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ABSTRACT 

Fruits such as apples, oranges, strawberries and grapes are of commercial importance, serving 

as primary sources of essential growth factors, including vitamins and minerals. However, their 

production, safety, and economic contributions to the agricultural sector are severely impacted 

by mould-induced spoilage. Pathogens such as Botrytis cinerea and Penicillium spp. cause 

substantial losses during pre- and post-harvest stages, with over 50% of fruit losses in 

developing countries attributed to these fungi. In South Africa, annual fruit losses due to mould 

spoilage exceed 60%. 

Synthetic chemical fungicides are widely used to manage fruit spoilage fungi, but their 

prolonged application raises concerns regarding environmental safety, consumer health, and 

the development of fungicide-resistant strains. Consequently, non-Saccharomyces yeasts have 

emerged as promising, eco-friendly biocontrol agents. These yeasts utilise diverse mechanisms 

such as nutrient competition, parasitism, and the secretion of antimicrobial compounds to 

inhibit fungal growth. This study aimed to evaluate non-Saccharomyces yeasts for extracellular 

enzyme production, antifungal activity against key fruit spoilage fungi, and their viability and 

stability assessments on fruit surfaces under post-harvest conditions. 

Among 23 yeast isolates screened for extracellular enzyme activity, five were selected 

for further analysis: Aureobasidium melanogenum (Y6), Suhomyces pyralidae (Y63), Pichia 

kluyveri (Y64), Meyerozyma guilliermondii (Y88) and Zygoascus hellenicus (Y89). These 

yeasts were tested in vitro using radial inhibition, dual culture, and double Petri dish assays, as 

well as in vivo post-harvest trials on apples, strawberries, and oranges. The yeasts were 

evaluated for antagonistic effects against three B. cinerea strains (B05.10, IWBT-FF1, PPRI 

30807) and three Penicillium species (Penicillium expansum PPRI 5654, P. italicum PPRI 

10380 and P. digitatum PPRI 30517). Compatibility and potential synergistic effects were 

assessed through yeast-yeast interaction assays. 
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Extracellular enzyme production varied among the isolates, with Aureobasidium 

melanogenum demonstrating robust activity for proteases, glucanases, chitinases, cellulases 

and pectinases. This yeast achieved 55%, 52% and 40% inhibition against B. cinerea strains 

B05.10, IWBT-FF1 and PPRI 30807, respectively. Pichia kluyveri and M. guilliermondii 

showed 100% inhibition of B. cinerea spore germination, while S. pyralidae exhibited 100% 

inhibition for two strains (B. cinerea B05.10 and IWBT-FF1), and 87% for B. cinerea PPRI 

30807. Volatile organic compounds (VOCs) such as isobutanol, 2-phenylethanol, and isoamyl 

acetate, identified using solid-phase microextraction coupled with gas chromatography–mass 

spectrometry (SPME-GC-MS) were found to contribute to mould inhibition. 

During post-harvest trials, S. pyralidae achieved the highest inhibition of B. cinerea on 

apples with a mean inhibition of 43%, while M. guilliermondii was most effective against P. 

digitatum and P. italicum on oranges. Commercial fungicides demonstrated higher efficacy in 

some instances, though yeast treatments provided viable alternative control. Stability and 

viability assays revealed varying levels of yeast survival on fruit surfaces, with a decrease in 

yeast cell concentrations observed after oven drying, while stability was maintained during the 

storage period. The study concludes that the selected non-Saccharomyces yeasts hold 

significant potential as biological control agents against fruit spoilage moulds. While post-

harvest trials demonstrate promising results, further optimisation and field applications are 

recommended to enhance their efficacy and adoption in agricultural practices. 

 

Key words: Biological control, non-Saccharomyces yeasts, Aureobasidium melanogenum, 

Pichia kluyveri, Suhomyces pyralidae, Meyerozyma guilliermondii, extracellular enzyme 

production, volatile organic compounds, post-harvest fruit spoilage, Botrytis cinerea and 

Penicillium spp. 
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PREFACE OF THE THESIS 

The thesis comprises six chapters, outlined as follows: 

 

Chapter 1: Provides the background of the research topic and significance of the study. It 

includes the problem statement, the motivation behind conducting the research, the hypothesis, 

the aim, the objectives and the research questions that guided the study. Additionally, the 

delineation of the study is included in this section. 

Chapter 2: Presents a comprehensive review of relevant literature to establish the theortical 

background and contextualise the study. Key research gaps within the existing body of 

knowledge are identified and synthesised to refine the research focus and justify the study 

objectives. 

Chapter 3: Focuses on screening of the yeasts for their ability to produce lytic enzymes and 

further screen the biocontrol yeasts for inhibitory effects against three different B. cinerea 

strains on apples and strawberries. 

Chapter 4: Evaluates the effectiveness of non-Saccharomyces yeast species as biocontrol 

agents against three Penicillium species during laboratory assays and on apples and oranges. 

Chapter 5: Investigates yeast interactions, viability on fruits, and post-drying stability for 

biocontrol applications. 

Chapter 6: Focuses on the summary and conclusions of this study, as well as future research 

recommendations. The achievements of the study are also covered.  
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CHAPTER 1 

General Introduction 

1.1 Background 

Fruit losses represent a significant global challenge, affecting nearly every country. Post-

harvest losses, predominantly due to mould spoilage caused by fungal pathogens, such as 

Botrytis cinerea and Penicillium species, account for 20-25% of all fruits produced globally, 

resulting in economic losses exceeding US$180 billion annually in the fruit and vegetable 

sectors (FAO, 2019; DEFF and CSIR, 2021; Post-harvest, 2022). In South Africa, 

approximately 66% of fruits and vegetables are lost annually, amounting to US$1.57 billion in 

economic losses (DEFF and CSIR, 2021).  

 

Preservation of fruit quality is critical to the agricultural industry, as fruits such as apples, 

oranges, lemons, peaches, nectarines and strawberries are economically and nutritionally 

important (Brat et al., 2006; Abo-Elyousr et al., 2021). These fruits contribute significantly to 

global economic sustainability and are integral to the fresh produce economy due to their 

sensory and nutritional value (Holguín-Ibarra et al., 2021; Sun et al., 2021). Ensuring high-

quality fruit reaches consumers requires producers to comply with stringent quality and 

regulatory standards (Calvin et al., 2006; Jongwanich, 2009; Al-hindi et al., 2011). 

 

South Africa produces approximately 4 million tonnes of apples, grapefruit, oranges, 

tangerines, lemons, limes, peaches, nectarines and strawberries annually (FAOSTAT, 2020). 

Due to their low pH, high sugar content, and nutrient density, these fruits are particularly 

susceptible to pre- and post-harvest mould spoilage caused by fungal genera such as Botrytis, 

Penicillium, Mucor, Alternaria, Colletotrichum, Cladosporium, Rhizopus, Aspergillus, 
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Monilinia, Lasiodiplodia and Fusarium (Sharma et al., 2009; Dwiastuti et al., 2021). These 

fungal pathogens lead to significant economic losses and deterioration of fruit quality and 

nutritional composition (Li et al., 2019). Extending fruit shelf life and improving quality during 

pre- and post-harvest stages, as well as transportation, remain critical areas of focus in 

agriculture (Dwiastuti et al., 2021).  

 

Currently, spoilage moulds are primarily controlled through the use of synthetic fungicides. 

These include triazoles, hydroanilide fenhexamid, dicarboximides, and succinate 

dehydrogenase inhibitors, which are incorporated into costly spraying programs (Miller and 

Welch, 2013; Romanazzi et al., 2017; Li et al., 2019). However, concerns over environmental 

safety, human health, and the emergence of fungicide-resistant mould strains have led to severe 

restrictions on their use (Li et al., 2019; Yu et al., 2020). Prolonged exposure to synthetic 

fungicides, even at low doses, poses risks to human health, including skin irritation, stomach 

pain, cardiovascular issues, and vision damage (Contarino et al., 2019; Dwiastuti et al., 2021; 

Zhu et al., 2022). Certain countries have prohibited the use of synthetic chemicals in fruits 

destined for export (Benito et al., 2009). 

 

In response, there is an increasing demand for safer and more sustainable alternatives to 

synthetic fungicides (Kumar et al., 2008; Liu et al., 2013; Oro et al., 2014; Li et al., 2019; 

Tournas and Katsoudas, 2019). Antagonistic yeasts have emerged as promising biological 

control agents due to their ability to tolerate stress, minimal nutritional requirements, and 

capacity to colonise dry surfaces for extended periods (Liu et al., 2013; Spadaro and Droby, 

2016). These yeasts exhibit diverse mechanisms for controlling mould growth, including 

nutrient competition, parasitism, secretion of antimicrobial compounds, killer toxins, and 
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volatile organic compounds (VOCs) (Parafati et al., 2017a,b; Contarino et al., 2019; Czarnecka 

et al., 2019; Mewa-Ngongang et al., 2019b; Gomomo et al., 2022). 

 

Yeasts, such as Meyerozyma guilliermondii, Suhomyces pyralidae and Hanseniaspora species 

have demonstrated significant inhibitory effects against fungal pathogens of fruits (Mewa-

Ngongang et al., 2019b; Ruiz-Moyano et al., 2020; Al-Maawali et al., 2021; Han et al., 2021; 

Gomomo et al., 2022). This study investigates the potential of non-Saccharomyces yeasts and 

their extracellular metabolites as biocontrol control agents for managing fruit spoilage 

pathogens.  

 

1.2 Hypotheses 

 Non-Saccharomyces yeasts produce extracellular enzymes and VOCs that significantly 

inhibit B. cinerea. 

 Non-Saccharomyces yeasts demonstrate comparable antifungal efficacy to chemical 

fungicides in inhibiting Penicillium spp. during in vitro and post-harvest trials. 

 Biocontrol yeasts remain viable on fruit surfaces after harvest, maintain stability following 

oven drying, and effectively inhibit Penicillium italicum and Botrytis cinerea at low cell 

concentrations. 

1.3 Research Questions  

 What antifungal mechanisms (extracellular enzymes and VOCs) contribute to the 

antagonistic activity of non-Saccharomyces yeasts against B. cinerea? 

 How effective are non-Saccharomyces yeasts in controlling Penicillium spp. under 

laboratory and post-harvest conditions? 
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 What are the effects of yeast interactions, post-harvest viability, drying stability, and the 

minimum concentration required for yeasts to inhibit mould growth? 

 

1.4 Aim and Objectives 

1.4.1 Aim 

To evaluate the effectiveness of non-Saccharomyces yeasts (Aureobasidium melanogenum, 

Suhomyces pyralidae, Pichia kluyveri, Meyerozyma guilliermondii, and Zygoascus hellenicus) 

as biocontrol agents against Botrytis cinerea and Penicillium spp., and to assess their viability, 

stability, and inhibitory mechanisms.  

 

1.4.2 Objectives 

 Investigate the extracellular enzyme production, antifungal activity, and VOCs of non-

Saccharomyces yeasts against Botrytis cinerea.   

 Assess the efficacy of selected non-Saccharomyces yeasts as biocontrol agents against 

Penicillium spp. during in vitro assays and post-harvest fruit trials. 

 Evaluate yeast interactions, viability on fruit surfaces, stability after oven drying, and 

the minimum concentration required for effective biocontrol applications. 

 

1.5 Delineation of the Research 

This study does not address: 

 The toxicology of the biocontrol agents: While this research investigates the efficacy 

of non-Saccharomyces yeasts in controlling fruit spoilage moulds, it does not 

investigate into the potential toxicological effects of these yeasts on human health or 

the environment. 
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 Detailed interactions between yeasts and moulds during inhibition: Although the 

study evaluates extracellular enzyme activity, VOC production, and yeast viability, it 

does not explore the in-depth molecular pathways leading the interactions between 

yeasts and spoilage moulds. 

 Fruit defence mechanisms against moulds: While this research focuses on the 

antagonistic properties of non-Saccharomyces yeasts, it does not investigate the fruit 

defence responses to fungal infection. Factors such as fruit-induced biochemical 

resistance, secondary metabolite production, and the influence of fruit microbiomes on 

fungal colonisation are not considered in this study. 

 

1.6 Significance of the Research 

This study offers a sustainable solution to reducing synthetic fungicide use in post-harvest fruit 

management by utilising environmentally friendly biocontrol agents. It aligns with global and 

national goals, by improving food security, reducing chemical pollution, and supporting 

sustainable agriculture. Scientifically, it advances knowledge on non-Saccharomyces yeasts 

antifungal mechanisms and viability post-drying, aiding commercialisation. Economically, it 

benefits the fruit industry by extending shelf life and enhancing export competitiveness. This 

research promotes safer food production, environmental sustainability, and innovation in 

biological control strategies. 

 

References 

Abo-Elyousr, K.A., Al-Qurashi, A.D., Almasoudi, N.M. (2021). Evaluation of the synergy 

between Schwanniomyces vanrijiae and propolis in the control of Penicillium 

digitatum on lemons. Egyptian Journal of Biological Pest Control 31(1), 1-10. 



6 
 

 

Al-Hindi, R.R., Al-Najada, A.R., Mohamed, S.A. (2011). Isolation and identification of some 

fruit spoilage fungi: Screening of plant cell wall degrading enzymes. African 

Journal of Microbiology Research 5(4), 443-448. 

Al-Maawali, S.S., Al-Sadi, A.M., Ali Khalifa Alsheriqi, S., Nasser Al-Sabahi, J., Velazhahan, 

R. (2021). The potential of antagonistic yeasts and bacteria from tomato 

phyllosphere and fructoplane in the control of Alternaria fruit rot of tomato. All 

Life 14(1), 34-48. 

Benito, S., Palomero, F., Morata, A., Uthurry, C., Suárez-Lepe, J.A. (2009). Minimisation of 

ethylphenol precursors in red wines via the formation of pyranoanthocyanins by 

selected yeasts. International Journal of Food Microbiology 132(2-3), 145-152. 

Brat, P., Georgé, S., Bellamy, A., Chaffaut, L.D., Scalbert, A., Mennen, L., Arnault, N., Amiot, 

M.J. (2006). Daily polyphenol intake in France from fruit and vegetables. The 

Journal of Nutrition 136(9), 2368-2373. 

Calvin, L., Gale Jr, H.F., Hu, D., Lohmar, B. (2006). Food safety improvements underway in 

China economic Research Service. Amber Waves, US Department of Agriculture 

Report, 17-21.  

Contarino, R., Brighina, S., Fallico, B., Cirvilleri, G., Parafati, L., Restuccia, C. (2019). 

Volatile organic compounds (VOCs) produced by biocontrol yeasts. Food 

Microbiology 82, 70-74. 

Czarnecka, M., Żarowska, B., Połomska, X., Restuccia, C., Cirvilleri, G. (2019). Role of 

biocontrol yeasts Debaryomyces hansenii and Wickerhamomyces anomalus in 

plants' defence mechanisms against Monilinia fructicola in apple fruits. Food 

Microbiology 83, 1-8. 

DEFF and CSIR. (2021). Food waste prevention & management: A guideline for South Africa. 

Edition 1, DEFF & CSIR, Pretoria. [https://www.csir.co.za/documents/food-



7 
 

 

waste-preventionlandscapeedms-05-02-2021pdf] (Accessed: 28 November 

2024)  

Dwiastuti, M.E., Soesanto, L., Aji, T.G., Devy, N.F. (2021). Biological control strategy for 

post-harvest diseases of citrus, apples, grapes and strawberries fruits and 

application in Indonesia. Egyptian Journal of Biological Pest Control 31(1), 1-

12. 

FAO. (2019). The State of Food and Agriculture 2019: Moving forward on food loss and waste 

reduction. Rome. [https://openknowledge.fao.org/items/ba08937f-4a41-4ff5-

a4e7-e495e5f5f599] (Accessed: 08 November 2024) 

FAOSTAT. (2020). Food and Agricultural Organisation of the United Nations – Statistical 

Division. Production – Crops and livestock products 

[https://www.fao.org/faostat/en/] (Accessed: 26 April 2022). 

Gomomo, Z., Fanadzo, M., Mewa-Ngongang, M., Hoff, J., Van der Rijst, M., Okudoh, V.I., 

Kriel, J., du Plessis, H.W. (2022). Control of mould spoilage on apples using 

yeasts as biological control agents. Polish Journal of Food and Nutrition 

Sciences 72(2), 119-128. 

Han, J., Zhao, L., Zhu, H., Dhanasekaran, S., Zhang, X., Zhang, H. (2021). Study on the effect 

of alginate oligosaccharide combined with Meyerozyma guilliermondii against 

Penicillium expansum in pears and the possible mechanisms 

involved. Physiological and Molecular Plant Pathology 115, 101654. 

Holguín-Ibarra, P.D., Torres-Zapien, J.H., García-Cruz, I., Villapando, I., Salas-Salazar, N.A. 

(2021). Metarhizium anisopliae reduces conidial germination and mycelium 

growth of the apple grey mould Botrytis cinerea. Biological Control 160, 104660. 

Jongwanich, J. (2009). The impact of food safety standards on processed food exports from 

developing countries. Food Policy 34(5), 447-457. 



8 
 

 

Kumar, S., Chandra, A., Pandey, K.C. (2008). Bacillus thuringiensis (Bt) transgenic crop: an 

environment friendly insect-pest management strategy. Journal Environmental 

Biology 29(5), 641-653. 

Li, J., Li, H., Ji, S., Chen, T., Tian, S., Qin, G. (2019). Enhancement of biocontrol efficacy of 

Cryptococcus laurentii by cinnamic acid against Penicillium italicum in citrus 

fruit. Postharvest Biology and Technology 149, 42-49. 

Liu, J., Sui, Y., Wisniewski, M., Droby, S., Liu, Y. (2013). Utilization of antagonistic yeasts 

to manage post-harvest fungal diseases of fruit. International Journal of Food 

Microbiology 167(2), 153-160. 

Mewa-Ngongang, M., du Plessis, H.W., Ntwampe, S.K.O., Chidi, B.S., Hutchinson, U.F., 

Mekuto, L., Jolly, N.P. (2019b). The use of Candida pyralidae and Pichia 

kluyveri to control spoilage microorganisms of raw fruits used for beverage 

production. Foods 8(10), 454. 

Miller, D.D., Welch, R.M. (2013). Food system strategies for preventing micronutrient 

malnutrition. Agricultural development economics division, food and agriculture 

organization of the United Nations.  Food Policy 42, 115-128. 

Oro, L., Feliziani, E., Ciani, M., Romanazzi, G., Comitini, F. (2014). Biocontrol of post-harvest 

brown rot of sweet cherries by Saccharomyces cerevisiae Disva 599, 

Metschnikowia pulcherrima Disva 267 and Wickerhamomyces anomalus Disva 2 

strains. Post-harvest Biology and Technology 96, 64-68. 

