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ABSTRACT 

 
Modern day power grids have become more complex with the inclusion of renewable energy 

sources, increasing non-linear loads, and a growing demand for electricity by industry. This 

has resulted in dynamic power grids and a need for advanced techniques for improving 

support, protection, communication and control within the power network. Wide area 

measurement systems (WAMS) are utilised for monitoring these dynamic power networks, 

providing an overall status of the electrical grid in real time. They play a crucial role in 

maintaining grid stability and safeguarding against faults, blackouts, and damages to the 

network. The phasor measurement unit (PMU) is an essential component in a WAMS as they 

provide accurate phasor measurements of voltage and current propagating in the power grid. 

Each phasor measurement is synchronised with UTC in order to analyse and compare the 

magnitude, phase angle and frequency values of the electrical waveform, occurring at different 

locations across the power grid. This phasor information is relayed to devices such as phasor 

data concentrators (PDCs) for aggregation, storage, and further processing and analysis. 

 

This research work presents the study of dynamic synchrophasor estimation techniques with 

focus on the Taylor Fourier Transform (TFT). The aim of this research project is to design and 

implement a low-cost phasor measurement prototype for performing both P class and M class 

measurements. This shall be achieved by utilising two selectable versions of the TFT phasor 

estimation algorithm deployed on a STM32 Nucleo development board. By combining P and 

M class measurements on a single measurement device enhances the PMU for applications 

in both protection and monitoring. This notion is extensible to other smart grid applications and 

illustrates the multi-functional potential of a PMU on a single hardware platform. The 

performance and accuracy of the phasor and frequency estimations are evaluated via 

simulation and actual testing. The results are analysed and verified according to the 

requirements stipulated by the IEEE C37.118.1-2011 standard. 

 

Keywords - Dynamic phasor, IEEE C37.118.1-2011, Least Squares Method, M class, P class, 

Phasor Measurement Unit (PMU), STM32 Nucleo board, Synchrophasor Estimation, Taylor 

Fourier Transform (TFT) 
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 CHAPTER ONE 
INTRODUCTION 

1.1 Introduction 

The opening chapter of this thesis introduces the background and context of this 

research project, describing the evolution of modern day power grids and their 

increasing need for smart grid technology to ensure grid stability and the prevention of 

blackouts. The high cost of commercial PMUs due to the nature of this specialised field 

is described, and the impact of this on research and development is highlighted. This 

chapter outlines the methodology employed in developing a versatile low-cost 

measurement device, in the form of a P and M class phasor measurement prototype, 

as a possible solution to address the research problem. This aims to demonstrate the 

multi-functional potential of a PMU on a single hardware platform achieved through 

selectable phasor estimation algorithms, and extensible to other applications.  

1.2 Background 

Global warming and the depletion of fossil fuels has increased the usage of renewable 

energy sources to supplement the power grid by means of distributed energy 

resources (DER). This along with the growing demand for electricity, has resulted in 

power grids evolving and becoming more complex. In recent years, South Africa’s on-

going energy crisis together with the cost reductions in renewable energy technology, 

have prompted the introduction of municipal small-scale embedded generation 

(SSEG) programmes, allowing residents to feed excess solar energy back into the 

power grid (City of Cape Town, 2023). This has contributed to the complexity of 

modern day power grids now requiring wide area monitoring, control and advanced 

metering to sustain a stable power network and provide protection against faults, black 

outs and damage to the power network infrastructure. The integration of wide-area 

monitoring systems provides operators with a wide-area view and state of the entire 

power grid in real-time, enhancing decision-making processes, control and overall 

management of the power grid.    

Synchrophasor estimation is an essential component in wide area measurement 

systems (WAMS), enabling protection, measurement and analysis of modern day 

power systems. The phasor measurement units (PMUs) are the hardware devices 

used for performing synchrophasor measurements of voltage and current waveforms 

present in the power grid. These PMUs are strategically placed across the grid, 

typically at substations, to provide an overview of the state of the power grid. 

Synchrophasors are defined as phasor measurements synchronised with Coordinated 
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Universal Time (or UTC time). Accurate time synchronisation methods are utilised for 

time-tagging each measurement in line with UTC. The time synchronisation provides 

a means to record the exact time a measurement was taken in order to analyse and 

compare the magnitude, phase angle and frequency values of the electrical waveform, 

occurring at different locations across the power grid.   

The dynamic nature of modern day power grids presents a certain degree of difficulty 

and complexity in measurement, and can often contain inaccuracies. Renewable and 

DER initiatives and the increasing amounts of modern day power electronic devices 

and non-linear loads connected to the power grid often leads to the presence of 

waveforms with fluctuating voltages and varying frequency. These waveforms are 

termed ‘dynamic’ and refer to the signal amplitude, phase angle, and frequency that 

are constantly changing. These dynamic signal conditions can lead to inaccuracies 

and erroneous measurements, having a detrimental effect on various substation 

automation, measurement and protection devices utilising this PMU data. This has 

resulted in the use of several phasor estimation methods and techniques, with varying 

levels of accuracy, for meeting the measurement performance required by 

continuously evolving power systems. 

The Institute of Electrical and Electronics Engineers (IEEE) has released several 

versions of standards for governing synchrophasor measurements for static and 

dynamic power systems. Currently the most established and recognised are the IEEE 

C37.118 series of standards. 

1.3 Awareness of problem 

The IEEE C37.118.1-2011 standard defines two performance classes, namely P Class 

and M Class. The P Class measurements are geared for protection applications and 

fault condition scenarios that require fast response times. The standard defines M 

class measurements for situations where accurate and precise measurement is 

required, as opposed to responsiveness. Each performance class consists of its own 

set of performance requirements for compliance with the standard, and is typically 

chosen by the user based on the required application. The processing of M class 

measurements are more complex in comparison to P class, requiring longer 

observation and processing intervals, advanced estimation techniques and improved 

rejection of unwanted interference signals in order to achieve the required accuracy 

and precision. These differences have resulted in many commercial PMUs being 

designed to perform either P class or M class measurements, hereby limiting their use 

across different power system applications. Commercial PMU equipment are costly 
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due to the niche industry they serve, and this presents a challenge for research and 

development in smart grid and substation automation fields. The situation is worsened 

by the fact that many applications in power systems requires specific types of devices 

for measurement. This hinders researchers and institutions with limited budgets from 

conducting comprehensive studies and experiments within the field.  

1.4 Problem statement 

Power systems present many types of measurement based on the application. A prime 

example are the P and M performance classes stipulated for PMU’s, where P-class is 

designated for protection applications and M class for providing accurate 

measurements and monitoring. There is a growing need to provide a more flexible and 

versatile PMU that can cater for both protection and measurement applications. This 

notion can be applied and extended to other smart grid applications such as smart 

meters, substation automation, plug-in electrical vehicles, Distributed Energy 

Resources (DERs), and Advanced Metering Infrastructure (AMI). The measurement 

requirements of these applications are each unique, however the underlying principles 

of measurement remain the same employing similar hardware architectures consisting 

of a data acquisition system and a signal or data processing component. Given these 

similarities, the prospect exists for the development of a single dedicated hardware 

platform incorporating these core functions. This would enable a single hardware 

platform to be used across a variety of applications. 

This research explores various phasor estimation algorithms and techniques for 

deployment on a single hardware platform. This will focus on the selection of  suitable 

phasor estimation algorithms for performing P class and M class PMU measurements. 

This research aims to demonstrate the practicality of employing a single platform with 

the appropriate software, to be used for a variety of different power measurement 

applications. This prospect shall provide a cost-effective solution for the development 

of PMU devices and thereby aid and facilitate research and experimentation within this 

field. 

1.5 Aims 

The aim of this research project is to design and implement a phasor measurement 

prototype for P class and M class measurements. This shall be achieved with the 

deployment of two phasor estimation algorithms on a single hardware platform. This 

prospect is significant as it demonstrates the capability of performing both P class and 

M class measurements, hereby providing a more generic and versatile instrument. The 

measurements are intended to comply with the IEEE C37.118.1-2011 standard, 
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encompassing static and dynamic power system conditions. The phasor estimation 

algorithm shall be implemented on a low-cost embedded hardware platform in the form 

of a phasor measurement prototype, serving as a proof of concept and a means for 

evaluating and verifying measurements. The prototype is intended to operate at the 

distribution level and ideally serve as a research and development platform aimed at 

research groups specializing in smart grid technology, substation automation, 

protection and wide area measurement system (WAMS) applications.  

1.6 Objectives 

The key objectives for achieving the intended aim of this research project has been 

identified and are listed as follows: 

1. A research study and literature review of the IEEE C37.118.1-2011 standard, the 

core concepts and principles of Phasor Measurement Units (PMUs), and various 

synchrophasor estimation methods and techniques proposed in research. This 

shall encompass the operation and performance of various synchrophasor 

estimation algorithms, as well as their practical implementation on appropriate 

embedded hardware platforms. 

2. The selection of an appropriate P class and M class synchrophasor estimation 

algorithm for this project for computing the phasor parameters onboard a low-cost 

embedded hardware platform. This shall be guided by the findings obtained from 

the literature review. 

3. The development and implementation of the selected synchrophasor estimation 

algorithms in MATLAB, and the evaluation of its performances through software 

simulations. 

4. The development of a P class and M class phasor measurement prototype. This 

will consist of the implementation and deployment of the P and M class 

synchrophasor estimation algorithms on an appropriate embedded hardware 

platform.  

5. The evaluation and compliance testing of the actual real time measurements 

produced by the phasor measurement prototype, in conformance with the IEEE 

C37.118.1-2011 standard. 

1.7 Hypothesis 

Based on the research problem and proposed solution, the following hypothesis has 

been formulated for this research project: 
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“A PMU can be developed to perform P class and M class measurements on a single 

device using two selectable phasor estimation algorithms, thus improving its versatility 

and multifunctional capabilities . 

The hypothesis raises the following questions that are intended to be answered on 

completion of this project: 

• Can a single PMU be practically implemented for both P class and M class 

measurements? Most PMU’s conform to either P class or M class 

measurements. This project will attempt to produce a PMU capable of 

performing both measurement classes. 

• Which algorithms and techniques will be employed? A study examining the 

performance of various algorithms and techniques shall be pursued. Based on 

the findings, an appropriate phasor estimation method and technique will be 

identified and selected. 

• What level of performance and accuracy will the PMU prototype provide? The 

phasor measurement produced by the prototype shall be evaluated for 

compliance according to requirements based on the IEEE C37.118.1-2011 

standard.  

1.8 Delimitation of research 

This study explores several time and frequency domain synchrophasor estimation 

algorithms proposed in research, but focuses on the Taylor Fourier Transform (TFT)  

as the dedicated dynamic phasor estimation algorithm employed in a phasor 

measurement prototype. This study does not include any benchmarking or detailed 

comparison of different phasor estimation algorithm performances, but rather 

examines the TFT algorithm in greater detail and demonstrates the implementation 

and practicality of employing the TFT algorithm as a selectable phasor estimation 

algorithm on the STM32 Nucleo-F767ZI development board. The development of  the 

phasor measurement prototype is carried out on the STM32 Nucleo-F767ZI 

development board, with all embedded development confined to this hardware 

platform. The phasor measurement prototype is intended for demonstrating the 

performance and accuracy of the TFT phasor estimation algorithms, and therefore 

does not contain additional functionality such as GPS synchronisation and Ethernet 

data transfer, which are typically included in commercial PMUs. The IEEE C37.118.1-

2011 standard compliance tests are conducted for evaluating the performance of the 

dynamic phasor estimation produced by the phasor measurement prototype, however 

certain tests which apply to a fully-fledged PMU have been excluded. This research 
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project does not include a comparison with commercial PMUs, as its focus is on 

implementing a P and M class PMU as a proof of concept and the evaluation of its 

performance is based on the compliance requirements stipulated in the IEEE Std 

C37.118.1-2011. 

The simulation test are conducted in a MATLAB environment. Actual experimental 

tests are conducted with discrete and continuous analog signals generated by a 

function generator and is therefore not sourced from an actual power grid. It should be 

noted that the function generator may not completely replicate and represent a real 

world power grid, nor capture all the typical challenges presented by it. 

 

1.9 Assumptions 

The following assumptions are made for this research project: 

• The phasor measurement prototype is intended for the measurement of single 

phase power systems only. 

• The usage of this device is intended for local power grids operating at a voltage 

of 230 V AC  and a frequency of 50 Hz, and is assumed that this is known a 

priori. 

• This research project assumes input signals are received at the appropriate 

voltage levels supplied by instrument transformers. High voltage AC 

waveforms are converted  to suitable AC voltages for measurement by an ADC.  

1.10 Significance and motivation of research 

Modern day power grids have increased in capacity and complexity, and often require 

dynamic models and techniques for monitoring critical events and preventing faults or 

blackouts. Synchrophasor estimation performs a key function in the monitoring and 

protection of power grids, and in this regard is an important component within this field 

of research. Many research studies explore synchrophasor estimation utilising DFT-

derived algorithms based on frequency domain analysis and processing. This study 

focuses on time domain based algorithms and provides insight into the performance, 

limitations and effectiveness of this approach.  The study aims to provide a method 

and technique for performing both P class and M class measurements on a single 

measurement device. This allows for phasor measurements requiring both fast 

response and high accuracy to be carried out on a single unit, eliminating the need for 

two application-specific devices. Given the high cost of PMUs, another motivation for 

this research project is to develop a low-cost phasor measurement prototype platform 
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aimed at facilitating rapid prototyping. This shall provide students and researchers with 

an inexpensive hardware platform for carrying out practical phasor measurement 

experiments and aid further advancements within the field.  

1.11 Research design and methodology 

This section discusses the methodology undertaken in this research project for 

achieving the proposed aims and objectives, and ensuring results are reliable and 

valid. The research design and methodology adopted for this project consists of the 

following points:  

 

1. Literature review and investigation - The research commences with a literature 

review to establish a comprehensive understanding of synchrophasor 

estimation, phasor measurement units (PMUs) and the associated IEEE 

C37.118-2011 standard for measurement applications in power systems. The 

various synchrophasor estimation methods, PMU architectures and hardware 

platforms presented in research papers and literature are investigated. The 

literature review consists of information primarily obtained from research 

papers, associated text books, IEEE standards, and online-based literature. 

 

2. Software development and simulations - A suitable phasor estimation 

technique and hardware architecture is chosen based on the findings obtained 

from the aforementioned literature review and investigation. A corresponding 

phasor estimation algorithm based on the selected estimation technique is 

implemented in the MATLAB software environment. Software simulations are 

carried out in MATLAB to verify the operation of the algorithm and evaluate its 

performance and accuracy according to the required performance class.  

 

3. Design – A design of a phasor measurement prototype is developed and 

presented. This is based on information obtained from the literature review and 

research investigation. In the design, a suitable PMU architecture, data 

acquisition system, and processing method for executing the phasor estimation 

algorithms are identified. Additional peripheral functions essential to the design 

are also highlighted.  
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4. Implementation – The phasor measurement prototype is realised by 

implementing the design on a suitable embedded hardware platform and 

carrying out the deployment of the phasor estimation algorithms. Hardware and 

software development tools are utilised in the development, debugging and 

programming process. The initial phasor estimation algorithm requires porting 

to a suitable programming language supported by the processing unit onboard 

the embedded hardware platform. This physical prototype serves as a proof of 

concept and a means of testing and verifying the software developments and 

hardware design. 

 

5. Test and evaluation  - The test and evaluation procedure conducted for the 

phasor measurement prototype is adopted from compliance tests and 

verification guidelines set out in the IEEE C37.118.1-2011  standard. An 

analysis of the test measurement results determines the accuracy and 

performance of the phasor measurement prototype, and its compliance with 

the IEEE C37.118-2011  standard. During this test a combination of continuous 

analog and discrete test signals are applied as input test sources. The test 

measurements are carried out using an oscilloscope for evaluating actual real 

time measurements produced by the phasor measurement prototype. 

1.12 Expected outcomes  

The primary expected outcome of this research consists of a functioning phasor 

measurement prototype implemented on an embedded hardware platform. The main 

goal of this prototype is to demonstrate the ability to perform both P class and M class 

phasor measurements by means of two selectable algorithms. The measurement 

results are recorded for static and dynamic conditions, and evaluated for conformance 

with the IEEE C37.118.1-2011 standard. The thesis in itself is also one of the major 

outcomes of this research project, which documents the theoretical principles and 

findings obtained in this  research investigation, as well as the subsequent design, 

implementation and final evaluation results. 

1.13 Contribution of research 

This research is significant as it explores the prospect of a single phasor measurement 

device performing both P and M class measurements, in contrast to the many research 

papers proposing phasor measurements designated to only one performance class. 

The importance of this prototype lies in its versatility, as it is a single device capable of 

performing P class and M class measurements, making it suitable for protection and 
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measurement applications. The knowledge and information gained during this project 

serves as a contribution to the field of smart grid technology and substation 

automation. The final phasor measurement prototype can aid researchers in this field 

by utilising the prototype to perform phasor measurements in a laboratory 

environment, for testing signal quality, power analysis, protection systems and other 

substation automation functions. 

1.14 Thesis outline 

This thesis consists of a total of seven chapters. A brief overview of each chapter is 

provided in the following: 

Chapter One presents an introduction to this research project. This chapter describes 

the background, definition and aims of this research problem, and discusses its 

significance, methodology and expected outcomes. 

Chapter Two reviews literature pertaining to synchrophasor estimation, PMUs, 

associated industry standards, and the relevant algorithms, hardware platforms and 

techniques employed in this field. The insights and knowledge gained are presented 

for application in this research project. 

Chapter Three establishes a theoretical foundation of the underpinnings of phasor 

estimation. The underlying principles and operation of the TFT algorithm for computing 

phasor parameters are discussed.  

Chapter Four verifies the TFT algorithm as a phasor estimator through functional 

testing simulated in MATLAB. The simulation test results are evaluated and analysed. 

Chapter Five presents the development process of a phasor measurement prototype. 

The practical implementation of the TFT algorithm on an embedded hardware platform 

is discussed and demonstrated.  

Chapter Six describes the test and verification procedure for evaluating the 

performance of the phasor measurement prototype. The test results and observations 

are presented and analysed. 

Chapter Seven concludes with a  summary of the deliverables, findings and outcomes 

of this research project. Future work and recommendations in this field of study are 

discussed. 
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1.15 Conclusion 

This chapter provides an introduction to this research project by clearly describing the 

background and definition of the research problem to be investigated. The significance 

and objectives of this research, and the methodology employed for achieving the 

expected outcomes are discussed. The following Chapter Two presents the 

commencement of the research investigation in the form of a literature review. This 

establishes a theoretical foundation to be applied throughout the rest of this research 

project. 
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 CHAPTER TWO 
LITERATURE REVIEW 

2.1 Introduction 

This chapter aims to provide a foundation of knowledge on the topic of  synchronized 

phasor (synchrophasor) measurements and Phasor Measurement Units (PMUs) in 

power systems. The purpose is to gain a thorough understanding of relevant topics, 

methods and techniques available on this subject, and to determine the current state 

of research within this field. This knowledge and information is essential in the 

research, design and development of PMU instruments and synchrophasor estimation 

algorithms.  

The field of PMUs and synchrophasor measurements is well-defined, regulated and 

supported by the IEEE C37.118 standard published by the Institute of Electrical and 

Electronics Engineers (IEEE). This is the prevailing standard within this industry which 

most research work and development is in accordance with. The IEEE C37.118 

provides technical specifications and guidelines to maintain consistency in the design 

and operation of applicable equipment and systems. 

The literature review commences with a brief overview of the history of the standard. 

Key concepts and terms are defined and the necessary performance criteria are 

stipulated for ensuring an acceptable level of quality.  

A focus area in this literature review is the different types of methods and techniques 

used in synchrophasor estimation. These are broadly categorised into either time 

domain algorithms or frequency domain algorithms. Research papers presenting the 

development and evaluation of various synchrophasor estimation algorithms are 

explored as per these two categories. Synchrophasor estimation algorithms and the 

development of PMUs intended for a specific performance class are also explored. 

The performance of these methods and techniques are noted, as well as practical 

implementations of these algorithms on hardware platforms. The most current 

methods and software tools used in the development, simulation and evaluation of 

synchrophasor estimation algorithms and PMUs are explored to determine their 

applicability and usage in this research project.  

2.2 History of PMU and Synchrophasor Standards 

The initial development of a PMU in 1987 by Virginia Tech, and the first commercial 

PMU developed in 1990 by Macrodyne, prompted a need for a standard to regulate 

and support PMU development and the advancing synchrophasor industry (Phadke & 

Thorp, 2008). 
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In 1995, the IEEE Std 1344-1995 was published as the first standard for PMUs and 

synchrophasor measurements (IEEE, 1995). This standard introduced definitions for  

several synchrophasor measurement concepts, and provided guidelines for 

measurement, synchronisation, processing, and communication performed by PMUs. 

A growing need for a more comprehensive standard for synchrophasor phasor 

measurements resulted in it being superseded by the IEEE Std C37.118-2005 (IEEE, 

2006). This standard included steady-state tests, performance indicators and 

compliance requirements for evaluating performance of PMU measurements. In 2011, 

the standard underwent another revision and was divided into two parts: the IEEE Std 

C37.118.1-2011 which contained measurement definitions and requirements, and the 

IEEE Std C37.118.2-2011 which focused on communication and data transfer (IEEE, 

2011b; IEEE, 2011a). The IEEE Std C37.118.1-2011 also included measurement 

requirements and test conditions for dynamic power system conditions, as well as two 

performance classes. In 2014, the IEEE Std C37.118.1-2011 was amended with the 

IEEE C37.118.1a-2014 to address certain inconsistencies encountered by users and 

relax some performance requirements found to be difficult to meet (IEEE, 2014).  

2.3 The IEEE C37.118.1-2011 Standard  

The IEEE C37.118.1-2011 standard provides a set of compliance tests and 

requirements for evaluating the accuracy of four key measurements produced by the 

PMU, namely, the magnitude and phase angle of the input waveform, as well as the 

associated frequency and Rate of Change of Frequency (ROCOF). The ROCOF can 

also be expressed as the derivative of the frequency. Each measurement is 

synchronized with a time source, such as UTC, and contains a time tag. A reference 

design is provided by the standard, although different estimation methods and 

techniques are allowed and encourage, as long as all the measurement results fall 

within the given criteria.  

The IEEE C37.118.1-2011  standard specifies three performance indicators for 

determining the accuracy of measurements. This consists of the Total Vector Error 

(TVE), frequency error (FE) and rate of change of frequency (RFE). The measured 

amplitude and phase angle values are evaluated together as a single vectorial quantity 

by means of the TVE. The TVE specifies the difference between the theoretical 

calculated values and the actual measured values produced by the PMU. The 

measured frequency and rate of change of frequency (ROCOF) values are evaluated 

based on the FE and the RFE. The FE and RFE indicate the magnitude of the error 

present in the resulting frequency and ROCOF measurement. Measurement error 

limits are also provided which specify the value performance indicators should not 
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exceed in order to comply with the standard. A detailed description of the TVE ,FE and 

RFE, along with defining equations are presented in Chapter 3.  

The measurements produced by the PMU are required to be transmitted and reported 

at a specified number of times a second and is referred to as the reporting rate (𝐹𝑠). 

The IEEE C37.118.1-2011 standard expresses the reporting rate as a sub-multiple of 

the system nominal frequency (𝑓𝑜) and is selectable by the user.  Table 1 provides 

examples of PMU reporting rates in frames per second for a nominal system frequency 

of 50 Hz. 

 

Table 2.1: PMU reporting rates for 50 Hz system frequency 

System frequency  50 Hz  

Reporting rate (Fs) 10 25 50 

 

The IEEE C37.118.1-2011 standard specifies two performance classes, namely, P 

class for protection applications, and M class for precise and accurate measurements. 

P class measurements require fast response times and minimal latency, but no explicit 

filtering is needed as a certain amount of interference and aliasing is allowed. M class 

measurements on the other hand require more complex filtering to guard against out-

of-band interference and aliasing. Each performance class is specified by a unique set 

of compliance limits.  The user selects the required performance measurement class 

based on the intended application. Measurement compliance consists of steady-state 

conditions as well as dynamic conditions. Steady-state conditions are where the 

magnitude, phase angle and frequency of the input signal remain constant within a 

given observation interval, while dynamic conditions are where these quantities vary 

with time.  

For compliance testing, the standard provides each test with a set of independent 

requirements for meeting P class and M class measurements respectively. The 

dynamic compliance testing involves applying modulation and step changes to the 

input signal and the ramping of the system frequency, and measuring the output result. 

Out-of-band interference testing is a specific requirement for M class devices, 

evaluating the accuracy of measurements in the presence of unwanted frequency 

signals. 

The measurement reporting latency is defined as the time interval from when a PMU 

is presented with an input signal to when a measurement value is produced at the 
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output. Factors such as the complexity of the estimation algorithm, length of 

observation windows, and filtering techniques have an influence on the resulting 

latency. The maximum reporting latency for  both performance classes are governed 

by the reporting rate (𝐹𝑠). M class allows for a longer duration in comparison to P class, 

as the higher level of accuracy for M class measurements requires more processing 

time. The maximum reporting latency for P class and M class are shown in Table 2. 

Table 2.2: Measurement reporting latency (IEEE, 2011a) 

Performance 

class 

Max. measurement reporting latency (s) 

P class 2/𝐹𝑠 

M class 5/𝐹𝑠 

 

The IEEE C37.118 remains the primary standard for regulating synchrophasor 

technology and the PMU industry. All functions of a PMU are defined, along with test 

procedures and performance requirements for evaluating measurements and designs. 

Consequently, all research proposed in this field are conducted in accordance with this 

standard. 

2.4 Introduction to Phasor Measurement Units 

The following provides a brief introduction of a Phasor Measurement Unit (PMU) and 

its architecture. PMUs are real-time instruments used for measuring the magnitude, 

phase, frequency and ROCOF of AC voltage or current waveforms in a power system. 

A PMU is typically located in a substation where the AC waveforms coming from 

feeders and buses are converted to suitable measurement levels via instrument 

transformers, and applied to the PMU input (Phadke & Thorp, 2008). The AC input 

signals are sampled by an Analog-to-Digital Converter, and the measurements are 

synchronised and time-tagged to UTC (Universal Time Coordinated). A Pulse-per-

second signal supplied by an accurate time source, such as a GPS receiver, provides 

the synchronisation of measurements. This allows for all measurements from different 

locations across the power grid to be compared with each other as they all share a 

common time reference. The digitised signal is processed by a synchrophasor 

estimation algorithm and calculates the signal amplitude, phase angle, frequency and 

ROCOF. This phasor measurements are packaged into an ethernet packet and 

distributed on a network to Phasor Data Concentrators (PDC) for collecting, processing 

and storing of phasor information (Phadke & Thorp, 2008). A basic block diagram of 

the architecture of a PMU is shown in Figure 2.1. 
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Figure 2.1: Block diagram of PMU architecture 

2.5 Phasor Estimation Algorithms and Techniques 

At the heart of a PMU lies the phasor estimation algorithm which is responsible for 

extracting the phasor parameters of an AC signal. The phasor estimation algorithm is 

a special mathematical method or technique for computing the amplitude and phase 

angle of a sampled signal. This operation contributes significantly to the overall 

accuracy of a PMU. The method involves applying a sequence of sampled values 

representing an AC signal to the input of the phasor estimation algorithm which 

computes the phasor parameters. A wide range of phasor estimation algorithms have 

been proposed and presented in research literature. To name a few, these include 

methods such as the discrete Fourier transform (DFT), interpolated DFT (IpDFT), sine-

fitting algorithms, Kalman filters, phase-locked loops (PLL), the Taylor Fourier 

transform (TFT), and the wavelet transform (Monti, Muscas, Ponci, 2016). Each 

method differs in accuracy and complexity, and is usually targeted at specific 

applications and signal conditions. Even though each phasor estimation algorithm 

employs a unique technique for extracting phasor parameters, many methods share 

common underlying principles, and can thus be broadly categorized into either time 

domain or frequency domain algorithms. Frequency domain algorithms are composed 

of frequency analysis methods based on the DFT and it’s variants, while time domain 

algorithms are based on either model matching or demodulation techniques (Monti, 

Muscas, Ponci, 2016). Furthermore, the mathematical technique of each phasor 

estimation algorithm is built upon an underlying static or dynamic signal model for 

computing the corresponding phasor parameters. Static models are based on purely 

sinusoidal signals that exhibit minimal to no transients, interference or phasor 
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fluctuations. As a result, static models are unable to accurately track fluctuations in the 

amplitude, phase angle, and frequency exhibited by modern day power grids and 

further degrades during off-nominal conditions and transients.  To overcome this 

limitation, phasor estimation algorithms based on dynamic phasor models are 

employed to cater for these type of conditions. The dynamic signal model employed in 

dynamic phasor estimation algorithms allow for more movement and flexibility in the 

acquired signal, and thus is able to accurately estimate phasors that are subject to 

variations and interference. 

The following two sections presents the basic principles and fundamentals of 

frequency domain and time domain algorithms, and explores several phasor 

estimation algorithms and methods proposed in research. 

2.5.1 Frequency-domain DFT-based Algorithms 

One of the more widely used frequency domain algorithms for static phasor estimation 

is the Discrete Fourier Transform (DFT). The DFT is renowned for its low 

computational complexity and rejection of unwanted harmonics. One point to note is 

the DFT relies on a static phasor model which assumes a signal with constant 

amplitude and frequency, and thus produces inaccurate results during off-nominal 

frequency deviations. During the measurement of off-nominal frequency signals, an 

integer number of periods does not fit uniformly within the observation interval, and 

thus causes the input signal energy in the DFT to stretch and smear across adjacent 

frequency channels. This phenomenon is known as spectral leakage and causes 

difficulty in determining the actual input signal frequency. The spectral leakage also 

causes the reduction of the frequency component of the measured signal, and is 

referred to as the scalloping loss. Windowing is a well-known technique employed to 

mitigate the effects of spectral leakage. Windowing consists of multiplying a discrete 

sequence with a finite-length window that tapers off to zero at each end, and hereby 

reducing any sharp transitions and discontinuities. In research literature, numerous 

frequency domain algorithms based on the DFT are presented and proposed for 

carrying out the phasor estimation . Many of these studies examines limitations of the 

DFT and explores different techniques and enhancements in order to improve its 

accuracy and performance as a phasor estimator. The following examines and 

discusses several frequency domain algorithms and techniques proposed in research 

papers for estimating the phasor parameters of an AC signal.  

In a research paper presented by MacIi, Petri and Zorat (2012), simulation results 

confirm that the accuracy of a single cycle DFT can be significantly improved with the 
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inclusion of a window function. The scalloping loss can be compensated for using a 

technique known as the Interpolated Discrete Fourier Transform (IpDFT) conceived by 

Jain et al. (1979). This DFT-based algorithm extracts the parameters of the input 

waveform and interpolates the highest frequency components in the spectrum. 

According to Belega and Petri (2012), an IpDFT together with a Hann window yields 

results boasting TVE values which satisfy M-class accuracy thresholds for two-cycle 

and four-cycle observation intervals. In a study conducted by Derviškadić, Romano 

and Paolone (2017), an improvement to the IpDFT is presented which claims to be the 

first algorithm compliant with the IEEE std. C37.118.2011 for M-class PMUs. The 

technique is referred to as the iterative-Interpolated DFT (i-IpDFT) and iteratively 

estimates the spectral interference caused by the negative image and inter-harmonics, 

and subtracts the result from the frequency spectrum. In a later study by Derviškadić, 

Romano and Paolone (2018), an improved method of the i-IpDFT is proposed and is 

shown to be compliant with both P class and M class measurements. It should be 

noted that the aforementioned DFT and the IpDFT algorithms and variants thereof are 

all based on static phasor models, which presents a low computational burden and are 

simple to implement. These DFT-based methods provide good harmonic rejection but 

are sensitive to off-nominal frequency conditions. 

2.5.2 Time-domain Algorithms 

A significant amount of phasor estimators presented in research are based on time-

domain techniques, and are thus categorised according to this approach. This 

category of phasor estimation techniques are also sometimes referred to as non-DFT 

type methods. As previously mentioned, this category of time domain techniques can 

be further subdivided into methods employing either demodulation or model matching.  

The IEEE C37.118 standard provides a reference signal processing model for 

estimating the phasor parameters of a signal. The method is based on a static model 

employing demodulation and filtering. The standard states the reference signal model 

is provided merely for information purposes and is by no means intended as the 

preferred or recommended method for estimating phasors. Many other methods 

successfully developed by PMU manufactures and proposed by researchers are 

permitted and encouraged. In the reference signal processing model, the input signal 

is multiplied by the sine and cosine terms of a complex exponential generated by a 

quadrature oscillator operating at the nominal frequency. The real and imaginary 

components produced by the complex demodulator are filtered by either a P class or 

M class low pass filter, depending on the application. From this result, the magnitude 

and phase angle of the input signal can be determined. A block diagram of the 
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reference signal processing model provided by the IEEE C37.118 is shown in Figure 

2.2. 

