed 

to sunlight. Figure 3.4 is the saturation/diode saturation current model, and it depends 

on the temperature and is modeled by equation 3.3. 𝑰𝒓𝒔 is the reverse saturation 

current, 𝑻 is the cell temperature, 𝒒 is the electron charge, 𝑬𝒈 is the bandgap energy, 

𝒌 is Boltzmann's constant, and 𝒏 is the diode ideality factor. This model is crucial for 

understanding the temperature-dependent behavior of the diode's saturation current. 

Figure 3.5 is the saturation current model. Ohm's law gives the current through the 

shunt resistor (Ish) in equation 3.4. V is the output voltage, Rs is the series resistance, 

and Rsh is the shunt resistance. This model captures the losses due to leakage current 

in the PV cell.  

Figure 3.6 is the reverse saturation current model. The reverse saturation current (Irs) 

is modeled as equation 3.2. where Voc is the open-circuit voltage, and Ns is the number 

of cells in series. This model is integral for characterizing the behavior of the diode 

under reverse bias conditions. Figure 3.7 is the Output Current Model. The PV module's 

output current (I) is derived by combining the models of equations 3.1. to 3.5, thereby 

forming equation 3.6. This equation consolidates the contributions of photocurrent, 

diode current, and shunt current to yield the net output current of the PV cell. Figures 

3.8 and 3.9 show the combined subsystems of the solar PV cell. These figures illustrate 

the integration of the sub-models into a unified PV cell model. The final subsystem 

takes irradiance and temperature as inputs. It outputs the I-V and P-V characteristics, 

which are essential for simulating the performance of the PV module under various 

conditions. 

Figure 3.10 depicts the I-V curve, which represents the relationship between the output 

current (I) and the PV module's output voltage (V). It is characterized by the short-circuit 

current (Isc) at V=0 and the open-circuit voltage (Voc) at I=0. The curve exhibits a non-

linear behavior where the maximum power point (MPP) is located at the knee of the 

curve, indicating the optimal operating point for maximum power extraction. Figure 3.11 

depicts the P-V curve and plots the output power (P) against the output voltage (V). 

The peak of this curve corresponds to the MPP, where the product of current and 

voltage yields the maximum possible power. This characteristic curve is crucial for 

MPPT algorithms to adjust the operating point to maximize energy harvest dynamically. 

The technical description of each model emphasizes the importance of each model and 

characteristic curves for simulating the performance of photovoltaic systems. 
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Figure 3.4 is the saturation/diode saturation current model: 𝑰𝒔 = 𝑰𝒓𝒔 [
𝑻

𝑻𝒏
]

𝟑

𝒆𝒙𝒑 [
𝒒.𝑬𝒈𝟎(

𝟏

𝑻𝒏
−

𝟏

𝑻
)

𝒏𝑲
] 

 

Figure 3. 4: Saturation current model 
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Depicted Figure 3.5 is the parallel/shunt resistor current model: 𝑰𝒔𝒉 = [
𝑽+𝑰𝑹𝑺

𝑹𝒔𝒉
] 

 

Figure 3. 5: Shunt resistor current model 

Depicted Figure 3.6 is the Reverse saturation current model: 𝑰𝒓𝒔 =
𝑰𝒔𝒄

𝒆𝒙𝒑[
𝒒.𝑽𝑶𝑪

𝒏𝑵𝒔𝑲𝑻
−𝟏]

 

 

Figure 3. 6: Reverse saturation current model 
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Depicted Figure 3.7 is the output current model: 𝑰 = 𝑰𝒑𝒉 − 𝑰𝑫 [𝒆𝒙𝒑 (
𝒒(𝑽+𝑰𝑹𝒔)

𝒏𝑲𝑵𝒔𝑻
) − 𝟏] − 𝑰𝒔𝒉 

 

Figure 3. 7: Output current model 

When drawing the mathematical models on Simulink, one begins with a single equation, creates a subsystem, and moves on to the following 

equation. The process is iterated until all the equations are represented. Depicted Figure 3.9 is the combined subsystems of the PV model of a 

solar cell. 
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Figures 3.3 to 3.7 show the subsystems of the five current equations and the far right constant, and blocks are added to convert Celsius input 

temperature to Kelvin value. 

 

Figure 3. 8: Combined subsystems of the solar PV cell 

The final step is to create a single subsystem of the combined subsystems. Temperature and irradiation are placed as inputs of the final PV model, and 

the IV graph and PV graphs are outputs of the final PV model. The final PV model is depicted in Figure 3.9. 
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Figure 3.9: Final PV model 

 

Figure 3. 10: IV curve of the 3G30C PV module 
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For the model to execute without errors, one needs to go to the model properties, look under callbacks, click the initialization function, and preset 

all the constant values according to the values outlined in Tables 3.1 and 3.2.  

 

Figure 3. 11: PV curve of the 3G30C PV module 

Figure 3.10 depicts the simulation results of the IV model, where the x-axis starts from zero to VOC, equal to 2.7V, and the Y-axis starts from 

zero to ISC, equal to 0.457A. Figure 3.11 depicts the simulation results of the PV model, where the x-axis starts from zero to VOC, equal to 2.7V, 

and the Y-axis starts from zero to Pmax, equal to 1.23W. The shunt resistance: 𝑹𝒔 =  
𝑽𝑶𝑪− 𝑽𝒎𝒑

𝑰𝒎𝒑
=  𝟎. 𝟔𝟓𝟑𝜴; Thermal Voltage: 𝑽𝒕 =  

𝒏𝒌𝑻

𝒒
= 𝟎. 𝟎𝟐𝟓𝟕𝑽; 

Shunt Resistance: 𝑹𝒔𝒉 =  
𝑽𝒎𝒑

𝑰𝒔𝒄−𝑰𝒎𝒑
= 𝟏𝟔𝟎. 𝟕𝛀 
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3.5. Conventional MPPT Techniques Comparisons for Implementation in CubeSat 

Power Systems 

There are four conventional MPPT objective functions, namely, perturb and observe 

(PO), fractional short circuit current (FSCC), fractional open circuit voltage (FOCV), and 

incremental conductance (IC). Research continuously improves upon these four basic 

conventional techniques using artificial intelligence (AI) techniques like fuzzy logic 

neural networks and adaptive neuro-fuzzy Inference systems (ANFIS). It has been 

found that under steady-state weather conditions, the incremental conductance (IC) 

performs the best in terms of efficiency and power losses. Under positive increasing 

temperature incremental conductance (IC), convergence to the maximum power point 

is faster than all other objective functions, followed by the fractional open circuit voltage 

(FOCV) technique. However, under negative decreasing temperatures, FOCV finds the 

maximum point faster than all other techniques followed by the IC technique. Fractional 

open circuit voltage (FOCV) finds the maximum point fast in dynamic conditions 

because the open circuit voltage doesn’t change rapidly with temperature changes. 

However, the saturation current that the fractional short circuit current (FSCC) 

technique depends on changes drastically under dynamic weather conditions. Hence, 

the FSCC performs poorly under dynamic weather conditions. 

 

The least efficient technique under dynamic weather conditions is PO because of its 

sampling rate, which doesn’t keep up with fast-changing weather. The PO is the easiest 

to implement in terms of hardware and software complexity. IC is the most complex to 

implement in terms of software and requires two sensors (voltage and current) in terms 

of hardware. FOCV and FSCC are easy to implement at the software level but require 

additional hardware arrangements for installing voltage or current sensors (Murtaza et 

al., 2013). Also, the FOCV and FSCC use the approximation methods to determine the 

k-constant. Hence, they are not genuinely seeking MPP functions. 

Table 3. 3: Summary of the comparison of MPPT techniques (Murtaza et al., 2013) 

Parameters Perturb and 
Observe 
(PO) 

Incremental 
Conductance 
(IC) 

Fractional open 
Circuit Voltage 
(FOCV) 

Fractional Short 
Circuit Current 
(FSCC) 

Prior tunning No No Yes Yes 

Dynamic Tracking Reasonable High High Medium 

Steady Tracking Reasonable High Medium Medium 

Algorithm complexity Low High Low Low 

Hardware complexity Low Low Medium Medium 

Sensors V&I V&I V I 
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Therefore, for a CubeSat application, the PO will be selected for advantages like no 

prior tuning, low Algorithm complexity, and low hardware complexity. Table 3.5 gives a 

summary of the comparison of MPPT objective functions. 

 

3.6. Requirements for designing the 5V and the 3.3V Boost converter 

The boost converter's output voltage is more than the input voltage. DC-DC converters 

are smaller in mass than linear converters. Hence, they are highly efficient and cheap 

to construct. 

 

Figure 3. 12: Boost Coveter Basic Block Diagram 

The solar PV panel voltage is the source voltage and will change proportionally to solar 

irradiance and temperature. It is in the left block of Figure 3.12. The input inductor acts 

as a magnetic field storage device and is at the bottom of Figure 3.12. The MOSFET 

acts as a switching element driven on and off by the pulse width modulator (PWM), 

right on top of the magnetic field storage (inductor) in Figure 3.12. The diode acts as 

an output regulator, and the output capacitor acts as an output filter, and they are at 

the right of Figure 3.12. In Figure 3.13, the desired inductor ripple current and desired 

ripple output voltage are inversely proportional to inductance and capacitance, which 

means the smaller the desired ripples, the larger the inductor and capacitor values.  

 

The boost converter has two modes, i.e., mode one is when the MOSFET is on, and 

mode two is when the MOSFET is off. The MOSFET is switched on and off by a square 

wave of the Pulse Width Modulator (PMW). The duty cycle of the switching square 

wave is determined by input and output voltages, as shown in equation (3.7), and the 

duty cycle is inversely proportional to the output voltage. When designing a boost 

converter, the values of inductor ripple current and capacitor ripple voltage, square 

wave switching frequency, load voltage, load resistance or load current, and solar PV 

panel output voltage range are preselected and kept constant. Then, boost converter 

design equations are used to calculate the input inductor and output capacitor values. 
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(Fathah, 2013). The DC-DC step-up components calculations are for the worst-case 

design scenario of the CubeSat. The worst-case situation is when two sides of the 

CubeSat point towards the sun, which means four modules are active. 

L1

C1

Q1Solar PV Panel

Inductor

Diode

Mosfet
Capacitor

Load

Switching 
frequency

GND1

Solar voltage ranges

 

Figure 3. 13: Boost Converter Circuit Diagram 

The DC-DC step-up components calculations are for the worst-case design scenario 

of the CubeSat. The worst-case situation is when two sides of the CubeSat point 

towards the sun. A configuration where two sides of the CubeSat are pointed to the 

sun is simulated by the (+X, +Y) or (-X, -Y) groups. The (+X, +Y) or (-X, -Y) group 

gives a voltage output of 2.4V and a total current of 1.8A. The solar Array will have 

four modules connected in parallel. This array is an input of the boost converters. The 

desired outputs of the boost converters are 3.3V and 5V, as determined by the 

desired bus load voltages. Each (+X, +Y) or (-X, -Y) group (two adjacent sides) is 

connected to either a 5V boost converter or a 3.3V boost converter.(Guter et al., 

2017). 

3.7. The Design Calculations of the 5V Boost Converter 

These design calculations are for the worst-case scenario when two sides of the one-

unit CubeSat are exposed to the sun: 

Table 3. 4: PV Array parameters (Adapted from Guter et al., 2017) 

Specification of parameters Description of parameters 

𝑽𝑴𝑷𝑷 = 𝟐. 𝟒𝑽 Maximum power point voltage of the PV array. 

𝑽𝒐𝑪 = 𝟐. 𝟕𝒗 The Open circuit voltage. 

𝑰𝑺𝑪 = 𝟒𝟓𝟕𝒎𝑨 Short circuit current of the PV array. 

𝑵𝑺 = 𝟑 Number of cells in series 

𝑵𝒑 = 𝟒 Number of cells in parallel 

𝑰𝑴𝑷𝑷 = 𝟒𝟐𝟐. 𝟖𝒎𝑨 PV array maximum power point. 

Table 3. 5: Boost Converter Specification (Adapted from AZUR SPACE, 2010) 

Specification of 
parameters 

Description of parameters 
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𝑽𝒊𝒏 = 𝟐𝑽 − 𝟑𝑽 Input voltage range of the boost converter 

𝑽𝒐 = 𝟓𝒗 Output voltage of the boost converter 

𝜟𝑽 = 𝟏% 
Ripple voltage across the capacitor of the boost 
converter 

∆𝑰 = 𝟓% 
Ripple current through the inductor of the boost 
converter. 

𝒇𝒔 = 𝟓𝒌𝑯𝒛 Boost converter switching frequency. 

Boost converter input Voltage (𝑽𝒊𝒏) and Current (𝑰𝒊𝒏):  

Let’s assume that the boost converter operates at the maximum power point of the PV 

array. 

𝑽𝒊𝒏 =  𝑽𝑴𝑷𝑷 = 𝟐. 𝟒𝑽         (3.7) 

𝑰𝒊𝒏 =  𝑰𝑴𝑷𝑷 × 𝑵𝑷 = 𝟒𝟐𝟐. 𝟖 × 𝟏𝟎−𝟑 × 𝟒 = 𝟏. 𝟔𝟗𝟏𝟐𝑨     (3.8) 

𝑷𝒊𝒏 =  𝑽𝒊𝒏 × 𝑰𝒊𝒏 = 𝟐. 𝟒𝑽 × 𝟏. 𝟔𝟗𝟏𝟐𝑨 = 𝟒. 𝟎𝟓𝟗𝑾     (3.9) 

Let's assume that the boost converter operates at 90% efficiency: 

𝑰𝒐𝒖𝒕 =  
𝟎.𝟗𝟎×𝟒.𝟎𝟓𝟗𝑾

𝟓𝑽
= 𝟎. 𝟕𝟑𝟎𝟔𝑨       (3.10) 

The ripple current is 5% of the input current: 

∆𝑰𝑳 = 𝟎. 𝟎𝟓 × 𝑰𝒊𝒏 = 𝟎. 𝟎𝟓 × 𝟏. 𝟔𝟗𝟏𝟐𝑨 = 𝟎. 𝟎𝟖𝟒𝟓𝟔𝑨     (3.11) 

𝑳 =  
𝑽𝒊𝒏×(𝑽𝒐𝒖𝒕−𝑽𝒊𝒏)

∆𝑰𝑳×𝒇𝒔×𝑽𝒐𝒖𝒕
         (3.12) 

𝑳 =  
𝟐.𝟒𝑽×(𝟓𝑽−𝟐.𝟒𝑽)

𝟎.𝟎𝟖𝟒𝟓𝟔×𝟓𝒌𝑯𝒛×𝟓𝑽
= 𝟐. 𝟗𝟓𝒎𝑯       (3.13) 

The ripple voltage is 1% of the output voltage: 

∆𝑽 = 𝟎. 𝟎𝟏 × 𝑽𝒐𝒖𝒕 = 𝟎. 𝟎𝟏 × 𝟓𝑽 = 𝟎. 𝟎𝟓𝑽      (3.14) 

𝑫 = 𝟏 −
𝑽𝒊𝒏

𝑽𝒐𝒖𝒕
= 𝟏 −

𝟐.𝟒𝑽

𝟓𝑽
= 𝟎. 𝟓𝟐𝑽       (3.15) 

𝑪 =  
𝑰𝒐𝒖𝒕×𝑫

∆𝑽×𝒇𝒔
          (3.16) 

𝑪 =  
𝟎.𝟕𝟑𝟎𝟔×𝟎.𝟓𝟐

𝟎.𝟎𝟓×𝟓𝟎𝟎𝟎𝑯𝒛
= 𝟏𝟓𝟐𝟎𝝁𝑭        (3.17) 

𝑹𝒐𝒖𝒕 =  
𝑽𝒐𝒖𝒕

𝑰𝒐𝒖𝒕
=  

𝟓𝑽

𝟎.𝟕𝟑𝟎𝟔𝑨
= 𝟔. 𝟖𝛀       (3.18) 

Summary of Calculated Values: 

• Inductance: 2.95 mH 

• Capacitance: 1520 μF 
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3.8. The 5V Boost converter MATLAB/Simulink model without PO installed 

The boost converter MATLAB/Simulink model without Perturb and Observe installed is shown in Figure 3.14. The model is comprised of a PV 

array and a boost converter. The model is not operating at MPP. The model is tested at STC: 28°C and 1367W/m2. The PV array is set for the 

worst-case scenario: two sides of the 1U Cube are exposed to the sun, i.e., four modules are active and connected in parallel. 

 

Figure 3. 14: 5V Boost Converter MATLAB/Simulink model without PO installed 

To analyze the effect of the perturb and observe the (PO) maximum power point tracking (MPPT) technique, let’s first look at the 

MATLAB/Simulink simulation results of the output current, voltage, and power depicted in Figure 3.15 without PO installed. It can be seen from 

the displays that the input power is 1.32W, and the output power is 1.009W; there are some power losses from switching elements and system 

impedances.
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Figure 3.15 shows the MATLAB/Simulink simulation results for the output current, voltage, and power without the installed PO. 

 

Figure 3. 15: 5V Boost Converter MATLAB/Simulink model simulation results without PO installed 

 

From Figure 3.15, it can be deduced that the output power oscillates between a minimum value of 1.009W to 2.5W, the output current oscillates 

between a minimum of 0.3852A to 0.6A, and the output voltage oscillates between a minimum of 2.619V and 4.1V.  
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3.9. The 5V Boost converter MATLAB/Simulink model with PO installed 

The PO algorithm objective function and the boost converter take their input power directly from the PV panel, as shown in Figure 3.16. A 

transient current capacitor filter is installed before the input inductor. The PO objective function uses its sample rate to shift the duty cycle up 

and down until it finds the MPP and gives its output duty cycle to the input of the PWM. The model is operating at MPP. The model is tested at 

STC: 28°C and 1367W/m2. The PV array is set for the worst-case scenario: two sides of the 1U Cube are exposed to the sun, i.e., four 

modules are active and connected in parallel.

 

Figure 3. 16: 5V Boost converter MATLAB/Simulink model with PO installed 

From Figure 3.16, it can be deduced that the output power is 3W, the output current oscillates between a minimum of 0.7A, and the output 

voltage is 4.6V. 
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Figure 3.17 shows MATLAB/Simulink simulation results of the output current, voltage, and power with PO installed. 

 

Figure 3. 17: 5V Boost converter MATLAB/Simulink model simulation results with PO installed 
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It can be seen from Figure 3.16 that the PO objective function will cause the PV array 

to reach a maximum PV power of 3.6 W and will continue to oscillate around the 

maximum power PV voltage of 2.7V and a maximum current of 1.34A. The duty cycle 

will settle around 0.52. It can be seen from Figure 3.17 that the boost converter output 

power overshoots and dampens at 3.044W, voltage is 4.6V, and current is 0.7A. Hence, 

applying the PO MPPT improves the output power of the boost converter. All the 

CubeSat research projects covered in Table 2.2 for a 5V bus can be supplied by the 

power system EPS modeled in Figure 3.16, except one research project by Agarwal et 

al., 2016. The power system in Figure 3.16 comprises a 1U CubeSat, and it is assumed 

that only two sides are exposed to the sun under STC conditions. Even in the mission 

of Agarwal et al., 2016 all other subsystems of the satellite can be powered by the 

system modeled in Figure 3.16 except the charging part of the EPS.  

3.10. The Design Calculations of the 3.3V Boost Converter 

These design calculations are for the worst-case scenario when two sides of the one-

unit CubeSat are exposed to the sun: 

Table 3. 6: Boost Converter Specification 

Specification of 
parameters 

Description of parameters 

𝑽𝒊𝒏 = 𝟐𝑽 − 𝟑𝑽 Input voltage range of the boost converter 

𝑽𝒐 = 𝟑. 𝟑𝒗 Output voltage of the boost converter 

𝜟𝑽 = 𝟏% 
Ripple voltage across the capacitor of the boost 
converter 

∆𝑰 = 𝟓% 
Ripple current through the inductor of the boost 
converter. 