Parafati, L., Cirvilleri, G., Restuccia, C., Wisniewski, M. (2017a). Potential role of 

exoglucanase genes (WaEXG1 and WaEXG2) in the biocontrol activity of 

Wickerhamomyces anomalus. Microbial Ecology 73(4), 876-884. 

Parafati, L., Vitale, A., Restuccia, C., Cirvilleri, G. (2017b). Performance evaluation of volatile 

organic compounds by antagonistic yeasts immobilized on hydrogel spheres 



9 
 

 

against grey, green and blue post-harvest decays. Food Microbiology 63, 191-

198. 

Post-harvest. (2022). The top food loss and waste statistics of 2022. 

[https://www.postharvest.com/blog/top-food-waste-statistics-of-2021] 

(Accessed 29 January 2025) 

Romanazzi, G., Feliziani, E., Baños, S.B., Sivakumar, D. (2017). Shelf-life extension of fresh 

fruit and vegetables by chitosan treatment. Critical Reviews in Food Science and 

Nutrition 57(3), 579-601. 

Ruiz-Moyano, S., Hernández, A., Galvan, A.I., Córdoba, M.G., Casquete, R., Serradilla, M.J., 

Martín, A. (2020). Selection and application of antifungal VOCs-producing 

yeasts as biocontrol agents of grey mould in fruits. Food Microbiology 92, 

103556. 

Sharma, R.R., Singh, D., Singh, R. (2009). Biological control of post-harvest diseases of fruits 

and vegetables by microbial antagonists: A review. Biological Control 50(3), 

205-221. 

Spadaro, D., Droby, S. (2016). Development of biocontrol products for post-harvest diseases 

of fruit: The importance of elucidating the mechanisms of action of yeast 

antagonists. Trends in Food Science & Technology 47, 39-49. 

Sun, C., Huang, Y., Lian, S., Saleem, M., Li, B., Wang, C. (2021). Improving the biocontrol 

efficacy of Meyerozyma guilliermondii Y-1 with melatonin against post-harvest 

grey mould in apple fruit. Postharvest Biology and Technology 171, 111351. 

Tournas, V.H. and Katsoudas, E.J. (2019). Effect of CaCl2 and various wild yeasts from plant 

origin on controlling Penicillium expansum post-harvest decays in Golden 

Delicious apples. Microbiology Insights 12, 1178636119837643. 

Yu, L., Qiao, N., Zhao, J., Zhang, H., Tian, F., Zhai, Q., Chen, W. (2020). Post-harvest control 



10 
 

 

of Penicillium expansum in fruits: A review. Food Bioscience 36, 100633. 

Zhu, Y., Zong, Y., Gong, D., Zhang, X., Oyom, W., Yu, L., Wang, X., Bi, Y., Prusky, D. 

(2022). Effects and possible modes of action of Kloeckera apiculata for 

controlling Penicillium expansum in apples. Biological Control 169, 104898. 

  



11 
 

 

CHAPTER 2 

Literature Review 

2.1 Introduction 

This chapter provides an overview of the significance of fruits in human health, emphasising 

their role as a sources of essential vitamins, minerals, and bioactive compounds. The discussion 

highlights their contributions to disease prevention and overall health promotion. Additionally, 

the chapter examines the economic and commercial importance of fruits in South Africa, with 

attention to the quality standards required for local consumption and export markets. A key 

focus is the impact of microbial spoilage on fruit quality and yield, and the methods employed 

to mitigate fungal infections. 

 

2.2 The Importance of Fruits 

Fruits, due to their perishable nature, differ from cereals, pulses, and oilseed crops in terms of 

storage and handling requirements. They are vital for their economic, nutritional, and medicinal 

contributions (WHO, 2021; Smith et al., 2022; FAO, 2023). Often consumed fresh, fruits are 

also processed into products such as juices, jellies, and preserved slices (Singh and Sharma, 

2018; Kamel et al., 2020; Bhatta, 2021). They are rich in bioactive compounds with antioxidant 

properties and provide essential dietary nutrients, including vitamins (C, A, B6, thiamine, 

niacin, E), minerals, and dietary fibre (Kader, 2001; Yahia, et al., 2019; Zhu et al., 2019; Abo-

Elyousr et al., 2021; Wang et al., 2022). These components contribute significantly to public 

health by reducing risks of chronic diseases such as cancer, cardiovascular diseases, and stroke 

(Kader, 2001; Ben-Nun, 2016; Choi et al., 2018; Zakrevskii, 2018; Yahia et al., 2019).  
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South Africa’s fruit industry plays a pivotal role in its economy, contributing significantly to 

both domestic and international markets. In 2018, approximately 63% of the country's fruit 

production was exported, with key export markets including Europe and Russia, underscoring 

the sector's global competitiveness (Fruit, 2018). Around 25% of the total fruit production is 

processed locally, while the remaining 11% is consumed within South Africa (Fruit, 2018). 

This distribution highlights the strong export orientation of the industry, as well as its capacity 

to meet domestic consumption needs and support local processing industries. The high export 

rate also reflects the growing demand for South African fruit in international markets, 

particularly in Europe, which values the country’s diverse range of high-quality fruits (FAO, 

2023). 

 

2.3 Fruit Losses due to Microbial Spoilage 

Microbial spoilage poses a significant threat to fruit quality and availability. Fruits provide an 

ideal substrate for microbial growth due to their rich nutrient composition (Willey et al., 2008; 

Zhu et al., 2019). Spoilage moulds, such as Botrytis cinerea, Penicillium spp., and others, can 

naturally occur or develop during post-harvest handling, causing losses of up to 25% in 

industrialised countries and exceeding 50% in developing regions (Droby, 2005; Nunes, 2012; 

Buzby et al., 2014; Asch et al., 2019; Godana et al., 2020; Dwiastuti et al., 2021; Ziv, and 

Fallik, 2021). Contributing factors include improper harvesting methods, rough handling, and 

unsuitable storage conditions, which promote microbial colonisation and degradation (Ippolito 

and Nigro, 2000; Sharma, et al., 2009; Godana et al., 2020). The losses affect not only 

economic outcomes but also consumer health, as some moulds produce mycotoxins harmful to 

humans (Singh and Sharma, 2018; Yu et al., 2020; Holguín-Ibarra et al., 2021). The following 

sections briefly discuss the major spoilage moulds (Table 2.1) and their impacts. 
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Table 2.1: Fungal pathogens and their effects on fruits (Li et al., 2019) 

Fungal/Mould Species Host Fruits Spoilage Symptoms 

Botrytis cinerea Apples, strawberries, grapes Grey mould, water-soaked lesions 

Penicillium expansum Apples, pears Blue mould, mycotoxin production 

Penicillium digitatum Citrus fruits Green mould, rapid decay 

Penicillium italicum Citrus fruits Blue mould, rapid decay 

Monilinia fructicola Stone fruits Soft, water-soaked spots 

Monilinia fructigena Stone and pome fruits Small, sunken, brown lesions 

 

2.3.1 Botrytis cinerea 

Botrytis cinerea, a necrotrophic pathogen, is a significant cause of post-harvest grey mould in 

fruits such as apples and strawberries. This pathogen produces cell wall-degrading enzymes, 

toxins, and compounds such as oxalic acid, facilitating its pathogenicity (Williamson et al., 

2007; Asch et al., 2019). It causes botrytis bunch rot, a necrotrophic disease affecting apples 

and strawberries (Reyes-Bravo et al., 2019; Shen et al., 2019; Nybom et al., 2020; Sun et al., 

2021). Grey mould, a significant post-harvest disease, leads to economic losses by spoiling 

fruits and spreading via contact, particularly in cold storage (-0.6°C to 2°C) (Xiao & Kim, 

2008). Infection typically occurs via wounds or natural openings, often resulting in up to 60% 

losses during storage and transport (Holz et al., 2007; Xiao & Kim, 2008; Sardella et al., 2016). 

Symptoms include lesions and fruit rot, with losses ranging from 20% to 60% (Sholbeg et al., 

2003; Sardella et al., 2016; Iqbal et al., 2022). 

 

2.3.2 Penicillium expansum 

Penicillium expansum causes blue mould in various crops, including apples and strawberries, 

and produces the carcinogenic mycotoxin patulin (Spadaro et al., 2007; Nunes, 2012; Usall et 
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al., 2016; Tournas & Katsoudas, 2019; Yu et al., 2020; Han et al., 2021). It produces patulin, 

a mycotoxin with significant health risks, including carcinogenic and teratogenic effects 

(Birgitte et al., 2004; Tournas and Katsoudas, 2019). It is a primary cause of post-harvest decay 

in pome fruits, leading to soft, musty-smelling rot (Xu & Tian, 2008). Infection typically occurs 

through wounds during handling or storage, with losses exceeding 50% under suboptimal 

conditions (Mari et al., 2002; Monroe, 2009; Sanzani et al., 2009; Sardella et al., 2016). 

Symptoms include rapidly enlarging watery spots and visible spores, especially at 20–25°C 

(Snowdon, 1990; Shim et al., 2002; Sardella et al., 2016). 

 

2.3.3 Penicillium italicum and Penicillium digitatum 

Penicillium italicum and P. digitatum are major pathogens of citrus fruits, causing green and 

blue moulds that lead to significant economic losses (Badawy et al., 2011; Florenzo et al., 

2019; Liu et al., 2019). These fungi produce harmful mycotoxins and spread through wounds 

caused by pests or improper handling (Kellerman et al., 2016; Abo-Elyousr et al., 2021; Wang 

et al., 2022). Under optimal conditions (25°C), they generate up to two billion spores per cycle, 

with losses reaching 90% (Holmes & Eckert, 1999; Papoutsis et al., 2019; Zhu et al., 2019; 

Cheng et al., 2020). Infections manifest as water-soaked lesions, followed by white mycelia 

and distinctive spore colours (Lin et al., 2019; Abo-Elyousr et al., 2021; Bhatta, 2022; Wang 

et al., 2022). 

 

2.3.4 Monilinia spp. 

Monilinia species, including M. fructicola and M. fructigena, are necrotrophic pathogens 

causing brown rot and significant losses in stone and pome fruits (Grzegorczyk et al., 2017; 

Melgarejo et al., 2019; Reyes-Bravo et al., 2019; Nybom et al., 2020). Infection occurs through 

wounds or open floral calyxes and is exacerbated by high humidity and warm temperatures 
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(Bonaterra et al., 2003; Thomidis and Exadaktylou, 2010; Garcia-Benitez et al., 2016; 

Grzegorczyk et al., 2017; Nybom et al., 2020). Symptoms include blossom blight, twig 

cankers, and fruit rot during storage (Giobbe et al., 2007; Villarino et al., 2016). These fungi 

tolerate low temperatures, with conidia germinating at -4°C, contributing to their prevalence 

worldwide (Villarino et al., 2016; Tamm & Flückinger, 1993; Jemric et al., 2011). 

 

2.4 Mould Spoilage Prevention Methods 

2.4.1 Chemical method 

Chemical fungicides are widely used to control plant diseases due to their rapid action and 

effectiveness in managing fruit spoilage moulds (Palou et al., 2008; Kamel et al., 2020; Zhu et 

al., 2022). However, their use poses risks, including environmental contamination, human and 

animal health hazards, and the development of fungicide-resistant mould strains (Ahima et al., 

2019; Tournas and Katsoudas, 2019). Regulatory restrictions have led to a decline in approved 

chemicals for post-harvest applications, raising concerns about residues on fresh produce 

(Tahir & Nybom, 2013; Sarrocco and Vannacci, 2018; Wang et al., 2021). Despite these issues, 

various synthetic fungicides such as fludioxonil, Captan, and thiabendazole are still employed 

to control fruit spoilage at pre- and post-harvest stages (Zhao et al., 2010; Berk, 2016; Yu et 

al., 2020). 

 

2.4.2 Biological method 

The drawbacks of synthetic fungicides have spurred interest in environmentally friendly 

alternatives, particularly biological control (Yu et al., 2020; Sun et al., 2021). Biological 

methods use living organisms, such as yeasts, bacteria, and fungi, to inhibit pathogens without 

leaving toxic residues (Wisniewski et al., 2016; Ahima et al., 2019; Kamel et al., 2020; Zhimo 

et al., 2020; Agirman et al., 2023). This approach offers eco-friendly, cost-effective solutions 
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with minimal risks to non-target organisms (Dukare et al., 2019). The advantages of yeasts as 

biocontrol agents include the lack of allergenic spore production, compatibility with organic 

farming practices and reduced environmental impact compared to chemical fungicides 

(Freimoser et al., 2019). Applying yeasts as biocontrol agents has certain limitations and 

challenges including inconsistent efficacy under varying environmental conditions, difficulties 

in large-scale production and formulation, and limited shelf-life and stability (Casas-Godoy et 

al., 2021; Zhimo et al., 2020). 

In microbial biocontrol systems, the development of resistance by fungal pathogens poses a 

significant challenge. Over time, pathogens may adapt to biocontrol agents, weakening their 

efficacy. Understanding mould resistance mechanisms and implementing strategies to mitigate 

resistance development is crucial for the long-term success of biocontrol systems (Janisiewicz 

and Korsten, 2002; Schena et al., 2017; Wisniewski et al., 2016). Fungal pathogens can 

develop resistance to biocontrol agents through various mechanisms, including genetic 

mutations that alter target sites and modification of metabolic pathways to bypass inhibitory 

effects (Schena et al., 2017). Pathogens may adapt by forming protective biofilms or producing 

secondary metabolites that neutralise biocontrol agents (Parafati et al., 2015; Spadaro and 

Droby, 2016). 

To mitigate the risk of resistance development in pathogens, several strategies can be 

employed. Rotating biocontrol agents with distinct modes of action helps prevent pathogens 

from adapting to a single agent, reducing selective pressure and maintaining treatment efficacy 

(Janisiewicz and Korsten, 2002). Similarly, combining multiple biocontrol yeasts with 

complementary mechanisms of action, such as Metschnikowia pulcherrima and 

Wickerhamomyces anomalus, has been shown to enhance efficacy and delay resistance, as 

demonstrated in the control of Penicillium expansum (Wang et al., 2022). Integrating 
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biocontrol agents with other treatments, including chemical fungicides, physical methods, and 

cultural practices, provides a multi-faceted approach to disease management, minimising 

reliance on any single method and reducing the potential for resistance (Wisniewski et al., 

2016). Moreover, optimising application methods, such as ensuring proper coverage and 

timing, is crucial for maximising the effectiveness of biocontrol agents and preventing sub-

lethal exposure that could encourage resistance (Schena et al., 2017). Collectively, these 

strategies emphasise the importance of diverse and well-planned disease management practices 

to sustain the long-term efficacy of biocontrol solutions. 

 

2.4.2.1 Yeasts as biological control agents 

Yeasts are effective biocontrol agents (BCAs) (Table 2.2) due to their resilience in adverse 

conditions and ability to suppress pathogens by competing for nutrients and producing 

antimicrobial compounds, such as volatile organic compounds (VOCs) and killer toxins 

(Pretscher et al., 2018; Kamel et al., 2020; Dwiastuti et al., 2021; Huang et al., 2021). They 

also release cell wall-degrading enzymes like chitinase and β-1,3-glucanase, which inhibit 

fungal spore germination and growth (El-Tarabily, 2006; Dukare et al., 2019). Effective 

application methods, including spraying or dipping fruits, ensure yeast colonisation and long-

term pathogen suppression (Sharma et al., 2009; Calvo‐Garrido et al., 2014; Lamenew et al., 

2019). Yeast species such as Candida guilliermondii, C. sake, and Hanseniaspora spp. have 

demonstrated efficacy by producing metabolites like acetic acid and decanoic acid, which 

inhibit fungal growth (Lassois et al., 2008; Han et al., 2021). However, commercial adoption 

remains limited due to challenges in application and consistency (Köhl et al., 2015; Cecilia et 

al., 2020; Dwiastuti et al., 2021). 
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Mechanisms of action of biocontrol yeasts 

Biocontrol yeasts inhibit moulds through several mechanisms, including nutrient competition, 

enzymatic activities and VOCs secretion. These modes of action often work synergistically to 

suppress pathogen growth and provide effective control. Nutrient competition is a key 

mechanism by which biocontrol yeasts suppress fungal pathogens. Biocontrol yeasts rapidly 

colonise surfaces, consuming available resources and creating a nutrient-depleted environment 

that limits mould growth (Janisiewicz and Korsten, 2002; Huang et al., 2021). The ability of 

yeasts to outcompete moulds is influenced by their rapid growth rate, high metabolic activity, 

and strong adhesion to the surfaces (Lassois et al., 2008; Spadaro and Droby, 2016).  

Biocontrol yeasts produce hydrolytic enzymes that degrade fungal cell walls, directly inhibiting 

pathogen growth (El-Tarabily, 2006; Dukare et al., 2019). Key enzymes involved include 

glucanases, chitinases, and proteases. Glucanases target β-glucans, which are major 

components of fungal cell walls, while chitinases degrade chitin, another essential structural 

component (Arrebola et al., 2010; Dukare et al., 2019). Proteases further weaken the fungal 

cell wall by breaking down proteins involved in cell wall integrity (Kouassi et al., 2012). 

The secretion of VOCs by biocontrol yeasts plays a crucial role in inhibiting fungal pathogens. 

Volatile organic compounds are small, volatile molecules that can diffuse through the air and 

impact pathogens without direct contact (Arrebola et al., 2010; Parafati et al., 2017). Volatile 

organic compounds disrupt fungal spore germination, hyphal growth, and metabolic processes 

(Parafati et al., 2015; López-García et al., 2020). These compounds likely interfere with the 

pathogen's membrane integrity and enzyme activity, ultimately reducing its viability (Masoud 

and Kaltoft, 2006; Wang et al., 2022). 
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Environmental implications of using biocontrol yeasts 

Yeast-based biocontrol strategies have significant environmental benefits, making them a 

promising tool for sustainable agriculture (Hollmann et al., 2006; Lobus et al., 2023). By 

reducing reliance on chemical pesticides, yeast-based biocontrol can lower the environmental 

impact of farming, minimising harmful residues in the ecosystem, reducing water 

contamination, and protecting non-target organisms, including beneficial insects and soil 

microorganisms (Hollmann et al., 2006; Tyagi et al., 2024). Additionally, this approach 

contributes to lowering carbon footprints associated with pesticide production, transportation, 

and application (Lobus et al., 2023; Zhang et al., 2024). The promotion of biodiversity is 

another key advantage, as using biocontrol agents like yeasts enhances ecological balance and 

resilience, which is crucial for maintaining long-term agricultural productivity (Tyagi et al., 

2024). 