 

 

Figure 2.2:  Reference signal processing model for phasor estimation. (IEEE, 2011) 

Another widely used time domain technique commonly found in phasor measurement 

research are curve-fitting methods. These methods are also referred to as sine fitting 

methods, as they fit a sampled signal to a sinusoidal function and compute the phasor 

parameters by means of least squares regression.   These methods are based on 

either static or dynamic phasor models. A detailed description of a trivial sine fitting 

algorithm is presented in Chapter 3.  

In the IEEE 1057 standard for Digitizing Waveform Recorders, a three-parameter and 

four-parameter sine-fit algorithm is provided for the analysis and evaluation of 

waveform recorder equipment (IEEE, 2018). The three-parameter sine-fit algorithm 

estimates the amplitude, phase angle and DC offset of the input AC signal, provided 

that the signal frequency is known. In the case where the signal frequency is unknown 

and needs to be determined, the four-parameter sine fit algorithm is employed which 

follows an iterative procedure for calculating the parameters for amplitude, phase 

angle, frequency and DC offset.  These techniques have been adopted from the IEEE 

1057 standard and are now being utilised in phasor estimation algorithms. In a study 

conducted by Belega and Petri (2012a), the performance and accuracy of  the three-

parameter and four-parameter sine-fit algorithms are evaluated and analysed as 

synchrophasor estimators under steady-state and dynamic conditions. Both algorithms 

are analysed for half-cycle and one-cycle observation intervals. Overall, the simulation 

results produced in MATLAB indicate that the one-cycle algorithms provide more 

accurate estimates and comply with both P-class and M-class measurements. The 
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processing time of the three-parameter sine-fit algorithm is faster, as an accurate value 

of the signal frequency is assumed to be provided and therefore not needed to be 

calculated. 

The types of sine-fit algorithms previously mentioned all rely on a static phasor model, 

where the sinusoidal parameters are assumed to be constant. An algorithm for 

determining a sinusoidal waveform as a dynamic quantity was first introduced in a 

research paper by de la O Serna (2006) and is referred to as the Taylor Fourier 

Transform (TFT). This method approximates the variations in amplitude and phase 

with a second-order Taylor polynomial, and uses the least squares method for 

calculating the result. The TFT is suited for both static and dynamic signals, with the 

former employing a zero-order Taylor model, and the latter requiring terms up to the 

second-order. An enhanced and more accurate version of the TFT is proposed in a 

research study by Platas, Garza and De La O Serna (2010). This method determines 

the Taylor parameters with windows to weight the errors of the least squares solution, 

and is known as the Taylor Weighted Least Squares (TWLS) method. The 

performance of the TWLS method is analysed in a research paper by Belega and Petri 

(2013) and indicates accurate measurement results, although the computation 

complexity is much higher in comparison to the traditional DFT. The reason for this is 

the TWLS requires computations with complex valued data. The real-valued TWLS 

algorithm (Belega & Petri, 2014) and the fast-TWLS algorithm (Belega & Petri, 2019) 

propose faster alternatives for implementing the TWLS method. The computational 

complexity of the Fast Taylor Weighted Least Squares Algorithm is reduced, and is 

suitable to employ on low-cost microprocessor platforms for real time synchrophasor 

applications (Belega & Petri, 2019) . The TFT algorithm and it’s variants have become 

a popular choice as a synchrophasor estimator in PMUs. This method is favourable 

due to its performance under dynamic conditions. A detailed description of the TFT 

algorithm is presented in Chapter Three. 

2.6 Performance Class Algorithms and Techniques 

As mentioned in section 2.3, the IEEE C37.118 standard provides a set of  

performance criteria for evaluating PMUs. These requirements are categorised into 

two distinct measurement classes, namely P class and M class. Many PMU designs 

and phasor estimation algorithms developed and proposed in research are aimed at a 

specific performance class. The following takes a look at several phasor estimation 

algorithms and PMU designs presented in research specifically for meeting the 

requirements for either P class, M class or both performance classes. 
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2.6.1 P Class Algorithms and Techniques 

P class measurements are specified for protection applications which typically require 

fast measurement response times, but less filtering capabilities. A particular phasor  

estimation algorithm for P-class PMUs is presented by Affijulla and Tripathy (2018) 

aimed at protection applications for smart grids. The algorithm is referred to as the 

Hilbert dynamic phasor estimator (HDPE) as it employs auto-correlation techniques 

and the Hilbert transform for estimating the phasor parameters of dynamic signals. The 

proposed phasor estimator is tested and verified under different dynamic conditions 

specifically for P class requirements as stipulated in the IEEE C37 standard. The result 

successfully indicated measurement accuracy and performance within the maximum 

TVE limit. In a second study conducted by Affijulla and Tripathy (2018a) a dynamic 

dictionary-based phasor estimation (DDPE) algorithm is presented also targeted at P-

class applications. The algorithm utilises a primary and secondary dictionary matrix 

constructed from sinusoidal functions for coarse and fine phase angle estimation. The 

Taylor series approximation and a least squares technique are used for estimating the 

magnitude, frequency and ROCOF. The same set of dynamic tests conducted for the 

HDPE algorithm were used for evaluating the accuracy and performance of the DPPE 

which allowed for a comparison between the two methods. The test results of the 

DDPE demonstrated an overall improved performance in comparison to the HDPE and 

hereby confirmed  its suitability for power system protection applications in compliance 

with the IEEE C37.118 standard.  

2.6.2 M class algorithms and techniques 

M class measurements are aimed at providing greater accuracy and precision in 

environments affected by interference and aliased signals, and thus allows for longer 

response times. A study by Bi et al. (2015) proposes a synchrophasor estimation 

algorithm based on the Taylor series approximation of a dynamic phasor for producing 

M class measurements. The algorithm uses the linear relationship between the 

second-order coefficients of the Taylor series expansion and the errors produced by 

the DFT averaging effect for achieving highly accurate phasor measurements. Two 

digital filters are also included for minimizing the effects of spectral leakage and out-

of-band interference. Simulation and experimental testing conducted according to the 

IEEE C37.118 standard confirmed performance and accuracy suitable for M class 

measurements. As discussed in section 2.5.1, the iterative-Interpolated DFT (i-IpDFT) 

method is employed specifically for M class measurements and claims to be the first i-

IpDFT algorithm satisfying M class PMU requirements (Derviškadić et al., 2017).    
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2.6.3 P and M class algorithms and techniques 

This literature review has shown thus far that the majority of the PMU designs and 

phasor estimation algorithms proposed in research are developed for either P class or 

M class measurements. As synchrophasor technology is constantly being advanced 

and improved, newer studies have been presented which aim at developing phasor 

estimation methods for a single PMU device satisfying both performance  classes. This 

allows for a single PMU to be deployed in the field for both measurement and 

protection applications. The following discusses a novel PMU design presented in 

research for achieving this outcome.  

A research study conducted by Castello et al. (2013) presents the development of a P 

and M class compliant synchrophasor estimation algorithm based on an adaptive 

version of the Taylor-Fourier Weighted Least Squares (TFT-WLS) method. The study 

was aimed at developing a design for a single PMU capable of providing both accurate 

measurements and fast responses to transients for protection applications. The 

proposed method consists of a step change detector which monitors the AC signal and 

identifies any fast transient conditions based on the estimated phasor derivatives. 

Then a selection between two different configurations of the TFT-WLS algorithm is 

made for producing the best estimation results based on the signal conditions.   

Computed frequency estimations are fed back into the algorithm for improving 

measurement accuracy through frequency tuning. To reduce the computational burden 

caused by the inclusion of the frequency input parameter to the algorithm, dedicated 

transformation matrices are precomputed for frequency values deviating from the 

fundamental. The test results confirmed  compliance with the IEEE C37.118 standard 

for P class and most M class requirements. 

In another study presented by Castello et al. (2014), an enhancement to the 

aforementioned P class and M class PMU design is proposed. This design also utilises 

a step change detector and two different configurations of the TFT-WLS algorithm 

which run concurrently. A static and dynamic measurement channel allow for the 

sampled signal to be processed simultaneously by the two algorithms. A transient 

detector selects the output of the algorithm which is the most appropriate and provides 

the best performance for static or dynamic signal conditions. Each algorithm is 

customized for the measurement of either static or dynamic signals, and is defined by 

its order in the Taylor series approximation, window profile, and window length. The  

design is evaluated under static and dynamic conditions, and successfully meets all 

IEEE C37.118 standard compliance requirements, with the exception of the M-class 

ROCOF measurements which degrade in the presence of out-of-band interference.  
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2.7 Hardware Platforms 

An important aspect in the development of a PMU prototype is identifying a suitable 

hardware platform for implementing the PMU design. Due to the present-day 

technological advancements, several hardware platforms and architectures are 

available and capable of performing the functions of a PMU. In the following, a survey 

is conducted encompassing the various types of hardware platforms found in literature 

for implementing phasor measurements and PMUs. A brief description of the hardware 

platforms and development methods employed in the design are presented in a 

chronological order. Focus is placed upon low cost devices which enables rapid 

development and prototyping which are desirable for research environments. The 

methods employed in developing these PMU prototypes are also included. The 

information obtained in this review is intended to guide the selection of a suitable 

hardware platform for this research project. 

In a research paper presented by Romano and Paolone in (2017), a high performance 

low-cost PMU prototype is developed which implements the iterative-Interpolated DFT 

(i-IpDFT) algorithm on a  NovTech IoT Octopus development board. The development 

board consists of an AD770 24-bit analog-to-digital converter and an Intel Cyclone V 

system-on-chip (SoC) which integrates a FPGA together with a dual-core ARM Cortex-

A9 processor. The main components of the design consists of the i-IpDFT algorithm, 

the Modulated Sliding DFT (MSDFT) algorithm, and an ADC controller which are 

implemented using the programable logic of the FPGA. The development of the FPGA 

hardware description language (HDL) code is achieved through a model-based design 

flow using Simulink. The ARM processor is tasked with packaging output data and 

sending it out via Ethernet. The performance of the PMU prototype demonstrated low 

processing latency and good scalability in terms of the utilisation of FPGA resources, 

and overall confirms the successful implementation of the FPGA-based prototype. 

A research study by Avalos-Almazan et al. (2018) showcases the development of a 

low-cost real-time phasor estimation prototype for measuring dynamic signals. This 

design utilises a Taylor Fourier Transform algorithm implemented in Python. The 

phasor estimation computation is executed on an ARM Cortex-A53 processor onboard 

a Raspberry Pi 3 Model B. The analog input signals are digitised by an AD7606 analog-

to-digital converter and transferred to the Raspberry Pi for processing via a parallel 

communication protocol. The estimated phasor parameters are displayed  on a 

graphical user interface also implemented in Python using PyQT. The developed 

prototype was  tested with actual and simulated signals and produced reliable results 

demonstrating the successful tracking of dynamic signal behaviour. 
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An extensive study conducted by Adhikari, Hooshyar and Vanfretti (2019) explores the 

implementation of a single PMU design on Multiple Xilinx FPGA targets hosted on 

National Instruments (NI) Compact Reconfigurable I/O (cRIO) devices. The study 

proposes a metric for predicting the hardware and resource requirements for the 

FPGA-based PMU designs. The PMU designs are implemented in NI LabVIEW and 

deployed to the corresponding FPGAs hosted on several cRIO model devices. The 

digitisation of the analog input signal is achieved using NI C-series data acquisition 

modules. The cRIO onboard real-time processor and communication interfaces are 

used to broadcast the PMU output data to an Ethernet network. The design work flow 

commences with the PMU design implemented in  a NI LabVIEW environment and 

converted to HDL. The HDL code is subsequently converted to bit-streams by Xilinx 

Vivado and uploaded to the relevant FPGA device. The development of the proposed 

predictive metrics are based on synthesis reports generated by Xilinx during 

compilation of designs. Verification and compliance tests in accordance with the IEEE 

C37.118 standard produced values with in specification, hereby confirming the validity 

of the PMU implementations. 

In another study concerned with the low-cost implementation of a PMU presented by 

Delle Femine et al. (2019), a design approach utilising a STM32F407V microcontroller 

as a hardware platform is demonstrated. The input voltage or current waveform is 

digitised by the onboard 12-bit ADC, and the resulting samples are processed on the 

32-bit ARM Cortex-M4 processor by means of the Interpolated Discrete Fourier 

Transform (IpDFT). The  IpDFT  phasor estimation algorithm as well as the ancillary 

functions of the PMU prototype are developed in the C programming language and 

deployed to the STM32 microcontroller. The estimated output phasor parameters are 

tested using the Fluke 6135A/PMUCAL measurement device and evaluated according 

to some of the P class criteria stipulated in the IEEE C37.118 standard. The test results 

produced for steady-state conditions at off-nominal frequencies and added harmonic 

interference demonstrated good accuracy and performance and were within 

compliance limits. 

In a research paper presented by Garcia et al. (2020), the functionality of a PMU is 

incorporated into a commercial utility smart meter intended for low voltage distribution 

networks. The smart meter is based on the Texas Instruments MSP430f6776A 

Polyphase Metering System-on-Chip (SoC) microcontroller and is responsible for 

handling all metering functions. The phasor estimation is computed by a DFT-based 

algorithm running independently on a MT7688 32-bit microprocessor embedded on a 

Widora Bit hardware module. The two embedded devices interface via a UART-based 
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multitasking interface bus. The DFT-based algorithm as well as data transfer tasks are 

written and implemented in the C programming language. The performance of the 

PMU prototype is evaluated against a commercial RPV311 Digital fault recorder and 

PMU manufactured by General Electric. The test results of the PMU prototype during 

nominal and off-nominal conditions closely match the corresponding measurements 

produced by the RPV311. This study demonstrates the prospect of augmenting PMU 

functionality to existing smart grid infrastructure at a relatively low cost.  

A study conducted by Da Silva et al. (2022) presents the investigation and 

development of a  low-cost real-time PMU research prototype intended for the 

measurement of dynamic signals. The prototype employs the Taylor Fourier Transform 

(TFT) algorithm implemented on a Beaglebone Black development platform for 

computing the estimated phasor parameters. The Beaglebone Black consists of an 

ARM Cortex-A8 processor running a Linux operating system, and accompanied by two 

programmable real-time units (PRUs). Signal acquisition is achieved by interfacing 

with the AD7606-F4 16-Bit Data Acquisition System by Analog Devices, which is 

responsible for digitising the input analog signal. In this study, the verification of the 

PMU prototype is achieved by conducting a selection of dynamic tests facilitated 

through the Fluke 6135A/PMUCAL test equipment. The test results are within the 

maximum limits for compliance with the IEEE C37.118 standard and hereby validates 

the hardware platform as a viable option as a PMU prototype in a research 

environment.  

A recent study conducted by Artale et al. (2023) investigates the use of a 

microcontroller for the measurement and analysis of harmonics in non-stationary 

signals for smart grid environments. The study is carried out by implementing a chirp-

Z transform (CZT) algorithm on a STM32H723ZG Nucleo development board and 

assesses it’s performance and accuracy when subjected to different non-linear load 

conditions. The measurement results are evaluated and compared against the same 

algorithm and test conditions implemented in a LabVIEW environment. The results 

indicated maximum percentage errors below 1.5%  and a high spectral resolution, 

hereby validating and confirming the feasibility of the proposed solution.  

2.8 Discussion 

The following discussion highlights key findings obtained from this literature review on 

phasor estimation techniques and algorithms. This includes various PMU 

implementations based on the performance class, as well as the tools and hardware 

platforms utilised in development. 
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The traditional DFT and its variants remain a popular choice among PMU developers 

and researchers, due to their low computational complexity. However, these methods 

suffer in the presence of off-nominal frequency, out-of-band interference, and dynamic 

conditions. Many improvements to the DFT as a phasor estimator have been proposed 

to compensate for these limitations, one of which is the IpDFT, found in a number of 

recent studies. Another popular choice is the TFT-based methods, which rely on time-

domain sine-fitting techniques. These are based on a dynamic phasor model and 

demonstrate excellent performance in both static and dynamic conditions. Although 

this method possesses a high computational complexity, this is no longer an issue with 

the advancement of processing hardware. The research and development of a P and 

M class PMU design is also observed. In this design, a TFT-WLS method is utilised, 

and successfully demonstrates its ability to meet P and M class compliant 

measurements simultaneously. 

Several methods and approaches for implementing  phasor measurements onboard 

an embedded hardware platform are presented. The selected hardware platforms in 

these research projects consists of a variety of development boards such as the 

Raspberry Pi, BeagleBone, CompactRio and STM32 Nucleo board. These 

development boards are based on different architectures which employ either FPGAs, 

microprocessors or microcontrollers as their central processing units for executing 

tasks and performing the phasor estimation computations. Signal acquisition is 

achieved through sampling on an onboard ADC or interfacing with an external ADC 

data acquisition module. The implementation of the phasor estimation algorithm on the 

hardware platform is largely dependent on the development process and workflow 

associated with the specific type of hardware and processing technology, as well as 

the semiconductor manufacturer. In the research papers we see development tools 

such as Xilinx Vivado, Simulink and LabVIEW being used for FPGA development in 

HDL, while microprocessor and microcontroller development is carried out in MATLAB, 

C and Python programming languages using a range of suitable vendor or third-party 

integrated development environments (IDE).  The phasor estimation algorithms 

employed in these research projects include the Discrete Fourier transform (DFT), 

iterative-Interpolated DFT (i-IpDFT), Taylor Fourier transform (TFT) and Chirp-Z 

transform (CZT). Each method is targeted for certain types of signal conditions and 

presents its own unique performance and computational complexity. The accuracy and  

performance of the measurements produced by the developed PMU prototypes are 

assessed according to the IEEE C37.118 standard using various test methods and test 
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equipment. Overall, the IpDFT-based and TFT-based algorithms have shown to be a 

popular choice as a phasor estimator among researchers. 

Based on the information obtained in this literature review, the TFT method was 

selected as the dedicated phasor estimation algorithm for computing the phasor 

parameters in this research study. The TFT algorithm is built upon the dynamic phasor 

model and offers good performance and accuracy in estimating dynamic signals 

commonly found in power grids. It is envisaged to employ a one-cycle TFT algorithm 

for performing the P class measurements, and a two-cycle TFT algorithm designated 

for M class measurements. This design scheme will be used in the development of the 

selectable PMU prototype. The selection of the hardware platform is provided in 

Chapter Five.  

2.9 Conclusion 

This chapter consists of a literature review which provides an overview of 

synchrophasor measurements with its regulatory standards, synchrophasor estimation 

algorithms and techniques presented in research papers, and the practical 

development implementation thereof on suitable hardware platforms. The fundamental 

concepts and principles of synchrophasor estimation for power systems are presented 

as per the IEEE C37.118 standard. Synchrophasor estimation algorithms based on 

time domain and frequency domain phasor methods, as well as performance class are 

introduced. Several papers presenting various phasor estimation algorithms based on 

these techniques are reviewed, highlighting their performance and compliance 

according to the IEEE C37.118 specification. The practical application of these 

algorithms is observed, identifying the types of hardware platforms utilised, as well as 

the methods and software tools employed to achieve this goal.  The information 

gathered in this literature review will assist in the selection of an appropriate 

synchrophasor estimation algorithm and a hardware platform. In the following Chapter 

Three, the theoretical principles of phasor measurement and the mathematical 

underpinnings of phasor estimation algorithms are presented. 
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 CHAPTER THREE 
THEORY 

3.1 Introduction 

This chapter aims to provide a theoretical foundation of the fundamental principles and 

concepts concerning the phasor estimation and measurement of sinusoidal signals. 

The underlying mathematical theory and relevant equations supporting this research 

is presented. The representation of sinusoidal signals as phasors remains a core 

principle in the field of phasor estimation. In this chapter, we explore this concept 

applied as static and dynamic signal models and illustrate it’s usage in the parameter 

estimation of AC sinusoidal signals. A technique provided in the IEEE C37.118.1-2011 

standard for evaluating the performance and accuracy of phasor measurements is 

discussed, highlighting the key performance indicators and associated equations 

required for calculating these values.  As previously indicated in the literature review 

of Chapter Two, the survey of the various phasor estimation techniques led to the 

selection of the TFT algorithm as the favourable phasor estimation method for 

extracting the phasor parameters from the input signal. This renders the TFT algorithm 

as an important and central topic within this research project. As the TFT algorithm 

falls within the time domain category of phasor estimation algorithms, the related 

theoretical concepts of least squares sinusoidal curve fitting, Taylor series expansion 

and matrix algebra are presented. All these concepts form part of the underpinnings of 

the TFT algorithm and are essential in understanding the fundamental operation of this 

phasor estimation method. 

3.2 Introduction to the Phasor 

The concept of the phasor was first conceived in 1893 by Charles Proteus Steinmetz 

who proposed a method of representing a steady-state sinusoidal signal by a constant 

complex quantity (Steinmetz, 1894). This approach allowed for easier calculations of 

AC voltage, current and power through the use of complex algebra. This consequently 

simplified the analysis of AC circuits. Until today this is regarded as the standard 

method of representing and analysing AC power systems.  

A phasor is defined as a complex-valued vector rotating in the complex plane, and can 

also be viewed as a complex exponential signal. The complex value in polar form 

indicates the amplitude and phase angle of the sinusoidal AC voltage or current. In 

Figure 3.1, a phasor diagram of a complex phasor A and B is illustrated rotating 

counter-clockwise in the complex plane. The magnitude of the phasor A is indicated 
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by the symbol |A|, the corresponding phase angle is represented by 𝜗, and ω is the 

angular velocity. 

 

Figure 3.1: A phasor diagram of two phasors rotating in the complex plane (Mitolo, 
2009) 

In the following section, the mathematical relationship between the sinusoidal function 

and the phasor is examined. 

 

3.3 Static Signal Model and Phasor Representation 

In AC power systems, a steady-state electrical waveform can be represented by a 

sinusoidal signal expressed by the following trigonometric equation: 

𝑥(𝑡) = 𝑋𝑚 𝑐𝑜𝑠(𝜔𝑡 + 𝜑) = 𝑋𝑚 𝑐𝑜𝑠(2𝜋𝑓𝑡 + 𝜑) (3.1) 

 

where 𝑋𝑚 is the peak amplitude of the signal, 𝜑 is the phase angle, 𝜔 is the angular 

system frequency, and 𝑓 is the nominal system frequency. For this model, the 

amplitude and phase angle remain constant over the observation interval. To allow for 

analysis of the electrical waveform, the sinusoidal signal is represented as a phasor, 

containing the magnitude and phase angle of the signal. By using Eulers identity, a 

sinusoidal signal can be represented as a phasor, by taking the real component of the 

complex vector. The relationship between the time domain sinusoidal signal and 

phasor representation is shown in the following Equation (3.2) and Equation (3.3): 

𝑥(𝑡) = 𝑅𝑒{𝑋𝑚𝑒
𝑗(𝜔𝑡+𝜑)} =  𝑅𝑒{(𝑒𝑗𝜔𝑡)𝑋𝑚𝑒

𝑗𝜑} =  𝑅𝑒{𝑋𝑚𝑒
𝑗𝜑} (3.2) 
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where 𝑋𝑚 is the peak amplitude and 𝜑 is the phase angle of the signal. The time factor 

term 𝑒𝑗𝜔𝑡 in Equation (3.2) is suppressed when moving from time to phasor domain, 

however it should be noted that 𝜔 represents the angular frequency of the signal.  

Following from Equation (3.2), the signal 𝑥(𝑡), can be expressed by the phasor 

representation as shown in Equation (3.3).  

𝑥(𝑡) ↔ 𝑋 = (
𝑋𝑚

√2
⁄ )𝑒𝑗𝜑 = (

𝑋𝑚
√2
⁄ ) (cos𝜑 + 𝑗 sin𝜑) = 𝑋𝑟 + 𝑗𝑋𝑖  

(3.3) 

 

where 𝑋 denotes the phasor representation in complex form, 
𝑋𝑚

√2
⁄  is  the root-mean-

square value and magnitude of the signal, and  𝑋𝑟 and 𝑋𝑖 are the real and imaginary 

components of the complex value in rectangular form. This aforementioned phasor 

representation is based on the static phasor model, and  assumes a stationary signal 

with a constant amplitude, phase angle and frequency. In section 3.4 it is discussed 

how this model is adapted to accommodate for dynamic signals. 

3.4 Dynamic Signal Model and Phasor Representation 

The traditional signal model for the steady-state signal shown in Equation (3.1) 

assumes a constant amplitude, phase angle and frequency across the entire 

observation interval. To accommodate for the analysis of transient and dynamic 

behaviour presented by modern power systems, a dynamic phasor model is required. 

The dynamic phasor provides an enhancement to the static phasor model whereby the 

phasor parameters are considered as varying quantities. To represent the dynamic 

behaviour of signals present in modern power systems more accurately, a modulated 

signal or band pass signal is employed and expressed as 

𝑥(𝑡) = 𝑋𝑚𝑔 (𝑡)𝑐𝑜𝑠(𝜔𝑡 + 𝜑(𝑡)) (3.4) 

 
 

where 𝑋𝑚𝑔(𝑡)  is the time-varying amplitude of the dynamic signal, 𝜑(𝑡) is the time-

varying phase angle, and 𝜔 = 2𝜋𝑓 is the angular system frequency. Similarly to static 

signals, a dynamic signal can also be represented in phasor form, and is expressed 

by the following Equation (3.5): 

𝑋(𝑡) = (
𝑋𝑚𝑔(𝑡)

√2
⁄ )𝑒𝑗𝜑(𝑡) (3.5) 
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where 𝑋(𝑡) represents the complex-valued phasor of the dynamic signal, and 𝑋𝑚𝑔(𝑡) 

and 𝜑(𝑡) is the varying amplitude and phase angle respectively. The steady-state and 

dynamic phasor models are the fundamental concepts for analysing electrical 

waveforms. All phasor estimation techniques and methods rely on these two models.  

3.5 The Synchrophasor 

The synchronous phasor, or more commonly referred to as the synchrophasor, is 

based on the same concept of a phasor as discussed in the previous section, however 

each measurement is synchronised to a common time source. In the case of PMUs, 

the Coordinated Universal Time (UTC) is taken as the absolute time reference and is 

obtained from systems such as GPS which broadcast the time information. Each 

measurement obtained from PMUs located in different regions across the power grid 

are synchronised and time-tagged according to UTC, allowing the measurements to 

provide a better overall view of the condition and state of the power grid. The 

magnitude and phase angle of the synchrophasor is expressed with reference to a 

cosine function at the nominal system frequency. This implies a sampled signal with a 

maximum value occurring at t=0 corresponds to a zero degree phase angle, and 

likewise, a positive zero-crossing occurring at t=0 indicates a phase angle of -90 

degrees. A plot and phasor representation of a signal with a phase angle of zero 

degrees and -90 degrees is provided in the IEEE C37.118.1-2011standard and shown 

in Figure 3.2. 

 
Figure 3.2: An illustration of a signal and phasor at a phase angle of zero degrees and -

90 degrees (IEEE, 2011a) 
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3.6 Frequency Estimation and ROCOF 

Traditionally, the phasor representation of a sinusoidal signal consisted solely of an 

amplitude and phase angle quantity. Two additional signal parameters are now 

included in the analysis of modern day power systems. These are the frequency and 

ROCOF quantities. The importance of these two parameters in AC analysis led to their 

definitions and requirements being included in the IEEE C37.118 standard (IEEE, 

2011a). In the IEEE C37.118 standard, the frequency is defined as a time-varying 

quantity based upon the concept of instantaneous frequency. This model corresponds 

to the behaviour of power systems which often experiences frequency variations and 

fluctuations. Consider the sinusoidal signal in Equation (3.1) being rewritten as 

𝑥(𝑡) = 𝑋𝑚 𝑐𝑜𝑠(𝜓(𝑡)) (3.6) 

 

where the cosine argument 𝜓(𝑡) denotes the instantaneous phase angle of the 

sinusoidal signal. The instantaneous frequency is expressed as the first derivative of 

the instantaneous phase angle, and is given by 

𝑓(𝑡) =
1

2𝜋

𝑑𝜓(𝑡)

𝑑𝑡
 

 

(3.7) 

where 𝑓(𝑡) is the instantaneous frequency and 𝜓(𝑡) is the instantaneous phase angle. 

Following from Equation (3.7), the ROCOF, measured in Hz/s, can be expressed as 

the first derivative of the frequency, or the second derivative of the instantaneous 

phase angle, and is given by 

𝑅𝑂𝐶𝑂𝐹(𝑡) =
1

2𝜋

𝑑𝑓(𝑡)

𝑑𝑡
=
1

2𝜋

𝑑2𝜓(𝑡)

𝑑𝑡2
 

 

(3.8) 

From Equation (3.6), the argument of the cosine, 𝜓(𝑡), can be expanded further, and 

expressed as 

𝜓(𝑡) = 𝜔𝑜𝑡 + 𝜑(𝑡) 

𝜓(𝑡) = 2𝜋𝑓𝑜𝑡 + 𝜑(𝑡) 

𝜓(𝑡) = 2𝜋[𝑓𝑜𝑡 + 𝜑(𝑡) 2𝜋⁄ ] 

𝜓(𝑡) = 2𝜋[𝑓𝑜𝑡 + 𝜑(𝑡)] 

 

 

 

 

(3.9) 
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By substituting Equation (3.9) into Equation (3.7), the following new equation for the 

frequency is produced: 

𝑓(𝑡) =
1

2𝜋

𝑑

𝑑𝑡
2𝜋[𝑓𝑜𝑡 + 𝜑(𝑡)] 

𝑓(𝑡) = 𝑓𝑜 +
1

2𝜋

𝑑𝜑(𝑡)

𝑑𝑡
 

𝑓(𝑡) = 𝑓𝑜 +
1

2𝜋
+ ∆𝑓(𝑡) 

 

 

 

(3.10) 

where ∆𝑓(𝑡) is the frequency of deviation from nominal. In Equation (3.10) it is shown 

that the frequency of deviation is obtained from the first derivative of the phase angle, 

and that when summed with the fundamental frequency, produces the instantaneous 

frequency. Similarly, the ROCOF is now expressed as the second derivative of the 

phase angle, and is given by 

  

𝑅𝑂𝐶𝑂𝐹(𝑡) =
1

2𝜋

𝑑∆𝑓(𝑡)

𝑑𝑡
=
1

2𝜋

𝑑2𝜑(𝑡)

𝑑𝑡2
 

 

(3.11) 

The aforementioned principles and equations are significant as they are used in the 

TFT algorithm for determining the frequency and ROCOF of the input signal.  

3.7 Measurement Evaluation 

In the literature review, the performance indicators provided by the IEEE C37.118.1-

2011 standard are introduced for evaluating and benchmarking phasor measurements. 

This consists of the TVE, FE and RFE. In the following section, the method for 

calculating these performance values and the equations involved are discussed. 

3.7.1 Total Vector Error 

An important factor in phasor measurement is the evaluation of the measured result 

for determining the performance, quality and accuracy of the phasor estimation. The 

IEEE C37.118.1-2011 standard provides a set of criteria and test procedures for bench 

marking the phasor measurement. The measurements are evaluated for different test 

cases and are based on a performance index called the Total Vector Error (TVE). The 

TVE is expressed as a percentage, indicating the vectorial difference between the true  

actual value and the measured or estimated value at a given point in time, and is given 

by 
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𝑇𝑉𝐸(𝑛) =
|𝑋̂ − 𝑋|

|𝑋|
 

(3.12) 

 

where 𝑋̂ is the estimated phasor value and 𝑋 is the actual phasor value.  