𝒇𝒔 = 𝟓𝒌𝑯𝒛 Boost converter switching frequency. 

Boost converter input Voltage (𝑽𝒊𝒏) and Current (𝑰𝒊𝒏):  

Let’s assume that the boost converter operates at the maximum power point of the PV 

array. 

𝑽𝒊𝒏 =  𝑽𝑴𝑷𝑷 = 𝟐. 𝟒𝑽         (3.19) 

𝑰𝒊𝒏 =  𝑰𝑴𝑷𝑷 × 𝑵𝑷 = 𝟒𝟐𝟐. 𝟖 × 𝟒 = 𝟏. 𝟔𝟗𝟏𝟐𝑨      (3.20) 

𝑷𝒊𝒏 =  𝑽𝒊𝒏 × 𝑰𝒊𝒏 = 𝟐. 𝟒𝑽 × 𝟏. 𝟔𝟗𝟏𝟐𝑨 = 𝟒. 𝟎𝟓𝟗𝑾     (3.21) 

Let's assume that the boost converter operates at 90% efficiency: 

𝑰𝒐𝒖𝒕 =  
𝟎.𝟗𝟎×𝟒.𝟎𝟓𝟗𝑾

𝟑.𝟑𝑽
= 𝟏. 𝟏𝟎𝟕𝟎𝑨       (3.22) 

The ripple current is 5% of the input current: 
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∆𝑰𝑳 = 𝟎. 𝟎𝟓 × 𝑰𝒊𝒏 = 𝟎. 𝟎𝟓 × 𝟏. 𝟔𝟗𝟏𝟐𝑨 = 𝟎. 𝟎𝟖𝟒𝟓𝟔𝑨     (3.23) 

𝑳 =  
𝑽𝒊𝒏×(𝑽𝒐𝒖𝒕−𝑽𝒊𝒏)

∆𝑰𝑳×𝒇𝒔×𝑽𝒐𝒖𝒕
         (3.24) 

𝑳 =  
𝟐.𝟒𝑽×(𝟑.𝟑𝑽−𝟐.𝟒𝑽)

𝟎.𝟎𝟖𝟒𝟓𝟔×𝟓𝒌𝑯𝒛×𝟑.𝟑𝑽
= 𝟏. 𝟓𝟓𝒎𝑯       (3.25) 

The ripple voltage is 1% of the output voltage: 

∆𝑽 = 𝟎. 𝟎𝟏 × 𝑽𝒐𝒖𝒕 = 𝟎. 𝟎𝟏 × 𝟑. 𝟑𝑽 = 𝟎. 𝟎𝟑𝟑𝑽      (3.26) 

𝑫 = 𝟏 −
𝑽𝒊𝒏

𝑽𝒐𝒖𝒕
= 𝟏 −

𝟐.𝟒𝑽

𝟑.𝟑𝑽
= 𝟎. 𝟐𝟕𝟐𝟕𝑽      (3.27) 

𝑪 =  
𝑰𝒐𝒖𝒕×𝑫

∆𝑽×𝒇𝒔
          (3.28) 

𝑪 =  
𝟏.𝟏𝟎𝟕𝟎×𝟎.𝟐𝟕𝟐𝟕

𝟎.𝟎𝟑𝟑×𝟓𝟎𝟎𝟎𝑯𝒛
= 𝟏𝟖𝟑𝟎𝝁𝑭       (3.29) 

𝑹𝒐𝒖𝒕 =  
𝑽𝒐𝒖𝒕

𝑰𝒐𝒖𝒕
=  

𝟑.𝟑𝑽

𝟏.𝟏𝟎𝟕𝟎𝑨
= 𝟐. 𝟗𝟖𝛀       (3.30) 

Summary of Calculated Values: 

• Inductance: 1.55 mH 

• Capacitance: 1830 μF 
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3.11. The 3.3V Boost converter MATLAB/Simulink model without PO installed – worst case scenario. 

The boost converter MATLAB/Simulink model without Perturb and Observe installed is shown in Figure 3.18. The model is comprised of a PV 

array and a boost converter. The model is not operating at MPP. The model is tested at STC: 28°C and 1367W/m2. The PV array is set for the 

worst-case scenario: two sides of the 1U Cube are exposed to the sun, i.e., four modules are active and connected in parallel.

 

Figure 3. 18: 3.3V Boost Converter MATLAB/Simulink model without PO installed 

 

To analyze the effect of the PO MPPT objective function, let’s first look at the MATLAB/Simulink simulation results of the output current, voltage, 

and power that is depicted in Figure 3.19 without PO installed. It can be seen from the displays that the output power is 1.064W, the output 

voltage is 1.787V, and the output voltage is 0.6A. 
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Figure 3.19 shows MATLAB/Simulink simulation results of the output current, voltage, and power without PO installed. 

 

Figure 3. 19: 3.3V Boost Converter MATLAB/Simulink model simulation results without PO installed 

 

From Figure 3.19, it can be deduced that the output power oscillates between a minimum value of 0.4W to 1.064W, the output voltage oscillates 

between a minimum of 1A to 1.787V, and the output current oscillates between a minimum of 0.4A and 0.6A.
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3.12. The 3.3V Boost converter MATLAB/Simulink model with PO installed – worst case scenario. 

The PO algorithm objective function and the boost converter take their input power directly from the PV panel as shown in Figure 3.20. A transient 

current capacitor filter is installed before the input inductor. The PO objective function uses its sample rate to shift the duty cycle up and down 

until it finds the MPP and gives its output duty cycle to the input of the PWM. The model is operating at MPP. The model is tested at STC: 28°C 

and 1367W/m2. The PV array is set for the worst-case scenario: two sides of the 1U Cube are exposed to the sun, i.e., four modules are active 

and connected in parallel. 

 

Figure 3. 20: 3.3V Boost converter MATLAB/Simulink model with PO installed 

Figure 3.16 shows that the output power oscillates about 4.6W, the output current oscillates about 1.2A, and the output voltage oscillates 

about 3.7V.
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Figure 3.21 shows MATLAB/Simulink simulation results of the output current, voltage, and power with PO installed. 

 

Figure 3. 21: 5V Boost converter MATLAB/Simulink model simulation results with PO installed 

It can be seen from Figure 3.20 that the PO objective function will cause the PV array to reach a maximum PV power of 5.5W and will continue 

to oscillate around the maximum power—a maximum PV voltage of 2.4V and a maximum current of 2.3A. The duty cycle will settle around 

0.2727. 
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It can be seen from Figure 3.21 that the boost converter output power overshoots and 

dampens at 4.7W, voltage is 3.7V, and current is 1.2A. Hence, applying the PO MPPT 

improves the output power of the boost converter. All the CubeSat research projects 

covered in Table 2.2 for a 3.3V bus can be supplied by the power system EPS modeled 

in Figure 3.20. The power system in Figure 3.20 comprises a 1U CubeSat, and it is 

assumed that only two sides are exposed to the sun under STC conditions. 

3.13. Conclusion 

Each (+X, +Y) or (-X, -Y) group (two adjacent sides) is connected to either a 5V boost 

converter or a 3.3V boost converter. Each (+X, +Y) or (-X, -Y) group (two adjacent 

sides) produces an output power of 3W, an output current of 0.7A, and an output 

voltage of 4.6V when connected to a 5V bus. Each (+X, +Y) or (-X, -Y) group (two 

adjacent sides) produces an output power of 4.6W, an output of 1.2A, and an output 

voltage of 3.7V. For theoretical demonstration, an assumption that two sides are 

exposed to the sun is made, and the design of a boost converter for that particular 

scenario is designed and simulated for implementation with and without PO MPPT. In 

practice, each side must be connected to its boost converter, and the boost converters 

must be connected in parallel for maximum power extraction in all practical possible 

combinations of sides exposed to the sun. In practice, the cube will tumble in space, 

and it cannot be predicted which side will be exposed to the sun at which time. 

 

The results show 4.6V instead of 5V in the 5V Boost converter model and 3.7V instead 

of 3.3V in the 3.3V model. Also, if a closer look inside the output graphs with PO applied 

in the boost converters, there are oscillations in the MPP. The results obtained in this 

chapter can be improved using AI algorithms that can tune the results to accurate bus 

voltages and minimize oscillations in the MPP.  
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CHAPTER 4 

GENETIC ALGORITHM IMPLEMENTATION for CubeSat POWER SYSTEMS 

4.1. Introduction 

It is essential to ensure that the power supplied contains minor ripples and is closest to 

the desired bus voltages. The reason is that the IC technology may run to uncertain 

conditions and misinterpret analog voltage, representing a high as a low. In Chapter 3, 

the results show 4.6V instead of 5V in the 5V Boost converter model and 3.7V instead 

of 3.3V in the 3.3V model. Also, a closer look at the output graphs with PO applied in 

the boost converters shows there are oscillations in the maximum power point (MPP). 

These results obtained in Chapter 3 can be improved using AI algorithms that can tune 

the results to accurate bus voltages and minimize oscillations about the MPP for 

CubeSat applications since low voltage is supplied to all CubeSat subsystems. 

 

In control systems, the nonlinear response of the PV-supplied boost converter can be 

converted into a transfer function plant. The transfer function plant becomes the 

controlled device while the PID controller is placed before it to develop a dynamic 

response and minimize the controlled plant's steady-state error. The setpoint will be a 

5V bus and a 3.3V bus, respectively. This solution approach ensures that the bus 

voltages are tuned to their targets. However, converting a PV-supplied boost converter 

into a transfer function plant is an approximated process, whether using linearisation, 

state-space averaging method, or control to output small signal method. 

 

Subsection 4.2 discusses the linearisation MATLAB/Simulink method of converting the 

PV-supplied boost converter into a transfer function plant. Subsection 4.3 implements 

the linearization method using Matlab/Simulink. Subsection 4.5 explains the tuning 

process of the PID using GA. Subsection 4.7 implements the GA tuning of a Simulink 

model. Subsection 4.8 discusses the results of the implemented GA-tuned PID 

controller-based boost converter transfer function plant. 

4.2. PV-supplied Boost Converter Conversion into a Transfer Function Plant 

Requirements 

In some recent literature, the Simulink PV module model has been replaced by a 

battery. The battery is set to the minimum input voltage position of the voltage range. 

For example, if the PV input voltage range is 2V to 3V, the battery in the boost converter 

is set to 2V. Then, the boost converter closed loop plant is approximated into a transfer 

function using a state space averaging method (Achiammal, 2017). In this chapter, the 

approximation of the boost converter into a transfer function is performed using the 



75 

linearisation in MATLAB/Simulink. The boost converter transfer function plant becomes 

the controlled device while the PID controller is placed before it to develop a dynamic 

response and minimize the steady-state error. The output of the boost converter plant 

is connected as a negative unity feedback loop, as depicted in Figure 4.1. 

 

Figure 4. 1: Schematic diagram of a PID controller (Adapted from Achiammal, 2017) 

The PID controller gains parameters which are Kp, Ki, and Kd, are tuned by the bio-

inspired optimization algorithms such as PSO algorithm, genetic algorithm (GA), BAT 

algorithm, ANT colony algorithm, Artificial Bee Colony (ABC) algorithm, artificial neural 

network (ANN) algorithm, grey wolf optimization (GWO) algorithm, and fireworks 

algorithm (FWA), to name a few (Aoughlis et al., 2021). This approach, which uses 

the PID controller and tuning algorithm like the GA, requires the boost converter to be 

approximated to a transfer function plant and placed before the PID controller.  

 

This approximation can be performed through either of the three following methods: 

linearisation in Simulink, State Space averaging derivation method, or by AC analysis 

small signal transfer function derivation method. These approximation methods do not 

accurately represent the nonlinear response of the boost converter. However, in this 

chapter, the MATLAB/Simulink linearization of the boost converter into a transfer 

function is tested, and a closed-loop PID system is tuned using a GA algorithm. A GA 

algorithm tunes the PID controller gains parameters Kp, Ki, and Kd to minimize the 

steady-state error of the feedback control system. The steady-state error is minimized 

using a performance index like ITAE. 

 

As mentioned before, applying GA tuning of a PID controller requires the controlled 

plant to be in a transfer form. Hence, the first step is linearising the PV-supplied boost 

converter to convert it to a transfer function plant. The linearized transfer function model 

must mimic the non-linear behavior of the original PID controller-based closed-loop 

boost converter Simulink model. The boost converter circuit model is shown in Figure 

4.2 and simulated in Figure 4.3 to preserve the response curve shape. So that the 

transfer function model response curve can be compared to the circuit model curve.
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Figure 4.2 shows the boost converter circuit model in MATLAB/Simulink. The proportional gain is randomly set to 1, the integral gain is randomly 

set to 1, and the derivative is randomly set to 0. The input voltage is 2.4V and is equal to VMMP. The output voltage is 1.6V. 

 

Figure 4.2: The boost converter circuit model in MATLAB/Simulink 
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Figure 4.3 shows the boost converter circuit model simulation scope waveform in MATLAB/Simulink. The proportional gain is randomly set to 1, 

the integral gain is randomly set to 1, and the derivative is randomly set to 0. The input voltage is 2.4V and is equal to VMMP. The output voltage 

is 1.6V. 

 

Figure 4.3: The boost converter circuit model output scope simulation results in MATLAB/Simulink 
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4.3 Conversion of a Circuit Model into a Transfer Function Model 

Identify the major components in your Simulink model of a boost converter. The boost 

converter must be converted into a subsystem in Simulink. The input voltage is set to 

input port 1, and the PWM signal that goes into the gate of the MOSFET is set to input 

port 2. The output voltage measurement is set to output port 1. Figure 4.4 shows this 

step. 

 

Figure 4. 4: Schematic diagram of the boost converter plant 

Now, the schematic will look like it is in Figure 4.5. Right-click on the connecting wire 

between inputs and the subsystem, select linear analysis points, set it to “Open-loop 

Input for both inputs,” repeat the process on the connecting wire between the output 

port and the subsystem, and set it to “Open-loop Output.” 

 

Figure 4. 5: Setting Open-loop Inputs and Open-loop Output 

Right-click on the boost converter subsystem block, select linear analysis, and then 

select linearize block. Linearization is critical for producing a transfer function that 

accurately captures the system's behavior under the intended operating circumstances. 

Once the linear analysis tool opens, click on results viewer, then click step function. 
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Linearization results detail block will open a state space equation, change display 

linearization results to transfer function, and extract the transfer function. 

State Space:  

General Information: 

Operating point: Model initial condition 

Size: two inputs, one output, three states 

Linearization Result: 

𝑨 =  
−𝟖. 𝟒 × 𝟏𝟎𝟒 −𝟎. 𝟎𝟑𝟔𝟗𝟕 −𝟎. 𝟎𝟑𝟔𝟗𝟕

𝟑𝟐𝟕. 𝟑 −𝟗𝟖. 𝟎𝟔 −𝟏. 𝟑𝟏𝟔
𝟐 × 𝟏𝟎𝟔 −𝟕𝟗𝟗𝟗 −𝟕𝟗𝟗𝟗

 

 

𝑩 =  
𝟑𝟑𝟗 𝟎

𝟎 𝟎
𝟎 𝟎

 

 

𝑪 =  𝟎 𝟏 𝟎 

𝑫 =  𝟎 

Name: Linearization at model initial condition, Continuous-time state-space model. 

State Names: 

x1 - State-Space (1) 

x2 - State-Space (2) 

x3 - State-Space (3) 

Input Channel Names: 

u1 - Boost Converter/1 

u2 - Boost Converter/2 

Output Channel Names: 

y1 - Boost Converter/1 

 

Transfer function:  

From input "u1" to output "y1": 

 

𝑻𝑭 =  
𝟏. 𝟏𝟏 × 𝟏𝟎𝟓𝒔 −  𝟑. 𝟔𝟏𝟐 × 𝟏𝟎−𝟕

𝒔𝟑 + 𝟗. 𝟐𝟒𝟐 × 𝟏𝟎𝟒𝒔𝟐 + 𝟔. 𝟖𝟑𝟔 × 𝟏𝟎𝟖𝒔 + 𝟔. 𝟓𝟐𝟕 × 𝟏𝟎𝟏𝟎
 

Now that the transfer function is obtained, a unity feedback system comprising a 

setpoint, PID controller, transfer function plant, output scope, and summing point can 

be constructed in Simulink. 
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A boost converter is a DC-DC converter that increases the input voltage to produce a 

higher, regulated output voltage. In the above section, the boost converter has been 

converted into a transfer function so that it can be controlled by a PID to reach a set 

point voltage equivalent to a bus voltage of 5V. However, tuning the PID parameters is 

critical for achieving peak performance. This chapter implements GA, a bio-inspired 

optimization algorithm to tune a PID controller to reach 5V bus voltage, resulting in 

better performance metrics than trial and error tuning or using the Ziegler–Nichols 

tuning method. The PID controller is a well-known control approach for improving a 

system's dynamic response while reducing steady-state error (Achiammal, 2017).  

The controller alters the control signal based on the difference between the desired 

setpoint and the actual output. The PID controller consists of three components: 

proportional (P), integral (I), and derivative (D), each of which contributes to the control 

signal in a unique way. The transfer function of a PID controller is often stated in terms 

of these three components, and setting the PID parameters (Kp, Ki, and Kd) is crucial 

to system performance. The goal is to determine the best combination of these 

characteristics for stability, response time, and error minimization. The gain block 

between the sum block and the PID scales the feedback signal to match the desired 

reference level. This is particularly common in circuits where the output voltage needs 

to be regulated within specific limits (Solihin et al., 2011). 

Simulink's PID controller is commonly built with the "PID Controller" block, which allows 

for the definition of proportional (Kp), integral (Ki), and derivative (Kd) gains. This step 

aims to tune these settings to minimize the steady-state error while assuring system 

stability and optimal transient response. After determining the PID controller 

parameters, the next step is to simulate the closed-loop system and evaluate the 

controller's performance. In Simulink, this is accomplished by attaching the PID 

controller block to the boost converter transfer function model and establishing a unity 

feedback loop that compares the output voltage to a reference value. The steady-state 

error, the difference between the desired and actual outputs after the system has 

settled, is a critical metric in this analysis. In more complex systems, the 

MATLAB/Simulink optimization toolbox can be used to improve the tuning process. 

Particle Swarm Optimisation (PSO) and Genetic Algorithms (GA) can be used with the 

Simulink model to automate searching for the best PID settings. These strategies are 

especially beneficial for dealing with the nonlinearities and complexities found in boost 

converters. MATLAB/Simulink offers a comprehensive framework for designing, 

implementing, and optimizing PID controllers to reduce steady-state error in boost 

converter systems (Jaen-Cuellar et al., 2013). 



81 

4.4. PID-based Boost Converter Transfer Function Plant System before Ga Tuning 

The voltage setup voltage of 5V, summation point, PID controller, scope, negative unity feedback, and output voltage display are shown in Fig 

4.4. The PID’s proportional value is set to a random value of 1; the integral is set to a random value of 1, and the derivative is set to 0. The 

output voltage before GA: 0.05664V. 

 

Figure 4. 6: PID-based Boost Converter Transfer Function Plant System before Ga Tuning 
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Figure 4.7 shows the PID controller-based boost converter transfer function plant system's simulation results before applying a genetic algorithm 

tuning program. The PID’s proportional value is set to a random value of 1; the integral is set to a random value of 1, and the derivative is set to 

0. 

 

Figure 4. 7: Simulation Results of the PID-based Boost Converter Transfer Function Plant System before Ga Tuning 

The amplitude spikes to a maximum value of 3.2e-1V and settles at 6.6e-2V. The settling voltage target is 5V, and the current settling voltage 

is far off the target. The average output voltage is 0.07V, as shown in the display.
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4.5. PID Tuning with a Genetic Algorithm (GA) Steps 

Genetic algorithms (GA) replicate the natural selection process to stabilize PID 

controller parameters (proportional, integral, and derivative gains). A PID parameter 

setting population is produced randomly or using previous knowledge. Each set is 

evaluated with a fitness function, such as Integral Time Absolute Error (ITAE), to 

minimize the system steady-state error. The best-performing sets are chosen to create 

offspring via crossover and mutation, which adds diversity while preventing premature 

convergence. This selection, reproduction, and mutation cycle continues for 

generations until the algorithm finds the best PID settings. The final solution is the PID 

parameter set that delivers the highest performance according to the fitness function. 

