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ABSTRACT 

The research emphasised the vital role of a Master Patient Index (MPI) solution in addressing 

the challenges public healthcare facilities face in eliminating duplicate patient records and 

improving record linkage. The study recognised that traditional MPI systems may have 

limitations in terms of efficiency and accuracy. To address this, the study focused on utilising 

machine learning techniques to enhance the effectiveness of MPI systems, aiming to support 

the growing record linkage healthcare ecosystem. 

 

It was essential to highlight that integrating machine learning into MPI systems is crucial for 

optimising their capabilities. The study aimed to improve data linking and deduplication 

processes within MPI systems by leveraging machine learning techniques. This emphasis on 

machine learning represented a significant shift towards more sophisticated and intelligent 

healthcare technologies. Ultimately, the goal was to ensure safe and efficient patient care, 

benefiting individuals and the broader healthcare industry. 

 

This research investigated the performance of five machine learning classification algorithms 

(random forests, extreme gradient boosting, logistic regression, stacking ensemble, and deep 

multilayer perceptron) for data linkage and deduplication on four datasets. These techniques 

improved data linking and deduplication for use in an MPI system. 

 

The findings demonstrate the applicability of machine learning models for effective data linkage 

and deduplication of electronic health records. The random forest algorithm achieved the best 

performance (identifying duplicates correctly) based on accuracy, F1-Score, and AUC-score 

for three datasets (Electronic Practice-Based Research Network (ePBRN): Acc = 99.83%, F1-

score = 81.09%, AUC = 99.98%; Freely Extensible Biomedical Record Linkage (FEBRL) 3: 

Acc = 99.55%, F1-score = 96.29%, AUC = 99.77%; Custom-synthetic: Acc = 99.98%, F1-score 

= 99.18%, AUC = 99.99%). In contrast, the experimentation on the FEBRL4 dataset revealed 

that the Multi-Layer Perceptron Artificial Neural Network (MLP-ANN) and logistic regression 

algorithms outperformed the random forest algorithm. The performance results for the MLP-

ANN were (FEBRL4: Acc = 99.93%, F1-score = 96.95%, AUC = 99.97%). For the logistic 

regression algorithm, the results were (FEBRL4: Acc = 99.99%, F1 = 96.91%, AUC = 99.97%). 

 

In conclusion, the results of this research have significant implications for the healthcare 

industry, as they are expected to enhance the utilisation of MPI systems and improve their 

effectiveness in the record linkage healthcare ecosystem. By improving patient record linking 

and deduplication, healthcare providers can ensure safer and more efficient care, ultimately 

benefiting patients and the industry. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Overview of the Study 

 

Public healthcare services are becoming more disparate, and patients are using multiple 

healthcare facilities and interacting with various source systems within the same healthcare 

facility (Beth et al., 2016; Fernandes & O’Connor, 2015; Duggal et al., 2015). These systems 

often include admissions, dispensaries, and others, all of which may use their medical record 

number (MRN). Healthcare providers are also becoming more interoperable but still lack a 

standardised approach to sharing information (Duggal et al., 2015a). Data is stored in different 

formats, and policies and procedures for capturing and storing information are not consistently 

implemented (Riplinger et al., 2020; Fernandes & O’Connor, 2015). 

 

Moreover, public healthcare facilities must identify and prevent duplicate records from multiple 

source systems in their health information exchange (HIE) (Menachemi et al., 2018; Duggal et 

al., 2015; Harron et al., 2017; Riplinger et al., 2020; Thorell et al., 2019). The HIE aims to 

enable interoperability between various source systems by following nationally recognised 

standards (Menachemi et al., 2018). The primary purpose of an HIE is to allow doctors, nurses, 

pharmacists, and other healthcare providers to access and securely share a patient's 

electronic medical record, improving speed, quality, safety, and cost of patient care (Anon, 

2021). Furthermore, healthcare providers associate the ability to provide efficient quality 

healthcare services with giving a patient a longitudinal patient record dependent on accurately 

identifying a patient in an HIE (Morris et al., 2014; Riplinger et al., 2020; Thorell et al., 2019). 

 

However, it is estimated that approximately 1.1 billion people, mainly in Africa and Asia, cannot 

prove who they say they are. Many of these people are women and children residing in poor 

rural areas. Their inability to identify themselves is also a barrier to accessing quality 

healthcare services (Thorell et al., 2019). 

 

Additionally, in many countries, including Africa, a standardised way to capture and store 

patient information does not exist (Thorell et al., 2019; Morris et al., 2014). In most cases, a 

minimum required amount of geographical information is common but lacks a standardised 

mechanism for capturing and storing it (Morris et al., 2014). It is essential to accurately identify 

and capture a patient's details at registration or healthcare access. The lack thereof results in 

creating patient records in multiple source systems with potentially multiple source identifiers 

that are not interoperable but belong to the same individual. These issues are often addressed 

by using a master patient index (MPI). An MPI system stores a directory of all patients in an 



 14 

HIE ecosystem and securely exposes patient demographic and clinical data. It has the core 

role of creating and maintaining a unique identifier for all patients by combining geographic 

patient characteristics in record linkage (Chouffani, 2017; Nelson et al., 2023). 

 

Record linkage is the science of finding duplicates or matches in records from different source 

systems using nonunique identifiers, including first name, last name, date of birth, address, 

telephone number and other similar characteristics (Winkler, 2002). Although the 

characteristics are not unique, when combined, they produce an accurate individual identity, 

allowing the system to determine if two or more records are a potential or a complete match 

(Winkler, 2009). This is an essential function in an HIE for healthcare providers to provide 

patients with the most efficient and safe care. Being able to link patient records accurately and 

thereby eliminate duplicate records allows a healthcare facility to give a patient a longitudinal 

health record. 

 

This study assessed the use of five machine learning algorithms (random forests, gradient-

boosted trees, logistic regression, stacking ensemble and artificial neural network) for patient 

record linkage and deduplication and using the proposed models in the context of a master 

patient index (MPI) system. This is important because an MPI system serves as a central 

repository for patient-level information, which will be further explained in this research. 

Additionally, the primary function of this system is to address the challenges of record linkage 

and deduplication. 

 

1.2 Background 

 

Hayler (2018) found that 17% of United States (U.S.) healthcare CIOs from 55 hospitals shared 

an adverse patient-related incident at their medical facility due to patient data duplication. 

Furthermore, medical record linking is becoming increasingly important as clinical data is more 

distributed across multiple source systems (Grannis et al., 2004; Fernandes & O’Connor, 2015; 

Riplinger et al., 2020; Morris et al., 2014). 

 

Little research has been published on the comparative behaviour and output of software 

programs dedicated to record linkage and patient matching (Karr et al., 2019). Karr et al. (2019) 

used actual identifiers to evaluate probabilistic approaches comparing two systems, “Link Plus” 

and “Link King”, without explicitly looking at how certain variables affected weights and 

matches. Furthermore, Beth et al. (2016) identify three major categories for record linkage, 

which include basic, intermediate, and advanced algorithms. Building on this understanding, 

the next section will explore probabilistic algorithms and their significance in record linkage 

and patient matching. 
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The Fellegi-Sunter theory is the foundation for many probabilistic algorithms (Morris et al., 

2014; Goldstein et al., 2017). In addition, the idea is also a complex statistical examination of 

a collection or string of patient data variables that, when regarded collectively, determine 

whether there is an automatic match, no match, or manual review required. Probabilistic 

algorithms commonly use Soundex, edit distance calculations, frequency indexing, and other 

tools to correct data-entering errors (Kousthubha & Raghuveer, 2018). These approaches can 

also be combined to form a hybrid matching method. The industry has refrained from 

recommending a standard matching method or algorithm because these are frequently tailored 

and fine-tuned for individual data sets, contemplating how demographic factors vary by 

neighbourhood and ethnicity (Duggal et al., 2015; Chouffani, 2017; Morris et al., 2014; Sauleau 

et al., 2005; McCoy et al., 2012; Beth et al., 2016). Furthermore, there is a lack of substantiated 

research on the variability of success with different matching methods, particularly with real-

world data sets (Christen & Pudjijono, 2009; Peter, 2005; Vo et al., 2019; Christen, 2008; 

Nelson et al., 2023). However, one small study of sample data found that simple deterministic 

methods did not perform as well as probabilistic or hybrid methods because simple 

deterministic methods struggle to handle data quality issues and have an inability to handle 

variations in data  (Morris et al., 2014). 

 

Record linkage can be approached as a classification problem because the process involves 

determining whether pairs of records from different datasets are either a match or a non-match 

(Kousthubha & Raghuveer, 2018). To link and deduplicate data, machine learning algorithms 

such as decision trees, and support vector machines can be effectively applied (Kousthubha 

& Raghuveer, 2018). Existing methods require training data to train the machine learning 

models used for classifying records into matched or unmatched groups (Goldstein et al., 2017). 

However, when no training data is available, it may be feasible to generate a set utilising 

comparable data with known matching status or a subset of current data subjected to 

meticulous hand-matching (Vo et al., 2019; Nelson et al., 2023; Harron et al., 2017; Goldstein 

et al., 2017). 

 

In conclusion, it is essential to address the implications of duplicate records for healthcare 

systems and to find effective solutions to alleviate the resulting challenges. This involves 

enhancing collaboration among healthcare workers in patient admission areas and 

implementing consistent policies and processes to improve the overall efficiency of the 

healthcare system. These measures may include refining search protocols, standardising data 

capture, and developing specific questioning techniques for registrars to identify prior patient 

visits to the healthcare centre (Beth et al., 2016). 
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1.3 Research Problem 

 

It is a challenge to link and deduplicate patient records within the healthcare industry due to 

the proliferation of data sources and the existence of redundant data across various databases 

(Kousthubha & Raghuveer, 2018; Goldstein et al., 2017). Additionally, the United States 

Centers for Disease Control and Prevention (CDC) also estimates that 85% of all patient health 

data exist digitally (Centers for Disease Control, 2018). Furthermore, the proliferation of data 

sources across heterogeneous healthcare information systems always leads to redundant 

data scattered across various databases (Sauleau et al., 2005; Vo et al., 2019; Nelson et al., 

2023; McCoy et al., 2012; Kousthubha & Raghuveer, 2018; Chouffani, 2017). Delivering 

continuous care and conducting health research involves identifying patients across numerous 

care facilities or services, a complex problem (Vo et al., 2019; Kousthubha & Raghuveer, 

2018). 

 

Patient linking and deduplicating records have long been a challenge for many countries 

around the globe (Fernandes & O’Connor, 2015). However, poor record-linking processes and 

duplicate patient records still plague the healthcare industry (Liang et al., 2018; Morris et al., 

2014; Fernandes & O’Connor, 2015; Nelson et al., 2023; Vo et al., 2019). In addition, a master 

patient index (MPI) system is essential in linking and deduplicating patient records (Liang et 

al., 2018). 

 

A unique identifier that could solve the problem of record linkage and deduplication often does 

not exist or is not favoured when dealing with many disparate systems (Morris et al., 2014). 