 

Optimisation of biocontrol applications for yeast efficacy 

The optimisation of biocontrol applications for yeast efficacy involves several key methods 

aimed at improving the stability and effectiveness of the agents (Samsudin and Magan, 2016; 

Morales-Cedeño et al., 2021; Onwe et al., 2022). Yeasts tend to thrive in specific temperature 

ranges, with high humidity levels often promoting better survival rates during storage (Tan and 

van Ingen, 2004). Formulation techniques, including the use of carriers such as trehalose, have 

been shown to improve yeast stability during drying and storage, thereby preserving their 

biocontrol potential and enhancing the stability of biocontrol agents (Onwe et al., 2022). 

Additionally, the application method significantly influences yeast efficacy, as methods such 

as spraying, dipping, or coating fruits ensure proper yeast adherence and distribution, thereby 

facilitating effective pathogen control (Samsudin and Magan, 2016; Morales-Cedeño et al., 

2021). Proper application timing and coverage are crucial to achieving optimal yeast contact 
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with the fruit surface and enhancing the likelihood of successful pathogen suppression (Liu et 

al., 2013). By integrating these methods environmental optimisation, formulation 

improvements, and effective application techniques, yeast-based biocontrol agents can be 

maximised for enhanced disease management. 

 

Yeast-fruit interaction dynamics 

Yeast-fruit interaction dynamics are critical to the success of biocontrol applications, as they 

determine the ability of yeasts to colonise fruit surfaces and effectively suppress pathogens. 

Yeasts colonise fruit surfaces by adhering to the wax layer, forming biofilms that enable 

persistence and competitive exclusion of pathogens (Sharma, 2020; Yao et al., 2022). Their 

compatibility with different fruits varies based on surface characteristics, such as pH, sugar 

content, and the composition of the fruit's natural microbiota; for instance, fruits with high 

sugar content, like grapes and strawberries, typically support effective yeast colonisation 

compared to more acidic surfaces, such as those of citrus fruits (Spadaro and Droby, 2016; 

Agirman et al., 2023). Fruit-specific factors, such as the antimicrobial properties of citrus 

essential oils, can influence yeast performance by potentially inhibiting their growth, requiring 

the selection of compatible yeast strains that can tolerate these compounds. (Spadaro and 

Droby, 2016). Understanding these interaction dynamics is essential to optimising yeast-based 

biocontrol strategies across various fruit types. 

 

2.4.2.2 Microbial interactions and biocontrol development 

Interactions among microbes, including antagonism and cooperation, influence the success of 

biocontrol strategies (Müller et al., 2014; Granato et al., 2019; Lavrentovich and Nelson, 2019; 

Giometto et al., 2021; Agirman et al., 2023). To enhance yeast-based biocontrol, integrating 

them with other agents or low-dose fungicides in integrated management programs has shown 
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promise (Droby et al., 2002; Lima et al., 2003). Effective biocontrol products require consistent 

performance across various conditions and target moulds (Borgeaud et al., 2015; Lamenew et 

al., 2019; Zhimo et al., 2020). 

 

2.4.2.3 Effects of drying on yeast viability 

Preservation techniques including drying significantly impact yeast cell physiology and 

viability by inducing structural and oxidative stresses (Rapoport, 2017; Ippolito and Nigro, 

2000; Casas‐Godoy et al., 2021). Yeasts can endure extended periods without water, but 

dehydration can affect cellular components, including membranes and organelles (Dupont et 

al., 2014; Casas‐Godoy et al., 2021). Incorporating carriers such as trehalose or sucrose during 

drying improves yeast quality and viability (Casas‐Godoy et al., 2021). These findings are 

crucial for developing stable and effective yeast-based biocontrol products.
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Table 2.2 Examples of biocontrol yeasts, their target moulds, host fruits, and relevant references. 

Biocontrol yeast Target mould Fruit Reference 

Aureobasidium pullulans Penicillium expansum  

Botrytis cinerea 

Penicillium digitatum 

Aspergillus tubingensis 

Pear 

Apple 

Mandarin 

Grape 

Spadaro and Droby (2016) 

Di Francesco et al., (2015) 

Parafati et al., (2017) 

Pantelides et al., (2015) 

Hanseniaspora opuntiae Aspergillus flavus Dried figs Galván et al., (2022) 

Debaryomyces hansenii Botrytis cinerea 

Alternaria alternata 

Kiwi Sui et al., (2021) 

Pichia guilliermondii Rhizopus stolonife Peach Li et al., (2023) 

Candida intermedia Colletotrichum gloeosporioides Avocado Campos‐Martínez et al., (2016) 

Candida membranifaciens Penicillium digitatum Orange Terao et al., (2017) 

Clavispora lusitaniae Penicillium digitatum Lemon Pereyra et al., (2020) 

Kluyveromyces marxianus Penicillium expansum Apple Zheng et al., (2023) 

Cryptococcus laurentii Penicillium expansum 

Botrytis cinerea 

Peach 

Strawberry 

Zhang et al., (2017) 

Wei et al., (2014) 

Aureobasidium pullulans Erwinia amylovora Apple Aktepe and Aysan (2023 

Scheffersomyeces spartinae Botrytis cinerea Strawberry Chen et al., (2023) 

Saccharomyces cerevisiae Botrytis cinerea 

Penicillium digitatum 

 

Grape 

Lemon 

Parafati et al., (2015 

Perez et al., (2017) 
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2.4.3 Integrated Pest Management 

Integrated Pest Management (IPM) strategy combines the advantages of biological control, 

such as the use of beneficial microorganisms, with agronomic practices like crop rotation, 

pruning, and proper irrigation, which can help manage pathogen pressure (Droby et al., 2002; 

Hjeljord and Tronsmo, 2002). When BCAs are used alongside low-dose fungicides, their 

effectiveness is often enhanced, as they act synergistically to prevent spoilage and reduce the 

need for higher chemical dosages (Papavizas, 1985; Dukare et al., 2019). This combined 

approach not only boosts the efficacy of disease control but also minimises the environmental 

impact associated with synthetic chemicals (Dukare et al., 2019; Larkin et al., 2019). 

By reducing the overall dependence on chemical inputs, IPM strategies contribute to lower 

pesticide residues in the environment, which is beneficial for non-target organisms, soil health, 

and biodiversity (Droby et al., 2002; Hjeljord and Tronsmo, 2002; Sharma et al., 2013). 

Moreover, using BCAs and low-dose fungicides can help maintain long-term pest control 

effectiveness and reduce the likelihood of resistance development, which is a growing concern 

in agricultural pest management (Horsfall, 2008; Larkin et al., 2019). This shift towards more 

sustainable agricultural practices supports the growing demand for eco-friendly farming 

methods, which aim to balance effective pest management with environmental preservation. 

 

2.5 Commercial Yeast-Based Biocontrol Products 

Numerous unicellular fungi have been explored for their potential in biocontrol applications. 

Different yeast isolates undergo testing against various moulds, with the most effective 

microorganisms selected for further study and application as biocontrol agents (Freimoser et 

al., 2019). For yeasts to be used as active ingredients in biocontrol products, they must 

demonstrate strong antagonistic effects against target pathogens. However, secondary 
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considerations, including biosafety, regulatory requirements, production processes, 

formulation options, and compatibility with application equipment, are equally crucial 

(Freimoser et al., 2019). 

 

Yeasts have been historically used in food and beverage industries, consumed directly as 

dietary supplements, and widely regarded as safe (Bekatorou et al., 2006; Freimoser et al., 

2019). Consequently, applying yeasts to crops and food products raises fewer safety concerns 

(Freimoser et al., 2019). Nonetheless, some yeasts, such as specific Candida or Cryptococcus 

species, are human pathogens and warrant caution (Miceli et al., 2011; Opulente et al., 2019). 

The discovery and development of effective biocontrol agents traditionally focus on isolating 

antagonists capable of combating multiple post-harvest pathogens across diverse crops (Zhimo 

et al., 2020). These crops exhibit significant variation in genetic makeup, physiology, 

susceptibility to pathogens, and pre- and post-harvest management practices (Zhimo et al., 

2020). 

 

Several yeast-based biocontrol products have been commercialised (Table 2.3). Their primary 

modes of action include competition for nutrients and space, alongside enzymatic activities 

like protease, chitinase, or secretion of inhibitory molecules (Bar-Shimon et al., 2004; Huang 

et al., 2011; Freimoser et al., 2019; Gore-Lloyd et al., 2019; Zajc et al., 2019). 
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Table 2.3 Commercial biocontrol products based on yeast species and their combinations, along with suppliers and target moulds (Agirman et al., 

2023). 

Species names Product name Supplier Target mould 

Candida oleophila Aspire Ecogen Inc Botrytis cinerea 

Penicillium expansum 

Penicillium digitatum 

Penicillium italicum 

Candida oleophila Nexy Lesaffre Group Botrytis cinerea 

Penicillium expansum 

Aureobasidium pullulans Boni-Protect Bio-ferm GmbH Botrytis cinerea 

Penicillium expansum 

Metschnikowia fructicola Shemer AgroGreen Botrytis cinerea 

Penicillium expansum 

Cryptococcus albidus YieldPlus Lallemand Plant Care Botrytis cinerea 

Candida sake CandiFruit S.A. Laboratorios Syva Botrytis cinerea 

Penicillium expansum 

Bacillus subtilis and Candida oleophila Biocontrol Blend Novozymes BioAg 

Group 

Botrytis cinerea 

Penicillium expansum 

Fusarium spp. 
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Bacillus amyloliquefaciens and 

Aureobasidium pullulans 

EcoGuard Dual Action Biocontrol Systems Inc Botrytis cinerea 

Penicillium spp. 

Alternaria alternata 

Bacillus subtilis and Metschnikowia 

fructicola 

MycoGuard Plus AgroGreen Solutions Botrytis cinerea 

Penicillium expansum 

Fusarium spp. 

Bacillus subtilis and Aureobasidium 

pullulans 

Serenade Opti + Blossom 

Protect 

Bayer CropScience Botrytis cinerea 

Monilinia spp. 

Aureobasidium pullulans strains DSM 

14940 and DSM 14941 

Botector Bio-ferm GmbH Botrytis cinerea 

Monilinia laxa 

Metschnikowia pulcherrima and Candida 

sake 

Amylo-X Probelte Bio Botrytis cinerea 

Penicillium expansum 

Monilinia spp. 

Pichia guilliermondii and Candida 

oleophila 

CeraMax Yeast Combo MycoSolutions Botrytis cinerea 

Penicillium spp. 

Fusarium spp. 

 

Aureobasidium pullulans and 

Metschnikowia fructicola 

FruitGard AgraQuest Inc Botrytis cinerea 

Penicillium spp. 

Alternaria alternata 
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2.6 Conclusions 

The agricultural and food industries face significant economic losses due to mould spoilage. 

While chemical fungicides are the predominant control method for fruit spoilage, they pose 

challenges such as health concerns and resistance development among target organisms. 

Antagonistic yeasts, particularly naturally occurring ones, offer a promising alternative due to 

their antimicrobial properties. These yeasts are generally recognised as safe, being widely used 

in food and beverage industries as well as dietary supplements. 

 

Non-Saccharomyces yeasts have demonstrated antagonistic effects against various moulds 

during in vitro and in vivo studies, with efficacy comparable to some chemical fungicides. 

However, further research is needed to develop safer, cost-effective biocontrol strategies. For 

instance, killer yeasts can serve as preventive and curative treatments during pre- and post-

harvest stages. Their efficacy should be evaluated against multiple strains and species of 

spoilage moulds to assess their broad-spectrum inhibitory potential on mycelial growth and 

spore germination. 

 

Research should focus on determining the minimum inhibitory concentrations (MIC) of yeasts 

required to suppress mould growth and identifying the specific compounds responsible for this 

inhibition. These compounds should then be tested individually against spoilage organisms. 

More extensive trials are needed to explore the effectiveness of biological agents when applied 

in pre- and post-harvest treatments. Additionally, studies should evaluate the stability and 

viability of yeasts on different fruit surfaces, especially after drying processes, to ensure they 

remain effective under varying conditions and post-processing scenarios.  
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CHAPTER 3 

The Use of Specific Non-Saccharomyces Yeasts as Sustainable Biocontrol 

Solutions Against Botrytis cinerea on Apples and Strawberries 

 

Abstract 

Apples and strawberries hold significant commercial and nutritional value. However, their 

entry into local and export markets is often hindered by pre- and post-harvest spoilage, 

primarily due to infections by Botrytis cinerea. While spoilage is conventionally managed 

using synthetic chemical treatments, there is a growing interest in utilising yeasts as biological 

control agents. The objective of this chapter was to evaluate the growth-inhibitory potential of 

non-Saccharomyces yeast species against three strains of B. cinerea. Five yeasts, namely 

Suhomyces pyralidae, Meyerozyma guilliermondii, Pichia kluyveri, Zygoascus hellenicus and 

Aureobasidium melanogenum were evaluated for antifungal activity against three B. cinerea 

strains B05.10, IWBT-FF1 and PPRI 30807 on agar plates and in post-harvest trials on apples 

and strawberries. Aureobasidium melanogenum exhibited a broad spectrum of extracellular 

enzyme production and demonstrated inhibition rates in dual culture assays, with inhibition 

rates of 55%, 52% and 40% against B. cinerea B05.10, IWBT-FF1 and PPRI 30807, 

respectively. Using the volatile organic compound (VOC) assays, P. kluyveri and S. pyralidae 

achieved 79% and 56% inhibition, respectively, against all mould strains. Seven VOCs, 

including isobutanol, isoamyl alcohol, 2-phenylethanol, isoamyl acetate, 2-phenethyl acetate, 

γ-decanolactone and methyl palmitate, were identified. In post-harvest assays, S. pyralidae was 

the most effective on apples, with inhibition rates of 64%, 40%, and 25% against B. cinerea 

B05.10, IWBT-FF1 and PPRI 30807, respectively. The commercial fungicide Captan and S. 

pyralidae achieved 100% inhibition against B. cinerea B05.10, while Captan and P. kluyveri 

achieved 100% inhibition against B. cinerea IWBT-FF1 on strawberries. These findings 
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highlight the potential of the selected yeast species as biological control agents against B. 

cinerea, warranting further research into their application in commercial fruit protection. 

 

Keywords: Mould spoilage, synthetic chemicals, pre- and post-harvest control, growth 

inhibition, hydrolytic enzymes 

 

3.1 Introduction 

Apples (Malus domestica) and strawberries (Fragaria ananassa) are valuable for human 

health, serving as primary sources of essential nutrients, including vitamins and minerals, 

which support a healthy lifestyle (Al-Hindi et al., 2011; Abo-Elyousr et al., 2021; Sun et al., 

2021; Wang et al., 2021). Their appealing sensory and nutritional characteristics make them 

widely consumed and processed into various products, such as cooked slices, juices, and jellies, 

contributing significantly to the global fresh produce market (Lutz et al., 2020; Guigón-López 

et al., 2021; Sun et al., 2021). Despite their importance as major fruit crops worldwide, 

producers continue to encounter numerous challenges in production, storage and market 

distribution (Rico et al., 2019; Nybom et al., 2020). 

 

Commercially grown fruits are destined for both local and export markets after harvest. 

However, pre- and post-harvest mould decay leads to significant economic losses (Nybom et 

al., 2020; Sun et al., 2021). Mould infections during these stages are often attributed to elevated 

moisture levels, excessive nutrients, low pH, and reduced fruit decay resistance as maturity 

progresses (Droby et al., 2016). Among the most severe diseases affecting strawberries and 

apples is grey mould, caused by Botrytis cinerea, which significantly impacts yield and quality 

by depleting nutrients, shortening shelf life, and causing substantial financial losses (Zajc et 

al., 2019; Sun et al., 2021; Wang et al., 2021; Iqbal et al., 2022). Grey mould infection typically 
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initiates during flowering, remaining latent until fruit maturation, at which point the pathogen 

proliferates extensively (Kantarcioǧlu and Yücel, 2002; Spadaro and Droby, 2016). 

 

The control of B. cinerea presents a significant challenge due to the pathogen’s high genetic 

plasticity, with chemical control using synthetic fungicides being the most widely used strategy 

(Contarino et al., 2019; Guigón-López et al., 2021; Huang et al., 2021). While synthetic 

fungicides effectively reduce the pre- and post-harvest fruit losses, their use has led to increased 

fungicide residues on produce, the emergence of fungicide-resistant mould strains, and has 

raised concerns regarding human health and the environmental impact (Lutz et al., 2020; Sun 

et al., 2021; Wang et al., 2021). Consequently, it is crucial to develop safe and effective 

alternative strategies for managing grey mould diseases in fruit crops (Sun et al., 2021; Zou et 

al., 2021). 

 

Antagonistic fungi have proven effective against B. cinerea, which is susceptible to 

suppression by microorganisms such as non-Saccharomyces yeasts that produce antifungal 

compounds (Guigón-López et al., 2021; Sun et al., 2021; Gomomo et al., 2022). Compared to 

chemical control, the use of antagonist microorganisms offers several benefits, including the 

absence of toxic residues, environmental safety, ease of application and cost-effectiveness 

(Wisniewski et al., 2016; Huang et al., 2021). Yeasts exhibit valuable antifungal properties, 

including the secretion of killer toxins such as mycocins, production of cell wall-degrading 

enzymes (chitinase, β-1,3-glucanase, protease, laminarinases, peroxidases), synthesis of 

volatile organic compounds (VOCs), rapid colony formation, growth within surface wounds, 

competition for nutrients and space, and induction of host resistance (Spadaro and Droby, 2016; 

Contarino et al., 2019; Sun et al., 2021).  
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Killer yeasts, including Meyerozyma guilliermondii, Suhomyces pyralidae (formerly, Candida 

pyralidae), Pichia kluyveri, and Hanseniaspora species, have shown antimicrobial activity 

against a range of fruit-spoilage fungi (Cordero-Bueso et al., 2017; Mewa-Ngongang et al., 

2019b Al-Maawali et al., 2021; Gomomo et al., 2022). Previous research by Gomomo et al. 

(2022) evaluated non-Saccharomyces yeasts for their ability to inhibit mycelial growth of a 

strain of B. cinerea in vitro and on apples, with results indicating species- and strain-dependent 

inhibitory effects. Building on this foundation, the present study sought to screen non-

Saccharomyces yeasts for extracellular enzyme activity and to assess the inhibition of mycelial 

growth and spore germination of selected yeasts against three distinct B. cinerea strains in vitro 

and in vivo on apples and strawberries. 