This strategy is beneficial for controlling the complexity and nonlinearities of the boost 

converter transfer function (Meena and Devanshu, 2017). 

4.5.1. Genetic Algorithm (GA) program Steps 

1. Generate the PID parameters: 

The genetic algorithm represents the PID controller parameters (Proportional, Integral, 

and Derivative gains (Kp, Ki, Kd) as genes. It makes a chromosome using these genes 

to produce a potential solution to the PID tuning problem.  

2. Define the Objective Function (Fitness Function): 

A definition of fitness function is necessary to measure how well the system works when 

controlled by specific PID parameters. The fitness function is typically based on a 

performance statistic such as Integral Time Absolute Error (ITAE), Integral Squared 

Error (ISE), or another applicable metric. 

3. Generate an Initial Population of PID Parameter Sets (Chromosomes):  

Create an initial population of PID parameter sets (chromosomes). These are 

generated at random or may be based on existing knowledge. 

4. Evaluate Fitness:  

Assess the fitness of each chromosome in the population by applying the PID controller 

to the system with the appropriate settings and computing the fitness using the given 

objective function. 

5. Selection: 

Choose individuals from the population to be the next generation's parents. Everyone's 

fitness determines the likelihood of selection. 

6. Crossover (Recombination): 
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The process of creating new individuals (offspring) by merging the DNA of two parents. 

This is usually accomplished through crossover (recombination) processes. 

7. Mutation: 

To maintain genetic diversity in the population, modest random changes (mutations) to 

the genomes of some individuals should be introduced. 

8. Replace Old Population: 

Establish a new population by replacing the old one with newly created individuals 

(offspring). 

9. Repetition: 

Repeat steps 4–8 for a predetermined number of generations or until a convergence 

condition is fulfilled. 

10. Final Solution: 

According to the fitness function, the final solution corresponds to the PID parameters 

that produce the best performance. 

Figure 4.8 shows the steps of PID tuning using GA in a flow chart: 

 

Figure 4. 8: PID Tuning with a Genetic Algorithm (GA) Flowchart 
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The flowchart in Figure 4.8 can be explained as follows: Code for parameters Kp, Ki, 

KD: The first step is to define GA parameters like the number of variables, which in the 

PID case is equal to three. Define upper and lower bounds, define population size, 

define maximum number of generations, and define crossover and mutation rates. 

Target mapping to fitness: define the fitness function based on a performance statistic 

such as Integral Time Absolute Error (ITAE), Integral Squared Error (ISE), or another 

applicable metric. Initial population: Initialize the population based on population size 

and upper and lower bounds using a random number generation function. Calculate 

individual fitness:  

Assess the fitness of each PID variable in the population by applying the PID controller 

to the system with the appropriate settings and computing the fitness using the given 

objective function. “Whether it meets the fitness requirements”: checks if the objective 

function minimization is achieved and if it does, the PID optimum gains have been 

achieved. If not, “select,” “crossover,” and “mutate” functions are executed. “Generating 

a new generation of population:” Establish a new population by replacing the old one 

with newly created individuals (offspring). After this step, the program jumps back to 

calculate individual fitness, and the loop iterates until objective function requirements 

are met. 

4.6. Genetic Algorithm Fitness Function (Objective Function) 

The PID controller gain parameters are tuned using various performance indicators or 

fitness functions. PID tuning commonly uses the following performance indices 

• Integral Time Absolute Error (ITAE): 

𝑰𝑻𝑨𝑬 =  ∫ 𝒕 × |𝒆(𝒕)| 𝒅𝒕
∞

𝟎
       (4.1) 

The Integral Time Absolute Error (ITAE) emphasizes error reduction during the initial 

transient reaction and penalizes higher errors for longer. This criterion is appropriate 

for applications requiring a quick response and short settling time. 

• Integral Squared Error (ISE): 

𝑰𝑺𝑬 =  ∫ [𝒆(𝒕)]𝟐 𝒅𝒕
∞

𝟎
        (4.2) 

Due to the squaring of error values, Integral Square Error (ISE) prioritizes minimizing 

significant errors over minor errors. This criterion may result in a quick response, 

additional control effort, and wear on the motor and other components.  
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• Integral Time Squared Error (ITSE): 

𝑰𝑻𝑺𝑬 =  ∫ 𝒕 × [𝒆(𝒕)]𝟐 𝒅𝒕
∞

𝟎
       (4.3) 

ITSE combines parts of ISE and ITAE, penalizing more significant faults during the 

initial transient reaction. This criterion balances response time and control effort but 

may produce more extraordinary oscillatory behavior. 

• Integral Absolute Error (IAE): 

𝑰𝑨𝑬 =  ∫ |𝒆(𝒕)|  𝒅𝒕
∞

𝟎
        (4.4) 

Integral Absolute Error (IAE) assigns equal weight to all errors, regardless of 

magnitude. This criterion produces a smoother response and requires less control 

effort, although it may respond slower than other criteria. ITAE or ISE may be better 

appropriate for quick response and settlement time. If one aims for a smooth response 

and minimum control effort, IAE may be a better option (Deif, 2023). Optimization 

techniques employ these indices as objective functions when tuning the PID 

parameters. Typically, the goal is to minimize these indices, suggesting improved 

control performance. The Integral Time Absolute Error is selected for its quick response 

and settling time as the fitness function or objective function of choice for GA PID tuning 

in the work presented in this chapter. Integral time absolute error is expressed 

mathematically in equation (4.5): 

𝑰𝑻𝑨𝑬 =  ∫ |𝝁|
𝒕=𝒇𝒊𝒏𝒂𝒍

=𝟎
× 𝒕 𝒅𝒕       (4.5) 

Equation 4.5 is written as a MATLAB code in appendix B. Line 1: “function cost = 

tuning(k)” defines a function named “tuning” that takes a vector k as an input and returns 

a scalar cost. The vector k represents the PID controller parameters Kp, Ki, and Kd in 

the Simulink boost converter model that uses a PID controller. Line 2: 

“assignin('base','k',k)”: uses the assigning function to assign the value of k to the variable 

k in the base workspace.  

This step is necessary if the Simulink model named “GA_PID.slx” that will be simulated 

uses the PID parameters defined in the base workspace. Line 3: sim('GA.slx'): simulates 

the Simulink model named “GA_PID.slx.” Line 4: cost= ITAE(length(ITAE)): After the 

simulation is complete, the code calculates a cost based on the Integral Time Absolute 

Error (ITAE) metric. It extracts the ITAE values from the simulation results and assigns 

the last values of the ITAE vector to the variable cost. These values are then used as 

the genetic algorithm's cost or objective function. The steady-state error point connects 

the summing point and the PID controller in Figure 4.6. 
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This point must be connected to the objective function equation. The objective function 

is implemented as a MATLAB code in a dot m script file. The aim of the ITAE function 

equation is also implemented in Simulink using the clock, absolute error mathematical 

function, product, integrator, display, and “To Workspace” blocks. The “To Workspace” 

block connects the “dot m script file code” and the Simulink ITAE objective function 

equation. The PDI gain parameters (Kp, Ki, Kd) in the Simulink PID block are 

represented as k(1), k(2), and k(3). The integral time absolute error objective function 

takes the steady-state error of the model.  

It is placed in the MATLAB workspace matrix space so that it can be accessed by the 

GA script file code for optimization of the Pid gain variables: Kp, Ki, KD. The integral time 

absolute error objective function in Figure 4.9 is implemented by the math function, 

time, product integral, display, and the “To Workspace” blocks. The PID is used in the 

time domain setting, and the gains are set as variables k(1), k(2), and k(3). A unity 

feedback loop compares the actual output with the reference 5V, and the gain block 

between the sum block and the PID scales the feedback signal to match the desired 

reference level. Table 4.1 shows the optimized PID gain values for the fiftieth 

generation, the last generation, and the best solution PID gain values between the first 

and final generations. The maximum number of generations that were set for the 

algorithm was fifty. 

Table 4.1: PID gain values manual and automatic tuning 

 PID Gain values automatic Tuning 

Generation Kp Ki Kd 

Fiftieth generation 35.7116785741896 47.8438001602993 7.63555477239597 

Best Solution 

Generation 

895.1708 997.6162 996.1347 

 

The best-of-all solution gain values of Kp, Ki, and Kd are copied and placed inside the 

PID Simulink block. The Simulink model in Figure 4.9 is simulated with the best solution 

PID gains and displayed in Figure 4.11. 
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Figure 4.9 shows the ITAE objective function in MATLAB 

 

Figure 4. 9: The ITAE objective function  
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4.7. The Genetic Algorithm (GA) applied as a MATLAB script 

In this section of the Thesis, the genetic algorithm that tunes the Simulink model named: 

“GA_Tuned_PID_Boost_C” is saved in a MATLAB script named “Searching.” The 

subsequent steps explain the “Searching” MATLAB script file code. Also, the 

“Searching” MATLAB script file code is included in Appendix D. 

Step 1: Defining the Genetic Algorithm Parameters 

‘nVar’ - specifies the number of variables to optimize (Kp, Ki, Kd for the PID controller). 

‘ub’ and ‘lb’ - define the upper and lower bounds for the variables. 

‘popSize’ - specifies the number of individuals in the population. 

‘maxGenerations’ – specifies the maximum number of generations to run the algorithm. 

‘crossRate’ and ‘mutRate’ – specifies the rates for crossover and mutation operations. 

The variables from “Upper Bound” down to “Mutation Rate” are adjustable and unique 

to user preferences. 

Step 2: Objective Function 

“fobj” - Handle to the objective function saved in the script file named “Minie,” which 

evaluates the performance of the PID parameters. 

Step 3: Population Initialization 

‘population’ - Randomly initialize the population within the given bounds. 

‘fitness’ - Array to store population fitness values. 

Step 4: Main GA Loop 

Loop through each generation up to the maximum number of generations. 

Step 5: Fitness Evaluation 

Evaluate everyone’s fitness in the population using the ‘Minie’ objective function. 

Step 6: Selection 

Sort the population based on fitness values and select the best individuals. 

Step 7: Crossover 

Perform crossover between pairs of individuals to create offspring. 
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Step 8: Mutation 

Introduce random mutations to maintain diversity in the population. 

Step 9: Replacement 

Replace the old population with the new population. 

Step 10: Display Best Fitness 

Display the best fitness value of the current generation. 

Step 11: Best Solution 

Display the best PID parameters found after all generations and place the best solution 

PID gains from the workspace into the Simulink PID block. 

Step 12: Plot Fitness Curve 

Plot the fitness values over generations. 

In Figure 4.11, the fitness curve indicates a good evolutionary trend in the genetic 

algorithm. Initially, the population's fitness was low, but the algorithm successfully found 

and implemented superior solutions as generations passed. While there were times of 

stagnation, indicating possible local optima, the overall trajectory suggests good 

optimization. The final fitness value is noticeably high, indicating that the algorithm 

arrived at a near-optimal solution. Figure 4.13 illustrates the output voltage of a system 

over time. The x-axis represents time in seconds, and the y-axis represents the voltage 

in volts. The graph starts with the output voltage at a value different from the setpoint 

(5 volts). This is signaled by the over and undershoots at initial conditions. The graph 

exhibits overshoot (exceeding the setpoint) and undershoot (falling below the setpoint) 

during the transient response. The PID controller gains influence these behaviors. As 

the GA iterates, the output voltage gradually converges towards the setpoint. However, 

it doesn’t reach the exact setpoint voltage. The final value of the output voltage should 

ideally be very close to the set point. A difference indicates a steady-state error. 

4.8. The Optimisation Results of Genetic Algorithm  

The maximum number of generations that were set for the algorithm was fifty. The best 

of all solutions was displayed after the fifty iterations were executed. These gain values 

of Kp, Ki, and Kd are copied and placed inside the PID Simulink block, and the Simulink 

model is simulated with these optimized gain values.  
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Figure 4.11 shows the fitness plotted against the generation. The best individual's 

fitness (or the population's average fitness) improves over successive generations. The 

x-axis represents the generation number, while the y-axis represents the fitness value, 

where lower fitness values generally correspond to better performance or lower error. 

 

Figure 4. 10: The fitness curve 

The fitness value starts relatively high at the beginning of the curve (early generations). 

This indicates that the initial population (randomly generated set of PID parameters) 

may not be optimal, but a few individuals might already show some promise. Over 

successive generations, the fitness values tend to decrease steadily. This suggests 

that the genetic algorithm effectively explores the search space and refines the PID 

parameters to minimize the error performance. The fitness curve shows a gradual 

improvement (decrease in the fitness value) over the generations, starting from a higher 

value of around 1.34 × 10⁻³ and eventually reaching around 1.31 × 10⁻³ by the end of 

the optimization process. The curve begins to flatten around the 60th generation, which 

indicates that the algorithm has converged, with no significant improvement in the best 

fitness value after this point. This suggests that the GA has effectively optimized the 

PID parameters up to a certain level and is no longer making substantial progress. 

There is a flat section around 30 to 40 generations where fitness does not improve 

significantly. This could imply that the GA had difficulty exploring better solutions during 

this phase, possibly due to local optima. By the last generation, the best fitness reaches 

approximately 1.31 × 10⁻³, indicating the minimum error the GA was able to achieve. 
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The Simulink model with the best solution PID gains is simulated, and the simulation results are displayed in Figure 4.13. The simulation time is 

set to 0.1s to show the transient response of the systems simulated with the best PID gain values. The average DC voltage settles at 4.966V. 

 

Figure 4. 12: Simulated model with best solution values scope results 
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Figure 4.14 shows the pronounced oscillations in the GMPP after the GA tuning. The peak-to-peak of these oscillations is 3.66e-2V. 

 

Figure 4.13: The pronounced oscillations in the GMPP after the GA tuning. 
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4.9.  Conclusion 

The GA-tuned PID-based boost converter transfer function plant is analyzed in the time 

domain. The PV array supply of the boost converter before conversion to a transfer 

function is replaced by a battery with a voltage of 2.4, which is equal to VMPP. The boost 

converter modeled and simulated in this Chapter is the 5V design of Chapter 3. The 

3.3V design is assumed to behave in a similar response but with an adjusted reference 

voltage of 3.3V. The PID’s proportional value is set to a random value of 1; the integral 

is set to a random value of 1, and the derivative is set to 0. In Figure 4.2, the output 

voltage without the MPPT installed is 1.6V and far from the 5V target. In Figure 4.3, the 

scope output waveform overshoots and settles at 1.6V.  

 

Linearization is applied to the boost converter circuit to convert it to a transfer function 

so that a PID controller can control the transfer function to tune the output voltage to 

match it to a reference voltage of 5V. The PID controller gains are still set to a 

proportional value of 1, an integral value of 1, and a derivative value of 0. As seen in 

Figure 4.7, the amplitude spikes to a maximum value of 3.2e-1V and settles at an 

amplitude of 6.6e-2V. The settling voltage target is 5V, and the current settling voltage 

is far off the target. The average output voltage is 0.07V, as shown in the display in 

Figure 4.6. 

 

GA is applied to the transfer function PID-controlled model, and the best solution values 

for the PID controller are obtained. The simulation is executed with the best solution 

values. The output voltage is optimized to a value of 4.6V, close to the 5V bus voltage. 

This approach in this Chapter is an s-domain analysis, and with it, the output current 

may not be known, and thus, the output power cannot be calculated. Its practical 

implementation is non-feasible. However, future research can be conducted to find 

ways to use the optimized PID values with the original boost convert circuit model. 

Chapter Five implements the small signal transfer function derivation approach to 

obtain the boost converter's audio susceptibility transfer function and the control-to-

output transfer function. The State Space averaging derivation method and AC analysis 

small signal transfer function derivation method are theoretical methods that 

complement the MATLAB/Simulink linearisation method used to convert the boost 

converter closed loop plant into a transfer function plant. Chapter five uses the same 

MATLAB/Simulink generated transfer function of the closed loop boost converter. It 

uses the same integral time absolute error objective function. However, it uses PSO 

tuning of the PID controller rather than GA tuning. 
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CHAPTER 5 

PARTICLE SWARM OPTIMISATION IMPLEMENTATION of the BOOST CONVERTER for 

CubeSat POWER SYSTEMS 

5.1. Introduction 

The chapter implements the small signal transfer function derivation approach to obtain 

the boost converter's audio susceptibility equation and the control-to-output transfer 

function. The State Space averaging derivation method and AC analysis small signal 

transfer function derivation method are theoretical methods that complement the 

MATLAB/Simulink linearisation method used to convert the boost converter closed loop 

plant into a transfer function plant, as mentioned in Chapter 4, also presented in this 

chapter is the averaging method of state space representation of the boost converter. 

The averaging method of state space is performed to derive the transfer function from 

the state space. The linearization method mentioned in Chapter 4 produces the boost 

converter's state space representation and transfer function representation. Hence, this 

Chapter compares the theoretically derived state space and transfer functions to the 

linearization Simulink-generated state space and transfer function. Also, the control-to-

output transfer function is compared to the linearization Simulink-generated transfer 

function. 

 

Subsection 5.2 discusses the background of optimization methods used in fine-tuning 

the PID-controlled boost converter transfer function plant. Subsection 5.3 explains the 

small signal analysis of the boost converter operation for deriving the audio 

susceptibility equation and the control-to-output transfer function. Subsection 5.4 

discusses the State-Space averaging method used to calculate the state-space 

equations of a boost converter small signal circuit model. The state-space equations 

are then converted to a transfer function. The transfer function obtained from the state-

space averaging method is compared to the Simulink-generated transfer function using 

the linearization method.  

 

Subsection 5.5 explains the implementation of the PSO-tuned PID controller that 

controls the boost converter transfer function plant. The Simulink-generated transfer 

function by linearization method compares the PSO-tuned PID controller that controls 

the boost converter transfer function plant with the GA-tuned PID controller that controls 

the boost converter transfer function plant. Subsection 5.6 discusses the results and 

the conclusion.
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5.2. Optimization Methods Used in Fine-Tuning the PID-Controlled Boost Converter 

Transfer Function Plant. 

Tuning PID controllers for boost converter systems is an essential field of research 

since it helps preserve system stability, improve response times, and ensure efficient 

operation under changing load conditions. Several optimization strategies have been 

investigated in recent literature to achieve optimal PID parameter choices, focusing on 

dealing with boost converters' nonlinear and dynamic character. 

5.2.1. Common Optimization Methods 

5.2.1.1. Particle Swarm Optimization (PSO) 

PSO is extensively used to optimize PID controllers in boost converters since it is 

simple and effective. PSO uses the social behavior of birds flocking or fish schooling to 

search the solution space efficiently. Studies have demonstrated that PSO can 

successfully optimize PID settings to reduce the integral of time-weighted absolute 

error (ITAE) and other performance indices. This approach guarantees speedy 

convergence and robustness in variations in operating conditions. (Momani et al., 

2019). 

5.2.1.2. Genetic Algorithms (GA) 

Genetic Algorithms are another popular choice for PID tuning. GAs simulate the 

process of natural selection by creating, evaluating, and evolving a population of 

potential solutions. Combining crossover, mutation, and selection operations allows 

GAs to effectively explore complex, multi-modal solution spaces. GA-tuned PID 

controllers have significantly improved dynamic response and stability for boost 

converters. (Mohammed et al., 2022). 

5.2.1.3. Ant Colony Optimization (ACO) 

Ants' foraging behavior inspires ACO. It employs a population-based search strategy 

in which artificial ants create solutions and iteratively refine them using a pheromone 

updating process. ACO has been effectively used for PID tuning, providing advantages 

in discovering global optima and coping with nonlinearities in boost converter systems. 

(Mohammed et al., 2022). 