The use of High Level 7 (HL7) Fast Healthcare Interoperability Resources (FHIR) as a 

standards-based interoperability layer for use by the MPI system is thus required to act as an 

intermediary between healthcare systems with the sole purpose of linking, deduplicating and 

assigning identifiers to patients (Fernandes & O’Connor, 2015; Saripalle et al., 2019). 

 

Furthermore, some studies have found that the leading reasons for duplicate records include 

missing data, misspelt record information, the use of multiple healthcare systems and the fact 

that many countries around the world experience a higher number of the population that share 

exact name and birthdates (Liang et al., 2018; Morris et al., 2014). 

 

Consequently, not addressing the issue of record linkage and deduplication can cause harm 

to patients, become costly to healthcare providers and negate the benefits of digital health 

record systems (Liang et al., 2018; Morris et al., 2014; Fernandes & O’Connor, 2015; Vo et al., 

2019; Sauleau et al., 2005). Furthermore, ineffective linking and deduplicating patient records 
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within the healthcare industry leads to fragmented patient information and potential adverse 

effects on patient care and healthcare costs (Kousthubha & Raghuveer, 2018). 

 

1.4 Aim, Objectives and Research Questions 

 

1.4.1 Research Aim 

 

This study aimed to explore machine learning algorithms for patient record linkage and 

deduplication within a master patient index. 

 

1.4.2 Research Objectives 

 

To accomplish the goal of this research, the following research objectives were established to: 

 

1. Determine the criteria for identifying duplicate records within a data source. 

2. Formulate record linkage and deduplication as a machine learning classification task. 

3. Apply selected machine learning algorithms for record linkage and deduplication. 

4. Evaluate the performance of the selected machine learning algorithms for record linkage 

and deduplication. 

 

1.4.3 Research Questions 

 

This study's primary research question is: how can machine learning algorithms be applied 

to patient record linkage and deduplication within a master patient index? 

 

The sub-research questions are the following: 

1. What is the basis for identifying duplicate records within a data source? 

2. What parameters should be considered when representing record linkage and 

deduplication as a machine learning classification task? 

3. How can machine learning classification algorithms be applied for record linkage and 

deduplication? 

4. What is the performance of selected machine learning algorithms in the context of record 

linkage and deduplication? 
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1.5 Delineation of the Study 

 

Given the global issue of record linkage and deduplication of patient records and the limited 

time scope for this study, open-source datasets were utilised for experiments on patient 

records for deduplication and record linkage (Peter, 2005; Christen & Pudjijono, 2009; Nelson 

et al., 2023). The datasets used are described in sections 4.4.1 FEBRL Datasets, 4.4.2 

ePBRN, and 4.4.3 Custom Synthetic Dataset, respectively. The experimentation in this study 

was limited to five machine learning algorithms, described in sections 2.5.2.1 Random Forests, 

2.5.2.2 Extreme Gradient Boosting (XGBoost), 2.5.2.3 Logistic Regression, 2.5.2.4 Stacking 

Ensemble, and 2.5.2.5 Artificial Neural Networks – Deep multi-Layer Perceptron. This study's 

experimentation used the combination of datasets and machine learning algorithms mentioned 

above. It is important to note that this study did not consider other algorithms. 

 

1.6 Significance of the Study 

 

The findings of this study are intended to benefit electronic healthcare systems in various 

ways. According to recent studies, there is a consistent increase in the use of health 

information exchanges, which increases the need for uniquely identifying a patient across 

various care settings (Centers for Disease Control, 2018; Fernandes & O’Connor, 2015; 

McCoy et al., 2012; Morris et al., 2014). Furthermore, this study will directly contribute to 

enhancing the use of MPI systems and making them more effective in performing their role 

in this growing connected ecosystem. MPI systems improve health information exchanges 

and enhance the effectiveness of identifying patients across different care settings 

(Kousthubha & Raghuveer, 2018; Duggal et al., 2015; Morris et al., 2014; McCoy et al., 

2012; Beth et al., 2016). In conclusion, by improving healthcare systems and data accuracy, 

healthcare providers can ensure better coordination and accuracy of patient information, 

ultimately leading to improved quality of care and patient safety in the expanding connected 

healthcare ecosystem.  
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1.7 Thesis Outline 

 

This thesis is structured as follows: Chapter 2 includes the literature review, covering the 

background and related work. Chapter 3 outlines the methodology utilised to accomplish 

the research objectives. Chapter 4 presents the results of the experiments based on the 

experimental research (ER) design workflow. Chapter 5 delves into a deeper discussion of 

the results. Finally, Chapter 6 provides a summary, conclusion, and recommendations for 

further research work. 

 

1.8 Chapter Summary 

 

The chapter discusses the challenges and importance of accurate patient record linkage in 

the context of public healthcare services. It highlights the lack of standardised approaches 

for capturing and storing patient information, the need for interoperability between various 

healthcare systems, and the significance of Health Information Exchange (HIE) in improving 

patient care. The chapter also touches upon the issue of patient identification, especially in 

underprivileged areas, and emphasises the role of a master patient index (MPI) system in 

addressing these challenges. Furthermore, it outlines the significance of record linkage in 

an HIE ecosystem and proposes using machine learning algorithms within the MPI 

framework to improve record linkage accuracy. Additionally, it mentions the impact of patient 

data duplication on healthcare facilities and the potential of machine learning in enhancing 

record linkage accuracy compared to probabilistic record linkage methods. 
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CHAPTER TWO 

LITERATURE REVIEW 

This chapter provides an overview of the literature. The chapter is divided into six sections. 

It discusses the significance of making a patient's electronic medical record accessible to 

healthcare providers via Health Information Exchange (HIE). It emphasises the importance 

of patient record identification, explores using a master patient index (MPI) as a tool within 

an HIE to solve the issue of record linkage and deduplication, discusses record linkage 

algorithms, and provides a summary of related work. 

 

2.1 Health Information Exchange (HIE) 

 

Healthcare providers associate the ability to provide efficient, quality healthcare services 

with giving a patient a longitudinal patient record, which depends on accurately identifying 

a patient in a health information exchange (HIE) (Thorell et al., 2019; Beth et al., 2016; 

Kousthubha & Raghuveer, 2018). In addition, healthcare systems are becoming more 

disparate, making it more important to have a single unified view of a patient’s health record. 

The HIE aims to enable interoperability between various source systems by following 

nationally recognised standards (Menachemi et al., 2018).  

 

The primary purpose of an HIE is to allow doctors, nurses, pharmacists and other healthcare 

providers to access and securely share a patient's electronic medical record to improve the 

speed, quality, safety and cost of patient care (Anon, 2021). Additionally, using an HIE is 

often a national objective motivated by the fundamental promise of improved patient care, 

efficiencies, and reduced healthcare-related costs (Menachemi et al., 2018). 

 

2.2 Patient Record Identification 

 

The issue of record linkage has gained attention in recent years as the adoption of 

technology increases and the need for interoperability amongst systems becomes a reality 

(Fernandes & O’Connor, 2015). To fully understand the issue of record linkage, it must be 

considered at a high level how data is received from multiple sources which may include 

hospitals, physicians’ offices, clinics, rehabilitation services, long-term care, acute care, and 

others – and to couple these data sources with the additional factors such a varying data 

formats and varying level of completeness or lack thereof, as well as the problem of 

inaccurate data (Fernandes & O’Connor, 2015).  
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Furthermore, Fernandes and O’Connor (2015) conclude that patient identification and 

linking have long been a challenge in healthcare worldwide. In addition, Duggal et al. (2015) 

share that one of the significant challenges in healthcare is the inability to consolidate 

disparate patient data into one view. This is because patient data resides in multiple source 

systems such as clinical, pharmacy, billing, laboratory and claim systems. 

 

2.2.1 Consequences of Poor Patient Identification 

 

The inability to accurately identify patients poses a risk of losing the ability to provide a 

longitudinal health record. This can lead to an increased risk of creating fragmented or 

duplicate health records (Thornton & Shannon, 2005). Improving the quality of treatment, 

making care more accessible, and managing rising healthcare expenditures are all global 

issues. To accomplish the goals of higher quality and lower costs, a unified picture of patient 

data across care settings must be produced, notwithstanding the variety in data capture, 

technologies, and standards (or lack thereof). It is critical to have accurate and complete 

information to provide appropriate, high-quality, cost-effective treatment (Fernandes & 

O’Connor, 2015).  

 

Furthermore, because health information is kept and transmitted electronically, accurate 

identification and matching of patient records is critical for assuring patient safety. For 

example, one-fifth of CIOs polled by the College of Healthcare Information Management 

Executives (CHIME) said that at least one patient had an adverse incident owing to 

mismatched information in the past year (Morris et al., 2014; Hayler, 2018). 

 

2.2.2 Patient Identification as a Non-Technology Problem 

 

Researchers have found that resolving the issue of patient record linkage is not a 

technology problem alone. Several reasons contribute to the existence of duplicate records 

in healthcare systems. Some of these reasons include various methods for matching patient 

records; departmental silos; lack of standardisation; lack of policies, procedures, and data 

ownership; frequently changing demographic data; multiple data points required for record 

matching; and default and null values in required identifying fields are some of the reasons 

that duplicate records continue to plague healthcare systems (Beth et al., 2016). The impact 

of duplicate records can be mitigated by collaborating with colleagues in the patient 

admissions areas and implementing standard policies and processes, such as improved 

searching techniques, data recording standards, and questions that registrars can ask the 

patient to ascertain if the patient has already visited the hospital (Beth et al., 2016). In 
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addition, staff should be coached and tested on identification data and the repercussions of 

faulty or incomplete data capture on duplicate record creation regularly (Beth et al., 2016). 

 

2.2.3 Patient Identification as a Technology Problem 

 

Health record sharing and the need for a unified view of a patient’s medical record are 

becoming commonplace (Duggal et al., 2015; Beth et al., 2016). To improve patient linking, 

the use of more sophisticated technologies, such as biometrics systems, card readers, and 

machine learning algorithms, needed to be increased. (Beth et al., 2016).  

 

Few research studies have investigated the behaviour and output of linkage software and 

algorithms’ effectiveness (Karr et al., 2019). In addition, this study focused on evaluating 

the performance and quality of various methods and machine learning algorithms utilised 

for patient record linking, which can be implemented in a master patient index (MPI) system 

(Nelson et al., 2023). 

 

2.3 Master Patient Index 

 

An MPI system stores a directory of all patients in an HIE ecosystem and securely exposes 

patient demographic and clinical data. It has the core role of creating and maintaining a 

unique identifier for all patients by combining geographic patient characteristics in record 

linkage (Chouffani, 2017; Nelson et al., 2023; Beth et al., 2016). 

 

The MPI plays a critical role in an HIE system by enabling interoperability between many 

different systems that often use different medical record numbers (MRNs) for the same patient 

(Beth et al., 2016). As a result, the MPI solution is a crucial component of an HIE and it must 

function effectively in an automated setting while complementing the work done by human 

experts. 

