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ABSTRACT 

The rapid evolution of energy systems has driven the need for advanced 

communication and management technologies within the power grid. The technological 

developments and advancements have resulted in a complex power system requiring 

protection, automation, monitoring and control strategies and methodologies to ensure 

its efficient, safe and continued operation. The various devices required for the 

protection, automation, monitoring and control are generally from different 

manufacturers and are all required to function together in this system known as the 

Smart Grid (SG). Challenges of interoperability between these devices have 

necessitated the development of communication standards such as the IEC 61850 

standard that have interoperability and future proofing as its primary drivers. 

This thesis focuses on integrating the IEC 61850 standard into smart metering systems 

to address the critical challenges of interoperability, scalability, and efficient data 

exchange in distributed energy environments. The research explores the potential of 

the Manufacturing Message Specification (MMS) protocol to standardize 

communication frameworks and enhance the reliability of SG operations. 

The study employs a modular design approach, incorporating open-source tools, 

Raspberry Pi hardware, and Dockerized environments to develop a scalable and 

adaptable smart metering solution. The methodology spans planning, implementation, 

and testing phases, with rigorous evaluations conducted to validate the system’s 

performance under various conditions. Key findings demonstrate the system's ability to 

achieve seamless communication between diverse devices while maintaining high 

levels of efficiency and reliability. 

The results contribute to the field by providing a practical framework for applying the 

IEC 61850 standard outside of traditional substation environments. It highlights the 

advantages of standardized protocols in reducing operational complexities by 

eliminating communication interoperability issues and supporting sustainable energy 

practices. The study also identifies limitations, such as scalability in larger deployments 

and security considerations, and proposes directions for future research to further 

optimize the system.  

The results also contribute to advancing the SM design by combining existing 

technologies with the IEC 61850 standard, thus providing a comprehensive framework 
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for modern smart metering systems that extend beyond traditional substation 

applications. 

The results additionally contribute to the integration of IoT and Web Services within an 

IEC 61850 environment and demonstrating new pathways for integrating diverse 

technologies into the SG. 

Finally, the thesis findings contribute to device standardization and interoperability thus 

reducing complexity and enabling seamless device integration in distributed energy 

networks. 

In conclusion, this thesis underscores the transformative potential of integrating 

standardized communication protocols into SG technologies, paving the way for more 

resilient and efficient energy systems. 
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CHAPTER 1  

  INTRODUCTION 

1.1 Background and Context 

The rapid transformation of energy systems worldwide has started the development of 

smart technologies capable of meeting the growing demands for efficiency, reliability, 

and sustainability. The concept of the Smart Grid (SG), which incorporates advanced 

communication and control mechanisms, has emerged as a cornerstone of modern 

power systems. At the heart of this transformation lies the integration of smart metering 

systems, which not only facilitate real-time energy monitoring but also enable 

bidirectional communication between consumers and utilities to maintain the balance 

between energy supply and demand. 

In this context, the IEC 61850 standard has garnered significant attention due to its 

standardized communication in electrical systems built on a standardized data model 

and standardized configuration language. Originally designed for substation 

automation, the standard has been adapted for broader applications, including the 

incorporation of SMs in power grids. By leveraging the Manufacturing Message 

Specification (MMS) protocol, the IEC 61850 standard ensures interoperability among 

devices from diverse manufacturers, thereby addressing one of the most critical 

challenges in modern energy systems. The IEC 61850 standard however has not yet 

been widely integrated into the realm of cloud computing nor the Internet of Things 

(IoT) world, although there are limited research projects in this arena (Iglesias-Urkia, et 

al., 2019) . 

This research projects attempts to bridge the gap between the IEC 61850 and recent 

innovations in the technology industry. 

1.2 Problem Statement 

Despite the advancements in smart metering technologies, the lack of standardized 

communication frameworks poses significant barriers to their widespread adoption.  

Existing solutions often rely on proprietary protocols, which limit interoperability and 

hinder the seamless integration of devices in a distributed power grid environment. This 

fragmentation not only increases operational complexity but also undermines the 

potential benefits of smart metering systems in terms of efficiency and scalability. 
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This research seeks to address this gap by implementing a smart metering system that 

integrates the IEC 61850 standard. Specifically, it focuses on leveraging the MMS 

protocol to facilitate standardized communication and data exchange in a SG setting. 

1.3 Research Aim and Objectives 

The primary aim of this research is to design, implement, and test a smart metering 

system that adheres to the IEC 61850 standard, with a focus on achieving 

interoperability and scalability using the Ethernet medium.  

Theoretical Objectives: 

 To conduct a literature in MMS protocol and the IEC 61850 standard uses in 

the SG and previous integrations with web services. 

 To conduct a literature review on the design and applications of residential SMs 

to determine the technologies used to create a smart meter system. 

 To analyse the applicability of the IEC 61850 MMS protocol in smart metering 

systems and identify its advantages in enhancing communication within 

distributed energy environments. 

 To explore the object-oriented capabilities of the IEC 61850 standard and how 

they contribute to achieving standardization in SG communication. 

 To investigate the implications of adopting international standards like IEC 

61850 in achieving scalability and reliability in smart metering systems making 

use of cloud computing. 

Practical Objectives: 

 To implement a smart meter network (that represent how a residential smart 

meter system will function in a centralized manor) that integrates with an 

IEC61850 standard based system using the MMS protocol as interface. 

 To utilize Open-Source Technologies for Cost-Effective Deployment. 

 To deploy Modular and Scalable System Architecture using containerization. 

1.4 Research questions 

 Can SMs situated in a residential environment integrate with an IEC 61850 

standard based system? 

 Can SMs make use of open-source components and still provide the benefits 

of a proprietary SM? 

 Can cloud computing make integration between different standardized possible 

or easier? 
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 Can the IEC 61850 standard be applicable outside the station and how is it 

done? 

1.5 Hypothesis 

 SMs situated in residential environments can be effectively integrated with IEC 

61850 standard-based systems to enable standardized communication and 

real-time data exchange, overcoming the limitations of proprietary protocols. 

 Open-source hardware and software components can replicate the 

functionality, scalability, and reliability of proprietary SMs, providing a cost-

effective alternative without compromising performance. 

 Cloud computing can facilitate the integration of diverse communication 

standards, such as IEC 61850, by enabling centralized data storage, 

processing, and seamless interoperability between distributed devices. 

 The IEC 61850 standard can be adapted for use outside substation 

environments, specifically in residential SG systems, through the use of 

modular design approaches, containerized environments, and advanced 

networking techniques. 

1.6 Significance of the Study 

The findings of this research are expected to contribute significantly to the field of SG 

technologies. By demonstrating the feasibility of integrating the IEC 61850 standard 

into smart metering systems, this study provides a pathway for achieving standardized 

communication in distributed energy systems. The proposed solution also holds 

potential for enhancing grid reliability, reducing operational costs, and promoting the 

adoption of renewable energy sources through better energy management practices. 

1.7 Methodology Overview 

This research adopts a methodology that is used in software development life cycles 

(SDLC). The methodology is based around building and integrating these components. 

Each component will mainly be software components, hence the adoption of this 

methodology. The SDLC consists of five sections: 

 Requirements gathering - This section is based around requirements gathering. 

 Planning and Design - Designing the new system and each of the components. 

 Implementation - The execution of the deliverables from the “Planning and 

Design Phase” 
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 Testing - The planning phase outlines acceptance criteria, which is required for 

the system to be label as successful. This phase tests the system to determine 

if the acceptance criteria is met. 

 Reflection – The reflection phase is mainly reflecting on the project concluding 

the downloads. 

The discussed methodology outlined affect the structure of this research report. The 

structure of this report can be seen in the following section 

1.8 Structure of the Thesis 

This thesis is organized into several chapters, each addressing a specific aspect of the 

research: 

 Chapter 1: Introduction – Provides the background, problem statement, 

objectives, and significance of the study. 

 Chapter 2: Literature Review – Explores existing research on smart metering 

systems and the IEC 61850 standard. 

 Chapter 3: Research Methodology and planning phase – Details the planning 

and design of the proposed system. 

 Chapter 4: Implementation and integration of the SM – Describes the technical 

aspects of system development and integration. 

 Chapter 5: Results and Testing – Documents the testing process and analyses 

the system's performance. 

 Chapter 6: Conclusion – Summarizes the findings, discusses implications, and 

suggests future research directions. 

1.9 Delimitations 

While this research provides a significant contribution to the integration of the IEC 61850 

standard into smart metering systems, several delimitations must be acknowledged to 

contextualize its findings and identify areas for improvement: 

 Controlled testing environment 

The testing and validation environment is to be done within a software development 

environment and does not include testing using real world load data on the entire 

system. A larger approach might be required to test and handle the impact of a real-

world load on the system. 

 Lack of Substation Integration 
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While this system tests the integration of IEC 61850 standard-based approved 

protocols like MMS, the integration of such information into an actual SCADA 

system will not been tested.  

 Security 

Some of the software packages used in this research have not been updated for 

some time. Hence the use of this software might present security issues if used in 

a real-world setting. 

 Lack of hardware range 

Only a few IoT devices are to be used in this research which might create a lack of 

range. The Raspberry Pi will be used in this research project, which is quite a 

powerful device. Lower-level microcontroller units will not be used in this work. 

1.10 Conclusion 

In summary, this thesis addresses the critical need for interoperability and 

standardization in SG communication by integrating the IEC 61850 standard into 

smart metering systems. The study's objectives focus on leveraging the MMS 

protocol to enhance scalability, reliability, and efficiency in distributed energy 

systems. By outlining the research problem, objectives, and methodology, this 

chapter establishes a solid foundation for the subsequent exploration and 

implementation detailed in the following chapters. 

The next chapter delves into a comprehensive literature review, examining existing 

smart metering technologies, communication frameworks, and the role of the IEC 

61850 standard. It identifies gaps in current research and lays the theoretical 

groundwork for the proposed methodology. 
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CHAPTER 2  

  LITERATURE REVIEW 

2.1 Introduction 

This chapter presents a comprehensive overview of the existing knowledge on Smart 

Meters (SM), communication infrastructure of the power grid, the IEC 61850 standard, 

and Application Programming Interfaces (APIs) in power grids through a literature 

review. The IEC 61850 standard is an international standard for communication in 

electric power systems and is designed to provide a common communication protocol 

and data model for substation automation and Smart Grid (SG) communication. The 

goal of the IEC 61850 standard is to ensure interoperability between equipment from 

different manufacturers in substations. 

The aim of this research work as stated in Chapter 1 is to incorporate the IEC 61850 

standard to control and communicate with the load using SMs, outside of the 

substation. To enable us to advocate for the IEC 61850 standard; existing standards 

must first be investigated. Existing standards that work to complete the same goal as 

the IEC 61850 standard, are investigated in this section.  

This section reviews existing published literature. This section is split into three 

subsections namely the IEC 61850 standard with the focus on the MMS (Manufacturing 

Message Specification), web service architecture integration with an IEC 61850 

standard environment and SM design. The goal of this section is to showcase where 

advancements in technology can be made, that have not been researched. 

This chapter consists of three sections of those sections each having its own sub 

sections. Section 2.2 reviews the literature on the IEC 61850 standard which is used in 

this research work, focussing on the MMS. Section 2.3 introduces and reviews 

literature that cover topics regarding web services in the SG. Section 2.4 focusses on 

the client that this research work proposes, which is the SM. 

2.2 Literature review of the MMS and the IEC 61850 standard 
2.2.1 Introduction 

The IEC 61850 standard is an international standard that provides a comprehensive 

framework for the design, configuration, and communication of digital substations in 

the power industry. It presents a unique exchange of information between different 

components within the substation, including the way that it standardizes protection and 

control system, electrical equipment, and communication network functions. The result   

is a more interoperable and efficient substation system that reduces the risk of errors 
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and improves overall performance. The IEC 61850 standard provides a common 

language for all components in a substation, which leads to increased system reliability, 

improved maintenance, and reduced costs. Additionally, its flexible structure allows for 

easy integration with other systems, making it a future-proof solution (based on 

Ethernet communication) for the evolving demands of the power system industry. 

The IEC 61850 standard makes use of a standardized data object model, which uses 

an object-oriented approach. This is different to Modbus and DNP3 communication 

which uses indexes to acquire/send data.  Thus, creating a large set of data being sent 

around for a singular value. Using the OOD (Object Oriented design) approach, the 

IEC 61850 standard breaks down systems in layers ranging in complexity. The Service 

device – which is the highest layer of a device hierarchy – can be broken down into the 

smallest building element called logical nodes, which can have different functions and 

data depending on the type of logical nodes. This approach makes it very easy to 

integrate with software development life cycles, because most programming language 

incorporates OOP (Object Oriented Programming) into their core (Haung, 2018). 

The next section details the purpose of the IEC 61850 standard and reviews the model 

and services that the standard provides. 

2.2.2 Advantages of IEC61850 

IEC 61850 has several key advantages over competing standards: 

2.2.2.1 Interoperability and Standardization 

IEC 61850 was designed to enable interoperability between devices from different 

manufacturers. Unlike Modbus and DNP3, which require customized mappings and 

adaptations, IEC 61850’s object-oriented data modeling ensures seamless 

communication and integration across various devices and systems (Ağin, et al., 2024). 

2.2.2.2 High-Speed Communication 

IEC 61850 employs advanced communication protocols such as GOOSE (Generic 

Object-Oriented Substation Event) and MMS (Manufacturing Message Specification), 

which provide real-time data exchange with minimal latency. This is particularly 

important for time-sensitive substation automation functions that require fast response 

times (Apostolov, 2017). 

2.2.2.3 Scalability and Future-Proofing 

Unlike traditional protocols that were primarily designed for specific tasks, IEC 61850 

was built with a flexible architecture that can accommodate future expansions, 

including the integration of IoT, cloud computing, and distributed energy resources 



8 

 

(DERs). It is also highly adaptable to modern networking technologies like Ethernet-

based communication (Park, et al., 2012 ). 

2.2.2.4 Object-Oriented Data Modeling 

IEC 61850 uses an advanced hierarchical data modeling approach, representing 

devices as logical nodes with standardized attributes. This object-oriented design 

allows for efficient data organization and retrieval, reducing the complexity of managing 

large-scale power systems. 

2.2.2.5 Security and Reliability 

Security is a crucial aspect of IEC 61850, as it supports authentication and encryption 

mechanisms under IEC 62351. This contrasts with Modbus and DNP3, which lack built-

in security features, making them more vulnerable to cyber threats (Hussain, et al., 

2023). 

2.2.3 Competing Standards 

Despite its advantages, IEC 61850 faces competition from several established 

communication standards in the power industry. 

2.2.3.1 Modbus 

Modbus is a widely used communication protocol known for its simplicity and ease of 

implementation. However, it lacks the high-speed performance, scalability, and security 

features of IEC 61850. Modbus relies on a polling mechanism, which can lead to 

inefficient bandwidth utilization and slower response times (Ağin, et al., 2024). 

2.2.3.2 DNP3 (Distributed Network Protocol) 

DNP3 is a robust protocol commonly used for SCADA (Supervisory Control and Data 

Acquisition) systems. It offers better security and reliability than Modbus but still falls 

short of IEC 61850 in terms of flexibility and real-time data exchange capabilities. Unlike 

IEC 61850’s event-driven approach, DNP3 primarily relies on polling mechanisms, 

making it less efficient for high-speed automation (Wang, et al., 2008). 

2.2.3.3 Smart Meter Language (SML) 

Smart Meter Language (SML) is a communication protocol primarily used in smart 

metering applications. SML facilitates efficient data transmission between smart 

meters and energy management systems. While it is lightweight and optimized for 

metering applications, it lacks the scalability and broader interoperability provided by 

IEC 61850. Unlike IEC 61850, which is designed for extensive substation automation 

and grid-wide communication, SML is limited to specific smart metering use cases. 

Furthermore, SML does not incorporate the advanced object-oriented data modeling 



9 

 

and high-speed event-driven communication that IEC 61850 offers (Burunkaya & 

Pars, 2017 ). 

2.2.3.4 Proprietary Protocols 

Many vendors develop proprietary communication protocols tailored to their products. 

While these protocols may offer optimized performance for specific applications, they 

create vendor lock-in issues and limit interoperability with third-party devices. IEC 

61850 eliminates this problem by providing an open, standardized framework (Iglesias-

Urkia, et al., 2018). 

2.2.4 Abstract Communications Service Interface (ACSI) 

The IEC 61850 standard introduces the ACSI model and services. These services are 

created to dictate the how, what, and where with regards to the capability of an IEC- 

61850 compliant server. The IEC 61850-8-1 part of the standard documents the 

mapping to MMS (IEC, 2004). 
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Table 2.1: List of ACSI classes (IEC, 2003) 

 

Table 2.1 shows a list of services outlined to interact with the server model. These 

services look very similar to methods used in Object Oriented Programming (OOP). 

The second class from Table 2.1 being exposed is the association model. The 

association model describes how to integrate communication architecture like the 

publisher-subscriber architecture or client-server architectures. Access control 

concepts are also discussed to ensure the security of a server. 

The ACSI outlines how to use the object references to identify and find data in a 

standardized way. It is like giving every piece of information its own special address to 

enable external devices to communicate effectively and share the right information with 

each other. Figure 2.1 shows an example of an object reference. To keep these 

references unique the interface also outlines requisite rules (Ağin, et al., 2024). 
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Figure 2.1: Example of the object reference (IEC, 2003) 

Outlined in Table 2.2 is the ACSI (Abstract Communication Service Interface) services 

associated with the data models the IEC 61850 standard provides. The services 

outlined below are the main services that interact with the server models and the 

hierarchy of the server. The other services are also important, but these allow an 

external party to interact with a server directly via a network connection. The table also 

outlines the requisite parameters required to get the required response.  

Table 2.2: List of Service outlined by ACSI to interact with the server model (IEC, 2004). 

Model Services Description 

of service 

Request parameter Response 

parameter 

Server GetServerDirectory Retrieves 

Logical 

devices and 

files 

ObjectClass LDRef [1…...n] 

Files 

Logical 

device 

GetLogicalDeviceDir

ectory 

Retrieves a 
specific logical 
device, with 
all the logical 
nodes 
associated to 
that logical 
device. 

 

LDRef LDName 

LDRef 

LNRef [3…n] 

Logical 

Node 

GetLogicalNodeDire

ctory 

Retrieves a 

list of all 

objects 

references 

visible by 

requesting 

client. 

LNRef LNInstance 

 GetAllDataValues Retrieves all 

data Attributes 

LNRef 

Functional constraint 

LNRef 

DataAttibute[1..n] 

DataValue[1…n] 
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Model Services Description 

of service 

Request parameter Response 

parameter 

Data 

Model 

SetDataValues Write value to 

data model in 

logical node.  

Data Reference 

Functional constraint 

DA Component name 

Values 

 

Ok. 

 GetDataValues Reads values 

of a data 

model 

contained in 

logical node.  

Data Reference 

Functional constraint 

DA Component name 

DataAttribute [1…n] 

 

 

 GetDataDirectory Retrieves 

object 

references of 

all DA’s. 

DataReference Data Attribute [1…n] 

 

 GetDataDefinition Retrieves 

definitions of 

all DA in Data 

model 

DataReference Data Attribute [1…n] 

 

Data Set 

Model 

GetDataSetValues 

 

Retrieves a 

DataSet 

DataSetReference DataSetReference 

DataAttributeValue 

[1...n] 

 SetDataSetValues Sets value of 

a DataSet 

DataSetReference 

DataAttributeValue 

[1...n] 

Status Code: Ok 

 CreateDataSet Creates a 

custom Data 

Set 

DataSetReference 

DSMemberRef [1...n] 

 

 DeleteDataSet Deletes a data 

set 

DataSetReference 

 

Status Code: Ok 

 GetDataSetDirectory Retrieves 

Dataset 

references 

DataSetReference DSMemberRef [1...n] 
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2.2.5 MMS ACSI extension 

Table 2.3: List of services outlined by MMS protocol (Park, et al., 2012 ) 

 

Table 2.3 outlines a list of services the MMS protocol outlines. The IEC 61850 standard 

has its own set of services it outlines for various object classes. The above services 

allow MMS to transmit real-time data between client and server (Park, et al., 2012 ).  
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Figure 2.2: Communication Structure of IEC 61850 (Park, et al., 2012 ) 

Figure 2.2 shows the MMS server uses the entire stack of the OSI layer, whereas 

GOOSE (Generic Object-Oriented Substation Event) and SV (sampled values) uses 

only two layers namely the Physical and Datalink layers. The ACSI layer requires a 

SCL (Substation Configuration Language) file to provide models that are used to 

communicate with. The MMS mapping provides real time read/write capabilities to 

other networked devices and provides a client/server communication architecture 

(Park, et al., 2012 ).  

Table 2.4 shows the mapping of MMS classes to the IEC 61850 classes along with the 

services that the MMS provides for each of those classes. 
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Table 2.4: Mapping of MMS object to that of IEC 61850  (IEC, 2004) 

 

Table 2.4 shows that the MMS server has services: Initiate, abort and conclude. Those 

services map one-to-one to that of the IEC 61850 standard which has a data model. 

The service in question is the service responsible for creating connections with clients.  

Park, et al., (2012) created an object-oriented approach to implementing IEC 61850 

MMS mapping on a PC with a Windows operating system. Making use of C++, a list of 

reusable classes is implemented to simulate the entire standard. The researchers 

created a layered approach to simulating the classes.  
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Table 2.5: List of classes implemented to simulate MMS-to-IEC 61850 mapping (Park, et 
al., 2012 ). 

 

Table 2.5 shows a list of classes, and their description implemented by Park, et al., 

(2012). MMSClientReq, MMSSErverRsp, MMSCOMMREQServ, MMSCOMRESServ, 

MMSDecoder, MMSOpCode, MMSMpl, REQControl are all created to function as the 

MMS application layers. 
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The IEC 61850 standard has another communication type it introduces other than the 

MMS. The Generic Object-Oriented Substation Event (GOOSE) is a peer-to-peer 

protocol within the IEC standard that is completely different to that of MMS but provides 

great benefits for substation communication. 

2.2.6 Generic Object-Oriented Substation Event (GOOSE) 

As mentioned above the GOOSE protocol introduces a new different way of 

communicating. The 2-layer approach to transmitting data enables devices within 

substations to exchange data in a time-critical manner. The two or three layers of the 

of the OSI model are used instead of all seven layers and makes it ideal for protection 

applications as the speed of transmission is increased. Combined with the object-

oriented approach that the GOOSE protocols use, it allows IEC 61850 data models to 

easily access information within the substation without the trouble of first establishing 

a connection with the server device. This is improved upon by introducing a publisher-

subscriber architecture, allowing equipment to be subscribe to different devices and 

their associated functions within the substation (Kriger, et al., 2013). 

The introduction of R-GOOSE (Routable GOOSE) and R-SV (Routable Sampled 

values) added to the GOOSE protocol, allow for inter-substation communication. The 

network and transport layers allow GOOSE messages to be routed between different 

substations, creating routable GOOSE messages (Hussain, et al., 2023). 

The protocol is documented to be used within the substation and in later revisions the 

generation. This research work focusses on using IEC 61850 on part of the power grid 

that does not allow the connection to be unsecure. Using a 2-Layered approach to 

communication removes the layers associated to securing a connection and ensuring 

the connection (Apostolov, 2017). Making use of the seven layers of the OSI does have 

performance draw backs, but a more trusted connection is introduced. 

Although R-GOOSE allows GOOSE messages outside the substation, this research 

work focusses on non-substation related communication. Making use of either R-

GOOSE or GOOSE which creates various security issues for a residential related area 

using GOOSE/R-GOOSE (Hussain, et al., 2019). 

2.2.7 Literature review of the MMS protocol 

2.2.7.1 Introduction 

The MMS is an international standard for exchanging real-time data between devices 

and computer applications in an industrial environment. It was created to play the role 

of interoperable communication protocol between manufacturing equipment. MMS is a 

TCP/IP (Transmission Control Protocol/Internet Protocol) based protocol that is used 
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to communicate with different components in a substation on station and bay levels. 

The MMS protocol can also be used with a UDP (Unified datagram protocol) to allow 

faster communication (Ruland, et al., 2016). The standard can also be extended to 

work as a gateway interface to a substation (Hou, et al., 2013). 

This literature review focusses on the advancement and integration of the MMS 

standard not only within an IEC 61850 environment but also in a web service 

environment. Two major topics are investigated in this literature review of the MMS; 

mutation and integration are the main topics related to the use of MMS.  