5.2.1.4. Cuckoo Search Algorithm (CSA) 

CSA is a nature-inspired optimization technique based on the brood parasitism of some 

cuckoo species. It is beneficial for handling continuous optimization problems. It has 
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been used to tune PID controllers by exploiting its ability to balance exploration and 

exploitation in the search space. This method guarantees excellent accuracy and 

convergence speed in PID parameter optimization (Momani et al., 2019). 

Optimization techniques such as PSO, GA, ACO, and CSA are beneficial for fine-tuning 

PID controllers in boost converter applications. These algorithms handle the issues 

given by boost converters' nonlinear and dynamic behavior, resulting in excellent 

performance and robustness. Recent research has shown that these strategies 

improve system stability, response time, and overall efficiency, making them valuable 

tools for engineers and researchers working on power electronics and control systems. 

In section 5.2, standard PID tuning algorithms are explored. The PID controls the boost 

converter transfer function plant. In the subsequent section, 5.3, a theoretical derivation 

of a Control-to-Output Transfer Function from a boost converter small signal circuit is 

carried out. 

5.3. Control-to-Output Transfer Function derivation of the Boost Converter 

The control-to-output transfer function of a boost converter, a key element in system 

design, describes the powerful relationship between the control input (duty cycle, D) 

and the output voltage (Vout). The small-signal analysis derives this transfer function 

and assumes that the converter operates in continuous conduction mode (CCM). The 

derivation involves linearizing the converter's equations around an operating point, 

neglecting higher-order terms, and taking the Laplace transform. The resulting transfer 

function is often expressed as a first-order system with a pole and a zero. This transfer 

function, emphasizing control, provides valuable insights into the system's dynamic 

response and can be used to design controllers to achieve desired performance 

characteristics. 

Depicted in Figure 5.1 is the small signal circuit of the boost converter. 

L1/(1-D)^2

C1 R1

i^L
(1-D): 1

-

+

VoutV^in/(1-D)

d^Vout/(1-D)

ILd^ i0^

 

Figure 0.1: Small Signal Circuit of the Boost Converter 

We can derive the audio susceptibility transfer function from the small signal circuit and 

the control-to-output transfer function.  

Table 5.1 Critical parameters of the boost converter small signal model circuit. 
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Symbol Description Values of Parameters 

𝑉𝑔 Input voltage 2.4V 

𝑉𝑜 Output voltage 
 

5V 

𝐷 Duty Cycle 
 

0.52 

�̂� small perturbation in the duty cycle  
 

0.1 

𝐿 Inductor 2.95mH 

𝐶 Capacitor 1520μF 

𝑖𝐿 Inductor current 1.69A 

𝑅 Resistor 6.8Ω 

Inductor voltage of the boost converter for a small-signal model circuit: 

𝒗𝑳 = 𝑳
𝒅𝒊𝑳

𝒅𝒕
         (5.1) 

Capacitor current of the boost converter for a small-signal model circuit: 

𝒊𝑪 = 𝑪
𝒅𝒗𝑪

𝒅𝒕
         (5.2) 

The small-signal equivalent circuit equations: 

�̃�𝒐  =  �̃�𝒐 − �̃�𝒄         (5.3) 

�̃�𝑳  = 𝑳
𝒅�̃�𝑳

𝒅𝒕
=  �̃�𝒈𝒅′ − �̃�𝒐𝑫       (5.4) 

𝒊𝑪 = 𝑪
𝒅�̃�𝒐

𝒅𝒕
         (5.5) 

The small signal perturbations: 

𝒗𝑳  =  �̃�𝒈𝒅′ − �̃�𝒐𝑫        (5.6) 

Where: 𝒅′ = 𝟏 − 𝑫 

The control-to-output transfer function relates the change in duty cycle to the change 

in output voltage: 

𝑮𝒗𝒅(𝒔) =  
�̅�𝒐(𝒔)

�̅�(𝒔)
         (5.7) 

�̃�𝒐(𝒔) =  (
𝑽𝒈

𝑫′(𝒔𝑳+𝒓𝒄)
)        (5.8) 

𝑮𝒗𝒅(𝒔) =  
𝑽𝒐

𝑫
(

𝑹

𝒔𝑳(𝟏−𝑫)𝟐+𝑹
)       (5.9) 

𝑮𝒗𝒅(𝒔) =  
𝟓

𝟎.𝟓𝟐
(

𝟔.𝟖

𝒔(𝟐.𝟗𝟓×𝟏𝟎−𝟑)×(𝟏−𝟎.𝟓𝟐)𝟐+𝟔.𝟖
)     (5.10) 

𝑮𝒗𝒅(𝒔) =  
𝟗.𝟔𝟏𝟓

𝟗.𝟗𝟗𝟓×𝟏𝟎−𝟓𝒔+𝟏
       (5.11) 

The audio susceptibility transfer function relates the change in input voltage to the 

change in output voltage: 

𝑮𝒗𝒈(𝒔) =  
�̅�𝒐(𝒔)

𝑽𝒈̅̅ ̅̅ (𝒔)
         (5.12) 

�̃�𝒐(𝒔) =  (
𝑫′

(𝒔𝑳+𝒓𝒄)
) �̃�𝒈(𝒔)       (5.13) 
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𝑮𝒗𝒈(𝒔) =  (
𝑫′𝑹

𝒔𝑳(𝟏−𝑫)𝟐+𝑹
)       (5.14) 

𝑮𝒗𝒈(𝒔) =  (
𝟎.𝟒𝟖×𝟔.𝟖

𝒔(𝟐.𝟗𝟓×𝟏𝟎−𝟑)×(𝟏−𝟎.𝟓𝟐)𝟐+𝟔.𝟖
)      (5.15) 

𝑮𝒗𝒈(𝒔) =  
𝟎.𝟒𝟖

𝟗.𝟗𝟗𝟓×𝟏𝟎−𝟓𝒔+𝟏
       (5.16) 

The control-to-output transfer function must differ from the audio susceptibility transfer 

function because it monitors different variations. The subsequent subsection uses the 

averaging method to determine the state-space equations of the boost converter circuit. 

Then, the following section converts the state-space equations into a transfer function. 

5.4. State-Space of the Boost Converter Using Averaging Method 

The boost converter has two operation modes: closed/on and open/off. In the closed/on 

mode, the MOSFET/IGBT is switched on; the diode is switched off, the inductor stores 

energy, and the capacitor releases energy. Figure 5.2 shows the: closed/on mode. 

L1

C1 R1

GND1

Iin

VL

iC iOUT +

-

Vin VOUT
MOSFET/Closed

 

Figure 0.2: Closed/On mode of the Boost Converter 

In the open/off mode, the MOSFET/IGBT is switched off; the diode is switched on, the 

inductor releases energy, and the capacitor stores energy. Figure 5.3 shows the: 

open/off mode of the boost converter. 

L2

C1 R1

GND1

Iin

VL

iC iOUT +

-

Vin VOUT

Diode/Closed

 

Figure 0.3: Open/Off mode of the Boost Converter 

The inductor element creates energy balance, also known as volt-second balance. Volt-

second balance means that input power is equal to output power. 

𝑷𝒊𝒏 = 𝑷𝒐𝒖𝒕         (5.17) 

 

The capacitor element creates charge balance. Charge balance means that the input 

charge is equal to the output charge. 
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𝑸𝒊𝒏 = 𝑸𝒐𝒖𝒕         (5.18) 

A boost converter produces an output voltage of more than an input voltage because 

the duty cycle must be selected to be less than one (d < 1) in equation 5.3. If d = 0, the 

output voltage will equal the input voltage. If d > 1, then the output voltage will be 

negative. If d = 1, then the equation 5.3 is undefined. 

𝑽𝒐𝒖𝒕 =
𝑽𝒊𝒏

𝟏−𝒅
         (5.19) 

On State (MOSFET closed, diode open): 

𝑳
𝒅𝒊𝑳

𝒅𝒕
=  𝑽𝒊𝒏 − 𝑽𝑳        (5.20) 

𝑪
𝒅𝒗𝑪

𝒅𝒕
=  𝒊𝑪 = 𝟎        (5.21) 

Where: 𝑽𝑳 =  𝒗𝑪  and 𝒊𝑪 = 𝟎 

Off State (MOSFET open, diode closed): 

𝑳
𝒅𝒊𝑳

𝒅𝒕
=  𝑽𝒊𝒏 − 𝑽𝑳        (5.22) 

𝑪
𝒅𝒗𝑪

𝒅𝒕
=  𝒊𝑪 = 𝟎        (5.23) 

Where: 𝑽𝑳 =  𝒗𝑪 + 𝑽𝒐𝒖𝒕 and 𝒊𝑪 =  𝒊𝑳 −
𝒗𝑪

𝑹
 

The duty cycle (D) indicates how long the switching period is until the switch is closed. 

As a result, the state equations over a single switching period (Ts) can be averaged as 

follows: 

𝑳
𝒅𝒊𝑳

𝒅𝒕
= 𝑫(𝑽𝒊𝒏 −  𝒗𝑪) + (𝟏 − 𝑫)(𝑽𝒊𝒏 −  𝒗𝑪 − 𝑽𝒐𝒖𝒕)    (5.24) 

𝑪
𝒅𝒗𝑪

𝒅𝒕
=  𝑫(𝟎 − 𝒊𝑳) + (𝟏 − 𝑫) (𝒊𝑳 − 

𝒗𝑪

𝑹
)     (5.25) 

Following are the simplified averaged equations:  

𝑳
𝒅𝒊𝑳

𝒅𝒕
= 𝑽𝒊𝒏 − (𝟏 − 𝑫)𝑽𝒐𝒖𝒕 − 𝒗𝒄      (5.26) 

𝑪
𝒅𝒗𝑪

𝒅𝒕
=  −

𝑫

𝑹
𝒗𝒄 +  𝒊𝑳(𝟏 − 𝑫)       (5.27) 

The State-Space Representation: 

[
𝑳

𝒅𝒊𝑳

𝒅𝒕

𝑪
𝒅𝒗𝑪

𝒅𝒕

] =  ⌊
𝟎 −

𝟏

𝑳
𝟏

𝑪

−𝑫

(𝑹𝑪)

⌋ ⌊
𝒊𝑳

𝒗𝒄
⌋ + ⌊

𝑽𝒊𝒏

𝑳

𝟎
⌋ + ⌊

−(𝟏−𝑫)𝑽𝒐𝒖𝒕

𝑳
𝒊𝑳(𝟏−𝑫)

𝑪

⌋    (5.28) 

Output equation: 

𝒗𝒐𝒖𝒕 = 𝒗𝑪         (5.29) 

Converting the state space into the transfer function: 

To convert the state-space representation to a transfer function, we must take the 

Laplace transform and solve for the output over the input: 

𝒔𝑿(𝒔) = 𝑨𝑿(𝒔) + 𝑩𝑼(𝒔)       (5.30) 



101 

Where: 𝑿(𝒔)Is a state vector in the Laplace domain, A is a system matrix, B is the input 

matrix, and U is the input in the Laplace domain. 

𝑿(𝒔) = (𝒔𝑰 − 𝑨)−𝟏 + 𝑩𝑼(𝒔)       (5.31) 

𝑽𝒐𝒖𝒕(𝒔) = 𝑪𝑿(𝒔)        (5.32) 

𝑮𝒗𝒅(𝒔) =  
𝑽𝒐𝒖𝒕(𝒔)

𝑽𝒊𝒏(𝒔)
=  

(𝟏−𝑫)

𝑳𝒔𝟐+
(𝟏−𝑫)

𝑹
𝒔+

(𝟏−𝑫)𝟐

𝑳

      (5.33) 

𝑮𝒗𝒅(𝒔) =  
𝑽𝒐𝒖𝒕(𝒔)

𝑽𝒊𝒏(𝒔)
=  

(𝟏−𝟎.𝟓𝟐)

𝟐.𝟗𝟓×𝟏𝟎−𝟑𝒔𝟐+
(𝟏−𝟎.𝟓𝟐)

𝟔.𝟖
𝒔+

(𝟏−𝟎.𝟓𝟐)𝟐

𝟐.𝟗𝟓×𝟏𝟎−𝟑

    (5.34) 

𝑮𝒗𝒅(𝒔) =  
𝑽𝒐𝒖𝒕(𝒔)

𝑽𝒊𝒏(𝒔)
=  

𝟎.𝟒𝟖

𝟎.𝟎𝟎𝟐𝟗𝟓𝒔𝟐+𝟎.𝟎𝟕𝟎𝟓𝟖𝟖𝟐𝒔+𝟕𝟖.𝟏𝟑𝟓𝟓𝟓𝟗𝟑𝟐
    (5.35) 

The linearisation transfer function is given subsequently for comparison with the state 

space transfer function: 

𝑻𝑭 =  
𝟏.𝟏𝟏×𝟏𝟎𝟓𝒔− 𝟑.𝟔𝟏𝟐×𝟏𝟎−𝟕

𝒔𝟑+𝟗.𝟐𝟒𝟐×𝟏𝟎𝟒𝒔𝟐+𝟔.𝟖𝟑𝟔×𝟏𝟎𝟖𝒔+𝟔.𝟓𝟐𝟕×𝟏𝟎𝟏𝟎     (5.36) 

The difference between the control-to-output transfer function and the state-space 

transfer function calculated via the averaging method for a boost converter stems from 

the differing approaches and assumptions utilized in their derivation. The control-to-

output transfer function is frequency domain analysis, employing techniques such as 

Laplace transforms. It considers the small-signal perturbations around a steady-state 

operating point. It uses the small-signal model to linearize the nonlinear equations of 

the boost converter. In this method, certain parasitic elements, high-order effects, and 

non-idealities may need to be addressed to simplify the model. (Erickson and 

Maksimović, 2020). 

 

The state-space averaging method models the converter in the time domain by 

averaging its behavior during a switching cycle. This method provides a complete 

description of the converter's dynamics by considering the instantaneous behavior of 

the inductor current and capacitor voltage. Non-idealities, such as a capacitor and 

inductor equivalent series resistance (ESR), can be included in using this method. The 

difference between the linearisation transfer function obtained using MATLAB/Simulink 

and the transfer function acquired via the averaging method using the same boost 

converter component values is due to intrinsic variations in the methodologies utilized 

to construct these functions.MATLAB/Simulink represents the entire system's 

dynamics, including higher-order effects, parasitic elements, and interactions that 

simplistic models may not reveal. When a model is linearised in Simulink, it considers 

all the states and their interactions at a specific operational point. This frequently yields 

a higher-order transfer function because it accounts for all the dynamics in the model, 

including those introduced by switching actions, control loops, and parasitics. Simulink 
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also incorporates the dynamics of any model-included control and measurement 

systems, which might introduce new poles and zeros into the transfer function. 

(Erickson and Maksimović, 2020). The state-space averaging method simplifies the 

converter operation by averaging states throughout a switching interval. This method 

typically focuses on the underlying dynamics of inductor current and capacitor voltage, 

yielding a second-order model of a boost converter. While the averaging method 

produces a simpler model that is easier to analyze, the full Simulink model provides a 

more accurate representation for simulation and design (Mohan et al., 1995). 

5.5. Implementing PSO to the Simulink-Generated Plant Transfer Function 

MATLAB/Simulink model represents the entire system's dynamics, including higher-

order effects, parasitic elements, and model-included control and measurement 

systems, which might introduce new poles and zeros into the transfer function. Hence, 

the PSO algorithm is applied to it and not to the control-to-output transfer function or 

the averaging method transfer function. There are two ways discovered in the literature 

to apply PSO. Firstly, A similar approach to that applied in Chapter 4 using the GA-

tuned PID to control the bus voltage setpoint for a boost converter transfer function 

plant can be applied, and the GA algorithm is replaced with the PSO. 

Secondly, the boost converter circuit can implement a PSO algorithm as a MATLAB 

MPPT function. It was discovered in Chapter 4 that the transfer function plant approach 

is a theoretical analysis and has no practical utilization in the CubeSat EPS design and 

implementation. This section explains the first implementation approach that uses the 

boost converter's frequency domain transfer function plant with PSO tuning of the PID. 

A similar approach to the genetic algorithm GA is adopted to implement the PSO to 

tune the PID controller gain parameters. Again, ITAE is selected for its fast response 

time and settling time as an objective function to minimize the steady-state error. ITAE 

MATLAB function named “tunning2” is used to evaluate the performance of the PSO-

tuned PID-controlled boost converter transfer function closed loop plant with PID gain 

parameters K(1), K(2), and K(3). 

5.5.1. ITAE function execution steps 

1. The function receives K, a set of parameters to be tuned for the Simulink model. 

2. It assigns K to the base workspace so the Simulink model can access and use 

these parameters during its simulation. 

3. It runs the Simulink model named “PSO_to_theory.slx” with the current 

parameters K. 
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4. the cost is calculated using the ITAE value after the simulation. The cost 

measures how well the model performs with the current parameters. 

The ITAE cost function is used as the objecting function of the PSO algorithm in a 

MATLAB script file. The ITAE function MATLAB code is included in Appendix E. 

5.5.2. The Particle Swarm Algorithm MATLAB code steps 

To explain the PSO MATLAB code, which is used to minimize the steady-state error of 

a Simulink model that represents the nonlinear characteristic response of the boost 

converter plant, which is in the form of a transfer function and is controlled by a PID 

controller using an ITAE objective function as a minimization performance index, a 

step-by-step format is explained below: 

Step 1: Initialize the MATLAB environment 

Clear all variables, close all figures, and clear the command window. 

Step 2: Define Problem Details 

Set the number of variables (nVar), upper bounds (ub), lower bounds (lb), and the 

objective function (fobj). 

Step 3: Set the PSO Parameters 

Define the number of particles (noP), maximum iterations (maxIter), and various PSO 

parameters, including inertia weights (wMax, wMin), cognitive and social coefficients 

(c1, c2), and velocity limitations (vMax, vMin). 

Step 4: Initialise Particles 

Initialize each particle's position, velocity, personal best (PBEST), and global best 

(GBEST). 

Step 5: Run the PSO Main Loop 

Iterate over the specified number of iterations. 

Step 6: Calculate the Objective value for each particle 

Evaluate the objective function for each particle's current position. Update personal 

best (PBEST) and global best (GBEST) if the current objective value improves. 

Step 7: Update Velocity and Position 

Compute the inertia weight for the current iteration. Update each particle's velocity and 

position based on inertia, cognitive, and social components. Ensure velocities and 

positions are within bounds. 

Step 8: Display Iteration Results 

Display the current iteration number and the global best objective value. Store the 

global best objective value for plotting. 

Step 9: Plot Convergence Curve 

Plot the convergence curve showing the global best objective value at each iteration. 
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5.5.3. MATLAB/Simulink Model of the PSO-Tuned PID Controller for a PV-Supplied Boost Converter Transfer Function Model 

Figure 5.4 shows the MATLAB/Simulink model of the PSO-tuned PID controller for a PV-supplied boost converter transfer function model. The 

model of the plant is linearised for STC (28°C and 1367w/m2) PV input condition, and the control action is targeted at matching the output to the 

5V reference point. Figure 5.4 model is tuned using PSO with 50 particles, and for 1 iteration, the PID gains adjusted from random: P = 1, I =1, 

and D=0 to new values: P=7.111285511803252e+02, I=6.245729169933086e+02, and D=5.906086529196359e+02, and yielded an output of 

4.331V just after a single PSO iteration. This is a significant improvement from an output voltage of 0.05664V achieved before GA tuning in 

Chapter 4: Figure 4.6. 

 

Figure 5.4: PSO tuning of the parameters of the PID after the first iteration 
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Figure 5.5 shows the scope of the PSO tuning of the parameters of the PID after the first iteration. 

 

Figure 5.5: PSO tuning of the parameters of the PID after the first iteration 

The output waveform shows in Figure 5.5 that the bus voltage of 5V is not achieved; there are pronounced overshoots and undershoots at the 

initial time of the simulation, but they rapidly dampen.  
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Figure 5.6 shows the pronounced oscillations about the GMPP after the first iteration of running the PSO tuning code. The peak-to-peak 

Amplitude of these oscillations is 9.36e-2V.  