A combination of the errors present in the measured amplitude, phase angle and 

timing, all influence and contribute collectively to a single TVE value. The IEEE 

C37.118.1-2011 standard provides the following equation for calculating the TVE: 

𝑇𝑉𝐸(𝑛) = √
(𝑋̂𝑟(𝑛) − 𝑋𝑟(𝑛))

2 + (𝑋𝑖̂(𝑛) − 𝑋𝑖(𝑛))
2

((𝑋𝑟(𝑛))
2 + ((𝑋𝑖(𝑛))

2
 

(3.13) 

 

where 𝑋̂𝑟(𝑛) and 𝑋𝑖̂(𝑛) denotes the real and imaginary components of the estimated 

phasor in rectangular form, and 𝑋𝑟(𝑛) and 𝑋𝑖(𝑛) are the real and imaginary 

components of the actual or reference phasor. For most test cases, the TVE is required 

to be below 1% in order to meet compliance with the standard. To put this into 

perspective, a single magnitude error of 1% or a single phase error of 0.573° will 

produce a TVE value of 1%. In Figure 3.3, a phasor representation of a reference 

phasor is shown, along with the TVE region represented by a circle illustrating the 

maximum allowable magnitude and phase errors for meeting the 1% TVE limit. For 50 

Hz systems, any timing error of 31.8us  will also incur an error of 1%. This illustrates 

the high degree of accuracy and precision required to meet the IEEE C37.118.1-2011 

standard compliance requirements. In Chapter Four and Six, the TVE is used 

extensively in the evaluation of the simulation and experimental test results. 
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Figure 3.3: The TVE criterion for magnitude and phase angle errors illustrated in a 
phasor diagram (IEEE, 2011a) 

 

3.7.2 Frequency Error and ROCOF Error 

For measurement evaluation, two additional performance indices are provided by the 

IEEE C37.118.1-2011 standard, namely the frequency measurement error (FE) and 

the ROCOF measurement error (RFE). As the name suggests, these values provide 

an indication of the accuracy and quality of the estimated frequency and ROCOF 

measurement. The FE is defined as the absolute value of  the difference between the 

actual frequency of the signal and the estimated or measured frequency. The FE is 

given in Hz and expressed as 

𝐹𝐸 = |𝑓𝑡𝑟𝑢𝑒 − 𝑓𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑| (3.14) 

 

Similarly, the RFE is specified as the absolute value of the difference between the 

actual ROCOF and the measured ROCOF given in Hz/s and expressed as 

𝑅𝐹𝐸 = |𝑅𝐹𝐸𝑡𝑟𝑢𝑒 − 𝑅𝐹𝐸𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑| = (
𝑑𝑓

𝑑𝑡
)𝑡𝑟𝑢𝑒 − (

𝑑𝑓

𝑑𝑡
)𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 

(3.15) 

 

These equations are significant as they are used to evaluate the frequency estimation 

in the MATLAB simulations and experimental testing presented in Chapter Four and 

Six. 
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3.8 Least Squares Sine Fitting 

In Chapter Two, a survey of several methods for phasor estimation are conducted. 

These are broadly categorised into time-domain and frequency domain algorithms. As 

time domain algorithms are largely based on curve-fitting techniques, the following 

introduces the trivial least squares sine-fitting algorithm to illustrate the basic principles 

and fundamentals of estimating signal parameters with time-domain algorithms. 

Curve-fitting techniques operate by fitting the measured or sampled signal values to a 

given sinusoidal function, then estimates the parameters of the waveform. The 

simplest type of sine fitting algorithm makes use of the least squares method which 

minimizes the sum of the squared differences between the measured and fitted 

waveform, and is given by 

𝑆𝑆𝐸 =∑(𝑒𝑖)
2

𝑛

𝑖=1

  
(3.16) 

 

where 𝑆𝑆𝐸 denotes the sum of squares error, and 𝑒 is the difference between the 

measured value and predicted value. 

The IEEE 1057 Standard for Digitizing Waveform Recorders provides a standardised 

three parameter Sine fitting least squares algorithm for estimating three signal 

parameters using matrix operations (IEEE, 2018). The predefined mathematical 

function  representing the sinusoidal signal for fitting the data to is expressed as 

𝑥(𝑡) = 𝑋𝑚 𝑐𝑜𝑠(𝜔𝑡 + 𝜑) + 𝐶 (3.17) 

 

where the three parameters of interest are the amplitude 𝑋𝑚, phase angle 𝜑, and  DC 

offset 𝐶. By using the trigonometric angle sum identity, Equation (3.17) can be 

expanded to 

𝑥(𝑡) = 𝑋𝑚𝑐𝑜𝑠𝜑 ∙ 𝑐𝑜𝑠𝜔𝑡 − 𝑋𝑚𝑠𝑖𝑛𝜑 ∙ 𝑠𝑖𝑛𝜔𝑡 + 𝐶 (3.18) 

 

To solve for the three parameters of interest, Equation (3.18) is represented in the 

matrix form as follows: 

𝐵 = 𝐴𝑋 
(3.19) 
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(

 
 

𝑥(0)

𝑥(1)

𝑥(2)
⋮

𝑥(𝑁 − 1))

 
 
=

(

  
 

𝑐𝑜𝑠𝜔(0)
𝑐𝑜𝑠𝜔(1)
𝑐𝑜𝑠𝜔(2)

⋮
𝑐𝑜𝑠𝜔(𝑁− 1)     

−𝑠𝑖𝑛𝜔(0)
−𝑠𝑖𝑛𝜔(1)
−𝑠𝑖𝑛𝜔(2)

⋮
−𝑠𝑖𝑛𝜔(𝑁− 1)    

1
1
1
⋮
1)

  
 
∙ (
𝑋𝑚𝑐𝑜𝑠𝜑
−𝑋𝑚𝑠𝑖𝑛𝜑

𝐶

) 

 

 

where 𝐵 is a vector of the signal samples, 𝐴 is a matrix containing components of the 

signal model,  and 𝑋 is the vector of unknown coefficients. The least squares solution 

to the matrix is expressed as: 

𝑋 = [𝐴𝑇𝐴]−1𝐴𝑇𝑋 (3.20) 

 

where 𝐴𝑇 is the transpose of matrix 𝐴. The pseudo-inverse [𝐴𝑇𝐴]−1𝐴𝑇 is used for 

overdetermined systems where the number of equations exceeds the number of 

unknowns, rendering matrix 𝐴 non-invertible. Finally, the signal amplitude 𝑋𝑚, and 

phase angle 𝜑 can be determined by the following equations: 

𝑋𝑚 = √(𝑋𝑚𝑐𝑜𝑠𝜑)
2 + (𝑋𝑚𝑠𝑖𝑛𝜑)

2 (3.21) 

𝜑 = 𝑡𝑎𝑛−1 (
𝑋𝑚sin𝜑

𝑋𝑚𝑐𝑜𝑠𝜑
) 

(3.22) 

 

This method demonstrates the basic process followed for estimating and extracting 

the signal parameters using a time domain technique. Several other phasor estimation 

algorithms have been developed in this field and are all based on this method, however 

these contain variations such as employing different signal models and functions. The 

following section discusses how these signal models and functions are approximated 

using a well-known mathematical technique.  

3.9 Taylor Series Approximation 

The Taylor series approximation is an important concept used in phasor estimation to 

approximate the value of any type of signal as a function, especially in cases where it 

is difficult to compute directly. The approximation is formulated by an infinite sum of 

terms that represents the function at a given point. The series of terms consists of the 

function itself as well as it’s  derivatives. The Taylor series expansion can be truncated 

at any finite number of terms, with a higher-order series resulting in an improved 

accuracy, but more terms to compute. Typically this will involve a trade-off between 
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the accuracy required and computational resources available. The equations for the 

Tayor series is given by    

𝑓(𝑥) = ∑
𝑓(𝑛)(𝑎)

𝑛!
(𝑥 − 𝑎)𝑛

∞

𝑛=0

 
  

𝑓(𝑥) = 𝑓(𝑎) +
𝑓′(𝑎)

1!
(𝑥 − 𝑎) +

𝑓′′(𝑎)

2!
(𝑥 − 𝑎)2 +

𝑓′′′(𝑎)

3!
(𝑥 − 𝑎)3 +⋯ 

(3.23) 

 

where 𝑓(𝑥) is the function to approximate, 𝑎 is the point where 𝑓(𝑥) is evaluated at, 

and 𝑛 is the number of terms or  the order of the Taylor series. The term 
𝑓(𝑛)(𝑎)

𝑛!
  is also 

commonly referred to as the Taylor coefficients. The next section illustrates how the 

Taylor series approximation is incorporated in a phasor estimation algorithm and 

utilised in this research project.  

3.10 TFT Algorithm 

In the Chapter Two literature review, the TFT algorithm is selected as the phasor 

estimation method for extracting the phasor parameters of a dynamic signal. In this 

section the theoretical principles of the TFT algorithm for performing the phasor 

estimation are explored and discussed. 

The Taylor Fourier Transform was initially proposed by de la O Serna and is based on 

the dynamic phasor model for estimating signals that possess time varying amplitudes, 

phase angles, and frequencies (de la O Serna, 2006; de la O Serna, 2007). The TFT 

is based intrinsically on a dynamic signal model composed of a modulated sinusoidal 

or bandpass signal as previously shown in Equation (3.4). By applying Eulers identity 

to Equation (3.4), and substituting the cosine function, the bandpass signal can be 

manipulated and expressed as a complex exponential given by 

𝑥(𝑡) =
1

2
[𝑎(𝑡)𝑒𝑗𝜔𝑡𝑒𝑗𝜑(𝑡) + 𝑎(𝑡)𝑒−𝑗𝜔𝑡𝑒−𝑗𝜑(𝑡)]  

𝑥(𝑡) =
1

2
[𝑝(𝑡)𝑒𝑗𝜔𝑡 + 𝑝(𝑡)∗𝑒−𝑗𝜔𝑡]    

𝑥(𝑡) = 𝑅𝑒{𝑝(𝑡)𝑒𝑗𝜔𝑡  }  

 

(3.24) 

where the real component of the complex exponential represents the signal 𝑥(𝑡), and  

𝑝(𝑡) = 𝑎(𝑡)𝑒𝑗𝜑(𝑡) is the complex envelope of the band -pass signal, with 𝑎(𝑡)  and 𝜑(𝑡) 

being the amplitude and phase angle modulations acting upon the signal. The complex 

envelope is also commonly referred to as the dynamic phasor, and is approximated by 
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a kth order Taylor series expansion about the center of the observation interval. From 

Equation (3.24), the dynamic phasor 𝑝(𝑡) is approximated at 𝑡=0 and is represented 

by the following Taylor polynomial: 

𝑝(𝑡) = 𝑝0 + 𝑝1𝑡 + 𝑝2𝑡
2 +⋯+ 𝑝𝑘𝑡

𝑘   
(3.25) 

  

where the Taylor series coefficients  (𝑝0, 𝑝1, 𝑝2, , 𝑝𝑘) are the derivatives of the dynamic 

phasor at the center of the observation interval. Higher order Taylor series polynomials 

produce more accurate approximations, however the increasing number of terms is 

computationally expensive, and a trade-off between accuracy and computational 

complexity needs to be made. When utilizing a zeroth-order Taylor approximation, 

static phasor estimates are produced which are inadequate for estimating dynamic 

signals . A second-order Taylor approximation is a suitable choice as it offers a good 

balance between accuracy and computational complexity and is used in (de la O 

Serna, 2007). With a second-order Taylor polynomial now approximating the complex 

envelope, Equation (3.24) can be expanded to 

𝑥(𝑡) =
1

2
[(𝑝0 + 𝑝1𝑡 + 𝑝2𝑡

2)𝑒𝑗𝜔𝑡 + (𝑝0
∗ + 𝑝1

∗𝑡 + 𝑝2
∗𝑡2)𝑒−𝑗𝜔𝑡]   (3.26) 

 

where 𝑝0, 𝑝1, 𝑝2 are the second-order Taylor coefficients and 𝑝0
∗, 𝑝1

∗, 𝑝2
∗ are the 

respective conjugates. By sampling the continuous signal 𝑥(𝑡) at a constant sampling 

interval 𝑇𝑠 and renaming it to 𝑠(𝑛), a sequence of values are produced representing 

the equivalent discrete signal and is expressed as  

𝑠(𝑛) =
1

2
[(𝑝0 + 𝑝1𝑛𝑇𝑠 + 𝑝2𝑛

2𝑇𝑠)𝑒
𝑗𝜔𝑛𝑇𝑠 + (𝑝0

∗ + 𝑝1
∗𝑛𝑇𝑠 + 𝑝2

∗𝑛2𝑇𝑠)𝑒
−𝑗𝜔𝑛𝑇𝑠]   (3.27) 

 

From Equation (3.27), a system of linear equations are represented in matrix format 

for solving the coefficients by least squares method, and is shown in the following 

Equation (3.28) 

(

 
 
 
 

𝑠(0)
⋮

𝑠(𝑁ℎ)
⋮

𝑠(𝑛)
⋮

𝑠(𝑁 − 1))

 
 
 
 

=

(

 
 
 
 

𝑁ℎ
2𝑒𝑗𝑁ℎ𝜔

⋮
0
⋮

𝑛2𝑒−𝑗𝑛𝜔

⋮
𝑁ℎ
2𝑒−𝑗𝑁ℎ𝜔 

−𝑁ℎ𝑒
𝑗𝑁ℎ𝜔

⋮
0
⋮

𝑛𝑒−𝑗𝑛𝜔

⋮
𝑁ℎ𝑒

−𝑗𝑁ℎ𝜔  

𝑒𝑗𝑁ℎ𝜔

⋮
1
⋮

𝑒−𝑗𝑛𝜔

⋮
𝑒−𝑗𝑁ℎ𝜔 

𝑒−𝑗𝑁ℎ𝜔 
⋮
1
⋮

𝑒𝑗𝑛𝜔

⋮
𝑒𝑗𝑁ℎ𝜔

−𝑁ℎ𝑒
−𝑗𝑁ℎ𝜔  
⋮
0
⋮

𝑛𝑒𝑗𝑛𝜔

⋮
𝑁ℎ𝑒

𝑗𝑁ℎ𝜔

𝑁ℎ
2𝑒−𝑗𝑁ℎ𝜔

⋮
0
⋮

𝑛2𝑒𝑗𝑛𝜔

⋮
𝑁ℎ
2𝑒𝑗𝑁ℎ𝜔 )

 
 
 
 
1

2

(

 
 
 

𝑝2
𝑝1
𝑝0
𝑝0
∗

𝑝1
∗

𝑝2
∗)

 
 
 

 

(3.28) 
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where 𝑁 is the number of samples of the discrete signal 𝑠(𝑛), and 𝑁ℎ denotes the 

middle sample of the observation window, such that 𝑁 = 2𝑁ℎ + 1. This ensures 𝑁 is 

always even. The observation window can be chosen to contain either a portion or 

multiple cycles of the input signal. The number of cycles employed in the calculation is 

usually appended to the name of the phasor estimation algorithm.   For a second-order 

Taylor approximation, Equation (3.28) can be expressed by the matrix equation 

 𝑺 = 𝑩(𝟐) ∙ 𝑷(𝟐) (3.29) 

 

where 𝑺 is a vector of samples of the input signal, 𝑩(𝟐)  is a matrix with column vectors 

of the form 𝑛2𝑒𝑗𝑛𝜔, 𝑛𝑒𝑗𝑛𝜔 , 𝑒𝑗𝑛𝜔  and their complex conjugates, and 𝑷(𝟐) is a vector 

containing the Taylor coefficients and their complex conjugates (de la O Serna, 2006). 

The phasor estimates are obtained by determining the Taylor coefficients by least 

squares method, and is given by the equation 

𝑷̂ = (𝑩𝑯 ∙ 𝑩)−𝟏 ∙ 𝑩𝑯 ∙ 𝑺 (3.30) 

 

where 𝑷̂ is the phasor estimate and 𝑯 is the Hermitian transpose operator. It should 

be noted here that when computing the least squares solution of an overdetermined 

system, the pseudoinverse matrix (𝑩𝑯 ∙ 𝑩)−𝟏 ∙ 𝑩𝑯) is required, as 𝑩 is non-invertable.  

The solution produces the estimated coefficients representing the first three terms of 

the second-order Taylor approximation and contains essential information, such as the 

speed and acceleration of the dynamic phasor. With these coefficients (𝑝0, 𝑝1, 𝑝2) the 

amplitude, phase angle, and their derivatives can be determined, and are given by the 

following equations: 

𝑎̂(𝑡) = 2|𝑝̂0| 

𝜑̂(𝑡) =  ∠𝑝̂0 

𝑎̂′(𝑡) = 2𝑅𝑒{𝑝̂1𝑒
−𝑗𝜑̂(𝑡)} 

𝜑̂′(𝑡) =  
2

𝑎̂(𝑡)
𝐼𝑚{𝑝̂1𝑒

−𝑗𝜑̂(𝑡)} 

𝑎̂′′(𝑡) = 4𝑅𝑒{𝑝̂2𝑒
−𝑗𝜑̂(𝑡)} + 𝑎̂(𝑡)[𝜑̂′(𝑡)]2 

𝜑̂′′(𝑡) =
4𝐼𝑚{𝑝̂2𝑒

−𝑗𝜑̂(𝑡)} − 2𝑎̂′(𝑡)𝜑̂′(𝑡)

𝑎̂(𝑡)
 

 

 

 

 

 

 

(3.31) 
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When utilising the TFT algorithm for phasor estimation applications, the equations in 

(3.31) are used to determine the phasor parameters of the input signal. It should be 

noted that when employing a zero-order model only the amplitude and phase angle 

values are produced, whereas a second-order model includes the first and second 

derivative of the amplitude and phase angle. For a typical phasor estimation 

application, 𝑎̂(𝑡) and 𝜑̂(𝑡) correspond to the estimated amplitude and phase angle of 

the input signal. The first derivative of the phase angle 𝜑̂′(𝑡), produces the frequency 

deviation with reference to the fundamental and nominal frequency, while the second 

derivative 𝜑̂′′(𝑡) determines the ROCOF. The IEEE C37.118 standard states the 

frequency estimation can be reported as either the frequency deviation from nominal 

or the actual measured frequency. In this case the frequency deviation is estimated. 

The estimated frequency deviation and ROCOF are given by the following equations: 

𝐹𝐷̂ =
𝜑̂′(𝑡) 

2𝜋
 

(3.32) 

𝑅𝑂𝐶𝑂𝐹̂ =
𝜑′′(𝑡) 

2𝜋
 (3.33) 

 

where the first derivative and second derivative of the phase angle are divided by 2𝜋 

to obtain the frequency deviation 𝐹𝐷̂ and the rate of change of frequency 𝑅𝑂𝐶𝑂𝐹̂  

respectively. With the frequency of deviation now known and the nominal frequency of 

the power grid taken to be 50 Hz, the actual measured frequency of the signal can be 

determined. 

3.11 Variations of the TFT algorithm as a phasor estimator 

In the field of synchrophasor estimation and PMUs, several versions and 

implementations of the TFT algorithm have been developed for functioning as a phasor 

estimator. In this section a brief description of the zero-order two-cycle TFT, first-order 

two-cycle TFT, and second-order two-cycle TFT are introduced. Two-cycle refers to 

the amount of cycles of the input signal acquired and used in the TFT computation. 

The differences between the three aforementioned TFT versions mainly lies in the 

order of the Taylor polynomial for estimating the input signal. This determines the 

amount of terms used in the expression and has a direct bearing on the size of the 

coefficient matrix and the amount of computations taking place within the TFT 

algorithm. The computation time can be reduced by selecting a lower order Taylor 

polynomial, while a higher order will improve measurement accuracy for dynamic 

signals. The significance of the zero-order two-cycle TFT algorithm lies in the compact 
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size of the coefficient matrix utilised within the pseudo inverse matrix operation. In this 

method the Taylor polynomial expansion used in estimating the phasor is constrained 

to a single term. This minimizes the size of the coefficient matrix and hereby reduces 

the computation and processing time of the algorithm. As this method is based on a 

static signal model, the estimation is limited to amplitude and phase values only, and 

does not include rate of change and acceleration information about the signal. These 

values are calculated by the algorithm using the first two equations in (3.31). This 

method is suitable for the measurement of stationary signals that does not undergo 

any transients and oscillations. The remaining versions of the TFT algorithm are all 

based on the dynamic signal model which employ higher order terms in the Taylor 

polynomial.  These versions are appropriate for the measurement of power systems 

that exhibit variations in amplitude, phase angle and frequency. For the first-order two-

cycle TFT algorithm, the Taylor polynomial consists of the zero and first order terms. 

This increases the size of the coefficient matrix. This method utilises the first four 

equations in (3.31) to calculate the amplitude and phase angle of the input signal, 

including their first derivatives. The frequency deviation of the input signal can 

therefore also be determined. Finally the second-order two-cycle TFT algorithm 

consists of a Taylor polynomial composed of the zero, first, and second order terms. 

This method is an improvement to the previous but employs all six equations in (3.31) 

and includes acceleration information for determining the ROCOF. 

3.12 Conclusion 

In this chapter, a theoretical foundation for this research project is established. The 

intent is to provide a comprehensive understanding of the fundamentals of phasor 

estimation and the operation of the TFT algorithm. These concepts are essential for 

the development and testing of the TFT algorithm in a MATLAB simulation 

environment, as well for implementing the algorithm on a hardware platform. The start 

of this chapter illustrates the relationship between sinusoidal signals and the dynamic 

phasor model. This forms the basis of the TFT algorithm which allows for dynamic 

signals of modern power systems to be estimated accurately and effectively. A 

description of the performance indices for evaluating the accuracy and performance of 

phasor measurements are provided along with the corresponding equations. This 

information is of considerable importance as it is used extensively in the simulation 

and experimental testing in Chapter Four and Chapter Six. The underlying principles 

of the TFT algorithm which include the least squares sine fitting, Taylor series 

approximation and matrix algebra are explored. Using these concepts, the 

mathematical operation of the TFT algorithm is presented, illustrating the method of 



42 
 

computing the phasor parameters of a sinusoidal signal. The specific equation for 

calculating the amplitude, phase angle, frequency and ROCOF are included. 

Mathematically, this computation process comprises primarily of matrix operations for 

determining the least squares solution of the Taylor coefficients representing the 

dynamic phasor. The next step in this research is to provide a software implementation 

of the TFT algorithm. In Chapter 4, the mathematical process of the TFT algorithm is 

implemented in MATLAB code and evaluated. Thereafter compliance test are 

conducted via simulation to verify and evaluate the accuracy and performance of the 

TFT algorithm.  
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 CHAPTER FOUR 
SIMULATIONS TESTS 

4.1 Introduction 

In this chapter, the primary objective is the verification and evaluation of the Taylor 

Fourier Transform (TFT) algorithm as a phasor estimator, as previously discussed in 

Chapter Three. This involves implementing and translating the TFT algorithm to 

MATLAB code for conducting functional and compliance tests by means of MATLAB 

simulations. The one-cycle and two-cycle second-order TFT algorithms are the specific 

algorithm versions developed, verified, and evaluated in the MATLAB simulation 

environment. The simulation tests consists of a functional test for verifying the basic 

operation of the TFT algorithm, and compliance tests for evaluating the measurement 

performance and accuracy in accordance with the IEEE C37.118.1-2011 standard. 

The compliance tests are adopted from the IEEE C37.118.1-2011 standard and 

include static and dynamic test conditions. A test description for each test is provided 

detailing the necessary test conditions, test procedure, requirements and the relevant 

equations for conducting the simulation tests. The test results are recorded and the 

associated TVE, FE, and RFE values are calculated to determine the performance and 

accuracy of the phasor and frequency estimation. These values are examined to 

determine whether they fall within the maximum allowable limits stipulated for 

compliance with the IEEE C37.118.1-2011 standard. The estimation results obtained 

for the one-cycle and two-cycle TFT algorithm are also assessed to determine which 

is compliant and appropriate for P class and M class measurements respectively.  

4.2 Development of TFT algorithm 

In this research project, the programming and numeric computer platform, MATLAB, 

was selected as the primary tool for the development and simulation of the TFT 

algorithm. The algorithm is developed in MATLABs high-level programming language 

and undergoes several simulation tests in order to verify its operation and evaluate its 

performance.  

As discussed in Chapter Three, the TFT algorithm is fundamentally based on a linear 

algebra operation for solving a system of linear equations, where the solution 

represents the phasor values of the input signal. A MATLAB implementation of the TFT 

algorithm for estimating the dynamic phasor is adopted from a research paper 

presented by Khodaparast and Khederzadeh (2015) which investigates the detection 

of faults during power swings. This particular MATLAB code was used as a foundation 

in the development of the TFT algorithm employed in this project.  
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In the following paragraph, a brief description of the developed MATLAB 

implementation of the TFT algorithm is discussed.  An accompanying flow diagram is 

presented in Figure 4.1 which visually illustrates the step-by-step process, logic and 

flow of the algorithm.   

 

Figure 4.1: Flow diagram of the MATLAB implementation of the TFT algorithm 

 

The algorithm commences by assigning values to the following input parameters 

required for the computation: 

• The nominal frequency of the input signal,  

• The number of samples per cycle,  

• A vector representing the discrete samples of the input signal.   

With these values provided, a column vector consisting of the discrete samples of the 

input signal, as well as a coefficient matrix are formulated.  These form part of the 

system of linear equations and are represented in MATLAB in the form of a matrix and 

vector equation. The Pseudo inverse method  is used to compute the best fit solution 

to the system of linear equations and thus determines the value of the phasor. 
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Consequently with this result, the phasor parameters of the input signal can be 

estimated by using the Equations in (3.31) presented in Chapter Three.  

4.3 Two-cycle and one-cycle second-order TFT algorithm 

The second-order two-cycle TFT is the primary MATLAB implementation of the TFT 

algorithm for this project. This version is based on a more accurate estimation, but will 

also introduce a longer computation time. By employing the second-order Taylor 

expansion of the dynamic phasor allows for the amplitude, phase angle, and their first 

and second derivatives to be estimated using all six equations in Equation (3.31). The 

first derivative of the phase angle corresponds to the difference between the 

fundamental frequency and the actual frequency of the input signal, while the second 

derivative corresponds to the rate of change of frequency (ROCOF). This version 

possesses the largest coefficient matrix due to the amount of terms in the  second-

order Taylor polynomial, and therefore requires the most computations to execute. 

Additionally a second-order one-cycle TFT is developed in MATLAB by reducing the 

observation interval to one cycle in order to speed up the latency of the measurement. 

In this method, only one cycle of the input signal is sampled and processed. A shorter 

observation interval and fewer samples to process results in a quicker and more 

responsive measurement, however this may result in a reduction in accuracy and 

sensitivity to unwanted frequency components. 

In Appendix A, the source code of the MATLAB implementation of the one-cycle and 

two-cycle TFT algorithm is provided.  

4.4 Functional testing of the TFT algorithm 

The phasor estimation algorithm is an essential component in the synchrophasor 

estimation process and therefore needs to be thoroughly verified. The functional 

testing forms part of the initial testing of the TFT algorithm. The main objective of the 

functional testing is to verify by simulation that the overall functionality of the developed 

TFT algorithm is operating correctly. In this section, the functional testing is conducted 

by carrying out simulation tests in MATLAB and examining the output results produced 

by the TFT algorithm for a given input. For the functional testing, only the second-order 

two-cycle TFT version is tested as this is based on the same principles and 

mathematical operations as the one-cycle TFT, and functions in a similar manner. The 

input data is a static sinusoidal signal based on Equation (3.1) provided in Chapter 

Three, and is generated in MATLAB with a given amplitude, phase angle, and 

frequency. This is applied to the input of the TFT algorithm for processing and 

computation. The observation window is taken across two cycles of the input signal, 
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resulting in 33 samples, and thus represents a sampling frequency of 800 Hz for a 50 

Hz input signal.  The output results of the TFT algorithm are examined to ensure that 

they match the corresponding values of the input signal, based on the specified 

amplitude, phase angle, and frequency. The functional testing is conducting using 

various values of amplitude, phase angle and frequency, to ensure the test 

encompasses a range of test values.  

An example of the input test signal is shown in Figure 4.2 and is based on a stationary 

cosine function expressed by Equation (3.1). In this instance, an amplitude of 2 and a 

phase angle of 0 radians is applied to the input signal and corresponds with the values 

indicated by Test 1 shown in Table 4.1. From Figure 4.2, the observation window of 

two cycles of the discrete input signal is illustrated and amounts to a total number of 

33 samples. 

 

Figure 4.2 Discrete input test signal based on a stationary cosine function 

4.4.1 Functional testing results 

The functional testing results of the TFT algorithm are recorded and presented in Table 

4.1. Based on these results, it is evident that the estimated amplitude, phase angle 

and frequency values computed by the TFT algorithm closely match the range of 

values applied to the input test signal. The results in Table 4.1 confirm and verify that 

the MATLAB implementation of the TFT algorithm performs successfully as a phasor 

estimator. It should be noted that an increasing error in the estimated phase angle is 

observed exclusively during off-nominal frequency conditions, especially for signal 

frequencies which deviate further from the nominal frequency of 50 Hz. This adverse 
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effect is addressed in section (4.7.1) by employing a phase angle compensation 

method which introduces an additional step in the phase angle estimation and hereby 

reduces the phase angle error caused by the off-nominal frequency.  

Table 4.1: Functional testing results of the TFT algorithm 

Test 

No. 

Input signal parameters Estimated signal parameters Pass/Fail 

Amplitude 

 

Phase Angle 

(radians) 

Frequency 

(Hz) 

Amplitude Phase 

Angle 

(radians) 

Frequency  

(Hz) 

1 

2 

3 

4 

5 

6 

7 

2 

5 

10 

1 

3 

4 

6 

-0 

-0.524(-π/6) 

-1.047(-π/3) 

-1.571(-π/2) 

-2.094(-2π/3) 

-2.618(-5π/6) 

-3.142(-π) 

50.0  

50.0  

50.0 

49.5  

50.5 

49.0 

51.0 

2 

5 

10 

1 

3 

4 

6 

0 

-0.5236 

-1.0472 

--1.6336 

-2.0316 

-2.7437 

-3.0159 

50.0 

50.0 

50.0 

49.5002 

50.4998 

49.0014 

50.9986 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

 

4.5 Overview of compliance testing  

In the previous test, the basic functionality of the TFT algorithm as a phasor estimator 

is tested and verified through computer simulation. This is followed by a compliance 

testing stage, which is a more rigorous and in-depth test for evaluating the performance 

and estimation accuracy of the TFT algorithm. This is significant as there are several 

phasor estimation methods and techniques employed in research and industry, each 

providing their own unique level of performance and accuracy. The performance of 

both one-cycle and two-cycle second-order TFT algorithms developed for this project 

are evaluated by conducting a series of compliance tests obtained from the IEEE 

C37.118.1-2011 standard. The compliance tests are also conducted by means of 

simulation in a MATLAB environment, and are carried out according to the test 

description, conditions and accompanying test signals defined in the IEEE C37.118.1-

2011standard. In this study, only specific tests relating to the performance and 

accuracy of the phasor estimation are considered. Lastly, the phasor estimation results 

are examined and evaluated according to the defined criteria stipulated in the IEEE 

C37.118.1-2011 standard. 

4.5.1 IEEE C37.118.1-2011 compliance testing 

The following section provides a description of the compliance tests stipulated in the 

IEEE C37.118.1-2011 standard. A set of requirements are specified for each test, 

which must be fulfilled in order to comply with the standard. This ensures that different 

phasor estimation methods and techniques all conform to a single industry standard. 

The requirements are categorised according to the performance class, with P class 

intended for protection applications requiring a fast response time, and  M class 
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measurements providing an improved accuracy. The compliance testing consists of 

test scenarios which present and exhibit both steady-state and dynamic conditions, 

however the IEEE C37.118.1-2011 standard does not specify any test scenarios 

relating to extreme dynamic changes or extreme fault conditions. The steady state and 

dynamic compliance tests are defined as two independent testing events, each 

conducted separately.  

4.5.2 Steady-state compliance tests 

The steady-state compliance tests are specifically intended for evaluating the 

measurement of signals that exhibit a constant amplitude, phase angle and frequency. 

Each test configures a specific influence quantity of the input signal, then assesses the 

estimated output by evaluating the resulting TVE, FE, and RFE values. The TVE, FE, 

and RFE values must fall within the maximum specified limits in order to comply with 

the standard. Table 4.2 and Table 4.3 provides the conditions and requirements of the 

steady-state compliance tests along with the influence quantities and error limits, 

where 𝐹𝑠 is the phasor reporting rate, 𝑓0 is the nominal system frequency and 𝑓𝑖𝑛 is the 

fundamental frequency of the input test signal. 