 

3.2 Materials and Methods 

3.2.1 Culturing conditions and inoculum preparation 

Twenty-three yeast isolates (Table 3.1) were sourced from the biobank of ARC Infruitec-

Nietvoorbij (Fruit, Vine and Wine Institute of the Agricultural Research Council, Stellenbosch, 

South Africa). The yeast selection criteria included previous research findings (Gomomo et al., 

2022) and results from enzyme activity screenings. The yeasts were initially cultured on yeast 

malt agar (YMA) media composed of 1% glucose, 0.3% malt extract, 0.3% yeast extract, 0.5% 

peptone, and 2% bacteriological agar and incubated at 28°C for 48 h. For inoculum preparation, 

using a sterile loop, a portion of each pure yeast colony was added to test tubes containing 5 

mL of sterilised yeast malt broth. (YMB) (Sigma-Aldrich, South Africa) and subsequently 

placed in incubation at 28°C for another 48 h. Yeast cell counts were then performed using a 

haemocytometer under a microscope at 400x magnification to standardise the yeast inoculum 

concentration to 1×108 cells/mL. 
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Botrytis cinerea strains B05.10 and  SAGWRI-FF1 were sourced from the South African Grape 

and Wine Research Institute (Stellenbosch University, South Africa), and isolate PPRI 30807 

was acquired from the ARC Plant Health and Protection biobank (Pretoria, South Africa). 

Botrytis cinerea B05.10 is a wild-type strain and FF1 is a hypervirulent strain (Barkhuizen, 

2019). The mould cultures were grown on potato dextrose agar (PDA, Merck, South Africa) at 

25°C for 7 to 14 days. To prepare inoculum, a 5 mm mycelial disk was excised from a 5-day-

old culture plate for each strain. To prepare a 50 mL spore suspension, the plate surface was 

gently scraped with a sterile loop and rinsed with sterile distilled water, and the suspension was 

transferred to a sterile 250 mL Schott bottle. The spore concentration was adjusted to 1×105 

spores/mL using a haemocytometer and microscope at 400x magnification. 
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Table 3.1 Yeasts screened for the production of lytic enzymes. 

Yeast code Species name Starch Cellulase Protease Glucosidase Chitinase Pectinase Lipase 

β-1,3 

Glucanase 

Y6 Aureobasidium melanogenum + + + + + + + + 

Y11 Debaryomyces hansenii - - - - - - + - 

Y17 Hanseniaspora occidentalis - - - - - - + - 

Y24 Meyerozyma guilliermondii  - - - - - - + - 

Y35 Rhodotorula dairenensis - - + - - - + + 

Y39 M. guilliermondii  - - - - - - + - 

Y63 Suhomyces pyralidae + + + - - - + + 

Y64 Pichia kluyveri - - - - - - + - 

Y65 Meyerozyma guilliermondii  - - + - - - + + 

Y74 Debaryomyces delbrueckii  - - - - - - + + 

Y75 Saccharomyces cerevisiae - - - - - - + - 

Y83 Brettanomyces bruxellensis - - - - - - + - 

Y84 Debaryomyces hansenii - - - - - - + - 

Y88 M. guilliermondii  + + + - - - + + 

Y89 Zygoascus hellenicus + + + - - - + + 

Y91 Zygosaccharomyces rouxii - - - - - - + - 

Y92 Z. rouxii - - - - - - + - 

Y93 Z. microellipsoides - - - - - - + - 

Y95 Z. florentinus - - - - - - + - 

Y96 Z. fermentati - - - - - - + - 

Y97 Z. bisporus - - - - - - + - 

Y102 Starmerella  magnoliae - - - - - - + - 

Y103 Saccharromyces cerevisiae - - - - - - + - 

*(-) no enzymes activity, (+) enzyme activity
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3.2.2 Extracellular lytic enzyme activity 

The yeast isolates were evaluated for their ability to produce lytic enzymes, including 

proteases, chitinases, glucanases, cellulase, starch-degrading amylases, pectinase and lipases. 

A 10 µL suspension of each yeast culture (±1×108 cells/mL) was spotted onto agar plates 

containing specific substrates for each enzyme assay (Figure 3.1). The plates were incubated 

at 28°C for 4-7 days, after which enzymatic activity was assessed. Each treatment was 

conducted in triplicate. Enzyme activity was indicated by clear halos surrounding the yeast 

colonies (Figure 3.1) and was recorded as either (-) for no activity or (+) for activity. 

 

Figure 3.1: A representative example of extracellular lytic enzyme activity of selected yeast 

isolates, proteases (A), chitinase (B), β-1,3-Glucanase (C), β-glucosidase (D), cellulase (E), 

starch (F), pectinase (G) and lipase (H). Enzyme activity is denoted by a positive sign (+), 

whereas no enzyme activity is indicated by a negative sign (-). For lipase activity, the arrows 

show clear halos around the colonies. This is a representative example of three replicates. 

 

 

A B C 
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3.2.2.1 Protease activity 

Protease activity was assessed using a modified protocol based on Liu et al. (2019). Assays 

were conducted on skim milk agar plates containing 10% skim milk powder and 2% 

bacteriological agar. Enzymatic activity was indicated by a clear halo around the inoculated 

area. 

 

3.2.2.2 Chitinase activity 

Chitinase activity was determined following an adapted method from Verma and Garg (2019). 

Chitin agar plates, prepared with 0.1% finely ground chitin derived from shrimp as the sole 

carbon source and 2% bacteriological agar, were used for the assay. After incubation, Gram’s 

iodine was applied to the plates for 30 min. Chitinase activity was identified by the appearance 

of clear halos around the colonies. 

 

3.2.2.3 Glucanase activity 

β-1,3-Glucanase activity was evaluated using a laminarin medium consisting of 0.5% 

laminarin, 0.67% yeast nitrogen base and 2% bacteriological agar) (Sigma-Aldrich, South 

Africa) as following the method described by Strauss et al. (2001). After incubation, the plates 

were stained with 0.06% Congo red for 60 min at room temperature, and excess stain was 

decanted. The plates were subsequently treated with 1 mol/L NaCl for 15 min. Enzymatic 

hydrolysis of glucan was indicated by a yellow-orange halo surrounding the colonies. 

 

3.2.2.4 Glucosidase activity 

β-Glucosidase activity was determined on a selective medium containing 0.67% yeast nitrogen 

base (YNB, Difco), 0.5% arbutin and 2% bacteriological agar, as outlined by Strauss et al. 

(2001). The pH of the medium was adjusted to 5 before autoclaving. Additionally, 10 mL of a 
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1% ammonium ferric citrate solution (filter-sterilised) was added to the medium before plating. 

Colonies exhibiting β-glucosidase activity were distinguished by a brown discolouration of the 

medium. 

 

3.2.2.5 Cellulase activity 

Cellulase activity was evaluated on a medium containing 0.2% carboxymethyl cellulose 

carboxymethyl cellulose (CMC), 1% yeast nitrogen base (1%) and 2% bacteriological agar. 

Following incubation, the plates were flooded with Gram’s iodine for 30 min. Cellulase activity 

was indicated by clear halos around the colonies. 

 

3.2.2.6 Starch degrading activity 

Yeasts were screened for starch-degrading activity on a medium comprising 0.67% YNB, 0.2% 

soluble starch and 0.2% bacteriological agar at pH 6 following the protocol by Buzzini and 

Martini (2002). After incubation, the plates were treated with an iodine solution, and starch 

hydrolysis was indicated by a pale-yellow zone surrounding the colonies. 

 

3.2.2.7 Pectinase activity 

Pectinase activity was assessed following an adapted method from McKay (1988) using a 

pectinase agar medium containing 1.25% pectin (Sigma), 0.68% potassium phosphate (pH 3.5), 

0.67% YNB, 1% glucose and 2% bacteriological agar. Plates were stained with 0.1% ruthenium 

red, and colonies producing a purple halo were identified as positive for pectinase activity. 

 

3.2.2.8 Lipase activity 

Lipase activity was tested on a tributyrin agar medium containing 0.5% peptone, 0.3% yeast 

extract, 1% tributyrin and 2% bacteriological agar adjusted to pH 6, following the method of 
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Buzzini and Martini (2002). A clear halo surrounding the colony in the opaque medium 

signified lipase activity.  

 

3.2.3 Dual culture assay 

Dual culture assays were used to assess the inhibitory effects of yeasts on mycelial growth, 

following the protocol by Chen et al. (2018). Four yeast strains, which displayed multiple lytic 

enzyme activities in initial screenings, were selected for evaluation (Table 3.2). Additionally, 

yeast strain P. kluyveri (Y64), previously studied by Mewa-Ngongang et al. (2019a, b) and 

Gomomo et al. (2022), was included as the reference strain. A 5 mm mycelial disk was 

positioned at the edge of the YMA plate, and 20 μL of the yeast suspension (1×108 cells/mL) 

was spotted 40 mm away from the mycelial disk (Figure 3.2). Incubation was conducted at 

25°C for 5-9 days.  

 

Negative control plates contained only the 5 mm diameter mycelial disk of the target mould, 

while positive control plates included 0.5 g/L of the commercial fungicide Captan (N-

trichloromethylthio-4-cyclohexene-1,2-dicarboximide). All treatments were performed in 

triplicate. The percentage inhibition of mycelial growth (MGI) was calculated using the 

following formula: 

MGI = [(D0–Dt)/D0] × 100 

with D0 representing the average horizontal growth of the mould colony in the negative control 

and Dt representing the average horizontal growth of the fungal colony on the yeast-treated 

plates (Figure 3.2), as described by Núñez et al. (2015). 
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Table 3.2. Yeasts selected for the dual assays, mould spore germination and mouth-to-mouth 

assays on yeast malt agar.  

Yeast code Species name Origin 

Y6 Aureobasidium melanogenum Jaboticaba fruit 

Y63 Suhomyces pyralidae Shiraz wine fermentation 

Y64 Pichia kluyveri Shiraz wine fermentation 

Y88 Meyerozyma guilliermondii  Apple 

Y89 Zygoascus hellenicus Apple 

 

 

Figure 3.2: Photographic representation of Botrytis cinerea growth (A) and the antagonistic 

activity of the yeast isolate Aureobasidium melanogenum (Y6) against B. cinerea (B) on yeast 

malt agar. D₀ indicates the horizontal growth of the mould colony on control plates (no yeast 

treatment), while Dₜ indicates the horizontal growth on yeast-treated plates. Each plate shown 

is a representative example from three replicates. 

 

3.2.4 Mould spore germination assay 

The agar plate method, as described by Núñez et al. (2015), was used for a radial inhibition 

assay. Yeast cell suspensions at a concentration of 1×10⁸ cells/mL were prepared from culture 
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0
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t
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broths, and 100 µL of each suspension was evenly distributed on YMA plates and allowed to 

dry. Subsequently, 15 µL of a B. cinerea spore suspension (1×105 spores/mL) was spotted at 

the centre of each plate (Figure 3.3), with each treatment conducted in triplicate. Negative 

control plates contained only the 15 µL spore suspension at the centre of the YMA. The plates 

were incubated at 25°C for 5-9 days. The mould radial inhibition (MRI) was calculated as 

follows: 

MRI = [(D0-Dt)/D0] × 100,  

with D0 representing the average diameter of the mould growth on the negative control plates 

and Dt representing the diameter of the mould growth on the yeast- treated plates (Núñez et 

al., 2015). 

 

Figure 3.3: Illustration of Botrytis cinerea growth (A) and the inhibitory effect of the yeast 

isolate Suhomyces pyralidae (Y63) on B. cinerea (B) cultured on yeast malt agar. D₀ denotes 

the colony diameter on untreated control plates, while Dₜ refers to the colony diameter on plates 

treated with the yeast isolate. Each plate displayed is a representative sample from three 

replicates. 

 

D0 Dt 
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3.2.5 Volatile organic compound (VOC) production assay 

The production of VOCs by selected yeast isolates was evaluated using the mouth-to-mouth 

assay method described by Medina-Córdova et al. (2016). In this method, two yeast malt agar 

(YMA) plates were sealed face-to-face with laboratory film. The bottom plate was inoculated 

with 100 µL of the yeast suspension (1×10⁸ cells/mL), while a 5 mm mould mycelial disk was 

positioned at the centre of the top plate. For the negative control, only the mycelial disk was 

placed in the centre of the top plate, with no yeast applied to the bottom plate. For the positive 

control, 0.5 g/L of the commercial fungicide Captan was spread on one YMA plate, with the 

mycelial disk placed on the other. All plates were incubated at 25°C for 7 days, and each 

treatment was performed in triplicate. The volatile organic compound inhibition activity 

(VOCIA) was calculated using the following equation (Núñez et al., 2015): 

VOCIA = [(D0-Dt)/D0] × 100  

with D0 representing the average diameter of the mould colony on the negative control plates 

and Dt representing the diameter of the mould colony on the treated plates, as shown in Figure 

3.4. 
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Figure 3.4: Depiction of Botrytis cinerea growth (A) and the inhibitory effect of the yeast 

isolate Pichia kluyveri (Y64) on B. cinerea (B) cultured on yeast malt agar. D₀ indicates the 

average colony diameter on untreated control plates, while Dₜ represents the colony diameter 

on plates treated with the yeast isolate. The plates shown are representative examples from 

three replicates. 

 

3.2.6 Extraction of volatile organic compounds and gas chromatographic analyses  

3.2.6.1 Sample preparation and analyses 

Volatile organic compounds (VOCs) produced by P. kluyveri and S. pyralidae were analysed 

using headspace solid-phase microextraction coupled with gas chromatography-mass 

spectrometry (HS-SPME–GC–MS), following a modified method based on Maluleke et al. 

(2022). Two sterile YMA layers were prepared by pouring 2 mL of agar on opposite sides of 

each vial. A spore suspension of B. cinerea PPRI 30807 (1×105 spores/mL) was prepared, and 

10 µL of the suspension was inoculated onto one side of the vial using a sterile inoculation 

loop (LP ITAKIAN SPA, Milan, Italy). On the opposite side, 10 μL of the yeast suspension 

(1×108 cells/mL) was inoculated. The vials were incubated at 25°C for 5 days. Control vials 

inoculated only with the B. cinerea spore suspension or the yeast cell suspension were included, 

and all treatments, including controls, were conducted in triplicate. 

D0 Dt 

B A 
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For GC–MS analysis, 50 μL of a 10 ppm solution of anisole d8 solution was added to the centre 

of each vial as an internal standard. The vials were subsequently incubated in an autosampler 

at 70°C for 10 min. A 50/30 μm divinylbenzene/carboxen/polydimethylsiloxane 

(DVB/CAR/PDMS) SPME fiber (Supelco, Bellefonte, PA, USA) was then exposed to the 

headspace of each vial for 30 min under the same temperature conditions. Following 

equilibration, the fibre was inserted into the GC injector at 250°C, where compounds were 

thermally desorbed over 10-min period. 

 

3.2.6.2 Chromatographic conditions 

The analyses were performed using an Agilent 6890N gas chromatograph (Agilent, Palo Alto, 

CA, USA) coupled to an Agilent 5975B Inert XL EI/CI mass spectrometer detector (Agilent, 

Palo Alto, CA, USA) and equipped with a CTC Analytics PAL autosampler. Chromatographic 

separation was achieved using a polar ZBWax capillary column (30 m length, 0.25 mm internal 

diameter, 0.25 μm film thickness). The oven temperature program commenced at 40°C, held 

constant for 17 min, then increased at a rate of 8°C/min to 240°C, with a final hold for 5 min. 

Helium was used as the carrier gas at a constant flow rate of 1.0 mL/min. The injector operated 

in a splitless mode at 250°C, with a purge flow of 50 mL/min initiated after 2 min and a gas 

saver flow of 50 mL/min maintained for an additional 5 min. The ion source and quadrupole 

temperatures were set to 230°C and 150°C, respectively, while the transfer line temperature 

was maintained at 280°C. Compounds were identified by comparing their retention times and 

mass spectra to those in the NIST05 spectral library. 

 

3.2.7 Post-harvest fruit bioassays  

Post-harvest biocontrol efficacy assays were conducted on "Golden Delicious" apples and 

"Earliglow" strawberries across 16 treatments (Table 3.3). Each treatment included five 
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replicates, with each replicate comprising a rectangular fruit-packaging box containing five 

apples or a punnet with five strawberries. Fruit surfaces were sprayed with 70% ethanol to 

eliminate surface microorganisms and allowed to dry completely before wound infliction. A 

sterile cork borer was used to uniformly wound the fruits (approximately 5 mm diameter and 

3 mm deep).  

 

After 15 min, 15 μL of sterile purified water was applied to the wound in the control group, 

while the other treatments received 15 μL of the B. cinerea spore suspension (1×105 

spores/mL), followed by a 30-min drying period. Then, 15 μL of a yeast inoculum (1×108 

cells/mL) or 15 μL of the commercial fungicide Captan (0.5 g/L) was applied to the wound. 

The negative control was treated only with the B. cinerea spore suspension, without any yeast 

or fungicide. The treated fruits were incubated at approximately 20°C for 4–6 days at 80% 

relative humidity. Inhibition of mould growth was determined by the absence of visible mould 

development. Lesion diameters were measured, and the percentage of growth inhibition was 

calculated using the previously established formulas. 
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Table 3.3 Summary of treatments applied to apples and strawberries during post-harvest 

biocontrol trials. 

Treatment Description 

Treatment 1  Sterile distilled water (Control)  

Treatment 2  Botrytis cinerea B05.10 

Treatment 3  B. cinerea IWBT-FF1 

Treatment 4  B. cinerea PPRI 30807 

Treatment 5  B. cinerea B05.10 and Suhomyces pyralidae Y63  

Treatment 6  B. cinerea IWBT-FF1 and S. pyralidae Y63  

Treatment 7  B. cinerea PPRI 30807 and S. pyralidae Y63  

Treatment 8  B. cinerea B05.10 and Pichia kluyveri Y64 

Treatment 9  B. cinerea IWBT-FF1 and P. kluyveri Y64 

Treatment 10  B. cinerea PPRI 30807 and P. kluyveri Y64 

Treatment 11  B. cinerea B05.10 and Aureobasidium melanogenum Y6 

Treatment 12  B. cinerea IWBT-FF1 and A. melanogenum Y6 

Treatment 13  B. cinerea PPRI 30807 and A. melanogenum Y6 

Treatment 14  B. cinerea B05.10 and Captan  

Treatment 15  B. cinerea IWBT-FF1 and Captan  

Treatment 16  B. cinerea PPRI 30807 and Captan  

 

3.2.8 Statistical analyses  

Percentage inhibition data from each assay were analysed using a one-way analysis of variance 

(ANOVA) performed with the GLM procedure in SAS software (version 9.4, SAS Institute 

Inc, Cary, NC, USA). The normality of standardised residuals was assessed using the Shapiro-

Wilk test. Fisher’s least significant difference (LSD) values were calculated at a significance 

level of 5% (p = 0.05) to facilitate the comparison of treatment means. A probability level of 
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5% was deemed significant for all statistical tests. Statistical significance for all tests was set 

at p ≤ 0.05.  