 

To comprehend the real necessity for a Master Patient Index (MPI) solution, it is important 

to note that medical errors cause one-third of deaths in the United States (Beth et al., 2016). 

To put this into context, 400,000 patients die yearly, equating to more than 1000 people 

daily (Beth et al., 2016). In addition, a similar study has found that an estimated 195,000 

deaths occur because of medical errors, where 10 of 17 are due to patients being incorrectly 

identified (Beth et al., 2016). Furthermore, it is estimated that the third most significant 

preventable cause of death in the United States alone is due to medical errors (Hayler, 

2018). 

 



 23 

Moreover, in many countries, including countries in Africa, a standardised way to capture 

and store patient information does not exist (Morris et al., 2014; Thorell et al., 2019). In most 

cases, a minimum required amount of geographical information is common but lacks a 

standardised mechanism for capturing and storing it (Morris et al., 2014). This results in 

duplicate patient records in multiple source systems with potentially multiple source 

identifiers that are not interoperable but belong to the same individual (Thorell et al., 2019). 

These issues are often addressed using an MPI system that forms part of a HIE 

architecture. 

 

In addition, the requirement for more systematic approaches for coordinating, integrating, 

and managing linked records is becoming more apparent in increasingly distributed 

healthcare systems. One way to deal with this increasingly complex and distributed 

landscape is to adopt MPI solutions into an HIE ecosystem (Toth et al., 2014; Nelson et al., 

2023; Beth et al., 2016; Thorell et al., 2019). 

 

2.4 Record Linkage and Deduplication 

 

Record linkage is the science of finding duplicates or matches in records from different 

source systems using nonunique identifiers, including first name, last name, date of birth, 

address, telephone number and other similar characteristics (Winkler, 2002; Winkler, 2009; 

Kousthubha & Raghuveer, 2018; Goldstein et al., 2017). Although the characteristics are 

not unique, when combined, they produce an accurate individual identity, allowing the 

system to determine if two or more records are a potential or a complete match (Winkler, 

2009). For delivering high-quality, high-value healthcare, conducting valid and generalisable 

research, and evaluating healthcare policy, record linkage among medical databases such 

as electronic health records (EHRs), health insurer claims, and patient-generated data is 

becoming increasingly important (Karr et al., 2019). Furthermore, record linkage is essential 

in an HIE for healthcare providers to provide patients with the most efficient and safe care. 

Being able to link patient records accurately and thereby eliminate duplicate records allows 

a healthcare facility to give a patient a longitudinal health record. 

 

In theory, this study deduced that all record linkage algorithms work similarly. They must 

identify a collection of connecting variables shared by both datasets; these shared variables 

serve as a comparison point. In this study, a numerical weight gets generated for each 

attribute pair compared, which is then interpreted as the degree of confidence that the 

paired data reflect the same person or object. (Karr et al., 2019). Furthermore, at an 

implementation level, the foundation of record linkage is based on performing string 

comparisons, weight determination, and match determination. 
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Medical record linking is becoming increasingly important as clinical data is distributed across 

multiple source systems (Grannis et al., 2004; Chouffani, 2017; Duggal et al., 2015; Morris et 

al., 2014; Sauleau et al., 2005; McCoy et al., 2012; Beth et al., 2016). This study explored five 

machine-learning algorithms to enhance record linkage accuracy and tested them on four 

synthetic datasets. The results prove that machine learning is an effective record linkage and 

deduplication tool. 

 

2.5 Record Linkage Algorithms 

 

Record linkage is the process of identifying similar records within the same or different datasets 

(Kousthubha & Raghuveer, 2018). Record linkage algorithms are utilised to link records across 

different systems and/or to detect potential duplicate records (Beth et al., 2016). This study 

established a strong connection between record linkage algorithms, which are responsible for 

identifying and removing duplicate records, and their usage within an MPI system (Nelson et 

al., 2023; Beth et al., 2016; Vo et al., 2019). 

 

Little research has been published on the comparative behaviour and output of software 

programs dedicated to record linkage and patient matching (Nelson et al., 2023). One study 

used actual identifiers to evaluate probabilistic approaches comparing two systems (Link 

Plus and Link King) without explicitly looking at how certain variables affected weights and 

matches (Karr et al., 2019). 

 

Furthermore, we have ascertained the need for an MPI system, which performs a core role 

in record linkage and related functions. This functionality exists because of the need to 

provide a patient with a longitudinal health record (Beth et al., 2016; Nelson et al., 2023). 

Additionally, we have gained insights into how healthcare systems are becoming more 

complex and distributed. They must adapt and provide new ways of supporting 

interoperability when disparate systems may have their MRNs. We now focus on how an 

MPI accomplishes this functionality by focusing on its methods and, more specifically, 

probabilistic matching and exploring the need for a machine-learning approach. 

 

Record linkage algorithms perform record linkage across disparate systems and provide 

healthcare workers functionality in identifying duplicate records from a backend perspective 

(Beth et al., 2016). Furthermore, Beth et al. (2016) define record-linking algorithms as 

follows: 
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1. Basic algorithm – Also called deterministic matching: This is the most fundamental 

method of matching records and uses deterministic matching. This algorithm compares 

selected elements within specified fields to identify one-to-one character matches, 

including phonetic matches and wildcards (Beth et al., 2016). 

a. A data item must be an exact or partial match for a record to be evaluated as 

a match. 

b. Comparisons are typically made by name, date of birth, social security 

number (SSN), and sometimes gender. 

2. Intermediate algorithm – Includes fuzzy logic: It uses more powerful programmed 

techniques than basic algorithms to compare records. These algorithms account for 

frequently transposed digits or other typographical errors (Beth et al., 2016). This 

technique uses weights that are assigned to each field. For example, the last names 

“Hollenbach” and “Hollenbacht” have similar weights. 

a. To counter misspelt names and nicknames, phonetic encoding schemes 

and, in some cases, similar name lists are utilised. Field match weights are 

assigned arbitrarily/subjectively to important patient-identifier features such 

as first name, last name, date of birth, and SSN, contributing to an overall 

weight score. 

b. Additionally, this method may use programmes specifically developed to 

remedy transpositions, digit rotations, and typographical errors. 

3. Advanced algorithm: This category of linkage algorithms depends on mathematical and 

statistical theories and employs the most advanced tools for matching records. An 

example of such an algorithm used in combination with machine learning is the Fellegi-

Sunter method (Asher et al., 2020). 

a. One of the essential aspects is the application of probabilistic theory and 

mathematical or statistical models to determine the likelihood of a match 

based on specified data qualities. 

b. This method also incorporates machine learning and neural networks, which 

use artificial intelligence to replicate human problem-solving. 

 

This study aimed to evaluate and provide better insights into the “advanced algorithm” 

category, specifically on performance from an algorithm accuracy point of view and a raw 

performance standpoint, to determine the best implementation given specific machine 

learning models and datasets. 

 

This study aimed to develop machine learning models for record linkage and deduplication 

that could be utilised in popular Master Patient Index (MPI) systems, such as SanteMPI and 

OpenCR. The machine learning models produced by this research are designed to be 
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compatible with these well-known MPI systems, as demonstrated in a previous study by 

Nelson et al. (2023). SanteMPI and OpenCR mainly focus on probabilistic algorithms. This 

study produced machine learning models, which can be used in the same systems for 

record linkage and deduplication (Nelson et al., 2023). Both systems perform the function 

of an MPI system and act as a client registry CR. This means these systems are designed 

to be integrated within an HIE and will serve as promising tools for evaluating the advanced 

algorithm category. 

 

Lastly, this study intends to make the use of these advanced methods of record linkage more 

accessible to healthcare facilities, specifically in low-resource settings and countries. We have 

already determined earlier that record linkage and the ability to reduce duplicate records 

accurately play a critical role in providing efficient and quality healthcare. This research aims 

to provide insights into how these tools can be adapted to work well with existing processes 

and procedures and complement skilled human workers. 

 

2.5.1 Probabilistic Record Linking 

 

Probabilistic algorithms are predominantly based on the Fellegi-Sunter theory (Morris et al., 

2014; Goldstein et al., 2017; Tromp et al., 2011; Thornton & Shannon, 2005). The theory is 

a complex statistical examination of a collection or string of patient data variables that, when 

taken together, indicate whether an automatic match, no match, or manual review is 

required. Probabilistic algorithms commonly use Soundex, edit distance calculations, 

frequency indexing, and other tools to correct data-entering errors (Beth et al., 2016). Both 

strategies can be used to create a hybrid matching method. The industry has refrained from 

recommending a standard matching method or algorithm because these are frequently 

tailored and fine-tuned for specific data sets, considering the differences in demographic 

variables between communities and ethnicities. Furthermore, there is a lack of research on 

the variability of success with various matching methods, particularly with real-world data 

sets, even though one short analysis of sample data indicated that straightforward 

deterministic methods did not perform as well as probabilistic or hybrid techniques (Morris 

et al., 2014). 

 

The probabilistic-based approach to record linkage takes trained data to compute a 

maximum likelihood estimate of whether a record pair is a match (Kousthubha & Raghuveer, 

2018). Each record pair is scored independently, e.g., the first name as a source record is 

compared to a potential target record. These comparisons are made with one of many string 

comparison algorithms that ultimately contribute to an overall threshold score, determining 

whether a record matches. Some of the algorithms used include: 
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1. Jaccard coefficient: This algorithm uses statistics to determine the similarity or 

divergence of two sequences. 

2. Soundex algorithm: This algorithm focuses on indexing the sounds of names as 

pronounced in English. 

3. Levenshtein: It is a string metric for measuring the differences between two sequences. 

Additionally, this algorithm determines the distance between two words and the number 

of edits it would take to make them the same. 

4. Jaro-Winkler: This algorithm is like Levenshtein distance, determining the distance metric 

between two sequences. 

 

Furthermore, the goal of probabilistic record linkage methods is to find a set of weights, or 

scores, for the set C that will allow elements of C to be classified as "matches," "non-matches," 

or indecisive matches, based on the weights assigned (Goldstein et al., 2017). These weights 

and thresholds are currently not standardised and still require the input of skilled human labour. 

In addition, making use of skilled human labour still requires extensive testing and manual 

intervention that could potentially be further optimised with newer and more modern record 

linkage approaches which follow. 

 

2.5.2 Machine Learning 

 

Machine learning can be defined as a computer program that is said to learn from experience 

when presented with a particular task to solve (Nelson et al., 2023). Many studies often use a 

single machine-learning algorithm or model to link medical records (Vo et al., 2019). This study 

used five machine learning algorithms, including random forests, gradient-boosted trees, 

logistic regression, stacking ensemble and artificial neural networks with four synthetic 

datasets during experimentation. 