Table 4.2: Steady-state measurement requirements (IEEE, 2011a) 

Influence 
quantity 

Reference 
condition 

Minimum range of influence quantity over which PMU 
shall be within given TVE limit 

P class M class 

Range Max TVE 
(%) 

Range Max TVE 
(%) 

Signal frequency 
range 

Fnominal (𝑓𝑜) 

 

± 2.0 Hz 1 ± Fs/5 for 
10 ≤ Fs < 25 

1 

Signal magnitude 
(Voltage) 

100% 
rated 

80% to 120% 
rated 

1 10% to 120% 
rated 

1 

Phase angle with 
|𝑓𝑖𝑛 − 𝑓𝑜)| <0.25 
Hz  

Constant 
or slowly 
varying 
angle 

±π radians 1 ±π radians 1 

Harmonic 
distortion 
(single harmonic) 

<0.2% (THD) 1%, each 
harmonic up to 
50th 

1 10%, each 
harmonic up 
to 50th 

1 

Out-of-band 
interference as 
described below 

<0.2% of 
input 
signal 
magnitude 

 None 10% of input 
signal 
magnitude for 
Fs ≥ 10 

1.3 
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Table 4.3: Steady-state frequency and ROCOF measurement requirements (IEEE, 
2011a) 

Influence 
quantity 

Reference 
condition 

Error requirements for compliance 

P class M class 

Signal 
frequency 

Frequency = 
𝑓𝑜 

(Fnominal) 
Phase angle 

constant 

Range: 𝑓𝑜 ± 2.0 Range: 
𝑓𝑜 ± 2.0 Hz for Fs ≤ 10 

Max FE Max RFE Max FE Max RFE 

0.005 Hz 0.01 Hz/s 0.005 Hz 0.01 Hz/s 

Harmonic 
distortion 
(single harmonic) 

<0.2% (THD) 
Fs ≤ 20 

0.005 Hz 0.01 Hz/s 0.005 Hz 2 Hz/s 

Out-of-band 
interference 

<0.2% of 
input 
signal 
magnitude 

No requirements Interfering signal 10% of signal 
magnitude 

0.01 Hz 0.1 Hz/s 

 

The collection of steady-state compliance tests as defined in Table 4.2 and Table 4.3 

are formulated into several individual tests. In the following, a brief description of each 

individual test is provided. 

4.5.2.1 Frequency variation test 

In this test, the frequency of the input reference test signal is varied from 2 Hz below 

the fundamental to 2 Hz above the fundamental. For both P and M performance 

classes, the maximum TVE value is specified at 1%, and the maximum FE and RFE 

values are specified at 0.005 Hz and 0.01 Hz/s respectively. 

4.5.2.2 Magnitude variation test 

During this test, the magnitude of the input test signal is varied from 80% to 120% for 

P class, and from 10% to 120% for M class. Both classes require TVE values that do 

not exceed 1%. 

4.5.2.3 Phase angle variation test 

In this test, the fundamental frequency of the input test signal is offset by 0.25 Hz. This 

consequently produces a slowly varying phase angle which can effectively be tested. 

Alternatively a phase angle from −𝜋 to +𝜋 can be applied to the input test signal. The 

resulting TVE value should not exceed 1%. 

4.5.2.4 Harmonic distortion test 

This test evaluates the performance of the estimation when subjected to an input signal 

containing harmonic interference. A single harmonic from the 2nd to the 50th order is 

added to the test signal. The test signal is expressed by the following Equation (4.1): 
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𝑋1 = 𝑋𝑚 cos(2𝜋𝑓𝑜𝑡) + 𝑋ℎcos (2𝜋𝑓ℎ𝑡) (4.1) 

 

where 𝑋𝑚 and 𝑓𝑜 are the amplitude and frequency of the fundamental signal, and 𝑋ℎ 

and 𝑓ℎ are the amplitude and frequency of the harmonic component. A harmonic level 

of 1% is specified for P class, and 10% for M class. A maximum TVE value of 1%, and 

a maximum FE value of 0.005 Hz is specified for both performance classes. The RFE 

values differ, with P class limited to 0.01 Hz/s, and M class limited to 2 Hz/s. 

4.5.2.5 Out-of-band interference test 

Interharmonic signals at frequencies above the Nyquist reporting rate (𝐹𝑠/2) can alias 

into the passband. This test evaluates the capability  of the front-end anti-aliasing filter 

to reject interharmonic signals that occur outside the passband. This test is similar to 

the harmonic distortion tests but instead pertains to the interharmonic (and 

subharmonic) frequency components present in the input signal. The test signal is 

represented by Equation (4.2): 

𝑋1 = 𝑋𝑚 cos(2𝜋𝑓𝑜𝑡) + 𝑋𝑖cos (2𝜋𝑓𝑖𝑡) (4.2) 

 

where 𝑋𝑚 and 𝑓𝑜 are the amplitude and frequency of the fundamental signal, and 𝑋𝑖 

and 𝑓𝑖 are the amplitude and frequency of the out-of-band component. The passband 

is specified as half the reporting rate, below and above the fundamental frequency. For 

determining the performance of the out-of-band rejection, the test requires the input 

test signal to contain an external sinusoidal tone at 10% of the input signal magnitude, 

which varies from 10 Hz to the start of the pass band, and continues from the end of 

the pass band up to the second harmonic. This test is only required for M class 

measurements with reporting rates of 10 Hz and above, and specifies a maximum 

value of 1.3% for TVE, 0.01 Hz for FE, and 0.01 Hz/s for RFE. 

4.5.3 Dynamic compliance tests 

The dynamic compliance suite of tests provided by the IEEE C37.118.1-2011 standard 

are specifically intended for evaluating the measurement of input signals that present 

variations in amplitude, phase angle and frequency. These dynamic signals can occur 

in power systems during fault conditions, power swings and oscillations. The dynamic 

compliance tests are intended to replicate the aforementioned dynamic conditions by 

applying modulation, frequency ramps and step changes to the input test signal. The 

performance evaluation is conducted similarly to that of the steady-state tests, where 

the resulting TVE, FE and RFE values should be within the stipulated reference limits. 



51 
 

A brief description of each dynamic test procedure is provided below. All tests assume 

a single-phase input signal, a nominal power system frequency (𝑓0) of 50 Hz and a 

reporting rate (𝐹𝑠) of 10 frames per second (fps). 

4.5.3.1 Modulation test 

The modulation test (also referred to as the measurement bandwidth test) assesses 

the measurement of input signals comprising of a sinusoidal modulation, where the 

amplitude and phase angle is modulated at a factor of 0.1. The modulated reference 

test signal is defined by Equation (4.3): 

𝑋1 = 𝑋𝑚[1 + 𝑘𝑥 𝑐𝑜𝑠(𝜔𝑡)] × cos[𝜔0𝑡 + 𝑘𝑎 𝑐𝑜𝑠(𝜔𝑡 − 𝜋)] (4.3) 

 

where 𝑋𝑚 is the amplitude of the input signal, 𝜔0 is the nominal power system 

frequency, ω is the modulation frequency in radians/s, 𝑘𝑥 is the amplitude modulation 

factor, and 𝑘𝑎 is the phase angle modulation factor. 

The test requires the modulation frequency to be varied in steps of 0.2 Hz, ranging  

from 0.1 Hz to 1 Hz for P class measurements, and 0.1 Hz to 2 Hz for M class 

measurements.  A maximum TVE of 3% is specified for all mentioned conditions. The 

FE and RFE limits are stipulated as 0.01 Hz and 0.2 Hz/s for P class, and 0.06 Hz and 

2 Hz/s for M class. For evaluating the measurement of the modulated test signal, the 

expected theoretical phasor value, frequency, frequency deviation, and ROCOF 

values are  given by the following Equation (4.4), Equation (4.5), Equation (4.6)  and 

Equation (4.7) respectively: 

𝑋(𝑛𝑇) = {𝑋𝑚/√2}[1 + 𝑘𝑥cos (𝜔𝑛𝑇)]∠{𝑘𝑎cos (𝜔𝑛𝑇 − 𝜋)} (4.4) 

𝑓(𝑛𝑇) =  𝜔0/2𝜋 − 𝑘𝑎(𝜔/2𝜋)sin (𝜔𝑛𝑇 − 𝜋) (4.5) 

∆𝑓(𝑛𝑇) =  −𝑘𝑎(𝜔/2𝜋)sin (𝜔𝑛𝑇 − 𝜋) (4.6) 

𝑅𝑂𝐶𝑂𝐹(𝑛𝑇) = 𝑑/𝑑𝑡[𝑓(𝑛𝑇)] = −𝑘𝑎(𝜔
2/2𝜋)cos (𝜔𝑛𝑇 − 𝜋) (4.7) 

 

where  𝑛 is an integer and 𝑇 is the phasor reporting interval.  

4.5.3.2 Frequency ramp test 

The frequency ramp test is intended for evaluating the measurement of signals 

experiencing frequency excursions, potentially caused by the loss of a generator or 

load. During this test the input system frequency is increased linearly at a rate of 1.0 

Hz/s. The frequency ramp for both performance classes ranges from 48 Hz to 52 Hz, 

and specifies a maximum TVE value of 1%. The FE and RFE limits for P class is 0.01 
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Hz and  0.1 Hz/s respectively, and 0.005 Hz and  0.1 Hz/s for M class. The input test 

signal for this test is defined by the following Equation (4.8): 

𝑋1 = 𝑋𝑚cos (𝜔0𝑡 +  𝜋𝑅𝑓𝑡
2) (4.8) 

 

where 𝑋𝑚 is the amplitude of the input signal, 𝜔0 is the nominal power system 

frequency, and 𝑅𝑓 = 𝑑𝑓/𝑑𝑡 is a fixed value for the frequency ramp rate in Hz/s. 

The theoretical values of the test signal amplitude, phase angle, frequency, frequency 

deviation, and ROCOF are given by the following equations: 

𝑋(𝑛𝑇) = {
𝑋𝑚

√2
}∠{𝜋𝑅𝑓(𝑛𝑇)

2} (4.9) 

𝑓(𝑛𝑇) = 𝜔0/2𝜋 + (𝑅𝑓)(nT) (4.10) 

∆𝑓(𝑛𝑇) = (𝑅𝑓)(nT) (4.11) 

𝑑/𝑑𝑡[𝑓(𝑛𝑇)] = 𝑅𝑓 (4.12) 

 

where  𝑛 is an integer and 𝑇 is the phasor reporting interval.  

4.5.3.3 Magnitude and phase step change test 

The step change test evaluates the measurement performance of signals which 

present abrupt changes in amplitude and frequency. These are  potentially caused by 

power system faults and switching operations. The test signal defined in Equation 

(4.13) is utilised in the magnitude and phase step change test and is expressed as:  

𝑋1 = 𝑋𝑚[1 + 𝑘𝑥𝑓1(𝑡)] × 𝑐𝑜𝑠[𝜔0𝑡 + 𝑘𝑎𝑓1(𝑡)] (4.13) 

 

where 𝑋𝑚 is the amplitude of the input signal, 𝜔0 is the nominal power system 

frequency, 𝑓1(𝑡) is a unit step function, 𝑘𝑥 is the magnitude step size, and 𝑘𝑎 is the 

phase step size. 

This test assesses the response time, delay time and overshoot in the measurement. 

The response time is defined as the time from when the initial applied step change is 

observed, to the time when the stepped quantity has settled. The overshoot is 

considered as the maximum instantaneous value estimated during an amplitude or 

phase step change. The delay time is the measured interval from the instant a step 

change is applied to the time when this value reaches 50% of its final stepped value. 

One of the reasons for evaluating the delay time is to ensure that the group delay of 

any filtering system employed in the phasor estimation has been properly 
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compensated for. In Table 4.4, the maximum values allowed for the response time, 

delay time and, overshoot or undershoot are specified. 

Table 4.4:Phasor, frequency and ROCOF performance requirements for input step 
change, where 𝑭𝒔 = phasor reporting rate, 𝒇𝒐 = nominal system frequency (IEEE, 2011a) 

Step 
change 

specification 

Reference 
condition 

Maximum response time, delay time, and overshoot 

P class M class 

Response 
Time (s) 

|Delay 
time| (s) 

Max 
overshoot/ 
undershoot 

Response 
Time (s) 

|Delay 
time| (s) 

Max 
Overshoot/ 
undershoot 

Magnitude 
= ± 10%, 
𝑘𝑥 = ± 0.1, 

𝑘𝑎 = 0 

All test 
conditions 
nominal at 
start or 
end 
of step 

1.7/𝑓𝑜 1/(4×𝐹𝑠) 5% of step 
magnitude 

0.595 1/(4×𝐹𝑠) 10% of step 
magnitude 

Angle 
± 10°, 

𝑘𝑥 = 0, 

𝑘𝑎 = ± π/18 

All test 
conditions 
nominal at 
start or 
end 
of step 

1.7/𝑓𝑜 1/(4×𝐹𝑠) 5% of step 
magnitude 

0.595 1/(4×𝐹𝑠) 10% of step 
magnitude 

Frequency 
response 
time (s) 

ROCOF 
response 
time (s) 

 Frequency 
response 
time (s) 

ROCOF 
response 
time (s) 

 

3.5/𝑓𝑜 4/𝑓𝑜  0.869 1.038  

 

Measurement reporting latency compliance 

The measurement reporting latency is defined as the time taken for a signal applied at 

the input of a system to be measured and it’s parameters to be reported successfully. 

The measurement reporting latency is the total time delay incurred during a phasor 

measurement, and is contributed by many factors such as analog-to-digital conversion, 

window length, filtering, algorithm processing and computation time. This test ensures 

that the total delay is kept as short as possible, to prevent any measurement and 

reporting from being adversely affected or degraded. The maximum measurement 

reporting latency is dependent on the reporting rate. For compliance with the standard, 

the maximum measurement reporting latency for P class is specified as (2/𝐹𝑠), and 

(5/𝐹𝑠) for M class. By assuming a reporting rate of 10 fps, the latency limit results in a 

value of 200 ms for P class, and 500 ms for M class. 

4.6 Compliance test simulations 

In this section, the simulation of the compliance tests performed in MATLAB, are 

described and discussed. The second-order one-cycle TFT and the second-order two-

cycle TFT algorithms are evaluated through the compliance test simulation, to gauge 

their performance and accuracy in accordance with the IEEE C37.118.1-2011 

standard. The results of the two TFT algorithm versions are analysed in comparison, 

and their compliance with the IEEE C37.118.1-2011 are scrutinized.  

The compliance test procedure provided by the IEEE C37.118.1-2011 standard, along 

with the associated input sinusoidal test signals are implemented and executed in 
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MATLAB by means of simulation. Only selected compliance tests from the IEEE 

C37.118.1-2011 standard have been chosen and implemented in MATLAB. The 

selection of compliance tests encompasses steady-state and dynamic conditions, and 

are listed as follows:  

1. Frequency variation test  

2. Magnitude and phase angle variation test 

3. Harmonic distortion test 

4. Out-of-band interference test 

5. Modulation test 

6. Frequency ramp test 

The magnitude and phase step change test has not been performed, as this specific 

test is more applicable for evaluating the response time, delay time and overshoot of 

a fully developed PMU functioning as a complete system. The measurement reporting 

latency test has been excluded from the test simulation, however the test is conducted 

in Chapter Six, where the performance of the phasor estimation implemented on a 

hardware platform is evaluated and assessed. 

4.7 Test simulation and evaluation procedure 

A dedicated sinusoidal reference test signal is generated in MATLAB for the simulation 

of each compliance test. This test signal is based on a sinusoidal function and is 

defined in the IEEE C37.118.1-2011 standard. In the prior sections (4.5.3.1) to 

(4.5.3.3), a description and equation of the test signals for each compliance test is 

provided. This signal represents the sampled values or digitised version of the input 

test signal to be measured and estimated. A fundamental frequency of 50 Hz was 

selected for this test simulation. The simulation assumes a fixed sampling frequency 

of 800 Hz, resulting in a total number of 16 samples per cycle.  The digitised test signal 

is applied to the input of the TFT algorithm which performs the processing and 

computing of the phasor parameters. A reporting rate of 10 fps is assumed for this test 

simulation. The test simulation applies for single phase conditions only.  

The TVE, FE, and RFE performance indicators described in Chapter Three are 

employed to quantify the accuracy and benchmark the performance of the phasor and 

frequency estimation. Firstly, the performance and accuracy of the phasor estimation 

is determined by recording the estimated phasor parameters along with the expected 

phasor parameters, and calculating the resulting TVE value. As discussed in Chapter 

Three, the TVE provides an indication of the vectorial difference between the reference 

phasor value and the estimated value, and is expressed by Equation (3.13). A similar 
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approach is adopted for evaluating the estimated frequency and the rate of change of 

frequency (ROCOF). The reference and estimated frequency and ROCOF values are 

recorded and the resulting frequency error (FE) and ROCOF error (RFE) is calculated 

using Equations (3.14) and (3.15). For each test a maximum TVE, FE and RFE value 

is specified which should not be exceeded in order to meet compliance with the IEEE 

C37.118.1-2011 standard. These requirements vary according to the performance 

class (P or M class) desired.  

4.8 Simulation test results 

In this section, the test results obtained from the compliance tests simulated in 

MATLAB are showcased, providing an indication of the performance, accuracy and 

limitations of the one-cycle and two-cycle TFT algorithms. The steady-state 

compliance test results are presented initially, followed by the dynamic compliance test 

results. The results captured for each tests is examined and evaluated according to 

the  IEEE C37.118.1-2011 standard. 

4.8.1 Frequency variation test 

The frequency variation test evaluates the performance of the phasor estimation 

algorithm when subjected to an input signal exhibiting an off-nominal frequency. When 

employing a fixed sampling rate, this measurement condition often results in 

inaccuracies in phase due to the mismatch between the input frequency and 

fundamental frequency. The frequency variation test is implemented in a MATLAB 

simulation where the input reference signal is generated for different off-nominal 

frequencies. For this test, the test conditions and requirements for P class and M class 

are effectively the same. The test input signal is applied at distinct off-nominal 

frequencies ranging from 48 Hz to 52 Hz. The accuracy of the phasor estimation is 

indicated by the TVE values calculated from the measurements produced by the one-

cycle and two-cycle TFT algorithms. The resulting TVE values are presented in Figure 

4.3 over the given frequency range. It can be seen that both algorithms are well below 

the specified TVE limit of 1%, with the best accuracy measurements coinciding with 

signal frequencies close to 50 Hz. The two-cycle TFT produces the highest TVE value 

of 0.17% at 48 Hz, and is still comfortably within the TVE limit. It must be noted that for 

the frequency variation test, the estimated phase angle is compensated for, due to a 

phase angle offset caused by the resulting off-nominal frequency. This effectively 

improves the accuracy of the estimated phase angle and thus the overall TVE value. 

The phase angle compensation is calculated and expressed by the following Equation 

(4.14) and (4.15). 
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𝜑𝑐𝑜𝑚𝑝 = 𝜑𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 + ∆𝜑 (4.14) 

𝜑𝑐𝑜𝑚𝑝 = 𝜑𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 + 2𝜋 (
∆𝑓

𝑓𝑜
) (4.15) 

 

where 𝜑𝑐𝑜𝑚𝑝 is the compensated estimated phase angle, 𝜑𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 is the estimated 

phase angle without any compensation, ∆𝑓 is the frequency of deviation, and 𝑓𝑜is the 

fundamental frequency. 

 

Figure 4.3: TVE results of one-cycle and two-cycle TFT for frequency variation test 

The FE values presented in Figure 4.4 show that the one-cycle TFT algorithm is within 

the maximum error constraints across the entire frequency test range, however the FE 

values produced by the two cycle TFT are only admissible across a narrower band of 

frequencies. 
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Figure 4.4: FE results of one-cycle and two-cycle TFT for frequency variation test 

The RFE values for both TFT algorithm versions are presented in Figure 4.5. The 

results indicate that the 0.01Hz/s RFE limit is also only satisfied by the two algorithms 

around frequencies in the vicinity of 50 Hz. 

 

Figure 4.5: RFE results of one-cycle and two-cycle TFT for frequency variation test 
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4.8.2 Signal magnitude and phase angle variation test 

The magnitude and phase angle variation tests are two separate tests conducted 

independently from each other, but are grouped together because of their common 

test conditions and requirements. In these static tests, the performance of the TFT 

algorithms are evaluated for estimating signals composed of different values of 

magnitude and phase angle. For both tests,  the IEEE C37.118 standard only specifies 

the TVE as the performance indicator. The FE and RFE values are not required and 

are therefore omitted.  

The magnitude  variation test assesses the accuracy of the estimation when the input 

signal amplitude is set to values ranging from 10% to 120% of the nominal value for M 

class, and 80% to 120% for P class. This range of amplitude values are defined 

specifically for voltage measurement applications, and include compliance 

requirements for P class and M class measurements. The phase angle variation test 

is evaluated for the measurement of phase angle values  ranging from 0 to 7𝜋/4 

radians (0 to 315°).  

The simulation results of the magnitude and phase angle variation test for the one-

cycle and two-cycle TFT estimation methods are presented in Figure 4.6 and 4.7 

respectively. In Figure 4.6, the TVE values produced by both one-cycle and two-cycle 

TFT algorithms  are shown to be negligibly small for all amplitude values applied in this 

test (10% to 120%).  

 

Figure 4.6: TVE results of one-cycle and two-cycle TFT for signal magnitude variation 
test 
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A similar outcome for the phase angle variation test is shown in Figure 4.7, where very 

small TVE values are produced and maintained for all applied phase angle values. The 

results produced for both magnitude and phase angle variation tests are well below 

the P and M class TVE limit of 1%, and thus successfully meets the compliance criteria. 

In conclusion, this test illustrates the high level of accuracy in the estimated amplitude 

and phase angle values produced by the one-cycle and two-cycle TFT algorithm 

versions. 

 

Figure 4.7: TVE results of one-cycle and two-cycle TFT for phase angle variation test 

 

4.9 Harmonic distortion test  

The harmonic distortion test is conducted by evaluating the accuracy of the phasor 

estimation produced by the TFT algorithm, when applied with an input test signal 

containing harmonic components. The simulation test is conducted for a harmonic 

level of 1%, which is the required condition for P class, and a harmonic level of 10% 

for M class. The harmonic frequencies are applied at 100 Hz, 150 Hz, 200 Hz, 250 Hz, 

500 Hz, 1250 Hz and 2500 Hz. Figure 4.8 displays the TVE results of the phasor 

estimation for P class which applies a harmonic interference level of 1%. It can be seen 

here that the one-cycle and two-cycle TFT versions are both within the allowable TVE 

limits of 1%, and this is applicable up to the 50th harmonic. 
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Figure 4.8: TVE results of one-cycle and two-cycle TFT for 1% harmonic interference 

test 

Figure 4.9 presents the TVE results for M class where the harmonic levels are 

increased to 10%. The results indicate that the TVE values produced  only by the two-

cycle TFT algorithm are admissible, and are limited to the harmonic frequencies 

ranging from 200 Hz to 1250 Hz. Overall the two-cycle TFT demonstrates the better 

performance in phasor estimation. 

 



61 
 

Figure 4.9: TVE results of one-cycle and two-cycle TFT for 10% harmonic interference 

test. 

The FE results of the 1% and 10% P and M class harmonic interference levels are 

shown in Figure 4.10 and Figure 4.11 respectively. Both the one-cycle and two-cycle 

TFT algorithms fail to meet the compliance criteria for P class as well as M class, as 

their results exceed the 5 mHz allowable frequency error margin. The FE results 

suggest that the presence of harmonic interference tends to affect the performance of 

the frequency estimation. 

 

Figure 4.10: FE results of one-cycle and two-cycle TFT for 1% harmonic interference 

signal 
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Figure 4.11: FE results of one-cycle and two-cycle TFT for 10% harmonic interference 

signal 

The RFE results produced for the harmonic interference levels of 1% and 10% are 

shown in Figure 4.12 and Figure 4.13 respectively. The one-cycle and two-cycle TFT 

algorithms for both interference conditions are shown to produce RFE values negligibly 

small and near zero, and thus clearly within the P class and M class limits of 0.01 Hz/s 

and 2 Hz/s. 
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Figure 4.12: RFE results of one-cycle and two-cycle TFT for 1% harmonic interference 
signal 

 

Figure 4.13: RFE results of one-cycle and two-cycle TFT for 10% harmonic interference 
signal 

 

4.10 Out-of-band interference test 

The Out-of-band interference (also referred to as interharmonic) test applies only to M 

class measurements and is not defined in the standard for P class measurements. The 

input reference test signal utilised for this test is composed of a 50 Hz continuous 
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waveform and an added interharmonic component at 10% of the magnitude of the 

fundamental. The interharmonic components are selected at distinct frequency values, 

ranging from 10 Hz to 100 Hz, and increasing in intervals of 10 Hz. The synthesized 

test signal is processed by the TFT phasor estimation algorithm and the resulting 

measurement performances are presented in Figure 4.14, 4.15 and 4.16. The TVE 

results of the one-cycle and two-cycle TFT algorithms are displayed in Figure 4.14, 

and are shown to not be within the compliance criteria as they are above the TVE limit 

of 1.3% for all interharmonic frequencies.  

 

 

 

Figure 4.14: TVE results of one-cycle and two-cycle TFT for 10% Out-of-band 

interference test 

 

The FE and RFE values of the one-cycle and two-cycle TFT algorithms are illustrated 

in Figure 4.15 and Figure 4.16 respectively. The values are shown to exceed the 

maximum FE and RFE limits and therefore do not meet the compliance requirements.  

The results suggest that the out-of-band or interharmonic interference corrupts the 

fundamental sinusoidal signal to the point where inaccuracies in the measurement 

start to develop. The phasor estimation algorithm struggles to reject the  interharmonic 

signals and this may require a low pass or anti-aliasing filter at the input stage in order 

to remove unwanted interharmonic components. 
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Figure 4.15: FE results of one-cycle and two-cycle TFT for 10% interharmonic signal 

 

Figure 4.16: RFE results of one-cycle and two-cycle TFT for 10% interharmonic signal 

 

4.11 Modulation test 

The first of the dynamic tests to be conducted is the modulation test (also known as 

measurement bandwidth test). This test applies a modulating amplitude and a 

modulating phase angle to the reference input test signal to be estimated. The 
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modulating signal frequency ranges from 0.1 Hz to 1 Hz for P class, and 0.1 Hz to 2 

Hz for M class. During this test, the modulating frequency is incremented in steps of 

0.1 Hz, and the modulating signal is applied at 10% of the fundamental amplitude. This 

test mimics amplitude and phase variations in the input signal, which can occur during 

a power system fault condition. This test is evaluated for phase angle modulation, as 

well as amplitude modulation and phase angle modulation combined. 

The performance results of the phasor estimation produced by the one-cycle and two-

cycle TFT algorithm for amplitude and phase modulation are shown in Figure 4.17. 

The performance results for phase modulations only, are shown in Figure 4.18. The 

TVE results in both Figure 4.17 and Figure 4.18 are shown to be well below the 

compliance limit of 3% for P and M class.  

 

Figure 4.17: TVE results of one-cycle and two-cycle TFT for amplitude and phase 

modulation of 10% 
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Figure 4.18: TVE results of one-cycle and two-cycle TFT for phase modulation of 10% 

The FE values are recorded in Figure 4.19 and 4.20 for single and combined 

modulation conditions respectively. It can be seen here that the P class and M class 

error limits of 0.01 Hz and 0.06 Hz are easily met by both one-cycle and two-cycle TFT 

versions.  

 

Figure 4.19:  FE results of one-cycle and two-cycle TFT for amplitude and phase 

modulation of 10% 
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Figure 4.20: FE results of one-cycle and two-cycle TFT for phase modulation of 10% 

The test results displaying the RFE values for amplitude and phase modulation is 

shown in Figure 4.21. The RFE values produced for independent phase modulation 

only, is shown in Figure 4.22. The RFE values are shown to be well below the 0.2 Hz/s 

and 2 Hz/s P class and M class limit, and hereby successfully meets the compliance 

standard. 

 

Figure 4.21: RFE results of one-cycle and two-cycle TFT for amplitude and phase 

modulation of 10% 
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Figure 4.22: RFE results of one-cycle and two-cycle TFT for phase modulation of 10% 

4.12 Frequency ramp test 

In the simulation of the frequency ramp test, the frequency of the reference test signal 

is ramped linearly from 48 Hz to 52 Hz, at a rate of 1 Hz/s. The reference equation of 

the test signal defined in Equation (4.8) applies a continuous variation in phase which 

results in a linear frequency ramp. During this test the signal amplitude remains 

constant.  

The performance results of the frequency ramp test produced by the one-cycle and 

two-cycle TFT algorithms are shown in Figure 4.23, 4.24 and 4.25. In Figure 4.23, we 

observe the TVE results are well below the TVE limit of 1%, this being the requirement 

for P class and M class measurements. It should be noted that the TVE values of the 

one-cycle and two-cycle TFT algorithms differ by a small margin, with the latter offering 

a slightly better performance with an overall maximum TVE value of 0.01% over the 

given frequency range. 
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Figure 4.23: TVE results of one cycle and two cycle TFT for frequency ramp test 

Figure 4.24 show the FE results of the one-cycle and two-cycle TFT versions. The one-

cycle TFT offers a more accurate frequency estimation when deviating from the 

fundamental frequency, with the resulting frequency errors falling within the respective 

P class and M class error limits of 0.005 Hz  and 0.01 Hz. The two-cycle TFT struggles 

to meet the FE requirements across the entire frequency ramp range, and is only able 

to produce admissible frequency error margins across a narrower band of frequencies 

for P class, which spans from 48.6 Hz to 51.5 Hz. 
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Figure 4.24: FE results of one-cycle and two-cycle TFT for frequency ramp test 

 

The simulation test results of the RFE values are shown in Figure 4.25, and indicate 

both one-cycle and two-cycle TFT versions only satisfy compliance requirements for a 

narrow band of frequencies within 1 Hz of the fundamental frequency. We observe the 

frequency measurements outside this 1 Hz frequency band all exceed the P and M 

class RFE limit of 0.01Hz/s. 
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Figure 4.25: RFE results of one-cycle and two-cycle TFT for frequency ramp test 

 

4.13 Conclusion 

In this chapter, the performance and accuracy of the TFT algorithm is evaluated 

through a series of tests simulated in a MATLAB environment. A functional test is 

conducted via simulation and successfully verifies the basic operation of the TFT 

algorithm. Thereafter a compliance test is performed, comprised of a selection of tests 

obtained from the IEEE C37.118.1-2011 standard. The compliance test evaluates and 

determines the measurement performance and accuracy of the one-cycle and two-

cycle second-order TFT algorithm in accordance with the IEEE C37.118.1-2011 

standard. Steady-state and dynamic test conditions are included, which represent 

common conditions and scenarios occurring in power systems. The estimated phasor 

parameters and frequencies are recorded and the corresponding TVE, FE, and RFE 

values are calculated, providing a measure of the accuracy of the estimation, as well 

as determining whether compliance with the IEEE C37.118.1-2011 standard is met. 

These results also indicate the capability and suitability of the one-cycle and two-cycle 

TFT algorithm for performing P class and M class measurements. Similar 

measurement performances and accuracy between the one-cycle and two-cycle TFT 

algorithm were found,  with the exception of the following observations.  The two-cycle 

TFT algorithm has demonstrated a slightly better accuracy over the one-cycle TFT 

version with regards to phasor estimation, however the one-cycle TFT has shown to 

produce more accurate frequency estimation results, be it by a small margin. The latter 
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observation was especially noticeable at off-nominal frequencies as the signal 

frequency deviated farther from the fundamental. Most requirements and compliance 

limits stipulated by the IEEE C37.118.1-2011 standard are satisfied by the one-cycle 

and two-cycle TFT algorithm. The simulation tests has demonstrated an acceptable 

performance by the TFT algorithm as a phasor estimator, and has hereby validated its 

use in this project. The next chapter presents the deployment of the TFT algorithm on 

an embedded hardware platform for the development of a phasor measurement 

prototype for the real world environment. 
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 CHAPTER FIVE 
HARDWARE IMPLEMENTATION 

5.1 Introduction 

In Chapter Four, the estimated phasor parameters produced by the TFT algorithm 

have been successfully evaluated and verified through simulations in MATLAB in 

accordance with the IEEE C37.118.1-2011 standard. The next stage of this project 

involves implementing the TFT algorithms for deployment on a hardware platform for 

performing actual real life phasor measurements. The aim is to utilise the TFT 

algorithm on an actual phasor measurement prototype and verify and evaluate its 

operation and performance in a real world environment. In the simulation tests 

presented in Chapter Four, a second order one-cycle and second order two-cycle TFT 

algorithm are employed for performing the phasor estimation. For the development of 

the phasor measurement prototype, the intention is to also deploy and utilise these two 

algorithms on an embedded hardware platform. The prototype shall have the option of 

selecting which algorithm to execute based on whether a P-class or M-class 

measurement performance is required. One of the main objectives of the phasor 

measurement prototype is to perform phasor estimations in compliance with the IEEE 

C37.118.1-2011 standard. The most important factors that contribute to the success 

and realisation of this goal is accuracy and processing speed. Accuracy is primarily 

dependant on the efficacy of the employed phasor estimation algorithm, while the 

speed is largely reliant on the hardware platform used for computing the experimental 

phasor estimations. In order to effectively implement the phasor measurement on an 

embedded hardware platform, there are several basic hardware components that are 

essential for the successful operation of the device. This consists of a processing unit, 

data acquisition system and a communication interface. 