3.3 Results and Discussion 

3.3.1 Extracellular lytic enzymes activity 

Among the 23 yeast strains examined, all displayed lipase activity, with additional enzyme 

activities varying across strains (Table 3.1). Notably, A. melanogenum, produced all the 

enzymes tested, while S. pyralidae, Z. hellenicus and M. guilliermondii Y88 demonstrated 

starch-degrading enzymes, protease, glucanase and cellulase activities. Rhodotorula 

dairenensis and M. guilliermondii Y65 also produced proteases and glucanases alongside 

lipases, whereas the remaining yeast strains exhibited activity for one additional enzyme or 

none.  

 

Previous studies have documented the enzyme-producing capabilities of Aureobasidium 

species. Parafati et al. (2015), Zajc et al. (2019) and Di Francesco et al. (2020a) reported 

glucanase, pectinase, and protease activities for A. melanogenum, A. pullulans, and A. 

subglaciale, supporting the role of Aureobasidium spp. in producing lytic enzymes. Zajc et al. 

(2019) and Moura et al. (2021) further observed chitinase and glucanase activity in A. 

melanogenum, aligning with the current findings. The protease activity in S. pyralidae 

corroborates findings by Kantarcioǧlu and Yücel (2002), Oksuz et al. (2007) and Mehlomakulu 

et al. (2014).  

 

De Souza Ramos et al. (2015) and Yang et al. (2022) also reported protease and glucanase 

activities in Suhomyces spp., supporting this study’s observations. Additionally, Ruas et al. 

(2019), Agirman and Erten (2020) and Lorrine et al. (2022) found M. guilliermondii capable 

of extracellular protease production, although this was strain dependent, consistent with the 
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results here. Maluleke et al. (2022) reported that chitinase and glucanase activities were 

common in yeasts with antagonistic activity against B. cinerea, further supporting the findings. 

 

3.3.2 Dual culture assay  

Yeasts are known to inhibit various moulds through the production of diffusible metabolites. 

The five yeasts tested displayed varying levels of growth inhibition against the three B. cinerea 

strains, indicating that that inhibition effectiveness varies depending on both yeast species and 

fungal strain (Figure 3.5). Aureobasidium melanogenum (Y6) was the most effective, 

demonstrating 55%, 52% and 40% inhibition against B. cinerea B05.10, IWBT-FF1 and PPRI 

30807, respectively, whereas the commercial fungicide Captan achieved 57%, 41% and 34% 

inhibition (Figure 3.5A, B, C). This outcome aligns with Di Francesco et al. (2020a), although 

the yeast strain exhibited lower efficacy in their study compared to this study. Similarly, 

Gomomo et al., (2022) reported that A. melanogenum inhibited a different strain of B. cinerea 

by 55% in vitro, supporting the findings of this study. 

 

Suhomyces pyralidae (Y63) ranked second, inhibiting B. cinerea B05.10, IWBT-FF1, and 

PPRI 30807 by 56%, 38%, and 35%, respectively. Previous work by Mewa-Ngongang et al. 

(2019b) reported 100% inhibition of S. pyralidae on B. cinerea spore germination, while 

Gomomo et al. (2022) found a 62% under in vitro conditions, suggesting that S. pyralidae is 

more effective at preventing spore germination than controlling established mould growth. 

Meyerozyma guilliermondii (Y88) inhibited B. cinerea strains B05.10, IWBT-FF1, and PPRI 

30807 by 53%, 43% and 15%, respectively. This is consistent with findings by Wang et al. 

(2018) and Cheng et al. (2023), who also reported antifungal activity of M. guilliermondii 

against B. cinerea. The reference strain P. kluyveri (Y64) showed limited inhibition with an 

average activity of 24% against the three B. cinerea strains, similar to observations by Gomomo 
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et al. (2022), who noted its relatively weak antagonistic effect. The inhibitory effect of the 

highest performing yeasts, A. melanogenum, S. pyralidae, and M. guilliermondii, may be 

attributed to their production of cell wall-degrading enzymes (Table 3.1), and their ability to 

compete with B. cinerea for nutrients and space. 
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A 
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C 

 

Figure 3.5: Growth inhibition activity (expressed as a percentage) of five yeasts (details listed 

in Table 3.2) and Captan (Cap), a commercial fungicide against Botrytis cinerea B05.10 (A), 

IWBT-FF1 (B) and PPRI 30807 (C) using the dual culture assay. The values represent the 

averages of three replicates, with the corresponding standard deviations also provided. 

Different letters denote significant differences (p≤0.05) between treatments. The plates for the 

negative control treatments contained only the relevant moulds and served as the baseline for 

assessing growth inhibition. 
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3.3.3 Mould spore germination assay 

A radial inhibition assay was used to assess the effect of S. pyralidae, P. kluyveri, A. 

melanogenum, M. guilliermondii and Z. hellenicus on spore germination of three B. cinerea 

strains (Figure 3.6). Notably, the inhibitory levels observed were higher than those in the dual 

culture assay (Figure 3.5). Previous research by Mewa-Ngongang et al. (2019b) has shown that 

these non-Saccharomyces yeasts can inhibit mould growth through various mechanisms, such 

as rapid colonisation of surfaces and outcompeting spoilage moulds, thereby limiting mould 

proliferation. Both M. guilliermondii (Y88) and P. kluyveri (Y64) were highly effective, 

achieving 100% inhibition against all three B. cinerea strains (Figure 3.6A, B, C). 

 

The increased inhibition by P. kluyveri compared to its mycelial growth inhibition in the dual 

culture assay (Figure 3.5), underscores the stronger antagonistic effect of these yeasts on spore 

germination, highlighting their potential as preventative treatments against moulds. This 

finding aligns with previous reports by Wang et al. (2018) and Sepúlveda et al. (2023), who 

observed a complete inhibitory effect by M. guilliermondii against two B. cinerea strains of in 

vitro. Additionally, Mewa Ngongang et al. (2019b; 2021) found that P. kluyveri effectively 

inhibited B. cinerea, corroborating findings of this study. Suhomyces pyralidae (Y63) 

demonstrated 100% inhibition against B. cinerea B05.10 and IWBT-FF1, and showed 87% 

inhibition against B. cinerea PPRI 30807. Similar findings were reported by Carbó et al. 

(2019), Ngongang et al. (2019b) and Gao et al. (2021), who noted various Candida spp. 

exhibited differing degrees of inhibitory activity against B. cinerea spoilage, consistent with 

results from this study.  
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Figure 3.6: Growth inhibition activity, expressed as a percentage, of five yeast strains (details 

provided in Table 3.2) and Captan (Cap), a commercial fungicide against Botrytis cinerea 

B05.10 (A), IWBT-FF1 (B) and PPRI 30807 (C), assessed using a mould spore germination 

assay. Data represent the mean values from three independent replicates, with standard 

deviations shown. Treatments with distinct letters indicate statistically significant differences 

(p ≤ 0.05). Negative control plates, containing only the respective B. cinerea strains, served as 

references for evaluating growth inhibition. 
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3.3.4 Volatile organic compound (VOC) production assay 

The mode of action of VOCs in inhibiting B. cinerea was explored using the mouth-to-mouth 

assay. Results indicated that VOCs produced by the yeasts inhibited the growth of B. cinerea, 

with inhibition levels varying among yeast strains (Figure 3.7). Notably, B. cinerea strain PPRI 

30807 exhibited higher susceptibility (mean inhibition of 73%) to yeast VOCs than strain 

B05.10 (mean inhibition of 38%). This pattern differed from the dual culture assay, where the 

inhibition of PPRI 30807 was less pronounced, suggesting that VOCs could be a primary mode 

of action against this particular strain. 

 

In the VOC assay trial, P. kluyveri (Y64) demonstrated the highest inhibition, achieving 60%, 

76%, and 100% inhibition against B. cinerea B05.10, IWBT-FF1, and PPRI 30807, 

respectively (Figure 3.7). Unlike in the diffusible metabolite assay (Figure 3.5) where P. 

kluyveri (Y64) exhibited lower inhibition, its stronger performance in the VOC assay points 

toward VOC production as its primary antagonistic mechanism. This observation aligns with 

findings by Nägeli et al. (2023) who reported P. kluyveri as an effective inhibitor of B. cinerea 

growth in vitro, emphasising its reliance on VOCs for mould suppression. 

 

Other yeasts also demonstrated notable VOC-based inhibition. Suhomyces pyralidae (Y63) 

achieved inhibition rates of 32%, 55% and 82% against strains B05.10, IWBT-FF1, and PPRI 

30807, respectively, while M. guilliermondii Y88 exhibited 29%, 47% and 79% inhibition 

(Figure 3.7). Previous studies by Mewa-Ngongang et al. (2019b) and Choińska et al. (2020) 

also reported effective VOC-mediated inhibition of B. cinerea by S. pyralidae and M. 

guilliermondii, supporting the current findings. Zygoascus hellenicus (Y89) showed moderate 

inhibition, with rates of 44%, 38% and 58% against the three B. cinerea strains, respectively 
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(Figure 3.7), further illustrating the potential of VOC production as a biological control strategy 

against mould proliferation. 

 

A 
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C 

 

Figure 3.7: Growth inhibition activity, expressed as a percentage, of five yeast strains (details 

provided in Table 3.2) and Captan (Cap), a commercial fungicide, against Botrytis cinerea 

B05.10 (A), IWBT-FF1 (B) and PPRI 30807 (C), based on the production of volatile organic 

compounds (VOCs). Data represent mean values from three replicates, with standard 

deviations indicated. Different letters denote statistically significant differences (p ≤ 0.05) 

between treatments. Negative control treatments, containing only the respective B. cinerea 

strains, served as references for evaluating growth inhibition. 
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3.3.5 Volatile organic compound (VOC) extraction and gas chromatographic analyses  

The VOCs produced by P. kluyveri and S. pyralidae were shown to play a significant role in 

inhibiting B. cinerea growth during in vitro trials (Figure 3.7). The VOCs produced by P. 

kluyveri and S. pyralidae were analysed using solid-phase microextraction coupled with gas 

chromatography–mass spectrometry (SPME-GC–MS), identifying a total of 29 compounds, of 

which seven were consistently present across all replicates. The key compounds included 

alcohols (isobutanol, isoamyl alcohol, 2-phenylethanol), esters (isoamyl acetate, 2-phenethyl 

acetate), gamma butyrolactone (γ-decanolactone) and a fatty acid methyl ester (methyl 

palmitate) (Table 3.4). These VOCs were produced by the yeast isolates alone or in conjunction 

with B. cinerea. Notably, isoamyl alcohol, 2-phenylethanol, 2-phenethyl acetate and methyl 

palmitate were also detected when B. cinerea was cultured independently. 

 

Suhomyces pyralidae produced all seven VOCs in monoculture, with isobutanol, isoamyl 

acetate and 2-phenethyl acetate concentrations slightly elevated in the presence of B. cinerea. 

These VOCs, particularly isobutanol, isoamyl acetate and 2-phenethyl acetate, are likely 

contributors to the inhibition of B. cinerea, aligning with findings of Li et al. (2024) who 

reported isoamyl acetate’s antagonistic effects against grey mould on blueberries. Further, Zou 

et al. (2023) demonstrated the antifungal efficacy of isoamyl acetate against B. cinerea 

mycelial growth, and Hanseniaspora uvarum effectively controlled B. cinerea in strawberries 

and cherries, with 2-phenylethyl acetate identified as the predominant VOC (Ruiz-Moyano et 

al., 2020). Phenylethyl acetate has also shown strong inhibitory activity against Aspergillus 

ochraceus and Mucor spp. growth (Masoud et al., 2005; Choińska et al., 2020).  

 

When co-cultured with B. cinerea, S. pyralidae produced slightly lower levels of isoamyl 

alcohol and 2-phenylethanol, yet these VOCs continued to contribute to its antagonistic effect. 
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Calvo et al. (2020) reported complete inhibition of B. cinerea growth in vivo by isoamyl 

alcohol, with additional studies by Maluleke et al. (2022) and Zou et al. (2023), linking isoamyl 

alcohol and 2-phenylethanol to B. cinerea inhibition. The observed inhibition of B. cinerea 

may be due to the combined or synergistic effects of VOCs produced by S. pyralidae. Pichia 

kluyveri, when cultured alone, produced high concentrations of isoamyl acetate and 2-

phenethyl acetate; however, these levels significantly decreased when co-cultured with B. 

cinerea. Lower concentrations of isoamyl alcohol and 2-phenylethanol were also observed in 

co-culture, yet these VOCs may still be central to B. cinerea suppression. 

 

Previous research on biocontrol yeasts, such as P. kudriavzevii, P. occidentalis, W. anomalus, 

Hanseniaspora uvarum and Candida intermedia, demonstrates that VOCs effectively inhibited 

B. cinerea spore germination and mycelial growth (Contarino et al., 2019; Choińska et al., 

2020; Maluleke et al., 2022; Zhao et al., 2022). Ethanol and 2-phenylethanol are specifically 

highlighted as potent antifungal agents against B. cinerea and Alternaria alternata (Di 

Francesco et al., 2015; Yalage Don et al., 2020). Additionally, transcinnamaldehyde has shown 

to inhibitory effects on B. cinerea mycelial growth and conidia germination, significantly 

reducing infections in cherry tomatoes (Guo et al., 2019). VOCs such as, 3-methyl-1-butanol, 

2-phenylethanol, 2-ethyl-1-hexanol, 4-methyl-ethyl ester and ethyl acetate have also been 

identified as effective in inhibiting B. cinerea spore germination and mycelial growth (Huang 

et al., 2011; Huang et al., 2012; Oro et al., 2018; Di Francesco et al., 2020b).  

 

The observed decrease in VOC concentrations in the presence of B. cinerea may result from 

interspecies competition for oxygen and/or carbon dioxide within the test environment, with 

the biocontrol efficacy of the yeast potentially deriving from the synergistic effects of VOCs 

and elevated carbon dioxide levels (Altieri et al., 2004; Contarino et al., 2019). Additionally, 
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B. cinerea may produce defensive compounds that alter the metabolic pathways of biocontrol 

yeasts, resulting in shifts in VOC production profiles (Santos et al., 2022). 

 

Table 3.4 Major volatile compounds (VOCs) produced by Pichia kluyveri, Suhomyces 

pyralidae and Botrytis cinerea PPRI 30807. 

VOCs B. cinerea  P. kluyveri P. kluyveri and 

B. cinerea  

S. pyralidae S. pyralidae 

and B. cinerea  

 Average area ratio 

Isobutanol ND 0.006 ND 0.009 0.012 

Isoamyl acetate ND 2.489 ND 0.001 0.002 

Isoamyl alcohol 0.006 0.136 0.040 0.140 0.135 

2-Phenethyl 

acetate 

0.004 3.207 1.325 0.002 0.004 

2-Phenylethanol 0.005 0.155 0.034 0.021 0.019 

γ-Decanolactone ND ND ND 0.008 0.003 

Methyl 

palmitate 

0.004 0.012 0.001 0.001 0.001 

*ND-Not detected 

 

3.3.6 Post-harvest fruit bioassays  

The application of yeast-based biocontrol agents demonstrated significant efficacy in reducing 

the spoilage of B. cinerea in apples and strawberries, resulting in marked reductions in fruit 

decay (Figures 3.8 and 3.9). In apple trials, S. pyralidae (Y63) effectively inhibited the growth 

of B. cinerea strains B05.10, IWBT-FF1 and PPRI 30807 by 64%, 40%, and 25%, respectively 

(Figure 3.8). These findings align with prior studies by Guerrero Prieto et al. (2019) and Carbó 
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et al. (2019), which also reported the antagonistic properties of Candida spp., specifically 

Candida oleophila and C. sake against B. cinerea in various fruit contexts. In this study, A. 

melanogenum displayed inhibitory activity against B. cinerea strains B05.10, IWBT-FF1 and 

PPRI 30807 by 21%, 24%, and 26%, respectively, corroborating findings by Di Francesco et 

al. (2020a), who demonstrated similar antagonistic effects of Aureobasidium species in vivo. 

Pichia kluyveri inhibited B. cinerea B05.10, IWBT-FF1 and PPRI 30807 by 11%, 17%, and 

16%, respectively. In contrast, the commercial fungicide Captan inhibited B. cinerea B05.10, 

IWBT-FF1 and PPRI 30807 by 92%, 59%, and 17%, respectively. Additionally, P. 

kudriavzevii exhibited inhibition at a minimum concentration of 1×102 cells/mL against B. 

cinerea, consistent with the findings of Maluleke et al. (2022) that Pichia spp. possess 

antimicrobial properties targeting B. cinerea.  

 

In strawberry trials, yeast strains and Captan demonstrated greater inhibition, particularly 

against B. cinerea B05.10 and IWBT-FF1, compared to their performance in apples. The 

results demonstrate that the extent of inhibition is not solely dependent on the specific yeast or 

mould species but is also influenced by the type of fruit substrate. Suhomyces pyralidae (Y64) 

inhibited B. cinerea strains B05.10, IWBT-FF1 and PPRI 30807 by 100%, 65%, and 34%, 

respectively. Aureobasidium melanogenum (Y6) exhibited 98%, 95%, and 19% antagonistic 

activity against strains B05.10, IWBT-FF1 and PPRI 30807. These observations are consistent 

with the work of Zajc et al. (2020, 2022), who highlighted the inhibitory capabilities of 

Aureobasidium spp. under in vivo conditions. Pichia kluyveri exhibited 98%, 100%, and 10% 

inhibition of B. cinerea strains B05.10, IWBT-FF1 and PPRI 30807, respectively, supporting 

the findings of Nägeli et al. (2023) and Maluleke et al. (2022) regarding the antagonistic 

potential of Pichia spp. against B. cinerea. Captan, the commercial fungicide, exhibited 100%, 

100%, and 23% inhibition for strains B05.10, IWBT-FF1 and PPRI 30807 respectively. This 
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is consistent with reports by Guerrero Prieto et al. (2019) on Captan's efficacy against B. 

cinerea in apples. 