 

Record linkage and deduplication can also be classified as a classification problem (Acheson 

et al., 2020). Linking patient data and the process of deduplication can utilise machine learning 

methods such as clustering, decision trees and support vector machines (Kousthubha & 

Raghuveer, 2018; Goldstein et al., 2017). In addition, training is used to classify records into 

matched or unmatched groups. However, when we do not have training data, it may be 

possible to generate a set utilising similar data with known matching status or a subset of 

current data subjected to meticulous hand matching (Goldstein et al., 2017). This study 

leveraged a considerable amount of research in the field of synthetic data generation to create 

a custom synthetic dataset and utilise datasets used by similar studies (Vo et al., 2019; Nelson 

et al., 2023; Peter, 2005; Christen & Pudjijono, 2009). 
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Based on the varied views of which machine learning approach to adopt for record linkage 

and deduplication, this study aims to explore the most appropriate approach, concluding with 

utilising five machine learning models and four synthetic datasets to give a more holistic view 

of approaches (Kousthubha & Raghuveer, 2018; Liang et al., 2018; Pavneet, 2020). The 

following section will cover the five machine-learning algorithms that were utilised in this study. 

 

2.5.2.1 Random Forests 

 

Random forests are non-linear, nonparametric classifiers that are essentially regularised by 

ensembles and do not tend to overfit. A vital parameter selection in a random forest is the 

number of trees used in the ensemble. The higher the number, the less likely it is to overfit 

the model (Acheson et al., 2020). Random forests outperform single decision trees in 

performance and robustness, yielding more accurate results. Furthermore, they are less 

prone to overfitting and can handle hundreds of input variables without the need for variable 

elimination. Random forests may be biased to qualities with a more significant number of 

levels in categorical data with more than one level (Pita et al., 2017). Figure 2.1 illustrates 

the architecture of random forests (Khan et al., 2021). 

 

 

Figure 2.1: Architecture of random forests (Khan et al., 2021) 
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2.5.2.2 Extreme Gradient Boosting (XGBoost) 

 

Gradient-boosted trees usually perform well but take longer to learn because they are 

formed sequentially. They are more prone to overfitting; thus, it is critical to exercise caution 

during the pre-processing stage (Pita et al., 2017). 

 

Boosting refers to a technique for reducing errors in predictive data analysis. Data scientists 

train machine learning software (machine learning models) on labelled data to generate 

educated judgments about unlabelled data (Amazon, 2022). 

 

Furthermore, gradient boosting is an intriguing sequential training strategy because it does 

not give wrongly identified objects extra weight. It tries to accurately predict target variables 

by merging estimates from simpler and weaker models (Amazon, 2022). The architecture 

of gradient-boosted trees is illustrated in Figure 2.2 (Deng et al., 2021). 

 

 

Figure 2.2: Architecture of XGBoost (Deng et al., 2021) 

 

2.5.2.3 Logistic Regression 

 

Logistic regression is a statistical method to model the relationship between a categorical 

dependent variable and one or more independent variables. It is commonly employed in 

medical research to predict binary outcomes, such as disease presence or absence, based 

on various factors (Boateng & Abaye, 2019). Unlike linear regression, logistic regression does 
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not assume a linear relationship between the independent and dependent variables; instead, 

it uses the logit of the outcome to establish the relationship. It is important to note that logistic 

regression has specific assumptions regarding the data, requires large sample sizes for 

accurate results, and is suitable for situations where the predicted variable takes two 

categories.  

 

Additionally, logistic regression can accommodate both categorical and continuous 

independent variables. However, large sample sizes are required to provide accurate results, 

and the number of predictor variables should be limited relative to the number of outcome 

events. Furthermore, the technique assumes that the dependent variable is categorical, the 

independent variables need not be interval, and the categories must be mutually exclusive and 

exhaustive (Boateng & Abaye, 2019). Despite its flexibility compared to traditional regression 

techniques, logistic regression necessitates careful attention to its assumptions and sample 

size requirements for reliable and meaningful results. The architecture for logistic regression 

is illustrated in Figure 2.3 (Coleman et al., 2023). 

 

 

Figure 2.3: Architecture of the logistic regression model (Coleman et al., 2023) 

 

2.5.2.4 Stacking Ensemble 

 

Stacking ensemble learning is a method that leverages the complementary strengths of base 

models to enhance performance and improve generalisation ability (Lu et al., 2023). The 

process involves two main phases: the first phase includes training the base models using k-

fold cross-validation on the original data. In contrast, the second phase entails reassembling 

the predictions from the base models to create a new training set for a meta-model (Lu et al., 
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2023). This meta-model is then trained based on the new dataset, combining predictions from 

the base models' testing set to obtain the meta-model's testing set. 

 

In summary, stacking ensemble learning involves training base models using k-fold cross-

validation, reassembling their predictions to create a new training set for a meta-model, and 

then training the meta-model based on this new dataset (Lu et al., 2023). This approach 

capitalises on the strengths of multiple models to enhance overall performance and 

generalisation ability. Figure 2.4 illustrates the architecture of a stacking ensemble model 

(Habib & Rahman, 2021). 

 

 

Figure 2.4: Architecture of a stacking ensemble model (Habib & Rahman, 2021) 

 

2.5.2.5 Artificial Neural Networks – Deep Multi-Layer Perceptron 

 

Deep learning is a highly popular area within machine learning that utilises multiple layers to 

learn data representations at different levels. This is achieved through nonlinear layers, 

enabling the creation of complex data abstractions. The approach has led to significant 

advancements in information processing, mainly through the development of generative and 

discriminative models, as well as model transfer techniques (Naskath et al., 2023). In addition, 

deep learning algorithms such as Multi-layer Perceptron, Self-organizing Map, and deep belief 

networks have found applications across various fields, including wireless networks, speech 

recognition, medical applications, natural language processing, and remote sensing. 

 

Multi-layer Perceptron (MLP) is a widely used neural network based on supervised learning, 

characterised by a one-directional flow of information without loops. The primary goal of MLP 
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is to determine the optimised function f() that maps input to the desired output while learning 

the optimised bias value (θ) for it (Naskath et al., 2023). Backpropagation is employed in MLP 

to adjust the connection weights when there is a discrepancy between the expected and actual 

output. The main applications of MLP are in solving optimisation problems in diverse domains 

such as finance, transportation, fitness, and energy. Figure 2.5 illustrates the architecture of 

artificial neural networks – deep multi-layer perceptron (Naskath et al., 2023). 

 

 

Figure 2.5: Architecture of multi-layer perceptron (Naskath et al., 2023) 

 

2.6 Related Work 

 

Much research has been dedicated to improving patient record linkage and deduplication 

in the last few years (Beth et al., 2016; Centers for Disease Control, 2018; Duggal et al., 

2015; McCoy et al., 2012; Kousthubha & Raghuveer, 2018; Tromp et al., 2011; Chouffani, 

2017; Vo et al., 2019; Nelson et al., 2023). The authors focused explicitly on framing the 

issues surrounding patient linking and deduplication. They further focused on why patient 

matching is an issue and the implications of duplicate records (Beth et al., 2016; McCoy et 

al., 2012; Kousthubha & Raghuveer, 2018). 
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Minimal work has been found addressing the specific problem of record linkage and 

deduplication in public healthcare, providing a practical solution for applying the algorithms 

to an MPI solution (Nelson et al., 2023). This study produced quantitative metrics based on 

the performance of machine learning algorithms. Also, it provided insights into the potential 

use of these algorithms in MPI systems for future work. (Nelson et al., 2023). 

 

As mentioned earlier, the literature review shows no single solution is available. A recent 

study focused on patient matching and deduplication found that using a two-step Long 

Short-Term Memory (LSTM) network model produced an accuracy of 99.82% with high 

performance (Liang et al., 2018). The study further highlights the importance of using newer 

algorithms within an MPI system (Liang et al., 2018). It is important to note that the use of 

machine learning was combined with other existing string-based comparison and 

classification algorithms like named entity recognition (NER), Levenstein, Jaro-Wingler and 

Word2vec to find the most optimal model for record linkage and deduplication. Many of 

these string comparison methods are also adopted by probabilistic approaches. 

 

A study by Vo et al. (2019) focused on improving record linkage performance by employing 

ensemble strategies. The study showed that this method outperformed traditional 

approaches focused on a single dataset. Another study by Nelson et al. (2023) focused on 

using machine learning for record linkage and deduplication but building a practical solution 

that is generic enough to incorporate into any MPI system. This study showed that using 

machine learning algorithms in the context of an MPI solution can significantly improve 

performance over existing record linkage methods. 

 

The industry has concluded that a unified effort is required to understand the root cause of 

the problem and that only then can we identify a more inclusive and holistic solution. No 

one solution currently exists that can accurately match patient records 100 per cent of the 

time and, so doing, eliminate false positives and false negatives (Grannis et al., 2004; Beth 

et al., 2016; McCoy et al., 2012). The industry at large acknowledges that policies and 

procedures should be adopted to help resolve the issue of patient matching and that one 

such solution might be the introduction of A universal/global patient identifier (Morris et al., 

2014; Fernandes & O’Connor, 2015; Thorell et al., 2019). However, the industry still 

recognises that the currently existing methods will still be required for record linkage. 

Emerging techniques such as machine learning introduce new solutions to problems such 

as accuracy, scalability and adoption standards (Verschuuren et al., 2020; Pita et al., 2017; 

Pavneet, 2020; Christen, 2008; Nelson et al., 2023; Brignone et al., 2018) 
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In addition, it can be concluded that record linkage is not solely a statistical or technological 

problem. The issue around data integrity and processes for registering patients and 

validating information at point-of-care scenarios are some of the critical areas that still need 

to be improved in addition to the enhancement of tools which are there to assist with this 

growing issue as healthcare facilities deal with more heterogenous datasets. MPI systems 

are, therefore, an essential part of the puzzle in the healthcare ecosystem that can only 

work well when fully adopted by healthcare professionals. No technology can solve a 

problem without being fully acknowledged and adopted by the industry for which it is 

developed. 

 

Furthermore, the literature reveals that numerous research papers have been published on 

using machine learning algorithms to solve the problem of record linkage and deduplication; 

minimal work has been done on implementing this technology into an MPI system, which is 

one of the main tools for record linkage and deduplication (Pita et al., 2017; Verschuuren et 

al., 2020; Acheson et al., 2020). This research aims to explore and develop a machine-

learning approach for accurate record linking and deduplication in the context of an MPI 

system.  
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Table 2.1 Summary of Related Work 

Author/s Title Context Methodology / 

Approach 

Key Findings 

Centers for Disease Control (2018) Bridging Public Health 

and Health Care 

Patient 

Linking and 

Deduplicatio

n 

Literature review 

which examined 

electronic health 

data. 

85% of all patient data exists 

electronically. 

 

Beth et al. (2016) Why Patient Matching Is a 

Challenge: Research on 

Master Patient Index 

(MPI) Data Discrepancies 

in Key Identifying Fields 

Patient 

Linking and 

Deduplicatio

n within an 

MPI 

Experiment: 

Examined the 

underlying causes 

of duplicate 

records 

Increasing the use of more sophisticated 

technologies is critical to improving 

patient matching. 