In this chapter, we discuss the requirements and selection of the embedded platform, 

and describe the development process followed for building the phasor measurement 

prototype. The development and implementation of the prototype includes a hardware 

and software component which both form an integral part of this design. 

5.2 Processing platform selection 

When selecting a processing platform for this research project, two important factors 

were considered, namely the type of processor for computing the Taylor–Fourier 

transform (TFT) algorithm with, and the data acquisition system for measuring and 

sampling the input signal. The initial decision was whether to use a Central Processing 

Unit (CPU) or a Graphics Processing Unit (GPU) for performing the data processing in 
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the phasor measurement. The parallel processing of data with GPU’s were 

investigated, however it was discovered that this type processing was geared more 

towards applications with large datasets that require high throughput rates. The nature 

of our application in phasor measurement requires frequent sampling of the input data 

and transferring it to the processing stage. This movement of data to and from the GPU 

incurs numerous memory transfers which is an expensive operation and can lead to 

bottlenecks and an increase in overall latency. Furthermore, because our dataset is 

not very large, the parallel processing power of the GPU cannot be utilised to its full 

potential. The literature review in Chapter Two has also shown the use of FPGAs as 

the processing platform for PMUs in several projects. While this remains a good 

choice, FPGA development can prove to be costly and complex, requiring specialised 

expertise. CPUs on the other hand offer an effective solution for performing the 

computations and processing required by the phasor measurement prototype. The 

transmitting of phasor measurement data at the specified reporting rate as stipulated 

in the IEEE C37.118.1-2011 standard renders this task CPU-bound. It is essential the 

phasor estimation is computed within the required latency before the next report 

transmission is due. This type of operation is well-suited for CPUs, as it requires tasks 

to be executed sequentially and  is ideal for low latency applications. One such type of 

embedded device is the microcontroller, which integrates an onboard CPU, RAM and 

additional peripherals for handling data acquisition and communication. They are also 

cost-effective and have a low power consumption, overall making them an excellent 

choice for this embedded real-time application. It should be noted that when employing 

a CPU-based device for processing the data, the selected reporting rate will 

significantly influence the processor speed, as phasor measurements are required to 

be transmitted more frequently, ultimately defining the necessary processing 

capabilities of the system. 

5.3 Selection of STM32 Nucleo-F767ZI development board 

The STM32 Nucleo-F767ZI development board was selected as the dedicated 

hardware platform for implementing the TFT algorithm and developing the phasor 

measurement prototype.  The Nucleo-F767ZI development board is intended for high 

performance applications and includes the required processing power, necessary 

features and onboard peripherals to develop the phasor estimation and measurement 

prototype. The development boards ease of use, rapid prototyping capabilities, and 

affordability are also significant factors which has resulted in its selection as the 

hardware platform for this project. A top view of the STM32 Nucleo-F767ZI 

development board is shown in Figure 5.1. In the next section we introduce some 
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important features of the STM32 Nucleo-F767ZI which makes it the ideal development 

platform for this project and application. 

 

Figure 5.1: The STM32 Nucleo-F767ZI development board 

5.4 Overview and specification of STM32 Nucleo-F767ZI 

The following specification information presented in this section has been sourced from 

the STM32F767xx microcontroller datasheet (STMicroelectronics, 2021). The STM32 

Nucleo development boards are a family of affordable development boards produced 

by STMicroelectronics and are intended as a rapid prototyping platform for industrial 

electronic, automation and embedded applications. The STM32 Nucleo development 

boards hosts a range of 32-bit ARM-based microcontrollers featuring a variety of 

onboard peripherals, such as General Purpose Input/Output (GPIO), Universal 

Synchronous/Asynchronous Receiver-Transmitter (USART), Serial Peripheral 

Interface (SPI), Inter-Integrated Circuit (I2C), Analog-to-Digital Converter (ADC), 

Digital-to-Analog Converter (DAC), Timers and Direct Memory Access (DMA), which 

are all essential for embedded applications. All STM32 Nucleo boards are equipped 

with an onboard ST-LINK/V2-1  programmer and debugger for facilitating development 

and debugging, thus eliminating the need for additional development kit.  A free version 

of the STM32CubeIDE is provided by STMicroelectronics as a software development 

tool for compiling, programming and debugging source code. This includes a 

comprehensive list of free software libraries and example code. The following 

highlights important hardware specifications of the Nucleo-F767ZI development board 

required for the development of the hardware prototype. 

5.4.1 Processor and memory  

The development board is driven by a STM32F767 32-bit microcontroller which is 

based on the ARM Cortex-M7 processor core. This processor can operate at a 
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maximum frequency of 216 MHz, hereby achieving a performance of 2.14 DMIPS. This 

amount of computation power is well-suited for performing intensive computations 

found in the TFT algorithm. The Cortex-M7 core features a hardware floating point unit 

(FPU), for speeding up floating-point arithmetic operations using 32-bit single-precision 

and 64-bit double-precision data types. The microcontroller has 2 Mbytes (MB) of flash 

program memory for storing developed user code, as well as 512 Kbytes of SRAM for 

data storage. 

5.4.2 Onboard analog-to-digital converter 

The STM32F767 microcontroller includes three onboard 12-bit successive 

approximation analog-to-digital converters (ADC) with a maximum sampling rate of 2.4 

mega samples per second (MSPS), and an input voltage range of 0V  to 3.3V. To 

accelerate the data acquisition stage further, a Direct Memory Access (DMA) controller 

is used in conjunction with the ADC. The DMA peripheral is utilised to speed up 

operations through direct data transfers of sampled data from the ADC to memory. 

The DMA controller also operates independently of the processor, thus freeing up 

valuable CPU resources and usage for executing other tasks. 

5.4.3 Communication interface 

The Nucleo-F767ZI development  board is integrated with an Ethernet interface and 

UART serial communications interface via virtual (USB) serial port. These interfaces 

enable connectivity and communication to external devices. The virtual serial port 

allows the STM32 Nucleo board to communicate with a computer over a USB interface, 

but retains the functionality of a serial connection. For this project, the UART peripheral 

was selected as the dedicated communication interface on the Nucleo board, for 

providing a readout of the estimated phasor parameters. 

5.4.4 Software development  

The STM32 family of 32-bit ARM-based microcontrollers supports a range of 

programming languages, however C/C++ is the most popular and widely used among 

embedded developers and enthusiasts. As a result of this, most STM32 software 

libraries, example code and development tools all support C/C++ development. C/C++ 

has also been found to be the popular choice among the STM32 community which 

provides useful resources, tutorials and valuable knowledge relating to the 

microcontroller.  These factors all contribute to making C/C++ the clear programming 

language of choice for development on the STM32 microcontroller. 
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5.5 Functional description of system 

In this section, the overall design envisaged for the phasor measurement prototype is 

discussed. The functional block diagram in Figure 5.2 illustrates the basic design of 

the phasor estimation prototype to be implemented on the STM32 Nucleo board. The 

diagram highlights four key elements in the design of the phasor measurement 

prototype. A brief description of each stage is discussed next.  

The first stage in the design is the selection of the input source and is responsible for 

configuring the embedded device based on the type of input signal applied. The input 

signal options consists of a continuous analog signal generated by a signal generator, 

and a discrete test signal in the form of a test vector embedded in the source code. 

These represent the actual and simulated input test signals respectively. Furthermore, 

either one cycle or two cycles of the input signal are sampled, depending on the TFT 

algorithm selected. This is followed by the data acquisition stage, which carries out the 

conversion of the analog input signal and produces a set of discrete sampled values. 

It should be noted that this section applies to continuous analog input signals only. 

When using the discrete test signal as an input to the system, the data acquisition 

section is bypassed as the input is already in a discrete format. The discrete test signal 

or sampled values produced by the ADC are subsequently transferred to the phasor 

estimation stage, where the TFT algorithm computes the estimated phasor 

parameters. The output phasor parameters include the amplitude, phase angle, 

frequency and ROCOF. There are two algorithms available to choose from for 

computing the phasor estimation, namely the one-cycle TFT and two-cycle TFT 

algorithm. This selection is based on the performance class required (ie. P class or M 

class measurements). Finally, the estimated phasor parameters are stored in memory 

and read out to the user via a serial console. 
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Figure 5.2: Functional block of phasor measurement design/system  

5.6 Embedded software development 

The embedded software development plays in integral role in allowing the STM32 

hardware platform to function and operate as a phasor estimation device as described 

in the functional overview. The following provides a brief overview of how the 

functionality of all four major components of the phasor estimation prototype indicated 

in Figure 5.2 are implemented and realised on the STM32 hardware platform through 

developed software. All embedded software development is carried out in the 

STM32CubeIDE. 

The firmware developed for carrying out the phasor estimation onboard the STM32 

microcontroller are composed of several source code files written in the C 

programming language. The main.c file contains the initialisation of the microcontroller 

and its peripherals, as well as the primary control and logic of the program. The 

phasor_estimation.c file is the actual TFT algorithm in the form of a C function, 

generated and exported from the MATLAB code. The porting process of this function 

is described in section 5.9.1.  This function is called from the main C function for 

computing the phasor parameters. To facilitate and simplify development, the 

STM32CubeIDE provides low-level peripheral drivers and a Hardware Abstraction 

Layer (HAL) for accessing and controlling hardware peripherals at a high level of 
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abstraction. These APIs are used to generate initialisation code for the microcontroller 

when a project is created in the STM32CubeIDE.  

For this project, the approach of employing  two TFT algorithms for performing the 

phasor estimation computation was adopted. This consisted of the one-cycle TFT and 

the two-cycle TFT version. Although these two variants of the TFT algorithm are 

fundamentally alike, each version is generated independently in MATLAB and 

Simulink. This is due to the amount of input samples required by each TFT 

computation, which has a direct impact on the size of the matrices and vectors utilised 

in the mathematical computation. When porting the MATLAB and Simulink code to C, 

these sizes are accounted for by being hardcoded and assigned up front as they are 

responsible for setting the size of the vectors and matrices. The final outcome are two 

separately generated c files for deployment on the STM32 microcontroller, one for the 

one-cycle TFT and another for the two-cycle TFT computation. 

5.7 Design considerations 

There are a few design aspects to consider when developing the embedded software 

for the STM32 microcontroller to perform phasor estimation. The following delves into 

the software implementation of the phasor estimation prototype and examines some 

key aspects and considerations in the software which are pertinent to the design. 

The design utilises several essential hardware peripherals integrated onboard the 

STM32F767 microcontroller. These include General Purpose Input/Output (GPIO), 

Timers, Analog-to-Digital Converter (ADC), Direct Memory Access (DMA), and the 

Universal Asynchronous Receiver-Transmitter (UART). Each peripheral is required to 

perform a specific task for the phasor estimation prototype. The ADC is responsible for 

capturing the input analog signal and transfers the ADC output directly to a memory 

buffer via DMA for further data manipulation. The UART provides a readout of the 

estimated phasor parameters by printing the results to serial console. The timer 

ensures the ADC measurement is started every 500 mS.  For debugging purposes the 

GPIO is used to mark specific events or indicate certain conditions. The 

microcontroller’s hardware peripherals are configured via a graphical interface 

provided by the STM32CubeIDE. From this, the source code for initialising the 

hardware peripheral is generated accordingly.  
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5.8 Data acquisition 

5.8.1 A/D Conversion and configuration 

The first task to consider for the phasor measurement is the digitizing of the input signal 

using the onboard ADC. When selecting a suitable sampling frequency for our 

application, the fundamental frequency of the input signal must be known to ensure 

the Nyquist criterion is met. For this project, a nominal power system  frequency of 50 

Hz is assumed, and thus requires the sampling frequency to be at least twice this value 

ie. 100 Hz. For the MATLAB simulations presented in Chapter Four, a sampling 

frequency of 800 Hz was employed, however the sampling frequency of the STM32's 

onboard ADC was configured at a frequency of 32 kHz. Power grids often present 

dynamic changes which can manifest as frequency fluctuations, modulated signal 

components, or harmonic or interharmonic interference. These conditions contain 

frequency components that are higher than the 50 Hz nominal power system frequency 

and therefore require a higher sampling frequency in order to be detected. With a 

sampling frequency of 32 kHz, a maximum frequency component of 16 kHz is capable 

of being observed. The 32 kHz high sampling frequency also produces a better time 

resolution which can lead to more accurate phase angle estimations. A higher 

sampling frequency does however result in an increased amount of data to be 

processed which in turn requires more powerful hardware to handle the additional load. 

Conversely, lower sampling frequencies reduce the amount of data and computational 

demands, but this may compromise the precision and fidelity of the phasor 

measurements, especially during rapid signal variations. The chosen sampling 

frequency of 32 kHz produces 640 samples per cycle for an expected input signal of 

50 Hz. The ADC output sampled data is transferred directly to a memory buffer by 

means of a Direct Memory Access (DMA) peripheral-to-memory transfer, on 

completion of each ADC conversion. The onboard DMA controller allows for high 

speed transfers of sampled ADC data that runs independently of the CPU, thus 

conserving CPU usage and processing time. The DMA continues to transfer ADC data 

until the memory buffer is full, at which point the ADC complete callback is raised, 

initiating the pre-processing and formatting of the data. The size of this buffer is 

dependent on the TFT version selected, as each method requires a specific amount of 

samples from the ADC to process. The STM32F767 on-chip ADC is operated in single 

conversion mode for a single input channel. In this mode, the start of each conversion 

is triggered and synchronized every 500 ms by an on-chip internal timer. This requires 

the ADC conversion as well as the TFT processing to complete in under 500 ms in 

order to be ready to proceed with the next ADC measurement. 
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5.8.2 Pre-processing of data 

On completion of the ADC conversion, the raw ADC samples are stored in a buffer and 

pre-processed into a predefined format required by the TFT algorithm. The size of the 

memory buffer for storing the converted ADC samples for pre-processing is based on 

the number of samples in the Taylor observation interval and is determined by 

Equation (5.1), 

𝑁 = (𝑇/𝑇1)𝑁1 (5.1) 

where 𝑁 is the number of samples within a given Taylor observation interval 𝑇, and 𝑁1  

is the number of samples within one cycle (𝑇1) of the input signal. 𝑁 is rounded up to 

the closest odd integer to ensure that the value of the TFT window length is always 

odd, such that one sample is always located at the centre of the observation interval 

(de la O Serna, 2007). The sampling frequency determines the number of samples per 

cycle for a given input signal. As the sampling frequency of the ADC is run at 32kHz, 

the number of samples per cycle produced for a 50 Hz input signal amounts to a value 

of 𝑁1  = 640 samples per cycle. When rounding up to the closest odd number, a Taylor 

window length (𝑁) of 641 samples is obtained for the one-cycle TFT, and 1281 samples 

for the two-cycle TFT algorithm. The above description is illustrated in the following 

calculation for the two-cycle TFT algorithm. 

𝑁 = (
40 𝑚𝑠

20 𝑚𝑠
) × 640 samples 

𝑁 = 1280 (Rounded up to 1281) 

Each discrete sample produced by the ADC is represented in a 12-bit unsigned integer 

format, allowing for a maximum of 4096 discrete levels to be represented by this value. 

During this pre-processing stage, this value is subsequently converted into a floating 

point number representing the instantaneous voltage of the input signal measured by 

the ADC. With an ADC reference voltage of +3.3V, the smallest voltage that can be 

measured by the ADC is 805 µV. The conversion of the ADC digital value to the 

corresponding voltage level is defined by the formula indicated in Equation (5.2).  

𝑉𝑖𝑛 =
𝐴𝐷𝐶 𝑉𝑎𝑙𝑢𝑒 × 𝑉𝑟𝑒𝑓

2𝑁−1
− 𝐷𝐶 𝑂𝑓𝑓𝑠𝑒𝑡 

(5.2) 

Where 𝑉𝑖𝑛 is the voltage of the input signal,  𝑉𝑟𝑒𝑓  is the ADC reference voltage of 3.3V, 

𝑁 is the 12-bit ADC resolution, and DC Offset is an applied DC bias in volts. As the 

onboard ADC reference voltage ranges from 0V to +3.3V, the input signal must be 

applied with a DC offset in order to capture both positive and negative half cycle values 

of the input signal. This applied DC bias is removed digitally as indicated in Equation 
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(5.2) to obtain the measured input signal voltage centred around zero. This is the 

required format of the input to the TFT algorithm for computing and extracting the 

estimated phasor parameters of the input signal.  

In DSP applications, it is common practice to apply a tapered window to the sampled 

input signals for improved accuracy and performance, however this was omitted from 

this implementation to conserve resources and minimize latency. In essence, the 

exclusion of a tapered window can be likened  to applying a rectangular window to the 

digitized input signal. 

5.9 TFT algorithm 

5.9.1 Porting of MATLAB/Simulink code to C 

The initial implementation of the one-cycle and two-cycle TFT algorithm was written in 

MATLAB, and evaluated through simulations as discussed in Chapter Four. In order 

to deploy and utilise the TFT algorithm on the STM32 hardware platform for performing 

the phasor estimation, the MATLAB code needs to be ported to a C function. This 

function is to be invoked by the main C program when required to extract the phasor 

parameters of the input signal. The code export is executed using Embedded Coder, 

a tool offered with the MATLAB/Simulink software suite for generating optimised C/C++ 

code for deployment on embedded devices. 

The TFT algorithm written in MATLAB employs the default 64-bit double-precision data 

types for computing the phasor estimation. When ported to C for deployment on the 

STM32 microcontroller, the double data types are retained for maintaining the 

precision, accuracy, and wider range of values associated with the double-precision 

format. As the STM32 microcontroller features a double-precision FPU and 512 Kbytes 

of SRAM, floating point calculations can be executed successfully and timeously. 

5.9.2 Code porting procedure 

There are several ways of exporting MATLAB code to C, however for this project the 

algorithm export workflow was followed. This process is demonstrated in a MathWorks 

video and webinar series (MathWorks, 2024). This process uses the MATLAB and 

Simulink Embedded coder app to generate customizable standalone C code which can 

be added to larger STM32 software projects and compiled collectively with a standard 

toolchain such as STM32CubeIDE.  

This workflow requires the MATLAB implementation of the TFT algorithm to firstly be 

converted into a Simulink model prior to code generation. The Simulink model is 

created by converting the original MATLAB TFT algorithm function into a MATLAB 
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function block named phasor_estimation_method4, and adding it to the Simulink 

design. Input and output ports are added to the model for passing data to and from the 

function block. In Figure 5.3, a screenshot of the Simulink model shows the input and 

output ports connected to the phasor_estimation_method4 function block. The three 

Simulink inports on the lefthand side of the design are assigned as inputs to the TFT 

algorithm, and are used for passing the digitised signal of interest as an input (inport3), 

as well as specifying the input signal frequency (inport2), and the associated number 

of samples per cycle (inport1). The estimated phasor parameters are computed and 

provided at the outports as shown on the righthand side of the design. The outputs 

include the estimated amplitude (outport2), phase angle (outport3), and corresponding 

first and second derivatives of the amplitude (outport4 and outport6) and phase angle 

(outport5 and outport7). 

 

 

Figure 5.3: Simulink design of TFT algorithm 

The embedded coder app provides a quick start wizard for setting up the configuration 

for embedded code generation and there after commences with the code export. The 

embedded coder generates a phasor_estimation.c file and associated header files. 

Two callable C functions namely, phasor_estimation_initialize() and 

phasor_estimation_step(), are contained in this generated file and are responsible for 

initialisation and execution of the TFT phasor estimation. The generated source code 
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files are transferred collectively to the STMCubeIDE where the algorithm is integrated 

with the main program and built for deployment on the STM32 Nucleo board. 

5.9.3 Description of source code 

Once the TFT algorithm is successfully ported from MATLAB/Simulink to C, the 

generated source code files can be utilised as a callable function for performing the 

phasor estimation.  

The following is a description of the source code implementing the phasor estimation 

written in the C programming language for deployment on the STM32 Nucleo-F767ZI 

development board. The flowchart in Figure 5.4 is a graphical representation of the 

developed source code and depicts the overall process and logical flow of the 

embedded program. The main C function initiates the start of the program's execution 

and serves as the core of the embedded program where all the primary tasks are 

structured around. In the flowchart in Figure 5.4, the main C function is the entry point 

to the program’s execution and begins with the initialisation of the STM32 

microcontroller’s clock and peripheral configuration. This is followed by the declaration 

and assignment of user-defined variables, as well as buffer lengths for specifying the 

number of input samples required for the design. As mentioned in the pre-processing 

section, the buffer lengths are determined by the number of samples in the Taylor 

observation interval, and are specified as either 641 samples for the one-cycle TFT or 

1281 samples for the two-cycle TFT. 

The primary execution of the program takes place within an infinite while loop. This is 

common practice in embedded systems and  allows for the microcontroller to 

continuously execute a set of instructions and handle interrupt events. One of the  

primary tasks contained within the infinite while loop is the readout of the digitised input 

signal and estimated phasor values.  The corresponding values are printed to a serial 

console from a memory buffer which continuously gets updated by the TFT phasor 

estimation function as the output values get processed. The readout continues to get 

executed until either an interrupt occurs, or the loop is terminated externally by a 

hardware reset or the removal of power. 

Two interrupt sources and accompanying callback functions are incorporated in the 

design and are tasked with handling timing events and ADC-DMA functionality. The 

callback functions are designated as the HAL_TIM_PeriodElapsedCallback and the 

HAL_ADC_ConvCpltCallback, and are shown on the right side of the flowchart in 

Figure 5.4. The first interrupt is assigned to Timer 3 which is responsible for triggering 

the start of the ADC measurement every 500ms. The Timer 3 period and prescaler is 
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configured to rollover after a duration of 500ms and sets off an interrupt periodically. 

The interrupt is handled by the interrupt service routine facilitated by the HAL library, 

which subsequently calls the HAL_TIM_PeriodElapsedCallback function where in 

which the start of the ADC-DMA is initiated. The second interrupt is tasked with 

handling the ADC conversions and DMA transfers from ADC to memory. The ADC1 

peripheral is used in conjunction with the DMA2 controller and raises an interrupt 

whenever the ADC buffer is full. The interrupt is managed by the HAL DMA interrupt 

handler which calls the HAL_ADC_ConvCpltCallback for execution. The source code 

in the callback function is customised and ensures the sampled input values are in the 

correct format for computation by the TFT algorithm. Finally the estimated phasor 

parameters are computed by the TFT algorithm and the results are stored in a memory 

buffer which are accessible by the main C function for readout to the serial console. 

An extract of the source code written in C is provided in Appendix B.  
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Figure 5.4: Flowchart of phasor estimation implemented in C 

False 

main() C function 

ADC conversion complete 

callback function 

Timer rollover 500ms 

callback function 

Initialisation 

while True 

Print ADC sampled 

values and estimated 

phasor parameters from 

buffer 

Start/restart ADC 

conversion via 

DMA 

Return from 

interrupt 

Infinite loop True 

False 

Input = ADC 

samples 

Transfer discrete signal 

to input of TFT algorithm 

Select simulated 

discrete signal from 

file 
True 

Execute TFT algorithm 

Store estimated phasor 

parameters in buffer 

Return from 

interrupt 

Start 

End 

Start 

Start 



88 
 

5.10 Estimated phasor parameter readout 

5.10.1 Serial communication interface 

In order to read out the estimated phasor parameters computed by the TFT algorithm, 

each corresponding output parameter is printed to the STM32CubeIDE command shell 

via the UART serial interface. This task is executed in the main C program and prints 

the estimated amplitude, phase angle, frequency and ROCOF values from their 

corresponding memory buffers using the virtual (USB) serial port interface. For testing 

and verification purposes, the discrete sampled input signal and input to the TFT 

algorithm is included and also printed to the serial console . This printing process is 

iterated repeatedly in the main C function, and displays the updated phasor parameters 

as they progress through each measurement. In Figure 5.5 a screenshot of the 

STM32CubeIDE shows the ADC sampled values and estimated phasor values printed 

to the  serial console. 

 

 

Figure 5.5: Screenshot of the estimated phasor values displayed in the serial console 
of the STM32Cube IDE 

 

The configuration parameters specified for the serial communication connection 

between the STM32 device and the serial terminal are shown in Table 5.1.  
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Table 5.1: Serial communication interface configuration 

Baud rate 115200 

Data size 8 

Parity None 

Stop bits 1 

5.11 Other hardware configuration 

5.11.1 System clock configuration 

For the STM32 prototype, a phase-locked loop (PLL) clock was selected as the main 

system clock source (SYSCLK) for driving the microcontroller. The PLL clock is derived 

from the High Speed External (HSE) oscillator which is passed through a number of 

frequency multipliers in the PLL to finally produce a clock frequency of 192 MHz. The 

high clock frequency is required to ensure the phasor estimations are processed and 

completed within the reporting time interval. The STM32CubeIDE provides a graphical 

tool for configuring the clock of the STM32F767, and with this generates the associated 

source code for initialising the clocks. In Figure 5.6, the graphical tool provided by the 

STM32CubeIDE is shown for configuring the clocks of the STM32F767.  

 

 

Figure 5.6: Screenshot of the clock configuration in the STM32CubeIDE 

 

5.11.2 Floating Point Unit 

The Nucleo-F767ZI development board is targeted at DSP and high performance 

applications and includes a floating point unit (FPU) integrated to the Cortex-M7 core 

of the STM32F767 microcontroller (STMicroelectronics, 2021).  This hardware feature 

is advantageous and essential for this project as the TFT algorithm primarily consists 
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of floating point arithmetic operations for computing the output phasor parameters. 

These operations are computationally intensive and require a FPU in order to complete 

the phasor estimation within the given reporting rate. The hardware FPU facilitates and 

accelerates all floating point operations and supports both 32-bit single-precision and 

64-bit double-precision data types (STMicroelectronics, 2016). Most floating point 

operations are able to be carried out by the hardware FPU in a single instruction cycle.  

Processors without a FPU utilise software libraries for performing floating point 

arithmetic operations, however this approach is inefficient, requiring several instruction 

cycles to execute and results in extensive delays in execution time. Additionally the 

use of floating point data types also allows for improved precision and a wider range 

of values to work with. The embedded FPU is enabled via the STM32CubeIDE, by 

selecting the appropriate configuration in the microcontroller and compiler settings. 

5.12 Conclusion 

This chapter concludes the development process and successful implementation of 

the TFT algorithm on an embedded hardware platform for performing the phasor 

estimation. In the design of the system, four key components are identified which are 

integral to the successful operation and implementation of the hardware platform as a 

phasor measurement device. By following this criteria, the STM32 Nucleo-F767ZI 

development board is selected as the dedicated hardware platform for implementing 

the phasor estimation for carrying out actual real-world phasor measurements. The 

hardware specification of the STM32F767 is carefully examined, identifying the key 

features and onboard peripherals required for developing the phasor estimation 

prototype.  This device does present limitations in processing power and advanced 

hardware features, however the digital implementation can easily be ported to other 

hardware platforms to accommodate future enhancements. This chapter looks at the 

software implementation of the phasor measurement device, as the control logic, 

functionality and operation of the phasor measurement prototype is primarily 

implemented in software. The source code for the phasor estimation prototype is 

written in C and deployed to the STM32F767 microcontroller. The TFT algorithm 

employed in the MATLAB simulations is ported to C and utilised for performing the 

phasor estimation computation on the STM32 hardware platform. In this chapter, the 

design considerations required for the phasor estimation are presented , as well as a 

description of the developed source code. An input test source is applied at the input 

of the STM32 development board, and the corresponding phasor parameters are 

successfully produced at the output. In the next chapter, the output phasor parameters 

are read out  and recorded for the evaluation of the hardware prototype. 
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 CHAPTER SIX 
MEASUREMENT RESULTS 

6.1 Introduction 

In this chapter , the implementation of the one-cycle and two-cycle TFT algorithm 

deployed on the STM32 hardware platform is tested and verified in the form of a phasor 

measurement prototype, whereby its phasor and frequency measurement 

performances are evaluated. This experimental verification and evaluation exercise is 

carried out by conducting a series of compliance tests obtained from the IEEE 

C37.118.1-2011 standard to determine the performance and accuracy of the 

estimation results produced by the phasor measurement prototype. The compliance 

tests incorporate both static and dynamic conditions. Since the prototype is not a fully-

fledged PMU, only applicable tests obtained from the IEEE C37.118.1-2011 standard 

are carried out. The intent of these tests are to verify the implementation of the TFT 

algorithm deployed onboard the STM32 hardware platform and evaluate the accuracy 

of the resulting phasor and frequency estimations in contrast to the MATLAB 

simulations performed in Chapter Four. The accuracy of the STM32 phasor estimation 

results are evaluated according to the TVE, FE and RFE criteria, and are defined as 

per the class of performance. The results and performance of the one-cycle and two-

cycle TFT algorithm are examined for each test to determine which is compliant and 

appropriate for P class and M class measurements respectively.    

6.2 Test and evaluation procedure 

The following compliance tests obtained from the IEEE C37.118.1-2011 standard have 

been selected for conducting the experimental verification and evaluation of the phasor 

measurements produced by the STM32 hardware platform: 

1. Frequency variation test 

2. Magnitude and phase angle variation test 

3. Harmonic distortion test 

4. Out-of-band interference test 

5. Modulation test  

6. Frequency ramp test  

7. Measurement reporting latency test 

These selected compliance tests consist of the same collection of tests utilised in the 

MATLAB simulations presented in Chapter Four. The MATLAB simulation results 

provides a mechanism for benchmarking and verifying the estimation outputs of the 

STM32 phasor measurement prototype.  Each test requires a dedicated test signal 
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applied as an input to the test system. This provides a means to evaluate and verify 

the output estimation result against. The test signals are defined by mathematical 

formula and are provided in the IEEE C37.118.1-2011 standard. For the experimental 

testing and verification of the STM32 phasor measurement prototype, a continuous 

analog signal and discrete signal are utilised as the input references to the tests. This 

is discussed in greater detail in the following section 6.3 and 6.4. To remain consistent 

with the MATLAB simulations, the same reporting rate of Fs = 10  frames per second 

(fps) is retained. The reporting rate has an influence on the given test range conditions 

and also allows for dynamic conditions to be evaluated. The embedded software 

implementing the one-cycle and two-cycle TFT algorithm is deployed to the STM32 

development board and its performance is evaluated through the compliance tests. 

Once the appropriate input test signal (as per the  compliance test) is supplied to the 

input of the TFT algorithm in either analog or digital form, the estimated phasor and 

frequency parameters are processed and computed on the STM32 hardware platform. 

The computed phasor parameters consist of the estimated amplitude, phase angle, 

frequency, and rate of change of frequency (ROCOF) of the applied input signal. These 

estimated signal parameters are transmitted via the STM32 UART Serial 

Communication module and printed to a serial console provided by the 

STM32CubeIDE. The estimated phasor values are recorded for each compliance test 

and are used to calculate the TVE, FE and RFE values. These performance indicators 

are defined by Equations (3.13), (3.14), and (3.15) in Chapter Three, and expresses 

the accuracy and performance of measurement. The evaluation and analysis of the 

results are discussed in each compliance test section.    

6.3 Continuous analog test signal 

The continuous analog test signal has been specifically reserved for conducting the 

magnitude and phase angle variation test. As this test is considered for steady-state 

conditions, the specified test signal is simple and easy to produce. The signal is 

composed of a fundamental sinusoidal waveform with constant amplitude, phase angle 

and frequency. The RS Pro 2205A-20 PC-based oscilloscope with built-in function 

generator was utilised for generating the continuous analog test signal. The control of 

the oscilloscope and displaying of the measured waveforms are facilitated through the 

PicoScope 6 PC Oscilloscope software. Some important hardware specifications of 

the built-in function generator are as follows (RS Components, n.d.): 

• Output Waveforms Types: Sine, Square, Triangle, Sinc, Arbitrary  

• Standard Signal Frequency: DC to 100 kHz 
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• Output Frequency Resolution: 0.02 Hz 

• Output Voltage Range: +/-2 V 

• Output adjustments: Any amplitude and offset within ±2 V range 

The sinusoidal analog signal is generated by the RS Pro 2205A-20  oscilloscopes built-

in function generator and is physically connected to the input ports of the STM32 

onboard analog-to-digital converter, where the sampling and quantization take place. 

Thereafter the digitised signal is transferred to the input of the TFT algorithm for 

computation of the amplitude, phase angle, frequency and ROCOF estimation.  