2.2.7.2 Purpose of the MMS 

The MMS allows for the retrieval, manipulation, and dissemination of real-time and 

historical data, as well as the control and configuration of devices, all while ensuring 

data integrity, reliability, and security.  

The MMS was created to allow interoperable communication between manufacturing 

equipment. Making use of an object-oriented approach the protocol was adopted by 

the IEC 61850 standard. In an IEC 61850 environment the MMS protocol is used to 

communicate and control and actions within a substation environment. The protocol’s 

use of TCP/IP allows it to function in more than just a single substation. As a result, 

MMS empowers power utilities and industries to optimize their operations, enhance 

maintenance strategies, and facilitate informed decision-making through streamlined 

communication and data accessibility. It allows the Supervisory Control and Data 

Acquisition (SCADA) system in a control centre to connect to individual substation 

hierarchies to get reporting information.  

2.2.7.3 Virtual Machine Device model 

The MMS protocol was originally published in 1988. The MMS standard consists of two 

parts. Part 1 introduces the Virtual Manufacturing Device (VMD) model, and the 

services associated with that model. Part 2 introduces the communication specification 

of messages and the interaction of MMS with the other layers of the OSI model. The 

standard makes use of ASN.1 (Abstract Syntax notation one) to format the MMS 

messages (SISCO, 1995). 

The MMS’s key feature is the virtualizing a device, very similar to the IEC 61850 server 

model. The MMS was created to represent industrial equipment as VMD’s (Virtual 

Manufacturing Device). The MMS outlines services that clients use to interact with 

MMS devices/MMS servers. The MMS outlines the behaviour a server has upon 

request (SISCO, 1995). 
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Figure 2.3: Communication with MMS protocol (SISCO, 1995) 

From Figure 2.3, both the client and the VMD (server) have a layer in their software 

assigned to the MMS. Each one of the devices is responsible for the formatting of the 

data either going or coming from the respective devices via their individual application 

layer. The MMS provides the application layer to these applications and any application 

that would need to use this information would also require an MMS application layer to 

read/write the data. 

The IEC 61850 standard outlines the mapping procedures between ACSI and MMS in 

part 8.1 of the standard. The IEC 61850 standard makes use of its object-oriented 

approach, instead of the linear approach like non-object-oriented standards like DNP3. 

The MMS makes use of a very similar model. The IEC 61850 standard outlines a 

Server, Logical device, logical node, data set and data attribute. The MMS standard 

outlines VMD, domain, named variables, named variable list, journal and file 

management as interactable models that represent a device (Wang, et al., 2008) 

2.2.7.4 MMS system integration 

There are various ways of integrating the MMS interface into a power grid related 

system. Providing an already existing system with the MMS interface and connecting 

it to the architecture can allow a non-IEC 61850 compliant system to become IEC 

61850 compliant.  

MMS allows the transfer of IEC 61850 data over the Internet. Making use of the full OSI 

and TCP/IP the MMS protocol can be used between geographically distanced entities. 

The client-server communication architecture allows different clients to connect to the 
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MMS server using a gateway. Hou, et al., (2013) created a MMS application gateway, 

by hosting a server that makes use of a substation configuration file, allowing the 

retrieval of real-time data using a MMS client server. 

2.2.7.5 Breakdown of literature review 

Below is a figure of papers that were reviewed to determine the implementation and 

mutation of MMS between 1995 and 2023. Such a large date range has been covered 

to determine how researchers have either changed to the MMS protocol to become 

better and how they integrate already existing systems with the MMS standard to 

determine the conversion from proprietary to standardized systems. 

 

Figure 2.4: Bar graph showing the spread of research papers for keywords. 

Figure 2.4 shows the spread of research papers regarding keywords: IEC 61850 MMS 

Integration, IEC 61850 MMS webservice Integration and MMS mutation. From the table 

2.2 it can be seen there has not been a prominent researcher covering research with 

relation to the searched keywords. 

The papers used cover a very specific set papers that all cover IEC 61850, MMS and 

the power grid. A paper from 1995 is included in the compilation of results. This paper 

mainly covers MMS in the power grid. This is the only exception that was included in 

this portion of the report. The IEC 61850 standard was published in 2003 and therefore 

we do not see any contributing research in the area of interest for the next few years 

following its publication.  

2.2.7.6 Comparative analysis of IEC 61850 standard literature 

2.2.7.6.1 Comparative analysis of system integration of the MMS standard. 

The below table contains a list of papers where the researchers implemented the MMS 

integration within a system.  
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Table 2.6: Research papers covering the implementation of the MMS standard 

Paper Title 
Description 
of project 

Hardware 
Requirements 

Software 
Requirements 

 (SISCO, 
1995) 

Overview and 
introduction to 
the Mixed 
Manufacturing 
Specification 

This report 
documents the 
use, history, 
and integration 
of MMS. 

 Not specified Not specified 

(Wang, et al., 
2008) 

Research on 
Distributed 
Transmission of 
Power 
Telecontrol 
Information Base 
on ACSI/MMS 

A system is 
designed and 
created to allow 
the integration 
of MMS devices 
to connect via a 
WAN (wide 
area network). 
The focus being 
on the control of 
various devices 
from a control 
centre 
perspective to a 
substation. 

Not specified Not specified 

(Park, et al., 
2012 ) 

IEC 61850 
Standard Based 
MMS 
communication 
Stack Design 
using OOP 

The researcher 
creates a C++ 
library using the 
factory design 
pattern. Making 
use of the 
object-oriented 
approach IEC 
61850 uses and 
using rules of 
OOP a library 
able to create 
servers and 
clients is 
constructed. 

 Not specified Not specified  

(Hou, et al., 
2013) 

Research on IEC 
61850 Gateway 
based on MMS 
mapping 

The 
researchers 
created an 
abstract 
gateway that 
can be used to 
create future 
gateways to 
servers using 
MMS. 

 Not specified Not specified  

 (Pham, 
2013) 

Integration of 
IEC 61850 MMS 
and LTE to 
support smart 
metering 
communication 

The author 
created an 
MMS gateway 
using LTE 
technology to 
submit metering 
data to a 
MDMS over a 
large 
geographical 
area. 

 Not specified Not specified  



22 

 

Paper Title 
Description 
of project 

Hardware 
Requirements 

Software 
Requirements 

(Ruland, et 
al., 2016) 

Rejuvenation of 
the IEC 61850 
Protocol stack for 
MMS 

The researcher 
attempts to 
substitute 
protocols used 
in the OSI layer 
of the standard 
to create a 
better MMS 
protocol. 

 Not specified Not specified  

(Ustun & 
Hussain, 
2017) 

IEC 62351-4 
Security 
Implementations 
for IEC 61850 
MMS Messages 

To introduce 
IEC62351-4 
security 
measure to 
MMS. Making 
use of TLC an 
X.509 certificate 
was developed 
for both 61850 
client and 
server. 

 Not specified Not specified  

 (Hau-feng, et 
al., 2020) 

Application 
research on the 
substitution 
specification of 
MMS 

Create a new 
version of the 
MMS protocol, 
because the 
current version 
is not 
implementing 
the ACSI 
services 
correctly. 

 Not specified Not specified  

(Hwang, 
2021) 

Investigation of 
Wireless IEC 
61850 MMS 
using Raspberry 
PI 

The 
researchers 
create a system 
using IoT 
components 
namely a 
raspberry Pi, to 
create a test 
bed to use 
MMS 
wirelessly. 

Raspberry Pi 

RaspAp 

 

 

 (Oh, et al., 
2023) 

Design and 
implementation 
of IoT(Internet Of 
Things) Gateway 
with MQTT and 
IEC 61850 MMS 
protocol 

Oh et al., 2023, 
Creates a IEC 
61850 MMS 
test bed using 
raspberry pi’s to 
create the 
connection 

Raspberry Pi 

RaspAp 

LibIEC61850 

BeanItIEC61850 
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Paper Title 
Description 
of project 

Hardware 
Requirements 

Software 
Requirements 

 (Gayo-
Abeleira, et 
al., 2023) 

Design and 
implementation 
of multiprotocol 
framework for 
residential 
prosumer 
incorporation in 
flexibility 
markets. 

A system is 
created using 
various IoT 
protocols 
including IEC 
61850 MMS. 
The authors 
make us of a 
protocol 
integration 
platform called 
FIWARE. 
FIWARE is 
used as an 
intermediary to 
convert all 
household 
power readings 
from smart 
plugs, smart 
TV’s, all smart 
devices using 
different IoT 
protocols. The 
readings is 
gathered and 
then converted 
into a singular 
database. The 
system then 
exposes all 
information 

Various smart 
devices, i.e. 
smart plug, smart 
appliances. 

FIWARE 

Thingsspeak 

RSCARD 

 

 

Table 2.6 shows literature that was reviewed and compared to gain an understanding 

of the application of MMS within and power grid and integration context. 

Hwang (2021) and Oh, et al., (2023) Created very similar system adding Message 

Queuing Telemetry Transport (MQTT) to that which was created by Hwang (2021). 

Both authors created an IEC 61850 compliant system where they utilize the IEC 61850 

MMS protocol to explore the benefits of a wireless connection over the conventional 

wired connection. The goal of Hwang (2021) is to determine the speed of a connection 

of a Raspberry Pi (IEC 61850 server) in a wireless network environment. Figure 2.5 

below shows the layout of the testbed that is created. All the actors in the diagram 

below is replaced with Raspberry Pi’s, to showcase the creation of a testbed with non-

IEC 61850 components 



24 

 

 

Figure 2.5: Testbed architecture for MMS integration (Haung, 2018) 

Oh, et al., (2023) used the below testbed architecture (Figure 2.6) to create an IoT 

(Internet of Things) gateway to allow the flow MQTT.  There are 3 additional roles in 

the architecture below to that of Hwang (2021). The MQTT Broker, MQTT Subscriber 

and the MQTT Publisher is introduced into the architecture with the already existing 

client-server. 

The MQTT publisher is the actor which creates topics and generates messages for 

consumption. The publisher gives all messages and topics to a subscriber.  

Operating at the heart of the MQTT architecture, the MQTT Broker serves as the central 

nexus for message distribution. The broker takes the messages supplied from the 

publisher and pushes it to the subscribers that are subscribed to that topic.  

In the MQTT ecosystem, MQTT Subscribers receives and processes messages of 

relevance. They subscribe to one or more MQTT topics, thereby receiving messages 

related to that topic. Subsequently, these Subscribers receive messages that have 

been published to the topics aligned with their preferences, courtesy of the MQTT 

Broker (Rusnak, 2022) 

 

Figure 2.6: Testbed including MQTT actors (Oh, et al., 2023) 
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(Gayo-Abeleira, et al., 2023), created a framework that integrates IoT devices and IEC 

61850 compliant power equipment in a smart connected home scenario. The authors 

establish various roles and use a central HEMS for communication and ensure 

compatibility between different devices and standards through the FIWARE platform 

and IEC 61850 communication. The framework also includes a test platform to validate 

its functionality. 

 

Figure 2.7: Prosumer IoT high level architecture for IEC 61850 data consumption (Gayo-
Abeleira, et al., 2023). 

Figure 2.7 shows the architecture of all the actors within the authors proposed system. 

An IEC 61850 server sits between their FIWARE platform. FIWARE is an open-source 

platform used for an array of standardized elements and resources to craft and 

implement intelligent applications. It was created for Internet of Things (IoT) to integrate 

various IoT to interconnect devices of different IoT standards to create and consume 

real-time data. FIWARE has various protocols it supports; IEC 61850 MMS is amongst 

one of the supported protocols. 

The FIWARE system is responsible for conversion of all the information to the IEC 

61850 Server. Figure 2.8 shows the overall connection of the system the author 

created. The figure also shows the FIWARE system and its IEC 61850 MMS interface 

connecting to an external server. 
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Figure 2.8: Detailed architecture of FIWARE integration (Gayo-Abeleira, et al., 2023). 

The FIWARE system makes use of various IoT related protocols. Figure 2.8 shows a 

perception layer which is used to convert all IoT device meter readings from their 

various data reading standards to the FIWARE common data standard.  

The data is then gathered to and assigned to a context broker that has two 

responsibilities. The first responsibility is to save the data readings for further 

consumption. The second data responsibility is to visualize the collected information 

and to display it to the end user via Grafana (Gayo-Abeleira, et al., 2023).   

2.2.7.7 Discussion 

From the analysis above the newer research papers focuses more on integrating the 

MMS systems with IoT standards like: MQTT, REST, lwM2M and LoreWAN. From the 

papers we can see that it didn’t start with a big bang approach but as technology 

develops the MMS protocol is adapted into different forms. 

Wang, et al., (2008), created the first telecontrol system, making use of the MMS. They 

created a MMS server that can act as a server and client. Making it possible to 

communicate with a SCADA system without the use of a RTU. Hou, et al., (2013), made 

use of Wang, et al., (2008)’s implementation of telecontrol and created a framework for 

a gateway. The framework also used the role of server/client, where the MMS server 

plays the role of both. Being an intermediary, the MMS server is the client to substations 

requesting data and a server to devices/components below in the hierarchy. 
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Authors, Oh, et al., (2023) and Hwang (2022) created a communication infrastructure 

making use of MMS. Creating a testing infrastructure from Raspberry Pi’s to 

demonstrate the communication between the IEC 61850 standard and various other 

IoT based standards. They demonstrate, to test the IEC 61850 standard in a safe 

environment open-source components can be used to emulate the power grid. Oh, et 

al., (2023), highlighted that the publisher-subscriber architecture can also be set up 

without the GOOSE protocol, but using the MQTT protocol in conjunction with MMS.   

Monitoring each individual device in a house can be cumbersome depending on the 

manufacturer of that device. If the manufacturer decides to make the device 

uncontrollable a smart plug is required to make a device more controllable. Gayo-

Abeleira, et al., (2023), made use of a IoT communication standard conversion system 

called FIWARE to monitor each device in a house. Each device having its own IoT 

interface to communicate with the FIWARE system and create a holistic view of the 

system being metered. The author only used FIWARE’s MMS interface to 

communicate with IEC 61850 related environments. 

Although this project has various devices it monitors within a household this is not 

feasible because it doesn’t cover other power usages like internal resistances. Using 

the main incoming circuit of a residential house is a better way of monitoring all the 

power being utilized in a household, because the mains are connected to all the loads 

that is going into the house via an earth leakage switch.  

2.3 Literature of Web Service Architecture with IEC 61850 
2.3.1 Introduction 

One of the main components of the SG is the use of Information and Communication 

Technology (ICT), especially the communication aspect. As ICT has progressed over 

the last 30 years, ways of having computers communicate with each other has also 

evolved. Instead of connecting via the original peer-to-peer architecture, the client-

server architecture has also been widely implemented. Various hybrid communication 

models have been created based on these technologies. Web services a client-server 

communication model which is used to host applications or filesystems has made a 

great contribution to the Internet. 

This section discusses the review of literature from authors that have used web 

services in their papers to create a better SG. A focus was put on web services that 

map to the IEC 61850 standard.  
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2.3.2 Purpose 

This literature study focuses on leveraging IP-based IoT communication networks, 

including MQTT, Wi-Fi, and GSM, rather than Power Line Communication (PLC). While 

IEC 61850 is traditionally associated with substation automation, its adaptation to IP-

based smart metering environments ensures standardized and structured 

communication between devices. Unlike PLC, which relies on electrical wiring for data 

transmission, IoT-based networks allow for greater flexibility, scalability, and integration 

with cloud computing. 

Web services can share their entire server contents with its network, or just a port to 

connect to various applications. A web API is a form of a web service where the API 

dictates the rules of communication. Using an API, the creator of the API sets rules in 

the form of a request model and response model. An API in basic terms provides an 

interface to clients to allow effective communication. The client never knows what is 

going on in the inner workings of the API (Coles, 2021) . 

The purpose of APIs is to interact with an application, either actioning an event or 

sharing or storing information. 

2.3.3 SOAP vs REST 

There are various Web API technologies, but not all of them are using the HTTP (Hyper 

Text Transfer Protocol). CORBA (Common Object Request Broker Architecture) and 

DCOM (Distributed Component Object Model) are some of the first web APIs that do 

not make use of the HTTP protocol. SOAP (Simple Object Access Protocol) and REST 

APIs can be used over the Internet since they inherit the HTTP protocol.  

SOAP was the first API that enabled the communication between different operating 

systems. Making use of HTTP, communication could be achieved between different 

operating systems over a network. The data that is being exchanged is done so in the 

form of the XML (Extensible Markup Language). XML which is a markup language that 

can be created by any operating system able to manipulate text. 

REST is an improved API standard on the already existing SOAP protocol. Making use 

of the JSON (JavaScript Object Notation), a less complex way of mapping objects 

compared to that of XML. REST makes use of URI (Uniformed Resource Identifier) to 

identify resources on the API. REST APIs use the 4 function calls of the HTTP protocol 

to identify the action that is requested. Those actions are namely: GET, PUT, POST 

and DELETE (Dingra, 2016). 
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A resource can be accessed or mutated using a REST API by providing a request to 

the URI of the API. For example, making a GET request to 

http://www.example.com/meter?id=1, retrieves the information model of the meter with 

the Id = 1. The same information can be manipulated using POST or PUT, making one 

of those requests to the exact same URI with Id=1, either creates it or update its data 

models depending on the type of request. Making a DELETE request to the URL 

mentioned above removes the data allocated to Id 1. 

2.3.4 Breakdown of literature on Web services integration with the IEC 61850 

standard 

There have been many papers written based on the combination of keywords: web 

services and SG. The search criteria is narrowed by using the keywords IEC 61850 

and web services. A couple of authors created mappings to the IEC 61850 standard by 

making use of mappings from an interface. Others focussed on creating models the 

IEC 61850 standard uses to integrate with a new system.  

 

Figure 2.9: Spread of papers related to integrating of the IEC 61850 standard and web 
services 

The figure above (Figure 2.9) shows the spread of papers from 2010 up until 2023 

based on the specified research criteria. The keywords used are web services, IEC 

61850 standard, and IEC 61850 API. From the below table there are some prominent 

authors regarding the mapping of the IEC 61850 standard to the standard of CoAP 

(Constrained Application Protocol). Iglesias-Urkia, et al., (2018), not only mapped the 

IEC 61850 standard to the CoAP protocol the researchers also integrated an IEC 61850 

system with the protocol. The researchers also compared it to other API protocol 

mappings with the focus on performance. All the above-mentioned research was 

conducted in 2018 creating a spike of research in web service and IEC 61850 key in 

that year. 
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Table 2.7: Papers covering IEC 61850 mappings to web servers 

Papers Mapping to IEC 61850 
used. 

Use of IEC 61850 

(Pedersen, et al., 2010) REST-to-IEC 61850 Creating a mapping 
from REST-to-IEC 

61850 

(Karnouskos, et al., 2013) Communication standard 
not specified. 

 

Research on IEC 61850 Gateway 
based on MMS mapping (Hou, et al., 
2013) 

MMS Creating a web service 
gateway for MMS to act 

as intermediary between 
a non-IEC 61850 
component and a 

IEC6150 Component 

Integration of IEC 61850 MMS and 
LTE to support smart metering 
communication (Pham, 2013) 

MMS Creating an MMS 
gateway using LTE 

technology to submit 
metering data to a 

MDMS over a large 
geographical area. 

(Yun, et al., 2017) REST-to-IEC 61850  

Internet of Things Integration in 
SG(Pramudhita, et al., 2018) 

None Review IoT in SGs and 
creates a layered 

approach to 
incorporating IoT in SG. 

Referring to Web 
services. 

IEC 61850 meets CoAP: Towards the 
integration of Smart Grids and IoT 
standards (Iglesias-Urkia, et al., 2017) 

CoAP-to-IEC 61850 Creating a mapping 
between CoAP and IEC 

61850 

Integrating Electrical Substations 
within the IoT using IEC 61850, CoAP 
and CBOR (Iglesias-Urkia, et al., 
2018) 

CoAP-to-IEC 61850 Using a mapping 
between CoAP and IEC 

61850 to integrate IoT 
into the power grid 

Validation of a CoAP to IEC 61850 
Mapping and Benchmarking vs HTTP-
REST and WS-SOAP (Iglesias-Urkia, 
et al., 2018) 

CoAP-to-IEC 61850 

REST-to-IEC 61850 

SOAP-to-IEC 61850 

Comparing speeds of 
different IEC 61850 

mappings to determine 
which one is the best. 

Integration of IoT Technologies into 
the SG(Cavalieri, et al., 2022) 

REST-to-IEC 61850 Creating a system that 
incorporates IEC 61850 

with a MQTT services 
that is connected to a 

REST-API to 
communicate events 

with a server. 

Design and implementation of 
multiprotocol framework for residential 
prosumer incorporation in flexibility 
markets (Gayo-Abeleira, et al., 2023). 

MMS The author integrates 
IEC 61850 with IoT 

technologies to create a 
prosumer which 

integrates with the 
power grid. 
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2.3.5 Comparative Analysis of web architecture design in the SG. 

All software solutions require an architecture to determine how the business 

requirements are fulfilled. Each type of business has an architecture associated to its 

code business requirements. For example, the power grid requires a different 

architecture of that of a bank. This section discusses the papers in the above table 

which elucidate the architecture of web services in the IEC 61850 compliant power grid.  

Yun, et al (2017), created a framework for the use of APIs to monitor the conditions of 

power equipment in the power grid. Using techniques used in the field of the IoT 

(Internet of Things), the researchers create a RESTful API by making use of ASP .NET 

Web API. 

 

Figure 2.10: Cloud Platform Layers of power equipment monitoring (Yun, et al., 2017). 



32 

 

 

Figure 2.10 shows the layers of the framework the researchers created. It can be seen 

from the above figure that they hosted their application on a VPN (Virtual Private 

Network) network using GPRS (General Package Radio Service). The VPN is used to 

segment their network and allow encryption between points to make the transmission 

of data more secure. 

Making use of a RESTful API the monitoring devices can communicate with API using 

URI’s. The monitoring devices in the Scene Perception Layer are using meters and 

multi-function sensors to collect data from the power distribution equipment. Using a 

GPRS gateway all the power equipment readings are converged to a single point using 

RS-485 communication. All the data is then Packaged by the gateway and sent to the 

API via a URI and the GPRS wireless network. 

In addition to the above they created a user platform to view/control all the above data 

and power equipment. This platform had multiple uses mainly: 

 SCADA Platform 

 Assets management platform 

 Operation management platform 

 Energy management platform 

 Status maintenance platform 

 Data visualization platform 

 Big data analysis platform 

 User management platform 

All the above functions are built around the view/control of the power system data to 

allow various uses cases regarding power distribution to be fulfilled. The application 

was built to accommodate electrical engineers on any device with a browser to have 

access to the resources of a distributed energy network.  

Pramudhita, et al (2018) discussed the integration of two standard IoT data 

collection/sensing integrations in the SG.  
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Figure 2.11: IoT abstracted layer architecture (Pramudhita, et al., 2018) 

Figure 2.11 above shows the layout of the IoT architecture to enable data gathering 

from low level a device such as SMs, IEDs, RTUs and various devices that would sit at 

a metering/control level in a substation. The various layers abstracts what each layer 

would provide in a power system looking to control/monitor various power 

reading/controlling equipment.  

The first layer is the terminal layer, where all the power distribution equipment would 

be located. Generally, this type of equipment sits on top of the control level in a 

substation.  

The field network layer is a local network layer to connect and group all power 

equipment in a certain area. This type of network does not span over large geographical 

distances. This network is used to group a certain substation/residence or even a 

neighbourhood.  

The remote communication network layer connects all the different field networks into 

one large network by means of data concentrators. These networks can stretch over 
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large geographical distances. They networks include but are not limited to: GPRS, 2G, 

3G, LTE, 4G, WiMAX. 

The top layer of the architecture, the master station system layer is the Web Service 

that absorbs and uses the information to control the logic of all the system. This layer 

is normally allocated to a control centre or wide area management system (WAMS). In 

a SCADA control centre, the information supplied by this layer would be extracted to 

allow for grid visualization. 

Pedersen, et al (2010) created a mapping from the IEC 61850 standard to a RESTful 

API. Using the distinct rule in RESTful APIs they made use of the unique URIs in REST 

that mapped to resource identifiers in the IEC 61850 standard. For example: 

CHP1/MMXN1.Watt.mag.f is a reference has a logical device named CHP1, which has 

logical node MMXN1. MMXN1 has Data Object Watt. Watt has a data attribute mag, 

which contains data f. He mapped this path to rest by using a URI path. The REST URI 

for this same resource can be retrieved using:  

http://iec61850webplatform.com/CHP1/MMXN1/Watt/mag/f. Making use of POST and 

PUT the value of the reference f can be manipulated. 