Fernandes & O’Connor (2015) Accurate Patient 

Identification - A Global 

Challenge 

Patient 

Linking and 

Deduplicatio

n in different 

countries. 

Literature Review: 

Focus on record 

linkage and 

deduplication. 

Patient matching is a global challenge. 

McCoy et al. (2012) Matching identifiers in 

Electronic Health 

Records: implications for 

Duplicate Records and 

patient safety 

Patient 

Linking and 

Deduplicatio

n and the 

implications 

on patients 

Experiment: Use 

personal attributes 

like name and 

surname to find 

duplicate records. 

The percentage of records that match 

patient identifiers is high in several 

organisations, indicating that the rate of 

duplicate records or records may also 

increase. 

Sauleau et al. (2005) Medical record linkage in 

health information 

Duplication 

of data 

Experimental: 

Finding duplicates 

Duplicate-free databases with relevant 

indexes and similarity values allow 
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systems by approximate 

string matching and 

clustering 

across 

heterogeneo

us 

healthcare 

information 

systems 

using probabilistic 

methods relying on 

the Porter-Jaro-

Winkler algorithm. 

immediate (i.e., real-time) proximity 

detection when inserting a new identity. 

Thornton & Shannon, (2005) 

 

Reducing Duplicate 

Patient Creation Using a 

Probabilistic Matching 

Algorithm in an Open-

access Community Data 

Sharing Environment 

Patient 

Linking and 

Deduplicatio

n within an 

MPI 

Experimental: Use 

of probabilistic 

matching 

algorithms for 

matching. 

The probabilistic matching algorithm 

facilitates the management of duplicate 

patient creation and positions IHC to tune 

further and refine the EMPI processes. 

Nelson et al. (2023) Optimising Patient Record 

Linkage in a Master 

Patient Index Using 

Machine Learning: 

Algorithm Development 

and Validation 

Machine 

Learning: 

Patient 

Linking and 

Deduplicatio

n within an 

MPI 

Experimental: 

Machine learning 

algorithms within 

an MPI are used 

for record linkage. 

Developing and evaluating a machine 

learning-based record linkage and 

deduplication-based tool using synthetic 

data. 

Verschuuren et al. (2020) Supervised machine-

learning techniques for 

data 

matching based on 

similarity metrics 

Machine 

Learning and 

Record 

Linkage for 

identifying 

the same 

Experimental: 

Machine learning 

algorithms are 

used to record 

linkage. 

Developing and evaluating a machine 

learning-based record linkage and 

deduplication-based tool using synthetic 

data. 
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entity in data 

sources 

Pavneet (2020) A comparison of machine 

learning classifiers for use 

on historical record 

linkage 

Machine 

Learning and 

Record 

Linkage for 

identifying 

the same 

entity in data 

sources 

Experimental: 

Algorithms used 

include support 

vector machine 

and random 

forests. 

The experimental results show that the 

Random Forest classifier implemented 

using the additional attributes produced 

the highest linkage rate. 

Acheson, Volpi & Purves (2020) Machine learning for 

cross-gazetteer matching 

of natural features 

Machine 

Learning and 

Record 

Linkage for 

identifying 

the same 

entity in data 

sources 

Experimental: 

Algorithms include 

rule-based 

matching and 

machine learning 

(random forests) 

Machine learning using random forests 

offered better performance and greater 

flexibility, obviating the need to manually 

align feature types and tune thresholds. 

Christen (2008) Automatic Record 

Linkage using Seeded 

Nearest 

Neighbour and Support 

Vector Machine 

Classification 

Machine 

Learning and 

Record 

Linkage for 

identifying 

the same 

entity in data 

sources 

Experimental: 

Algorithms include 

seeded nearest 

neighbour and 

support vector 

machine 

classification 

The author discovered that utilising 

nearest-neighbour-based and iterative 

refinement of SVM led to improved pair 

classification results compared to other 

methods. 
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2.7 Chapter Summary 

 

This chapter highlights the importance of Health Information Exchange (HIE) in improving 

patient care by enabling healthcare providers to access and share electronic medical records. 

It also discusses challenges with patient identification and emphasises the need for 

collaboration and technological advancements to address these issues. The chapter 

underscores the significance of a unified view of a patient's health record using an MPI system. 

It suggests methods for mitigating the impact of duplicate records in healthcare systems. 

Furthermore, this chapter explores the use of machine learning to address the challenges of 

record linkage and deduplication in the healthcare industry. 
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CHAPTER THREE 

RESEARCH METHODOLOGY 

This chapter outlines the research methodology for the study, including the research 

philosophy, approach, methodology, ethics, and strategy employed. It also emphasises the 

ethical considerations. 

 

3.1 Research Philosophy 

 

Research philosophy is a cornerstone that determines the most appropriate approach to 

conducting research. The researcher considered different research approaches to arrive at 

a worldview. Furthermore, research philosophy is a belief and assumption for expanding 

knowledge (Saunders et al., 2009). Consequently, this study’s philosophical approach is 

positivist and forms part of the outer layer of the research onion. This is because positivism 

focuses on a method that is entirely scientific and empiricist in nature and aims to produce 

pure data and facts unaffected by human interpretation or bias (Saunders et al., 2009). 

Furthermore, this worldview promises to create detailed and accurate knowledge. 

Therefore, this study’s approach concentrates solely on a practical problem to solve. 

 

3.2 Research Approach 

 

This study started by leveraging the deductive approach, whereby the researcher began 

with an abstract problem and various claims and speculations. Furthermore, this was a good 

starting point for understanding the research topic better and narrowing it down to a more 

specific problem and aim (Ho, 2006). In addition, the deductive approach was used in this 

exploratory study after consulting various academic literature (Saunders et al., 2009). This 

study further used the deductive approach to aid the researcher in exploring whether using 

a machine learning approach to master patient index record linkage and deduplication with 

artificially generated data is feasible in an MPI system. 

 

3.3 Research Methodology 

 

Quantitative research focuses on producing numeric data for statistical analysis that can be 

used to derive critical conclusions from collected data (Sabine & Holland, 2009). With the 

help of the deductive research approach, this study uses the quantitative method. 
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3.4 Research Strategy 

 

The research strategy can be viewed as a comprehensive plan introducing the research 

topic area and focus (Anon, 2021). Furthermore, since the research philosophy, approach, 

and methodology have been defined, the research strategy aims to test the theory 

(Saunders et al., 2009). This study employed the experimental research (ER) strategy. The 

ER strategy involved the meticulous execution of the following steps in the Entity Resolution 

(ER) design: 

 

Firstly, the study investigated the current literature concerning record linkage and 

deduplication challenges to establish a clear understanding of the existing research 

landscape. 

 

Subsequently, the study's objectives and research questions were formulated. Following 

the formulation of the study objectives, the ER strategy was used to formulate the research 

design of the study. This involved performing experiments to realise the  research 

objectives. Subsequent to the experimental phase, the study collected and processed data 

for comprehensive analysis. The accuracy of the predictions dictated the progression to the 

final phase of the revision of exploratory study based on new insights. 

 

In conclusion, the study drew relevant conclusions and presented the findings to the 

intended audience in a manner that aligns with academic standards and best practices in 

research dissemination. 

 

3.4.1 Research Design 

 

This study used experimental research (ER) to determine if a specific method and treatment 

applied to a master patient index for record linkage and deduplication influence specific 

outcomes (Creswell & Cresswell, 2017). Experiments allow the researcher to run tests on 

synthetic data to collect and validate data, ultimately determining the feasibility and best 

machine learning approach for record linkage and deduplication. Furthermore, a proper 

experimental design was used with a pre-test-post-test control group design. This implied 

splitting our generated patient dataset into known duplicates and unique records. Doing so 

allowed for checking whether the machine-learning approach could identify duplicate 

records and flag them as needing to be linked. Furthermore, this information enabled the 

performance of a post-test validated against the initial dataset for effectiveness and 

performance. 
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In Figure 3.1, a diagram of the experimental research process is presented, along with the 

process for linking and deduplicating patients proposed by this study. Notably, the diagram 

depicts how the results were verified. The process was repeated for each of the chosen 

machine learning algorithms, and the process of generating the synthetic data and the 

attributes used was made available as part of this research. 

 

 

Figure 3.1: An overview of the adopted experimental research design 

 

3.4.1.1 Data Sampling and Collection 

 

Synthetic patient data was generated for the custom synthetic dataset in Section 4.4.3 and 

existing datasets were used in Sections 4.4.1 and 4.4.2 to simulate real-world patient 

records; the datasets included unique records and known duplicates, following the methods 

proposed by studies such as Goldstein et al. (2017), Nelson et al. (2023), and Peter (2005). 

The identified datasets were used to train and evaluate machine learning models for record 

linkage and deduplication. 
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3.5 Ethical Considerations 

 

Patient data is inherently sensitive because personal information is included; therefore, a 

decision was made to utilise a synthetic dataset. Employing a synthetic dataset that contains 

no identifiable information safeguards the privacy of individuals associated with the data. This 

approach was chosen in recognition of the importance of protecting patient confidentiality. 

 

This study requires personal information to conduct the research, including name, surname, 

date of birth, address, phone number, and gender. For this reason, we opted to use the 

research done by Christen & Pudjijono (2009) to generate a synthetic dataset so that we do 

not expose confidential information or breach privacy agreements. Additionally, it is a widely 

adopted approach to use the FEBRL record linkage synthetic datasets to conduct similar 

experiments that were also used (Nelson et al., 2023; Vo et al., 2019; Heinisch et al., 2019). 

 

1. Data privacy and security: We require personal information to conduct this study, 

such as name, surname, date of birth, address, phone number and gender. For this 

reason, we opted to use the research done by Christen & Pudjijono 2009, Peter 

2005, and Nelson et al., 2023) to generate a synthetic dataset so that we do not 

expose confidential information or breach privacy agreements. 

 

2. Open-source licensing: The tools used for evaluation and those developed as part 

of this research will be made available under the MIT license, a popular open-source 

license that is permissive and has few limitations. 

 

3. Intellectual Property Rights: The researcher desires that all work produced as part 

of this research can be used as-is and must adhere to the MIT license with the added 

condition that attribution must be given to the paper's author. 

 

3.6 Chapter Summary 

 

This chapter provided an overview of the research methodology used, including research 

methodology, research approach, and ethical considerations. It adopts a positivist 

philosophical approach and a deductive research approach, using a machine-learning 

approach with synthetic data. The study utilised a quantitative methodology to produce 

numeric data for statistical analysis while ensuring data privacy using a synthetic dataset. The 

research strategy involves experimental research with a pre-test-post-test control group design 

to ensure valid and reliable results. 
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CHAPTER FOUR 

EXPERIMENTATION 

This chapter describes the tools, procedures, and systems used to conduct the experiments, 

outlines the system architecture, and represents the experimentation workflow, model 

configuration, and datasets. 

 

Additionally, this chapter evaluates the effectiveness of this study's five machine learning 

models and the manual configuration done. Furthermore, to ascertain the effectiveness of the 

models, this study employed standard metrics like precision, sensitivity, f1-score, accuracy, 

and recall. The study will also use plots to visualise the results quickly, making it easier to 

understand the provided source data. 