 

Overall, the study indicates that the degree of inhibition is influenced by the specific yeast or 

mould strain as well as the fruit type. The susceptibility of B. cinerea strains varied based on 

the host fruit, highlighting the importance of fruit type in modulating the antagonistic effects 

of yeast biocontrol agents. The potential application of these yeast species, either individually 

or in combination, offers promising alternatives to traditional chemical fungicides for 

managing B. cinerea spoilage, presenting a sustainable solution for the agricultural industry.
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Figure 3.8: Growth inhibition activity (%) of Suhomyces pyralidae (Y63), Aureobasidium melanogenum (Y6), and Pichia kluyveri (Y64) against 

Botrytis cinerea strains B05.10 (A), IWBT-FF1 (B), and PPRI 30807 (C) during post-harvest trials on apples. Data represent mean values from 

five replicates, with standard deviations indicated. Different letters denote statistically significant differences (p ≤ 0.05) among treatments. (D) 

Photographs illustrate apples with lesion diameters, with each set representing a sample of 25 apples. Negative control treatments, where apples 

were infected solely with the respective B. cinerea strains, showed no growth inhibition. 
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Figure 3.9: Inhibition activity (expressed as a percentage) of Suhomyces pyralidae (Y63), Aureobasidium melanogenum (Y6), and Pichia kluyveri 

(Y64) against Botrytis cinerea strains B05.10 (A), IWBT-FF1 (B), and PPRI 30807 (C) during post-harvest trials on strawberries. Data represent 

mean values from five replicates, with standard deviations included. Different letters denote statistically significant differences (p < 0.05) between 

treatments. (D) Images depict strawberries with lesion diameters, with each set representing a sample of 25 strawberries. Negative control 

treatments, where strawberries were inoculated only with the respective B. cinerea strains, showed no growth inhibition. 
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3.4 Conclusions 

The study confirmed that A. melanogenum synthesises enzymes capable of hydrolysing cell 

walls. In the direct-contact inhibition assays, cell suspensions of S. pyralidae and A. 

melanogenum exhibited the strongest antagonistic effects against B. cinerea, with the yeasts 

significantly impeding spore germination. In fruit trials, S. pyralidae, A. melanogenum, and P. 

kluyveri each demonstrated distinct inhibitory capacities against B. cinerea, varying by fruit 

type, with results comparable to those of commercial fungicides. This suggests that these yeasts 

hold promise as biocontrol agents for reducing post-harvest spoilage in place of chemical 

fungicides. The antagonistic mechanism of P. kluyveri was linked to the production of VOCs, 

with isobutanol, isoamyl acetate and 2-phenethyl acetate identified as key antifungal agents. 

The primary VOCs contributing to this inhibition were identified as belonging to the alcohol 

and ester groups. This study underscores the potential of certain yeasts in controlling Botrytis 

cinerea. However, further investigations are necessary to assess their antimicrobial peptides 

and effectiveness against a broader range of fruit moulds. Comparative studies evaluating the 

efficacy of these biocontrol yeasts against commercial fungicides should also be conducted. 

The subsequent chapter will focus on expanding this research by examining the effectiveness 

of these yeasts in managing Penicillium species. 
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CHAPTER 4 

Use of Non-Saccharomyces Yeasts as Biocontrol Agents Against Penicillium 

Species 

 

Abstract 

Fruit producers and exporters around the world are grappling with challenges related to post-

harvest fruit decay, particularly in fruits such as apples and oranges destined for export, leading 

to waste and financial losses. The filamentous fungi, specifically Penicillium species, are the 

primary post-harvest pathogens affecting apples and oranges. This study evaluated the use of 

five non-Saccharomyces yeast species (Suhomyces pyralidae, Meyerozyma guilliermondii, 

1Pichia kluyveri, Zygoascus helenicus and Aureobasidium melanogenum) as biocontrol agents 

against Penicillium expansum, P. digitatum and P. italicum. The yeasts were screened for their 

inhibitory effects using radial inhibition and mouth-to-mouth assays on agar plates and post-

harvest trials on apples and oranges. Aureobasidium melanogenum exhibited the most 

significant growth inhibition in the radial inhibition assay, achieving 60%, 100% and 70% 

inhibition against P. expansum, P. digitatum and P. italicum, respectively. In the volatile 

compound assay, Pi. kluyveri achieved complete (100%) inhibition of P. expansum, P. 

digitatum and P. italicum. Seven volatile compounds were identified, isobutanol, 2-

phenylethanol, isoamyl acetate, isoamyl alcohol and 2-phenethyl acetate associated with the 

inhibition of P. expansum. In post-harvest trials, the yeast treatments displayed limited 

inhibition activity on apples (ca. 15%). However, on oranges, M. guilliermondii demonstrated 

significant effectiveness, inhibiting P. digitatum by 72% and P. italicum by 77%. These 

findings suggest that the selected yeast species have potential as biological control agents 

                                                           
1 To avoid confusion with other abbreviations, Pichia kluyveri will be abbreviated as 'Pi. kluyveri ' throughout 
this chapter    
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against P. expansum, P. digitatum and P. italicum, although further research is required to fully 

understand and optimise their application. 

 

Keywords: Mould spoilage, fruits, synthetic chemicals, pre- and post-harvest control, 

biocontrol agents (BCAs), yeasts 

 

4.1 Introduction 

The cultivation of pome fruits (apples and pears) and citrus fruits (grapefruit, oranges, 

tangerines, lemons and limes) represents a significant economic activity globally. These fruits 

are key sources of essential nutrients, including iron, zinc, vitamins C and E, as well as 

carotenoids (Abo-Elyousr et al., 2021; Wang et al., 2021). Numerous studies have identified 

Penicillium spp. as the primary pathogenic agents responsible for post-harvest infections in 

citrus fruits and apples (Cecilia et al., 2020; Youssef and Hussien, 2020; Huang et al., 2021). 

Penicillium digitatum (green mould) and P. italicum (blue mould) are among the most 

economically important pathogens of citrus, causing significant post-harvest losses of up to 

30% and 80%, respectively (Papoutsis et al., 2019). Conversely, P. expansum leads to 

considerable financial losses in apples, with over 50% of damage occurring post-harvest (Mari 

et al., 2002; Monroe, 2009; Papoutsis et al., 2019; Tournas and Katsoudas, 2019; Abo-elyousr 

et al., 2021). These moulds can cause defects in fruit appearance and deplete nutrients during 

both pre- and post-harvest stages (Tournas and Katsoudas, 2019; Dwiastuti et al., 2021; 

Holguín-Ibarra et al., 2021). Additionally, Penicillium spp. produce toxic secondary 

metabolites such as patulin and citrinin, which pose health risks to humans and animals (Yu et 

al., 2020; Huang et al., 2021; Zhu et al., 2022). 
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Pre-and post-harvest infections caused by Penicillium spp. can be managed using synthetic 

chemical fungicides, which are incorporated into waxes before storage (Liu et al., 2019; 

Tournas and Katsoudas, 2019; Wang et al., 2019; Yu et al., 2020; Zhu et al., 2022). Currently, 

blue and green moulds are controlled through pre- and post-harvest application of chemical 

fungicides such as imazalil, thiabendazole, pyrimethanil, and fludioxonil (Liu et al., 2019; 

Papoutsis et al., 2019). However, the extensive use of these fungicides has resulted in 

environmental pollution, increased risks to human health and the development of fungicide-

resistant pathogens (Papoutsis et al., 2019; Zhu et al., 2019; Zhu et al., 2022).  

 

The increasing accumulation of fungicide residues on agricultural products and the associated 

potential health risks of fungicide build-up in the food chain have prompted researchers to seek 

more eco-friendly alternatives. These alternatives aim to minimise adverse effects on the 

environment and human health while effectively managing pre-harvest and post-harvest 

diseases (Liu et al., 2019; Wang et al., 2019; Yu et al., 2020). Biological control methods 

utilising microbial antagonists, including yeasts, have demonstrated significant potential in 

mitigating fungal infections on various fruits during both pre- and post-harvest stages (Wang 

et al., 2019; Assaf et al., 2020). Additionally, non-fungicide approaches such as plant-derived 

botanical compounds, cold plasma and pulsed light techniques have potential for controlling 

fruit spoilage mould (Dukare et al., 2022; Oztekin et al., 2023). 

 

Biocontrol yeasts such as Candida famata, C. laurentii, Debaryomyces hansenii, Meyerozyma 

caribbica and M. guilliermondii are recognised for their lack of allergenic spore production 

and are generally considered safe for humans (Ocampo-Suarez et al., 2017; Liu et al., 2019) . 

The mode of action of the biocontrol yeasts include competition for nutrients and space, 

colonising the surfaces, additionally, possess the capacity to absorb and degrade mycotoxins, 
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produce cell wall-hydrolysing enzymes such as chitinase, β-1,3-glucanase and protease and 

produce various defence-related enzymes that can activate host defence mechanisms (Zhu et 

al., 2019; Godana et al., 2020; Yu et al., 2020; Zhu et al., 2022). In our previous study, non-

Saccharomyces yeasts were screened for their ability to inhibit the growth of a P. expansum 

strain, revealing that inhibition varied by species and strain (Gomomo et al., 2022). Building 

on that research, this study aimed to evaluate the biocontrol effectiveness of selected strains of 

Suhomyces pyralidae, Meyerozyma guilliermondii, Pichia kluyveri, Zygoascus helenicus, and 

Aureobasidium melanogenum against different Penicillium species.  

4.2 Materials and Methods 

4.2.1 Culturing conditions and inoculum preparation 

Five yeast isolates (listed in Table 4.1) obtained from Agricultural Research Council (ARC) 

Infruitec-Nietvoorbij (Fruit, Vine and Wine Institute of the ARC, Stellenbosch, South Africa) 

were evaluated. These yeasts were selected based on findings from prior studies (Gomomo et 

al., 2022). The isolates were cultured on yeast malt agar (YMA), comprising 1% glucose, 0.3% 

malt extract, 0.5% peptone, and 2% bacteriological agar, at 28°C for 48 h. A loopful of each 

pure yeast colony was subsequently transferred into sterilised test tubes containing 5 mL of 

yeast malt broth (YMB) (Sigma-Aldrich, South Africa) and incubated at 28°C for an additional 

48 h. The yeast cell concentration was quantified using a haemocytometer and a microscope at 

400× magnification, ensuring an inoculum concentration of 1 × 10⁸ cells/mL. 

 

The fungal strains Penicillium expansum PPRI 5654, P. italicum PPRI 10380, and P. digitatum 

PPRI 30517 were sourced from the biobank of the ARC-Plant Health and Protection Institute 

(Pretoria, South Africa). These moulds were cultured on potato dextrose agar (PDA, Merck, 

South Africa) at 25°C for 7 to 14 days. Spore harvesting was performed by gently scraping the 

agar surface with a sterile loop and suspending the spores in 50 mL of sterile distilled water 



93 
 

within a 250 mL sterile Schott bottle. The spore suspension was adjusted to a final 

concentration of 1 × 10⁵ spores/mL using a haemocytometer and a microscope at 400× 

magnification. 

 

Table 4.1 Yeasts used for spore germination and mouth-to-mouth assays on yeast malt agar. 

Yeast code Species name Origin Cell free extract code 

Y63 Suhomyces pyralidae Shiraz Fermentation Y63CF 

Y89 Zygoascus hellenicus Apple Y89CF 

Y6 Aureobasidium melanogenum Jaboticaba fruit Y6CF 

Y64 Pichia kluyveri Shiraz Fermentation Y64CF 

Y88 Meyerozyma guilliermondii  Apple Y88CF 

 

4.2.2 Fungal Spore Germination Assay 

A radial inhibition assay was performed using the agar plate method as described by Núñez et 

al. (2015). In summary, 100 µL of yeast cell suspensions (1×108 cells/mL) was spread onto 

YMA plates and allowed to dry before the application of mould spores. Subsequently, 15 µL 

of the mould spore suspension (1×105 cells/mL) was applied to the centre of each plate, with 

each treatment conducted in triplicate (Figure 4.1). For the negative control plates, only 15 µL 

of the spore suspension was applied to the centre of the YMA plate. For the positive control 

plates, N-trichloromethylthio-4-cyclohexene-1,2- -dicarboximide, commercially known as 

Captan (800 g/kg; Universal Crop Protection (Pty) Ltd, Kempton Park, South Africa) at a 

concentration of 0.5 g/L, was spread onto the YMA plate. The plates were incubated at 25°C 

for 5-9 days.  
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The mould radial inhibition (MRI) was calculated using the mathematical expression: 

 

MRI = (D0-Dt/D0) × 100  

with D0 representing the average diameter of the mould colony on the negative control plates 

and Dt representing the diameter of the treated plates Núñez et al. (2015). 

 

 

Figure 4.1: Illustration of Penicillium expansum growth (A) and the antagonistic activity of 

the yeast isolate Meyerozyma guilliermondii (Y88) against P. expansum (B) on yeast malt agar 

using the radial inhibition assay. D₀ indicates the colony diameter on untreated control plates, 

while Dₜ represents the colony diameter on plates treated with the yeast isolate. The plates 

shown are representative examples from three replicates. 

 

4.2.3 Volatile organic compound (VOC) production 

The production of volatile organic compounds (VOCs) by the selected yeasts was evaluated 

using the mouth-to-mouth assay described by Medina-Córdova et al. (2016). In this method, 

two YMA plates were placed face-to-face and sealed with laboratory film. The upper plate was 

inoculated with 100 µL of yeast suspension at a concentration of 1 × 10⁸ cells/mL, while the 

lower plate was inoculated at the centre with 15 µL of mould spore suspension at a 

concentration of 1 × 10⁵ spores/mL. Negative controls consisted of plates with only the mould 
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spore suspension (1 × 10⁵ spores/mL) applied to the centre of the lower plate, with no yeast 

inoculated on the upper plate. Positive controls used the commercial fungicide Captan (0.5 g/L) 

applied to the YMA plate in place of yeast. All plates were incubated at 25°C for 7 days. Each 

treatment, including controls, was conducted in triplicate. The volatile organic compound 

inhibition activity (VOCIA) was calculated using the formula provided by Núñez et al. (2015): 

VOCIA = (D0-Dt/D0) ×100  

with D0 representing the average diameter of the mould colony on the negative control plates 

and Dt representing the diameter of the mould colony on the yeast-treated plates, as shown in 

Figure 4.2. 

 

Figure 4.2: Illustration of Penicillium italicum spore growth (A) and the inhibitory effect of 

the yeast isolate Pichia kluyveri (Y64) against P. italicum (B) on yeast malt agar in the volatile 

organic compound (VOC) assay. D₀ represents the average colony diameter on control plates 

without yeast treatment, while Dₜ represents the colony diameter on yeast-treated plates. Each 

plate displayed is a representative example from three replicates. 

 

4.2.4 Extraction of volatile organic compounds and gas chromatographic analyses  

4.2.4.1 Sample preparation and analyses 

Pichia kluyveri and S. pyralidae have been previously shown to produce VOCs that inhibit the 

growth of various fruit moulds, including Penicillium expansum (Gomomo et al., 2022), which 
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is consistent with the findings of this study. The VOCs produced by Pi. kluyveri and S. 

pyralidae were characterised using headspace solid-phase microextraction coupled with gas 

chromatography-mass spectrometry (HS-SPME–GC–MS). The automated sampling and 

analysis setup for SPME was performed according to the method described by Maluleke et al. 

(2022), with minor modifications. 

 

Sterile YMA was prepared by pouring 2 mL of agar onto opposite sides of each vial. A spore 

suspension of P. expansum PPRI 5654, at a concentration of 1 × 10⁵ spores/mL, was spread on 

one side of the vial using a 10 µL inoculation loop (LP ITAKIAN SPA, Milan, Italy). 

Subsequently, 10 μL of the yeast suspension (1×108 cells/mL) was applied to the opposite side 

of the vial. The vials were incubated at 25°C for 5 days. Control vials were inoculated with P. 

expansum spore suspension and yeast cell suspension separately. Three replicates were 

performed for each biocontrol yeast-mould combination as well as for the control treatments.  

 

Before GC–MS analysis, 50 μL of a 10 ppm Anisole-d8 solution was added to the centre of 

each vial as an internal standard. The vials were then placed in the autosampler and incubated 

at 50°C for 5 min. Subsequently, a 50/30 μm divinylbenzene/carboxen/polydimethylsiloxane 

(DVB/CAR/PDMS) SPME fibre (Supelco, Bellafonte, PA, United States) was exposed to the 

headspace of each vial for 30 min at the same temperature. After equilibration, the fibre was 

introduced into the GC injector at 250°C, where a 10-min desorption period was used to release 

the compounds. 

 

4.2.4.2 Chromatographic conditions 

The analysis was performed using an Agilent Gas Chromatography system, model 6890 N 

(Agilent, Palo Alto, CA, USA), coupled with an Agilent mass spectrometer detector (MS), 
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model 5975B Inert XL EI/CI (Agilent, Palo Alto, CA, USA), and equipped with a CTC 

Analytics PAL autosampler. Chromatographic separation of compounds was achieved using a 

polar J&W DB-FFAP capillary column (60 m, 0.25 mm internal diameter, 0.5 μm film 

thickness). The oven temperature program was as follows: an initial temperature of 40°C held 

for 1 min, followed by a ramp to 150°C at 25°C/min with a 3-minute hold, a further ramp to 

200°C at 5°C/min with a 5-min hold, and a final ramp to 250°C at 5°C/min with a 2-min hold. 

The total run time was 30.54 min. Helium was used as the carrier gas, with a constant flow rate 

of 1.0 mL/min. The injector was operated in splitless mode and maintained at 250°C throughout 

the analysis. The purge flow and gas saver flow were set to 50 mL/min for 2 min and 5 min, 

respectively. The MS-detector was operated in single ion monitoring (SIM) mode, with the ion 

source and quadrupole temperatures set at 230°C and 150°C, respectively, and the transfer line 

at 250°C. Compounds were identified based on their GC–MS retention times and by comparing 

their mass spectra with the NIST05 spectral library.  

 

4.2.5 Screening yeasts for antimicrobial peptides 

Yeast preparations were conducted as described previously. Two-day-old yeast cell 

suspensions of each strain were transferred to Erlenmeyer flasks containing 100 mL of sterile 

YMB. The inocula were incubated at 28°C with agitation at 150 rpm using a rotary shaker 

(LM-53OR, RKC Instrument Inc., Ohta-ku Tokyo, Japan) for two days. Following incubation, 

samples were centrifuged at 10,000 rpm for 15 min at 4°C. The resulting cell-free supernatant 

was then filtered using ultrafiltration membranes with a pore size of 10 kDa (Vivaspin 4 PES, 

Laboratory and Scientific Equipment (Pty) Ltd, Cape Town, South Africa) by centrifugation at 

4,000 rpm for 60 min at 4 °C. After ultrafiltration, the filtrate was collected and assessed for 

antimicrobial activity against P. expansum, P. italicum and P. digitatum using the radial 

inhibition assay. Negative control plates received only 15 µL of the spore suspension at the 
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centre of the YMA plate, while positive control plates were evenly spread with Captan at a 

concentration of 0.5 g/L. The plates were incubated at 28 °C for 5-7 days. Each treatment had 

three replicates. The codes for the cell free extracts are listed in Table 4.1.  