2.3.6 Comparative Analysis of web service IEC 61850 mappings 

Table 2.8 shows how the identifier IEC 61850 is converted into the resource identifiers 

RESTful APIs used to identify functionalities. 

Table 2.8: ACSI TO REST MAPPING (Pedersen, et al., 2010) 
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The above research work shows how interoperability can be achieved by mapping 

REST URI paths to that of the IEC 61850 standard. While the IEC 61850 standard has 

its communication protocols that are very reliable in the substation. The REST mapping 

allows for easy integration with WAMS, SCADA and other DERs (Distributed Energy 

resources). REST is widely used by all industries to play the role of the back-end of a 

computer system (Coles, 2021). 

Iglesias-Urkia, et al (2018) creates a framework for mapping the IEC 61850 ACSI 

services to that of CoAP. The performance of each to-IEC 61850 mapping is measured 

using SOAP, REST and CoAP (Constrained Application Protocol) in an IEC 61850 

environment. Using the mappings created by other researchers namely Pedersen, et 

al., (2010), which created a REST-to-IEC61850 framework. 

CoAP is a protocol created to help IoT devices that are constricted by a non-functional 

issue, for example: memory, network band width, little ROM, or little RAM. The protocol 

is a REST-like protocol which support the use of HTTP methods, without using the 

HTTP protocol. Where HTTP is a TCP based protocol, CoAP is a UDP based protocol. 

It is a lightweight replacement with only a 4 Byte header.  

In addition to creating a mapping for CoAP to IEC 61850 MMS, the author created a 

framework to allow a no-payload response and the observer design pattern. The no-

payload option tells the server that the client does not need the resource 

representation. The observer design pattern is used to subscribe to an endpoint. Which 

is like that of MQTT. In this case the client would make an API call indicating to the 

server that it would like to continuously make a call to the address mentioned in the 

call. Figure 2.12 shows the sequence of interaction between the server and client. The 

server requires an endpoint and actions. In the example, the initial GET has request 

“obs+no-payload”, which tells the server to subscribe the client to this endpoint with no 

payload being returned. 

 

Figure 2.12: Interaction between observer-client and server (Iglesias-Urkia, et al., 2018). 
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A similar method to that of Pedersen, et al (2010) is used to map CoAP to that of ACSI 

in the IEC 61850 standard. Each ACSI service is mapped to a resource of the CoAP 

URI, making use of parameters in the URI, each service and resource can be identified.  

 

Figure 2.13: CoAP to ACSI function mapping (Iglesias-Urkia, et al., 2018) 

Figure 2.13 shows an example of the mapping URI to the various ACSI functions. The 

functions are also dependent on the CoAP Method that is being utilized. 

GetDataValues and SetDataValues have the same URI, but their distinct methods 

identify the action that should take place between either setting the value or getting the 

value.  

Using this mapping of CoAP-to-IEC 61850, the performance of it was compared to that 

of REST-to-IEC 61850 and SOAP-to-IEC 61850.   

 

Figure 2.14: Data and overhead bytes (Iglesias-Urkia, et al., 2018) 
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Figure 2.14 shows the results of the comparison between the 3 mapping performances. 

In all cases the SOAP has a higher data and overhead exchange than the other 2 

mappings. The figure also shows, the bigger the data is being sent via CoAP, the more 

overhead it creates. At a point when the data payload becomes larger, the REST 

mapping becomes more efficient with its overhead. In the figure once the payload 

reaches 20 kilo bytes, REST starts performing better than the CoAP mapping. Although 

the CoAP technology is still relatively new, there are many improvements the 

researcher can make to allow the CoAP to become more efficient. 

2.3.7 Discussion 

This section documents a literature review to determine the technologies, frameworks 

and architectures a web API would have in an IEC 61850 environment. 

Yun, et al., (2017) and Pramudhita, et al., (2018) created a very similar framework to 

build an architecture, creating a hierarchy of all the components that are used in a SG 

environment. This hierarchy consists of the various components a grid needs with a 

web server at the top of the hierarchy. Pramudhita, et al., (2018)’s focus is towards the 

consumption of metering data and using IoT based standards to have all metering 

devices use an API architecture. Yun, et al., (2017)’s framework consists around the 

overall control of the power grid using a SCADA system.  

The IEC 61850 standard was found to be mapped to various other communication 

protocols to allow integration with other systems. Pedersen, et al., (2010), created a 

mapping for REST from the IEC 61850 standard. REST which was at the time the 

newest framework of API communication (Coles, 2021). Iglesias-Urkia, et al., (2018), 

created a mapping to a very new IoT REST standard that is perfect for low power 

devices. They mapped CoAP to the IEC 61850 standard. In addition, they also created 

an implementation and compared the results to that of the other mappings that maps 

to the IEC 61850 standard-based implementation.  

The following section provides the literature review and discussion on the SM design. 

2.4 Smart Meter Design 
2.4.1 Introduction 

The SM forms the central part of this proposed research work. The SM is the evolved 

version of the conventional power meter. The main purpose of the power meter is to 

determine how much power a household uses and report that to the power utility to 

appropriately bill the owners on their power usage. Since the invention of the 

conventional power meter was invented the needs of the power grid have evolved. 
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Some of the new needs of the SM can be addressed by creating a newer meter, a 

smarter meter. 

This section documents a literature review to determine what the requirements are of 

the SM and how those needs fit into the bigger picture i.e., the SG. The goals of this 

literature review can be viewed as follows: 

 Determine what a SM is. 

 Determine what capabilities are required of the SM. 

 Determine if there are any standards regarding the SM. 

 Investigate design patterns of the SM. 

2.4.2 Purpose 

A SM is a power meter to help integrate every load within the SG. The SM is the 

coordinator between the load and supply. Determining what the grid requires is an 

important step in creating a SM. The way that power is being used might differ from 

country, culture and lifestyles. These factors change the requirements of a SM. Using 

a generic South African home as a reference it is determined what is required for the 

SM (Das, et al., 2024). 

2.4.3 Breakdown of literature 

Table 2.9: Components used by different authors to construct a SM 

Author Device 
Level 

Central 
Processo
r 

Power 
Reading 

Commun
ication 

Power 
Switch 

Extra 
Componen

ts 

(Burunkay
a & Pars, 
2017 ) 

Wireless 
Sensor 
network 

STM32 
Nucleo-64 
board 

Current 
Transform
er and a 
Voltage 
transforme
r 

ZigBee Relay N/A 

(Hlaing, 
2017) 

Wireless 
sensor 
network 

Arduino 
Leonard 
Pro Macro 

Current – 
AC712 

Voltage – 
Zmpt101b 

Esp8266 
external 
Wi-Fi 
module 

N/A N/A 

(Dalpiaz, et 
al., 2018) 

Mains STM32L4 Current 
Sensor 

RFM95W – 
RF radio 

N/A N/A 

(Sayed, et 
al., 2019) 

Mains Arduino 
Uno 

Current 
Transducer 
and 
Voltage 
Transducer 

ESP8266 
Wi-Fi 

Arduino 
Relay 
shield 

N/A 
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Author Device 
Level 

Central 
Processo
r 

Power 
Reading 

Commun
ication 

Power 
Switch 

Extra 
Componen

ts 

(Jasim & 
Abdalla, 
2020) 

Mains ESP32 PZEM-
004T 

WI-FI  Relay RFID – 
Payment 

Buzzer - 
Alarm 

(Hasam & 
Kadhim, 
2020) 

Mains Arduino 
Mega 

PZEM- 
004T 

MQTT + 
GSM 

Relay Storage – SD 
Card Reader 

 
 

(Midul, et 
al., 2023) 

Mains Arduino 
Nano 

Not 
specified 

GSM Short 
Message 
Service 
(SMS) 

ESP-8266 
Wi-Fi 
Module 

N/A N/A 

 

Table 2.9 contains a list of components that are used to create SMs from various 

authors. All the components have a very distinct role in the creation of the SMs. The 

above table investigating all research work have the following type of components in 

common. 

2.4.4 Comparative analysis of Smart Meter design 

Hlaing (2017)’s goal was to create a wireless sensor network of SMs to gather data on 

appliances, to inform people of their power usage at home. The main purpose of this 

research work was to introduce a cost-effective way of installing a SM to efficiently 

communicate with an online service via Wi-Fi. The ESP8266 Wi-Fi module by Espressif 

is the module being introduced. The benefit of this module is that it is low power, has 

its own processing and storage.  
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Figure 2.15: Block diagram of Smart Meter abstract components (Hlaing, 2017). 

 

From Figure 2.15, Hlaing (2017)’s version of a SM is to acquire the voltage and current 

data. The voltage and current are then processed on the Arduino (Central processing 

unit) and then submitted via an Internet connection made available by a WIFI 

connection and the ESP 8266 device. If the WI-FI is connected to the Internet, then the 

values collected from the sensor are submitted to the webserver. 

Jasim and Abdalla (2020), created an electricity payment metering system, where the 

user must pay for credit which is associated to their RFID (Radio Frequency 

Identification) card to allow the meter to switch the power on for a duration of time. The 

system uses a central online server to keep track of RFID cards, payments, and users. 

The system contains three devices. The SM, the central unit, and the paying device. 

The payment device consists of a micro controller and an RFID reading/writing unit. 

The payment device writes the RFID serial number along with device details to the 

central unit via an online API, hosted on the central unit. The data is stored along with 

various user data to make the link between user, card and SM.  
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Figure 2.16: Flow chart of SM payment system (Sayed, et al., 2019) 

Figure 2.16 shows a flow chart of all three parts of the system being integrated. All 

three parts of the system has at some point communication with the database. The 

customer unit (SM) checks if there is credit available. Only if there are credits available, 

will the relay of the customer unit switch on. The control centre has its own interface to 

add new clients and SMs to the system. The flowcharts are dissected below according 

to their function. 

[CUSTOMER Unit/SM FLOW CHART] 

1. The customer unit initialize the various components attached to it. Three modules are 

initialized: RFID reader, PZEM-004T power reading module and the E-Paper module. 

2. The Wi-Fi module makes a request to the control centre unit   

[CONTROL CENTRE FLOW CHART] 

1. The control centre starts its looping process by making connection with a Wi-Fi 

network. This will run until a network connection Is established. 

2. A User interface is then displayed to either add a new user or upload credits for the 

use of electricity. 

3. All action is then communicated with the database.  

[PREPAID RECHARGING UNIT]  
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 The recharging unit initiates connection with the Wi-Fi network, this step will be 

repeated until a Wi-Fi connection is established. 

 A user interface is then displayed.  

 The RFID card is then used by the customer to identify themselves. 

 The prepaid recharging unit gets all the information from the database. 

The power metering method is the main part of the meter, which incorporates both 

voltage and current measurement. The PZEM-004T multi meter module incorporates 

a hall effect current transformer to measure current and voltage transformer. Using 

these two values a library is used to calculate the power usages.  The hall effect current 

transformer allows current to read without intruding on the circuit; using the magnetic 

fields to create a current in the current sensor (Dewi, et al., 2016). 

Hasam and Kadhimd (2020) also created a similar system to Jasim and Abdalla (2020) 

although their components may be different, the same goal was achieved. Hasam and 

Kadhim (2020) also created a server which consisted of a Raspberry Pi and a MySQL 

Database to store data. Using an Arduino Mega along with various other components 

a device that resembles a SM was created. Each SM subscribes to the server 

(Raspberry Pi’s) MQTT service. All the data is then logged and submitted to a database 

to be analysed.  

 

Figure 2.17: Flow charts of Raspberry Pi Meter reading and displaying data (Jasim & 
Abdalla, 2020) 

Figure 2.17 depicts a flow chart which describes the logical flow in which the SM (A) 

submits data to the MQTT server (B). The two flow charts are dissected below. 

 

[FLOWCHART A] 
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Flow chart A in the figure above depicts these steps: 

1. Once the Arduino starts it will read sensor data, taking readings from the PZEM-004T 

module, and storing the data. 

2. The Arduino module using stored procedures determines what are the cost of power 

currently being used. 

3. Combine all the above gathered and calculated information to create a payload of 

information. 

4. The (Global System for Mobile Communication) GSM mobile network module is 

initialized with the payload. 

5. The data is then published to a MQTT broker using the newly established GSM 

connection. 

[FLOWCHART B] 

1. The Raspberry PI is started and is immediately subscribed via the broker to a topic 

where all reading data will be published. 

2. The Raspberry Pi queries whether there is data in the queue reading for 

consumption. If there is nothing to consume the Raspberry Pi will repeat this step. 

3. If the MQTT broker does have data available to be consumed. The Raspberry Pi will 

do various tests on the information to determine if it is correctly standardized. 

4. The information will then be consumed by an HMI and Node-red GUI.  

Dalpiaz .et al (2018), created a SM capable of harvesting power from the line it is 

monitoring. The SM created is non-intrusive, battery free and has low power 

consumption. Avoiding battery related SMs reduces the SM maintenance. The non-

intrusiveness allows the installation and maintenance to be easier. Low power 

consumption prevents the meter from influencing the power readings of the meter itself. 
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Figure 2.18: Basic Functioning of SM (Dalpiaz, et al., 2018) 

The low power consumption goal is achieved by only activating the Microcontroller Unit 

(MCU) when a transmission is required, otherwise the MCU remains in sleep mode. In 

Figure 2.18 the current transformer is connected around the line that needs to be 

monitored. The current is fed to a bridge rectifier which charges a capacitor. Once 

charged, it sends a voltage to the MCU to activate it and send a signal via the radio. 

The bigger the load consumed, the faster the capacitor will charge and send out a 

signal. The capacitor being of a certain size, would always release a charge over a 

certain amount of time. Discussion 

All authors had a very similar approach to creating a SM. There are four common roles 

in SM construction that needs to be built in order to qualify the meter as a SM. Below 

is a list of the various component roles: 

 Central Processing 

 Power Reading Module 

 Communication 

 Switch 

Each component has its own distinct role in a SM. The Central Processing Unit (CPU) 

functioning as the common connection component and where logic and interface live. 
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The power reading module is the module that is used to transduce/convert current into 

a readable form for the CPU.  

The communication module can take the form of any network media interface. Wireless 

networks are the most common as wired connections seem to create changes for the 

metering network. Jasim and Abdalla (2020), makes use of a Wi-Fi network using the 

ESP32 module, enabling a Wi-Fi network-based system. (Hasam & Kadhim, 2020) use 

a very similar approach to allow locally based meters to communicate with a centralized 

local server, before transmitting it to a high-level server using GSM. (Midul, et al., 2023), 

uses the same approach as (Hasam & Kadhim, 2020) making use of Wi-Fi to allow 

local devices to communicate via Wi-Fi and reporting services are communicated using 

large mobile networks via GSM, 3G or 4G. 

Although it seems that Wi-Fi is the best communication media SMs use to communicate 

locally, (Dalpiaz, et al., 2018), made use of radio signals and a low powered 

microcontroller to communicate all power readings via a frequency-based 

communication. The higher the frequency of power signals sent, the higher the power 

usage. This approach is the most different approach of power metering, all other 

authors made some use of ASCII-based communication protocols.  

SM’s are built to measure the power of either a wireless sensor network where home 

automation devices and IoT protocols are integrated within the home. These SMs are 

not built to control the load, but to measure the power as a wireless sensor network. 

SMs are built to measure the main power source, and from what was identified in the 

research, can control the load with the help of a switch. 

The following section presents the concluding remarks to this chapter. 

2.5 Conclusion 

The literature review provided a comprehensive analysis of existing research on smart 

metering systems, communication protocols, and the IEC 61850 standard. Key gaps 

were identified, particularly the lack of interoperability in distributed energy systems and 

the challenges posed by proprietary communication frameworks. The analysis 

underscored the critical need for standardized communication to ensure seamless 

integration of devices across heterogeneous networks. 

The discussion on web services highlighted their pivotal role in enabling efficient and 

scalable communication within SG systems. The integration of web service 

architectures, such as REST APIs, with IEC 61850 MMS protocols was shown to offer 

significant advantages in terms of accessibility, modularity, and performance. These 
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web service frameworks allow for easier adaptation to varying network conditions and 

enable flexible data exchange, which is crucial for modern SG applications. 

In conclusion, the design of SMs plays a pivotal role in advancing modern energy 

management systems by integrating key components such as power measurement 

units, communication interfaces, and processing capabilities. These designs 

emphasize modularity, scalability, and cost-effectiveness, ensuring compatibility with 

existing grid infrastructure. While significant progress has been made in leveraging 

open-source technologies and IoT-based communication, challenges such as real-time 

data processing, robust security, and seamless integration with global standards like 

IEC 61850 remain areas for further exploration. 

Similarly, the MMS protocol and IEC 61850 standard have been shown to be essential 

in achieving interoperability and standardization within the SG. The object-oriented 

approach of MMS facilitates efficient real-time data exchange, while the scalable and 

hierarchical architecture of IEC 61850 ensures seamless integration of diverse devices. 

Together, they offer a robust framework for addressing communication inefficiencies 

and interoperability challenges. However, their application in residential and distributed 

environments highlights the need for continued research to enhance scalability, 

address security concerns, and unlock their full potential for widespread adoption. 

Chapter 3 describes the methodology and the creation of a plan together with the 

introduction of various software and hardware models to create the proposed system. 
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CHAPTER 3  

  RESEARCH METHODOLOGY AND PLANNING PHASE 

3.1 Introduction 

This research work is in the majority a software-based project, where various systems 

are integrated to achieve a common goal. In the SDLC (Software Development Life 

Cycle), a planning phase must commence before an implementation phase can 

happen. This chapter documents the planning phase of this research work. In the SDLC 

planning phase some units (components of a system) may need to be completed 

partially to ensure that certain integration points are viable. 

The planning of an Application Programming Interface (API) is crucial in ensuring 

interoperability and data exchange between various components of the smart metering 

system. By designing a robust and standardized API, utilities can streamline the 

integration process, making it easier to incorporate new technologies and services in 

the future. This promotes innovation and allows for the development of more efficient 

and customer-centered solutions. 

Moreover, the integration of the IEC61850 MMS (Manufacturing Message 

Specification) server into SMs is a fundamental step toward achieving seamless 

communication within the electrical grid. This standard ensures that the devices and 

systems involved in energy distribution can communicate effectively, allowing for 

coordinated operations and improved grid reliability. By adhering to the IEC 61850 

standard, utilities can reduce downtime, respond to outages more quickly, and optimize 

grid performance. 

The MMS server and the Smart Meter API both receive input based on what the Smart 

Meter (SM) provides. Therefore, the section which plans the server components are 

both dependent on the inner workings of the SM. This dependency resolution 

determines the flow of this chapter. 

This chapter has 3 planning phases, which are divided into their own distinct sections. 

Section 3.2 contains the partial planning and implementation of the SM, which other 

sections require to correctly plan the integration points. Section 3.3 outlines the various 

API (Application Programming Interface) components, and the planning and the 

construction thereof. Section 3.4., plans the construction of the MMS Server and the 

dependencies thereof. Section 3.5 concludes the chapter and provides a high-level 

overview of what is discussed in this chapter. 
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3.2 Smart Meter 

There are various SMs on the market. Although the SMs are capable of great things, 

they are not standardized to suit the same purpose. Some meters are created to suit a 

niche market or used to be compatible with a certain manufacturer. The main purpose 

of using the IEC 61850 standard in the power grid is to standardize communications to 

allow for interoperability between equipment from different vendors or Original 

Equipment Manufacturers (OEMs). Designing a SM with the goal of interoperability 

allows various manufacturers to use the SMs output and input data for various 

applications. The application of the IEC 61850 standard in this project allows for 

different systems to communicate with the SM. 

This section practically implements the SM with it modules, to determine what the data 

structure consists of. Knowing this data structure allows the other units namely the 

MMS server and SM API to be planned according to what data is gathered and sent to 

that component. The next section introduces the requirements for the SM. 

3.2.1 Requirements for the SM 

Using the results of the literature review, a concise list of components is selected to 

fulfill the functions of a SM. The SM is then abstracted to three main functions: logic, 

metering, and communication. Using these three functions as a guideline the 

components for the SM are selected. 

The first component that makes a SM smart, is the brain - the CPU (Central processing 

unit). The CPU can take any form of device that is able to make logical decisions. The 

CPU can be any form of computer. This device is required to integrate different 

components to classify the device as a SM. The second component is the meter itself, 

which is an electricity sensor. The sensor should be capable of measuring an electrical 

attribute of the electricity usage, i.e., Current, Voltage, Power and Frequency. These 

values help the system in making calculations and decisions based on the data. The 

third component is the communication module. The communication module uses a 

certain specified primary network communication media. This media is based on what 

is available in the environment of the meter. This network is used to communicate with 

a centralized data server over the Internet. In addition to all the above components 

there needs to be some method of controlling the meter which is connected to the main 

AC power supply of the residence. A relay is situated intrusively to be able to control 

the power supply supplying the residence. 
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Figure 3.1 Abstraction of SM and the capabilities  

 

Figure 3.1 shows the abstraction of how the SM is integrated with the main power 

supply of a household. The power meter and the power switch are connected directly 

to the main power supply of the household. The power meter reads the data of the 

power line to which it is connected. The CPU makes decisions and communicates the 

readings to the centralized server via a network interface connection. 

Figure 3.1 shows a sequence diagram of how the main system interaction would occur 

between the components of the SM. At a high level, the three main parts of the system 

is the CPU, Power meter, and the Network interface connection. 
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Figure 3.2: High level overview of smart meter functionality 

Figure 3.2 refers to the network interface connection. This connection can be any form 

of info of component on the SM that allows it to communicate over the Internet. The 

main function of the Network Interface Card (NIC) is to communicate with the API-

gateway. This is done by means of HTTP request. The following section outlines the 

component roles, the types and the selected components for the research work.  

3.2.2 Component Selection 

3.2.2.1 CPU 

The CPU is the most important part of the SM, where all the components are integrated. 

The Raspberry PI, the SoC-like computer, is selected for its capability to integrate with 

more parts than a normal microcontroller. The built-in Wi-Fi and GPIO pins make it the 

best device to use for integration, because of the variety of software and hardware it 

supports. The components are integrated with the Raspberry Pi using different 

interfaces. Using either (Serial Peripheral Interface) SPI or the built-in GPIO of the 

Raspberry Pi is the best candidate for building the SM device.  
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Figure 3.3 Pin Layout of Raspberry Pi (Raspberry Pi, 2023) 

Figure 3.3 shows a pin layout diagram of the Raspberry PI. As mentioned, before it is 

selected due to its built-in Wi-Fi capabilities. The Wi-Fi module attached to the board 

can be seen in Figure 3.3. It can be seen from the pinout diagram, that the Raspberry 

Pi provides 5V power supply pins to all integrating components. In addition to the power 

supply pins there is a great amount of General-Purpose Input Output (GPIO) pins for 

input/output.  

The closed hardware components which also require integration, requires another 

interface other than a hardware interface. The USB ports the Raspberry Pi provides 

creates more options of integration via SPI. The storage capabilities of the Raspberry 

Pi are also utilized along with its built-in operating system and file system. 

3.2.2.2 Meter 

The PZEM-004T multi-functional sensor module is utilized to provide metering 

capabilities to the SM. This component is selected due to its array of meter readings 

being provided. This component is an intrusive component, which is required to be 

connected into the circuit with an additional current transformer.  
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Figure 3.4: Diagram of PZEM-004T power module (nn-digital-website, 2023) 

Figure 3.4 is an example of how the pin layout of the module looks. The left side of the 

board contains the low voltage control circuit; the right side of the board contains the 

high voltage reading circuit. The power reading module is connected into the load’s 

terminal, with a current transformer connected to the load’s neutral line. The series 

connection is to enable the power reading module to read the current.  

The PZEM-004T contains a pre-coded chip that is responsible for reading the power. 

The device has its limitations, but the device is selected due it is limits not falling within 

the parameters of this project. The module can measure between 80 – 260V with 0.1V 

resolution and 0.5% accuracy. The module can measure up to 100A using the external 

transformer. In addition, the active power, power factor and frequency can be read with 

a 0.1 resolution, irrespective of the unit of measurement. (innovatorsgurus.com, 2023).  

There are multiple ways of integrating with the module, and it is decided after 

integration tests that SPI is best suited due to its support on the Raspberry Pi. Another 

viable interface is GPIO, but there is no support for analogue data exchange on the 

Raspberry Pi GPIO pins. 