6.3.1 Phase angle of continuous analog signal 

The compliance tests require a sinusoidal test signal configured at a specific amplitude, 

phase angle, and frequency, in order to conduct, evaluate, and verify the phasor 

estimation. The RS Pro 2205A-20 built-in function generator only allows for the setting 

of amplitude and frequency values, however the phase angle cannot be set as simply 

as with a discrete signal. The phase angle is defined as the horizontal positioning or 

shifting of a waveform in relation to a cosine function, and this cannot be set in real 

time for a continuous analog signal. The phase angle of the continuous analog test 

signal is therefore taken as the angle in radians that occurs at the start of the ADC 

measurement, and is determined by measurement with an oscilloscope. This point 

effectively references the start of the continuous analog test signal that is captured and 

digitised by the ADC. This phase angle value is used as the input or expected phase 

angle value in the TVE calculation. In Figure 6.1, the phase difference of the test signal 

in relation to the 0 radian reference point of a cosine function is shown. The blue 

channel displays the input analog signal, and the red channel shows the rising edge 

as the ADC begins the conversion. For measuring the time delay between these two 

points, the oscilloscope rulers are placed at the start of the ADC conversion and at the 

cosine 0 radian reference point, and the time delay is obtained. 
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Figure 6.1: Measurement of time delay with oscilliscope for determining phase angle of 
analog test signal 

The phase angle is obtained by measuring this time delay in seconds, and converting 

it to an angle in radians using Equation (6.1).  

𝜑 =  2𝜋𝑓∆𝑡 

 

(6.1) 

where 𝜑 is the phase angle in radians, 𝑓 is the signal frequency in Hertz, and ∆𝑡 is the 

time shift or time delay in seconds. 

The calculation of the TVE, FE and RFE performance indicators are effectively a 

process whereby the estimated signal parameter is compared against the 

corresponding input test signal parameter.  For the dynamic compliance test, the input 

test signal parameters are constantly changing  over time. This requires a signal 

generator with time-tagging capabilities in order to confirm and verify that the input 

signal parameters at a specific time matches the corresponding time-tagged output 

estimation values. For the purposes of this experimental verification and evaluation, 

the continuous analog test signal is only applied to the magnitude and phase angle 

variation test, as the signal parameters remain constant throughout an observation 

interval and therefore does not require high-end test instruments for determining these 

input values.  

6.4 Discrete test signal 

The discrete test signals were specifically chosen for conducting the noise interference 

and dynamic tests onboard the STM32 development board. These account for a large 
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portion of the compliance tests. One of the benefits of a discrete test signal is its 

parameters can be controlled easily and noise can be added or eliminated. In this test 

scenario, the onboard analog-to-digital conversion is bypassed. This prevents noise, 

as well as sampling and quantisation errors from being introduced into the system. 

This ensures an ideal test signal is free from noise and isolates the testing to solely 

encompass the performance of the TFT algorithm.  A discrete test signal is also more 

versatile, as any signal expressed mathematically in MATLAB can be reproduced. This 

feature better suits the compliance tests as several reference test signals with special 

features including modulation, frequency ramps and added interference are required. 

The signal parameters of dynamic input signals for evaluating estimated parameters 

can also be easily obtained through the equation defining the test signal. The discrete 

test signal is based on a 50Hz sinusoidal waveform generated in MATLAB at a fixed 

sampling rate of 32kHz. This matches the sampling of the ADC onboard the STM32 

development board for digitising an analog input signal. The total length of the test 

signal amounts to 100 cycles. This allows for multiple adjacent observation windows 

to be processed consecutively, ensuring any dynamic phasor behaviour occurring over 

time is observed and detected. Further details of each test signal prescribed for the 

compliance tests are described in the corresponding test sections. The resulting 

discrete test signal generated in MATLAB takes the form of a test vector representing 

the specified test signal and is applied to the input of the TFT algorithm. The generated 

test vector is transferred to the STM32 by entering it in the main C code and assigning 

it as a variable. When the firmware executes, the test vector is initiated in STM32 

memory and transferred to the input of the TFT algorithm, where the phasor and 

frequency estimations get processed. 

6.5 Frequency variation test 

The frequency variation test assesses the accuracy of the phasor and frequency 

estimation for a range of input signal frequencies, and examines the effect this test 

scenario has on the estimated output result. This test is conducted by generating a 

collection of individual sinusoidal discrete test signals ranging from 48 Hz to 52 Hz, 

and applying these as individual inputs to the test. The discrete test signal is generated 

in MATLAB and is defined by the cosine function indicated by Equation (3.1) in Chapter 

Three. For this test, the signal parameters are specified as follows: 

• Amplitude (𝑋𝑚) = 1V  

• Phase angle (𝜑) = 𝜋/4  

• Frequency (𝑓) = 48Hz to 52Hz (in intervals of 0.5 Hz) 
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The resulting phasor and frequency estimations produced by the STM32 development 

board are recorded for each test frequency. Based off these results, the TVE, FE and 

RFE values are calculated to determine the performance and accuracy of the 

estimation. 

6.5.1 TVE results 

The calculated TVE values of the one-cycle and two-cycle TFT estimations produced 

at the specified test frequencies are shown in Figure 6.2. The plot shows the phasor 

estimation for frequencies at 50 Hz yielding very small TVE values, illustrating the high 

accuracy of the estimated amplitude and phase angle outputs at nominal frequencies. 

As the signal frequency deviates further from the nominal frequency, we begin to 

observe an increase in the TVE value. The increasing TVE values spanning across 

the entire frequency test range are minimal, and remain below the 1% compliance limit 

as specified for P class and M class measurements.  The phasor estimation of the one-

cycle TFT produces a slightly improved accuracy in comparison to the two-cycle TFT 

version.  In most cases, the two-cycle TFT version would be expected to provide the 

better performance. However, off-nominal frequency conditions causes the input signal 

to no longer fit uniformly within the observation interval, resulting in errors in the 

estimated phase angle.  These errors in phase angle are further exacerbated when 

the observation interval spans over two cycles. It should be noted that this test includes 

phasor angle compensation as demonstrated in section 4.8.1 in Chapter 4. For this 

test, the phasor estimation and TVE results of the STM32 reflect the same 

performance and accuracy (TVE below 0.2%) as illustrated in the MATLAB simulation 

test results. This hereby confirms that the phasor estimation performed by the TFT 

algorithm has been successfully implemented onboard the STM32 hardware platform.  
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Figure 6.2: TVE values of the one-cycle and two-cycle TFT algorithm shown at discrete 
frequencies for frequency variation test 

6.5.2 FE and RFE results 

The performance and accuracy of the frequency estimation can be determined by 

examining the calculated FE and RFE values shown in Figure 6.3 and Figure 6.4 

respectively. In Figure 6.3, the difference between the estimated and actual frequency 

are negligible at the fundamental frequency, however the error tends to expand as the 

frequency deviates further from this point. The one-cycle TFT algorithm offers the 

better accuracy in frequency estimation, and as a  result meets the compliance error 

limit of 0.005 Hz (for P class and M class) throughout the entire frequency test range. 

On the other hand, the two-cycle TFT version begins to exceed the compliance limit 

as the signal frequency deviates beyond 1.5 Hz of the fundamental frequency. This is 

presumably a result of the extended observation interval. The frequency estimation 

results produced by the STM32 for this test maintains a similar trend as demonstrated 

in the MATLAB simulations. 
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Figure 6.3: FE values of the one-cycle and two-cycle TFT algorithm shown at discrete 
frequencies for frequency variation test 

The actual ROCOF and estimated ROCOF values produced for this test are recorded, 

and the resulting RFE is calculated. In Figure 6.4, the RFE values for both TFT versions 

are presented. Similarly to the FE values, the RFE values for both TFT versions 

produced at the nominal frequency are minimal and fall within the 0.01 Hz/s RFE limit. 

For signal frequencies outside 0.5 Hz of the fundamental, an increasing error is 

observed exceeding the RFE limit. The same observation is made in the MATLAB 

simulations tests. 
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Figure 6.4: RFE values of the one-cycle and two-cycle TFT algorithm shown at discrete 
frequencies for frequency variation test 

6.5.3 Discussion of results 

The frequency variation test results produced by the STM32 development board are 

favourable. Firstly, the TVE results of the one-cycle and two-cycle TFT algorithms are 

well below the 1% stipulated compliance limit for P class and M class. For phasor 

estimation, the TFT algorithm displays the ability to maintain compliance for individual 

frequency tones spanning from 48 Hz to 52 Hz. Based on the low TVE values 

observed,  this frequency range can most likely be extended to a wider range of 

frequencies. The one-cycle TFT presents slightly more accurate phasor estimates 

compared to the two-cycle version, although this is by a small margin. For the two-

cycle TFT algorithm, a greater decline in accuracy is observed for the estimation of 

signals at off-nominal frequencies. This degradation is mainly contributed by error in 

the estimated phase angle. At off-nominal frequencies, the phase angle rotates after 

each cycle and any phase angle errors incurred get compounded over two cycles when 

employing the two-cycle TFT algorithm. The frequency and ROCOF estimates meet  

the FE and RFE compliance limits, however this is mostly achieved at signal 

frequencies close to the 50 Hz fundamental. The one-cycle TFT does however meet 

the 0.005 Hz FE limit for the entire frequency test range. When examining the FE and 

RFE values, an increasing sensitivity proportional to the off-nominal frequency is 

observed. This is due to the FE and RFE being first and second derivatives of the 
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estimated phasor. This result highlights a limitation of the TFT  whereby at off-nominal 

frequencies inaccuracies in frequency and ROCOF are introduced. As for the RFE 

results, the one-cycle and two-cycle TFT are found to be similar. Finally, all the 

aforementioned results reflect the outcomes observed in the corresponding MATLAB 

simulation, and thus hereby verifies the implementation and operation of the TFT 

algorithm onboard the STM32 development board. 

6.6 Magnitude and phase angle variation test 

The magnitude and phase angle variation test are individual tests grouped together as 

they both form part of the steady-state compliance tests and follow a similar test 

procedure. The static test signal and test conditions allow these tests to be conducted 

utilising a continuous analog waveform as the input test signal. This is generated by 

the RS Pro 2205A-20 built-in function generator and is used to evaluate the 

measurement performance of the STM32 development board when deployed with the 

one-cycle and two-cycle TFT algorithm. The test signals for the magnitude and phase 

angle variation test are both expressed by Equation (3.1), as in the previous test. It 

should be noted that the magnitude and phase angle variation test forms an integral 

part of the experimental verification, as it is the only test that includes the digitisation 

of the input test signal carried out by the ADC onboard the STM32 prototype.  

6.6.1 Magnitude variation test 

The magnitude variation test evaluates the accuracy of the phasor estimation for 

different amplitude values of the input signal ranging from 10% to 120% of the nominal 

value. This range covers P class and M class measurements. It should be noted that 

this range of amplitudes are specific to voltage measurement only, and does not 

include current measurement conditions. For this test, the nominal value is selected 

as 500mV. The input test signal takes the form of a 50 Hz sinusoidal waveform with 

amplitudes of 50mV, 250mV, 500mV and 600mV, respectively, and thereby covers the 

required amplitude test range. The phase angle of the input signal is taken as the 

arbitrary angle that occurs at the moment the input signal is sampled, and is 

determined by measurement with an oscilloscope as described in section 6.3.1. In 

Figure 6.5, a screenshot of the oscilloscope measurement of the 50 Hz input test signal 

at the nominal amplitude of 500mV is shown. The input test signal is DC offset at 1V 

to allow for the ADC to capture and quantize both positive and negative half cycles of 

the continuous waveform. 
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Figure 6.5: A screenshot of the oscilloscope measurement of the input test signal 
utilised in the magnitude variation test 

The actual phasor parameters based on the input test signal, and the estimated phasor 

results are recorded and the respective TVE values are calculated. It should be noted 

that the evaluation of the frequency and rate of change of frequency estimations are 

omitted for this test as they are not a requirement in the IEEE C37.118.1-2011 

standard. 

6.6.2 TVE results 

The one-cycle and two-cycle TFT phasor estimation results displaying the calculated 

TVE values for the magnitude variation test are presented in Table 6.1.  

Table 6.1: Measurement results of one-cycle and two-cycle TFT for magnitude variation 
test 

 Input signal parameters Measured signal parameters TVE (%) 
(TVE Limit = 1%) Amplitude 

(V) 
Phase angle 
(radians) 

Amplitude (V)  Phase angle 
(Radians) 

One-cycle 

TFT 

0.050 

0.250 

0.500 

0.600 

-0.879960102 

-2.673495348 

-2.288336089 

-1.105840614 

0.0483 

0.2488 

0.495 

0.5929 

-0.725345 

-2.652836 

-2.273403 

-1.076583 

5.55  

2.12  

1.79  

2.25  

Two-cycle 

TFT 

0.050 

0.250 

0.500 

0.600 

-0.833150372 

-1.807672413 

-2.372216613 

-1.937420189 

0.048204096 

0.246571313 

0.494097751 

0.593712651 

-0.836222 

-1.806269 

-2.367556 

-1.933715 

3.6  

1.38  

1.27  

1.11  
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The results show the calculated TVE values being marginally over the 1% compliance 

limit stipulated for P class and M class. The best test result is produced by the two-

cycle TFT algorithm for a nominal input signal amplitude at 600mV.  Overall the phasor 

estimation results produced by the two-cycle TFT yields slightly more accurate results 

than the one cycle TFT. This is to be expected due to the observation interval being 

double in length. The largest TVE values are observed for the smaller input signal 

amplitudes of 50mV, indicating a decline in accuracy as the input signal amplitude is 

decreased. This is to be expected as any noise present in the system will cause greater 

signal distortion and degradation at lower signal levels. When evaluating the overall 

TVE results of the STM32 prototype against the results of the MATLAB simulations 

tests, we notice a significant decline in accuracy. This is primarily caused by unwanted 

noise infiltrated into the analog input test signal, and affecting the accuracy of the TFT 

computation. It should be noted that in contrast to the MATLAB simulation tests, the 

input of the TFT algorithm is non-ideal and susceptible to noise as the test signal 

generation and  the sampling and quantization process all takes place in real time.  

6.6.3 Phase angle variation test  

In the phase angle variation test, the performance and accuracy of the phasor 

estimation is assessed differently by keeping the input signal amplitude constant at a 

nominal value and varying the phase angle only. As the input test signal is a continuous 

analog waveform, the test is conducted using several arbitrary phase angle values, as 

specific phase angle values are difficult to implement in a real time test environment. 

The phase angle is based on the point in the cycle at which the input signal is sampled, 

and this value is verified by measurement with an oscilloscope referenced at the time 

the analog-to-digital conversion is started. With all the parameters of the input test 

signal now confirmed, as well as the phasor estimation results computed on the STM32 

development board captured, the resulting TVE values of the one-cycle and two-cycle 

TFT algorithms can be calculated.  

6.6.4 TVE results 

In Table 6.2, the resulting calculated TVE values along with the corresponding input 

signal parameters and estimated output signal parameters are presented. 

 

 

 

 



103 
 

Table 6.2: Measurement results of one-cycle and two-cycle TFT for phase angle 
variation test 

 Input signal parameters Measured signal 
parameters 

TVE (%) 
(TVE Limit = 
1%) Amplitude 

(V) 
Phase angle 
(radians) 

Amplitude 
(V)  

Phase angle 
(Radians) 

One-cycle 

TFT 

0.500 

0.500 

0.500 

0.500 

0.500 

0.500 

0.500 

0.500 

-0.974522041 

-2.351482101 

-1.256637061 

-2.630769688 

-1.879614885 

-2.69831393 

-2.727216583 

-1.008451242 

0.4975 

0.4979 

0.4918 

0.489 

0.4903 

0.49342 

0.4939 

0.4975 

-0.982619 

-2.335594 

-1.247648 

-2.618834 

-1.855305 

-2.653602 

-2.706401 

-0.993976 

0.95 

1.64 

1.87 

2.5 

3.09 

4.59 

2.4 

1.53 

Two-cycle 
TFT 

0.500 

0.500 

0.500 

0.500 

0.500 

0.500 

0.500 

0.500 

-0.301718558 

-0.716911444 

-2.263517507 

-1.130030877 

-2.983570543 

-3.091013012 

-1.832805154 

-2.766172331 

0.492996 

0.493448 

0.494219 

0.493216 

0.493303 

0.493701 

0.493949 

0.494131 

-0.309829 

-0.73329 

-2.235749 

-1.127947 

-2.973153 

-3.071829 

-1.834578 

-2.748418 

1.62 

2.09 

2.99 

1.37 

1.69 

2.28 

1.22 

2.12 

 

By examining the overall TVE results, it can be seen that both one-cycle and two-cycle 

TFT algorithms are slightly outside the 1% compliance threshold, and therefore do not 

meet the requirement for P class and M class measurements. Similarly to the 

magnitude variation test, the phase angle variation test also reveals a decline in 

accuracy when compared to the corresponding MATLAB simulations. This is primarily 

attributed to noise infiltrated and present in the continuous analog test signal. The TVE 

results do however show more consistency across the calculated TVE values. This is 

due to the input signal amplitude being kept constant at a nominal value of 500mV. 

This observation also suggests that the performance and accuracy of the TFT 

algorithm is not significantly affected by different phase angle values of the input signal, 

with this being the given influence quantity for this test. Overall the TVE values 

produced by the two-cycle TFT algorithm offers a small improvement in accuracy in 

comparison to the one-cycle TFT algorithm. The same result is observed in the 

magnitude variation test, and is due to the digitised input test signal spanning over two 

cycles. 
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6.6.5 Discussion of results 

The magnitude and phase angle variation test evaluates the performance and 

accuracy of the phasor measurement produced onboard the STM32 prototype for a 

range of signal amplitude and phase angle values. This test is of particular importance 

as it is the only test where a continuous analog waveform is applied as the input test 

signal and shows the effects there of. By comparison of the TVE results of the one-

cycle and two-cycle TFT algorithm, we observe the two-cycle TFT providing a slightly 

better performance and accuracy in phasor estimation. The two-cycle TFT estimation 

produced the lowest TVE values, however the one-cycle TFT TVE values are only 

larger by a small margin. This result demonstrates and confirms the influence that the 

length of the observation interval has on the accuracy of the measurement.  

Overall the TVE results for both TFT algorithms exceed the 1 % TVE limit and therefore 

does not meet the compliance requirements for the IEEE C37.118.1-2011 standard. 

This result differs from that obtained in the MATLAB simulations with a reduction in 

accuracy. This is primarily attributed to the differences between the simulation and the 

real-world test environment. In the MATLAB simulations, a perfectly sampled 

sinusoidal waveform of the input signal is provided as the input to the TFT algorithm. 

However in real-world scenarios, such an ideal sinusoidal test signal is not possible to 

produce, as the digitised signal provided to the TFT algorithm will be subject to 

inaccuracies introduced in the analog-to-digital conversion, as well as noise contained 

in the generated input signal. These factors produce inaccuracies in the estimation 

result that negatively affect the TVE value. In Figure 6.6, a sampled portion of the input 

signal after being digitised by the STM32 ADC is plotted alongside the corresponding 

MATLAB simulated test signal. These signals are provided as the input to the TFT 

algorithm. In this plot we observe the jagged peaks and edges that are present in the 

ADC sampled signal, in contrast to the ideal simulated signal generated in MATLAB. 

This distortion in the digitised input signal has an impact on the estimated phasor 

output when computed by the TFT algorithm and results in a degradation in accuracy 

that is observed in the test results. To improve the performance and accuracy of the 

phasor measurement, additional front-end filtering can be employed to suppress any 

unwanted noise present in the input test signal, however this will increase the overall 

measurement latency. 



105 
 

 

Figure 6.6: A portion of the continuous analog test signal digitised by the ADC, plotted 
against the discrete simulated test signal generated in MATLAB 

 

6.7 Harmonic distortion test 

The harmonic distortion test evaluates the performance of the phasor estimation when 

subjected to a fundamental signal corrupted by harmonic interference. The test is 

conducted by applying a discrete test signal (as described in section 6.4) as an input 

to the test. This discrete test signal is comprised of a 50 Hz sinusoidal signal added 

with a single 4th harmonic component,  at a level of either 1% or 10% the nominal 

amplitude. The discrete test signal is expressed by Equation (4.1) indicated in Chapter 

Four. The signal parameters for this test are specified as follows: 

• Amplitude (𝑋𝑚) = 1V  

• Nominal power system frequency: (𝑓𝑜) = 50 Hz 

• Amplitude of harmonic component at a level of 1% (P class) and 10% (M class): 

(𝑋ℎ) = 0.01V or 0.1V 

• Frequency of 4th harmonic component: (𝑓ℎ) = 200 Hz  

According to the IEEE C37.118.1-2011 standard, the harmonic distortion test requires 

the testing of individual interfering harmonic components up to the 50th harmonic. For 

the purpose of verifying the phasor measurement produced by the STM32 for the 

harmonic test, only the 4th harmonic component is considered. An harmonic 

interference level of 1% the nominal amplitude is applied for P class measurements, 

and 10% for M class measurements. An illustration of the discrete test signal specified 
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for M class containing the required harmonic component of 10% is shown in Figure 

6.7. The harmonic distorted test signal is indicated by the blue solid line and plotted 

alongside the fundamental (orange dashed line) and harmonic components (maroon 

dash-dotted line). Here the effect of the harmonic interference can be seen distorting 

the input signal and causing the harmonic component to be superimposed on the 50 

Hz sinusoidal waveform. 

 

Figure 6.7: Input test signal composed of the 50 Hz fundamental signal and the 4th 
harmonic component at a level of 10% 

This test is conducted with two types of input test signals, the first being a signal at a 

1% harmonic distortion level required for P class, and the second at a level of 10% for 

M class. The harmonic distorted test signals are applied to the input of the one-cycle 

and two-cycle TFT algorithms deployed on the STM32 development board, and the 

computed phasor and frequency estimated values are recorded and assessed.  

6.7.1 TVE results  

The estimated amplitude and phase angle values produced by the STM32 board are 

recorded and the resulting TVE values are calculated. The calculated TVE results for 

the harmonic (4th) distortion level of 1% for P class, and 10% for M class, are shown 

separately in Figure 6.8 and Figure 6.9 respectively. In Figure 6.8, the TVE values 

shown for P class measurements are minimal and comfortably meet the 1% 

compliance limit. Proceeding to the M class TVE results presented in Figure 6.9, we 

observe an increase in the TVE value, however the results are still within compliance 

limits. This is to be expected as the increased harmonic distortion specified for M class 
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measurements causes an increase in the TVE value, and adversely affects the 

accuracy. The two-cycle TFT achieves the better performance for  both P class and M 

class, by producing the lower TVE values in comparison to the one-cycle TFT. A 

similarity between the TVE results produced by the STM32 prototype and the MATLAB 

simulations are apparent for an interference of the 4th harmonic component (200 Hz).  

 

Figure 6.8: TVE results of harmonic distortion test for input signals containing a 
harmonic component of 1% 

 

Figure 6.9: TVE results of harmonic distortion test for input signals containing a 
harmonic component of 10% 
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6.7.2 FE and RFE results  

The frequency estimation and ROCOF results of the STM32 development board is 

also evaluated separately for P class (1%) and M class (10%). The FE results for P 

class are shown in Figure 6.10, followed by the M class results shown in Figure 6.11. 

Both P class and M class FE limits are not met by neither one-cycle nor two-cycle TFT 

algorithm, as the FE values exceed the 0.005 Hz limit. It is only the two-cycle TFT that 

comes close to meeting the P class (1%) FE compliance limits and offers the better 

performance in frequency estimation. The same outcome has also been observed in 

the MATLAB simulation tests for a harmonic interference of 200 Hz.  

The ROCOF results are not illustrated in a graph as a zero frequency deviation is 

estimated, indicating no error as the tests are conducted at the fundamental frequency 

and no change in frequency is expected. In the simulation tests we see very small 

ROCOF values produced, but when implemented on the STM32 these values are 

truncated to zero due to the lower resolution of 32 bits as opposed to 64 bits used in 

the MATLAB simulations. 

 

Figure 6.10: FE results of harmonic distortion test for input signals containing a 
harmonic component of 1% 
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Figure 6.11: FE results of harmonic distortion test for input signals containing a 
harmonic component of 10% 

6.7.3 Discussion of results 

The harmonic interference test results confirm the ability of the STM32 to produce 

accurate phasor estimates in the presence of harmonic disturbances. The one-cycle 

and two-cycle TFT achieves the TVE compliance limits for P class as well as M class 

measurements. This demonstrates the TFT algorithms immunity to harmonic 

interference and successful suppression of harmonic components contained in the 

input signal without any additional filtering. The TVE values are found to be 

proportional to the harmonic level, which is apparent as the harmonic level is increased 

between P class and M class. Overall the two-cycle TFT produces the lower TVE 

values, and therefore offers the better performance over the one-cycle TFT version. 

The TFT algorithm struggles to meet FE compliance limits for both P class and M class. 

This outcome has also been observed in the MATLAB simulations of the harmonic 

interference test. The FE limits stipulated by the IEEE C37.118.1-2011 is quite 

stringent and difficult to meet. Some front-end filtering to further suppress harmonic 

infiltration may be required in order to improve frequency estimation performance and 

accuracy. 

6.8 Out-of-band interference test 

The out-of-band interference test assesses the ability of the TFT algorithm to reject 

and suppress unwanted interharmonic and subharmonic components, and hereby 

reduce the impact this interference has on the phasor estimation result. The test 
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evaluates the accuracy of the phasor and frequency estimation computed by the TFT 

algorithm when subjected to input signals containing a single interfering component at 

interharmonic or subharmonic  frequencies occurring outside the passband. This test 

is carried out by generating a discrete test signal in MATLAB and applying it as an 

input to the test. The test signal consists of a main sinusoidal signal at 50 Hz, added 

with an out-of-band component at a level of 10% the nominal amplitude. For this test, 

a single subharmonic component occurring at 20 Hz was selected to represent the 

signal disturbance originating outside the passband. The discrete test signal is 

expressed by Equation (4.2) provided in Chapter Four. The discrete test signal 

parameters for this test are specified as follows: 

• Amplitude (𝑋𝑚) = 1V  

• Nominal power system frequency: (𝑓𝑜) = 50 Hz 

• Amplitude of out-of-band component at a level of 10% : (𝑋𝑖) = 0.1V 

• Frequency of out-of-band component: (𝑓𝑖) = 20 Hz  

In Figure 6.12, a visual representation of the discrete test signal with the 

aforementioned parameters is shown indicated by the solid blue line. The plot also 

illustrates the 50 Hz fundamental signal (black dashed line) and the 20 Hz sub-

harmonic interference signal (maroon dash-dotted line) which the discrete test signal 

is composed of. This illustrates the extent to which the input test signal deviates from 

the fundamental signal, and undergoes distortion caused by the interfering sub-

harmonic component. 
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Figure 6.12: Input test signal for out-of-band interference test, composed of a 50 Hz 
fundamental signal and a 20 Hz sub-harmonic component 

In Chapter Four, it has already been established that the TFT algorithm is unable to 

meet the compliance requirements for the out-of-band interference test and requires 

additional front-end filtering. Despite of these findings, the out-of-band interference test 

is still conducted to determine and demonstrate the impact this input conditions has on 

performance and how accuracy is compromised when deployed on the STM32 

platform. The discrete test signal is applied to the input of the one-cycle and two-cycle 

TFT algorithms, and the resulting estimated amplitude, phase angle, frequency and 

ROCOF values produced onboard the STM32 are recorded for evaluation. 

6.8.1 TVE Results  

The IEEE C37.118.1-2011 standard specifies the out-of-band interference test for M 

class measurements only, and therefore is assessed solely for this performance class. 

The TVE performance indicators for this test are calculated according to the phasor 

estimation results produced by the STM32 hardware platform. The resulting TVE 

values of the one-cycle and two-cycle TFT algorithms are shown in Figure 6.13. Both 

TFT algorithm versions are shown exceeding the 1.3% compliance limit, with the two-

cycle TFT offering the more accurate estimate among the two. These results 

correspond with the findings obtained in the MATLAB simulation tests, and thus 

confirm the successful implementation of the TFT algorithm onboard the STM32 

platform. 
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Figure 6.13: TVE results of the out-band-interference test 

6.8.2 FE and RFE Results 

The performance of the frequency estimation produced by the STM32 during the out-

of-band interference test is examined by calculating the difference between the 

estimated frequency and expected frequency. The resulting FE values of the one-cycle 

and two-cycle TFT versions are presented in Figure 6.14. As expected, the FE values 

surpass the maximum allowable error and the compliance requirement is not met. 

Once again the two-cycle TFT out performs the one-cycle TFT by incurring much 

smaller error values in the frequency estimation, although this is still not low enough to 

meet compliance levels required by the IEEE C37.118.1-2011 standard.  

In Figure 6.15, very large error values in the ROCOF estimation is also shown 

exceeding the RFE limit. This has however been anticipated for and previously 

observed in the MATLAB simulation tests. 
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Figure 6.14: FE results of the out-band-interference test 

 

Figure 6.15: RFE results of out-band-interference test 

6.8.3 Discussion of results 

In conclusion, the overall STM32 results for the out-of-band interference test is 

consistent with the findings obtained for the corresponding test simulated in MATLAB. 

The phasor and frequency estimation of the TFT algorithm when deployed on the 

STM32 hardware platform performs as expected and this confirms its successful 

operation and implementation. The two-cycle TFT is seen to provide the better 
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performance and accuracy in comparison to the one-cycle version. An important result 

to note is that the TFT algorithm is unable to achieve the compliance requirements for 

the out-of-band interference test. This reveals a limitation of the TFT algorithm whereby 

the input signals containing the out-of-band interference are unable to be suppressed 

and has a detrimental effect on accuracy. These type of input conditions are seen to 

negatively impact the ROCOF estimation value the most, as this output parameter is 

computed by means of derivative and is sensitive to noise.  In order to utilise the TFT 

algorithm successfully when subjected to out-of-band  interference, front-end filtering 

is essential to improve accuracy and bring estimated values within compliance limits. 

6.9 Modulation test 

The modulation test evaluates the performance of the phasor and frequency estimation 

produced by the STM32 phasor measurement prototype when presented with a 

dynamic input signal exhibiting amplitude and phase angle modulation. The test is 

conducted with a discrete test signal generated in MATLAB and is composed of a 50 

Hz sinusoidal signal with its amplitude and phase angle modulated at a frequency of 2 

Hz. A modulation level of 10% the nominal signal amplitude is applied. The modulated 

test signal is defined by Equation (4.3) as indicated in Chapter Four, and is assigned 

with the following input parameters for both P class and M class compliance:  

• Amplitude: 1V 

• Nominal power system frequency: 𝑓𝑜= 50 Hz 

• Modulation frequency: 𝑓 = 2 Hz 

• Amplitude modulation factor: 𝑘𝑥 = 0.1 

• Phase angle modulation factor: 𝑘𝑎 = 0.1  

For this test, the IEEE C37.118.1-2011 standard states several input test conditions 

spanning over the entire modulating frequency range, however this is exhaustive for 

the purpose of this research project, and therefore only the aforementioned input test 

parameters are considered. A visual representation of the discrete test signal 

generated in MATLAB is shown in Figure 6.16. We observe the 2 Hz envelope of the 

modulating signal causing the amplitude of the fundamental to oscillate around the 1V 

nominal amplitude.  
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Figure 6.16: Amplitude modulated input test signal 

This test is conducted for the one-cycle and two-cycle TFT algorithms deployed on the 

STM32 development board. The estimated amplitude, phase angle and frequency 

results are captured and the performance indicators are calculated. 

6.9.1 TVE results 

According to the reference test signal indicated by Equation (4.3), the amplitude and 

phase angle of the input test signal are expressed as modulating signals. From this 

equation, we obtain the modulating components 𝑋𝑚[1 + 𝑘𝑥 𝑐𝑜𝑠(𝜔𝑡)] and 𝑘𝑎 𝑐𝑜𝑠(𝜔𝑡 −

𝜋), which defines the modulating amplitude and phase angle of the input signal. These 

are used to calculate the theoretical or expected instantaneous amplitude and phase 

angle values of the input signal. These theoretical values are used as a benchmark to 

evaluate the accuracy of the estimated amplitude and phase angle. To further illustrate 

this,  the modulating amplitude of the input reference test signal is plotted together with 

the corresponding estimated amplitude produced by the STM32 board, and is shown 

in Figure 6.17. The estimated amplitude of the input signal is denoted by the orange 

circular markers, while the solid blue line represents the theoretical or expected 

amplitude. These plots demonstrate the manner in which the estimated amplitude 

successfully tracks the modulated envelope of the input test signal. A similar plot of 

the modulating phase angle of the input reference test signal plotted alongside the 

corresponding estimated phase angle is shown in Figure 6.18.   
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Figure 6.17: Estimated amplitude of modulated input test signal 

 

Figure 6.18: Estimated phase angle of modulated input signal 

To benchmark the performance and accuracy of the phasor estimation produced by 

the one-cycle and two-cycle TFT algorithm, the corresponding TVE values are 

calculated. The calculated TVE results are presented in Figure 6.19. The resulting TVE 

values for both the one-cycle and two-cycle TFT algorithm are minimal and comfortably 

fall within the 3% compliance limit for P class and M class. This test result 

demonstrates the accuracy and proficiency of the TFT algorithm in estimating and 

tracking dynamic signals and conditions. Furthermore, these findings match the results 
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of the combined amplitude and phase angle modulation tests obtained from  the 

corresponding MATLAB simulations, and demonstrate the algorithms capability of 

accurately measuring practical power system conditions. 