 

4.1 System Architecture 

 

Table 4.1 shows the hardware configuration used to experiment with the selected machine-

learning models. 

Table 4.1 Workstation Configuration 

Operating System Windows 11 Home 

CPU Intel Core Ultra 9 185H 2.3 GHz 

GPU Nvidia RTX 4070 + Intel Arc 

RAM 64 GB 

 

4.2 Experimentation Workflow 

 

Figure 4.1 shows the practical machine learning implementation of achieving record linkage 

and deduplication (Vo et al., 2019; Nelson et al., 2023; Christen, 2008). Records were 

classified into two major categories: a match or non-match.  

 

Furthermore, all matches were based on the generated synthetic data sources. This study 

used the fields in Table 4.5 for data cleaning, blocking, and feature engineering.  

 

Additionally, the datasets used for training/classification are described in Table 4.4. The 

approach followed in this study is deeply rooted in literature (Nelson et al., 2023; Christen, 

2008; Christen & Pudjijono, 2009; Christen, 2008a; Christen & Pudjijono, 2009; Morris et 

al., 2014). The evaluation phase used the five machine-learning models outlined in section 

2.5.2.
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Figure 4.1: An overview of the proposed machine learning-based record linkage and 

deduplication process 

 

4.2.1 Software, Tools, and Frameworks 

 

Visual Studio Code and Jupyter Notebooks are combined to create an integrated development 

environment (IDE). This setup was used for experimentation based on the system 

configuration and the fact that Jupyter Notebooks provide an interactive computational 

environment for combining code execution, rich markdown text, mathematics, and plots. 

Python 3.10.11 was used for development and experimentation. The library and frameworks 

used are discussed below. 
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Table 4.2 Libraries Used 

Library Description Version 

Sklearn Simple and efficient tools for predictive data 

analysis. https://scikit-learn.org/stable/ 

1.2.2 

Recordlinkage Python record linkage toolkit library. 

https://recordlinkage.readthedocs.io/en/latest/ 

0.16 

Pandas An open-source data analysis and 

manipulation tool, built for Python. 

https://pandas.pydata.org/ 

2.0.0 

NumPy Bringing computational power of languages 

like C and Fortran to Python. 

https://numpy.org/ 

1.24.2 

Matplotlib A comprehensive library for creating plots in 

Python. https://matplotlib.org/ 

3.9.0 

XGBoost XGBoost is an optimised distributed gradient 

bosting library for Python. 

https://xgboost.readthedocs.io/ 

2.1.1 

 

4.3 Datasets 

 

This research evaluated the proposed machine learning approach using four synthetic 

datasets, which include two datasets distributed with the Freely Extensible Biomedical Record 

Linkage (FEBRL) system (Nelson et al., 2023; Vo et al., 2019), electronic practice-based 

research network (ePBRN) (Vo et al., 2019), and lastly, a custom-generated synthetic dataset 

(Goldstein et al., 2017; Peter, 2005). The errors in the datasets are mainly due to human typing 

mistakes (Peter, 2005; Vo et al., 2019; Nelson et al., 2023). Each dataset has a rec_id column 

that uniquely identifies each record and follows a similar convention to identify a known 

duplicate. An example of this link and a detailed view of the datasets are shown in Table 4.3. 

 

In addition to understanding how duplicates were generated and identified in the datasets, it 

was necessary to ensure that duplicates could be easily identified and used with a simplified 

numeric value. This was achieved by introducing a new match_id column in each dataset 

(Nelson et al., 2023). The match_id column was populated with the numeric value from a rec_id 

column and is depicted in Table 4.3. 

  

https://scikit-learn.org/stable/
https://recordlinkage.readthedocs.io/en/latest/
https://pandas.pydata.org/
https://numpy.org/
https://matplotlib.org/
https://xgboost.readthedocs.io/


 46 

Table 4.3 Understanding duplicates in the Datasets 

rec_id Duplicate rec_id match_id (applied to 

original and duplicate) 

rec-1070-org rec-1070-dup-0 1070 

rec-4866-org rec-4866-dup-0 4886 

rec-780-org rec-780-dup-0 780 

rec-780-org rec-780-dup-1 780 

 

For this study, four open-source synthetic datasets were used that are regularly used in the 

field of record linkage and deduplication (Nelson et al., 2023; Vo et al., 2019; Christen, 2008). 

This study further selected datasets used in similar studies except for dataset four, which is a 

custom synthetic dataset used to evaluate algorithm performance against a dataset not usually 

used (Christen, 2008; Peter, 2005). The datasets used and the record breakdown is explained 

in Table 4.4. 

 

Table 4.4 Dataset breakdown 

Dataset Number Known Duplicates Total Records Dataset 

1 3000 5000 FEBRL3 

2 5000 10000 FEBRL4 

3 3192 14078 ePBRN 

4 2000 10000 Custom 

 

4.4 Description of the Dataset 

 

As shown in Table 4.4, this study utilised four separate synthetic datasets for experimentation. 

Furthermore, this study opted to focus on synthetic datasets that are utilised in other studies 

looking to run similar experiments (Christen, 2008; Christen, 2008; Peter, 2005; Nelson et al., 

2023; Vo et al., 2019). Additionally, all datasets are attributed to known duplicates used to train 

the machine learning models. 
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4.4.1 FEBRL Datasets 

 

The freely extensible biomedical record linkage (FEBRL) datasets were used in this study. 

These datasets were used because they were created specifically because there was a lack 

of high-quality data for use in medical research split into unique and known duplicate pairs 

(Christen, 2008). This package contains four separate datasets (Christen, 2008). This study 

made use of two distinct FEBRL datasets since these packages were developed with error 

generators in mind (Christen, 2008). This study used the datasets of FEBRL3 (5000 total 

records) and FEBRL4 (10000 total records). Appendices D and E show the fields provided as 

part of the FEBRL datasets. It also provides a link to the datasets used during experimentation. 

 

4.4.2 ePBRN 

 

This study also used the electronic practice-based research network (ePBRN) dataset to 

conduct additional experiments (Vo et al., 2019). The ePBRN dataset comprises 14078 total 

records and 3192 known duplicates. Additionally, this dataset exists because the University of 

New South Wales (UNSW) has been extracting clinical, and administrative data from electronic 

health records (EHRs) for research improvement purposes (Vo et al., 2019). Appendix C 

shows the fields provided as part of the ePBRN dataset. It also provides a link to the dataset 

used during experimentation. 

 

4.4.3 Custom Synthetic Dataset 

 

This study used the work done by Christen and Pudjijono (2009) to generate an additional 

synthetic dataset for experimentation. This dataset contains 10000 total records, of which 2000 

are known duplicates. Appendix F shows the fields provided as part of the custom dataset. It 

also provides a link to the dataset used during experimentation. 

 

4.5 Data Cleaning 

 

The data used to perform record linkage will not usually be in a standardised form that can be 

used for record linkage (Kousthubha & Raghuveer, 2018; Christen, 2008; Vo et al., 2019). In 

this study, all the datasets used went through a data-cleaning process. The pre-processing 

process includes removing special characters and spaces, ensuring dates are correctly 

formatted and parsed into separate fields (day, month, year), and only lowercase is used 

(Kousthubha & Raghuveer, 2018; Vo et al., 2019). 
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Furthermore, this study utilised various record-blocking criteria for the FEBRL and ePBRN 

datasets and did so with the given_name, surname and postcode fields. For the custom 

datasets given_name, surname and phone_number were used. Blocking is used to limit the 

number of records considered during the linking process (Vo et al., 2019; Kousthubha & 

Raghuveer, 2018). 

 

4.6 Feature Selection 

 

The feature selection methods used in this study emulate those employed in previous research 

and were integrated into the experimentation process to ensure accuracy and provide a solid 

foundation to build upon (Kousthubha & Raghuveer, 2018; Vo et al., 2019). 

 

This study used consistent fields during experimentation except for the postcode that was 

swapped out for a phone number in the custom dataset. The list of fields used in the datasets 

includes record identifier (rec_id), first name (given_name), last name (surname), street 

number (street_number), address (address_1, address_2, suburb, state, and postcode), 

phone number (phone_number), date of birth (day, month, and year), and match identifier 

(match_id). The use of match_id is described in Table 4.3. The match_id field identified known 

duplicate records in each dataset. Table 4.5 explains the features used in this study. 

 

Table 4.5 Feature selection, description, and justification 

Feature Description Conversion Used & Description Number of Features 

Given Names Jarowinkler similarity with a 

threshold of 90% 

1 

Surnames Jarowinkler similarity with a 

threshold of 90% 

1 

Given Names Levenshtein with a threshold of 

90% 

1 

Surnames Levenshtein with a threshold of 

90% 

1 

Exact matches for street 

number, year, postcode, day, 

month 

Exact Numeric Match 5 

Address Line 1 Levenshtein with a threshold of 

75% 

1 

Address Line 2 Levenshtein with a threshold of 

75% 

1 

National Identifier Numeric comparison 1 

Phone Number Numeric comparison 1 
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Surname and Given Names Validate and Check if values are 

swapped 

1 

Date Of Birth Day and Month Validate and Check if Day and 

Month are swapped 

1 

Date Of Birth Validate and check if date of birth 

was reset to default of (01/01) 

1 

Surname Validate and check if surname is 

joined into a single field 

1 

Surname and Given Names Validate if surname and given 

names are joined with a dash 

1 

Total Features  18 

 

 

4.7 Model Training and Testing 

 

A blocking process was used to increase the original dataset into a training set of candidate 

records to train and test the machine learning models used in this study. The blocking process 

applied considered any two records with a similarity score, based on a text field such as 

surname, higher than a pre-specified threshold as a suspicious match pair for further 

classification, significantly reducing the number of pairs to be compared (Vo et al., 2019). The 

training set was further split based on the current fold, which ranged from 1 to 10. Additionally, 

the study used the original dataset before blocking was applied to create a test dataset for 

evaluating the performance of the machine learning models for each hyperparameter and fold 

used. The training and test split choice was based on research done by Christen (2008) and 

Vo et al. (2019). 

 

For this study, the researcher opted to tweak the hyperparameters associated with the machine 

learning model used and further used the tuning values [0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 

0.1, 0.2, 0.5, 1, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000], and ten folds. The 

hyperparameter selection was applied to the five machine-learning models used in this study. 

This study utilised k-fold cross-validation with ten folds to assess the performance of the trained 

models on new data. This approach involves partitioning the data into k folds, which are then 

used for training and validation (Daniel Berrar, 2019). 

 

Table 4.5 shows the best hyperparameters used during the model training phase for the five 

machine learning models used during experimentation. The hyperparameters were selected 

using grid search, and the tuning values were [0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 

0.5, 1, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000] (Vo et al., 2019). The tuning values are 
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based on a logarithmic scale to more accurately reflect significant changes in machine learning 

model performance (Vo et al., 2019). 