3.2.2.3 Relay 

A 5V Arduino Relay is integrated with the SM to allow the programmatic switching 

circuit. This relay is selected because of its simplicity. Using a GPIO pin and a 5V power 

pin and GND pin ensures that this relay is easy to integrate into the system. By 

controlling the bit, the signal pin is connected to switch the circuit on and off depending 

on which terminals the load is connected to. In the case of this device the load is 

connected to the Normally closed and Common pins. 
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Figure 3.5: Diagram of the Arduino relay being utilized (Murray, 2023) 

Figure 3.5 shows the pinout diagram of the Arduino relay. The relay as seen above is 

very simple to implement. It requires a power source and a digital signal to be able to 

be controlled. The Controlled circuit has two options of connection, normally closed (by 

default the circuit is on, unless power signal is given) and normally open closed (by 

default the circuit is off, unless power signal is given to turn it on). The SM always has 

the circuits powered up unless instructed otherwise, hence the normally closed 

configuration is selected for the SM. The following section implements all the 

components of the SM to determine what the output consists of. This allows a data 

model to be planned by the Smart Meter API and the MMS server. 

3.2.3 Partial Implementation  

Each of the main components that have been discussed thus far i.e. Smart Meter (CPU, 

Relay and Power Reading Module). The final construction of the system consists of 

integrating the main components: 

 SM 

 Smart Meter API 

 MMS server 

To enable these components to correctly communicate with each other, each 

component is partially implemented to determine if they can communicate. In the case 

of the system being created, the smart meter voltage/current transformer outputs data. 

This data needs to be interrogated to determine if the data structure, data types and 

the data itself is valid and usable. 

By establishing what is being returned from the PZEM-004T module, it allows the 

implementation of the other components to be more detailed. 
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Figure 3.6: Final layout of smart meter device 

Figure 3.6 shows a high-level connection of the SM device to the power connections 

of a main power line. It can be seen from the above figure that the PZEM-004T device 

has 3 connections (power in, power out and USB connection from the Raspberry PI) to 

allow it to properly read power. In addition, a transformer is also connected across the 

power out line to enable another reference for current reading. The module is 

connected to one of the RPI’s USB3 port.  

 

Figure 3.7: PZEM-004T data structure of a single reading 
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Figure 3.7 demonstrates what the power readings retrieved from the PZEM-004T 

consist of. Making use of a Python library named mobus_tk (Luc, 2023), it is possible 

to retrieve the values and convert it to the above JSON format. Appendix 8.1 shows 

the code responsible for generating the above. 

With its control circuit being connected to the Raspberry Pi, the power line connection 

is connected as normally closed onto the relay. The Raspberry Pi sends a signal to the 

relay each time the power of the circuit the device is connected to, is required to be 

switched off. The switching signal is determined by the SM API which would provide 

data via an HTTP request. 

 

Figure 3.8: Pin labelling of the Raspberry Pi 

Figure 3.8 shows the pin numbering for the Raspberry Pi. The Relay’s signal pin – the 

control pin- is connected to GPIO 17 (physical pin 11). Appendix 8.1 shows the code 

that is used to test the execution of commands from the Raspberry Pi to the relay. The 

testing acceptance criteria is to validate communication between the Raspberry Pi and 

the relay. Figure 3.9 shows the signal pin of the relay is connected to GPIO17 or 

Physical pin 11 of the Raspberry Pi while pin 6 and pin 8 are utilized as 5V and GND, 

respectively. The operating circuit (240V input) is not connected for this test case. 
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Figure 3.9: Raspberry PI Relay connection 

The code in Appendix 8.1 is used to test the relay integration with the Raspberry Pi, 

depicted in Figure 3.9. The output of this test unit is merely to switch the relay on and 

off according to user input. No extensive logic has been created. At the end of the 

section the final integration of the three main parts of this thesis is demonstrated.  

Then integrating with the already existing API endpoints on the SM using the various 

Python libraries already discussed, an additional Python library is added to the smart-

meter client to allow it to make API calls to the SM. The code created can be found in 

Appendix A. Figure 3.10 shows the values that is being retrieved from the PZEM-004T 

module and the request being made to the SM API, which are discussed in the next 

section. 

 

Figure 3.10: Command line output from SM Python script 
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Figure 3.10 shows the output of the SM Python script. The figure shows that a post 

request is being made to: http://192.168.100.105:8000/Readings/f44f550a-3b08-482d-

aa24-6a585286261e. This URL is pointing to 192.168.100.105, the IP address that the 

smart-meter-api. The token “f44f550a-3b08-482d-aa24-6a585286261e”, is generated 

to identify the SM. On each subsequent request made by the SM, the token is provided 

to identify itself.   

The host database saves the information in the Mongo database, as seen in Figure 

3.11. The SmartMeterId contains a base-64 encoded version of the token. The 

Database presents the readings that is available for the MMS server to consume. The 

following section of this chapter provides the planning of the code and integration of 

the API with the SM. This section also consists of a partial implementation. 

 

Figure 3.11: Database entries for the various readings that a single smart meter 
submitted. 

3.3 Smart Meter API 
3.3.1 SM API Overview 

This section discusses the design and implementation of the API gateway and what is 

required from the API to accomplish the goals of the system. This section outlines the 

requirements of the other parts of the system, i.e., control centre and the SM. 

The proposed system creates an intermediary for control centres/SCADA systems to 

receive information from the load with the SM playing the role of the residential load in 

this situation. All the SM readings are gathered and provided to the control centre in an 

organised, and standardised manner. Using an API allows the centralisation of data 

collection from all of the SMs. Using a polling technique these values are kept up to 

date as the meters are communicating with the API endpoints. The meter’s transfer 

intervals are adjustable so as not to overwhelm the API with information. 

All software applications are developed according to their business model. An 

application that requires many users to be active at a given time should be scalable. A 
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time-critical application should be developed with performance in mind. To determine 

what architecture to use, it is necessary to determine what the system needs from a 

performance standpoint. Using the items discussed in the literature review, it can be 

deduced that web service APIs are not only built for speed but also for interoperability 

between operating systems. 

Looking at the power grid requirements, safety is one of the biggest issues when it 

comes to using electricity. The power grid can be dangerous, if emergencies are not 

handled in a timely fashion. The power grid must respond quickly to any mal-operation 

or fault. Time criticality is therefore a requirement for any architecture that is created 

with safety in mind. 

 The grid is constantly expanding to new geographical locations, so the API must be 

used to accommodate more and more SMs. In addition to being time critical, the API 

should also be scalable. More instances need to be created so that more SMs can use 

the API without sacrificing performance.  

The clean architecture meets this project’s requirements for an application that can 

uphold these requirements. The clean architecture is a software development pattern 

that emphasises separation of concerns, testability, maintainability, and flexibility. 

At its core, clean architecture is about organizing code into independent layers so that 

changes to one layer do not affect the others. This is achieved by defining clear 

boundaries between layers and enforcing strict dependencies between them. In this 

way, the code becomes more modular, easier to test, and less coupled, making it easier 

to change and maintain over time. 

Overall, clean architecture is a powerful approach to software development that 

emphasizes maintainability and flexibility. By following its principles, developers can 

create code that is easier to test, change, and extend over time, ultimately leading to 

more stable, scalable, and sustainable software systems. 

The Architecture for the system being researched can be divide into 4 independent 

layers. 

 Domain 

 Infrastructure 

 Application 

 API 
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The domain layer is where all the business logic exists. In the case of the project, it 

contains the relationships between the control centre and the SM in a logical format. It 

contains database constructs, entity models of the SM and the control panel. The 

domain layer does not depend on technologies or frameworks as it is usually written in 

raw object-oriented notation. 

The infrastructure layer is the support layer for the technologies required to build the 

system. This layer is a technical support for creating logic that integrates with external 

technologies to incorporate them into the application. Examples of this range from 

databases, caches, to integration with APIs from other applications. This layer is 

required to create caching and database integration to provide permanent and 

temporary storage for all data that passes through the system. 

The application layer combines the business logic of the domain layer and implements 

the technologies of the infrastructure layer to create functionalities for the system. All 

other logic, aside from the domain/business logic, resides in the application layer. 

The API layer is an interface that is used to connect to the system through the 

application layer. The API layer contains standards for connecting to the system via 

HTTP requests. Other interfaces can also be created to connect to the system. The 

following section outlines the various endpoints/integration points the API requires for 

a SM to submit its readings. 

3.3.2 Endpoints 

The API determines what application layer methods the external integrators have 

access to. APIs generally expose all functions created by the application layer to the 

outside world. This allows other systems to integrate with the API created. An endpoint 

is a single resource in an API. This resource can contain anything from executing a 

piece of code that creates a SM in the database to retrieving all the information that 

has ever been submitted to it. Each resource can be identified by a URL on the base 

DNS. The requirements for an endpoint can be categorized by its functionality. There 

are 4 main types of endpoints used in the SM API. 

These endpoint types generally refer to CRUD (Create, Read, Update, Delete), and in 

HTTP language they are GPPD (Get, Post, Put, Delete). Each of these endpoint types 

has its own requirements that must be performed depending on the function. POST, 

for example, is used to insert data into the system and therefore may require a data 

body to be submitted with the request. The GET endpoint is used to retrieve data. A 

URL or header parameter may need to be specified to return a list filtered by the 

parameter. PUT is the update type endpoint, where the instance to be updated must 
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be identified. DELETE, as the name implies, deletes data, and requires an identification 

parameter to determine what to delete. This description of endpoint types is very 

general, and their use is solely based on application programming which is outlined in 

table 3.1. The application may have more use for these types than has been described 

here. See Figure 3.12 for a general description of the endpoints used in this study. 

 

 

Figure 3.12: High level model of how the API Structure 

Figure 3.12 shows the API Integration with the SMs and the substation/control 

centre/wide area management system. These endpoints are responsible for controlling 

the system and how it functions There are four endpoints related to the SM, each 

having their own distinct function. 

1. POST Meter or /Meter, this endpoint is the initialization endpoint. At the start of 

process, a meter needs to be initialised. The POST <URL>/meter endpoint is 

responsible for doing the initial handshake between the API and the SM.  

2. Once the meter has received a token from the API, it is encrypted and stored into the 

database on the API to keep the SM data secure. The POST 

<URL>/meter/{token}/reading is the SM’s way of uploading the data to the 

application.  

3. The PUT <URL>/meter/{token} is used to extend commands to the SMs themselves. 

The meter regularly makes a call to the meter/{token}/status endpoint.  

4. The GET <URL>/meter/{token}/status is used to allow a meter to get the configuration 

of the meter, to allow it to be controlled.   
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Figure 3.12 also shows the substation related endpoints; these endpoints are the 

interface which is used by a substation to integrate to the load. 

 GET <URL>/readings provides the control centre with the latest single 

entry from each SM. This endpoint displays the different types of users of 

the data. The IEC 61850 standard supports XML as a data representation 

language. The JSON (Java Script Object Notation) is the norm in today’s 

software engineering world. If the standard is to be updated to use the 

JSON instead of XML the endpoints already support the integration. 

 

Figure 3.13: Sequence diagram presenting the main end-to-end flow of a SM 

Figure 3.13 shows how these endpoints are used in a sequential process. The following 

steps are depicted in the above diagram. 

 The process starts with creating a meter. The SM registers itself to the API. This 

action is depicted by the first arrow. 

 The second arrow represents the HTTP response the meter receives. The SM 

analyses the response payload and retrieves a token from the payload. This 

token is the way of identifying itself to the system. 

 The SM is then able to start reading power reading values. These values are 

submitted to the API by making a POST API call to “/{token}/reading” endpoint. 

As mentioned in section 3.2, the token is provided to the API to identify itself. 
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The API gives a “204 No content” Response to the SM indicating that it has 

successfully recorded its values into its database. 

 The MMS server makes a GET “/readings” call. This allows it to retrieve the 

current values for all SM’s. The API then responds with all the readings 

contained in a JSON list format. 

The rest of this section outlines how each endpoint works specifically with relation to 

response models, request models and the various types of data it is able to return. 

The first endpoint called is the “POST <URL>/meter” endpoint. This endpoint is the 

initialization endpoint for the SM. This endpoint provides the meter and the system with 

a means of identifying the meter and classifying its readings. To create this token, the 

endpoint is supplied with information. To allow the end-user to classify the data into 

different categories. These parameters are given to the endpoint: 

 Address 

 Zip Code (Any form of address code not limited to American zip code) 

 IP – Address 

These parameters are specifically chosen to accommodate the end-user to make 

location-based decisions.  

The second endpoint being used is the “POST {token}/meter/reading”, this endpoint 

contains a parameter named, token. This token is retrieved when a meter makes the 

“POST /meter” the API returns the token and stores it permanently in the API database 

to identify it in the future. This token is used to identify to whom which meter readings 

belong and log them accordingly. This POST request requires values to be submitted 

to it, to count as a successful reading. 

 Voltage 

 Current 

 Power 

 Power Factor 

 Frequency 

If not all of the above values are returned, the API attempts to convert the values into 

an IEC 61850 MMTR object, if not successful, it returns a message indicating that more 

values are required.  

The third endpoint “GET /control/readings/” and “GET /control/reading/{token}” are the 

endpoints which main function is to return the metering data. These endpoints have 
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two different ways of returning data. The endpoint has two different sets of endpoints 

one for XML and one for the JSON. There are four endpoints in total related to the 

retrieval of readings. Making use of HTTP headers, the client can switch between the 

format of the response message by changing the header to the expected format.  

The ‘accept’ header determines if XML or JSON is being returned to the requesting 

application. By default JSON type formatting is provided for all readings. Otherwise, an 

XML file is returned with meter readings in a .SCD format. 

 GET /control/readings/xml 

 GET /control/readings/json 

 GET /control/reading/{token}/xml 

 GET /control/reading/{token}/json 

The GET endpoint with the token only retrieves the latest reading and the token 

determines which SM’s values is being requested. The values being returned depends 

on the sensor. The ideal sensor returns:  

 Voltage 

 Current 

 Power 

 Power Factor 

 Frequency 

In case the sensor does not return all the above values, the API stores the values that 

are returned. For example, if the sensor is not designed to return frequency or power 

factor the API does not save those values and makes the values null. 

Table 3.1: List of endpoints 

REQUEST 
TYPE 

END-
USER 

URL Request 
Body 

Response Model 

GET  Control 
Centre 

/control/reading
s/xml 

n/a JSON{LIST[Voltage, 
Current,Power,PF, 

Frequency]} 

GET  Control 
Centre 

/control/reading
s/json 

n/a LIST[MMTR] 

GET  Control 
Centre 

/control/reading
/{token}/json 

n/a MMTR 

GET  Control 
Centre 

/control/reading
/{token}/xml 

n/a JSON{Voltage,Current,
Power,PF,Frequency} 

POST SM /meter/ Country, City, 
Street Name, 
Address Code 

{token} 
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POST SM /meter/reading/{
token} 

JSON{Voltage,
Current,Power,
PF,Frequency} 

N/A 

DELETE SM /meter/{token} n/a N/A 

 

Table 3.1 shows a summarized table of the list of endpoints required to enable system 

integration to the various parts of the system. The table uses a notation where LIST [], 

JSON {} and MMTR is used. LIST [] is used when a LIST of values is returned, for 

example LIST [MMTR] returns a list meter reading. JSON {} indicates that the response 

or request is which is returned in XML format being returned in a JSON format. MMTR 

is generally the logical node following the IEC 61850 guidelines for transferring 

information. 

 

Figure 3.14: Representation of the API and SM system in an IEC 61850 environment 

Figure 3.14 shows the relationship between the substation, control centre and the 

system that is created. From a substation perspective the system should look like 

another substation having metering as its main function. 

The “smart-meter substation” is designed to have an API Gateway and MMS interface 

as the interface to the entire “smart-meter substation”. The system is designed to act 

like a substation with a gateway device. In any IEC 61850 environment the MMS server 

ensures that the “smart-meter substation” looks like an actual substation, with various 

metering devices. The following section presents the partial implementation of the 

Smart Meter API, to create a sandbox to test the integration between the various 

components. 
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3.3.3 Implementation of SM API 

The creation of APIs has been simplified in today’s world. Each OOP (Object Oriented 

Programming) language has some sort of library or framework that can accommodate 

APIs. The challenge with APIs is that they must be maintainable and scalable, while 

being secure at the same time. 

This research work does not require a vast number of APIs to be deployed to allow the 

system function. The API’s use is singular and does not target anything other than SMs 

and control centres. The goal of the API is to get data, format data and provide data to 

the necessary project. 

The formatting of the data requires the API to format data according to the directives 

that the IEC 61850 standard outlines. The API created, is in a RESTful standard to 

allow various applications to integrate with the API. Thus, IEC 61850 compliant devices 

that receive data submitted via REST API require formatting to XML for conversion to 

the IEC 61850 standard. 

An SQL database is utilized to create structured data, that can be manipulated or 

retrieved based on a query provided.  In a real-world scenario, the use of a NO-SQL 

database such as MongoDB would not be ideal since the data would need to be 

structured correctly for easier consumption using SQL commands.  

The project is created in this GitHub repository: https://github.com/RyanKruger1/smart-

meter-api.git. The above repository implements the SM API and the various clients that 

are required. The API has been written in .NET, a very common middleware application 

programming language. The clients are written in the Python programming language 

due to its various interoperability across multiple operating systems, including the 

Raspberry operating system – the main operating system for the Raspberry Pi.   

 

Figure 3.15: Entity Relation Diagram of the SM and readings Classes 
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Figure 3.15 shows the main model relationships being utilized by the SM API. These 

models are the basis of how the data is stored in the NO-SQL database. The SM has 

a one-to-many relationship with reading. Reading has an identifying field named 

“creation”. The “creation” field is the main identifier of the readings, it is a date-time 

combination, which are forever unique. Each reading is associated to a SM using the 

“SmartMeterId”. 

API endpoints are created to accommodate both a SM integration and a control centre 

integration. Figure 3.15 depicts the relationship that is used to create endpoints that 

can accommodate any relevant parties. The above models are mainly used to create 

the basis of the relationship between the two entities. As previously mentioned, the API 

software is split into four layers, i.e. API, application, domain and infrastructure. These 

models live on the bottom layer of the software architecture, i.e., the domain layer. This 

allows the entire system to be built upon these models.  

 

Figure 3.16: The 4 layers of the smart meter-API 

The domain layer contains the models, and any other models that are required to create 

the API. The infrastructure layer contains any infrastructure related dependency which 

requires outside integration. The SQL database connection of the API resides in the 

infrastructure layer. Any additional service that requires an outside connection resides 

in this layer.   

As the name suggests, the application layer is where these models are applied to 

create methods to allow the fulfilment of the goals of the API. The API layer is where 

the application layer to the public using HTTP methods are exposed.  

The application layer contains various methods to implement all the required 

functionality. Since all the information is already stored in a structured manner, the 

purpose of the application layer is to: 

1. Expose it to the public layer 

2. Format all the data to conform to the IEC 61850 standard. 
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Using Docker, a containerization engine, any port of the local machine is deployed to 

act as the server interface. ASP.NET provides a package for testing API endpoints 

called Swagger. Swagger is enabled by the SM API in development environments to 

allow for easier testing of the endpoints. The following URL allows access to the 

Swagger UI to view the available endpoints:  

http://localhost:<PORT>/swagger/index.html 

 

Figure 3.17: Page displayed from swagger to document API  

The page delivered is shown in Figure 3.17 - notice that it splits up the endpoint 

according to where their controller class lives. The figure below shows the outline of 

the exposed smart-meter API. 
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Figure 3.18: Folder structure of the API project 

Each one of the endpoints above is configured to have an Accept header; either the 

JSON or an accept XML header. The response returns the format that is selected via 

the header being passed into the call; by default, the request and response set to 

respond with JSON. Once the GET call is made with the accept header being set to 

“XML”, the response will no longer be JSON, instead it is in the XML format. 

 

Figure 3.19: Request requirements viewed by Swagger 
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Figure 3.19 shows the endpoint that is most widely used in this research work. As 

mentioned earlier, the token or “smartMeterId” is provided to the endpoint via the JSON 

body shown above, along with the various metering values such as voltage, current, 

etc. The following section introduces the planning of the MMS server that is used for 

integration in this research work. 

3.4 MMS Server 

The IEC 61850 standard provides a great amount of input regarding the future proof 

design of communication and control in the Smart Grid (SG). The focus of the IEC 

61850 standard is to achieve interoperability between devices from different 

manufacturers in the SG. The standard allows for seamless communication between 

the parts of the grid, mainly generation, transmission, and distribution. The load has 

not been looked at in such generalised detail, as it is impossible to generalise it due to 

its variance.  

The proposed system in this research work is to demonstrate the integration of the load 

into an IEC 61850 environment. The group of Smart Meters (SM) that are integrated to 

act as the load is structured to look like a substation with an MMS (Manufacturing 

Message Specification) server. The control centre or any grid-management can 

connect to the load/substation via MMS, without ever knowing that the components are 

not part of any substation, but a virtual substation. The IEC 61850 standard does not 

document the use of advanced metering infrastructures; therefore, an AMI (Advanced 

Metering Infrastructure) is modelled after a substation.  

Figure 3.14 shows the different components of the virtual substation and relationship 

within the system. The MMS server is the IEC 61850 based interface to the virtual 

substation, while the Smart Meter API is the generic API interface. 

Each SM is virtually identical to all other SMs in this system, because they all are 

created from the same template. The only aspect that separates the SM, is the token 

controlled by the Smart Meter API that identifies each SM. Each SM is designed to 

have 3 logical nodes. 

 CSWI – Control for XSWI 

 MMTR – The metering logical node 

 XSWI – The control for the circuit breaker on which the SM is located.  
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The logical nodes are not implemented on the SM itself. The SM reports its values to 

the Smart Meter API. The API provides an XML-based Substation Configuration 

Language Substation Configuration Language (SCL) file as defined in IEC61850-6 on 

the current state of the virtual substation to the MMS server. The MMS server exposes 

all information to any control centre/SCADA system connected to the server.  

3.4.1 Data Construction 

The virtual substation has the main purpose of supplying any connected client with IEC 

61850 objects. The MMS server provides this connection to external parties. 

The IEC 61850 standard has various communication protocols. MMS is one of the few 

protocols that stretches beyond a substation. The MMS standard provides the SCADA 

system with an interface into substations, in addition to external components. 

This project utilizes a Java project created by beanIT (2020). This project provides a 

client-server application for integrating with or hosting an MMS server. The virtual 

substation that is created, hosted on an MMS server to provide this integration with 

external parties. The only requirement is the construction of the SCL files. Since the 

smart-meter-api is connecting SMs dynamically, it is required to continuously updated 

the SCL file in the Java library memory. 

 

Figure 3.20: High level logic overview of API-MMS server 

Figure 3.20 displays the logical flow of the dynamic SCL file. This is to accommodate 

a new SM joining the neighbourhood with the system being able to accommodate this 

addition. As soon as a change is detected a new SCL file is generated to keep the MMS 

server running on the virtual substation up to date. The above diagram shows the 
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system cycle that takes places. Every cycle the system attempts to update the meter 

readings. The updating of meter readings has a time-based update, for example every 

500ms. This value is configurable based on the needs of the MMS server. 

Once a cycle starts, the system attempts to populate the MMS server with the latest 

data. It also checks if new meters have been registered with the API. If a new meter 

has been registered a new SCL file is published, and the MMS server loads that new 

meter with the readings that is communicated by the meter. 

3.5 Conclusion 

In conclusion, the construction and deployment of SMs, with a well-planned API and 

seamless integration of the IEC 61850 MMS server, represent a significant step forward 

in modernizing our energy infrastructure. These advanced meters not only provide 

more accurate and real-time data on energy consumption but also enable utilities to 

enhance their grid management, reduce operational costs, and empower consumers 

with greater control over their energy usage. 

This section demonstrated and tested the various parts of the system individually. The 

SMs components are tested to make sure that the information is retrievable and usable 

by the rest of the system. It also helped in planning what would be the centralized 

processor for the SM. The data the power reading sensor reads is used to plan the 

API’s request and response models accordingly. The MMS library that is used to 

facilitate the IEC 61850 interface is presented and the integration between it and the 

API is discussed, modelled and planned. 

The following chapter makes use of the above planning, documenting reports on the 

implementation and testing phases of the SDLC. This chapter is used as a guideline to 

solve unforeseen problems and creates solution that will achieve the proposed system 

goals. 
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CHAPTER 4  

       IMPLEMENTATION AND INTEGRATION OF THE SMART METER SYSTEM 

4.1 Introduction 

This chapter presents the previously discussed topics and methodologies to implement 

a system that can achieve the goals discussed in the Introduction chapter.  