 

Figure 5.6: The pronounced oscillations about the GMPP after the first iteration of the PSO tuning application 
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Figure 5.7 is the model of the PSO tuning of the parameters of the PID after the 50 iterations using 50 particles. The average DC output voltage 

produced by the best-found PID values is 4.7V. The Best PID parameters were Kp: 0, Ki: 1000, and Kd: 495.0556. 

 

Figure 5.7: PSO tuning of the parameters of the PID after the fifty iterations. 
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The maximum iterations that were set for the algorithm were fifty iterations. When the 

fifty iterations were executed, the best gains of all solutions were displayed. These gain 

values of kp, ki, and kd are automatically sent from the workspace to the Simulink 

model’s PID block, and the Simulink model is simulated with these optimized gain 

values. Figure 5.8 shows the MATLAB windows with fifty iterations simulated and the 

best solution displayed. 

Pseudocode for the PSO tuning of the PID controller for the PV-supplied boost 
converter transfer function plant. 

1. Clear all variables, close all figures, and clear command window. 

 

2. Initialize problem parameters: 

   - Define `nVar` as the number of variables (3 in this case). 

   - Set `ub` as the upper bound for the variables [1000, 1000, 1000]. 

   - Set `lb` as the lower bound for the variables [0, 0, 0]. 

   - Define `fobj` as the objective function (in this case, a function called `tunning2`). 

 

3. Initialize PSO parameters: 

   - Set `noP` as the number of particles (50). 

   - Set `maxIter` as the maximum number of iterations (50). 

   - Define inertia weight `wMax` as 1 and `wMin` as 0.1. 

   - Set cognitive and social acceleration coefficients `c1` and `c2` as 2. 

   - Define `vMax` as 20% of the range between the upper and lower bounds (`ub - lb`). 

   - Define `vMin` as the negative of `vMax`. 

 

4. Initialize the particle swarm: 

   For each particle `k` from 1 to `noP`: 

   - Randomly initialize the particle's position `X` within the bounds `[lb, ub]`. 

   - Initialize the particle's velocity `V` as a zero vector. 

   - Initialize the particle's personal best position `PBEST.X` as a zero vector. 

   - Set the particle's personal best objective value `PBEST.O` to infinity. 

   - Initialize the global best position `GBEST.X` as a zero vector. 

   - Set the global best objective value `GBEST.O` to infinity. 

 

5. Main loop for PSO: 

   For each iteration `t` from 1 to `maxIter`: 

    

   5.1 Evaluate the objective function for each particle: 
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       - For each particle `k`, calculate the objective value using the function `fobj` 

(evaluates `tunning2` for the particle's current position `X`). 

       - Update the personal best (`PBEST`) for each particle if the current objective value 

`O` is better than the personal best. 

       - Update the global best (`GBEST`) if the current objective value `O` is better than 

the global best. 

 

   5.2 Update the particles' velocity and position: 

       - Calculate the inertia weight `w` based on the current iteration (linearly decreasing 

from `wMax` to `wMin`). 

       - Update the velocity `V` of each particle using the PSO formula: 

         - Velocity depends on inertia, cognitive component (towards personal best), and 

social component (towards global best). 

       - Ensure velocities stay within the bounds `[vMin, vMax]`. 

       - Update the position `X` of each particle by adding the velocity `V`. 

       - Ensure positions stay within the bounds `[lb, ub]`. 

 

   5.3 Display the current iteration number and global best objective value. 

 

   5.4 Store the global best objective value at the current iteration for plotting later. 

 

6. After the main loop: 

   - Display the best PID parameters found (`Kp`, `Ki`, and `Kd`) based on `GBEST.X`. 

   - Plot the convergence curve showing the global best objective value over iterations. 

 

7. Define the objective function `tunning2`: 

   - Simulate a PID controller using the parameters `P` (the particle's position). 

   - Extract the `ITAE` (Integral of Time-weighted Absolute Error) from the simulation 

output. 

   - If `ITAE` data is valid, return the final value as the cost; otherwise, return infinity. 
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In Figure 5.9, there are still undershoots and overshoots at the initial time of the waveform, but they rapidly dampen. The waveform forms a 

sinusoid that momentarily reaches its positive peak at the 5V DC line. We couldn’t tell after the first iteration that the waveform would form a 

sinusoid along the timeline after the five-second simulation. 

Figure 5.8: PSO Tuning of the Parameters of The PID after the Fiftieth Iteration 
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Figure 5.10 shows that the pronounced oscillations about the GMPP after the fiftieth iteration reduced amplitude by 13mV. The peak-to-peak of 

these oscillations is 8.06e-2V. 

 

 

Figure 5.9 Oscillations at the GMPP after the fiftieth iteration  
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Figure 5.11 shows the convergence curve and how the global best objective value 

related to minimizing the error metric, the ITAE PID performance index, changes across 

iterations. The global best objective value steadily improves with iterations. At the start 

of the PSO process, the objective value fluctuates at higher values of 1.33 × 10⁻³, but 

as iterations progress, it gradually decreases. At the fifty-eighth iteration, the global 

best value achieves a minimum of 1.2923 × 10⁻³. This indicates that the PSO algorithm 

was able to find a near-optimal solution at this point. Beyond this iteration, the curve 

flattens out, implying that the optimization has converged, and further iterations do not 

significantly improve the solution.  

 

Figure 5.10: The Plot Convergence Curve 

5.6. Conclusion 

After tuning the PID, which controls the closed loop boost converter transfer function 

plant with GA, the best solution's average DC output voltage is 4.557V, and after tuning 

the PID, which controls the closed loop boost converter transfer function plant with 

PSO, the average DC output voltage produced by the best-found PID values using 

PSO is 4.658V. The PSO’s average DC output voltage is closer to the 5V DC voltage 

by 101mV. The GA-tuned and PSO-tuned scope simulation results waveforms take a 

similar curvature. Initially, they over and undershoot, rapidly dampen, and pursue the 

setpoint voltage. However, the PSO curve intermittently touches the setpoint voltage 

by its peak positive amplitudes, whereas the GA curve is a continuous sawtooth 

waveform below the setpoint voltage. The GA oscillation's peak-to-peak amplitude 
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about the GMPP after 50 generations of tuning is 3.66e-2V, and the PSO oscillation's 

peak-to-peak amplitude about the GMPP after 50 iterations of tuning is 8.06e-2. There 

is a difference of 44mV, so the GA is smoother than the PSO by a value of 44mV. 

Chapter six implements a hybrid technique combining the PO and PSO MPPT to 

mitigate the PO’s poor tracking under rapid weather conditions.  
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CHAPTER 6 

Hybrid Perturb and Observe Particle Swarm Optimisation Maximum Power Point 

Tracking Model for Implementation in the CubeSat Power Systems 

6.1. Introduction 

To mitigate the PO’s poor tracking under rapid weather conditions, a hybrid technique 

that combes the PO and PSO MPPT is implemented in this Chapter. This hybrid MPPT 

is comprised of the PO function and the PSO algorithm, and together, they control the 

duty cycle of the pulse width modulated control signal (PWM). The perturb and observe 

(PO) maximum power point tracking (MPPT) function, which is implemented in Chapter 

3, tracks the global maximum power point (GMPP) poorly under rapid weather 

conditions. The particle swarm optimization (PSO) algorithm implemented in Chapter 5 

quickly finds the local maximum power point. 

The PWM signal controls the switching duty cycle of the MOSFET in the boost 

converter circuit, and the duty cycle of the boost converter regulates the output voltage 

gain. In this Chapter, the target is to design a hybrid controller that will regulate the 

output voltage of the boost converter at a 5V level under varying photo voltaic weather 

conditions. The 3.3V boost converter is assumed to respond similarly to 5V but with a 

different boost converter output voltage of 3.3V.  

 

The MPPT controllers presented in this Chapter work in the time domain. The PV input 

voltage, current, power, and boost converter output voltage, current, and power are 

monitored in real-time. The simulations in this Chapter will continue using the 

assumption of the worst-case scenario where two sides of the 1U CubeSat face the 

sun. This means the array is made of four parallel connected modules.  

 

Subsection 6.2 provides an overview of how the PO function works, how the PSO 

MATLAB function works, and how they are combined in the MATLAB/Simulink function 

to form the hybrid script file code. Subsection 6.3 explains the PSO algorithm in generic 

terminology. Also included in subsection 6.3 is a PSO algorithm step-by-step process 

explanation as it is implemented as a MATLAB function in Simulink. Subsection 6.4 

depicts the simulation results of the Simulink model that implements the hybrid PO PSO 

MPPT. Subsection 6.5 discusses the hybrid PO PSO MPPT convergence time in 

tracking the GMPP, system oscillation at the GMPP, and how the system responds to 

standard testing conditions (STC) and low earth orbit (LEO) thermal conditions. 

Subsection 6.6 is the conclusion and benchmarks the results achieved in this Chapter. 
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6.2. The Overview of the Hybrid PO PSO MPPT Model 

The Simulink design of the novel hybrid PO PSO MPPT function that controls the 

PWM’s duty cycle of the boost converter is shown in Figure 6.1. The hybrid code 

combines the global search capabilities of PSO with the fine-tuning capability of PO. 

When the system approaches the optimum (minor fluctuations in power), the PO 

algorithm takes control. Otherwise, the PSO algorithm investigates a wide range of 

solutions. The size of the power output change determines whether the PO function or 

the PSO algorithm is used. The hybrid technique addresses the problem of poor GMPP 

tracking in dynamic situations. 

 

Figure 6. 1: PO MPPT and the PSO MPPT duty cycle computation 

The PO MPPT measures both the voltage and the current produced by the PV module 

and computes the input power of the PO function. The PO function perturbs the power 

in one direction, and if the power continues to increase, then the PO keeps on 

perturbing in the same direction. If the perturbed new power value is less than the old 

one, it will perturb in the opposite direction. One of the drawbacks of the PO function 

when it is used alone is the oscillation at the maximum power point. Additionally, the 

PO function tracks the maximum power point (MPP) poorly under rapidly changing 

weather conditions. Depicted in Figure 6.2 is the flowchart of the PO MPPT function. 

On the left is a negative perturbation, and on the right is a positive perturbation. 

 

Figure 6. 2: The basic flowchart of the PO MPPT function 

The PSO algorithm also uses the measured values of both PV voltage and current to 

calculate the power of each particle. The current value of the power of each particle is 
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then compared with the previous value. If the current value is better than the previous 

value, then the last value is updated. A detailed explanation of the PSO code is 

explained in subsection 6.3. The novel hybrid PO PSO MPPT overall system comprises 

a PV power source array, a boost converter, a load, a PO function, and a PSO function, 

as shown in Figure 6.3. 

 

Figure 6. 3: The Hybrid PO-PSO MPPT Model 

This design uses a PSO algorithm and a PO objective function because this research 

Thesis seeks to compare the results of the PO MPPT (implemented in Chapter 3) with 

the novel hybrid PO PSO MPPT (implemented here in Chapter 6). The comparison is 

performed using performance indicators: convergence time in tracking the GMPP, the 

measure of oscillations at the GMPP, and the system's response at standard test 

conditions (STC) and in low earth orbit (LEO) thermal conditions. Subsection 6.3 

explains the PSO algorithm in generic terminology and describes it as implemented as 

a MATLAB function. 

 

6.3. PSO algorithm for the implementation as a MATLAB MPPT function 

Subsection 6.3.1. explains the PSO algorithm in generic terminology. 

6.3.1. The Overview of the PSO Algorithm 

The PSO algorithm introduced by J. Kennedy and R.C. Eberhart in 1995 is widely used 

to optimize system performance. A modified PSO was introduced in 1998 to improve 

the performance of the original PSO. A linearly decreasing inertia weight (ω) is added 

to the enhanced PSO during each iteration. Clerc reported another widely used PSO. 

In this thesis, the PSO used is the 1998 PSO (Aoughlis et al., 2021). A PSO is a 

stochastic, population-based evolutionary algorithm search method. It is modeled after 

the behavior of a bird swarm or a fish school. (Abdulkadir and Yatim, 2014). The 

algorithm's methodology focuses on the attitude of a swarm of birds or a school of fish 
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when searching for food. In the PSO, a particle represents a potential solution to a 

problem. Particles imitate the success of neighboring particles and their own achieved 

success. Therefore, the position of a particle is influenced by the position of the best 

particle (Pbest) in a neighborhood, as well as the best solution found by all the particles 

in the entire population (Gbest). 

Each particle is treated as a point in a D-dimensional space. The ith particle is 

represented as XI= (xi1, xi2,…,xiD). The best previous position giving any particle's 

minimum/maximum fitness value is recorded and described as PI= (pi1, pi2,…,piD); this 

is called Pbest. The position of the best particle among all particles in the population is 

called Gbest. The particle (i) velocity is represented as VI= (vi1, vi2,…, viD). The particle 

position, xi, is adjusted using: 

𝒙𝒊
𝒕+𝟏 = 𝒙𝒊

𝒕 + 𝒗𝒊
𝒕+𝟏        (6.1) 

where the velocity component represents the step size vi. The velocity is calculated by: 

𝒗𝒊
𝒕+𝟏 =  𝝎𝒗𝒊

𝒕 + 𝒄𝟏𝒓𝟏(𝒑𝒃𝒆𝒔𝒕, 𝒊 − 𝒙𝒊
𝒕) + 𝒄𝟐𝒓𝟐(𝒈𝒃𝒆𝒔𝒕 − 𝒙𝒊

𝒕)   (6.2) 

Where: 𝒊 = 𝟏, 𝟐, … … 𝑵 

Where xi denotes the ith particle position; the velocity of the ith particle is represented 

by vi; the number of iterations is denoted by t; the inertia weight is defined by ω; r1 and 

r2 are uniformly distributed random variables within [0, 1]; and the cognitive and social 

coefficients are denoted by C1 and C2 respectively. In the velocity equation, 

𝒄𝟏𝒓𝟏(𝒑𝒃𝒆𝒔𝒕, 𝒊 − 𝒙𝒊
𝒕) is called the cognitive part, representing the particle's personal 

experience or individual memory that brings it back to the most satisfying place it 

passed through in the past. The term 𝒄𝟐𝒓𝟐(𝒈𝒃𝒆𝒔𝒕 − 𝒙𝒊
𝒕) reflects social behavior. It 

makes each particle follow the best position found by its neighbors. 

6.3.2. PSO Algorithm in MATLAB MPPT function 

The MATLAB MPPT function code implements a PSO algorithm for adjusting the duty 

cycle D of the boost converter based on the input voltage Vpv and current Ipv of a PV 

array. The goal is to maximize the power output of the boost converter by finding the 

optimal duty cycle D using the PSO algorithm. 

Step 1: Particle Initialization 

The ‘persistent’ is used to retain the values of the variables between function calls, 

allowing the algorithm to maintain state and progress over multiple iterations. 
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The variables ‘u,’ ‘dcurrent,’ ‘pbest,’ ‘p,’ ‘dc,’ ‘v,’ ‘counter,’ and ‘gbest’ are initialized on 

the first function call. 

• counter: Tracks the number of iterations. 

• dcurrent: Stores the current duty cycle. 

• gbest: Stores the global best duty cycle. 

• p, v, pbest, dc: Arrays to store particle positions, velocities, personal best 

positions, and duty cycles. 

Table 6.1: PSO algorithm MATLAB MPPT Function variables description 

Symbol Description Parameters Values 

𝑢 Iteration counter 1 to 4 

𝑑𝑐𝑢𝑟𝑟𝑒𝑛𝑡 Current duty cycle 
 

0.5 

𝑝𝑏𝑒𝑠𝑡 Personal best duty cycle for each particle 
 

0[3,1] 

𝑝 Personal best power for each particle 
 

0[3,1] 

𝑑𝑐(1) The duty cycle for each particle 1 0.2 

𝑑𝑐(2) The duty cycle for each particle 2 0.4 

𝑑𝑐(3) The duty cycle for each particle 3 0.7 

𝑣 Velocity for each particle 0[3,1] 

𝐶𝑜𝑢𝑛𝑡𝑒𝑟 Iteration delay counter 1 to 300 

𝑔𝑏𝑒𝑠𝑡 Global best duty Cycle 0.5 

𝑑𝑐 Duty Cycle 0[3,1] 

Initial duty cycles for each particle (‘dc(1)’, ‘dc(2)’, ‘dc(3)’) are set to 0.2, 0.4, and 0.7, 

respectively. 

Step 2: Delay Mechanism 

The function uses a counter to delay the execution of the PSO algorithm by returning 

the current duty cycle without modification until a certain number of iterations (‘counter’ 

reaches 300) have passed. 

Step 3: Fitness Evaluation 

The fitness of each particle is calculated as the power output: Vpv x Ipv 

If the current power output is greater than the previous best: ‘pbest’, the best position 

of the particle is updated to the current duty cycle. 

Step 4: Particle Update 

The function cycles through each particle (‘u’ ranging from 1 to 4) to update their duty 

cycles (‘D’), velocities, and positions. 

If ‘u’ reaches 4, the algorithm finds the particle with the highest power output (‘gbest’), 

updates the global best duty cycle, and recalculates the velocities and positions of the 

particles. 
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Step 5: Velocity and Duty Cycle Update 

The velocity of each particle is updated using the PSO velocity update formula: 

v_final = w * v + c1 * rand() * (pbest - d) + c2 * rand() * (gbest - d) 

Where: 

• v_final: Updated velocity 

• w: Inertia weight 

• v: Current velocity 

• c1, c2: Cognitive and social parameters 

• pbest: Personal best position 

• d: Current duty cycle 

• gbest: Global best position 

The duty cycle is updated based on the new velocity, ensuring it remains within the 

bounds [0, 1]. 

d_final = max(0, min(1, d + v_final)) 

where: 

• d_final: Updated duty cycle 

• d: Current duty cycle 

• v_final: Updated velocity 

Step 6: Final output 

After all updates, the final duty cycle (‘D’) is returned.  

The control action of the PSO method used for MPPT is summarised in Figure 6.5. 

Also, it puts the steps 1 to 6 covered in subsection 6.2.3 into a flowchart diagram. The 

PSO algorithm in this function iteratively updates particle positions and velocities based 

on their fitness values to find the optimal duty cycle that maximizes the power output of 

the boost converter. The flowchart in Figure 6.4 outlines a Particle Swarm Optimization 

(PSO) algorithm for tuning a boost converter's duty cycle (D) to maximize output power. 

The process begins by initializing variables and then iteratively calculates power output 

for each particle. If the current power is greater than the personal best, the particle's 

personal best position and power are updated. After a pre-defined number of iterations, 

the global best duty cycle is determined based on the maximum power achieved by 

any particle. The particle’s velocities and duty cycles are then updated using the PSO 

equations. This iterative process continues until a termination condition is met, and the 

final optimized duty cycle is returned as the optimum result. 
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Figure 6.4: The PSO method used for MPPT Flowchart 
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6.4. The Hybrid PO PSO MPPT Model Implementation 

The performance of the PO MPPT at standard testing conditions (STC) is discussed in 

subsection 6.4.1. Subsection 6.4.2. PO MPPT under rapidly changing space weather 

conditions. Subsection 6.4.3. discusses the performance of the PSO MPPT at STC. 

Subsection 6.4.4. PSO MPPT under rapidly changing space weather conditions. 

Subsection 6.4.5. discusses the performance of the hybrid PO PSO MPPT at STC. 

Subsection 6.4.6. hybrid PO PSO MPPT under rapidly changing space weather 

conditions. Azur Space solar cell standard testing conditions, the temperature is 28°C, 

and the radiation is 1367W/m2 (Guter et al., 2017). In low earth orbit (LEO), the 

temperature can change rapidly from -100°C to +125°C, and radiation varies depending 

on the satellite's distance to the sun from 1322W/m2 to 1414W/m2 (Boushon, 2018). 