2.4.6 Comparison of biocontrol yeasts and commercial fungicides  

The comparative evaluation and analyses were conducted using the radial inhibition assay 

method as previously described (4.2.2 Fungal Spore Germination Assay). The yeasts 

Suhomyces pyralidae (Y63), Meyerozyma guilliermondii (Y88), Pichia kluyveri (Y64), 

Zygoascus helenicus (Y89) and Aureobasidium melanogenum (Y6) were prepared according 

to established protocols. Commercial fungicides, including N-trichloromethylthio-4-

cyclohexene-1,2-dicarboximide (trade name Captan, 800 g/kg), Pyrimethanil (anilino-

pyrimidines, trade name Protector 400 SC, 400 g/L, ICA International Chemicals (Pty) Ltd, 

Stellenbosch, South Africa), and Pyrimethanil (aniline derivative, trade name Support 400 SC, 

400 g/L, Villa Crop Protection (Pty) Ltd, Aston Manor, South Africa), were prepared in 

accordance with industry standards. The negative control plates were inoculated with 15 µL of 

the spore suspension at the centre, while the positive control plates were treated with a spread 

of Captan on the YMA plates. All plates were incubated at 28 °C for 5-7 days, with each 

treatment replicated three times. 

 

4.2.7 Post-harvest fruit bioassays  

Nineteen treatments were assessed in the post-harvest biocontrol efficacy assay conducted on 

"Cara Cara" navel oranges and "Golden Delicious" apples. Each experimental unit consisted 

of a rectangular fruit-packaging box containing five oranges and five apples, with each 

treatment replicated five times. The fruits were disinfected with 70% Ethanol (v/v) to remove 

surface microorganisms and allowed to dry completely before wounding. Uniform wounds 

were inflicted using a sterile cork borer: approximately 5 mm in diameter and 5 mm in depth 
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for oranges, and approximately 5 mm in diameter and 3 mm in depth for apples. After a 15-

min period, the control treatments were inoculated with 15 μL of sterile distilled water into the 

wounds, while other treatments received 15 μL of the respective mould spore suspensions 

(1×105 cells/mL) and were allowed to dry for 30 min. Subsequently, 15 μL of a yeast inoculum 

(1×108 cells/mL) or 15 μL of the commercial fungicide Captan (0.5 g/L) was applied to the 

wounds. Negative control treatments were infected solely with the three Penicillium spp. 

without additional yeast or fungicide treatment. The treated fruits were incubated at ±20°C for 

4–6 days under 80% relative humidity. Growth inhibition was assessed by the absence of mould 

development. Lesion diameters were recorded, and percentage growth inhibition was 

calculated and analysed to evaluate the effectiveness of the treatments. 

 

4.2.8 Statistical analyses  

Growth inhibition data for each assay and Penicillium species were analysed using a one-way 

analysis of variance (ANOVA) with the GLM procedure of SAS software (version 9.4, SAS 

Institute Inc, Cary, NC, USA). Shapiro-Wilk test was applied to the standardised residuals from 

the model to assess normality. Fisher’s least significant difference (LSD) values were 

calculated at the 5% probability level (p=0.05) to compare treatment means. A significance 

level of 5% was used for all statistical tests. 

 

4.3 Results and Discussion 

4.3.1 Fungal spore germination assay 

The yeasts S. pyralidae, Pi. kluyveri, A. melanogenum, M. guilliermondii and Z. hellenicus 

were evaluated for their ability to prevent the germination of three Penicillium spp. using radial 

inhibition assays. These five yeasts exhibited varying levels of effectiveness in inhibiting spore 

germination across the three different Penicillium spp. (Figure 4.3). Among the species tested, 
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Penicillium expansum demonstrated the highest resistance to the treatments, with a mean 

inhibition of 41%, while P. digitatum was the most sensitive with a mean inhibition of 94%. 

Penicillium italicum, with a mean inhibition of 63%, was more resistant than P. digitatum. 

These results highlight differences in sensitivity or resistance to yeast treatments and 

commercial fungicide among the Penicillium species. 

 

Aureobasidium melanogenum (Y6) was the most effective yeast treatment, demonstrating 60%, 

100% and 70% inhibition against P. expansum, P. digitatum and P. italicum, respectively 

(Figure 4.3 A, B, C). These findings align with previous studies Černoša et al. (2022), Gomomo 

et al. (2022) and Zajc et al. (2022) where the inhibitory effects of A. pullulans, A. 

melanogenum, and A. subglaciale were reported on the growth of P. expansum in both in vitro 

and in vivo trials. Aureobasidium pullulans, a well-studied species, has shown potential as a 

biocontrol agent for pre- and post-harvest citrus spoilage moulds, exhibiting a 23 mm zone of 

inhibition in vitro and achieving 100% inhibition in a post-harvest bioassay (Sukmawati et al., 

2021; He et al. 2024). This study demonstrated that other species within the Aureobasidium 

genus possess antimicrobial properties against citrus spoilage moulds. The variation in 

inhibition observed may be attributed to differences in species, sources of the spoilage moulds 

(e.g., different citrus cultivars), and the assay methods used for screening. 

 

Meyerozyma guilliermondii (Y88) was the second most effective yeast strain, exhibiting 56%, 

100% and 61% antagonistic activity against P. expansum, P. digitatum and P. italicum, 

respectively (Figure 4.3 A, B, C). Previous studies Han et al. (2021) and Yang et al. (2022) 

demonstrated the broad antagonistic potential of M. guilliermondii against P. expansum on pear 

fruits, thereby corroborating the results of this research. Agirman and Erten (2020) reported 

that M. guilliermondii and A. pullulans both exhibited antagonistic effects against P. digitatum 
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and P. expansum, while Wang et al. (2021) noted the inhibition of P. italicum growth by M. 

guilliermondii. 

 

Zygoascus hellenicus (Y89) demonstrated growth inhibition of 43%, 100% and 66% against P. 

expansum, P. digitatum and P. italicum, respectively (Figure 4.3 A, B, C). The yeast showed 

better inhibition on spore germination of P. expansum when compared to the previous study 

Gomomo et al. (2022) when the yeast showed 35% inhibition for mycelia growth of P. 

expansum. These results illustrates that the yeast is struggling to control the P. expansum when 

it is already growing on the surface. The yeast show potential as a preventive treatment. 

Additionally, Zygoascus hellenicus has been previously shown to exert antimicrobial effect 

against P. italicum and P. digitatum, with a 64% mean inhibition observed on various citrus 

fruit cultivars (Arras et al., 1998). While this data dates back 26 years ago, the current study 

confirmed that Z. hellenicus remains effective in controlling citrus spoilage moulds, 

highlighting the benefit of biocontrol methods where moulds do not develop resistance to 

biocontrol yeasts. This study further demonstrates that yeasts can inhibit mould growth by 

outcompeting spoilage moulds and rapidly colonising surfaces, thereby reducing fungal 

development. 
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Figure 4.3: Inhibition activity (expressed as a percentage) of five yeast isolates (listed in Table 

4.1) and a commercial fungicide against Penicillium expansum (a), P. digitatum (b), and P. 

italicum (c) in the radial inhibition assay. CAP refers to Captan, a commercially used chemical 

fungicide. Data represent the means of three replicates, with standard deviations included. 

Different letters denote statistically significant differences (p≤0.05) between treatments. Plates 

from the negative control treatments contained only the respective moulds and were used as 

reference treatments to calculate growth inhibition. 
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4.3.2 Volatile organic compound production 

The production of VOCs against mould was assessed using the mouth-to-mouth assay. 

Variability was observed in the growth of Penicillium spp. and the level of inhibition due to 

VOC production among the yeast strains (Figure 4.4). Penicillium digitatum exhibited a mean 

inhibition of 23%, indicating lower sensitivity to the treatments compared to P. italicum (48% 

mean inhibition) and P. expansum (49% mean inhibition). In contrast to the results obtained 

from the fungal spore germination assay, the mean susceptibility of P. digitatum to the yeasts 

was lower in the mouth-to-mouth assay. This suggests that VOC production was not the 

primary mode of action for most of the yeast strains and that P. digitatum was less sensitive to 

VOCs than the other yeasts. A similar trend was observed in the previous study where the 

yeasts showed 36% mean inhibition against a different strain of P. expansum, confirming that 

Penicillium spp. were less sensitive to VOCs. 

 

Pichia kluyveri (Y64) demonstrated the highest inhibitory activity, achieving 100% inhibition 

against P. expansum, P. digitatum and P. italicum (Figure 4.4 A, B, C). According to Gomomo 

et al. (2022), the mechanism underlying this yeast's efficacy is its capacity to produce VOCs. 

Additionally, Cordero-Bueso et al. (2017) and Choińska et al. (2020) reported that VOCs 

produced by Pi. kluyveri exhibited antagonistic activity against P. expansum. Supporting these 

findings, studies by Ghasemi et al. (2015) and Liu et al. (2017) demonstrated that Pichia spp. 

including Pi. kluyveri, possess antimicrobial properties against P. digitatum and P. italicum. 

 

Zygoascus hellenicus (Y89) exhibited growth inhibitory activity of 57%, 7% and 45% against 

P. expansum, P. digitatum and P. italicum, respectively (Figure 4.4 A, B, C). Arras et al. (1998) 

also confirmed the antagonistic effects of VOCs produced by Z. hellenicus against these 

Penicillium species. Gomomo et al. (2022) also reported that Z. hellenicus produces VOCs that 
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inhibit the growth of P. expansum. Additionally, yeast isolate M. guilliermondii (Y88) 

demonstrated antagonistic effects of 62%, 14% and 27% against P. expansum, P. digitatum 

and P. italicum, respectively (Figure 4.4 A, B, C). These results are consistent with the findings 

of Agirman and Erten (2020) and Choińska et al. (2020), who reported the ability of M. 

guilliermondii to produce VOCs that inhibit the growth of Penicillium spp. in vitro. The data 

indicate that the level of inhibition due to VOC production varies among the yeast species. 
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C 

 

Figure 4.4: Inhibition activity (expressed as a percentage) of five yeast isolates (Table 4.1) and 

a commercial fungicide against Penicillium expansum (a), P. digitatum (b), and P. italicum (c) 

through the production of volatile organic compounds (VOCs). CAP represents Captan, a 

commercially available chemical fungicide. Results are presented as the means of three 

replicates, with standard deviations included. Different letters indicate statistically significant 

differences (p≤0.05). Negative control treatments, containing only the respective moulds, 

served as reference treatments for calculating growth inhibition. 
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4.3.3 Volatile organic compound extraction and gas chromatographic analyses 

The yeasts Pi. kluyveri and S. pyralidae exhibited an antagonistic effect by producing VOCs 

that effectively inhibited the growth of Penicillium spp. (Figure 4.4). The specific VOCs 

responsible for inhibiting P. expansum were identified using SPME-GC–MS and a total of 29 

compounds were detected across all the treatments. However, only seven were consistently 

present in all replicates. These seven organic compounds included alcohols (isobutanol, 

isoamyl alcohol, 2-phenylethanol), esters (isoamyl acetate, 2-phenethyl acetate), gamma 

butyrolactone (γ-decanolactone) and fatty acid methyl ester (methyl palmitate) (Table 4.2). The 

variation in VOC production among the treatments may be attributed to differences in 

metabolic processes, substrate utilisation, enzymatic activities, and environmental adaptation 

(Altieri, 2004; Contarino et al., 2019). 

 

Pichia kluyveri produced the same six VOCs in the absence and the presence of P. expansum. 

Isobutanol and 2-phenylethanol levels increased when Pi. kluyveri was grown together with P. 

expansum. Conversely, isoamyl alcohol, isoamyl acetate and 2-phenethyl acetate levels were 

higher when Pi. kluyveri was cultured alone, with their levels decreasing in the presence of P. 

expansum this might also help explain how Pi. kluyveri inhibits P. expansum. Isoamyl acetate 

and 2-phenethyl acetate levels decrease notably in the presence of P. expansum and are likely 

responsible for P. expansum growth inhibition.  

 

Suhomyces pyralidae produced all seven VOCs when grown in the absence and in the presence 

of P. expansum. Although S. pyralidae did not demonstrate strong antagonistic activity against 

P. expansum (Figure 4.4 A), the concentrations of certain compounds, including isobutanol, 

isoamyl acetate, isoamyl alcohol and 2-phenethyl acetate, were elevated when the yeast was 

co-inoculated with P. expansum. Mould can potentially produce compounds that alter the 
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metabolic pathways of the biocontrol yeasts, leading to variations in the types and quantities 

of VOCs produced, additional the competition within the vial can lead the yeast to increase the 

production of VOCs as defence mechanism (Santos et al., 2022).  

 

Isobutanol, 2-phenylethanol, isoamyl acetate, isoamyl alcohol and 2-phenethyl acetate are 

organic compounds produced by these two yeast isolates that are potentially linked to the 

inhibition of P. expansum. On studies conducted by Di Francesco et al. (2015) and Zhao et al. 

(2022) 2-phenylethanol was found to effectively inhibit the growth of P. expansum, P. 

digitatum, P. italicum and Aspergillus carbonarius on in vitro assays. These findings align with 

the current study, demonstrating that 2-phenylethanol produced by the biocontrol yeasts can be 

linked in inhibiting various fruit spoilage moulds. Additionally, Zhao et al. (2023) reported a 

25% inhibition of blue mould on kiwifruit after 5 days of storage due to 2-phenethyl acetate. 

 

Phenylethyl alcohol and 2-phenethyl acetate have been associated with the volatile metabolome 

of yeast strains exhibiting strong antifungal activity against P. digitatum in in vivo trials (de 

Souza et al., 2018). Volatile organic compounds such as isoamyl acetate and isoamyl alcohol 

from C. maltosa were found to inhibit the spore germination of mycotoxin-producing mould 

A. brasiliensis (Ando et al., 2012). These findings are consistent with the current study, which 

highlights the role of these VOCs in inhibiting mycotoxin-producing moulds. Additionally, 

isoamyl acetate was shown to completely inhibit the mycelial growth of the citrus spoilage 

mould P. digitatum under in vitro conditions (Pereyra et al., 2022). 

  



108 
 

Table 4.2 Major volatile organic compounds (VOCs) produced by Pichia kluyveri, Suhomyces 

pyralidae and P. expansum PPRI 5654 when grown separately or together.  

Volatile organic  P. expansum  Pi. kluyveri Pi. kluyveri 

and P. 

expansum  

S. pyralidae S. pyralidae and 

P. expansum  

 Average area ratio 

Isobutanol 0.005 0.006 0.013 0.009 0.014 

Isoamyl acetate ND 2.489 1.475 0.001 0.225 

Isoamyl alcohol 0.057 0.136 0.102 0.140 0.224 

2-Phenethyl 

acetate 

0.016 3.207 2.665 0.002 0.024 

2-Phenylethanol 0.039 0.155 0.211 0.021 0.020 

γ-Decanolactone ND ND ND 0.008 0.003 

Methyl 

palmitate 

0.050 0.012 0.010 0.001 0.001 

*ND-Not detected 

 

4.3.4 Evaluation of yeast antimicrobial peptides 

The yeast cell-free extracts exhibited less than 10% inhibition against all three Penicillium spp. 

(Figure 4.5). These findings suggest that the modes of action are predominantly cell-associated, 

as evidenced by the limited inhibition of molecules smaller than 10 kDa. Macromolecules 

present in the supernatant above 10 kDa showed no inhibitory effects (data not shown). It is 

highly likely that mould inhibitors, such as proteins or peptides, are cell-associated or are not 

induced by the standard YM media composition. Once the cells were removed from the extract, 

the remaining compounds were ineffective in controlling the moulds. Although the inhibition 

observed with the supernatant was minimal, it indicates potential for future research to explore 
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the parameters influencing mould inhibitor production. Studies by Spadaro and Droby (2016) 

and Freimoser et al. (2019) demonstrated that competition is the most critical mechanism of 

biocontrol, and it is likely to occur when the cells are present. This aligns with the findings of 

this study, where higher inhibitory activity was observed in the presence of cells and not in the 

cell-free extracts (Figure 4.5). The antimicrobial activity of peptides is typically species- and 

strain-dependent, and structural differences in moulds may account for variations in sensitivity 

to specific peptides (Erwig and Gow, 2016; Thery et al., 2019). 

 

4.3.5 Comparing the effectiveness of the yeasts and the commercial fungicides in 

controlling the germination of Penicillium expansum, P. italicum and P. digitatum 

The yeasts and fungicides demonstrated varying degrees of inhibitory effects on the 

germination of P. expansum, P. italicum and P. digitatum (Figure 4.5). Captan exhibited the 

highest inhibitory activity, with 73% inhibition of P. expansum and complete (100%) inhibition 

of both P. italicum and P. digitatum. These findings are consistent with those of Rosenberger 

(2009), who also reported Captan’s efficacy against P. expansum. Similarly, Guerrero Prieto 

et al. (2019) and Türkkan and Erper (2015) found Captan to be highly effective against various 

fruit spoilage moulds, outperforming yeasts and other organic compounds. The yeast 

Aureobasidium melanogenum (Y6) displayed inhibition comparable to Captan, achieving 

100% inhibition of both P. italicum and P. digitatum. Additionally, the yeasts Y63 and Y88 

also demonstrated significant inhibitory effects against all three moulds.  

 

Protector 400 SC and Support 400 exhibited inhibitory effects on the germination of 

Penicillium spp. comparable to those observed with the yeasts (Figure 4.5). Similar results 

were reported in studies by Kanetis et al. (2008), Li and Xiao (2008) and Sánchez-Torres 

(2021), where the commercial fungicides azoxystrobin, fludioxonil and thiabendazole 
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effectively inhibited P. expansum, P. digitatum and P. italicum. These findings highlight the 

potential of biocontrol yeasts to be used in combination with or as alternatives to commercial 

fungicides. Implementing a rotation of chemical fungicides during the spraying season and/or 

post-harvest cleaning and disinfection is essential to mitigate the development of mould 

resistance to these chemicals. Additionally, alternating biocontrol yeasts with chemical 

treatments may help reduce the reliance on repeated applications of the same fungicide. While 

combining yeasts and fungicides may not always be effective due to the sensitivity of some 

yeasts to chemicals, the use of yeast-derived compounds in conjunction with fungicides could 

enhance mould control. 
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C 

 

Figure 4.5: Germination inhibition activity (expressed as a percentage) of five yeasts, their cell 

free extracts (Table 4.1) and commercial fungicides (Captan, Support, Protection) against 

Penicillium expansum (a), P. digitatum (b) and P. italicum (c) using the radial inhibition assay. 