This chapter follows the implementation stage of the SDLC (Software Development 

Life Cycle). This chapter uses the planning phase presented in the previous chapter to 

integrate each system component. This chapter presents the integration steps that is 

required to achieve the goals set out in Chapter 1. 

In the earlier chapter a switching mechanism is planned, to create the power switch 

feature. After the system was implemented, it was realised that the switching 

functionality would require work, not only from an IEC 61850 perspective. It is decided 

to rather focus on the metering aspect of the Smart Meters (SM). 

The implementation chapter is split into five sub-sections. Each sub section implements 

a different part of the system. Section 4.2 discusses the environment, which describes 

what the computer architecture looks like for the entire system and the platforms on 

which the system is run. This section is mainly to describe the hardware being utilized 

in the system. Section 4.3 presents the Message Manufacturing Specification (MMS) 

server configuration and setup. This section additionally consists of the discussion of 

the REST API, MMS Server and the caching mechanism. Section 4.4 describes the S’s 

software and integration with open-source components. Section 4.5 details the SM 

client, meter module and SM simulator. Section 4.6 provides the conclusion to this 

chapter. 
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4.2 Environment                   

 

Figure 4.1: High level overview of system 

Figure 4.1 shows the layout of each part of the system. The SM (containing the Python-

based client) communicates with the Redis server through the REST API, while the 

MMS server communicates to the Redis server and substation devices. The 

implementation of the environment is a pivotal step in ensuring that the entire system 

operates cohesively and efficiently. As this chapter, progresses, the technical 

intricacies, best practices, and considerations that went into setting up an environment 

conducive to achieving the research goals are explored. By establishing a robust and 

well-designed environment, the stage is set for gathering data, analysing system 

performance, and ultimately determining the success of the research work. The 

environment includes a couple of aspects, like the networks which is used to achieve 

communication amongst the components of the system, the hardware, on which all the 

software components run, and the interface and operating systems the hardware uses.  

4.2.1 Network Setup 

Each part of the system is in a different part of the communication network. The server 

software shares a system to allow efficient communication between the various 

software platforms. 
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Figure 4.2: Network Layout  

Figure 4.2 shows the various communication networks involved in the system. The SMs 

live on their own local area networks, which is seen having their own local IP addresses. 

The web server itself is hosted online and is identifiable with its domain name. 

The web server is a lightweight version of a normal server. A normal server is a system 

that contains components for distinct roles. For example, RAM (Random Access 

Memory) modules for memory, hard drives for storage dedicated Graphical Processing 

Unit (GPU) and CPU for processing. 
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4.2.1.1 Web Server hardware 

 

Figure 4.3: Hardware representation of system 

Figure 4.3 shows a hardware representation of the system. It is seen that both the 

server and SMs are being facilitated on Raspberry Pi development boards. This figure 

demonstrates that the server components all consist of Raspberry Pi boards. The only 

thing that distinguishes the two types of components is the type of software that is being 

run. 

The server from Figure 4.3 represents the Smart Meter API and the MMS server. The 

SM is also represented by a Raspberry Pi development board. The SM to Raspberry 

Pi ratio is 1:1. Each SM consists of its own Raspberry Pi board, with a power reading 

module attached. 
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Figure 4.4: Raspberry PI Server Rack 

Figure 4.4 shows the lightweight server used to accommodate the MMS-Server and 

the Smart Meter API. The server has a Raspberry Pi – marked by A, an external hard 

drive marked by B and a network switch marked by C.  

Figure 4.5 outlines the logical connections of the server, with respect to the Internet. 

The SMs communicates with the server via the Internet. The processor and the storage 

controller’s duties are both being fulfilled by a dedicated Raspberry Pi board. 

The following section discusses the software environment that uses the previously 

described hardware and communication networks. 
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Figure 4.5: Logical network connection 

4.2.2 Device Setup 

The Raspberry Pi operating system is created to facilitate a UNIX-based operating 

system for the credit card sized computer. All Raspberry Pi development boards being 

used in this research work are equipped with this operating system.  

The Raspberry Pi organization hosts imager software on the company’s main website. 

This imager is used to upload Raspberry operating systems onto any form of storage 

devices. All components in this research work make use of SD cards, not only as 

storage, but as the operating system container. 

4.2.2.1 Installation of Raspberry Pi OS Lite (64-bit) 

To set up the Raspberry Pi, the Raspberry Pi OS Lite (64-bit) is installed a on an SD 

card. This is achieved by downloading a software imager from the Raspberry Pi website 

(Pi, 2023).  

The imager requires a connection via either USB adaptor or a memory card adaptor. 

After inputting one of the above options into the computer, the imager software should 

be run and the operating system “Raspberry Pi OS Lite (64-bit)” should be selected 

along with the driver on which the OS (Operating System) is downloaded to. 

The Raspberry OS lite is a lightweight version of the normal Raspberry OS. The lite 

version of the operating system only contains a Command Line Interface (CLI), 

compared to the graphical user interface the regular operating system contains. This 

also results in better performance due to the minimalistic use of the operating system. 
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The intended use of this project is to use the Raspberry Pi as servers, operating them 

either remotely or by exposing the ports of the computer. The Lite version of the 

operating system is perfect because it allows for remote connections without the use 

of an operating system. 

4.2.2.2 SSH 

As mentioned above the Raspberry Pi OS lite operating system does not have a 

graphical user interface. The Raspberry Pi development boards used in this project are 

configured and communicated with by making use of a built-in interface. The Secure 

Shell (SSH) protocol is a remote command line client into a Unix based system. This 

form of communication makes use of crypto graphic algorithms to secure 

communication. It can also be used to communicate with devices on the same network 

remotely. 

4.2.2.3 Docker Containers 

All the projects that are created in this research work is containerized with Docker, to 

allow full transferability and easy deploy ability.  

Docker is a prominent containerization technology that has changed the way 

applications are developed, deployed, and managed in modern computing 

environments. It provides a comprehensive platform for creating, distributing, and 

running applications within containers. A container is a lightweight, standalone, and 

executable package that contains everything needed to run a piece of software, 

including the code, runtime, system tools, libraries, and configurations. Docker allows 

these containers to be created, moved, and executed consistently across different 

computing environments, offering several key advantages: 

Docker containers encapsulate an application and its dependencies, ensuring 

consistency across various environments. This portability allows developers to build 

and test applications on the local development machines and then deploy those 

containers to production servers or cloud platforms without worrying about compatibility 

issues. This standardization simplifies the development and deployment process. 

Docker containers provide a level of isolation between applications and their host 

system. Each container operates independently of others, which prevents conflicts and 

ensures that one container's activities do not impact the stability or security of other 

containers or the host system. This isolation is achieved through containerization 

technologies, such as namespaces and groups, which are part of the underlying Linux 

kernel. 
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Docker facilitates the dynamic scaling of applications. Containers are easily replicated 

and deployed to meet varying workload demands. This scalability is especially useful 

in cloud-native and microservices architectures, where applications can automatically 

adapt to fluctuations in traffic or resource requirements. 

Compared to traditional virtualization, where each virtual machine (VM) requires its own 

full operating system, Docker containers are much more efficient. They share the host 

operating system's kernel, leading to reduced overhead and lower resource 

consumption. As a result, more containers are hosted on the same hardware, 

optimizing resource utilization. 

The Docker commands and Docker compose files are presented which encapsulates 

all the applications that are required to allow the various application to run 

independently and to connect when configured to do so. 

Docker is responsible for the management, deployment and connection of the various 

applications that are being used. The various concepts related to Docker are explained 

in the Table 4.1 below: 
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Table 4.1: Docker concepts (docs, 2023) 

Docker Term Description Example Usage 

Docker Image 

A Docker image is a lightweight, 
standalone, and executable 
package that contains an 
application and all its 
dependencies, including code, 
runtime, libraries, and 
configurations. Docker images 
serve as templates for creating 
Docker containers. They are 
typically built from a Docker file, 
which defines the image's content 
and settings. 

Creating an image for a web 
server that includes the web 
server software, website 
files, and configuration 
settings. 

Docker Container 

A Docker container is an instance 
of a Docker image. It is a runnable 
environment that isolates 
applications and their 
dependencies. Containers operate 
independently and share the host 
system's kernel. They are portable 
and can run consistently across 
different environments, making 
them suitable for microservices 
and application deployment. 

 Running multiple containers 
from the same web server 
image to host different 
websites, each in its isolated 
environment. 

Docker Daemon 

The Docker Daemon, or Dockerd, 
is a background service 
responsible for managing Docker 
containers. It listens for Docker 
API requests and handles 
container operations, including 
building, running, and managing 
containers. The Docker Daemon 
communicates with the Docker 
client and interacts with the 
underlying system's resources. 

Automatically starting and 
managing containers based 
on images when a request 
is made to a web application 
hosted by Docker. 

Docker Engine 

Docker Engine is a comprehensive 
solution that includes both the 
Docker Daemon (Dockerd) and the 
Docker client (Docker CLI). It is 
responsible for container 
management, orchestration, and 
communication with container 
registries. The Docker Engine is a 
core component of Docker's 
architecture, providing tools for 
developing and deploying 
containers. 

Using Docker Engine to 
create a cluster of 
containerized micro-services 
that are easily scaled up or 
down to meet varying 
demands. 

Docker Compose 

Docker Compose is a tool for 
defining and running multi-
container Docker applications 
using a simple YAML file. It allows 
you to specify services, networks, 
and volumes for an application, 
making it easier to manage 
complex applications consisting of 
multiple containers. Docker 
Compose simplifies the 
deployment of interconnected 
services and applications, 
particularly for development and 
testing environments. 

Defining a Docker Compose 
file to set up a development 
environment with multiple 
containers, including a web 
server, database, and 
caching server, all working 
together. 
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Making use of Docker images all software requirements, like database such as Azure-

edge and PostgreSQL databases are loaded onto the system without having to 

download software. Instead, a Docker image is pulled that already contains these 

software’s.  

Once a Docker image is run, the Docker Daemon creates a container based on that 

image. This container is assigned a port on the target computer which is used to 

interface with the relevant software. The command snippet below, shows a bash 

terminal command that is run to start a version of MySQL. It is exposed to port 3306 

and all information is stored on that system with the path directory as set to 

“/path/on/host/”. 

 

Figure 4.6: Docker compose file for MySQL database 

Making use of Docker-compose.yml files all the applications (MMS Server, Smart Meter 

API and Python software controller) are deployed and run using Docker compose file. 

Running “docker container ls” shows the various containers that are currently running. 

Figure 4.7 shows all the applications that are currently running on the machine via 

Docker. 

 

Figure 4.7: Docker container ls – results 

It is seen from Figure 4.7 that the executed command shows the image on which each 

of the containers are based upon. It also gives valuable information regarding which 
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ports of the virtual machine is mapped to the actual ports of the Personal Computer 

(PC).  

There are two main roles in this implementation section. The first one being the server 

which is depicted in Figure 4.8 with 4 layers. Looking at the diagram bottom-up, the 

infrastructure layer represents the connection to the network and the connection with 

other resources on the network. The operating system as previously described uses 

the Docker layer as a base. The Docker layer stores the images of the REST API and 

the MMS server. When given instructions the Docker Daemon constructs containers of 

the REST API and MMS Server upon itself. Exposing ports to the infrastructure layer 

for other devices to consume. 

 

Figure 4.8: Server technology stack 

The SM technology stack, depicted in Figure 4.9 is almost identical to that of the server, 

except for the containerized layer which in this case contains the Python script 

responsible for communicating with the infrastructure layer and retrieving information 

from the sensors.  

In Figure 4.9 all layers have different projects associated to them. There are 3 main 

projects each having their tools to start the application running and keep it running as 

a server. A Docker file is created for each one of the above applications to allow them 

to be run from a Docker image. A Docker file is the file that outlines how a Docker 

image is constructed. Subsequent application requiring the software pulls from this 

Docker image defined by the Docker file. Once the Docker file is created the command: 

docker build is run.  
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Figure 4.9: Smart Meter technology stack 

 

Figure 4.10: Code snippet of a Docker file 

Figure 4.10 shows an example of a Docker file, all files have different steps that creates 

the application. All server type application has a final line like that of figure 4.10. The 

CMD command starts a command line and executes the commands with parameters. 
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For example, above the command that is executed is “npm start”. Below is an outline 

of the commands that the system uses to allow all applications to be converted to 

Docker files. 

Table 4.2: Command line commands to execute programs 

Application Command Programming Language 

MMS Server java -jar mms-server.jar Java 

Smart Meter API dotnet publish. C# - .Net 

Smart Meter Client python3 smart-meter.py Python 

 

The following section introduces the MMS Server implementation, where each 

component contains its own section to discuss its implementation and various other 

requirements in order to achieve the best possible implementation. 

4.3 MMS Server 
4.3.1 MMS Server introduction 

The MMS server that resides in a server/client MMS Java repository, is introduced by 

a company named BeanIt. https://github.com/beanit/iec61850bean , is a Java 

repository the library comes with a pre-built asn.1 script. This script creates Java class 

to accommodate the MMS technology stack. Figure 4.11 shows an ASN.1 (Abstract 

Syntax Notation.1) folder which contains the script to generate the correct presentation 

layer stack that is outlined in the IEC 61850 standard for the implementation of MMS. 

Making use of the Intellij IDE, the repository is run using its package manager software, 

Gradle. Gradle is responsible for running the various tasks regarding the code base. It 

is also responsible for downloading all the dependencies. It allows basic programming 

of task to allow integration into DevOps systems or the creation of .jar files. The .jar 

files are used to run Java applications. 

Figure 4.11 shows the project hierarchy for IEC61850bean in the Intellij IDE. It is seen 

that there are 3 classes which contain main activities. These classes are ClientGui, 

ConsoleServer and ConsoleClient. 

These main activities are the entry points to run the various features the repository 

provides. The server and the two client programs contain the main activities. These 

main activity Java classes are injected into the .jar files to allow the running of a specific 

main activity. 
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Figure 4.11: IEC61850bean project hierarchy 

To create a jar file of the project the package manager software, Gradle needs to be 

run with the correct set of arguments. The creators of the project created a task that 

allows for the generation of .jar files. Gradlew –jar <mainfile.java> creates a .jar file 

which main activity is outlined by the mainfile.java 
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Figure 4.12: MMS server connection user interface 

Figure 4.12 shows the graphical user interface developed to allow a user to connect to 

any MMS server on that particular network. Providing the IP Address and the port 

allows the interface to connect to that server. Clicking connect to server makes 

handshake and connects to the server. 

To run the server the server requires two parameters, the model file and the port. To 

start the Java server the -jar iecbeanfile -p 201 -m /src/test/resource file is required.  

The following section discusses the software, that is implemented to solve a 

performance issue. 

4.3.2 Redis 

Making use of IEC61850bean’s MMS server implementation creates limitations due to 

the goal of the implementation not including dynamicity. The MMS repository is created 

to read the Substation Configuration Language (SCL) file only once. Within the 

developed system, once a new SM is added it is required to reload the MMS server to 

allow the new SM’s to also be interrogated.  

The SM REST API can generate a SCL file that is capable of being read by the MMS 

server. The problem with generating an SCL file, is that it consumes space on the host 

system. The bigger the file becomes the more space it consumes. This is where the 
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introduction of a Redis server comes into play. Redis is used to temporarily contain the 

SCL file contents until it has been read and the content is removed from the system. 

Redis is a caching technology that is commonly used in REST APIs to increase the 

performance of an API. Redis is mainly used to allow too fast retrieval of records that 

doesn’t change much. This increases the performance of API’s because a database 

technology’s RDBMS (Relational Database Management System) doesn’t need to be 

interrogated, to retrieve data that is always being retrieved.  

Redis uses a key value pair system that assigns a key to a value. The Servers uses 

this key value pair system to communicate with SCL files. Making use of the key 

“SCL_CURRENT”, the server either uploads or retrieves this value. 

 

Figure 4.13: Flow chart of change Redis changes to system 
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The implemented system, however, should be able to dynamically update its SCL file 

and the contents of the MMS server to allow the addition of new SMs entering the 

system. Figure 4.13 outlines the flow charts of each of the implementations. Flow Chart 

A shows IEC61850bean’s original implementation of the MMS server. Flow Chart B 

shows changes made to IEC61850bean’s repository to allow the dynamic addition of 

SMs to the server. 

[FLOW CHART A]: IEC61850bean’s original implementation of the MMS server 

software.  

[1] The Redis server is interrogated to find the current SCL value. 

[2] The SCL file is retrieved and read into the memory of the application. 

[3] The SCL file is validated to ensure that it conforms to the IEC 61850 standard. 

[4] The Server is started. 

[5] The server reads inputs provided 

From the flow chart description above it is seen that after the server is started there is 

not attempt to check if new devices have been added to the system.  

[FLOW CHART B]: The same startup flow with Redis changes incorporated. 

[1] The system interrogates Redis to retrieve the current SCL file contents that 

represents the SMs in the system. 

[2] The SCL file is validated to ensure that it conforms to the IEC 61850 standard. 

[3] The Server starts with the current SCL file contents as the configuration. 

[4] The Server interrogated once more, to validate if any new SMs have been added to 

the system. 

[4.1.1] The server is stopped. 

[4.1.1] The server retrieves the new SCL file contents, going back to step [1] restarting 

the startup process. 

[5] The server reads the inputs provided. 

The following section present the SM API’s implementation. A discussion regarding the 

various integration points is presented. 

 



89 

 

4.4 Smart Meter API 

The Smart Meter REST API is the centre of the system. The SMs communicate data 

with the API and keeps track of all the SMs that is online. The API contains a set list of 

http endpoints which are used to: 

 Create a SM 

 Submit a reading 

 Get all readings 

 Get a reading for a certain specific SM 

To achieve the storage and retrieval the smart meter API makes use of the MySQL 

database to contain the information the system requires to function. The database 

technology being utilized is SQL Server. Like all other technologies utilized in this 

research project, Docker is used to run the server on the server-Raspberry Pi. 

The system makes use of a .Net web API framework to create http endpoints to allow 

the transfer of data amongst the various servers and SMs. The database is interfaced 

with using a Microsoft technology, called Entity Framework. 

4.4.1 Create smart meter endpoint 

The smart meter API has various capabilities. The first capability is the ability to assign 

a SM a token, which is used to identify the SM. Each token is unique and cannot be 

replicated. This token allows the SM to identify itself to the system. Figure 4.15 shows 

a sequence diagram of the GET POST /Meter endpoint. 
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Figure 4.14: Sequence diagram of the create-meter endpoint 

When a meter is created the structure of the system changes. To ensure dynamicity 

the MMS server is required to represent this new meter. To ensure this change 

happens the API publishes an updated SCL file to the Redis server. The MMS server 

then interrogates the Redis server to retrieve the latest system contents. 

The POST meter endpoint requires a request body to be able to create a meter. The 

body consist of three attributes: 

 Address Code 

 IP Address 

 Owner 

These values are stored in the Smart Meter API’s database to create a mapping of the 

meters, and their various readings Submit SM reading endpoint 

Figure 4.16 shows the sequence required for a SM to submit data to the Smart Meter 

API. After the meter has been created and a token is retrieved by the SM. The SM uses 

the token to identify itself when submitting data to the API. The token becomes part of 

the URL endpoint for example: 

POST https://api.metering.com/readings/2c932263-420e-4f88-b495-0a016cafb046 

The submit readings call requires a request body to be submitted with the call. The 

request body contains the various readings the SM has recorded. The payload consists 

of a raw JSON form with the values for voltage, current, power and power factor. 
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Figure 4.15: Submit SM reading API endpoint sequence diagram 

4.4.2 Get all readings endpoint 

Figure 4.16 shows the sequence at which the MMS server retrieves data from the 

Smart Meter API. After the SM has been created, and the SM has started submitting 

readings to the API, the MMS server is able to get all readings.  
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Figure 4.16: Retrieve SM readings API endpoint sequence diagram 

4.4.3 Get readings for a specific smart meter 

Another GET endpoint is available for the retrieval of a specific SM’s data. The 

sequence at which this action takes place is the same as the GET all readings endpoint. 

The sequence diagram is in Figure 4.16.  

This endpoint retrieves a single endpoint’s readings. The device token is used as part 

of the URL to identify the meter in question: 

GET https://api.metering.com/readings/2c932263-420e-4f88-b495-0a016cafb046 

4.4.4 SCL file generation 

Section 4.3 outlines the introduction to Redis into the system to allow for the efficient 

communication of the SCL files to the software on the two servers. The Smart Meter 

API is responsible for publishing the SCL file to Redis based on the SMs in its database.  

The following section discusses the SM implementation along with its various hardware 

modules and software. 

4.5 Smart meter 
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The SM is the target audience of this research project. The entire system is built around 

keeping track of metering data and making it available to various software’s or IEC 

61850 MMS clients. 

The smart has two main components. The SM, and the module that is metering. The 

SM as previously discussed is a Raspberry Pi. The metering is done by a metering 

module called, PZEM-004T. The module contains a voltage and current transformer, 

this allows it to correctly read and calculate various values that would be of use to a 

metering device. 

4.5.1 Python smart meter client 

The SM Python software client is used to manage and send power usage data to the 

Smart Meter API. The Python client runs on the SM Raspberry Pi. The Raspberry 

operating system that was discusses earlier, already has Python software installed 

which allows software to just be executed. 

It is assumed for the SM client, that the device always has access to a Wi-Fi network, 

which is connected to the Internet. The Internet connection allows it to communicate 

with the Smart Meter API. 

The Python smart meter client contains a config file with all the relevant information to 

allow it to complete its function. The config file requires information: 

 Wi-Fi SSID (Service Set Identifier) 

 Wi-Fi password 

 SM token 

 Address Code 

 Owner 

This information is being utilized throughout the entire script. Figure 4.18 shows a flow 

chart of the smart-meter client’s code.  

[SM CLIENT – FLOW CHART] 

[1] The client reads the config file. 

[2] The client attempts to connect to the Wi-Fi using the details specified in the config 

file. 

[3] The client validates if the device has connected to the Wi-Fi, if not step 2 is executed 

again. 

[4] The client checks if a token is present in the config file. 

[5.1] If the token is not present, make a POST API call to <URL>/meter/ with a body 

containing, owner name, IP address and Address code. 
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[5.2] Save response token to the config file of the SM client. 

[6.1] If the token is present in the config file, retrieve reading value from the PZEM-

004T power reading module. 

[6.2] Make a POST <URL>/readings/{token} call to the smart meter API with the 

request body containing voltage, current, power and power factor, which is retrieved 

from the meter reading module.   
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Figure 4.17 Flow chart of Python SM client software 
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4.5.2 PZEM-004T 

The power reading module is used in two ways, with GPIO pins or a USB serial 

interface. The Python client makes use of various packages to import functionalities 

into its ecosystem. Amongst one of the packages is the modbus_tk package which 

contains driver software for the PZEM-004T module. This module connects to the 

module via a USB serial interface. Making use of the USB port is therefore crucial for 

the functioning of this module of the client ecosystem. 

4.5.3 Smart Meter Simulator 

A SM simulator is introduced to play the role of the SM. The Simulator consists mainly 

of a Python script that is run on any device that has Python software installed, this 

includes a computer or a Docker container or a Raspberry Pi. The simulator works in 

the exact same way as the physical SM would, except when interrogating the PZEM-

004T module, the values being returned are randomized. Current, Voltage, Power, 

Power Factor and Frequency are generating numbers that fall into valid ranges.  

4.6 Conclusion 

This chapter detailed the implementation of the entire SM ecosystem. The online server 

implemented a Docker containerization software to allow it to quickly run the server 

software i.e. MMS Server and the Smart Meter API. A performance issue discovered 

in the implementation phase resulted in files that grew bigger impacting the 

performance of the API. The Redis caching software is introduced to solve this problem. 

The MMS server software is found to be static, creating a stale server that never 

updates the devices present. The code is changed to accommodate a more dynamic 

flow of adding devices to the MMS server.  

The SM had most of its implementation completed in the planning phase of this 

research work. A config file is introduced to better deploy the SM software. In addition, 

a SM simulator is created to allow more SMs to submit data to the API.  

The following chapter presents the test and results phase of the SDLC. The 

implemented system presented in this chapter is used to test various scenarios and 

determine if the system can reach its goals. In addition, if tests are not able to be 

completed, necessary adjustments are made to accommodate the scenario.
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CHAPTER 5  

   RESULTS AND TESTING 

5.1 Introduction 

This chapter presents the testing and results phase of the SDLC (Software 

Development Life Cycle). The previous chapter presented a partial implementation of 

a system capable of adding Smart Meters (SM) dynamically. This chapter details the 

testing of the solution and documents the findings. 