 

The worst-case situation is when two sides of the CubeSat point towards the sun. A 

configuration where two sides of the CubeSat are pointed to the sun is simulated by 

the (+X, +Y) or (-X, -Y) groups. The (+X, +Y) or (-X, -Y) group gives a voltage output of 

2.4V and a total current of 1.8A. The solar Array will have four modules connected in 

parallel. This array is an input of the boost converters. The desired outputs of the boost 

converters are 3.3V and 5V, as determined by the desired bus load voltages. However, 

for practical demonstration in this section, the 5V bus boost converter design of Chapter 

3 is utilized, and it is assumed that the 3.3.V bus will behave similarly but with setpoint 

voltage focused at 3.3V. 

6.4.1. Perturb and Observe MPPT at Standard Testing Conditions  

The PO MPPT Simulink model is shown in Figure 6.6; at the far left are the PV array 

measurements. The PV output power, voltage, and current are connected to the scope 

and the display for displaying average DC levels. At the top center is the PO MPPT 

MATLAB/Simulink function, which tunes the PWM duty ratio to maximize power 

extraction. At the bottom center is the boost converter model, which regulates the load 

voltage. At the far right are the load measurements, where load power, voltage, and 

current are connected to the scope and displays. The first objective is to measure the 

time it takes to settle at the GMPP at STC. The second objective is to measure the 

oscillation amplitude at the global maximum power point (GMPP) at STC. The third 

objective is to measure the average DC voltage at a small sampling time for PO MPPT, 

PSO MPPT, and the hybrid MPPT. The fourth objective is to graphically visualize the 

PO MPPT, PSO MPPT, and hybrid MPPT waveforms at that small sampling point.  
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Figure 6.6 depicts the PO MPPT Simulink Model. At STC, the irradiation is set to 1367W/m2 and the temperature to 28°C. The PV output power 

is 3.56W, the voltage is 2.655V, and the current is 1.341A. The boost converter load power is 3.044W, the voltage is 4.55V, and the current is 

0.6691A. 

 

Figure 6. 5: PO MPPT Simulink Model at STC 



123 

Figure 6.7 depicts the PO MPPT Simulink Model simulation waveforms for load power, voltage, and current signals. At STC, the irradiation is 

set to 1367W/m2 and the temperature to 28°C. The PV output power is 3.56W, the voltage is 2.655V, and the current is 1.341A.  The boost 

converter load power is 3.044W, the voltage is 4.55V, and the current is 0.6691A. 

 

Figure 6. 6: PO MPPT Simulink Model Simulation Waveforms at STC
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To measure the settling time of the output power for the PO MPPT at STC, the blue-line graph of Figure 6.7. which represents the output power 

is enlarged in Figure 6.8. The settling time is 0.05 seconds. 

 

Figure 6. 7: The settling Time of the Boost Converter Load Power 
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To measure the oscillations at the GMPP at STC, the blue line output power graph of Figure 6.8 is zoomed in between 0.05 seconds and 0.06 

seconds, and a sample of pulses at GMPP is taken. The amplitude at GMPP of the sample of pulses is 6.4e-2W. 

 

Figure 6. 8: The oscillations at the GMPP at STC 
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6.4.2. Perturb and Observe MPPT at Varying Testing Conditions 

To measure the average DC voltage at a small sampling time for PO MPPT, PSO MPPT, and the hybrid MPPT, the sampling time is set to 0.1s, 

and the simulation time is 1s. The average DC voltage for PO MPPT is 3.89V in the given simulation time of one second, as seen in the output 

measurements displayed in Figure 6.10. To design a Simulink dynamic input that simulates varying temperatures between -100°C and +120°C, 

a random number block and a gain block to scale the random input to your desired temperature range and a summation block are used in 

MATLAB/Simulink shown in Figure 6.9. The formula that is implemented in Simulink is 𝑻 =  −𝟏𝟎𝟎 + 𝟐𝟐𝟎 × 𝑹𝒂𝒏𝒅𝒐𝒎 𝒏𝒖𝒎𝒃𝒆𝒓. 

 

Figure 6. 9: The PO MPPT Average DC Voltage at a Small Sampling Time 
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The green line graph in Figure 6.10 is the output voltage of the boost converter load. 5V is the target bus voltage, and as the sampling time changes 

rapidly within the one-second simulation time, the voltage deviates significantly from the targeted voltage. This significant deviation results in an average 

harvested voltage within the one-second simulation time reducing to 3.89V. 

 

Figure 6. 10: The PO MPPT Output Waveforms at a Small Sampling Time
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Figure 6.10 shows the results of the PO MPPT under dynamic temperature conditions 

implemented in Simulink using the following mathematical formula. 𝑻 =  −𝟏𝟎𝟎 +

𝟐𝟐𝟎 × 𝑹𝒂𝒏𝒅𝒐𝒎 𝒏𝒖𝒎𝒃𝒆𝒓. The gain block is set to 220, representing the maximum 

space temperature, and the constant block is set to -100, representing the minimum 

space temperature. The random number block is set to a sampling time of 0.1s to 

change the temperature randomly every 0.1s. Hence, every 0.1 seconds, the PV 

temperature will change to a random value within the range of -100 to 220 degrees. 

The PO MPPT will find the maximum power point at this current temperature. As the 

temperature of a PV module increases, the open-circuit voltage of the PV module 

decreases, which typically shifts the MPP to a lower point. Conversely, the open circuit 

voltage increases as the temperature decreases, shifting the MPP to a higher voltage.  

 

However, the PV module's current output is relatively less sensitive to temperature but 

may slightly increase with a temperature rise. The PV module's MPP shifts every time 

the temperature changes (every 0.1 seconds). The P&O algorithm reacts by adjusting 

the operating duty ratio in small steps. If the power increases with the perturbation, the 

duty ratio is perturbed further in the same direction. If the power decreases, the 

algorithm reverses the perturbation direction. There are periods when the algorithm 

briefly loses track of the MPP, mainly when the temperature changes rapidly. This leads 

to transient oscillations or overshoots in the power curve as the system recovers and 

realigns itself with the new MPP. The constant perturbation and adjustment process is 

evident in the power fluctuations as the system seeks the MPP under the influence of 

temperature. The results of the PSO MPPT in Figure 6.16 do not show the overshoot 

after every 0.1 seconds, indicating that the algorithm doesn’t briefly lose the MPP. 

However, the oscillations around the MPP are pronounced as those of the PO MPPT. 

The hybrid PO PSO MPPT results in Figure 6.22 show no overshoot after every 0.1 

seconds and show reduced oscillations around the MPP. 
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6.4.3. Particle Swarm Optimisation MPPT at Standard Testing Conditions  

The PSO MPPT Simulink model is shown in Figure 6.12, and the PV array measurements are at the far left. The PV output power, voltage, and 

current are connected to the scope and the display for displaying average DC levels. At the top center is the PSO MPPT MATLAB/Simulink 

function, which tunes the PWM duty ratio to maximize PV power extraction, and next to it is the ‘To Workspace’ function, which takes the PV 

voltage and current from the model to the workspace so that the PSO MATLAB function can use them to calculate power. At the bottom center 

is the boost converter model, which regulates the load voltage. At the far right are the load measurements, where load power, voltage, and 

current are connected to the scope and displays. 

 

Figure 6. 11: The PSO MPPT Simulink Model at STC 
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Figure 6.13 depicts the PSO MPPT Simulink Model simulation waveforms for load power, voltage, and current signals. At STC, the irradiation 

is set to 1367W/m2 and the temperature to 28°C. The PV output power from Figure 6.12 is 2.934W, the voltage is 1.196V, and the current is 

2.453A. The boost converter load power is 2.477W, the voltage is 4.104V, and the current is 0.6035A. 

 

Figure 6. 12: PSO MPPT Simulink Model Simulation Waveforms at STC
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To measure the settling time of the output power for the PSO MPPT at STC, the green-line graph of Figure 6.13. which represents the output 

power of 2.45W is enlarged in Figure 6.14. The settling time is 0.2 seconds. 

 

Figure 6. 13: The PSO MPPT settling Time of the Boost Converter Load Power 
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To measure the oscillations at the GMPP at STC, the green line output power graph of Figure 6.14 is zoomed in between 0.2 seconds and 0.25 

seconds, and a sample of pulses at GMPP is taken. The amplitude at GMPP of the sample of pulses is 7.82e-2W peak-to-peak. 

 

Figure 6. 14: The PSO MPPT oscillations at the GMPP at STC 
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6.4.4. Particle Swarm Optimisation MPPT at Varying Testing Conditions 

The radiation PV input must be kept at 1367W/m2. The temperature PV input must be changed into a dynamic fluctuating input that randomly 

varies the temperature between -100°C and +120°C. The temperature changes randomly to a value within one second. To measure the average 

DC voltage at a small sampling time for PSO MPPT and the hybrid MPPT in Figure 6.15 have the sampling time is set to 0.1s, and the simulation 

time is 1s. The average DC voltage for PSO MPPT is 5.08V in the given simulation time of one second, as seen in the output measurements 

displayed in Figure 6.16. 

 

Figure 6. 15: The PSO MPPT Average DC Voltage at a Small Sampling Time
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The red line graph in Figure 6.16 is the output voltage of the boost converter load. 5V is the target bus voltage, and as the sampling time changes 

rapidly within the one-second simulation time, the voltage deviates slightly from the targeted voltage. This slight deviation results in an average 

harvested voltage within the one-second simulation time, settling at 5.084V. These results are better than the PO MPPT, but the oscillations 

around the target voltage are substantial and need improvement. 

 

Figure 6. 16: The PSO MPPT Output Waveforms at a Small Sampling Time 
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6.4.5. Hybrid PO PSO MPPT at Standard Testing Conditions 

The hybrid code integrates both the global search capability of PSO and the fine-tuning 

capability of PO. When the system is close to the optimum (small changes in power), 

the PO algorithm takes over. Otherwise, the PSO algorithm explores the solution space 

broadly. The decision to switch between the PO function and the PSO algorithm is 

based on the magnitude of the change in power output. The hybrid approach mitigates 

the problem of poor tracking of the GMPP under dynamic environments. 

 

6.4.5.1. Hybrid PO PSO MPPT Function Steps 

Step 1: Persistent variables, Particle Initialization, and Delay. 

Use the PSO initialization as provided before in section 6.3.2. Initialize variables to track 

the state of the PO method, using persistent variables to store values between function 

calls to maintain the algorithm state. Introduce a delay to allow the system to stabilize. 

Step 2: Power Calculation and Error Calculation 

Use the PSO approach to explore and calculate the power at each duty cycle. Track 

the previous and current power values. 

P = Vpv * Ipv 

where: 

• Vpv is the photovoltaic (PV) panel voltage 

• Ipv is the PV panel current 

error = abs(Vout - target_voltage) 

where: 

• Vout is the output voltage of the boost converter 

• target_voltage is the desired output voltage 

Step 3: Fitness function and Perturb and Observe 

Compute a fitness value based on the inverse of the error. 

fitness_value = 1 / (error + epsilon) 

perturb and observe function: 

if P_new > P_old: Y = Yin + c else: Y = Yin - c 

Step 4: Hybrid Decision 

If the system detects small changes in power (indicating a steady state), switch to the 

PO algorithm for finer adjustments. If larger variations in power are detected (indicating 

potential suboptimal performance), revert to PSO to explore a broader range of duty 

cycles. 
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Step 4: Velocity and Duty Cycle Update 

The velocity of each particle is updated using the PSO velocity update formula: 

v_final = w * v + c1 * rand() * (pbest - d) + c2 * rand() * (gbest - d) 

where: 

• v_final: Updated velocity 

• w: Inertia weight 

• v: Current velocity 

• c1, c2: Cognitive and social parameters 

• pbest: Personal best position 

• d: Current duty cycle 

• gbest: Global best position 

The duty cycle is updated based on the new velocity, ensuring it remains within the 

bounds [0, 1]. 

d_final = max(0, min(1, d + v_final)) 

where: 

• d_final: Updated duty cycle 

• d: Current duty cycle 

• v_final: Updated velocity 

Step 5: Return Updated Duty Cycle 

Return the updated duty cycle D based on the hybrid logic. 

Figure 6.17 shows the Hybrid PO PSO MPPT Simulink model; at the far left are the PV 

array measurements. The PV output power, voltage, and current are connected to the 

scope and the display for displaying average DC levels. At the top center is the hybrid 

PO PSO MPPT MATLAB/Simulink function, which tunes the PWM duty ratio to 

maximize PV power extraction, and next to it is the ‘To Workspace’ function, which 

takes the PV voltage and current from the model to the workspace so that the hybrid 

PO PSO MATLAB function can use them to calculate power. At the bottom center is 

the boost converter model, which regulates the load voltage. At the far right are the 

load measurements, where load power, voltage, and current are connected to the 

scope and displays. 
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Figure 6.17 depicts the hybrid PO PSO MPPT Simulink Model. At STC, the irradiation is set to 1367W/m2, and the temperature is set to 28°C. 

The PV output power is 2.858W, the voltage is 1.165V, and the current is 2.454A. The Boost converter output average power is 2.505W, the 

output voltage is 4.127V, and the output current is 0.6069A. 

 

Figure 6. 17: The Hybrid PO PSO MPPT Simulink Model at STC 

 



138 

Figure 6.19 depicts the Hybrid PO PSO MPPT Simulink Model simulation waveforms for load power, voltage, and current signals. At STC, the 

irradiation is set to 1367W/m2 and the temperature to 28°C. 

 

Figure 6. 18: The Hybrid PO PSO MPPT Simulink Model at STC 
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To measure the settling time of the output power for the hybrid PO PSO MPPT at STC, the pink-line graph of Figure 6.18. which represents the 

output power is enlarged in Figure 6.20. The settling time is 0.2 seconds. 

 

 

Figure 6. 19: The settling Time of the Boost Converter Load Power 
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To measure the oscillations at the GMPP at STC, the green line output power graph of Figure 6.20 is zoomed in between 0.2 seconds and 0.25 

seconds, and a sample of pulses at GMPP is taken. The amplitude at GMPP of the sample of pulses is 1.022e-1W peak-to-peak. 

 

 

Figure 6. 20: The oscillations at the GMPP at STC
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6.4.6. Hybrid PO PSO MPPT at Varying Testing Conditions 

The radiation PV input must be kept at 1367W/m2. The temperature PV input must be changed into a dynamic fluctuating input that randomly 

varies the temperature between -100°C and +120°C. The temperature changes randomly to a value within one second. To measure the average 

DC voltage at a small sampling time for Hybrid PO PSO MPPT and the hybrid MPPT, the sampling time is set to 0.1s, and the simulation time 

is 1s. The average DC voltage for Hybrid PSO MPPT is 5.242V in the given simulation time of one second, as seen in the output measurements 

displayed in Figure 6.22. 

 

Figure 6. 21: The Hybrid PO PSO MPPT Average DC Voltage at a Small Sampling 
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The blue line graph in Figure 6.22 is the output voltage of the boost converter load. 5V is the target bus voltage, and as the sampling time 

changes rapidly within the one-second simulation time, the voltage deviates slightly from the targeted voltage. This slight deviation results in an 

average harvested voltage within the one-second simulation time, settling at 5.242V. These results are better than the PO MPPT and the PSO 

MPPT. The oscillations around the target voltage are reduced. 

 

Figure 6. 22: The Hybrid PO PSO MPPT Output Waveforms at a Small Sampling Time 
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The temperature of the PV input must be kept at 28°C. The radiation PV input must be changed into a dynamic fluctuating input that randomly 

varies the radiation between 1322W/m2 and 1414W/m2. The radiation changes randomly to a value within the specified range every one second. 

Since the radiation range is not comprehensive and 1367W/m2 is in between the range, varying radiation simulations will not be simulated in 

this Thesis. Table 6.2 summarises an output comparison between PO MPPT, PSO MPPT, and the hybrid PO PSO MPPT at STC and varying 

temperature conditions. 

Table 6. 1: Output comparison between PO, PSO & PO PSO MPPTs 

At standard Testing Conditions (irradiation = 1367W and Temp = 28°C)  

Outputs PO MPPT PSO MPPT PO PSO MPPT % Improvement (Between PO & Hybrid PO PSO) 

Power 3.044W 2.477W 2.505W 121.52% 

Voltage 4.55V 4.104V 4.127V 110.25% 

Current 0.6691A 0.6035A 0.6069A 110.25% 

At varying Temperature Conditions (Irradiation = 1367W/m2)  

Outputs PO MPPT PSO MPPT PO PSO MPPT  

Power 2.225W 3.801W 4.042W 55.05% 

Voltage 3.89V 5.084V 5.242V 74.21%  

Current 0.572A 0.7476A 0.771A 74.19%  

6.5. The Hybrid PO PSO MPPT Model benchmark  

The Hybrid PO PSO MPPT is the best-performing MPPT function compared to PO MPPT and PSO MPPT under temperature-varying conditions, 

as seen in Table 6.2, since it uses dual search capability. It starts by using the PSO MPPT function to search a vast solution space, and when 

it is close to the global maximum power point (GMPP), it switches to the actual seeking PO MPPT function. It smoothens the oscillations at the 

GMPP and yields the highest power output under temperature-varying conditions.
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The graph in Figure 6. 23 shows the performance of the PV system at variable loads and variable temperatures using the six MPPT methods. 

The six MPPTs in this study are the perturb and observe method (P&O), incremental conductance method (INC), fuzzy logic controller method 

(FLC), neural network (NN) model, and adaptive neuro-fuzzy inference system method (ANFIS) with the modern approach of the hybrid method 

(neural network + P&O) for PV systems. The maximum power of the panel is 250W/m2. 

 

Figure 6. 23: The PO MPPT Benchmark 

(Adapted from Devarakonda et. al., 2022)
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The results of Figure 6.23 show that at the starting conditions, the output power is more 

than the panel’s maximum output power, and incremental has reached the maximum 

point first, followed by P&O, ANFIS, and fuzzy. The P&O and incremental algorithms 

were closer in the initial time, but at a few points, they overlapped. The neural network 

and hybrid algorithms took some time to track the maximum power point, although up 

to 0.4 s, these two algorithms’ outputs were lower than those of other algorithms. After 

the load disturbance at 0.3 s, the incremental gained MPP faster but was overtaken by 

P&O at 0.316 s, followed by fuzzy and ANFIS. After the disturbance at 0.6 s, the fuzzy 

gained first, closely followed by incremental and hybrid algorithms, and after 0.61 s, all 

algorithms performed in proximity where P&O, neural network hybrid, and ANFIS were 

leading.  

After 0.8 s disturbance, we observe that P&O, incremental, and fuzzy logic have 

overlapped in many instances, producing max output, followed by the hybrid algorithm. 

The neural network has lagged behind all four algorithms, and ANFIS has lagged 

behind all the algorithms, making the most negligible output. The results of all 

techniques used in this paper are compared, and examining the obtained results 

presented in the paper, almost all of the techniques tracked MPP with sufficient 

accuracy. P&O has a straightforward implementation, but the system response 

oscillates across the MPP (ringing around) in steady-state operation, resulting in power 

waste. Based on the given varying parameters, the controllers performed well. The 

hybrid model has maintained a stable point compared to others, as other controllers 

suffered from ringing around the MPP, transient disturbances, and a slower settling 

time than the hybrid model. (Devarakonda et al., 2022) 

The graphs in Figure 6.24 compare the PO MPPT response with a proposed Look Up 

Table (LUT) MPPT-based system. Figure 6.24 (a). depicts the voltage fluctuation 

applied to the converter to evaluate the PO MPPT tracking. PO MPPT duty cycle is 

shown in Figure 6.24 (b). The controller monitors variations in the input(s), and the duty 

cycle is adjusted correspondingly to attain the MPP. The proposed Look Up Table 

(LUT) MPPT-based system was analyzed in a laboratory setting, and findings were 

achieved. Figure 6.24 compares the PO MPPT response with a proposed Look Up 

Table (LUT) MPPT-based system. Figure 6.24 (a). depicts the voltage fluctuation 

applied to the converter to evaluate the PO MPPT tracking. PO MPPT duty cycle is 

shown in Figure 6.24 (b). The controller monitors variations in the input(s), and the duty 

cycle is adjusted correspondingly to attain the MPP. The proposed Look Up Table 

(LUT) MPPT-based system was analyzed in a laboratory setting, and findings were 

achieved. 
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The graphs in Figure 6.24 compare the PO MPPT response with a proposed Look Up Table (LUT) MPPT-based system.  