The stacking ensemble model was configured with the logistic regression model as the final 

estimator, accompanied by additional estimators, including random forest, gradient-boosted 

trees, and artificial neural networks. The stacking ensemble learning was used to leverage the 

complementary strengths of base models, enhancing performance and improving 

generalisation ability (Lu et al., 2023). 

 

Table 4.5 Machine Learning Model Hyperparameter Configuration and Tuning 

Model Best Hyperparameter 

Random Forests { n_estimators: 100, criterion: 'gini', max_depth: 1 } 

XGBoost { n_estimators: 100, max_depth: 6, learning_rate: 1, 

gamma: 10, objective: 'binary:hinge' } 

Logistic Regression { C: 0.001, penalty: 'l2', max_iter: 5000, multi_class: 

'ovr' } 

Stacking Ensemble { stack_method: ‘predict’, cv: 2,  estimators: [‘rf’, 

‘xgboost’, ‘nn’], final_estimator: ‘final_estimator’ } 

Artificial Neural Network { alpha: 2000, activation: ‘relu’ } 

 
 

The study experiments used code that leveraged existing research, found at 

https://github.com/ePBRN/Medical-Record-Linkage-Ensemble. This strategic choice ensured 

a robust foundation and allowed for easy modification to accommodate different datasets, 

features, and machine-learning models. The code utilised included key record linkage, data 

cleaning, blocking, and evaluation logic based on the work by Vo et al. (2019). It is also 

important to point out that the work by Vo et al. (2019) made use of key record linkage libraries 

and features used widely in the field of record linkage (Nelson et al., 2023; Heinisch et al., 

2019; Christen, 2008; Kousthubha & Raghuveer, 2018). 

  

https://github.com/ePBRN/Medical-Record-Linkage-Ensemble
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4.8 Chapter Summary 

 

This chapter discussed the system architecture used during the experimentation and the 

workflow and introduced the software, tools, and frameworks used. This chapter also 

discussed the synthetic datasets used during the experimentation and feature selection 

processes. In conclusion, the model training process and acknowledgements were addressed. 
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CHAPTER FIVE 

EVALUATION 

This chapter assessed the effectiveness of five machine learning models and their 

performance on selected datasets. Standard metrics were used to interpret model 

performance, including precision, sensitivity, F1-score, accuracy, AUC score, recall, and 

confusion matrices. The study focused on training machine learning models using synthetic 

data to evaluate record linkage and deduplication accuracy. The source code for the project 

implementation is available on GitHub - https://github.com/DHollenbach/record-linkage-and-

deduplication/blob/main/README.md. 

 

5.1 Model Performance Evaluation 

 

This study utilised five machine learning models and various synthetic datasets to determine 

the best models to include in an MPI solution with higher confidence that new data will also 

perform well. The best model was selected for each dataset during experimentation. A 

confusion matrix is provided for each dataset and machine learning model to summarise the 

models' performance. A confusion matrix is a powerful tool used in classification experiments 

to assess a system's performance by displaying the number of correctly and incorrectly 

classified data (Meyer-Baese & Schmid, 2014). This study also calls out the area under the 

curve (AUC) score for each model against each dataset. The AUC score measures how well 

a classifier can distinguish between positive and negative classes (Janssens & Martens, 2020).  

 

The primary objective of the trained machine learning models was to accurately differentiate 

between "Duplicate" and "Not Duplicate" records. The effectiveness was assessed using AUC 

scores and confusion matrices, which provided valuable insights into their performance. These 

analytical tools enabled informed decision-making by highlighting the strengths and 

weaknesses of the models employed. 

 

Figures 5.1, 5.2, 5.3, and 5.4 show the confusion matrices for the best-performing machine-

learning model based on each dataset. Table 5.1 shows the performance of the ML models on 

specific datasets. 

https://github.com/DHollenbach/record-linkage-and-deduplication/blob/main/README.md
https://github.com/DHollenbach/record-linkage-and-deduplication/blob/main/README.md
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Table 5.1 Model Performance on Datasets 

Model Accuracy Sensitivity Precision Recall F1-Score AUC 

ePBRN Dataset 

Logistic 

Regression 

99.56% 98.00% 44.70% 98.68% 61.40% 99.93% 

Random Forests 99.83% 98.83% 68.75% 98.83% 81.09% 99.98% 

XGBoost 86.43% 99.89% 3.01% 99.89% 5.79% 93.14% 

MLP-ANN  99.56% 97.79% 44.66% 97.79% 61.32% 99.88% 

Stacking 

Ensemble 

99.60% 99.35% 49.10% 99.35% 65.23 99.89% 

FEBRL3 Dataset 

Logistic 

Regression 

98.16% 97.95% 77.44% 97.95% 86.50% 99.76% 

Random Forests 99.55% 96.98% 95.62% 96.98% 96.29% 99.77% 

XGBoost 90.39% 99.88% 43.59% 99.88% 59.01% 94.83% 

MLP-ANN 98.22% 97.95% 78.08% 97.95% 86.89% 99.76% 

Stacking 

Ensemble 

98.27% 98.26% 78.62% 98.26% 87.30% 99.76% 

FEBRL4 Dataset 

Logistic 

Regression 

99.99% 99.52% 94.43% 99.52% 96.91% 99.97% 

Random Forests 99.81% 97.47% 87.63% 97.47% 92.29% 99.96% 

XGBoost 94.51% 99.92% 25.84% 99.92% 38.65% 97.19% 

MLP-ANN 99.93% 99.41% 94.60% 99.41% 96.95% 99.97% 

Stacking 

Ensemble 

99.85% 99.49% 88.52% 99.49% 93.68% 99.93% 

Custom Synthetically Generated Dataset 

Logistic 

Regression 

99.97% 100% 96.78% 100% 98.36% 99.99% 

Random Forests 99.98% 100% 98.40% 100% 99.18% 99.99% 

XGBoost 98.58% 99.98% 65.95% 99.98% 76.76% 99.27% 

MLP-ANN 99.97% 99.99% 96.77% 99.99% 98.35% 99.99% 

Stacking 

Ensemble 

98.70% 100% 79.54% 100% 84.70% 99.99% 
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Confusion Matrix for Random Forests: ePBRN Dataset 

 

Figure 5.1: The ePBRN dataset in which the Random Forest model achieved the best 

performance 

  



 55 

Confusion Matrix for Random Forests: FEBRL3 Dataset 

 

Figure 5.2: The FEBRL3 dataset in which the Random Forest model performed best. 
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Confusion Matrix for Neural Network – Multi-Layer Perceptron: FEBRL4 Dataset 

 

Figure 5.3: The FEBRL4 dataset in which the MLP-ANN model performed best. 
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Confusion Matrix for Random Forests: Custom Dataset 

 

Figure 5.4: The Custom Dataset in which the Random Forest model achieved the best 

performance 

 

5.2 Discussion 

 

This study compared the performance of five machine learning models and four synthetic 

datasets for solving record linkage in the public healthcare sector. The results obtained and 

the experiments conducted presented record linkage and deduplication as a machine-learning 

classification task. The datasets provided a good baseline and variance to give the confidence 

that the code produced by this study can be applied to various datasets. The experiments 

illustrated that the random forest (RF) model performed best for three (ePBRN, FEBRL3, 

Custom) of the four datasets. The MLP-ANN model performs best for the FEBRL4 dataset, 

closely followed by logistic regression (LR). Table 5.2 describes the best-performing models 

for each dataset and their respective metrics.  



 58 

Table 5.2 Summary of the best-performing models for each of the datasets 

Model Accuracy Sensitivity Precision Recall F1-Score AUC 

ePBRN Dataset 

Random Forests 99.83% 98.83% 68.75% 98.83% 81.09% 99.98% 

FEBRL3 Dataset 

Random Forests 99.55% 96.98% 95.62% 96.98% 96.29% 99.99% 

FEBRL4 Dataset 

MLP-ANN 99.93% 99.41% 94.60% 99.41% 96.95% 99.97% 

Logistic Regression 99.99% 99.52% 94.43% 99.52% 96.91% 99.97% 

Custom Synthetically Generated Dataset 

Random Forests 99.98% 100% 98.40% 100% 99.18% 99.99% 

 

The machine learning models trained on the four synthetic datasets performed well and 

demonstrated strong potential for enhancing medical record linkage and deduplication. These 

models effectively identified duplicates and non-duplicates within the datasets, ensuring 

comprehensive patient record accuracy. By accurately identifying true positives (TP/Actual 

Duplicates) and minimising false positives (FP/Actual Not Duplicate) and false negatives 

(FN/Predicted Not Duplicate), the models will support better-informed clinical decisions and 

improved patient care. Their performance illustrated their capability to improve data accuracy 

and enhance operational efficiency within the healthcare setting. 

 

In conclusion, the high accuracy demonstrated by these models in distinguishing between 

"Duplicates" and "Non-Duplicates" reduced the manual effort required for data management, 

leading to faster, safer, and more efficient processes. These models aimed to assist with 

automation, preserve patient data integrity, and streamline operations, ultimately contributing 

to better patient outcomes and more reliable healthcare data management. 

 

 

5.3 Chapter Summary 

 

The experiments run and the results indicate that machine learning can be used for medical 

record linkage and deduplication. The code produced in this study can be used to implement 

the functionality into an MPI solution (Nelson et al., 2023). This study utilised five different 

machine-learning models with varied datasets and hyperparameters tuning. This approach has 

proven valuable as, even though the models perform well overall, the researcher observed that 

a model's performance can vary based on the given dataset. This leads the researcher to 

conclude that no single solution will fit all use cases, and multiple models will need to be tested 

and evaluated before implementing them within an MPI solution for record linkage and 
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deduplication. The study found that the random forest (RF) and the logistic regression (LR) 

models consistently outperformed regardless of the dataset, making them ideal for general-

purpose use. 
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CHAPTER SIX 

SUMMARY, CONCLUSION, AND RECOMMENDATIONS 

This chapter thoroughly reviews the study's findings, conclusions, and recommendations. It 

discusses the study's objectives and how they were achieved in the summary section. 

Additionally, this chapter serves as a conclusion of the study, providing specific insights into 

its implications. Finally, the chapter discusses recommendations based on the findings and 

conclusions and provides key insights into future research. 

 

6.1 Summary 

 

This study aimed to explore machine learning algorithms and their effectiveness when used to 

solve the problem of record linkage and deduplication. It also aimed to explain how these 

advanced algorithms can be included in an MPI system to provide better care to patients in an 

HIE. This study comprised six chapters, each contributing to the overall research. 

 

Chapter 1 provided an overview of the study, including the background, research problem, 

aim, research questions, and objectives. Chapter 2 conducted a comprehensive discussion of 

the literature, introducing key concepts, discussing key technologies, explaining record linkage 

and deduplication, and introducing machine learning as a possible solution. Chapter 3 provided 

an overview of the research philosophy, approach, methodology, strategy, and ethical 

considerations. Chapter 4 described the experimentation and evaluation process, providing a 

comprehensive explanation of the process used during experimentation and the tools and 

methods used to produce the results. Finally, Chapter 6 presented a summary of the study, 

contributions, recommendations, and a conclusion. 