In the SDLC the actor testing the system, creates test cases which are used to 

document the results of the tests for a particular part of the system. This section follows 

this format by declaring the test cases and a subsection for executing those cases. The 

results from executing the test are also documented along with the procedural steps 

that were taken.  

This chapter consists of 7 sections. Section 5.1 introduces the reader to the background 

of the chapter and structure of the chapter. Section 5.2 outlines test cases the system 

is subjected to ensure that all parts of the system work correctly. Section 5.3 - 5.6 

documents the execution and results of test cases outlined in Section 5.2. Section 5.7 

concludes the chapter.   

The testing of each component is done individually, adding to the system and testing 

individual components until the entire system is assembled. First the API is tested, then 

the SM is added to the system, testing the Application Programming Interface (API) 

and SM. Then the Message Manufacturing Specification (MMS) server is introduced 

with testing of the API, SM and MMS Server end-to-end. 

5.2 Test Cases outline 

Every system makes use of the SDLC implementation of the testing phase at the end 

of the cycle. The testing phase is documented by making use of test cases. Test cases 

are structured documented steps to execute a test and acceptance criteria to determine 

that the test is a success. This first section provides a high-level overview of all the test 

cases for each of the components. In the following section the test cases are executed 

in a step-by-step fashion.  

End-to-end testing is a test that validates that the input in one part of the system 

provides a valid output in another part of the system. An end-to-end test validates the 

complete integration of the entire system.   
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All test cases are structured using three criteria: preconditions, test steps and 

acceptance criteria. Preconditions are events that need to happen before the test steps 

are executed. Examples of a precondition are starting the server, downloading the 

required software, or starting a client. Test steps are the execution of the actual tests 

and acceptance criteria are the successful conditions that validate the tests. If the 

acceptance criteria are not met, the test is marked as a failure. There are four parts of 

the system that require validation. These parts are categorized into their own test case 

scenarios.  

 SM 

 Smart Meter API 

 MMS Server 

 SCL Files 

5.2.1 Smart Meter API 

The smart meter API is tested first, due to the ability to exist without dependency on 

any other parts of the system. The Smart meter API requires a database to be able to 

successfully deploy itself. Hence the only prerequisite for the API is the database to be 

operational and running. The Database however requires a database schema to be 

applied to the database to be able to retrieve and store data. 

Table 5.1: Component Test Case for Smart Meter API 

Scenario Success  

Preconditions 1) Database is created 

2) Migration script is ran against the 

database. 

 

Swagger documentation page is accessible 

Swagger page is displayed, after navigating to 

<API_URL>/swagger. All endpoints are displayed. 

SM is created via the POST /SmartMeter endpoint Using the GET /SmartMeters/ endpoint, returns a 

list where the new smart meter should be present 

Readings are submitted with a valid API token 

using the POST /readings/{token} endpoint type. 

Readings is in the list returned when making a call 

to GET /SmartMeter 

 

The Smart Meter API’s main functionality is tested by submitting readings to the API and 

asserting those values by requesting them back again. 
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The POST /SmartMeter endpoint is asserted by the GET /SmartMeter/{id} endpoint. Making 

use of the token retrieved from the call, verifies the existence of the newly added SM. 

5.2.2 Smart Meter 

The SM has three parts that requires proper testing. The test cases are based around 

the power reading module, the Wi-Fi connection and the firmware. 

Table 5.2 shows the various scenarios; the SM requires to establish that it is in a 

functional state. It is seen that the top row contains the preconditions to be fulfilled for 

testing to commence. The four pre-conditions set up the SM to work in the environment 

it is placed. There are 4 negative test cases in Table 5.2 to validate the behaviour of 

the SM if one of the above-mentioned components are not functional. 

Table 5.2: Component Tests for the Physical Smart Meter Unit. 

Scenario Success  Test Type 

Preconditions for successful 

start-up. 

1) The Python client is 

installed on metering 

device. 

2) Smart Meter API is online. 

3) Smart Meter is constructed 

with all power reading 

modules. 

4) Smart Meter has access to 

Wi-Fi. 

 

Smart meter is not connected to 

any power source. 

The smart meter reports 0 watts 

reading from the module. 

Negative Test 

Smart meter is connected to any 

power source. 

The smart meter reports > 0 watts 

returned. 

Negative Test 

Smart meter is not connected to 

Wi-Fi. 

Error message is reported, 

indicating that no networks are 

available 

Negative Test 

Smart meter is connected to Wi-

Fi and displaying information. 

Successful data request is reported 

to the Smart Meter API and a token 

file is created. 

Positive Test 

 

The test case presented in Table 5.2 tests various parts of the SM. The SMs power 

reading module is tested by determining if false reports of power consumption are being 
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recorded. This is tested in the first two scenarios after the preconditions have been 

completed. The following test cases tests the network connectivity to determine if the 

Wi-Fi connection allows the meter to connect to other parts of the system. The final 

section being tested, is an end-to-end testing where the entirety of the SM asserting 

the transfer of data between the meter and the API is tested.  

5.2.3 MMS Server 

Table 5.3: Component Test for the MMS Server 

Scenario Success  

Preconditions 1) Redis Server running 

2) Redis contains SCL_CURRENT 

Keyword 

Redis contains the correct information The Smart Meters returned from the API correlates 

to that of which is contained in the Redis server. 

MMS Server is running The MMS Client is able to load all the smart 

meters. 

MMS Server data validation The MMS Server correctly displays the meter that 

is contained in the API. 

 

Table 5.3 outlines the test cases, to validate the functionality of the MMS Server. The 

MMS server uses the Redis software platform to temporarily store the SCL file contents. 

The Smart meter API publishes to Redis every time a mutation action happens or if the 

GET/SCL endpoint is executed. 

5.2.4 SCL File 

SCL type files are files that describe the substation and the elements thereof in a OOP 

oriented fashion. Amongst these are ICD files and SCD files, ICD files contain the 

functionality of a very specific IED devices. In our case the IED role is played by the 

SM. The SCD however is the combination of not only all devices in the substation but 

also various details about the substation like networks and metadata.  

In this case the entire SCD file is amended every time a new SM is added. The addition 

being made is the contents that would be typically found in an IED file. Appendix 8.2 

shows an example of a completed SCD file contain various SMs. In the file the contents 

of the IED tag, represents the SM. 
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The SCL test cases consists mainly of file validation to ensure that the files are readable 

by various software platforms and the MMS Server based on the IEC 61850 standard. 

Table 5.4: Component tests for the SCL file 

Scenario Success  

Preconditions System has smart meters active 

XML Validation XML Utility tool can read the SCL file. 

SCD Validation SCL configuration tool can read the SCD file and 

identify the requisite hierarchical structure 

specified by the IEC 61850 standard. 

 

In the following sections, the test sequences outlined in tables 5.1 – 5.3 above are 

executed. Each table is tested in its own respective section. 

5.2.5 End-to-End Testing 

After all components are tested, an end-to-end test is conducted to ensure that the 

behaviour of the integrated system components is as expected. This test is done by 

integrating the entire system components together. Each component interfaces with 

the rest of the system in a predefined manner. The main end-to-end test is outlined in 

Table 5.5. 

Table 5.5: Test steps for end-to-end testing and validation 

Step description Step outline 

Preconditions All system components are online, i.e. Redis, SM 

API and MMS Server. 

Start new Smart Meter A Smart Meter is turned on in a network with the 

appropriate network connection. 

Validate API Retrieve smart meter information and readings 

from the API, making use of the SM token. 

Validate MMS Server MMS Server is updated with the latest smart meter 

name. 

5.3 Testing - Smart Meter API 
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5.3.1 Test Case 1 

Testing the API is done via the .NET documentation software, Swagger. The Swagger 

instance is accessible by navigating to the API address. Making use of Table 5.1, we 

navigate to the Smart Meter API. The documentation is located on the 

http://localhost/swagger. A list of all the available endpoints is displayed, as seen in 

Figure 5.1. Running the SM-API code will generate the HTML document below which 

allows us to test each endpoint manually. There are multiple tools that exist that are 

used to test API calls. The industry standard for APIs is the OPENAPI standard, which 

outlines the software tool Swagger. Each endpoint is constructed with its contract 

(required JSON object). The contract being the payload that is sent to the server in the 

request body. In this case the request body takes the form of a JSON formatted 

payload. 

This first test is to determine if the API server launches as per the document in the 

browser. The following steps depicts the actions taken. 

5.3.1.1 Test steps 

Step 1: Start API software – this is done by either clicking the run button in any .NET 

IDE (Integrated Development Environment) or in any command line the command 

“dotnet run” is executed.  

Step 2: Once step 1 is completed, the default browser should be displayed navigating 

to the Swagger page which is seen in Figure 5.1. 

Acceptance Criteria: This test is considered successful as soon as the page is 

automatically opened. The significance of the page opening is that a successful 

compile and startup is required for this event to occur. 



103 

 

 

 

Figure 5.1: Generated Interactive API documentation 

 

5.3.2 Test Case 2 

The second test case is to determine, that SMs can be created on the API. Figure 5.2 

shows the POST /SmartMeter call being made. This will ensure the existence of the 

digital SM with the GET /SmartMeter. The response from this endpoint is a payload 

containing an Id along with the information entered. The Id is used as the SM token to 

identify the meter. This test not only tests the POST /SmartMeter endpoint, but also 

tests the database that the API needs. 

5.3.2.1 Test steps 

The test steps follow a flow of creating a SM in the API using the POST call. Since the 

SM is not implemented yet, a Global Unique Identifier (GUID) is required to test the 

endpoint. The GUID represents a value that identifies the SM.  

Pre-conditions: 

1) Start the API and wait for the Swagger page to generate. 

Test steps: 

1) Open the POST /SmartMeter endpoint on the Swagger page. Create a body with 

valid test data for the contract. Three values are required: “name”,”location” and 

“AddressCode/ZipCode”. 

2) Make a request by pressing the “Execute” option. 

3) The Response Body should contain the same input data with the addition of the 

“ID”. Figure 5.2 shows the result of running the POST /SmartMeter endpoint. 
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4) Make an additional API call to the GET /SmartMeter/{Id}, with the Id that is 

generated from the POST /SmartMeter.  

 

Figure 5.2: Swagger indicating successful API request 

The token is then used to ensure that the SM is in the ecosystem by making another 

API call to GET /SmartMeter/{id}. The Figure 5.3 shows that 204 is being returned 
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which means the SM does exist within the system. If 404 is displayed, the meter wasn’t 

located. 

 

Figure 5.3: Swagger indicating successful GET request 

5.3.3 Test Case 3 

The following test case validates that the reading being submitted to the API, can be 

retrieved. The GET /Readings/{id} endpoint retrieves all the readings related to the 

token it has been provided with. This endpoint provides a method of retrieving a single 

reading for an already registered meter. This endpoint is dependent on the POST 

/reading endpoint. 

5.3.3.1 Test Steps 

Pre-conditions: 
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1) Start the API and wait for the Swagger page to generate the API document onto the 

browser. 

2) Open the POST /SmartMeter endpoint on the Swagger page. Create a body with 

valid test data for the contract. Three values are required: “name”,”location” and 

“Address/ZipCode”. 

3) Extract the new SM Id which should be in the form of a GUID. 

Test steps: 

4) Make a request to POST /Reading/{GUID} endpoint to submit a reading. Making 

use of the endpoint contract. Four values are required: voltage, current, power and 

power factor. The header parameter id, is required to identify the SM. This would 

be the GUID extracted in step 3. 

5) Execute the endpoint. 

Validation: 

6) The response after executing step 5, should be a response code of 200 – indicating 

a successful HTTP response. The JSON body response includes all the submitted 

values along with a GUID that can be used to identify the JSON object. Figure 5.4 

shows the request and the response of this validation. 

7) Figure 5.5 shows the result of the GET /Readings/{id} which is used to retrieve all 

the readings submitted for certain SMs. The reading submitted in step 6 will appear 

as a single entry in this JSON list representing all the readings submitted for this 

SM. 
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Figure 5.4: Swagger indicating successful GET power reading request 

Each JSON entry contains seven attributes which can be seen in Figure 5.4. Voltage, 

Current, Power and Power Factor are some of the important values being recorded. 
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Figure 5.5 shows the formatted JSON payload. The expanded reading shows the same 

format as the response from the GET /Readings/{token} call. In addition, every other 

reading API call is also being returned in the JSON format. 

This section presented the executed test cases in Table 5.6. All acceptance criteria are 

met; therefore, it is safe to say the Smart Meter API is functional. 

 

Figure 5.5: Swagger indicating successful reading retrieval 

To ensure that the correct number of readings are retrieved, the JSON response is 

analysed. The reading date time are used to find the most recent addition to the meter’s 

readings. 

Table 5.6: Test Case results for the SM API component 

Scenario Acceptance Criteria  Acceptance Criteria 

Met 

Preconditions   

Swagger documentation page is 

accessible 

Swagger page is displayed, after 

navigating to <API_URL>/swagger. 

All endpoints are displayed. 

Yes 
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Smart Meter is created via the 

POST /SmartMeter endpoint 

Using the GET /SmartMeters/ 

endpoint, returns a list where the new 

smart meter is present 

Yes 

Reading can be submitted with a 

valid API token. Via the POST 

/readings/{token} endpoint 

Readings is in the list returned when 

making a call to GET /SmartMeter 

Yes 

 

The following section presents the execution of test cases to test the SM. 

5.4 Testing - Smart Meter 
5.4.1 Test Context 

The SM token is crucial to enable SMs to submit readings to the Smart Meter API. The 

SM is therefore dependent on the Smart Meter API. To allow the SM to be tested a 

valid instance of the API needs to be running. Therefore, no test data can be used to 

test the SM. 

Running the SM firmware allows the retrieval of a SM token. The token is then stored 

in a file in the SM. The token is retrieved by logging into the SM via the Secure Shell 

(SSH) protocol and interrogating the directory where the meter API client is running. 

The research laboratory contains a Wi-Fi network which is used as the network under 

test. In Table 5.7, a list of IP-addresses is found. DNS names are given to the MMS 

server and the Smart Meter API.  

Table 5.7: Network Addresses for all system components 

Component  IP Address Online URL (DNS) 

Main Router 192.168.100.1 N/A 

Gateway 192.168.100.1 N/A 

Smart Meter 192.168.100.103 N/A 

MMS Server 192.168.100.102: 102 mms.meteringza.com 

Smart Meter API 192.168.100.102: 8901 sm-api.meteringza.com 

Redis 192.168.100.102: 6379 N/A 

Research Computer 192.168.100.111 N/A 
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It can be seen from Table 5.7 that the MMS Server, Redis and Smart Meter API are all 

running on the same server. Each of the server software contain their own port to 

enable interfacing. The servers are also hosted online to allow SMs outside the 

laboratory network to submit data. 

Making use of the information in Table 5.7 a SSH connection is established with the 

meter. Running the command ssh {username}@{ip-address} creates a remote 

connection to a device. A prompt will immediately be displayed prompting the user for 

a password as shown in Figure 5.6. 

 

Figure 5.6: Results of running SSH command 

The SM client is copied to the SM with the command smart-meter-client.py. The 

requirement of the script is installed by running pip install -r requirements.txt.   

 

Figure 5.7: Results of directory command executed on the SM 

The script is run using the python3 smart-meter-client.py. Figure 5.8 shows the 

output of the script: The token of the meter is retrieved by stopping the client. A new 

file has been created named: “token.txt”. The token.txt is created to contain the token 

the API has assigned to the SM. This is considered the permanent storage of the token 

for the device. 
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Figure 5.8: Result of running smart-meter-client.py 

Since the SM meter is running on Raspberry Pi with a Linux operating system, various 

text editors can be used to read the token.txt file. The file is read by making use of 

“nano token.txt”. 

 

Figure 5.9: SM generated code 

The resulting token is: f4908314-20bd-4852-9e96-1bd9000ab566. This token can now 

be used to interact with some of the SM API endpoints. Figure 5.5 in this chapter shows 

the result of requesting readings from the SM created in Figure 5.9. 

The testing of the SM can proceed once these steps are followed. 

5.4.2 Test Case Execution: Smart Meter 

All the following SM tests have the following preconditions: 

Pre-conditions: 

1) Start the API and wait for the Swagger page to generate. 

2) Assemble the SM consisting of PZEM-004T to the Raspberry PI. Add the meter to 

the network. 

5.4.2.1 Test steps 

The first test defined in Table 5.2, is to test the power reading module of the Raspberry 

Pi board. The module should read a value of 0 watts if the power is disconnected since 

there is nothing drawing power. The input voltage should however still read +- 230V. 

This is validated in the following steps. 

Test: 
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1) Connect the PZEM-004T in series to read the power of any circuit or mains power 

supply within a house.  

2) Turn on the SM and make sure that it is connected to a network. 

3) Retrieve the SM token similar to that as illustrated in Figure 5.6 and Figure 5.7. 

4) Validate the power readings on the SM using the SM token and the SM API. Ensure 

that the module is reading a valid power reading.  

5) Disconnect the SM from the circuit.  

Validation: 

6) Validate power readings after disconnection reported by the SM via the SM API – 

GET Power readings should report 0 watts power usage along with a constant input 

supply voltage of +-230 Volts.  

Figure 5.5 shows the result of the GET /Readings/{id} which is used to retrieve all the 

readings submitted for certain SMs. The reading submitted in step 6 will appear as a 

single entry in the JSON list representing all the readings submitted for this SM. 

5.5 Testing - MMS Server 
5.5.1 Test Context 

The MMS Server converts the Redis value of SCL_CURRENT, into a SCL file. This file 

is used as the substation configuration file in the MMS Server.  

The MMS Server is started by running the commands shown in Table 5.8 below. It is 

necessary to set the JAVA_HOME environment variable because Gradle uses it to 

build the project. In the project folder the build project command should be executed to 

download the necessary dependencies and generate files required to run the project. 

Once the build commands have been executed, a new folder, named build should be 

located in the project folder. In the /build/libs folder .jar files should be visible; these are 

generated by Gradle.  

The MMS client and MMS server can be executed by using the commands in Table 

5.8. The main projects are the MMS Server, the MMS console client and the MMS GUI 

client. Using the GUI client is beneficial as all the SMs and their data can be visualized 

in a list. 

The table also describes commands that are used to run different parts of the MMS 

project. The MMS server and the GUI MMS Client are used to run each one of their 
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projects respectively. The Java installation command is required to be executed before 

any of the programs can be started, because they require Java. 

   

5.5.2 Preconditions 

To fully execute the following test Redis and MMS related test cases various pre-

conditions must be met. The Redis and MMS Server requires the SM API to be active 

to receive updates about the system changes. The SM API is started with a mock SM 

to begin the testing with. 

5.5.3 Test Case Execution: Redis Server 

Testing Redis is crucial to the system, since the Redis instance is the asynchronous 

instance that keeps the system updated. The SM API updates the Redis instance every 

time something changes, and this allows the MMS Server to retrieve the latest changes 

and makes sure that it is consistent with the rest of the system.  

This test case is to ensure that the Redis instance changes every time a SM is added. 

Making use of the POST /SmartMeter endpoint on the Swagger instance a new meter 

is added to validate if the SCL_CURRENT value changes. Multiple meters are added, 

and the size of SCL_CURRENT is then validated to ensure that the new meters are 

being added. 

The Redis client can be used, but for a more graphical view of the object, Redis Insight 

can be used. To view the Redis cache a tool is used to connect to the instance to view 

Table 5.8: Table showing the different commands to run the various MMS tools 

Function Command 

Pre-requisite 1 sudo apt-get install default-java 
export JAVA_HOME=<PATH_TO_JAVA_INSTALLATION> 

Pre-requisite 2 /libs/build/gradlew clean build –refresh-dependencies 
gradlew shadowJar 

Console Client Java -cp /build/libs/<jarfile> com.iec61850bean.app.ConsoleClient 

 

GUI Client Java -cp /build/libs/<jarfile> com.iec61850bean.app.GuiClient 

 

MMS Server Java -cp /build/libs/<<jarfile> com.iec61850bean.app.ConsoleServer 
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its contents. Figure 5.10 below shows the current contents of the SCL_CURRENT key. 

An additional tool is used to look at the size and the structure of the XML document. 

 

Figure 5.10: Redis interface showing the value of SCL_CURRENT 

Steps: 

1) Create a new SM using the POST /SmartMeter API. 

2) Validate the SCL_CURRENT object in Redis by connecting to 

<SERVER_IP_ADDRESS>:6379 

3) An XML viewer or notepad can be used to view the object. 

4) The before and after of the object size can be ascertained to determine if a new SM 

was added. Table 5.9 show the changes in the sizes of the object as SMs are 

added. 

Validation: 

5) To ensure more meters are added SMs are gradually added to ensure that the 

size is also increasing. 

As more meters are created using the: POST /SmartMeter endpoint the size increases 

linearly. Table 5.9 shows the size of the SCL_CURRENT value increasing as the 

amount of SMs increase.  
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Table 5.9: Size of the SCL_CURRENT object as more SMs are introduced 

Smart Meters Size of Payload (Kilobytes) 

6 40  

8 48 

39 112 

45 128 

 

5.5.4 Test Case Execution: MMS Server 

Test Context: 

The MMS repository contains a GUI client, to allow the researcher to view the contents 

of the MMS Server with ease. The GUI client can be started by executing the command 

in Table 5.8.  

Figure 5.11 shows the MMS GUI client. The client connects to the MMS Server by 

making use of the IP Address and port on which the MMS server is hosted. Making use 

of Table 5.7 and the port listed.  

Instead of using human readable words to describe the logical device, a notation is 

used to describe the SM. SM-{GUID-ID-TOKEN}, is used as the name for the logical 

device. This allows the SM name to be unique, since multiple SMs are added to the list 

of SMs. From the list the token that is created for the SM is visible and all logical nodes 

are displayed. 

Figure 5.11 also shows the various logical nodes that are associated to each SM. It 

can be seen the figure shows the context of a singular SM. Each SM can be seen 

containing the logical nodes:  

LLN0 – Short for logical node 0, this is a compulsory logical node that is used to 

describe that device and attributes of communication. 

LPHD1 – Logical node representing the physical device. 

MMXN1 – This is a singular phase meter logical node. Mainly used for recording power 

characteristics like current, voltage, power and power factor. 
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CSWI1 – This is a control logical node that normally controls a switch or multiple 

switches.  

XSWI1 – This is the logical node that represents the circuit switch in the system.  

 

Figure 5.11: Hierarchy of SCL system from the perspective of the MMS server 

The following section executes tests to validate the useability of the generated SCL file 

in an IEC 61850 environment using IEC 61850 configuration tools. 

5.6 Testing - SCL File Validation 

The IEC 61850 standard makes use of SCL files to describe a substation as described 

in part 6 of the standard. The implemented system dynamically updates the SCL file. 

Ensuring that the SCL file is valid is crucial, as this is the source of information to the 

MMS Server.  A list of tools has been gathered to test various aspects of the generated 

SCL file. Below a table can be found containing the tools used to complete the testing 

of the SCL file. 

Table 5.10: Tool selection for validating the validity of the SCL file 

Tool Was the file 

readable 

Warnings Error 

Messages 

sclwebcheck Yes Yes Yes 

XML Marker Yes No No 
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SCL Navigator Yes No No 

ICD Designer Yes No No 

5.6.1 Test Context 

The SCL file is dependent on at least one SM being present in the system. As soon as 

the first SM is created the initial SCL file is also generated. As more SM are added or 

deleted the SCL file will update.  

The SCL file can be found in multiple places. The main place where the file is stored is 

in Redis in the “SCL_CURRENT” keyword. The value can be copied to a .SCL file and 

fed to the various tools that requires it. The other place it can be found is in the Smart 

Meter API where the repository has been created. The file is named “virtual-

substation.scd”.  

5.6.2 Test Case execution: SCL file Formatting 

This test case asserts the readability of the SCL file. The SCL file is in XML format 

therefore it is important to ensure the XML structure is not compromised, since the 

entire file is being generated by the Smart Meter API. Making use of various tools, all 

test cases can be satisfied. 

Table 5.10  shows all the tools that were used to ensure the SCL file’s validity. Amongst 

the tools is XML marker that is used to ensure that XML file conforms to the correct file 

structure. 
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Figure 5.12: Tool sclwebcheck results for reading SCL_CURRENT Object 

Figure 5.12 shows the result of the XML Marker software reading the SCL file output 

from the Smart Meter API. It is seen from the figure that the software reads the entire 

file correctly and can draw a hierarchical depiction of the structure of the file. 