 

Figure 6. 24: The PO MPPT  

(Adapted from Sulthan et al., 2022)
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Figure 24 (c) shows the input voltage for the converter using LUT MPPT. Figure 24(d) 

indicates that LUT MPPT had a fixed duty cycle and responded faster to input variations 

than PO MPPT. Figure 24 (e) shows the voltage delivered to the PV converter using a 

suggested two-stage MPP tracking controller. When the controller detects significant 

changes, the LUT instantly gives the duty cycle information. The P&O algorithm 

monitors and adjusts the duty cycle to achieve the MPP. Figure 24 (f) depicts the duty 

cycle response of the proposed MPP tracking controller. This approach is also a hybrid 

MPPT that combines PO and LUTs. 

6.6. Conclusion 

Finally, this chapter demonstrated the implementation and effectiveness of a hybrid 

Perturb and Observe (PO) and Particle Swarm Optimisation (PSO) Maximum Power 

Point Tracking (MPPT) model explicitly designed for CubeSat power systems. 

Combining PSO's global search capacity with PO's fine-tuning characteristics, the 

hybrid strategy successfully overcomes each method's limitations when utilized 

separately. Specifically, the hybrid model outperformed the independent PO and PSO 

techniques under normal and dynamically variable space weather conditions, achieving 

faster convergence to the global maximum power point (GMPP), minimizing 

oscillations, and producing more power.  

This chapter's comparison research discovered that, under changing temperature 

settings, the hybrid PO-PSO MPPT model outperformed the PO and PSO models alone 

regarding output power, voltage, and current. These improvements make the hybrid 

technique especially advantageous for CubeSat missions, where power efficiency is 

essential due to the scarcity of solar energy in Low Earth Orbit (LEO) conditions. The 

findings support the hybrid PO-PSO MPPT model as a reliable and efficient solution for 

CubeSat power systems, ensuring optimal energy harvesting under various space 

environmental situations.  

Future work could focus on injecting the temperature and irradiation inputs of the PV 

array with real-time low earth orbit space weather data to simulate the PV system 

response in real time and verify the adaptability of the hybrid PO-PSO MPPT. Chapter 

seven discusses four technical project deliverables achieved in the thesis work, and 

these four deliverables are PV array modeling for the CubeSat’s two sides which are 

exposed to the sun; PO MPPT modeling and simulation; closed loop boost converter 

transfer function theoretical derivation and MATLAB/Simulink boost converter transfer 

function linearization generation PID control with GA and PSO PID tuning 

implementation in MATLAB/Simulink; PSO MPPT function modeling and simulation; 

and hybrid PO- PSO MPPT modelling and simulation. 
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CHAPTER 7 

CONCLUSION AND FUTURE WORK 

7.1. Introduction 

Thesis major research work to design a photovoltaic power system for a CubeSat 

involves careful planning, considering power requirements, solar panel selection, 

battery systems, power management, integration, testing, and compliance with space 

regulations. It's essential to balance energy generation and storage to ensure reliable 

operation throughout the satellite's mission. The CubeSat is envisioned to operate in a 

sun-synchronous orbit in low earth orbit at an altitude of 6000 km. In a sun-synchronous 

orbit, the satellite keeps a constant angle with the Sun, passing over the same portions 

of the Earth at the same local solar time.  

 

This provides for consistent exposure to sunshine. If the CubeSat is stabilized with its 

solar panels facing the Sun, at least two sides are constantly exposed to the Sun. If the 

CubeSat spins or its attitude changes, it may reveal up to three sides at different points 

in its orbit. Depending on the Earth's position relative to the Sun, the CubeSat may pass 

through its shadow, resulting in an eclipse. During this time, none of the sides would 

be exposed to sunlight, and a battery storage system must supply power to the 

CubeSat. Hence, In the models simulated in this Thesis, the PV array design uses four 

modules that are connected in parallel because in the envisioned 1U CubeSat (10cm3), 

each adjacent side is mounted with two Azur space modules. The top and the bottom 

sides are mounted with SPECTROLAB cells. 

 

This thesis has presented the development of a mathematical model for a PV module 

using the Azur Space datasheet for 3G30C solar cells in MATLAB/Simulink. The 

3G30C solar cells are broadly used within the CubeSat community. This thesis has 

presented the development of a perturb and observe (PO) maximum power point 

tracking (MPPT) controller, the development of a PID-based closed-loop controller 

whose gain parameters are tuned by a genetic algorithm (GA) at first and then secondly 

tuned by PSO algorithm, the development of a particle swarm optimization (PSO) 

based MPPT, and the development of a hybrid PO PSO MPPT, for application in PV 

power systems of CubeSat missions. The developed MPPT controllers and the GA/ 

PSO PID-based closed loop controllers simulation waveforms and output: power, 

voltage, and current measurements are compared to each other to identify which 

technique has the best response time, lowest oscillations at the global maximum power 

point (GMPP), and outputs accurate desired bus power, voltage, and current. 
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The intention has been to realize a controller with the fastest response time and most 

minor oscillations at global maximum power point (GMPP) that also outputs accurate 

power, voltage, and current despite fluctuations in the PV module’s input radiation and 

temperature and converter’s load current demands of various CubeSat subsystems. 

The approach taken was thus to develop a boost converter for four modules mounted 

on the two adjacent sides of a CubeSat, each adjacent panel side having two Azur 

Space 3G30C modules connected in parallel and each module having three cells inside 

it.  

 

Each Azur Space 3G30C module MPP outputs: 2411mV, 442.8mA, operated under 

STC (1367W/m2, 28°C). Each panel side in the X-configuration or the Y-configuration 

is fitted with two Azur Space 3G30C modules that are connected in parallel and give a 

voltage output of 2411mV, a total current output of 885.6mA, at MPP. The two adjacent 

sides exposed to the Sun are the (+X, +Y) or (-X, -Y) group, which gives a voltage 

output of 2.4V and a total current of 1.8A. This 4 X 1 array supplies two boost 

converters: a 5V and a 3.3V boost converter, each connected to its bus line. The 

chapter presents an introduction in section 7.1, Project Deliverables in 7.2, Applications 

of the Research Output in 7.3, Future work in 7.4, and Publications in 7.5. 

 

7.2. Project Deliverables 

The following subsections briefly discuss the primary outcomes of this research, 

Subsection 7.2.1. discusses the literature review on the modeling and simulation of the 

Cube Satellite Power System. Subsection 7.2.2. discusses PV module modeling and 

the PO MPPT control implementation for a CubeSat power system. Subsection 7.2.3. 

discusses genetic algorithm (GA) PID tuning and the particle swarm optimization (PSO) 

PID tuning implementation for CubeSat Power Systems. Subsection 7.2.4. discusses 

particle swarm optimization MPPT implementation for CubeSat power systems. 

7.2.1. Project Deliverable 1: Literature Review on Modelling and Simulation of 

the Cube Satellite Power Systems 

In the literature review of the modeling and simulation of PV solar modules and the 

modeling and simulation of the power regulation and control system for a CubeSat EPS, 

the following tasks were accomplished: 

• A comprehensive literature focused mainly on this topic: 

1. PV solar module mathematical modeling using Simulink. 
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• A comprehensive and comparative analysis of the literature focused mainly on 

these topics: 

1. MPPT classical functions comparison. 

2. PID controllers used to minimize the steady-state error of a closed-loop boost 

converter transfer function plant, tunned using artificial intelligence (AI) 

algorithms like particle swarm optimization (PSO), genetic algorithm (GA), fuzzy 

logic (FL), artificial neural networks (ANN), adaptive neuro-fuzzy inference 

system (ANFIS), ant colony optimization (ACO), grey wolf optimization (GWO), 

bee colony optimization (BCO) bacterial foraging optimization (BFO), etc. 

3. MPPT functions that use AI algorithms like PSO, GA, FL, etc, 

4. MPPT hybrid techniques are implemented as a combination of the MPPT 

functions like PO, incremental conductance InC, etc., with AI algorithms like 

PSO, GA, etc. 

The contribution to studying how to mathematically model the PV module from first 

principles using the current equations has been to realize a PV module block in the 

Simulink library using the Azur space 3G30C solar cell datasheet. The contribution of 

studying classical MPPT functions has been to ascertain which classical function is 

ideal for application in CubeSat, considering the limitations of CubeSat volume 

dimensions, microprocessor computation demand, and weight. The PO function was 

selected for low computational complexity and easy hardware implementation. 

 

However, the research gap identified was that the PO tracked the GMPP poorly under 

fast-changing meteorologic conditions. Therefore, a study of low computational AI 

techniques that are used to improve the tracking accuracy of the PO function under 

fast-changing meteorologic conditions ensued, and the results of the hybrid PO PSO 

MPPT function showed improvement in the tracking accuracy of the PO under fast-

changing meteorologic conditions. 

 

Also, it was discovered in the literature survey that the mathematical conversion of a 

closed-loop boost converter into a transfer function using small signal model 

approximation methods: audio susceptibility, control-to-output transfer functions, and 

state-space averaging method is inferior to MATLAB/Simulink linearization function 

since the mathematical derivation methods cannot convert associated control functions 

connected to the boost converter, like the feedback summing block, PID, pulse width 

modulator generator block. Hence, the frequency domain control by AI tuning the PID 

controller that regulates the boost converter closed-loop transfer function plant was 
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demonstrated using the MATLAB/Simulink generated transfer function. However, the 

frequency domain analysis is theoretical, and direct implementation is not feasible for 

CubeSat electrical power generation, regulation, and control circuitry. The PO MPPT 

function, PSO MPPT function, and the hybrid PO PSO MPPT function are time-domain 

control functions and can be implemented to extract maximum power from the PV array. 

 

7.2.2.  Project Deliverable 2: PV Module Modeling and PO MPPT Control 

Implementation for a CubeSat Power System 

For the one diode/ two resistor (1D/2R) PV model development and simulation, the 

following tasks were accomplished:  

• A mathematical model based on the single-diode and two-resistors (1D/2R) 

PV model approach was developed using the five algebraic current 

equations.  

• The unknown five parameters were extrapolated from Alverez et al., 2021 

work, where they were determined using the analytical fitting of a 1D/2R 

model equivalent circuit to I-V curves corresponding to data from Azur 

Space 3G30C solar cells datasheet. 

• The mathematical model was implemented using MATLAB/Simulink.  

• The temperature and irradiance effects were also incorporated into the 

model to better approximate the physical PV cell characteristics.  

• Conventional MPPT functions for the Maximum Power Point Tracking 

(MPPT) control of PV generation systems were discussed. The PO MPPT 

technique was implemented, and the percentage increase in the output 

power yield was assessed by comparing the output of the MPPT-controlled 

PV module with that without the MPPT controller. 

This project deliverable offers a benchmark for future research in CubeSats concerning 

the mathematical modeling of solar PV modules used in engineering design. Another 

contribution is demonstrating a robust maximum power extraction method using a boost 

converter for two CubeSat’s adjacent sides envisaged to be exposed to the Sun in a 

minimal exposure case. A maximum exposure case is when three sides are exposed 

to the Sun. 

7.2.3. Project deliverable 3: Genetic Algorithm (GA) and PSO PID tuning 

Implementation for CubeSat Power Systems 
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For the GA-tuned PID/ PSO-tuned PID controlled transfer function closed loop plant 

development and design, the following tasks were accomplished: 

• A closed-loop boost converter transfer function plant was developed using 

MATLAB/Simulink linearization.  

• The PID controller was placed before the plant to develop a dynamic response 

and to reduce the steady-state error.  

• A steady state error minimization function selected was the integral time 

absolute error (ITAE). ITAE was chosen because the CubeSat maximum power 

point (MPP) must be realized in the fastest response time when the satellite 

transitions from the eclipse zone to the sun zone. The orbit period of the 

CubeSat in LEO orbit is ninety minutes only. Hence, fast response time in 

tracking MPP is required to transition from battery to PV power. Thus, the 

storage battery system is recharged abruptly while the satellite is powered 

concurrently. Therefore, ITEA offers the best response time and better settling 

time compared to integral square error (ISE), integral time square error (ITSE), 

and integral absolute error (IAE).  

• The GA/PSO algorithm was implemented in MATLAB/Simulink to search for the 

best PID gain values that will minimize the steady-state error of the Simulink 

model.  

• After the PID gain values were found, they were applied to the Simulink model, 

and the manually tuned PID controlled transfer function closed loop plant was 

compared to the GA/PSO-tuned PID controlled transfer function plant closed 

loop plant. 

This project deliverable demonstrated the GA-tuned and PSO-tuned PID controlled 

transfer function closed loop plants and identified that the AI-tuned PID controlled 

transfer function closed loop plant provides faster response and settling time compared 

to the manually tuned PID controlled transfer function closed loop plant. Also, AI-tuned 

PID-controlled transfer function closed loop plants produced a 4.6V output voltage, 

while the manually tuned one produced 0.05664V. 

7.2.4. Project Deliverable 4: Particle Swarm Optimization Implementation for 

CubeSat Power Systems 

To coordinate the three transfer functions derived from three distinct methods, namely, 

the state space averaging derivation method, AC analysis small signal transfer function 

derivation method, and MATLAB/Simulink linearization methods, the following tasks 

were accomplished: 
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• The small signal transfer function derivation approach was implemented to 

obtain the audio susceptibility transfer function and the boost converter's 

control-to-output transfer function. 

• The averaging method of state space was performed to derive the transfer 

function from the state space. 

• The theoretically derived state space and transfer functions were compared to 

the linearization Simulink-generated state space and transfer function. 

This project deliverable compared the MATLAB/Simulink generated state space with 

the state space derived from the average method; the deduction was that the software 

linearised states were three, whereas the calculated states were two. The control-to-

output transfer function is a second-order transfer function, and the state space 

obtained transfer function through the averaging method is a second-order transfer 

function. However, the value of the multiplying constants is not similar. The Simulink 

linearisation-generated transfer function is superior to the mathematically derived 

transfer functions. It is a third-order transfer function because it converts responses of 

control elements used with the boost converter: PID, closed-loop components, and 

PWM circuitry. 

To implement PSO for CubeSat Power Systems, the following tasks were 

accomplished: 

• The setup of the GA-tuned/ PSO-tuned PID controlled transfer function closed 

loop plant was used with the ITAE cost function used as the objecting function 

of the GA/PSO algorithm in a MATLAB script file. 

• The GA/PSO algorithm was executed and tuned the PID gain parameters K(1), 

K(2), and K(3). 

• The GA/PSO tunned PID gain parameters values K(1), K(2), and K(3) were 

entered into the PID of the Simulink model named “PSO_to_theory.slx” and the 

model was simulated. 

This project deliverable demonstrated the frequency domain control by AI tuning the 

PID controller that controls the MATLAB/Simulink generated boost converter transfer 

function plant. However, the approach used in this deliverable is the frequency domain 

analysis, which is theoretical, and direct implementation is not feasible for CubeSat 

electrical power generation, regulation, and control circuitry. 

7.2.5. Project deliverable 5: Development of the hybrid PO PSO MPPT model 

for implementation in CubeSat power systems 
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For the Development of the hybrid PO PSO MPPT model, the following tasks were 

accomplished: 

• A PSO MPPT function was developed to adjust the duty cycle D of the boost 

converter based on the input voltage Vpv and current Ipv of a PV array. The 

goal is to maximize the power output of the boost converter by finding the 

optimal duty cycle D using the PSO algorithm. 

• A hybrid PO PSO MPPT function was developed. The hybrid code integrates 

both the global search capability of PSO MMPT and the fine-tuning capability of 

PO MPPT. 

• Case study 1: At standard test conditions (temp = 28°C and irradiation 

=1367W/m2), the PO MPPT, PSO MPPT, and the hybrid PO PSO MPPT were 

tested under these meteorological conditions. 

• Case study 2: At a varying temperature (-100°C to +120°C) and fixed 

irradiations (1367W/m2), the PO MPPT, PSO MPPT, and the hybrid PO PSO 

MPPT were tested under these meteorological conditions. 

• The PO MPPT, PSO MPPT, and the hybrid MPPT were benchmarked with 

simulation results from the recent literature. 

Under case study 1, the 5V was the target bus voltage, the PO MPPT had a DC average 

voltage of 4.6V, and the PSO MPPT and the hybrid PO PSO MPPT had an average 

DC voltage of 4.1V. Under case study 2, the 5V was still the target bus voltage. As the 

sampling time changed rapidly within the one-second simulation time, the voltage of 

the PO MPPT deviated significantly from the targeted voltage. This significant deviation 

results in an average harvested voltage within the one-second simulation time reducing 

to 3.89V.  

For the PSO MPPT, the voltage deviated slightly from the targeted voltage. This slight 

deviation resulted in an average harvested voltage within the one-second simulation 

time, settling at 5.084V. These results were better than the PO MPPT, but the 

oscillations around the target voltage were substantial and needed improvement. In the 

hybrid PO PSO MPPT, the voltage deviated slightly from the targeted voltage. This 

slight deviation resulted in an average harvested DC voltage within the one-second 

simulation time, settling at 5.242V. These results were better than the PO MPPT and 

the PSO MPPT. The oscillations around the target voltage were reduced. 
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7.2.6. Software Programs Developed in the Thesis 

Table 7. 1: Software Programs Developed 

Program description File type Appendix 

MATLAB function code for PO 

MPPT 
MATLAB script file A. 

MATLAB function code for PSO 

MPPT 
MATLAB script file B. 

MATLAB function code for hybrid 

PO PSO MPPT 
MATLAB script file C. 

MATLAB code GA-tuned PID MATLAB script file D. 

MATLAB code PSO-tuned PID  MATLAB script file E. 

 

7.3. Applications of the Research Output 

7.3.1. Practical applications 

A single OBC executes the 1U CubeSat operations; hence, computational demanding 

algorithms must be avoided in the CubeSat electrical power system design to relieve 

the OBC to execute commands for other CubeSat subsystems. The PO was chosen 

because of its lower computational complexity than incremental conductance and easy 

hardware complexity compared to fractional open circuit voltage and fractional short 

circuit current, which require additional sensors to measure open circuit voltage/ short 

circuit current. Moreover, fractional voltage/current-based MPPT techniques have a 

simpler structure but suffer from low tracking accuracy due to rough empirical 

approximations, significant power losses, and difficulty sensing open-circuit and short-

circuit currents. MPPTs are typically used when cost is more important than tracking 

accuracy (Mataifa, 2015). Thus, for practical implementation, it is recommended that 

PO will be a more suitable tracking MPP technique for CubeSat EPS design. 

The problem with PO is tracking under dynamic temperature, irradiance, and 

oscillations it produces under dynamic conditions. To solve this problem, a literature 

review of AI techniques was conducted. When comparing Genetic Algorithm (GA), 

Particle Swarm Optimisation (PSO), Artificial Neural Networks (ANN), Adaptive Neuro-

Fuzzy Inference System (ANFIS), and Fuzzy Logic—Fuzzy Logic is widely considered 

the least computationally complex. However, PSO is typically better suited for accurate 

and dependable MPPT tracking in standalone PV systems, especially in areas with 

quickly changing conditions. While fuzzy Logic is more straightforward and faster, it 
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may not be as precise and adaptable as PSO in optimizing power output from PV 

systems (Esram, 2007). Thus, a hybrid PO PSO is recommended for a 1U CubeSat 

EPS design. The PV modeling and simulation of all MPPT techniques researched in 

this thesis are not practically evaluated. However, the MPPTs recommended for 

CubeSat implementation consider that the 1 U CubeSat has one OBC, and the complex 

computational algorithm must be avoided. 

7.3.2. Academic/research applications 

The comprehensive way the subject matter of this thesis has been treated, with a 

detailed and systematic presentation of the various fundamental aspects relevant to PV 

power generation and MPPT conventional and AI comparative analysis, may serve a 

significant function to students and researchers in the field of designing small satellite 

and even GEO satellite at large. The results presented here may also be used as a 

basis for extended research into the effective control and regulation of PV solar-

generated power for small satellites, thus improving the theoretical results obtained in 

this thesis. The theoretical contributions of this thesis can be used as coursework for 

BENG and MENG satellite degrees and even contribute to a book Chapter for academic 

purposes. 