 

Figure 6.19: TVE results for modulation test 

6.9.2 FE and RFE Results  

The estimated frequency values for the modulation test are recorded and the FE and 

RFE values are calculated to determine the performance and accuracy of the 

frequency estimation produced by the TFT algorithm onboard the STM32 hardware 

platform. The calculated FE values for the one-cycle and two-cycle TFT algorithm are 

shown in Figure 6.20. The FE values remain comfortably below the prescribed 

compliance limits, in fact the compliance for both P class and M class are met by the 

one-cycle and two-cycle TFT algorithm. The introduction of modulation to the input 

signal does not compromise the accuracy, as precise frequency estimations are 

maintained even in the presence of modulations. It is also  worth noting that while the 

two-cycle TFT error values are marginally higher than those of the one-cycle version, 

they still remain well within the P class and M class compliance limits.  
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Figure 6.20: FE results for modulation test 

The RFE results for the one-cycle and two-cycle TFT algorithm are shown in Figure 

6.21. It was found  that the two-cycle TFT produces smaller RFE values compared to 

the one-cycle version, however both variants fall within the maximum allowable limit 

for P class and M class measurements. These RFE results are consistent with the 

results produced in the MATLAB simulations.  

 

Figure 6.21: RFE results for modulation test 
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6.9.3 Discussion of Results 

The results of the modulation test confirm that both one-cycle and two-cycle TFT 

algorithms satisfy the performance criteria for both P class and M class measurements. 

In this test, the TFT algorithm demonstrates the ability to successfully track amplitude 

and phase angle variations that occur within an observation window. The frequency 

estimation has also produced results meeting the IEEE C37.118.1-2011 compliance 

requirements. These findings concludes that the TFT algorithm can successfully be 

employed for the measurement of power systems exhibiting modulation signals. 

6.10 Frequency Ramp Test 

The frequency ramp test assesses the performance of the TFT algorithm when 

estimating an input test signal that undergoes a frequency ramp. During this test, the 

frequency of the input signal is increased linearly from 50 Hz to 52 Hz at a positive 

ramp rate of 1 Hz/s, while maintaining a constant amplitude. A discrete test signal 

exhibiting this frequency ramp is generated in MATLAB and applied as the input to the 

test. The test signal is defined in the IEEE C37.118.1-2011 standard and is 

represented by Equation 4.8 provided in Chapter Four. 

The input parameters of the discrete test signal specified for the frequency ramp test 

are as follows: 

• Amplitude: 1V 

• Nominal power system frequency: 𝑓𝑜= 50 Hz 

• Ramp rate: Rf =+ 1Hz/s 

• Frequency ramp range: 50Hz to 52Hz 

The provided input test parameters and conditions are in accordance with the IEEE 

C37.118.1-2011 standard, and are specified for both P class and M class 

measurements. The test is conducted with the one-cycle and two-cycle TFT algorithms 

and the estimation results are recorded for evaluation and analysis.  

6.10.1 TVE Results  

The computed amplitude and phase angle estimation values produced on the STM32 

development board, utilising the one-cycle and two-cycle TFT algorithms, are recorded 

for evaluation. These phasor estimated results, along with the given reference input 

test signal values, are used to calculate the TVE, and consequently determine the 

accuracy of the measurement. In Figure 6.22, a frequency plot of the calculated TVE 

values of the one-cycle and two cycle TFT estimations are presented. The resulting 

TVE values of the one-cycle and two-cycle TFT algorithm indicate a minimal error, 
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much like the results produced in the MATLAB simulation tests. An increase in the TVE 

value is observed as the frequency ramps from 50 Hz to 52 Hz, however this remains 

well within the 1% compliance limit. In summary, the TVE results are favourable, with 

both one -cycle and two-cycle TFT versions meeting the compliance requirements for 

P class and M class measurements. 

 

Figure 6.22: TVE results of one-cycle and two-cycle TFT for frequency ramp test 

6.10.2 FE and RFE Results 

For this test, the frequency estimation is of particular importance as it relates directly 

to the system frequency that undergoes a positive linear ramp. This test assesses the 

ability of the TFT algorithm to accurately track a frequency ramp occurring in the input 

signal.  The estimated frequency and ROCOF values are computed by the one-cycle 

and two-cycle TFT algorithm deployed on the STM32 development board, and their 

results are recorded for evaluation. In Figure 6.23 , the expected change in frequency 

given by the reference signal in Equation 4.11, is plotted against the estimated 

frequency of deviation produced by the TFT algorithm.  
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Figure 6.23: Expected and estimated frequency during frequency ramp 

This illustrates the frequency estimation successfully tracking the ramping frequency 

of the input signal between 50 Hz to 52 Hz. The difference between the estimated and 

expected change in frequency yields the FE. In this manner, the FE and RFE values 

of the one-cycle and two-cycle TFT are calculated and presented in Figure 6.24 and 

Figure 6.25 respectively. 

 

Figure 6.24: FE results of one-cycle and two-cycle TFT for  frequency ramp test 
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In Figure 6.24, it can be seen that the one-cycle TFT estimation produces FE values 

below 0.005Hz, hereby satisfying the P class and M class compliance limit. The two-

cycle TFT version however is only able to maintain frequency estimation errors below 

the P class limit of 0.01Hz,  and even then this limit is exceeded as the frequency ramp 

reaches 51.5Hz. These results clearly indicate that the frequency estimation of the 

one-cycle TFT provides an improved performance in comparison with the two-cycle 

TFT variant, and this outcome has also been observed in the simulation tests.  

 

Figure 6.25: RFE results of one-cycle and two-cycle TFT for frequency ramp test 

In Figure 6.25, the RFE values of the one-cycle and two-cycle TFT algorithms are 

presented. Here we observe the RFE results for both TFT versions satisfying the 

compliance limit of 0.1Hz/s for P class and M class, however this only applies to 

frequency values close to the nominal system frequency. It should be noted as the 

frequency ramp approaches 51 Hz, the RFE values tend to exceed this limit and thus 

no longer meet the compliance requirements. By comparison the two-cycle TFT 

algorithm provides slightly lower RFE values over the one-cycle TFT version. 

6.10.3 Discussion of Results 

The frequency ramp test results indicate that the one-cycle and two-cycle TFT 

algorithm offers similar phasor estimation performances, with the TVE values 

produced by both TFT versions easily meeting the compliance requirements for P class 

and M class measurements. There is a distinction observed in the frequency estimation 

results, whereby the FE values of the one-cycle version meets M class limits, whereas 

the two-cycle version only satisfies P class limits. Lastly, the ROCOF estimation results 
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of the one-cycle and two-cycle TFT version together follow a similar trend of RFE 

values which exceed the compliance limit as the frequency ramps above 51 Hz, and 

therefore only partially satisfies the performance requirements. Overall, the results of 

the STM32 development board for the frequency ramp test reflect similar outcomes as 

to that of the simulation tests conducted in MATLAB.    

6.11 Measurement Reporting Latency Test 

The measurement reporting latency test measures the total duration for a signal 

applied at the input of the STM32 hardware prototype to be digitised and processed 

by the TFT algorithm, and the estimated signal parameters to be reported. The 

measurement reporting latency test was conducted for a reporting rate of Fs = 10  

frames per second (fps), hereby remaining consistent with the conditions prescribed 

in the MATLAB simulations. A continuous analog waveform is used as the input signal 

during the reporting latency test to ensure the processing time of the analog-to-digital 

conversion carried out on the STM32 development board is also included in the test. 

The IEEE C37.118.1-2011 standard specifies a maximum measurement reporting 

latency of 2/Fs  for P class, and 5/Fs for M class. For our implementation these latency 

limits equates to a maximum duration of 200 ms for P class and 500 ms for M class. 

To determine if the measurement reporting latency of this hardware prototype falls 

within these limits, the duration from the start of the ADC conversion, to the moment 

the phasor estimation output is reported, is measured. This latency measurement 

includes the ADC sampling and conversion time, as well as the computation time of 

the TFT algorithm. At the start of the ADC conversion and at the end of the TFT 

computation, two corresponding STM32 GPIO pins are toggled in order to mark these 

events for measurement with an oscilloscope. Figure 6.26 and Figure 6.27 are 

screenshots of the oscilloscope measurements for the two-cycle and one-cycle TFT 

algorithm respectively, and illustrate the transitions of the GPIO pins that coincide with 

the start and the end of the measurement. 
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Figure 6.26: Oscilloscope measurement of reporting latency for two-cycle TFT 
algorithm 

In Figure 6.26, the rising edge of the blue trace indicates the start of each ADC 

measurement. On the red trace, the falling edge indicates when the phasor estimated 

output is reported. The oscilloscope measurement of the time duration between these 

two points represents the measurement reporting latency, and results in a value of 

303.6 ms. This result concludes that the measured delay of the two-cycle TFT falls 

within the reporting latency limits of 500 ms and successfully meets the M class 

requirements. 

 

Figure 6.27: Oscilloscope measurement of reporting latency for one-cycle TFT 
algorithm 
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In Figure 6.27, the reporting latency of the one-cycle TFT is shown. It is observed that 

the reporting latency is reduced to a value of 145.6 ms. This is a result of the input 

signal only being acquired for one cycle, as well as a faster TFT computation time due 

to the smaller input data set. The resulting reporting latency of the one-cycle TFT is 

well within the limits for both P class and M class measurements and complies with 

the IEEE C37.118.1-2011 standard.  

These measurement reporting results confirm that the time duration for acquiring the 

input signal and computing the phasor and frequency estimation onboard the STM32 

hardware platform are within the time limits set out in the IEEE C37.118.1-2011 

standard. The one-cycle TFT algorithm provides the shortest latency as expected, 

hereby meeting the time constraints stipulated for P class, while the two-cycle TFT 

algorithm complies with the requirements for M class measurements. 

6.12 Conclusion  

In this chapter, the experimental verification and evaluation of the phasor estimations 

onboard the STM32 prototype is carried out by conducting a series of IEEE C37.118.1-

2011 compliance tests comprised of steady-state and dynamic conditions. These 

compliance tests are performed by applying a continuous analog and discrete test 

signal to the input of the TFT algorithm and assessing the output results. 

In summary , the developed STM32 prototype has demonstrated its ability to 

successfully produce phasor measurements employing the TFT algorithm. The 

accuracy and performance of the one-cycle and two-cycle TFT algorithm were 

evaluated for P class and M class measurements based on the IEEE C37.118.1-2011 

compliance requirements. The measurements produced by the  STM32 prototype 

have shown to be in line with and reflect performances shown in the MATLAB 

simulations. Many of the compliance requirements are met, however there are 

instances where certain conditions were difficult to meet. The TFT algorithm has shown 

to perform well in dynamic conditions. Phasor parameters are successfully tracked 

during frequency excursions, and accuracy is maintained when subjected to amplitude 

and phase angle modulations.   

The TFT algorithm also demonstrates its ability to suppress harmonic interference, but 

struggles with interharmonic and subharmonic components, and may require 

additional filtering for these type of scenarios. The TFT algorithm has displayed its best 

performances and accuracy for signal frequencies occurring at the nominal power 

system frequency. At off-nominal frequencies, a decline in performance and accuracy 

is observed. This is mainly attributed to inaccuracies incurred in the phase angle due 
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to the signal no longer fitting uniformly within the observation interval. For phasor 

estimation, the two-cycle TFT algorithm has shown a slight improvement in 

performance and accuracy in contrast to the one-cycle TFT algorithm, illustrating the 

benefit of adopting longer observation windows. The measurement latency of the one-

cycle and two-cycle TFT were also found to successfully satisfy P class and M class 

measurements respectively. These outcomes supports the proposition of having the 

two-cycle TFT algorithm dedicated for M class measurements, while utilising the one-

cycle TFT algorithm for P class measurements.  

The effect of the ADC measurements on the phasor estimations are also examined. 

When a continuous analog input signal is sampled and digitised by the STM32 onboard 

ADC, a non-ideal sinusoidal signal with imperfections is produced and applied to the 

input of the TFT algorithm. This causes a degradation in the accuracy of the phasor 

measurement when compared to results found in the MATLAB simulations, and 

demonstrates the typical difference found between real world test and simulation test 

environments. The frequency and ROCOF estimations are found to be sensitive to any 

noise present in the input signal as these values are based-on derivatives. 

Performance and accuracy can be improved by employing front-end filtering to ensure 

the test signal is as close to the ideal sinusoidal signal as possible. High-end test 

instruments also play an important role as these determine the precision of the 

reference test signal, as well as ensuring the accurate measurement of input signal 

parameters. These factors all have an impact on the calculated performance indicators 

and are crucial for ensuring an accurate evaluation result. 
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 CHAPTER SEVEN 
CONCLUSION 

7.1 Introduction 

The final chapter of this thesis discusses the deliverables produced by this research 

project, and concludes with a summary of the findings, closing remarks, and 

recommendations for future work. 

7.2 Thesis deliverables 

The thesis deliverables are derived from the aim and objectives of this research project 

indicated in Chapter One. The following section outlines the deliverables that have 

been achieved during this research work. 

7.2.1 Literature review 

A literature review has been conducted providing essential knowledge and information 

required for application in this research project.  The literature review establishes a  

theoretical basis and clear understanding of synchrophasor measurement, PMUs, the 

IEEE C37.118 standard, and related concepts currently within this field. The study 

focuses on time and frequency domain synchrophasor estimation algorithms and 

techniques proposed in published research papers, as well as the practical 

implementations thereof through appropriate hardware and software components. This 

lays the groundwork for the design and development of the P and M class phasor 

measurement prototype.  

7.2.2 Theoretical framework 

A theoretical framework is formulated providing a background to the mathematical 

principles of static and dynamic signal and phasor models, and illustrates its 

importance in phasor estimation. The underlying principles and fundamental operation 

of the second-order TFT phasor estimation algorithm are presented, encompassing 

matrix algebra, least squares sine fitting, and Taylor series approximation, upon which 

the phasor estimator is built. The relevant equations for computing the phasor and 

frequency parameters of a sinusoidal waveform are provided, as well as the 

performance indicators for evaluating the  estimated results. The theoretical framework  

sets the stage for the MATLAB implementation of the TFT algorithm and the verification 

of its operation via simulation. 

7.2.3 MATLAB- implementation of TFT algorithm 

A MATLAB-implementation of the one-cycle and two-cycle second-order TFT 

algorithm is provided, adopted from a research paper presented by Khodaparast and 

Khederzadeh (2015). An extract  of the MATLAB code is provided in Appendix A. 
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7.2.4 STM32 embedded source code 

The embedded source code written in C for deployment on the STM32 Nucleo-F767ZI 

development board is provided. This consists of a ported version of the TFT algorithm, 

as well as the serial communication data transfer and ADC data acquisition 

functionality carried out onboard the STM32 development platform. An extract of the 

STM32 embedded C code is included in Appendix B. 

7.2.5 Phasor measurement prototype 

The P and M class phasor measurement prototype is one of the primary deliverables 

of this research project. The development of this phasor measurement device 

demonstrates and facilitates the following key aspects within this research project:  

• The design and development of a P and M class phasor measurement device 

on a single hardware platform. 

• The porting of the one-cycle and two-cycle TFT algorithm to C code, and the 

deployment thereof on a STM32 Nucleo development board. 

• The verification and performance evaluation of the P and M class phasor 

measurements produced by the prototype in accordance with the IEEE 

C37.118.1-2011 standard. 

7.3 Conclusions 

In this section, a summary of the findings and conclusions of this research project are 

provided.  

7.3.1 Summary of test results and findings 

The compliance test results produced by the phasor measurement prototype are 

assessed and verified against the corresponding tests simulated in MATLAB. The two 

sets of results have confirmed similar performance levels for discrete test signals, 

however typical noise introduce during analog-to-digital conversion severely degrades 

the performance and accuracy of the TFT algorithm. This drawback has also been 

observed for out-of-band interference, highlighting the importance of front-end filtering 

and the suppression of unwanted interference signals when employing this phasor 

estimation technique. 

The phasor estimation performed by the two-cycle TFT algorithm has shown to be 

marginally more accurate compared to that of the one-cycle TFT, given its longer 

observation interval. The one-cycle and two-cycle TFT algorithm has also successfully 

met P class and M class latency requirements respectively. These results support the 

prospect of having the one-cycle TFT algorithm dedicated to P class measurements, 
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and reserving the two-cycle TFT algorithm solely for M class measurements. A 

degradation in the accuracy of the frequency estimation has been observed specifically 

at off-nominal frequencies, revealing one of the limitations of the TFT phasor 

estimation technique. Overall, the performance and accuracy of the phasor 

measurement prototype have fulfilled many of the compliance requirements stipulated 

by the IEEE C37.118.1-2011 standard, however certain instances have proven to be 

challenging to meet.  

7.3.2 Concluding remarks 

This research project has successfully showcased the development of a low-cost P 

class and M class measurement device on a single hardware platform. The cost is 

primarily based on the price of the STM32 Nucleo-F767ZI development board which 

provides the key components required to implement the PMU prototype. The phasor 

measurement device successfully performs static and dynamic phasor and frequency 

estimations by means of the one-cycle and two-cycle TFT algorithm. Since both 

functions are performed on a single platform, demonstrates its flexibility and versatility 

by supporting two applications. This outcome successfully addresses and supports the 

initial research problem and hypothesis indicated in Chapter One. The concept, 

methodology and design employed in this research project can be adopted for 

developing measurement devices for various smart grid application, thereby facilitating 

and aiding research and experimentation in this field. 

7.4 Future work and recommendations 

This research project focuses on the implementation and evaluation of the TFT 

algorithm as a phasor estimator on the STM32 Nucleo board. This implementation 

could be extended to include a broader range of phasor estimation algorithms, allowing 

for a comparative analysis of their measurement performance and accuracy. Additional 

development could be undertaken to produce a fully-fledged PMU which would require 

additional functionality incorporating UTC synchronisation via GPS, and the ethernet 

data transfer of phasor measurements in compliance with the IEEE C37.118.2-2011. 

To accommodate for multiphase systems, the design could possibly be implemented 

using multiple STM32 Nucleo boards, with each device assigned to a specific phase. 

Another interesting research area to investigate is the development of other types of 

measurement devices such as Merging Units (MU) or Intelligent Electronic Devices 

(IED) implemented on the same STM32 hardware platform. Further research could 

explore alternative processing platforms for deploying these smart grid measurement 

devices to, taking into account measurement performance, accuracy, cost, ease of 

use, and development time.  
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APPENDICES 
Appendix A: MATLAB code of one-cycle and two-cycle TFT algorithm 

 
%% One-cycle TFT algorithm %% 
function 
[amplitude,phaz,amplitudep,phazp,amplitudez,phazz,P]=phasor_estimation_method4_1cy
cle(N1,f0,S) 
 
B=zeros((1*N1+1),6); 
size_B = size(B) 
Nh=N1/2; 
w1=2*pi/N1; 
delT=1/(f0*N1); 
size_B = size(B) 
 
for n=-8:8  
    B(n+8+1,1)=(n^2)*exp(1i*n*w1); 
    B(n+8+1,2)=(n)*exp(1i*n*w1); 
    B(n+8+1,3)=(1)*exp(1i*n*w1); 
    B(n+8+1,4)=(1)*exp(-1i*n*w1); 
    B(n+8+1,5)=(n)*exp(-1i*n*w1); 
    B(n+8+1,6)=(n^2)*exp(-1i*n*w1); 
end 
 
teta=2*pi/N1; 
SN1=zeros((1*N1+1),1); 
SN1(1:(1*N1+1))=S(1:(1*N1+1)); 
size_SN1 =size(SN1) 
size_S = size(S) 
Phat(:,1)=(inv(B'*B)*B'*SN1); 
Phat_size = size(Phat) 
 
ahat=2*abs(Phat(3,1)); 
phihat=atan2(imag(Phat(3,1)),real(Phat(3,1))); 
 
Phat(2,1)=Phat(2,1)/delT; 
ahatp=2*real(Phat(2,1)*exp(-1i*phihat(1,1))); 
phihatp=(2/ahat(1,1))*imag(Phat(2,1)*exp(-1i*phihat(1,1))); 
 
Phat(1,1)=Phat(1,1)/(delT^2); 
ahatz=4*real(Phat(1,1)*exp(-1i*phihat(1,1)))+(ahat(1,1)*((phihatp(1,1))^2)); 
phihatz=((4*imag(Phat(1,1)*exp(-1i*phihat(1,1))))-
(2*ahatp(1,1)*phihatp(1,1)))/ahat(1,1); 
 
amplitude=ahat; 
phaz=phihat-pi; 
     
amplitudep=ahatp; 
phazp=phihatp; 
     
amplitudez=ahatz; 
phazz=phihatz; 
P=Phat; 
 
B_size = size(B) 
S_size = size(S) 
SN1_size = size(SN1) 
Phat_size = size(Phat) 
SNN = SN1 
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frequency = phihatp/(2*pi) 
rocof = phihatz/(2*pi) 
    
%% Two-cycle TFT algorithm %% 
function 
[amplitude,phaz,amplitudep,phazp,amplitudez,phazz,P]=phasor_estimation_method4(N1,
f0,S) 
 
B=(zeros((2*N1+1),6)); 
Nh=N1; 
w1=2*pi/N1; 
delT=1/(f0*N1); 
 
for n=-Nh:Nh 
    B(n+Nh+1,1)=(n^2)*exp(1i*n*w1); 
    B(n+Nh+1,2)=(n)*exp(1i*n*w1); 
    B(n+Nh+1,3)=(1)*exp(1i*n*w1); 
    B(n+Nh+1,4)=(1)*exp(-1i*n*w1); 
    B(n+Nh+1,5)=(n)*exp(-1i*n*w1); 
    B(n+Nh+1,6)=(n^2)*exp(-1i*n*w1); 
end 
 
teta=2*pi/N1; 
SN1=(zeros((2*N1+1),1)); 
SN1(1:(2*N1+1))=S(1:(2*N1+1)); 
Phat(:,1)=(inv(B'*B)*B'*SN1); 
Phat_size = size(Phat) 
 
ahat=2*abs(Phat(3,1)); 
phihat=atan2(imag(Phat(3,1)),real(Phat(3,1))); 
 
Phat(2,1)=Phat(2,1)/delT; 
ahatp=2*real(Phat(2,1)*exp(-1i*phihat(1,1))); 
phihatp=(2/ahat(1,1))*imag(Phat(2,1)*exp(-1i*phihat(1,1))); 
 
Phat(1,1)=Phat(1,1)/(delT^2); 
ahatz=4*real(Phat(1,1)*exp(-1i*phihat(1,1)))+(ahat(1,1)*((phihatp(1,1))^2)); 
phihatz=((4*imag(Phat(1,1)*exp(-1i*phihat(1,1))))-
(2*ahatp(1,1)*phihatp(1,1)))/ahat(1,1); 
 
amplitude=ahat; 
phaz=phihat; 
     
amplitudep=ahatp; 
phazp=phihatp; 
     
amplitudez=ahatz; 
phazz=phihatz; 
P=Phat; 
 
B_size = size(B) 
S_size = size(S) 
SN1_size = size(SN1) 
Phat_size = size(Phat) 
frequency = phihatp/(2*pi) 
rocof = phihatz/(2*pi) 
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Appendix B: STM32 embedded source code 
 
//==============================================================================// 
/* main.c file */ 
//==============================================================================// 
 
#include "main.h" 
#include "phasor_estimation.h" 
#include "rtwtypes.h" 
#include <string.h> 
#include <stdio.h> 
#include <stdbool.h> 
 
#define ADC_BUF_LEN 641 //1-cycle 
//#define ADC_BUF_LEN 1281 //2-cycle 
#define M_CNT 50    // set amount of estimation outputs stored in array 
#define ADC_CNT 50  // set number of ADC measurements triggered by 500mS timer 
 
ADC_HandleTypeDef hadc1; 
DMA_HandleTypeDef hdma_adc1; 
 
TIM_HandleTypeDef htim1; 
TIM_HandleTypeDef htim3; 
 
UART_HandleTypeDef huart3; 
 
PCD_HandleTypeDef hpcd_USB_OTG_FS; 
 
/* Global Variables */ 
uint16_t adc_buf[ADC_BUF_LEN]; 
float adc_store[ADC_BUF_LEN]; 
uint16_t m_cnt=0; 
uint16_t adc_cnt=0; 
int global_tb2, global_tb1; 
int t2, t1; 
int proc_time=0; 
int global_proc_time_b=0; 
float amplitude_store[M_CNT]; 
float phase_store[M_CNT]; 
float freq_store[M_CNT]; 
float rocof_store[M_CNT]; 
uint16_t j=0; 
 
//******Load discrete signal from file******// 
const float input1281[] = { 
  #include "test_signal_2.txt" 
  }; 
 
void SystemClock_Config(void); 
static void MX_GPIO_Init(void); 
static void MX_USART3_UART_Init(void); 
static void MX_DMA_Init(void); 
static void MX_TIM1_Init(void); 
static void MX_ADC1_Init(void); 
static void MX_USB_OTG_FS_PCD_Init(void); 
static void MX_TIM3_Init(void); 
 
int main(void) 
{ 
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  HAL_Init(); 
 
  phasor_estimation_initialize(); 
 
  SystemClock_Config(); 
 
  MX_GPIO_Init(); 
  MX_USART3_UART_Init(); 
  MX_DMA_Init(); 
  MX_TIM1_Init(); 
  MX_ADC1_Init(); 
  MX_USB_OTG_FS_PCD_Init(); 
  MX_TIM3_Init(); 
 
  HAL_Delay(1000); 
  HAL_TIM_Base_Start(&htim1); // start timer 
  HAL_TIM_OC_Start(&htim1, TIM_CHANNEL_1); //start debug line ie. when timer 
triggers adc 
  HAL_Delay(500); 
  HAL_ADC_Start_DMA(&hadc1, (uint32_t*)adc_buf, ADC_BUF_LEN); //enable adc via 
dma, clocked by compare register 
  HAL_GPIO_TogglePin(GPIOB, GPIO_PIN_8);// this is to sync with oscilloscope 
measurement 
  // Start timer 
  HAL_TIM_Base_Start_IT(&htim3); 
 
  char msg[100]; // variable for printing data 
  double amplitude, amplitudep, amplitudez, phat3re, phat3im; 
  double phaz, phazp, phazz, freq; 
 
  rtU.f0 = 50; 
  rtU.N1 = 640; 
 
  int loop_cnt = 0; 
 
  while (1) 
  { 
 
      loop_cnt++; //counter for while loop 
   HAL_Delay(100); 
   HAL_GPIO_TogglePin(GPIOB, GPIO_PIN_14);//toggle red led 
   HAL_GPIO_TogglePin(GPIOB, GPIO_PIN_15); 
 
   //**********PRINT STORED ADC OUTPUT**********// 
   sprintf(msg, "Converted ADC value\r\n"); 
   HAL_UART_Transmit(&huart3, (uint8_t *)msg, strlen(msg), 2000); 
   for (int i = 0; i < ADC_BUF_LEN; i++) 
   { 
    sprintf(msg, "%f ", adc_store[i]); 
    HAL_UART_Transmit(&huart3, (uint8_t *)msg, strlen(msg), 1000); 
   } 
   sprintf(msg, "------------------\r\n"); 
   HAL_UART_Transmit(&huart3, (uint8_t *)msg, strlen(msg), 2000); 
 
   sprintf(msg, "m_cnt = %d\r\n", m_cnt); 
   HAL_UART_Transmit(&huart3, (uint8_t *)msg, strlen(msg), 1000); 
 
   for (int i = 0; i < M_CNT; i++) // print 50 amplitude outputs 
   { 
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    sprintf(msg, "amplitude_store(%d) = %f\r\n", i+1, 
amplitude_store[i]); 
    HAL_UART_Transmit(&huart3, (uint8_t *)msg, strlen(msg), 1000); 
   } 
 
   sprintf(msg, "\r\n"); 
   HAL_UART_Transmit(&huart3, (uint8_t *)msg, strlen(msg), 1000); 
 
   for (int i = 0; i < M_CNT; i++) // print 50 phase angle outputs 
   { 
    sprintf(msg, "phase_store(%d) = %f\r\n", i+1, phase_store[i]); 
    HAL_UART_Transmit(&huart3, (uint8_t *)msg, strlen(msg), 1000); 
   } 
   sprintf(msg, "\r\n"); 
   HAL_UART_Transmit(&huart3, (uint8_t *)msg, strlen(msg), 1000); 
 
   for (int i = 0; i < M_CNT; i++) // print 50 frequency outputs 
   { 
    sprintf(msg, "freq_store(%d) = %f\r\n", i+1, freq_store[i]); 
    HAL_UART_Transmit(&huart3, (uint8_t *)msg, strlen(msg), 1000); 
   } 
   sprintf(msg, "\r\n"); 
   HAL_UART_Transmit(&huart3, (uint8_t *)msg, strlen(msg), 1000); 
 
   for (int i = 0; i < M_CNT; i++) // print 50 rocof outputs 
   { 
    sprintf(msg, "rocof_store(%d) = %f\r\n", i+1, rocof_store[i]); 
    HAL_UART_Transmit(&huart3, (uint8_t *)msg, strlen(msg), 1000); 
   } 
   sprintf(msg, "\r\n"); 
   HAL_UART_Transmit(&huart3, (uint8_t *)msg, strlen(msg), 1000); 
 
  } 
 
} 
 
void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc) 
{ 
 HAL_GPIO_WritePin(GPIOB, GPIO_PIN_9, GPIO_PIN_SET); //SET HIGH AT START 
 global_tb1=0; 
 global_tb2=0; 
 global_tb1 = HAL_GetTick(); //Provides a tick value in millisecond. 
 
 int array_length = ADC_BUF_LEN; // copy adc values to store and tft input 
 
 for (int i = 0; i < array_length; i++) 
 { 
  adc_store[i] = (adc_buf[i]*(3.3/4096))-0.98; 
  rtU.S[i] = adc_store[i]; // copy store to tft input 
 } 
 
 j+=640; //1-cycle 
 //j+=1280; //2-cycle 
 
 phasor_estimation_step(); 
 
 global_tb2 = HAL_GetTick(); 
 global_proc_time_b = global_tb2-global_tb1; 
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 HAL_GPIO_WritePin(GPIOB, GPIO_PIN_9, GPIO_PIN_RESET); // set low when 
complete 
 
 if (m_cnt < M_CNT) 
 
 { 
  amplitude_store[m_cnt] = rtY.ahat; // store each measurement in 
array 
  phase_store[m_cnt] = rtY.phihat-3.141592653; 
  freq_store[m_cnt] = rtY.phihatp/(2*3.141592653); 
  rocof_store[m_cnt] = rtY.phihatz/(2*3.141592653); 
  //HAL_ADC_Start_DMA(&hadc1, (uint32_t*)adc_buf, ADC_BUF_LEN); //re-
enable adc via dma 
  m_cnt++; 
  HAL_GPIO_TogglePin(GPIOB, GPIO_PIN_7);//toggle blue led - PB7 
 } 
 
} 
//ISR executes every 500mS. Starts ADC via DMA and toggles pin 
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) 
{ 
 if (htim==&htim3) 
 { 
  if (adc_cnt < ADC_CNT) // remove to continuously re-enable adc. 
  { 
   HAL_ADC_Start_DMA(&hadc1, (uint32_t*)adc_buf, ADC_BUF_LEN); 
//re-enable adc via dma 
      HAL_GPIO_TogglePin(GPIOB, GPIO_PIN_0); //green led 
      adc_cnt++; 
  } 
 } 
} 
 
//==============================================================================// 
/* phasor_estiamtion.c file */ 
//==============================================================================// 
 
 
#include "phasor_estimation.h" 
#define NumBitsPerChar                 8U 
 
/* Block signals and states (default storage) */ 
DW rtDW; 
 
/* External inputs (root inport signals with default storage) */ 
ExtU rtU; 
 
/* External outputs (root outports fed by signals with default storage) */ 
ExtY rtY; 
 
/* Real-time model */ 
static RT_MODEL rtM_; 
RT_MODEL *const rtM = &rtM_; 
extern real_T rt_hypotd_snf(real_T u0, real_T u1); 
extern real_T rt_atan2d_snf(real_T u0, real_T u1); 
 