 

Figure 5.13: IEC 61850 approved tool reading generated SCL file 



119 

 

 

The XML Marker software does not make use of any IEC 61850 standard validation. 

The next section tests the file with IEC 61850 standard rules.   

5.6.3 Test case execution: IEC 61850 Validation test 

The MMS Server is designed to be used in an IEC 61850 environment. The SCL file is 

the part of the standard that outlines the hierarchical depiction of a virtual substation. 

This test case validates the IEC 61850 compatibility of the SCL file against approved 

IEC 61805 configuration tools. 

The first tool is sclwebcheck, which is an online tool. This tool requires that a SCL file 

be uploaded to a website. The software validates the file and provides an output based 

on what was read. If the file is not readable, the software will give the appropriate 

output.  

Figure 5.14 shows the output of various tests the website runs against the SCL file. 

There are various warnings and errors. Reported warnings and errors returned from 

this tool are valid. The main goal of the SCL file is to construct a file readable by any 

IEC 61850 system. 

 

Figure 5.14 Output from .icdDesigner outlining various errors and warnings 

The output from sclweb check, was able to read the SCL and found various issues and 

warnings regarding the file. The issues are very specific issues. “bType mismatch” was 

an intentional change in which the data type of an Integer attribute was changed to a 

Boolean data type. Two things can be deduced from this information. The software was 
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able to identify logical nodes and that the attributes of certain ones were incorrect. The 

software is designed in a way that the SCL file can be tested against various attributes 

or datasets.  

5.7 Conclusion 

The results and testing phase of this research provided critical validation of the 

proposed smart metering system, demonstrating its adherence to the IEC 61850 

standard and its effectiveness in achieving the desired objectives. By conducting a 

series of structured test cases, the chapter evaluated the performance of the system in 

terms of end-to-end functionality. 

The testing process confirmed the functionality of individual components, including the 

Smart Meter API, MMS server, and hardware integration with Raspberry Pi devices. 

Furthermore, the end-to-end tests validated the seamless communication between 

system components and ensured the accurate transmission and retrieval of energy 

data. These results highlight the robustness of the implemented design and its capacity 

to operate in distributed energy environments. 

While the system performed well under controlled conditions, the chapter also identified 

areas for improvement, such as addressing network variability and enhancing security 

protocols. These insights provide a foundation for refining the system and exploring 

further applications in real-world scenarios. 

In summary, the results and testing chapter established the feasibility and potential of 

the proposed smart metering system, bridging theoretical concepts with practical 

implementation. The findings reinforce the viability of integrating standardized 

communication protocols in advancing SG technologies and provide a strong basis for 

future development in this domain. 

The following chapter provides the conclusion to this research work.  
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CHAPTER 6  

  CONCLUSION 

6.1 Introduction 

The rapid transformation of energy systems worldwide necessitates innovative 

approaches to ensure efficiency, reliability, and sustainability. This research aimed to 

bridge the gap between the IEC 61850 standard and modern technological 

advancements, focusing on Smart Meters (SM) as pivotal components within the Smart 

Grid (SG). By integrating the MMS protocol with contemporary IoT and web service 

technologies, the study proposed a scalable and interoperable solution for energy 

management and monitoring. Incorporating various cloud computing modules to allow 

the system to dynamically adapt to grid changes. 

6.2 Thesis deliverables 
6.2.1 Literature Review on MMS Protocol and the IEC 61850 Standard Uses in the 

Smart Grid 

The literate review yielded the key findings from the literature on the MMS protocol and 

its application within the IEC 61850 standard. It demonstrated how the MMS protocol 

facilitates real-time, standardized communication, contributing to the interoperability 

and scalability of SG systems. The review confirmed the feasibility of extending IEC 

61850-based solutions beyond traditional substation environments, providing a 

foundation for their application in residential SMs. 

6.2.2 Literature Review on MMS Protocol and the IEC 61850 Standard Uses in the 

Smart Grid 

The literature highlighted the critical role of web services in enhancing the functionality 

of IEC 61850-compliant systems. The literature review uncovered the advantages of 

integrating web-based architectures, such as REST APIs, to improve data accessibility 

and streamline system scalability. It also addressed challenges in ensuring 

compatibility between web services and the IEC 61850 standard, guiding the 

implementation of a robust and efficient communication framework for the proposed 

system. The conclusion of this part of the literature review indicated that web-based 

architectures open the possibility of containerization within the SG. 

6.2.3 Literature Review on the Design and Applications of Residential Smart 

Meters 

Insights on the evolution of residential SMs, focusing on their design principles, 

applications, and limitations were achieved. The review emphasized the need for 
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interoperability and identified opportunities for leveraging open-source technologies to 

achieve cost-effective yet high-performing smart metering solutions. These findings 

directly informed the design and deployment of the proposed system, ensuring its 

adaptability to residential energy environments while maintaining alignment with 

standardized protocols. 

6.2.4 Analysis of the IEC 61850 MMS Protocol Applicability 

The study demonstrated the applicability of the IEC 61850 MMS protocol in smart 

metering systems, revealing its significant advantages in enhancing communication 

within distributed energy environments. The protocol's ability to ensure seamless data 

exchange and interoperability among diverse devices was validated, making it a robust 

choice for modern energy management systems. 

The lack of support for the MMS protocol created various challenges with finding secure 

up-to-date software that can be utilized for an open-source project. This resulted in the 

researcher changing an out-of-date MMS library to allow new functionality, albeit by 

using an unsecure library. 

6.2.5 Exploration of Object-Oriented Capabilities 

The research explored the object-oriented design principles embedded in the IEC 

61850 standard, emphasizing how these capabilities contribute to achieving 

standardization in SG communication. Making use of the standards and OOP principles 

it was sufficient to recreate the models used to describe a substation in a OOP 

language such as .Net and Java.  

6.2.6 Implications of Adopting International Standards 

The study investigated the adoption of international standards like the IEC 61850 

standard in achieving interoperability, scalability and reliability in smart metering 

systems, and by adding the use of cloud computing. The findings highlighted the 

benefits of centralized data management and processing, demonstrating how cloud-

based solutions enhance system scalability and ensure consistent performance across 

distributed networks. 

6.2.7 Implement a smart metering system with IEC 61850 

The implementation successfully demonstrated the integration of the IEC 61850 MMS 

protocol into a smart metering system.  The implementation made use of the Docker 

containerization software to encapsulate all technologies that are required for 

information processing from to end-to-end. Data storage issues are overcome by 
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making use of a Redis database to temporarily store the SCD file content instead of 

storing it permanently. 

The system enabled seamless communication and standardized data exchange, 

meeting interoperability requirements for residential energy environments. This 

achievement validated the feasibility of applying IEC 61850-based solutions beyond 

traditional substation settings, addressing a critical gap in energy communication 

systems. 

6.2.8 Utilize Open-Source Technologies for Cost-Effective Deployment 

The use of open-source hardware and software, such as Raspberry Pi devices and 

Docker environments, proved effective for smart metering solutions. These 

technologies provided functionality and reliability comparable to proprietary systems, 

while offering greater flexibility and significantly reducing costs. The deployment 

highlighted the potential of open-source solutions to drive innovation in SG 

technologies without compromising on performance. 

6.2.9 Deploy Modular and Scalable System Architecture Using Containerization 

Various open-source software packages were containerized to create consistent and 

predictable software images. For some applications, pre-existing Docker files were 

unavailable, necessitating the creation of new Docker files to enable containerization. 

The Dockerization process demonstrated significant potential for simplifying the 

integration of diverse components, ensuring compatibility and ease of deployment. 

6.3 Research Contributions 

This study makes the following contributions to the field: 

 Advancing SM Design: By combining existing technologies with the IEC 61850 

standard, the research provides a comprehensive framework for modern smart 

metering systems that extend beyond traditional substation applications. 

 Integration of IoT and Web Services: The thesis explored the use of IoT 

protocols and RESTful web services within an IEC 61850 environment, 

demonstrating new pathways for integrating diverse technologies into the SG. 

 Standardization and Interoperability: The implementation highlights the 

importance of standardized communication protocols, reducing complexity and 

enabling seamless device integration in distributed energy networks. 

6.4 Limitations and Challenges 
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Despite its successes, the study encountered several limitations: 

 Security Considerations: While the proposed system provides a robust 

communication framework, additional measures are needed to address 

cybersecurity threats in distributed environments. 

 Scalability of IoT Integration: Although the system supports IoT protocols, 

integrating a wider range of IoT devices and standards requires further 

exploration. 

 Hardware Constraints: The performance of low-cost hardware, such as 

Raspberry Pi devices, may limit the system's applicability in large-scale 

deployments. 

 Lack of Substation Integration: The research project was mainly computer 

driven mainly as access to substation hardware for integration was not possible. 

This constraint was due to the researcher not being in a single geographic 

location to make use of provided laboratory substation equipment. 

 MMS Undeveloped open-source software: Making use of the MMS library was 

limiting as it was required to make use of a software library that was out of date. 

There were various manufacturers using their own version of the protocol. This 

makes it difficult for any student that does not have the funds for a brand license. 

These limitations provide valuable opportunities for future research. 

6.5 Future Work 

Building on the foundation laid by this research, several areas merit further 

investigation: 

6.5.1.1 Enhanced Security Mechanisms 

Future systems should incorporate advanced cybersecurity frameworks, such as the 

IEC 62351 standard, to address vulnerabilities in communication and data exchange. 

6.5.1.2 Expanded IoT Integration 

Exploring additional IoT protocols, such as MQTT and CoAP, can enhance the 

system's versatility and make it compatible with a broader range of SG applications. 

1. Real-World Implementation and Testing 

2. Deploying the system in real-world scenarios would validate its performance and 

scalability, offering insights for further refinement and optimization. 
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3. Incorporating big data analytics and machine learning can improve energy 

management practices by providing actionable insights based on real-time and 

historical data. 

4. Instead of using MMS to communicate outside the substation, investigate and 

implement the Routable GOOSE messaging. 

6.6 Publications 

Kruger R., Kriger C. (2024) ‘Cloud Computing approach to the IEC 61850 standard’, 

International Journal of Electrical and Electronic Engineering & Telecommunications 

(IJEEET) (submitted for publication)  

6.7 Conclusion 

This chapter summarized all the proposed deliverables and the extent to which they 

were achieved. The potential applications of this work in both industry and academia 

are discussed, highlighting its relevance and utilitization in real-world scenarios. A 

comprehensive list of the developed software and tools are provided to showcase the 

practical outcomes of this research. Additionally, possible avenues for future work are 

identified, offering insights into how this project could be further extended and 

improved. Finally, publications stemming from this research are listed, underscoring its 

contribution to the academic and professional discourse in the field. 
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APPENDICES

Python Code interacting with PZEM400T module: 

import requests 

import time 

import json 

import serial 

import modbus_tk.defines as cst 

from modbus_tk import modbus_rtu 

 

TOKEN_FILE = "token.txt" #output file name where smart-meter token wil be kept 

 

def get_token(): # This declares information about the meter to be submitted to the 

POST endpoint. 

    data = { 

    "location":"Claremont", 

    "name":"k-Residence" 

    } 

     

    response = requests.post(token_url,json=data) 

    if response.status_code == 200: 

        print(response) 

        return response.json().get('id') 

    else: 

        print(f"Failed to retrieve token from {url}.") 

        return None 

 

def save_token(token): 

    with open(TOKEN_FILE, "w") as file: #Open the file in write mode 

        file.write(token) 

 

def load_token(): 

    try: 

        with open(TOKEN_FILE, "r") as file: #Open the file in read mode 

            return file.read().strip() 
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    except FileNotFoundError: 

        return None 

 

def send_post_request(url, data):  #creating a new meter via the API 

    response = requests.post(url, json=data) 

    print(f"POST request sent to {url}. Response: {response.status_code}") 

 

# Set the token endpoint URL 

token_url = "http://{{ URL }}/SmartMeter"  

 

# Set the API endpoint URL 

api_url = "http://{{ URL }}/Readings/" 

 

# Set the interval between requests in seconds 

interval = 60 

 

try: 

    # Connect to the usb via serial 

   #This is where we interface with the PZEM-400T device 

    serial_port = serial.Serial( 

        port='/dev/ttyUSB0', 

        baudrate=9600, 

        bytesize=8, 

        parity='N', 

        stopbits=1, 

        xonxoff=0 

    ) 

 

    master = modbus_rtu.RtuMaster(serial_port) 

    master.set_timeout(2.0) 

    master.set_verbose(True) 

    dict_payload = dict() 

 

    # Retrieve or load the token – This registers a new meter if there is no token in the 

token.txt file 

    token = load_token() 
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    if not token: 

        token = get_token() 

        if token: 

            save_token(token) 

 

    if token: 

         

        while True: 

            # First we create a json payload of all the readings gathered 

            data = master.execute(1, cst.READ_INPUT_REGISTERS, 0, 10) 

            print(data) 

            dict_payload["voltage"] = data[0] / 10.0 

            dict_payload["current"] = (data[1] + (data[2] << 16)) / 1000.0  # [A] 

            dict_payload["power"] = (data[3] + (data[4] << 16)) / 10.0  # [W] 

            dict_payload["powerFactor"] = data[8] / 100.0 

             

            str_payload = json.dumps(dict_payload, indent=2) 

            print(str_payload) 

 

            send_post_request(api_url+""+token, dict_payload) # Here we post the reading 

to the readings endpoint using the token as identification 

 

 

            time.sleep(interval) # Just a delay to create a rest time between uploads 

 

    else: 

        print("Token retrieval failed. Exiting...") 

 

except KeyboardInterrupt: 

    print('Exiting script due to keyboard interrupt.') 

except Exception as e: 

    print(f'An error occurred: {e}') 

finally: 

    if 'master' in locals(): 

        master.close() 
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Template for Smart Meter SCD File 

<?xml version="1.0" encoding="UTF-8"?> 

<SCL revision="B" version="2007" xmlns="http://www.iec.ch/61850/2003/SCL" 

schemaLocation="http://www.iec.ch/61850/2003/SCL SCL.xsd" 

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 

  <Header id="SCL_Header" version="SCL_Header" revision="0" toolID="smart-

meter-api"> 

    <History> 

      <Hitem version="1" revision="0" when="2023/07/23 09:17:35" who="Ryan Kruger" 

what="Ryan Kruger" /> 

    </History> 

  </Header> 

  <Substation> 

    <name>virtual smart meter substation</name> 

    <desc>virtual smart meter substation</desc> 

  </Substation> 

  <IED name="SM-0e29ab93-08ad-4992-9e11-147a33c043f6" manufacturer="smart-

meter-api" configVersion="1.0" originalSclRevision="B" originalSclVersion="2007"> 

    <AccessPoint name="AP"> 

      <Server> 

        <LDevice inst="CTRL"> 

          <LN lnType="LLN0_2007" lnClass="LLN0" inst="" prefix="" /> 

          <LN lnType="LPHD_TYPE" lnClass="LPHD" inst="1" prefix="" /> 

          <LN lnType="MMXN_TYPE" lnClass="MMXN" inst="1" prefix="" /> 

          <LN lnType="CSWI_TYPE" lnClass="CSWI" inst="1" prefix="" /> 
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          <LN lnType="XSWI_TYPE" lnClass="XSWI" inst="1" prefix="" /> 

        </LDevice> 

      </Server> 

    </AccessPoint> 

    <Services nameLength="64"> 

      <DynAssociation max="10" /> 

      <ConfLogControl max="10" /> 

      <GOOSE max="10" /> 

      <GetDirectory /> 

      <GetDataObjectDefinition /> 

      <DataObjectDirectory /> 

      <GetDataSetValue /> 

      <SetDataSetValue /> 

      <DataSetDirectory /> 

      <ConfDataSet modify="true" maxAttributes="50" max="50" /> 

      <DynDataSet max="100" maxAttributes="50" /> 

      <ReadWrite /> 

      <ConfReportControl bufConf="true" bufMode="both" max="50" /> 

      <GetCBValues /> 

      <ReportSettings rptID="Dyn" trgOps="Dyn" intgPd="Dyn" optFields="Dyn" 

cbName="Conf" datSet="Dyn" bufTime="Dyn" resvTms="true" owner="true" /> 

      <LogSettings trgOps="Dyn" intgPd="Dyn" datSet="Dyn" logEna="Dyn" /> 

      <GSESettings appID="Dyn" dataLabel="Dyn" datSet="Dyn" cbName="Conf" /> 

      <FileHandling /> 
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      <ConfLNs fixPrefix="true" /> 

      <ConfLdName /> 

      <ConfSigRef max="100" /> 

    </Services> 

  </IED> 

  <IED name="SM-bce841af-25ca-4688-856c-96e7416b1214" manufacturer="smart-

meter-api" configVersion="1.0" originalSclRevision="B" originalSclVersion="2007"> 

    <AccessPoint name="AP"> 

      <Server> 

        <LDevice inst="CTRL"> 

          <LN lnType="LLN0_2007" lnClass="LLN0" inst="" prefix="" /> 

          <LN lnType="LPHD_TYPE" lnClass="LPHD" inst="1" prefix="" /> 

          <LN lnType="MMXN_TYPE" lnClass="MMXN" inst="1" prefix="" /> 

          <LN lnType="CSWI_TYPE" lnClass="CSWI" inst="1" prefix="" /> 

          <LN lnType="XSWI_TYPE" lnClass="XSWI" inst="1" prefix="" /> 

        </LDevice> 

      </Server> 

    </AccessPoint> 

    <Services nameLength="64"> 

      <DynAssociation max="10" /> 

      <ConfLogControl max="10" /> 

      <GOOSE max="10" /> 

      <GetDirectory /> 

      <GetDataObjectDefinition /> 
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      <DataObjectDirectory /> 

      <GetDataSetValue /> 

      <SetDataSetValue /> 

      <DataSetDirectory /> 

      <ConfDataSet modify="true" maxAttributes="50" max="50" /> 

      <DynDataSet max="100" maxAttributes="50" /> 

      <ReadWrite /> 

      <ConfReportControl bufConf="true" bufMode="both" max="50" /> 

      <GetCBValues /> 

      <ReportSettings rptID="Dyn" trgOps="Dyn" intgPd="Dyn" optFields="Dyn" 

cbName="Conf" datSet="Dyn" bufTime="Dyn" resvTms="true" owner="true" /> 

      <LogSettings trgOps="Dyn" intgPd="Dyn" datSet="Dyn" logEna="Dyn" /> 

      <GSESettings appID="Dyn" dataLabel="Dyn" datSet="Dyn" cbName="Conf" /> 

      <FileHandling /> 

      <ConfLNs fixPrefix="true" /> 

      <ConfLdName /> 

      <ConfSigRef max="100" /> 

    </Services> 

  </IED> 

  <IED name="SM-457968f3-48fd-4e01-ba3d-568fa8a76f95" manufacturer="smart-

meter-api" configVersion="1.0" originalSclRevision="B" originalSclVersion="2007"> 

    <AccessPoint name="AP"> 

      <Server> 

        <LDevice inst="CTRL"> 
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          <LN lnType="LLN0_2007" lnClass="LLN0" inst="" prefix="" /> 

          <LN lnType="LPHD_TYPE" lnClass="LPHD" inst="1" prefix="" /> 

          <LN lnType="MMXN_TYPE" lnClass="MMXN" inst="1" prefix="" /> 

          <LN lnType="CSWI_TYPE" lnClass="CSWI" inst="1" prefix="" /> 

          <LN lnType="XSWI_TYPE" lnClass="XSWI" inst="1" prefix="" /> 

        </LDevice> 

      </Server> 

    </AccessPoint> 

    <Services nameLength="64"> 

      <DynAssociation max="10" /> 

      <ConfLogControl max="10" /> 

      <GOOSE max="10" /> 

      <GetDirectory /> 

      <GetDataObjectDefinition /> 

      <DataObjectDirectory /> 

      <GetDataSetValue /> 

      <SetDataSetValue /> 

      <DataSetDirectory /> 

      <ConfDataSet modify="true" maxAttributes="50" max="50" /> 

      <DynDataSet max="100" maxAttributes="50" /> 

      <ReadWrite /> 

      <ConfReportControl bufConf="true" bufMode="both" max="50" /> 

      <GetCBValues /> 
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      <ReportSettings rptID="Dyn" trgOps="Dyn" intgPd="Dyn" optFields="Dyn" 

cbName="Conf" datSet="Dyn" bufTime="Dyn" resvTms="true" owner="true" /> 

      <LogSettings trgOps="Dyn" intgPd="Dyn" datSet="Dyn" logEna="Dyn" /> 

      <GSESettings appID="Dyn" dataLabel="Dyn" datSet="Dyn" cbName="Conf" /> 

      <FileHandling /> 

      <ConfLNs fixPrefix="true" /> 

      <ConfLdName /> 

      <ConfSigRef max="100" /> 

    </Services> 

  </IED> 

  <IED name="SM-9b0a5a48-0cd8-484c-b4ca-f86e44ea47b1" manufacturer="smart-

meter-api" configVersion="1.0" originalSclRevision="B" originalSclVersion="2007"> 

    <AccessPoint name="AP"> 

      <Server> 

        <LDevice inst="CTRL"> 

          <LN lnType="LLN0_2007" lnClass="LLN0" inst="" prefix="" /> 

          <LN lnType="LPHD_TYPE" lnClass="LPHD" inst="1" prefix="" /> 

          <LN lnType="MMXN_TYPE" lnClass="MMXN" inst="1" prefix="" /> 

          <LN lnType="CSWI_TYPE" lnClass="CSWI" inst="1" prefix="" /> 

          <LN lnType="XSWI_TYPE" lnClass="XSWI" inst="1" prefix="" /> 

        </LDevice> 

      </Server> 

    </AccessPoint> 

    <Services nameLength="64"> 
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      <DynAssociation max="10" /> 

      <ConfLogControl max="10" /> 

      <GOOSE max="10" /> 

      <GetDirectory /> 

      <GetDataObjectDefinition /> 

      <DataObjectDirectory /> 

      <GetDataSetValue /> 

      <SetDataSetValue /> 

      <DataSetDirectory /> 

      <ConfDataSet modify="true" maxAttributes="50" max="50" /> 

      <DynDataSet max="100" maxAttributes="50" /> 

      <ReadWrite /> 

      <ConfReportControl bufConf="true" bufMode="both" max="50" /> 

      <GetCBValues /> 

      <ReportSettings rptID="Dyn" trgOps="Dyn" intgPd="Dyn" optFields="Dyn" 

cbName="Conf" datSet="Dyn" bufTime="Dyn" resvTms="true" owner="true" /> 

      <LogSettings trgOps="Dyn" intgPd="Dyn" datSet="Dyn" logEna="Dyn" /> 

      <GSESettings appID="Dyn" dataLabel="Dyn" datSet="Dyn" cbName="Conf" /> 

      <FileHandling /> 

      <ConfLNs fixPrefix="true" /> 

      <ConfLdName /> 

      <ConfSigRef max="100" /> 

    </Services> 

  </IED> 
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  <IED name="SM-6ae81dda-0de5-40ca-8c16-6d82dfa6335f" manufacturer="smart-

meter-api" configVersion="1.0" originalSclRevision="B" originalSclVersion="2007"> 

    <AccessPoint name="AP"> 

      <Server> 

        <LDevice inst="CTRL"> 

          <LN lnType="LLN0_2007" lnClass="LLN0" inst="" prefix="" /> 

          <LN lnType="LPHD_TYPE" lnClass="LPHD" inst="1" prefix="" /> 

          <LN lnType="MMXN_TYPE" lnClass="MMXN" inst="1" prefix="" /> 

          <LN lnType="CSWI_TYPE" lnClass="CSWI" inst="1" prefix="" /> 

          <LN lnType="XSWI_TYPE" lnClass="XSWI" inst="1" prefix="" /> 

        </LDevice> 

      </Server> 

    </AccessPoint> 

    <Services nameLength="64"> 

      <DynAssociation max="10" /> 

      <ConfLogControl max="10" /> 

      <GOOSE max="10" /> 

      <GetDirectory /> 

      <GetDataObjectDefinition /> 

      <DataObjectDirectory /> 

      <GetDataSetValue /> 

      <SetDataSetValue /> 

      <DataSetDirectory /> 

      <ConfDataSet modify="true" maxAttributes="50" max="50" /> 
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      <DynDataSet max="100" maxAttributes="50" /> 