 

The following section describes the study’s objectives and how each objective was met: 

 

1. To determine the criteria for identifying duplicate records within a data source. 

 

Chapter 2 provided an in-depth review of the current literature on record linkage and 

deduplication and the use of synthetic datasets. The chapter highlighted research on 

the essential characteristics required to experiment with record linkage and 

deduplication. Furthermore, the literature review discussed the issue of record linkage 

in the healthcare field because no universally unique record identifier exists, and there 

is no standard way to achieve this. 
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Given these issues, personally identifiable fields such as first name, surname, date of 

birth, gender, and address, combined with advanced algorithms, are needed to identify 

records even when no unique identifier exists. This is how record linkage and 

deduplication are achieved regardless of the algorithm used. 

 

2. To formulate record linkage and deduplication as a machine learning classification task. 

 

This objective was achieved by doing extensive research on record linkage and 

deduplication, the consequences of poor patient identification, the technologies 

currently used in the field, and the application of machine learning to solve this issue. 

This study highlighted that no single solution exists for solving this very complex issue 

but that machine learning introduces many efficiencies that would otherwise be lacking. 

In conclusion, machine learning was very effective when classifying records into a 

match or a non-match group. 

 

3. To apply selected machine learning algorithms for record linkage and deduplication. 

 

It was essential to consult existing research in record linkage and deduplication to 

achieve this objective. This was needed due to some limitations when doing a study 

like this. The limitations are further elaborated on in section 6.3. This process was 

valuable since the researcher leveraged existing research to use synthetic datasets 

and generate a custom dataset used for experimentation. Once the datasets were 

produced and aligned with related studies, the next phase was to select five machine 

learning models to train on the provided datasets. 

 

The machine learning models used for this study were random forests, extreme 

gradient boosting, logistic regression, stacking ensemble, and artificial neural networks. 

Additionally, the datasets used were two FEBRL (3 and 4) datasets, ePBRN, and a 

custom-generated dataset based on literature. 

 

The trained models all performed well during the evaluation phase of the study. Based 

on the results achieved, this objective is satisfied. 

 

4. To evaluate the performance of the selected machine learning algorithms for record 

linkage and deduplication. 

 

This objective was achieved not only based on the findings of this study but also by 

using some of the datasets used in the industry and implementing some of the logic for 
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record linkage and deduplication produced by Vo et al. (2019). Using some of the 

implementation of this research in combination with this study’s machine-learning 

models and four datasets provides a high degree of confidence that machine-learning 

algorithms perform well when applied to record linkage and deduplication. 

 

Additionally, the study used standard evaluation metrics like accuracy,  precision, 

recall, f-score, sensitivity, AUC score and confusion matrices to assess the trained 

model's effectiveness in classifying records as either a “Duplicate” or ”Non-Duplicate”. 

 

False links were captured in the final results using metrics introduced by Vo et al. 

(2019), which count the overall number of links, but these values are calculated based 

on the confusion matrix. The false counts (FC) are calculated as (FP + FN). 

Furthermore, the total number of links is calculated as (TP + FN). This was done 

because we knew the number of unique and duplicate records at the time of the 

experiment. This provides an excellent way to explain the model's effectiveness based 

on the number of false record links. This was illustrated for each dataset and model 

using the confusion matrix plots. 

 

In conclusion, using both standard evaluation metrics, five machine learning models, 

four datasets and a custom metric which measures the number of false links allowed 

the researcher to gain a comprehensive understanding of the chosen machine learning 

model's strengths and limitations when applied to the classification task of record 

linkage and deduplication. 

 

6.2 Contributions of the Study 

 

It is currently known that patient record linking is a big challenge (Fernandes & O’Connor, 

2015; Kousthubha & Raghuveer, 2018; Beth et al., 2016). The study aimed to leverage 

research done in record linking and deduplication and applied it specifically to healthcare 

data (Winkler, 2002; Beth et al., 2016; Menachemi et al., 2018). This study’s theoretical and 

practical contributions are outlined in sections 6.2.1 and 6.2.2, respectively. 

 

6.2.1 Theoretical Contribution 

 

Machine learning is a viable alternative to existing record linking and deduplication methods, 

and the researcher applied different techniques to test the four datasets and record the 

results. Furthermore, many machine-learning algorithms exist that can solve the issue of 

duplicate record detection (Liang et al., 2018; Almaspoor et al., 2021; Verschuuren et al., 
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2020; Christen, 2008; Pavneet, 2020; Nelson et al., 2023). Still, they must be combined with 

various string cleaning and comparison algorithms to be effective. 

 

The study was one of the first contributions to the public healthcare domain that utilised various 

datasets and machine learning models for record linkage and deduplication in the context of 

being applied to an MPI system (Beth et al., 2016; Fernandes & O’Connor, 2015; Duggal et 

al., 2015). These systems often include admissions, dispensaries, and others, all of which may 

use their medical record number (MRN). Healthcare providers are also becoming more 

interoperable but still lack a standardised approach to sharing information (Duggal et al., 2015). 

Data is stored in different formats, and policies and procedures for capturing and storing 

information are not consistently implemented (Riplinger et al., 2020a; Fernandes & O’Connor, 

2015). 

 

The researcher looked to bring together existing knowledge from various areas and 

produced a new body of work that can be used to solve current and future record linkage 

and deduplication issues within the healthcare space. Moreover, public healthcare facilities 

must identify and prevent duplicate records from multiple source systems to be effective. 

 

Additionally, the researcher  used the following machine-learning algorithms: 

 

1. Random Forests 

2. Stacking Ensemble 

3. Logistic Regression 

4. Artificial Neural Network – Deep Multi-Layer Perceptron 

5. XGBoost 

 

The algorithms were applied in the context of record linkage and duplication classification to 

ascertain the performance of each algorithm and, importantly, to visualise the results and how 

they could be used effectively in hospital care settings to be more efficient and effective. 

 

6.2.2 Practical Contribution 

 

Finding a machine learning approach to record linkage and deduplication produced some 

key artefacts, including a sample code developed to generate test data and the 

deduplication and matching machine learning implementation code that can be included in 

an MPI system. 
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In addition, this study provides artefacts that can be used as an essential tool in processes 

(admission, laboratories, and emergencies) where reducing the issue of record linking and 

duplication related to electronic medical records is necessary. This is substantial since MPI 

systems are the bridge between various hospital HIE systems. 

 

6.3 Limitations of the Study and Potential Impact on the Results 

 

The main limitation of this study is the use of synthetic data, which has the potential not to 

reflect real-world data accurately. To that end, this study consulted literature to ensure the 

synthetic data being used aligns with the standards within the public healthcare space (Vo et 

al., 2019; Nelson et al., 2023; Christen & Pudjijono, 2009; Christen, 2008a; Peter, 2005; 

Christen, 2008b; Kousthubha & Raghuveer, 2018). Furthermore, this study will make the 

synthetic data and source code that can be used freely available for further research. 

 

6.4 Conclusion 
 

This study discovered that no single model consistently produced the best results while 

evaluating the selected machine learning models (random forests, gradient-boosted trees, 

logistic regression, stacking ensemble, artificial neural network). This finding, exacerbated by 

using multiple datasets (ePBRN, FEBRL, Custom), underscores the necessity of conducting 

experiments before choosing a model for record classification. The study's findings were 

communicated through visual representations during experimentation, highlighting their 

importance. 

 

The researcher finds that this study successfully addressed the objectives set out and that 

valuable insights were provided that will aid further research in this field in both a theoretical 

and practical sense. 

 

6.5 Recommendations and Future Work 
 

In Section 6.3, the researcher discusses one of the critical limitations of the study, which was 

the lack of real-world data. The researcher would like to conduct a further study on real-world 

data that has known duplicates identified or has the human resources to classify data.  

 

Additionally, the researcher would like to incorporate the trained model with the best 

performance into an MPI system and use it to classify records into duplicate or unique 

categories. This will capture valuable insights regarding real-world effectiveness and combine 

technology with human evaluation to enhance model performance for a healthcare setting. 
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In conclusion, this research has set a good foundation for future work using real data. Utilising 

real data in a healthcare setting with human input will serve as another key metric for using 

machine learning in record linkage and deduplication with healthcare tools such as an MPI 

system.  
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APPENDIX C: ePBRN Dataset 

Dataset source: https://github.com/DHollenbach/record-linkage-and-

deduplication/blob/main/test/ePBRN_F_dup.csv  

Fields Rec_id, given_name, surname, street_number, 

address_1, address_2, suburb, postcode, state, 

day, month, year, match_id 

Total Records 14078 

Know Duplicate Records 3192 

 

APPENDIX D: FEBRL3 Dataset 

Dataset source: https://github.com/DHollenbach/record-linkage-and-

deduplication/blob/main/test/febrl3_UNSW_rep.csv 

Fields Rec_id, given_name, surname, street_number, 

address_1, address_2, suburb, postcode, state, 

day, month, year, match_id 

Total Records 5000 

Know Duplicate Records 3000 

 

APPENDIX E: FEBRL4 Dataset 

Dataset source: https://github.com/DHollenbach/record-linkage-and-

deduplication/blob/main/test/febrl4_UNSW.csv 

Fields Rec_id, given_name, surname, street_number, 

address_1, address_2, suburb, postcode, state, 

day, month, year 

Total Records 10000 

Know Duplicate Records 5000 
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APPENDIX F: Custom Dataset 

Dataset source: https://github.com/DHollenbach/record-linkage-and-

deduplication/blob/main/test/test5.csv 

Fields Rec_id, culture, sex, given_name, surname, 

street_number, address_1, state, date_of_birth, 

phone_number, national_identifier, 

blocking_number, address_2 

Total Records 10000 

Know Duplicate Records 2000 

 

APPENDIX G: Machine Learning Model Results Per Dataset 

The results associated with each dataset follow a similar schema. The results are stored in 

CSV format, but each row is stored as a JSON object that can be split into unique columns 

and rows. This was done to capture as much detail as possible during the evaluation phase. 

 

The fields captured during the evaluation phase were fold, model, hyperparameter, precision, 

sensitivity, f-score, accuracy score (accuracyScore), confusion matrix (confusionMatrix), recall 

score (recallScore), number of false links (noFalse), and number of links (noLinks). 

 

Dataset Results 

ePBRN https://github.com/DHollenbach/record-linkage-and-

deduplication/blob/main/test/result_ePBRN_F_dup.csv 

FEBRL3 https://github.com/DHollenbach/record-linkage-and-

deduplication/blob/main/test/result_febrl3_UNSW_rep.csv 

FEBRL4 https://github.com/DHollenbach/record-linkage-and-

deduplication/blob/main/test/result_febrl4_UNSW.csv 

Custom https://github.com/DHollenbach/record-linkage-and-

deduplication/blob/main/test/test5.csv 
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