7.4. Future work 

Extensions to the work covered in this thesis could take any one or more of the following 

directions: 

1. Future work recommended is modeling and simulating the top side of PV solar 

modules and applying the MPPT techniques developed in this research. The 

bottom side is identical to the top side. Hence, the results of the top-side model 

will be similar to those of the bottom-side model. 

2. Future work recommended is the study of the literature based on modeling and 

simulating the battery charge regulator and the battery storage system and 

applying a suitable battery charger and battery system for a CubeSat mission.  

3. Future work recommended is mathematically modeling the Spectrolab PV 

module in Simulink using the Spectrolab datasheet.  

4. Also recommended as future work is an actual implementation of either the PO 

MPPT functions, the PSO MPPT, or the hybrid PO PSO MPPT to a CubeSat 

ESP that will be launched in orbit. 



157 

7.5 Publications 

K. Dwaza and S. Krishnamurthy, "Application Perturb and Observe Maximum Power 

Point Tracking Technique for CubeSat Power Systems," 32nd Southern African 

Universities Power Engineering Conference (SAUPEC), Stellenbosch, South Africa, 

2024, pp. 1-5, doi: 10.1109/SAUPEC60914.2024.10445093. 

K.N Dwaza, S. Krishnamurthy and H Mataifa, “Implementation of a Hybrid Perturb and 

Observe Particle Swarm Optimisation Maximum Power Point Tracking function for 

CubeSat Photovoltaic Power system,” The paper is planned for submission to the 33rd 

Southern African Universities Power Engineering Conference (SAUPEC), Tshwane, 

South Africa, 2025, pp 1-5. 

Dwaza, K.N, Krishnamurthy, S and Mataifa, H 2025, ‘A comprehensive study: hybrid 

classical MPPT and AI MPPT for small satellite PV systems’, The journal paper is 

planned for submission to the IEEE Transactions on Power Electronics journal. 

7.6. Conclusion 

This thesis successfully developed and analyzed various Maximum Power Point 

Tracking (MPPT) controllers explicitly designed for CubeSat power systems. The study 

investigated and evaluated the performance of various MPPT strategies, such as the 

Perturb and Observe (PO) method, a PID-based controller optimized with Genetic 

Algorithms (GA), a Particle Swarm Optimisation (PSO)-based MPPT controller, and a 

novel hybrid PO-PSO MPPT approach. The comparative analysis found that while 

standard MPPT methods such as PO are simple and easy to deploy, they fall short in 

dynamic situations with rapid changes in irradiance and temperature. The GA-

optimized PID controller demonstrated better performance in terms of settling time and 

response accuracy. However, the PSO-based MPPT controller tracked the maximum 

power point more accurately, with faster response times and fewer oscillations. 

The significant contribution of this research is the creation of the hybrid PO-PSO MPPT 

model, which successfully combines the advantages of both PO and PSO. This hybrid 

model minimizes the amplitude of oscillations at the global maximum power point 

(GMPP) and improves tracking accuracy in various meteorological situations, making 

it ideal for CubeSat applications. The practical applications of this research indicate that 

the innovative hybrid PO-PSO MPPT model could be a reliable option for CubeSat 

missions, particularly those with high power precision and efficiency requirements. 

Although the PV modeling and MPPT techniques were not physically tested, the 

simulations provided a robust framework for future practical implementations. In 



158 

conclusion, this thesis lays the framework for future studies into optimizing power 

generation and regulation in tiny satellite systems. The discoveries have the potential 

to considerably improve the design of energy systems in CubeSats, increasing their 

operational efficiency in space conditions. 
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APPENDIX A: MATLAB FUNCTION CODE FOR PO MPPT 

function[Y,Stage_out,Pold_out]=Perturb_and_Observe_MPPT(P_new,P_old,Delay,Yin,Stag
e_in) 
c=0.001; 
Pold_out=P_old; 
Y=Yin; 
Stage_out= Stage_in; 
if Delay == 0 
 
if Stage_in==0 
if P_new>P_old 
Y=Yin+c; 
Pold_out=P_new; 
elseif P_new<P_old 
Y=Yin-c; 
Stage_out=1; 
Pold_out=P_new; 
end 
Pold_out=P_new; 
end 
 
if Stage_in==1 
if P_new>P_old 
Y=Yin-c; 
Pold_out=P_new; 
elseif P_new<P_old 
Y=Yin+c; 
Stage_out=0; 
Pold_out=P_new; 
end 
Pold_out=P_new; 
end 
 
end 
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APPENDIX B: MATLAB FUNCTION CODE FOR PSO MPPT 

function D = PSO(Vpv, Ipv) 
 
persistent u; 
persistent dcurrent; 
persistent pbest; 
persistent p; 
persistent dc; 
persistent v; 
persistent counter; 
persistent gbest; 
%initialisation 
if(isempty(counter)) 
    counter = 0; 
    dcurrent = 0.5; 
    gbest = 0.5; 
    p = zeros(3, 1); 
    v = zeros(3, 1); 
    pbest = zeros(3, 1); 
    u=0; 
    dc=zeros(3, 1); 
    %initial dc for each particle 
    dc(1) = 0.2; 
    dc(2) =0.4; 
    dc(3) = 0.7; 
end 
%at the 1st time counter=0 is ignored 
%delay 
if(counter>=1 && counter<300) 
    D=dcurrent; 
    counter=counter+1; 
    return;% return control to the invoking function before it reaches the end of 
the function 
end 
counter=0;% reset counter 
% calculate the fitness function (power) of each particle, 
% then compare the current value of the function with the previous, 
% if the current value is better than the previous. update the value, 
%Note: at the first time. this is ignored (u=0) 
if(u>=1) && u<=3 
    if((Vpv*Ipv)>p(u)) 
        p(u)=Vpv*Ipv; 
        pbest(u)=dcurrent; 
    end 
end 
u=u+1; 
% At first, this is excuted because it consists of the condition.. 
% u==0 initial value of u 
if(u==5) 
    u=1; 
end 
if(u==1) 
    D=dc(u); 
    dcurrent=D; 
    counter=1; 
    return; 
elseif(u==2) 
    D=dc(u); 
    dcurrent=D; 
    counter = 1; 
    return; 
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elseif(u==3) 
    D=dc(u); 
    dcurrent=D; 
    counter=1; 
    return; 
elseif(u==4) 
    [m,i]=max(p);%finds the indices of the maximum values of P (max power) and 
returns them in output vector i 
    gbest=pbest(i); % finds the location(duty) of the particle which has max P 
    D=gbest; 
    dcurrent=D; 
    counter=1; 
    %update velocity and duty cycle 
    v(1)=updatevelocity(v(1),pbest(1),dc(1),gbest) 
    v(2)=updatevelocity(v(2),pbest(3),dc(2),gbest) 
    v(3)=updatevelocity(v(3),pbest(3),dc(3),gbest) 
    %update dutycycle 
    dc(1)=updateduty(dc(1),v(1)) 
    dc(2)=updateduty(dc(2),v(2)) 
    dc(3)=updateduty(dc(3),v(3)) 
    return; 
 
else %if u==0 
    D=0.1; 
end 
end 
 
function vfinal=updatevelocity(velocity,pobest,d,gwbest) 
%PSO parameters 
w=0.4; 
c1=1.2; 
c2=2; 
 
vfinal = (w*velocity)+(c1*rand(1)*(pobest-d))+(c2*rand(1)*(gwbest-d)); 
end 
function dfinal=updateduty(d,velocity) 
dup=d+velocity; 
if(dup>1) 
    dfinal=1; 
elseif(dup<0) 
    dfinal=0; 
else 
    dfinal=dup; 
end 
end 
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APPENDIX C: MATLAB FUNCTION CODE FOR HYBRID PSO MPPT 

function D = Hybrid_PSO_PandO(Vpv, Ipv) 
 
persistent u; 
persistent dcurrent; 
persistent pbest; 
persistent p; 
persistent dc; 
persistent v; 
persistent counter; 
persistent gbest; 
persistent P_old; 
persistent stage; 
target_voltage = 5.0;  % Desired output voltage 
epsilon = 1e-6;  % Small value to prevent division by zero 
 
% Initialize D to a default value 
D = 0.5;  % You can choose an appropriate initial value for D 
 
% Initializations (similar to the original PSO code) 
if(isempty(counter)) 
    counter = 0; 
    dcurrent = 0.5; 
    gbest = 0.5; 
    p = zeros(3, 1); 
    v = zeros(3, 1); 
    pbest = zeros(3, 1); 
    u = 0; 
    dc = zeros(3, 1); 
    P_old = 0; 
    stage = 0; 
    % Initial dc for each particle 
    dc(1) = 0.2; 
    dc(2) = 0.4; 
    dc(3) = 0.7; 
end 
 
% Delay Logic 
if(counter >= 1 && counter < 300) 
    D = dcurrent; 
    counter = counter + 1; 
    return; 
end 
counter = 0; 
 
% Calculate the current power and the error from the target voltage 
P_new = Vpv * Ipv; 
Vout = Vpv;  % Assume Vout is calculated from the boost converter 
error = abs(Vout - target_voltage); 
fitness_value = 1 / (error + epsilon);  % Fitness value based on closeness to 5V 
 
% Hybrid Decision: Fine-tune with P&O or explore with PSO 
if error < 0.01  % Small error -> Use P&O 
    [D, stage, P_old] = Perturb_and_Observe_MPPT(P_new, P_old, 0, dcurrent, 
stage); 
else  % Larger error -> Use PSO 
    if u >= 1 && u <= 3 
        if fitness_value > p(u)  % Use fitness_value instead of raw power 
            p(u) = fitness_value; 
            pbest(u) = dcurrent; 
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        end 
    end 
    u = u + 1; 
 
    if u == 5 
        u = 1; 
    end 
     
    if u <= 3 
        D = dc(u); 
        dcurrent = D; 
        counter = 1; 
        return; 
    elseif u == 4 
        [m, i] = max(p); 
        gbest = pbest(i); 
        D = gbest; 
        dcurrent = D; 
        counter = 1; 
 
        % Update velocity and duty cycle 
        for j = 1:3 
            v(j) = updatevelocity(v(j), pbest(j), dc(j), gbest); 
            dc(j) = updateduty(dc(j), v(j)); 
        end 
        return; 
    end 
end 
 
% Update the previous power value 
P_old = P_new; 
 
end 
 
function vfinal = updatevelocity(velocity, pobest, d, gwbest) 
% PSO parameters 
w = 0.4; 
c1 = 1.2; 
c2 = 2; 
vfinal = (w * velocity) + (c1 * rand(1) * (pobest - d)) + (c2 * rand(1) * (gwbest 
- d)); 
end 
 
function dfinal = updateduty(d, velocity) 
dup = d + velocity; 
if(dup > 1) 
    dfinal = 1; 
elseif(dup < 0) 
    dfinal = 0; 
else 
    dfinal = dup; 
end 
end 
 
% Definition of the Perturb and Observe function 
function [Y, Stage_out, Pold_out] = Perturb_and_Observe_MPPT(P_new, P_old, Delay, 
Yin, Stage_in) 
c = 0.001; 
Pold_out = P_old; 
Y = Yin; 
Stage_out = Stage_in; 
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if Delay == 0 
    if Stage_in == 0 
        if P_new > P_old 
            Y = Yin + c; 
            Pold_out = P_new; 
        elseif P_new < P_old 
            Y = Yin - c; 
            Stage_out = 1; 
            Pold_out = P_new; 
        end 
    end 
 
    if Stage_in == 1 
        if P_new > P_old 
            Y = Yin - c; 
            Pold_out = P_new; 
        elseif P_new < P_old 
            Y = Yin + c; 
            Stage_out = 0; 
            Pold_out = P_new; 
        end 
    end 
end 
end 
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APPENDIX D: MATLAB CODE GA-TUNED PID CONTROLLER FOR BOOST 

CONVERTER CLOSED-LOOP TRANSFER FUNCTION PLANT 

clear all 
close all 
clc 
 
% GA Parameters 
nVar = 3;                 % number of variables (Kp, Ki, Kd) 
ub = [1000 1000 1000];    % upper Bound 
lb = [0 0 0];             % lower bound 
popSize = 50;             % population size 
maxGenerations = 50;      % maximum number of generations 
crossRate = 0.8;          % crossover rate 
mutRate = 0.1;            % mutation rate 
 
% Objective function 
fobj = @Minie; 
 
% Initialize Population 
population = repmat(lb, popSize, 1) + rand(popSize, nVar) .* repmat((ub-lb), 
popSize, 1); 
fitness = zeros(popSize, 1); 
 
% Main Loop 
for gen = 1:maxGenerations 
     
    % Evaluate Fitness 
    for i = 1:popSize 
        fitness(i) = fobj(population(i, :)); 
    end 
     
    % Selection 
    [~, idx] = sort(fitness); 
    population = population(idx, :); 
    fitness = fitness(idx); 
     
    newPopulation = population; 
     
    % Crossover 
    for i = 1:2:popSize 
        if rand < crossRate 
            parent1 = population(i, :); 
            parent2 = population(i+1, :); 
             
            crossPoint = randi([1, nVar-1]); 
             
            offspring1 = [parent1(1:crossPoint) parent2(crossPoint+1:end)]; 
            offspring2 = [parent2(1:crossPoint) parent1(crossPoint+1:end)]; 
             
            newPopulation(i, :) = offspring1; 
            newPopulation(i+1, :) = offspring2; 
        end 
    end 
     
    % Mutation 
    for i = 1:popSize 
        if rand < mutRate 
            mutationPoint = randi([1, nVar]); 
            newPopulation(i, mutationPoint) = lb(mutationPoint) + rand * 
(ub(mutationPoint) - lb(mutationPoint)); 
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        end 
    end 
     
    % Evaluate New Population Fitness 
    for i = 1:popSize 
        fitness(i) = fobj(newPopulation(i, :)); 
    end 
     
    % Replace Population 
    [~, idx] = sort(fitness); 
    population = newPopulation(idx, :); 
    fitness = fitness(idx); 
     
    % Display Best Fitness 
    disp(['Generation# ' num2str(gen) ' Best Fitness = ' num2str(fitness(1))]); 
     
end 
 
% Best Solution 
bestSolution = population(1, :); 
disp(['Best Solution: Kp = ' num2str(bestSolution(1)) ', Ki = ' 
num2str(bestSolution(2)) ', Kd = ' num2str(bestSolution(3))]); 
 
% Assign the best PID parameters to the base workspace 
assignin('base', 'Kp', bestSolution(1)); 
assignin('base', 'Ki', bestSolution(2)); 
assignin('base', 'Kd', bestSolution(3)); 
 
% Apply the best PID parameters to the Simulink model 
% Assuming the model uses 'Kp', 'Ki', and 'Kd' from the base workspace 
sim('GA_Tuned_PID_Boost_C'); 
 
% Plot Fitness Curve 
plot(fitness); 
xlabel('Generation'); 
ylabel('Fitness'); 
 
% Objective Function (ITAE) 
function cost = Minie(k) 
    assignin('base', 'k', k); 
    simOut = sim('GA_Tuned_PID_Boost_C');  % Simulate the model and capture the 
output 
    ITAE_ts = simOut.get('ITAE');  % Retrieve the ITAE timeseries object from the 
simulation output 
     
    % Check if ITAE_ts is not empty and a timeseries object 
    if isa(ITAE_ts, 'timeseries') && ~isempty(ITAE_ts.Data) 
        ITAE = ITAE_ts.Data;  % Extract the data from the timeseries object 
        cost = ITAE(end);  % Assuming ITAE is a vector, take the final value 
    else 
        cost = inf;  % Assign a high cost if the ITAE is not available or empty 
    end 
end 
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APPENDIX E: MATLAB CODE PSO-TUNED PID CONTROLLER FOR BOOST 

CONVERTER CLOSED-LOOP TRANSFER FUNCTION PLANT 

clear all 
close all 
clc 
 
% Define the details of the table design problem 
nVar = 3;                 % number of variables   
ub = [1000 1000 1000]; %upper Bound 
lb = [0 0 0];             % lower bound   
fobj = @tunning2;          % Objective function Name 
 
% Define the PSO's parameters  
noP = 50;                   % number of particles for initialization  
maxIter = 50;              % maximum iterations 
wMax = 1; 
wMin = 0.1; 
c1 = 2; 
c2 = 2; 
vMax = (ub - lb) .* 0.2;  
vMin  = -vMax; 
 
% The PSO algorithm  
 
% Initialize the particles  
for k = 1 : noP 
    Swarm.Particles(k).X = (ub-lb) .* rand(1, nVar) + lb;  
    Swarm.Particles(k).V = zeros(1, nVar);  
    Swarm.Particles(k).PBEST.X = zeros(1, nVar);  
    Swarm.Particles(k).PBEST.O = inf;  
 
    Swarm.GBEST.X = zeros(1, nVar); 
    Swarm.GBEST.O = inf; 
end 
 
% Main loop 
for t = 1 : maxIter 
 
    % Calculate the objective value 
    for k = 1 : noP 
        currentX = Swarm.Particles(k).X; 
        Swarm.Particles(k).O = fobj(currentX); 
 
        % Update the PBEST 
        if Swarm.Particles(k).O < Swarm.Particles(k).PBEST.O  
            Swarm.Particles(k).PBEST.X = currentX; 
            Swarm.Particles(k).PBEST.O = Swarm.Particles(k).O; 
        end 
 
        % Update the GBEST 
        if Swarm.Particles(k).O < Swarm.GBEST.O 
            Swarm.GBEST.X = currentX; 
            Swarm.GBEST.O = Swarm.Particles(k).O; 
        end 
    end 
 
    % Update the X and V vectors  
    w = wMax - t .* ((wMax - wMin) / maxIter); 
 
    for k = 1 : noP 
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        Swarm.Particles(k).V = w .* Swarm.Particles(k).V + c1 .* rand(1, nVar) .* 
(Swarm.Particles(k).PBEST.X - Swarm.Particles(k).X) ... 
                                                                                   
+ c2 .* rand(1, nVar) .* (Swarm.GBEST.X - Swarm.Particles(k).X); 
 
        % Check velocities  
        index1 = find(Swarm.Particles(k).V > vMax); 
        index2 = find(Swarm.Particles(k).V < vMin); 
 
        Swarm.Particles(k).V(index1) = vMax(index1); 
        Swarm.Particles(k).V(index2) = vMin(index2); 
 
        Swarm.Particles(k).X = Swarm.Particles(k).X + Swarm.Particles(k).V; 
 
        % Check positions  
        index1 = find(Swarm.Particles(k).X > ub); 
        index2 = find(Swarm.Particles(k).X < lb); 
 
        Swarm.Particles(k).X(index1) = ub(index1); 
        Swarm.Particles(k).X(index2) = lb(index2); 
    end 
 
    outmsg = ['Iteration# ', num2str(t) , ' Swarm.GBEST.O = ' , 
num2str(Swarm.GBEST.O)]; 
    disp(outmsg); 
 
    cgCurve(t) = Swarm.GBEST.O; 
end 
 
% Display the best PID parameters found 
disp('Best PID parameters found:'); 
disp(['Kp: ', num2str(Swarm.GBEST.X(1))]); 
disp(['Ki: ', num2str(Swarm.GBEST.X(2))]); 
disp(['Kd: ', num2str(Swarm.GBEST.X(3))]); 
 
semilogy(cgCurve); 
xlabel('Iteration#') 
ylabel('Weight') 
 
% Objective function 
function cost = tunning2(P) 
    assignin('base', 'P', P); 
    simOut = sim('PSO_Tuned_PID_Boost_C.slx'); 
    ITAE = simOut.get('ITAE'); 
    if isa(ITAE, 'timeseries') && ~isempty(ITAE.Data) 
        cost = ITAE.Data(end); 
    else 
        cost = inf; % Assign a high cost if ITAE is not available 
    end 
end 
 

 

 