      <ReadWrite /> 

      <ConfReportControl bufConf="true" bufMode="both" max="50" /> 

      <GetCBValues /> 

      <ReportSettings rptID="Dyn" trgOps="Dyn" intgPd="Dyn" optFields="Dyn" 

cbName="Conf" datSet="Dyn" bufTime="Dyn" resvTms="true" owner="true" /> 

      <LogSettings trgOps="Dyn" intgPd="Dyn" datSet="Dyn" logEna="Dyn" /> 

      <GSESettings appID="Dyn" dataLabel="Dyn" datSet="Dyn" cbName="Conf" /> 

      <FileHandling /> 

      <ConfLNs fixPrefix="true" /> 

      <ConfLdName /> 

      <ConfSigRef max="100" /> 

    </Services> 

  </IED> 

  <IED name="SM-cbfe4619-88da-4574-a20b-1caa2d501589" manufacturer="smart-

meter-api" configVersion="1.0" originalSclRevision="B" originalSclVersion="2007"> 

    <AccessPoint name="AP"> 

      <Server> 

        <LDevice inst="CTRL"> 

          <LN lnType="LLN0_2007" lnClass="LLN0" inst="" prefix="" /> 

          <LN lnType="LPHD_TYPE" lnClass="LPHD" inst="1" prefix="" /> 

          <LN lnType="MMXN_TYPE" lnClass="MMXN" inst="1" prefix="" /> 

          <LN lnType="CSWI_TYPE" lnClass="CSWI" inst="1" prefix="" /> 

          <LN lnType="XSWI_TYPE" lnClass="XSWI" inst="1" prefix="" /> 
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        </LDevice> 

      </Server> 

    </AccessPoint> 

    <Services nameLength="64"> 

      <DynAssociation max="10" /> 

      <ConfLogControl max="10" /> 

      <GOOSE max="10" /> 

      <GetDirectory /> 

      <GetDataObjectDefinition /> 

      <DataObjectDirectory /> 

      <GetDataSetValue /> 

      <SetDataSetValue /> 

      <DataSetDirectory /> 

      <ConfDataSet modify="true" maxAttributes="50" max="50" /> 

      <DynDataSet max="100" maxAttributes="50" /> 

      <ReadWrite /> 

      <ConfReportControl bufConf="true" bufMode="both" max="50" /> 

      <GetCBValues /> 

      <ReportSettings rptID="Dyn" trgOps="Dyn" intgPd="Dyn" optFields="Dyn" 

cbName="Conf" datSet="Dyn" bufTime="Dyn" resvTms="true" owner="true" /> 

      <LogSettings trgOps="Dyn" intgPd="Dyn" datSet="Dyn" logEna="Dyn" /> 

      <GSESettings appID="Dyn" dataLabel="Dyn" datSet="Dyn" cbName="Conf" /> 

      <FileHandling /> 

      <ConfLNs fixPrefix="true" /> 
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      <ConfLdName /> 

      <ConfSigRef max="100" /> 

    </Services> 

  </IED> 

  <IED name="SM-d50b20fd-0aaf-40cc-8764-c618468de595" manufacturer="smart-

meter-api" configVersion="1.0" originalSclRevision="B" originalSclVersion="2007"> 

    <AccessPoint name="AP"> 

      <Server> 

        <LDevice inst="CTRL"> 

          <LN lnType="LLN0_2007" lnClass="LLN0" inst="" prefix="" /> 

          <LN lnType="LPHD_TYPE" lnClass="LPHD" inst="1" prefix="" /> 

          <LN lnType="MMXN_TYPE" lnClass="MMXN" inst="1" prefix="" /> 

          <LN lnType="CSWI_TYPE" lnClass="CSWI" inst="1" prefix="" /> 

          <LN lnType="XSWI_TYPE" lnClass="XSWI" inst="1" prefix="" /> 

        </LDevice> 

      </Server> 

    </AccessPoint> 

    <Services nameLength="64"> 

      <DynAssociation max="10" /> 

      <ConfLogControl max="10" /> 

      <GOOSE max="10" /> 

      <GetDirectory /> 

      <GetDataObjectDefinition /> 

      <DataObjectDirectory /> 
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      <GetDataSetValue /> 

      <SetDataSetValue /> 

      <DataSetDirectory /> 

      <ConfDataSet modify="true" maxAttributes="50" max="50" /> 

      <DynDataSet max="100" maxAttributes="50" /> 

      <ReadWrite /> 

      <ConfReportControl bufConf="true" bufMode="both" max="50" /> 

      <GetCBValues /> 

      <ReportSettings rptID="Dyn" trgOps="Dyn" intgPd="Dyn" optFields="Dyn" 

cbName="Conf" datSet="Dyn" bufTime="Dyn" resvTms="true" owner="true" /> 

      <LogSettings trgOps="Dyn" intgPd="Dyn" datSet="Dyn" logEna="Dyn" /> 

      <GSESettings appID="Dyn" dataLabel="Dyn" datSet="Dyn" cbName="Conf" /> 

      <FileHandling /> 

      <ConfLNs fixPrefix="true" /> 

      <ConfLdName /> 

      <ConfSigRef max="100" /> 

    </Services> 

  </IED> 

  <IED name="SM-f44f550a-3b08-482d-aa24-6a585286261e" manufacturer="smart-

meter-api" configVersion="1.0" originalSclRevision="B" originalSclVersion="2007"> 

    <AccessPoint name="AP"> 

      <Server> 

        <LDevice inst="CTRL"> 

          <LN lnType="LLN0_2007" lnClass="LLN0" inst="" prefix="" /> 
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          <LN lnType="LPHD_TYPE" lnClass="LPHD" inst="1" prefix="" /> 

          <LN lnType="MMXN_TYPE" lnClass="MMXN" inst="1" prefix="" /> 

          <LN lnType="CSWI_TYPE" lnClass="CSWI" inst="1" prefix="" /> 

          <LN lnType="XSWI_TYPE" lnClass="XSWI" inst="1" prefix="" /> 

        </LDevice> 

      </Server> 

    </AccessPoint> 

    <Services nameLength="64"> 

      <DynAssociation max="10" /> 

      <ConfLogControl max="10" /> 

      <GOOSE max="10" /> 

      <GetDirectory /> 

      <GetDataObjectDefinition /> 

      <DataObjectDirectory /> 

      <GetDataSetValue /> 

      <SetDataSetValue /> 

      <DataSetDirectory /> 

      <ConfDataSet modify="true" maxAttributes="50" max="50" /> 

      <DynDataSet max="100" maxAttributes="50" /> 

      <ReadWrite /> 

      <ConfReportControl bufConf="true" bufMode="both" max="50" /> 

      <GetCBValues /> 

      <ReportSettings rptID="Dyn" trgOps="Dyn" intgPd="Dyn" optFields="Dyn" 

cbName="Conf" datSet="Dyn" bufTime="Dyn" resvTms="true" owner="true" /> 
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      <LogSettings trgOps="Dyn" intgPd="Dyn" datSet="Dyn" logEna="Dyn" /> 

      <GSESettings appID="Dyn" dataLabel="Dyn" datSet="Dyn" cbName="Conf" /> 

      <FileHandling /> 

      <ConfLNs fixPrefix="true" /> 

      <ConfLdName /> 

      <ConfSigRef max="100" /> 

    </Services> 

  </IED> 

  <IED name="SM-a87afd3a-5238-470c-84c4-8762b9b13545" manufacturer="smart-

meter-api" configVersion="1.0" originalSclRevision="B" originalSclVersion="2007"> 

    <AccessPoint name="AP"> 

      <Server> 

        <LDevice inst="CTRL"> 

          <LN lnType="LLN0_2007" lnClass="LLN0" inst="" prefix="" /> 

          <LN lnType="LPHD_TYPE" lnClass="LPHD" inst="1" prefix="" /> 

          <LN lnType="MMXN_TYPE" lnClass="MMXN" inst="1" prefix="" /> 

          <LN lnType="CSWI_TYPE" lnClass="CSWI" inst="1" prefix="" /> 

          <LN lnType="XSWI_TYPE" lnClass="XSWI" inst="1" prefix="" /> 

        </LDevice> 

      </Server> 

    </AccessPoint> 

    <Services nameLength="64"> 

      <DynAssociation max="10" /> 

      <ConfLogControl max="10" /> 
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      <GOOSE max="10" /> 

      <GetDirectory /> 

      <GetDataObjectDefinition /> 

      <DataObjectDirectory /> 

      <GetDataSetValue /> 

      <SetDataSetValue /> 

      <DataSetDirectory /> 

      <ConfDataSet modify="true" maxAttributes="50" max="50" /> 

      <DynDataSet max="100" maxAttributes="50" /> 

      <ReadWrite /> 

      <ConfReportControl bufConf="true" bufMode="both" max="50" /> 

      <GetCBValues /> 

      <ReportSettings rptID="Dyn" trgOps="Dyn" intgPd="Dyn" optFields="Dyn" 

cbName="Conf" datSet="Dyn" bufTime="Dyn" resvTms="true" owner="true" /> 

      <LogSettings trgOps="Dyn" intgPd="Dyn" datSet="Dyn" logEna="Dyn" /> 

      <GSESettings appID="Dyn" dataLabel="Dyn" datSet="Dyn" cbName="Conf" /> 

      <FileHandling /> 

      <ConfLNs fixPrefix="true" /> 

      <ConfLdName /> 

      <ConfSigRef max="100" /> 

    </Services> 

  </IED> 

  <DataTypeTemplates> 

    <LNodeType id="LLN0_2007" lnClass="LLN0"> 
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      <DO name="NamPlt" type="LPL_LD2007" /> 

      <DO name="Beh" type="ENS_Beh" /> 

      <DO name="Health" type="ENS_Health" /> 

      <DO name="Mod" type="ENC_Mod_direct" /> 

      <DO name="LocKey" type="SPS_noSVnoBL" /> 

      <DO name="Loc" type="SPS_noSVnoBL" /> 

      <DO name="LocSta" type="SPC_direct" /> 

      <DO name="Diag" type="SPC_direct" /> 

      <DO name="LEDRs" type="SPC_direct" /> 

      <DO name="MltLev" type="SPG_SP" /> 

    </LNodeType> 

    <LNodeType id="LPHD_TYPE" lnClass="LPHD"> 

      <DO name="PhyNam" type="DPL_Full" /> 

      <DO name="PhyHealth" type="ENS_Health" /> 

      <DO name="OutOv" type="SPS_noSVnoBL" /> 

      <DO name="Proxy" type="SPS_noSVnoBL" /> 

      <DO name="InOv" type="SPS_noSVnoBL" /> 

      <DO name="OpTmh" type="INS_noSVnoBL" /> 

      <DO name="NumPwrUp" type="INS_noSVnoBL" /> 

      <DO name="WrmStr" type="INS_noSVnoBL" /> 

      <DO name="WacTrg" type="INS_noSVnoBL" /> 

      <DO name="PwrUp" type="SPS_noSVnoBL" /> 

      <DO name="PwrDn" type="SPS_noSVnoBL" /> 

      <DO name="PwrSupAlm" type="SPS_noSVnoBL" /> 
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      <DO name="RsStat" type="SPC_direct" /> 

      <DO name="Sim" type="SPC_direct" /> 

    </LNodeType> 

    <LNodeType id="MMXN_TYPE" lnClass="MMXN"> 

      <DO name="Beh" type="ENS_BehaviourModeKind" /> 

      <DO name="Amp" type="MV" /> 

      <DO name="Vol" type="MV" /> 

      <DO name="Watt" type="MV" /> 

      <DO name="PwrFact" type="MV" /> 

      <DO name="Hz" type="MV" /> 

    </LNodeType> 

    <LNodeType id="CSWI_TYPE" lnClass="CSWI"> 

      <DO name="Beh" type="TMW_Generated_ENS_BehaviourModeKind" /> 

      <DO name="Pos" type="DPC" /> 

    </LNodeType> 

    <LNodeType id="XSWI_TYPE" lnClass="XSWI"> 

      <DO name="Beh" type="TMW_Generated_ENS_BehaviourModeKind" /> 

      <DO name="Loc" type="SPS" /> 

      <DO name="OpCnt" type="INS" /> 

      <DO name="SwTyp" type="ENS_SwitchFunctionKind" /> 

      <DO name="Pos" type="DPC" /> 

      <DO name="BlkOpn" type="SPC" /> 

      <DO name="BlkCls" type="SPC" /> 

    </LNodeType> 
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    <DAType id="AnalogueValue"> 

      <BDA name="f" bType="FLOAT32" /> 

    </DAType> 

    <DOType id="DPL_Full" cdc="DPL"> 

      <DA name="vendor" bType="VisString255" fc="DC"> 

        <Val>TMW</Val> 

      </DA> 

      <DA name="hwRev" bType="VisString255" fc="DC" /> 

      <DA name="swRev" bType="VisString255" fc="DC" /> 

      <DA name="serNum" bType="VisString255" fc="DC" /> 

      <DA name="model" bType="VisString255" fc="DC" /> 

      <DA name="location" bType="VisString255" fc="DC" /> 

      <DA name="name" bType="VisString64" fc="DC" /> 

      <DA name="owner" bType="VisString255" fc="DC" /> 

      <DA name="ePSName" bType="VisString255" fc="DC" /> 

      <DA name="primeOper" bType="VisString255" fc="DC" /> 

      <DA name="secondOper" bType="VisString255" fc="DC" /> 

      <DA name="latitude" bType="FLOAT32" fc="DC" /> 

      <DA name="longitude" bType="FLOAT32" fc="DC" /> 

      <DA name="altitude" bType="FLOAT32" fc="DC" /> 

      <DA name="mRID" bType="VisString255" fc="DC" /> 

      <DA name="d" bType="VisString255" fc="DC" /> 

      <DA name="dU" bType="Unicode255" fc="DC" /> 

    </DOType> 
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    <DOType id="DPC" cdc="DPC"> 

      <DA name="stVal" bType="Dbpos" fc="ST" dchg="true" /> 

      <DA name="q" bType="Quality" fc="ST" qchg="true" /> 

      <DA name="t" bType="Timestamp" fc="ST" /> 

      <DA name="ctlModel" bType="Enum" fc="CF" dchg="true" type="CtlModelKind" 

valKind="RO"> 

        <Val>status-only</Val> 

      </DA> 

    </DOType> 

    <DOType id="ENC_Mod_direct" cdc="ENC"> 

      <DA name="origin" bType="Struct" fc="ST" type="Originator" /> 

      <DA name="stVal" bType="Enum" fc="ST" type="BehaviourModeKind" 

dchg="true" /> 

      <DA name="q" bType="Quality" fc="ST" qchg="true" /> 

      <DA name="t" bType="Timestamp" fc="ST" /> 

      <DA name="ctlModel" bType="Enum" fc="CF" type="CtlModelKind" 

valKind="RO"> 

        <Val>direct-with-normal-security</Val> 

      </DA> 

      <DA name="d" bType="VisString255" fc="DC" /> 

      <DA name="dU" bType="Unicode255" fc="DC" /> 

      <DA name="Oper" bType="Struct" fc="CO" type="OperBehaviourModeKind" /> 

    </DOType> 

    <DOType id="ENS_Beh" cdc="ENS"> 
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      <DA name="stVal" bType="Enum" fc="ST" type="BehaviourModeKind" 

dchg="true" dupd="true" /> 

      <DA name="q" bType="Quality" fc="ST" qchg="true" /> 

      <DA name="t" bType="Timestamp" fc="ST" /> 

      <DA name="d" bType="VisString255" fc="DC" /> 

      <DA name="dU" bType="Unicode255" fc="DC" /> 

    </DOType> 

    <DOType id="ENS_Health" cdc="ENS"> 

      <DA name="stVal" bType="Enum" type="HealthKind" fc="ST" dchg="true" 

dupd="true" /> 

      <DA name="q" bType="Quality" fc="ST" qchg="true" /> 

      <DA name="t" bType="Timestamp" fc="ST" /> 

      <DA name="d" bType="VisString255" fc="DC" /> 

      <DA name="dU" bType="Unicode255" fc="DC" /> 

    </DOType> 

    <DOType id="ENS_BehaviourModeKind" cdc="ENS"> 

      <DA name="stVal" bType="Enum" type="BehaviourModeKind" fc="ST" 

dchg="true" dupd="true" /> 

      <DA name="q" bType="Quality" fc="ST" qcgh="true" /> 

      <DA name="t" bType="Timestamp" fc="ST" /> 

    </DOType> 

    <DOType id="ENS_SwitchFunctionKind" cdc="ENS"> 

      <DA name="stVal" bType="Enum" fc="ST" dchg="true" type="SwitchFunctionKind" 

/> 

      <DA name="q" bType="Quality" fc="ST" qchg="true" /> 
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      <DA name="t" bType="Timestamp" fc="ST" /> 

    </DOType> 

    <DOType id="INS" cdc="INS"> 

      <DA name="stVal" bType="INT32" fc="ST" dchg="true" dupd="true" /> 

      <DA name="q" bType="Quality" fc="ST" qchg="true" /> 

      <DA name="t" bType="Timestamp" fc="ST" /> 

    </DOType> 

    <DOType id="INS_noSVnoBL" cdc="INS"> 

      <DA name="stVal" bType="INT32" fc="ST" dchg="true" /> 

      <DA name="q" bType="Quality" fc="ST" qchg="true" /> 

      <DA name="t" bType="Timestamp" fc="ST" /> 

      <DA name="d" bType="VisString255" fc="DC" /> 

      <DA name="dU" bType="Unicode255" fc="DC" /> 

    </DOType> 

    <DOType id="LPL_LD2007" cdc="LPL"> 

      <DA name="vendor" bType="VisString255" fc="DC"> 

        <Val>TMW</Val> 

      </DA> 

      <DA name="swRev" bType="VisString255" fc="DC"> 

        <Val>1.0</Val> 

      </DA> 

      <DA name="d" bType="VisString255" fc="DC" /> 

      <DA name="dU" bType="Unicode255" fc="DC" /> 

      <DA name="configRev" bType="VisString255" fc="DC"> 
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        <Val>1.0</Val> 

      </DA> 

      <DA name="paramRev" bType="INT32" fc="ST" dchg="true"> 

        <Val>0</Val> 

      </DA> 

      <DA name="valRev" bType="INT32" fc="ST" dchg="true"> 

        <Val>0</Val> 

      </DA> 

      <DA name="ldNs" bType="VisString255" fc="EX"> 

        <Val>IEC 61850-7-4:2007</Val> 

      </DA> 

    </DOType> 

    <DOType id="MV" cdc="MV"> 

      <DA name="mag" bType="Struct" type="AnalogueValue" fc="MX" dchg="true" 

dupd="true" /> 

      <DA name="q" bType="Quality" type="" fc="MX" qchg="true" /> 

      <DA name="t" bType="Timestamp" type="" fc="MX" /> 

    </DOType> 

    <DAType id="OperBehaviourModeKind"> 

      <BDA name="ctlVal" bType="Enum" type="BehaviourModeKind" /> 

      <BDA name="origin" bType="Struct" type="Originator" /> 

      <BDA name="ctlNum" bType="INT8U" /> 

      <BDA name="T" bType="Timestamp" /> 

      <BDA name="Test" bType="BOOLEAN" /> 
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      <BDA name="Check" bType="Check" /> 

    </DAType> 

    <DAType id="OperBool"> 

      <BDA name="ctlVal" bType="BOOLEAN" /> 

      <BDA name="origin" bType="Struct" type="Originator" /> 

      <BDA name="ctlNum" bType="INT8U" /> 

      <BDA name="T" bType="Timestamp" /> 

      <BDA name="Test" bType="BOOLEAN" /> 

      <BDA name="Check" bType="Check" /> 

    </DAType> 

    <DAType id="Originator"> 

      <BDA name="orCat" bType="Enum" type="OriginatorCategoryKind" /> 

      <BDA name="orIdent" bType="Octet64" /> 

    </DAType> 

    <DOType id="SPC" cdc="SPC"> 

      <DA name="ctlModel" bType="Enum" type="CtlModelKind" fc="CF" dchg="true" 

valKind="RO"> 

        <Val>status-only</Val> 

      </DA> 

    </DOType> 

    <DOType id="SPC_direct" cdc="SPC"> 

      <DA name="origin" bType="Struct" fc="ST" type="Originator" /> 

      <DA name="stVal" bType="BOOLEAN" fc="ST" dchg="true" /> 

      <DA name="q" bType="Quality" fc="ST" qchg="true" /> 
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      <DA name="t" bType="Timestamp" fc="ST" /> 

      <DA name="ctlModel" bType="Enum" fc="CF" type="CtlModelKind" 

valKind="RO"> 

        <Val>direct-with-normal-security</Val> 

      </DA> 

      <DA name="d" bType="VisString255" fc="DC" /> 

      <DA name="dU" bType="Unicode255" fc="DC" /> 

      <DA name="Oper" bType="Struct" fc="CO" type="OperBool" /> 

    </DOType> 

    <DOType id="SPG_SP" cdc="SPG"> 

      <DA name="setVal" bType="BOOLEAN" fc="SP" dchg="true" /> 

      <DA name="d" bType="VisString255" fc="DC" /> 

      <DA name="dU" bType="Unicode255" fc="DC" /> 

    </DOType> 

    <DOType id="SPS" cdc="SPS"> 

      <DA name="stVal" bType="BOOLEAN" fc="ST" dchg="true" /> 

      <DA name="q" bType="Quality" fc="ST" qchg="true" /> 

      <DA name="t" bType="Timestamp" fc="ST" /> 

    </DOType> 

    <DOType id="SPS_noSVnoBL" cdc="SPS"> 

      <DA name="stVal" bType="INT32" fc="ST" dchg="true" /> 

      <DA name="q" bType="Quality" fc="ST" qchg="true" /> 

      <DA name="t" bType="Timestamp" fc="ST" /> 

      <DA name="d" bType="VisString255" fc="DC" /> 
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      <DA name="dU" bType="Unicode255" fc="DC" /> 

    </DOType> 

    <DOType id="TMW_Generated_DPC" cdc="DPC"> 

      <DA name="stVal" bType="Dbpos" fc="ST" dchg="true" /> 

      <DA name="q" bType="Quality" fc="ST" qchg="true" /> 

      <DA name="t" bType="Timestamp" fc="ST" /> 

      <DA name="ctlModel" bType="Enum" type="CtlModelKind" fc="CF" dchg="true" 

valKind="RO"> 

        <Val>status-only</Val> 

      </DA> 

    </DOType> 

    <DOType id="TMW_Generated_ENS_BehaviourModeKind" cdc="ENS"> 

      <DA name="stVal" bType="Enum" fc="ST" type="BehaviourModeKind" 

dchg="true" dupd="true" /> 

      <DA name="q" bType="Quality" fc="ST" qchg="true" /> 

      <DA name="t" bType="Timestamp" fc="ST" /> 

    </DOType> 

    <EnumType id="BehaviourModeKind"> 

      <EnumVal ord="1">on</EnumVal> 

      <EnumVal ord="2">blocked</EnumVal> 

      <EnumVal ord="3">test</EnumVal> 

      <EnumVal ord="4">test/blocked</EnumVal> 

      <EnumVal ord="5">off</EnumVal> 

    </EnumType> 
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    <EnumType id="CtlModelKind"> 

      <EnumVal ord="0">status-only</EnumVal> 

      <EnumVal ord="1">direct-with-normal-security</EnumVal> 

      <EnumVal ord="2">sbo-with-normal-security</EnumVal> 

      <EnumVal ord="3">direct-with-enhanced-security</EnumVal> 

      <EnumVal ord="4">sbo-with-enhanced-security</EnumVal> 

    </EnumType> 

    <EnumType id="HealthKind"> 

      <EnumVal ord="1">Ok</EnumVal> 

      <EnumVal ord="2">Warning</EnumVal> 

      <EnumVal ord="3">Alarm</EnumVal> 

    </EnumType> 

    <EnumType id="OriginatorCategoryKind"> 

      <EnumVal ord="0">not-supported</EnumVal> 

      <EnumVal ord="1">bay-control</EnumVal> 

      <EnumVal ord="2">station-control</EnumVal> 

      <EnumVal ord="3">remote-control</EnumVal> 

      <EnumVal ord="4">automatic-bay</EnumVal> 

      <EnumVal ord="5">automatic-station</EnumVal> 

      <EnumVal ord="6">automatic-remote</EnumVal> 

      <EnumVal ord="7">maintenance</EnumVal> 

      <EnumVal ord="8">process</EnumVal> 

    </EnumType> 

    <EnumType id="SwitchFunctionKind"> 
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      <EnumVal ord="1">Load Break</EnumVal> 

      <EnumVal ord="2">Disconnector</EnumVal> 

      <EnumVal ord="3">Earthing Switch</EnumVal> 

      <EnumVal ord="4">High Speed Earthing Switch</EnumVal> 

    </EnumType> 

  </DataTypeTemplates> 

</SCL> 