/* Forward declaration for local functions */ 
static void inv(const creal_T x[36], creal_T y[36]); 
static real_T rtGetNaN(void); 
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static real32_T rtGetNaNF(void); 
 
/*===========* 
 * Constants * 
 *===========*/ 
#define RT_PI                          3.14159265358979323846 
#define RT_PIF                         3.1415927F 
#define RT_LN_10                       2.30258509299404568402 
#define RT_LN_10F                      2.3025851F 
#define RT_LOG10E                      0.43429448190325182765 
#define RT_LOG10EF                     0.43429449F 
#define RT_E                           2.7182818284590452354 
#define RT_EF                          2.7182817F 
 
/* 
 * UNUSED_PARAMETER(x) 
 *   Used to specify that a function parameter (argument) is required but not 
 *   accessed by the function body. 
 */ 
#ifndef UNUSED_PARAMETER 
#if defined(__LCC__) 
#define UNUSED_PARAMETER(x)                                      /* do nothing */ 
#else 
 
/* 
 * This is the semi-ANSI standard way of indicating that an 
 * unused function parameter is required. 
 */ 
#define UNUSED_PARAMETER(x)            (void) (x) 
#endif 
#endif 
 
extern real_T rtInf; 
extern real_T rtMinusInf; 
extern real_T rtNaN; 
extern real32_T rtInfF; 
extern real32_T rtMinusInfF; 
extern real32_T rtNaNF; 
static void rt_InitInfAndNaN(size_t realSize); 
static boolean_T rtIsInf(real_T value); 
static boolean_T rtIsInfF(real32_T value); 
static boolean_T rtIsNaN(real_T value); 
static boolean_T rtIsNaNF(real32_T value); 
typedef struct { 
  struct { 
    uint32_T wordH; 
    uint32_T wordL; 
  } words; 
} BigEndianIEEEDouble; 
 
typedef struct { 
  struct { 
    uint32_T wordL; 
    uint32_T wordH; 
  } words; 
} LittleEndianIEEEDouble; 
 
typedef struct { 
  union { 
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    real32_T wordLreal; 
    uint32_T wordLuint; 
  } wordL; 
} IEEESingle; 
 
real_T rtInf; 
real_T rtMinusInf; 
real_T rtNaN; 
real32_T rtInfF; 
real32_T rtMinusInfF; 
real32_T rtNaNF; 
static real_T rtGetInf(void); 
static real32_T rtGetInfF(void); 
static real_T rtGetMinusInf(void); 
static real32_T rtGetMinusInfF(void); 
 
/* 
 * Initialize rtNaN needed by the generated code. 
 * NaN is initialized as non-signaling. Assumes IEEE. 
 */ 
static real_T rtGetNaN(void) 
{ 
  size_t bitsPerReal = sizeof(real_T) * (NumBitsPerChar); 
  real_T nan = 0.0; 
  if (bitsPerReal == 32U) { 
    nan = rtGetNaNF(); 
  } else { 
    union { 
      LittleEndianIEEEDouble bitVal; 
      real_T fltVal; 
    } tmpVal; 
 
    tmpVal.bitVal.words.wordH = 0xFFF80000U; 
    tmpVal.bitVal.words.wordL = 0x00000000U; 
    nan = tmpVal.fltVal; 
  } 
 
  return nan; 
} 
 
/* 
 * Initialize rtNaNF needed by the generated code. 
 * NaN is initialized as non-signaling. Assumes IEEE. 
 */ 
static real32_T rtGetNaNF(void) 
{ 
  IEEESingle nanF = { { 0.0F } }; 
 
  nanF.wordL.wordLuint = 0xFFC00000U; 
  return nanF.wordL.wordLreal; 
} 
 
/* 
 * Initialize the rtInf, rtMinusInf, and rtNaN needed by the 
 * generated code. NaN is initialized as non-signaling. Assumes IEEE. 
 */ 
static void rt_InitInfAndNaN(size_t realSize) 
{ 
  (void) (realSize); 
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  rtNaN = rtGetNaN(); 
  rtNaNF = rtGetNaNF(); 
  rtInf = rtGetInf(); 
  rtInfF = rtGetInfF(); 
  rtMinusInf = rtGetMinusInf(); 
  rtMinusInfF = rtGetMinusInfF(); 
} 
 
/* Test if value is infinite */ 
static boolean_T rtIsInf(real_T value) 
{ 
  return (boolean_T)((value==rtInf || value==rtMinusInf) ? 1U : 0U); 
} 
 
/* Test if single-precision value is infinite */ 
static boolean_T rtIsInfF(real32_T value) 
{ 
  return (boolean_T)(((value)==rtInfF || (value)==rtMinusInfF) ? 1U : 0U); 
} 
 
/* Test if value is not a number */ 
static boolean_T rtIsNaN(real_T value) 
{ 
  boolean_T result = (boolean_T) 0; 
  size_t bitsPerReal = sizeof(real_T) * (NumBitsPerChar); 
  if (bitsPerReal == 32U) { 
    result = rtIsNaNF((real32_T)value); 
  } else { 
    union { 
      LittleEndianIEEEDouble bitVal; 
      real_T fltVal; 
    } tmpVal; 
 
    tmpVal.fltVal = value; 
    result = (boolean_T)((tmpVal.bitVal.words.wordH & 0x7FF00000) == 0x7FF00000 && 
                         ( (tmpVal.bitVal.words.wordH & 0x000FFFFF) != 0 || 
                          (tmpVal.bitVal.words.wordL != 0) )); 
  } 
 
  return result; 
} 
 
/* Test if single-precision value is not a number */ 
static boolean_T rtIsNaNF(real32_T value) 
{ 
  IEEESingle tmp; 
  tmp.wordL.wordLreal = value; 
  return (boolean_T)( (tmp.wordL.wordLuint & 0x7F800000) == 0x7F800000 && 
                     (tmp.wordL.wordLuint & 0x007FFFFF) != 0 ); 
} 
 
/* 
 * Initialize rtInf needed by the generated code. 
 * Inf is initialized as non-signaling. Assumes IEEE. 
 */ 
static real_T rtGetInf(void) 
{ 
  size_t bitsPerReal = sizeof(real_T) * (NumBitsPerChar); 
  real_T inf = 0.0; 
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  if (bitsPerReal == 32U) { 
    inf = rtGetInfF(); 
  } else { 
    union { 
      LittleEndianIEEEDouble bitVal; 
      real_T fltVal; 
    } tmpVal; 
 
    tmpVal.bitVal.words.wordH = 0x7FF00000U; 
    tmpVal.bitVal.words.wordL = 0x00000000U; 
    inf = tmpVal.fltVal; 
  } 
 
  return inf; 
} 
 
/* 
 * Initialize rtInfF needed by the generated code. 
 * Inf is initialized as non-signaling. Assumes IEEE. 
 */ 
static real32_T rtGetInfF(void) 
{ 
  IEEESingle infF; 
  infF.wordL.wordLuint = 0x7F800000U; 
  return infF.wordL.wordLreal; 
} 
 
/* 
 * Initialize rtMinusInf needed by the generated code. 
 * Inf is initialized as non-signaling. Assumes IEEE. 
 */ 
static real_T rtGetMinusInf(void) 
{ 
  size_t bitsPerReal = sizeof(real_T) * (NumBitsPerChar); 
  real_T minf = 0.0; 
  if (bitsPerReal == 32U) { 
    minf = rtGetMinusInfF(); 
  } else { 
    union { 
      LittleEndianIEEEDouble bitVal; 
      real_T fltVal; 
    } tmpVal; 
 
    tmpVal.bitVal.words.wordH = 0xFFF00000U; 
    tmpVal.bitVal.words.wordL = 0x00000000U; 
    minf = tmpVal.fltVal; 
  } 
 
  return minf; 
} 
 
/* 
 * Initialize rtMinusInfF needed by the generated code. 
 * Inf is initialized as non-signaling. Assumes IEEE. 
 */ 
static real32_T rtGetMinusInfF(void) 
{ 
  IEEESingle minfF; 
  minfF.wordL.wordLuint = 0xFF800000U; 
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  return minfF.wordL.wordLreal; 
} 
 
/* Function for MATLAB Function: '<Root>/MATLAB Function' */ 
static void inv(const creal_T x[36], creal_T y[36]) 
{ 
  creal_T A[36]; 
  real_T A_im_tmp; 
  real_T A_im_tmp_0; 
  real_T bim; 
  real_T br; 
  real_T smax; 
  real_T temp_im; 
  int32_T b_ix; 
  int32_T c_j; 
  int32_T d_k; 
  int32_T ijA; 
  int32_T ix; 
  int32_T iy; 
  int32_T jj; 
  int8_T ipiv[6]; 
  int8_T p[6]; 
  for (b_ix = 0; b_ix < 36; b_ix++) { 
    A[b_ix] = x[b_ix]; 
    y[b_ix].re = 0.0; 
    y[b_ix].im = 0.0; 
  } 
 
  for (b_ix = 0; b_ix < 6; b_ix++) { 
    ipiv[b_ix] = (int8_T)(b_ix + 1); 
  } 
 
  for (c_j = 0; c_j < 5; c_j++) { 
    jj = c_j * 7; 
    iy = 0; 
    ix = jj; 
    smax = fabs(A[jj].re) + fabs(A[jj].im); 
    for (d_k = 2; d_k <= 6 - c_j; d_k++) { 
      ix++; 
      A_im_tmp_0 = fabs(A[ix].re) + fabs(A[ix].im); 
      if (A_im_tmp_0 > smax) { 
        iy = d_k - 1; 
        smax = A_im_tmp_0; 
      } 
    } 
 
    b_ix = jj + iy; 
    if ((A[b_ix].re != 0.0) || (A[b_ix].im != 0.0)) { 
      if (iy != 0) { 
        iy += c_j; 
        ipiv[c_j] = (int8_T)(iy + 1); 
        for (d_k = 0; d_k < 6; d_k++) { 
          ix = d_k * 6 + c_j; 
          smax = A[ix].re; 
          temp_im = A[ix].im; 
          b_ix = d_k * 6 + iy; 
          A[ix] = A[b_ix]; 
          A[b_ix].re = smax; 
          A[iy + d_k * 6].im = temp_im; 
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        } 
      } 
 
      iy = (jj - c_j) + 6; 
      for (ix = jj + 1; ix < iy; ix++) { 
        smax = A[ix].re; 
        temp_im = A[ix].im; 
        br = A[jj].re; 
        A_im_tmp = A[jj].im; 
        if (A_im_tmp == 0.0) { 
          if (temp_im == 0.0) { 
            A[ix].re = smax / br; 
            A[ix].im = 0.0; 
          } else if (smax == 0.0) { 
            A[ix].re = 0.0; 
            A[ix].im = temp_im / br; 
          } else { 
            A[ix].re = smax / br; 
            A[ix].im = temp_im / br; 
          } 
        } else if (br == 0.0) { 
          if (smax == 0.0) { 
            A[ix].re = temp_im / A_im_tmp; 
            A[ix].im = 0.0; 
          } else if (temp_im == 0.0) { 
            A[ix].re = 0.0; 
            A[ix].im = -(smax / A_im_tmp); 
          } else { 
            A[ix].re = temp_im / A_im_tmp; 
            A[ix].im = -(smax / A_im_tmp); 
          } 
        } else { 
          A_im_tmp_0 = fabs(br); 
          bim = fabs(A_im_tmp); 
          if (A_im_tmp_0 > bim) { 
            A_im_tmp_0 = A_im_tmp / br; 
            A_im_tmp = A_im_tmp_0 * A_im_tmp + br; 
            A[ix].re = (A_im_tmp_0 * temp_im + smax) / A_im_tmp; 
            A[ix].im = (temp_im - A_im_tmp_0 * smax) / A_im_tmp; 
          } else if (bim == A_im_tmp_0) { 
            br = br > 0.0 ? 0.5 : -0.5; 
            A_im_tmp = A_im_tmp > 0.0 ? 0.5 : -0.5; 
            A[ix].re = (smax * br + temp_im * A_im_tmp) / A_im_tmp_0; 
            A[ix].im = (temp_im * br - smax * A_im_tmp) / A_im_tmp_0; 
          } else { 
            A_im_tmp_0 = br / A_im_tmp; 
            A_im_tmp += A_im_tmp_0 * br; 
            A[ix].re = (A_im_tmp_0 * smax + temp_im) / A_im_tmp; 
            A[ix].im = (A_im_tmp_0 * temp_im - smax) / A_im_tmp; 
          } 
        } 
      } 
    } 
 
    iy = jj; 
    ix = jj + 6; 
    for (d_k = 0; d_k <= 4 - c_j; d_k++) { 
      if ((A[ix].re != 0.0) || (A[ix].im != 0.0)) { 
        int32_T d; 
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        smax = -A[ix].re - A[ix].im * 0.0; 
        temp_im = A[ix].re * 0.0 + -A[ix].im; 
        b_ix = jj + 1; 
        ijA = iy + 7; 
        d = (iy - c_j) + 12; 
        while (ijA + 1 <= d) { 
          A_im_tmp = A[b_ix].re; 
          A_im_tmp_0 = A[b_ix].im; 
          A[ijA].re += A_im_tmp * smax - A_im_tmp_0 * temp_im; 
          A[ijA].im += A_im_tmp * temp_im + A_im_tmp_0 * smax; 
          b_ix++; 
          ijA++; 
        } 
      } 
 
      ix += 6; 
      iy += 6; 
    } 
  } 
 
  for (b_ix = 0; b_ix < 6; b_ix++) { 
    p[b_ix] = (int8_T)(b_ix + 1); 
  } 
 
  for (c_j = 0; c_j < 5; c_j++) { 
    int8_T ipiv_0; 
    ipiv_0 = ipiv[c_j]; 
    if (ipiv_0 > c_j + 1) { 
      jj = p[ipiv_0 - 1]; 
      p[ipiv_0 - 1] = p[c_j]; 
      p[c_j] = (int8_T)jj; 
    } 
  } 
 
  for (c_j = 0; c_j < 6; c_j++) { 
    jj = p[c_j] - 1; 
    b_ix = 6 * jj + c_j; 
    y[b_ix].re = 1.0; 
    y[b_ix].im = 0.0; 
    for (iy = c_j; iy + 1 < 7; iy++) { 
      b_ix = 6 * jj + iy; 
      if ((y[b_ix].re != 0.0) || (y[b_ix].im != 0.0)) { 
        for (ix = iy + 1; ix + 1 < 7; ix++) { 
          ijA = 6 * iy + ix; 
          smax = A[ijA].re; 
          temp_im = A[ijA].im; 
          A_im_tmp = y[b_ix].re * temp_im + y[b_ix].im * smax; 
          d_k = 6 * jj + ix; 
          y[d_k].re -= y[b_ix].re * smax - y[b_ix].im * temp_im; 
          y[d_k].im -= A_im_tmp; 
        } 
      } 
    } 
  } 
 
  for (c_j = 0; c_j < 6; c_j++) { 
    jj = 6 * c_j; 
    for (iy = 5; iy >= 0; iy--) { 
      ix = 6 * iy; 
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      b_ix = iy + jj; 
      if ((y[b_ix].re != 0.0) || (y[b_ix].im != 0.0)) { 
        smax = y[b_ix].re; 
        temp_im = y[b_ix].im; 
        br = A[iy + ix].re; 
        A_im_tmp = A[iy + ix].im; 
        if (A_im_tmp == 0.0) { 
          if (temp_im == 0.0) { 
            b_ix = iy + jj; 
            y[b_ix].re = smax / br; 
            y[b_ix].im = 0.0; 
          } else if (smax == 0.0) { 
            b_ix = iy + jj; 
            y[b_ix].re = 0.0; 
            y[b_ix].im = temp_im / br; 
          } else { 
            b_ix = iy + jj; 
            y[b_ix].re = smax / br; 
            y[b_ix].im = temp_im / br; 
          } 
        } else if (br == 0.0) { 
          if (smax == 0.0) { 
            b_ix = iy + jj; 
            y[b_ix].re = temp_im / A_im_tmp; 
            y[b_ix].im = 0.0; 
          } else if (temp_im == 0.0) { 
            b_ix = iy + jj; 
            y[b_ix].re = 0.0; 
            y[b_ix].im = -(smax / A_im_tmp); 
          } else { 
            b_ix = iy + jj; 
            y[b_ix].re = temp_im / A_im_tmp; 
            y[b_ix].im = -(smax / A_im_tmp); 
          } 
        } else { 
          A_im_tmp_0 = fabs(br); 
          bim = fabs(A_im_tmp); 
          if (A_im_tmp_0 > bim) { 
            A_im_tmp_0 = A_im_tmp / br; 
            A_im_tmp = A_im_tmp_0 * A_im_tmp + br; 
            b_ix = iy + jj; 
            y[b_ix].re = (A_im_tmp_0 * temp_im + smax) / A_im_tmp; 
            y[b_ix].im = (temp_im - A_im_tmp_0 * smax) / A_im_tmp; 
          } else if (bim == A_im_tmp_0) { 
            br = br > 0.0 ? 0.5 : -0.5; 
            A_im_tmp = A_im_tmp > 0.0 ? 0.5 : -0.5; 
            b_ix = iy + jj; 
            y[b_ix].re = (smax * br + temp_im * A_im_tmp) / A_im_tmp_0; 
            y[b_ix].im = (temp_im * br - smax * A_im_tmp) / A_im_tmp_0; 
          } else { 
            A_im_tmp_0 = br / A_im_tmp; 
            A_im_tmp += A_im_tmp_0 * br; 
            b_ix = iy + jj; 
            y[b_ix].re = (A_im_tmp_0 * smax + temp_im) / A_im_tmp; 
            y[b_ix].im = (A_im_tmp_0 * temp_im - smax) / A_im_tmp; 
          } 
        } 
 
        for (d_k = 0; d_k < iy; d_k++) { 
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          ijA = iy + jj; 
          b_ix = d_k + ix; 
          smax = y[ijA].re; 
          temp_im = A[b_ix].re; 
          A_im_tmp = y[ijA].im; 
          A_im_tmp_0 = A[b_ix].im; 
          b_ix = d_k + jj; 
          y[b_ix].re -= smax * temp_im - A_im_tmp * A_im_tmp_0; 
          y[b_ix].im -= smax * A_im_tmp_0 + A_im_tmp * temp_im; 
        } 
      } 
    } 
  } 
} 
 
real_T rt_hypotd_snf(real_T u0, real_T u1) 
{ 
  real_T a; 
  real_T y; 
  a = fabs(u0); 
  y = fabs(u1); 
  if (a < y) { 
    a /= y; 
    y *= sqrt(a * a + 1.0); 
  } else if (a > y) { 
    y /= a; 
    y = sqrt(y * y + 1.0) * a; 
  } else if (!rtIsNaN(y)) { 
    y = a * 1.4142135623730951; 
  } 
 
  return y; 
} 
 
real_T rt_atan2d_snf(real_T u0, real_T u1) 
{ 
  real_T y; 
  if (rtIsNaN(u0) || rtIsNaN(u1)) { 
    y = (rtNaN); 
  } else if (rtIsInf(u0) && rtIsInf(u1)) { 
    int32_T u0_0; 
    int32_T u1_0; 
    if (u0 > 0.0) { 
      u0_0 = 1; 
    } else { 
      u0_0 = -1; 
    } 
 
    if (u1 > 0.0) { 
      u1_0 = 1; 
    } else { 
      u1_0 = -1; 
    } 
 
    y = atan2(u0_0, u1_0); 
  } else if (u1 == 0.0) { 
    if (u0 > 0.0) { 
      y = RT_PI / 2.0; 
    } else if (u0 < 0.0) { 
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      y = -(RT_PI / 2.0); 
    } else { 
      y = 0.0; 
    } 
  } else { 
    y = atan2(u0, u1); 
  } 
 
  return y; 
} 
 
/* Model step function */ 
void phasor_estimation_step(void) 
{ 
  creal_T B_0[36]; 
  creal_T tmp[36]; 
  creal_T rtb_Phat[6]; 
  real_T B_im; 
  real_T c_r; 
  real_T d_r; 
  real_T delT; 
  real_T re_tmp; 
  real_T re_tmp_0; 
  real_T re_tmp_1; 
  real_T rtb_Phat_im; 
  real_T w1; 
  int32_T B_re_tmp; 
  int32_T b; 
  int32_T b_n; 
  int32_T i; 
  int32_T tmp_0; 
 
  /* MATLAB Function: '<Root>/MATLAB Function' incorporates: 
   *  Inport: '<Root>/N1' 
   *  Inport: '<Root>/S' 
   *  Inport: '<Root>/f0' 
   */ 
  memset(&rtDW.B_m[0], 0, 7686U * sizeof(creal_T)); 
  w1 = 6.2831853071795862 / rtU.N1; 
  delT = 1.0 / (rtU.f0 * rtU.N1); 
  b = (int32_T)((1.0 - (-rtU.N1)) + rtU.N1); 
  for (b_n = 0; b_n < b; b_n++) { 
    B_im = -rtU.N1 + (real_T)b_n; 
    re_tmp_1 = w1 * B_im; 
    if (re_tmp_1 == 0.0) { 
      re_tmp = exp(B_im * 0.0 * w1); 
      re_tmp_0 = 0.0; 
    } else { 
      c_r = exp(B_im * 0.0 * w1 / 2.0); 
      re_tmp = c_r * cos(re_tmp_1) * c_r; 
      re_tmp_0 = c_r * sin(re_tmp_1) * c_r; 
    } 
 
    c_r = B_im * B_im; 
    i = (int32_T)((B_im + rtU.N1) + 1.0); 
    rtDW.B_m[i - 1].re = c_r * re_tmp; 
    rtDW.B_m[i - 1].im = c_r * re_tmp_0; 
    if (re_tmp_1 == 0.0) { 
      re_tmp = exp(B_im * 0.0 * w1); 
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      re_tmp_0 = 0.0; 
    } else { 
      c_r = exp(B_im * 0.0 * w1 / 2.0); 
      re_tmp = c_r * cos(re_tmp_1) * c_r; 
      re_tmp_0 = c_r * sin(re_tmp_1) * c_r; 
    } 
 
    rtDW.B_m[i + 1280].re = B_im * re_tmp; 
    rtDW.B_m[i + 1280].im = B_im * re_tmp_0; 
    if (re_tmp_1 == 0.0) { 
      rtDW.B_m[i + 2561].re = exp(B_im * 0.0 * w1); 
      rtDW.B_m[(int32_T)((B_im + rtU.N1) + 1.0) + 2561].im = 0.0; 
    } else { 
      c_r = exp(B_im * 0.0 * w1 / 2.0); 
      i = (int32_T)((B_im + rtU.N1) + 1.0) + 2561; 
      rtDW.B_m[i].re = c_r * cos(re_tmp_1) * c_r; 
      rtDW.B_m[i].im = c_r * sin(re_tmp_1) * c_r; 
    } 
 
    re_tmp_1 = w1 * -B_im; 
    if (re_tmp_1 == 0.0) { 
      i = (int32_T)((B_im + rtU.N1) + 1.0) + 3842; 
      rtDW.B_m[i].re = exp(B_im * 0.0 * w1); 
      rtDW.B_m[i].im = 0.0; 
    } else { 
      c_r = exp(B_im * 0.0 * w1 / 2.0); 
      i = (int32_T)((B_im + rtU.N1) + 1.0) + 3842; 
      rtDW.B_m[i].re = c_r * cos(re_tmp_1) * c_r; 
      rtDW.B_m[i].im = c_r * sin(re_tmp_1) * c_r; 
    } 
 
    if (re_tmp_1 == 0.0) { 
      re_tmp = exp(B_im * 0.0 * w1); 
      re_tmp_0 = 0.0; 
    } else { 
      c_r = exp(B_im * 0.0 * w1 / 2.0); 
      re_tmp = c_r * cos(re_tmp_1) * c_r; 
      re_tmp_0 = c_r * sin(re_tmp_1) * c_r; 
    } 
 
    i = (int32_T)((B_im + rtU.N1) + 1.0); 
    rtDW.B_m[i + 5123].re = B_im * re_tmp; 
    rtDW.B_m[i + 5123].im = B_im * re_tmp_0; 
    if (re_tmp_1 == 0.0) { 
      re_tmp = exp(B_im * 0.0 * w1); 
      re_tmp_0 = 0.0; 
    } else { 
      c_r = exp(B_im * 0.0 * w1 / 2.0); 
      re_tmp = c_r * cos(re_tmp_1) * c_r; 
      re_tmp_0 = c_r * sin(re_tmp_1) * c_r; 
    } 
 
    c_r = B_im * B_im; 
    rtDW.B_m[i + 6404].re = c_r * re_tmp; 
    rtDW.B_m[i + 6404].im = c_r * re_tmp_0; 
  } 
 
  for (i = 0; i < 6; i++) { 
    for (b = 0; b < 6; b++) { 
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      b_n = 6 * b + i; 
      B_0[b_n].re = 0.0; 
      B_0[b_n].im = 0.0; 
    } 
  } 
 
  for (i = 0; i < 6; i++) { 
    for (b = 0; b < 6; b++) { 
      for (b_n = 0; b_n < 1281; b_n++) { 
        B_re_tmp = 1281 * i + b_n; 
        w1 = rtDW.B_m[B_re_tmp].re; 
        B_im = -rtDW.B_m[B_re_tmp].im; 
        B_re_tmp = 1281 * b + b_n; 
        tmp_0 = 6 * b + i; 
        c_r = rtDW.B_m[B_re_tmp].im; 
        re_tmp = rtDW.B_m[B_re_tmp].re; 
        B_0[tmp_0].re += re_tmp * w1 - c_r * B_im; 
        B_0[tmp_0].im += c_r * w1 + re_tmp * B_im; 
      } 
    } 
  } 
 
  inv(B_0, tmp); 
  for (i = 0; i < 6; i++) { 
    for (b = 0; b < 1281; b++) { 
      b_n = 6 * b + i; 
      rtDW.dcv[b_n].re = 0.0; 
      rtDW.dcv[b_n].im = 0.0; 
    } 
  } 
 
  for (i = 0; i < 6; i++) { 
    for (b = 0; b < 1281; b++) { 
      for (b_n = 0; b_n < 6; b_n++) { 
        B_re_tmp = 1281 * b_n + b; 
        w1 = rtDW.B_m[B_re_tmp].re; 
        B_im = -rtDW.B_m[B_re_tmp].im; 
        B_re_tmp = 6 * b_n + i; 
        tmp_0 = 6 * b + i; 
        c_r = tmp[B_re_tmp].re; 
        re_tmp = tmp[B_re_tmp].im; 
        rtDW.dcv[tmp_0].re += c_r * w1 - re_tmp * B_im; 
        rtDW.dcv[tmp_0].im += c_r * B_im + re_tmp * w1; 
      } 
    } 
  } 
 
  for (i = 0; i < 1281; i++) { 
    rtDW.dcv1[i].re = rtU.S[i]; 
    rtDW.dcv1[i].im = 0.0; 
  } 
 
  for (i = 0; i < 6; i++) { 
    w1 = 0.0; 
    B_im = 0.0; 
    for (b = 0; b < 1281; b++) { 
      b_n = 6 * b + i; 
      c_r = rtDW.dcv[b_n].re; 
      re_tmp = rtDW.dcv1[b].im; 
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      re_tmp_0 = rtDW.dcv[b_n].im; 
      re_tmp_1 = rtDW.dcv1[b].re; 
      w1 += c_r * re_tmp_1 - re_tmp_0 * re_tmp; 
      B_im += c_r * re_tmp + re_tmp_0 * re_tmp_1; 
    } 
 
    rtb_Phat[i].re = w1; 
    rtb_Phat[i].im = B_im; 
  } 
 
  w1 = 2.0 * rt_hypotd_snf(rtb_Phat[2].re, rtb_Phat[2].im); 
  B_im = rt_atan2d_snf(rtb_Phat[2].im, rtb_Phat[2].re); 
  if (rtb_Phat[1].im == 0.0) { 
    re_tmp_1 = rtb_Phat[1].re / delT; 
    rtb_Phat_im = 0.0; 
  } else if (rtb_Phat[1].re == 0.0) { 
    re_tmp_1 = 0.0; 
    rtb_Phat_im = rtb_Phat[1].im / delT; 
  } else { 
    re_tmp_1 = rtb_Phat[1].re / delT; 
    rtb_Phat_im = rtb_Phat[1].im / delT; 
  } 
 
  rtb_Phat[1].re = re_tmp_1; 
  rtb_Phat[1].im = rtb_Phat_im; 
  if (-B_im == 0.0) { 
    re_tmp = exp(B_im * 0.0); 
    re_tmp_0 = 0.0; 
  } else { 
    c_r = exp(B_im * 0.0 / 2.0); 
    re_tmp = c_r * cos(-B_im) * c_r; 
    re_tmp_0 = c_r * sin(-B_im) * c_r; 
  } 
 
  c_r = (re_tmp_1 * re_tmp - rtb_Phat_im * re_tmp_0) * 2.0; 
  if (-B_im == 0.0) { 
    re_tmp = exp(B_im * 0.0); 
    re_tmp_0 = 0.0; 
  } else { 
    d_r = exp(B_im * 0.0 / 2.0); 
    re_tmp = d_r * cos(-B_im) * d_r; 
    re_tmp_0 = d_r * sin(-B_im) * d_r; 
  } 
 
  d_r = (re_tmp_1 * re_tmp_0 + rtb_Phat_im * re_tmp) * (2.0 / w1); 
  delT *= delT; 
  if (rtb_Phat[0].im == 0.0) { 
    re_tmp_1 = rtb_Phat[0].re / delT; 
    rtb_Phat_im = 0.0; 
  } else if (rtb_Phat[0].re == 0.0) { 
    re_tmp_1 = 0.0; 
    rtb_Phat_im = rtb_Phat[0].im / delT; 
  } else { 
    re_tmp_1 = rtb_Phat[0].re / delT; 
    rtb_Phat_im = rtb_Phat[0].im / delT; 
  } 
 
  rtb_Phat[0].re = re_tmp_1; 
  rtb_Phat[0].im = rtb_Phat_im; 
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  if (-B_im == 0.0) { 
    re_tmp = exp(B_im * 0.0); 
    re_tmp_0 = 0.0; 
  } else { 
    delT = exp(B_im * 0.0 / 2.0); 
    re_tmp = delT * cos(-B_im) * delT; 
    re_tmp_0 = delT * sin(-B_im) * delT; 
  } 
 
  /* Outport: '<Root>/ahatz' incorporates: 
   *  MATLAB Function: '<Root>/MATLAB Function' 
   */ 
  rtY.ahatz = (re_tmp_1 * re_tmp - rtb_Phat_im * re_tmp_0) * 4.0 + d_r * d_r * 
    w1; 
 
  /* MATLAB Function: '<Root>/MATLAB Function' */ 
  if (-B_im == 0.0) { 
    re_tmp = exp(B_im * 0.0); 
    re_tmp_0 = 0.0; 
  } else { 
    delT = exp(B_im * 0.0 / 2.0); 
    re_tmp = delT * cos(-B_im) * delT; 
    re_tmp_0 = delT * sin(-B_im) * delT; 
  } 
 
  /* Outport: '<Root>/Phat' */ 
  memcpy(&rtY.Phat[0], &rtb_Phat[0], 6U * sizeof(creal_T)); 
 
  /* Outport: '<Root>/ahat' incorporates: 
   *  MATLAB Function: '<Root>/MATLAB Function' 
   */ 
  rtY.ahat = w1; 
 
  /* Outport: '<Root>/phihat' incorporates: 
   *  MATLAB Function: '<Root>/MATLAB Function' 
   */ 
  rtY.phihat = B_im; 
 
  /* Outport: '<Root>/ahatp' incorporates: 
   *  MATLAB Function: '<Root>/MATLAB Function' 
   */ 
  rtY.ahatp = c_r; 
 
  /* Outport: '<Root>/phihatp' incorporates: 
   *  MATLAB Function: '<Root>/MATLAB Function' 
   */ 
  rtY.phihatp = d_r; 
 
  /* Outport: '<Root>/phihatz' incorporates: 
   *  MATLAB Function: '<Root>/MATLAB Function' 
   */ 
  rtY.phihatz = ((re_tmp_1 * re_tmp_0 + rtb_Phat_im * re_tmp) * 4.0 - 2.0 * c_r * 
                 d_r) / w1; 
} 
 
/* Model initialize function */ 
void phasor_estimation_initialize(void) 
{ 
  /* Registration code */ 



154 
 

 
  /* initialize non-finites */ 
  rt_InitInfAndNaN(sizeof(real_T)); 
} 
 
 

 