The values presented are the averages of three replicates, with standard deviations included. 

Different letters denote significant differences (p≤0.05) between treatments. The negative 

control plates contained only the corresponding moulds and acted as the baseline for evaluating 

growth inhibition. 

 

4.3.6 Post-harvest fruit bioassays  

The fruit bioassays revealed that S. pyralidae (Y63), Pi. kluyveri (Y64), A. melanogenum (Y6) 

and M. guilliermondii (Y88) were effective in controlling spoilage caused by P. expansum, P. 

digitatum and P. italicum (Figure 4.6 and 4.7). However, the inhibition of P. expansum 

observed in the in vivo apple bioassays (15% mean inhibition, Figure 4.6) was significantly 

lower compared to the in vitro assays (Figure 4.3 and 4.5) with Captan showing poor inhibition 

compared to the yeasts. This aligns with the findings by Gomomo et al. (2022) who also 

reported reduced growth inhibition activity against P. expansum in in vivo trials. Specifically, 

Aureobasidium melanogenum (Y6) demonstrated a 22% inhibition of P. expansum in these 

trials (Figure 4.6). These results are consistent with those reported by Kheireddine et al. (2021), 
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Zajc et al. (2022) and Cignola et al. (2024), who observed antagonistic effects of 

Aureobasidium spp. against P. expansum on apples, though with inhibition rates ranging from 

40% to 90%. The variability in inhibition activity may be attributed to differences in yeast 

strains.  

 

Pichia kluyveri (Y64) demonstrated a 19% inhibition of P. expansum on apples (Figure 4.6). 

Cordero-Bueso et al. (2017) similarly reported that Pi. kluyveri and other Pichia spp. exhibited 

antagonistic activity against a strain of P. expansum on grapes. These findings are consistent 

with the current study, confirming that Pichia spp. exert an antagonistic effect against 

Penicillium spp. under in vivo conditions. In contrast, the commercial fungicide showed only 

7% inhibition against P. expansum, which was significantly lower than expected and contrary 

to the results observed in radial inhibition assays (Figure 4.3 and 4.5). 

 

On oranges, M. guilliermondii (Y88) reduced the growth of P. digitatum by 72% and P. 

italicum by 77%, as shown in Figure 4.7A and 4.7B. This antagonistic effect of M. 

guilliermondii on the spore germination of P. digitatum and P. italicum on mandarin fruit has 

also been documented by Agirman and Erten (2020) and Wang et al. (2021). Similarly, Pi. 

kluyveri (Y64) inhibited P. digitatum and P. italicum by 55% and 73%, respectively. The 

inhibitory activity of Pichia species, including Pi. kluyveri, against these moulds on orange 

varieties such as Thomson navels and Newhall Sweet navels was as reported by Ghasemi et al. 

(2015) and Liu et al. (2017). Suhomyces pyralidae (Y63) exhibited 52% and 84% inhibition 

against P. digitatum and P. italicum, respectively, corroborating the work of Droby et al. (2002) 

and Liu et al. (2019), who observed similar inhibitory effects of Suhomyces spp. on P. 

digitatum and P. italicum on grapefruit and sweet oranges grown under in vivo conditions.  
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Captan proved more effective, with inhibition rates of 74% and 97%, against P. digitatum and 

P. italicum, respectively. In contrast, Aureobasidium melanogenum (Y6), which showed the 

highest inhibition activity in radial inhibition assays exhibited only 1% and 27% inhibition on 

oranges, a significantly lower efficacy compared to the fungal spore germination assay. The 

possible reason for A. melanogenum to show poor activity could be the lack of nutrients that 

could give the yeast an advantage to multiply and produce compounds to inhibit the mould. 

The antagonistic effects demonstrated by these biocontrol yeasts against Penicillium spp. 

showed their potential as alternatives to fungicides in the agricultural industry, offering a means 

to reduce fruit waste. Our results clearly show that some Penicillium species are more resistant 

to inhibition by yeast than others and that resistance might also differ on strain level. A 

biocontrol agent consisting of only one yeast species or strain might not be as effective in 

inhibiting different mould species or strains as a consortium. 

 

Figure 4.6: Growth inhibition activity (%) of Meyerozyma guilliermondii (Y88) Suhomyces 

pyralidae (Y63) Pichia kluyveri (Y64), and Aureobasidium melanogenum (Y6) against 

Penicillium. expansum, during post-harvest trials on apples. The values represent the averages 

from five replicates, with standard deviations included. Different letters signify significant 

differences (p≤0.05) between treatments. Each set corresponds to a representative sample of 

25 apples. In the negative control treatments, the apples were solely infected with P. expansum, 

resulting in no observed growth inhibition. Captan is a commercially chemical fungicide. 
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Figure 4.7: Growth inhibition activity (%) of Meyerozyma guilliermondii (Y88) Suhomyces 

pyralidae (Y63) Pichia kluyveri (Y64), and Aureobasidium melanogenum (Y6) against 

Penicillium. digitatum (a) and P. italicum (b) during post-harvest trials on oranges. The values 

represent the averages of five replicates, with the standard deviations provided. Different letters 

denote statistically significant differences (p≤0.05) between treatments. Each set represents a 

sample of 25 oranges. In the negative control treatments, the oranges were only inoculated with 

P. digitatum or P. italicum, resulting in no growth inhibition. Captan is a commercial chemical 

fungicide. 
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Figure 4.8: Representative samples of apples and oranges showing lesion diameters used to 

determine growth inhibition activity (%) of Meyerozyma guilliermondii (Y88) Suhomyces 

pyralidae (Y63) Pichia kluyveri (Y64), and Aureobasidium melanogenum (Y6) against 

Penicillium expansum, P. digitatum (B) and P. italicum (C) during post-harvest trials on 

oranges. 

 

4.4 Conclusions 

The cell suspensions of yeast strains A. melanogenum and M. guilliermondii exhibited a direct 

inhibitory effect on the spore germination of P. expansum, P. digitatum and P. italicum. Their 

efficacy was comparable to that of the commercial fungicides. Pichia kluyveri demonstrated 

an antagonistic effect against Penicillium spp. through the emission of VOCs. The primary 

VOCs responsible for this inhibitory activity were 2-phenylethanol, isoamyl acetate, isoamyl 

alcohol and 2-phenethyl acetate. During in vivo studies conducted on oranges, M. 

guilliermondii, Pi. kluyveri and S. pyralidae demonstrated the most effective antimicrobial 

properties against P. digitatum and P. italicum. The results also showed that P. expansum strain 

used in this study was less sensitive to yeast inhibition than the P. digitatum and P. italicum 

strains. Confirming how important it is to screen potential biocontrol agents against different 
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mould species and strains. The findings suggest that the application of these yeasts for 

biological control represents a viable alternative to chemical fungicides or can be considered 

for use in combination with chemical fungicides to mitigate post-harvest mould spoilage of 

fruits. This chapter, along with previous chapter highlights the potential of these yeasts as 

effective biocontrol agents against various fruit mould strains and species. However, additional 

research is required to better understand their interactions and long-term viability on fruit 

surfaces. The next chapter will delve into these areas, examining yeast interactions, post-drying 

viability and stability, as well as evaluating their Minimum Inhibitory Concentrations (MIC). 

 

References 

Abo-Elyousr, K.A., Al-Qurashi, A.D., Almasoudi N.M. (2021). Evaluation of the synergy 

between Schwanniomyces vanrijiae and propolis in the control of Penicillium 

digitatum on lemons. Egyptian Journal of Biological Pest Control 31(1), 1-10. 

Agirman, B., Erten H. (2020). Biocontrol ability and action mechanisms of Aureobasidium 

pullulans GE17 and Meyerozyma guilliermondii KL3 against Penicillium 

digitatum DSM2750 and Penicillium expansum DSM62841 causing postharvest 

diseases. Yeast 37(9-10), 437-448. 

Altieri, M.A, (2004.) Linking ecologists and traditional farmers in the search for sustainable 

agriculture. Frontiers in Ecology and the Environment 2(1), 35-42. 

Ando, H., Hatanaka, K., Ohata, I., Yamashita-Kitaguchi, Y., Kurata, A., Kishimoto, N. (2012). 

Antifungal activities of volatile substances generated by yeast isolated from 

Iranian commercial cheese. Food Control 26(2), 472-478. 

Arras, G., Cicco, V.D, Arru, S., Lima, G. (1998). Biocontrol by yeasts of blue mould of citrus 

fruits and the mode of action of an isolate of Pichia guilliermondii. The Journal 

of Horticultural Science and Biotechnology 73(3), 413-418. 



118 
 

Assaf, L.R., Pedrozo, L.P., Nally, M.C., Pesce, V.M., Toro, M.E., de Figueroa, L.C., Vazquez, 

F. (2020). Use of yeasts from different environments for the control of 

Penicillium expansum on table grapes at storage temperature. International 

Journal of Food Microbiology 320, 108520. 

Cecilia, M.L., Lopes, C.A., Sosa, M.C., Sangorrin, M.P. (2020). Semi-commercial testing of 

regional yeasts selected from North Patagonia Argentina for the biocontrol of pear 

postharvest decays. Biological Control 150 104246. 

Černoša, A., Gostinčar, C., Lavrin, T., Kostanjšek, R., Lenassi, M., Gunde-Cimerman, N. 

(2022). Isolation and characterization of extracellular vesicles from 

biotechnologically important fungus Aureobasidium pullulans. Fungal Biology 

and Biotechnology 9(1), 1-17. 

Cignola, R., Zucchinali, S., Firrao, G., Di Francesco, A. (2024). Aspects of the biocontrol 

activity of Aureobasidium spp. strain against Penicillium expansum of 

apple. Annals of Applied Biology 184(3), 307-313. 

Choińska, R., Piasecka-Jóźwiak, K., Chabłowska, B., Dumka, J., Łukaszewicz, A. (2020). 

Biocontrol ability and volatile organic compounds production as a putative mode 

of action of yeast strains isolated from organic grapes and rye grains. Antonie van 

Leeuwenhoek 113, 1135-1146. 

Contarino, R., Brighina, S., Fallico, B., Cirvilleri, G., Parafati, L., Restuccia, C., (2019). 

Volatile organic compounds (VOCs) produced by biocontrol yeasts. Food 

Microbiology 82, 70-74. 

Cordero-Bueso, G., Mangieri, N., Maghradze, D., Foschino, R., Valdetara, F., Cantoral, J.M., 

Vigentini, I. (2017). Wild grape-associated yeasts as promising biocontrol agents 

against Vitis vinifera fungal pathogens. Frontiers in Microbiology 8, 2025.1-

2025.15. 



119 
 

De Souza, J.R.B., Kupper, K.C., Augusto, F. (2018). In vivo investigation of the volatile 

metabolome of antiphytopathogenic yeast strains active against Penicillium 

digitatum using comprehensive two-dimensional gas chromatography and 

multivariate data analysis. Microchemical Journal 141, 204-209. 

Di Francesco, A., Ugolini, L., Lazzeri, L., Mari, M. (2015). Production of volatile organic 

compounds by Aureobasidium pullulans as a potential mechanism of action 

against post-harvest fruit pathogens. Biological Control 81, 8-14. 

Droby, S., Vinokur, V., Weiss, B., Cohen, L., Daus, A., Goldschmidt, E.E., Porat, R. (2002). 

Induction of resistance to Penicillium digitatum in grapefruit by the yeast 

biocontrol agent Candida oleophila. Phytopathology 92(4), 393-399. 

Dukare, A.S., Singh, R.K., Jangra, R.K., Bhushan, B. (2022). Non-fungicides-based promising 

technologies for managing post-production penicillium induced spoilage in 

horticultural commodities: a comprehensive review. Food Reviews 

International 38(3), 227-267. 

Dwiastuti, M.E., Soesanto, L., Aji, T.G., Devy, N.F., Hardiyanto (2021). Biological control 

strategy for postharvest diseases of citrus, apples, grapes and strawberries fruits 

and application in Indonesia. Egyptian Journal of Biological Pest Control 31, 1-

12. 

Erwig, L.P., Gow, N.A., (2016). Interactions of fungal pathogens with phagocytes. Nature 

Reviews Microbiology 14(3), 163-176. 

Freimoser, F.M., Rueda-Mejia, M.P., Tilocca, B., Migheli, Q. (2019). Biocontrol yeasts: 

mechanisms and applications. World Journal of Microbiology and 

Biotechnology 35(10), 154. 

Ghasemi, R., Etebarian, H.R., Sahebani, N., Aminian, H. (2015). Biochemical Changes in 

Orange Fruit Due to Plant-Penicillium italicum-Antagonism 



120 
 

Interactions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 43(2), 413-419. 

Godana, E.A., Yang, Q., Wang, K., Zhang, H., Zhang, X., Zhao, L., Abdelhai, M.H., Legrand, 

N.N.G. (2020). Bio-control activity of Pichia anomala supplemented with 

chitosan against Penicillium expansum in postharvest grapes and its possible 

inhibition mechanism. LWT 124, 109188. 

Gomomo, Z., Fanadzo, M., Mewa-Ngongang, M., Hoff, J., Van der Rijst, M., Okudoh, V., 

Kriel, J., du Plessis, H.W. (2022). Control of mould spoilage on apples using 

yeasts as biological control agents. Polish Journal of Food and Nutrition 

Sciences 72(2), 119-128. 

Guerrero Prieto, V.M., Jacobo Cuéllar, J.L., Parra Quezada, R.Á., Linares Marrufo, M.I., Ojeda 

Barrios, D.L., Hernández Rodríguez, O.A., Robles Hernández, L., Berlanga 

Reyes, D.I., Cabanillas Mata, I.J. (2019). Botrytis cinerea Pers. in post-harvest 

apple fruit, control with Candida oleophila Montrocher strains and/or synthetic 

fungicides. Nova Scientia 11(22), 69-84. 

Han, J., Zhao, L., Zhu, H., Dhanasekaran, S., Zhang, X., Zhang, H. (2021). Study on the effect 

of alginate oligosaccharide combined with Meyerozyma guilliermondii against 

Penicillium expansum in pears and the possible mechanisms 

involved. Physiological and Molecular Plant Pathology 115, 101654. 

He, Y., Degraeve, P., Oulahal, N. (2024). Bioprotective yeasts: Potential to limit postharvest 

spoilage and to extend shelf life or improve microbial safety of processed 

foods. Heliyon 10(3), e24929. 

Holguín-Ibarra, P.D., Guigón-López, C., Torres-Zapien, J.H., García-Cruz, I., Villapando, I., 

Salas-Salazar, N.A. (2021). Metarhizium anisopliae reduces conidial germination 

and mycelium growth of the apple grey mould Botrytis cinerea. Biological 

Control 160, 104660. 



121 
 

Huang, Y., Gao, L., Lin, M., Yu, T. (2021). Recombinant expression of antimicrobial peptides 

in Pichia pastoris: A strategy to inhibit the Penicillium expansum in 

pears. Postharvest Biology and Technology 171, 111298. 

Kanetis, L., Förster, H., Adaskaveg, J.E. (2008.) Baseline sensitivities for new postharvest 

fungicides against Penicillium spp. on citrus and multiple resistance evaluations 

in P. digitatum. Plant Disease 92(2), 301-310. 

Kheireddine, A., Palmieri, D., Vitullo, D., Barberio, A., Zouaoui, M., De Curtis, F., Sadfi-

Zouaoui, N., Lima, G. (2021). Characterization of new yeast isolates collected 

from different fruits in Tunisia and biocontrol activity against Penicillium 

expansum on apples. Journal of Plant Pathology 103, 1169-1184. 

Li, H.X., Xiao, C.L. (2008). Characterization of fludioxonil-resistant and pyrimethanil-

resistant phenotypes of Penicillium expansum from apple. Phytopathology 98(4), 

427-435. 

Liu, Y., Wang, W., Zhou, Y., Yao, S., Deng, L., Zeng, K. (2017). Isolation, identification and 

in vitro screening of Chongqing orangery yeasts for the biocontrol of Penicillium 

digitatum on citrus fruit. Biological Control 110 18-24. 

Liu, Y., Yao, S., Deng, L., Ming, J., Zeng, K. (2019). Different mechanisms of action of 

isolated epiphytic yeasts against Penicillium digitatum and Penicillium italicum 

on citrus fruit. Postharvest Biology and Technology 152, 100-110. 

Maluleke, E., Jolly, N.P., Patterton, H.G. Setati, M.E. (2022). Antifungal activity of non-

conventional yeasts against Botrytis cinerea and non-Botrytis grape bunch rot 

fungi. Frontiers in Microbiology 13, 986229. 

Mari, M., Leoni, O., Iori, R., Cembali, T. (2002). Antifungal vapour‐phase activity of allyl‐

isothiocyanate against Penicillium expansum on pears. Plant pathology 51(2), 

231-236. 



122 
 

Medina-Córdova, N., López-Aguilar, R., Ascencio, F., Castellanos, T., Campa-Córdova, A.I., 

Angulo, C. (2016). Biocontrol activity of the marine yeast Debaryomyces 

hansenii against phytopathogenic fungi and its ability to inhibit mycotoxins 

production in maize grain (Zea mays L.). Biological Control 97, 70-79. 

Monroe, A. (2009). Integrated pest management for Australian apples and pears.  Integrated 

pest management for Australian apples and pears. NSW Industry and Investment 

Management, Orange Region, Australia, pp viii-212 . 

Núñez, F., Lara, M.S., Peromingo, B., Delgado, J., Sánchez-Montero, L., Andrade, M.J. 

(2015). Selection and evaluation of Debaryomyces hansenii isolates as potential 

bioprotective agents against toxigenic penicillia in dry-fermented sausages. Food 

Microbiology 46, 114-120. 

Ocampo-Suarez, I.B., López, Z., Calderón-Santoyo, M., Ragazzo-Sánchez, J.A Knauth, P. 

(2017). Are biological control agents, isolated from tropical fruits, harmless to 

potential consumers? Food and Chemical Toxicology 109, 1055-1062. 

Oztekin, S., Dikmetas, D.N., Devecioglu, D., Acar, E.G., Karbancioglu-Guler, F. (2023). 

Recent insights into the use of antagonistic yeasts for sustainable biomanagement 

of postharvest pathogenic and mycotoxigenic fungi in fruits with their prevention 

strategies against mycotoxins. Journal of Agricultural and Food 

Chemistry 71(26), 9923-9950. 

Papoutsis, K., Mathioudakis, M.M., Hasperué, J.H, Ziogas, V. (2019). Non-chemical 

treatments for preventing the post-harvest fungal rotting of citrus caused by 

Penicillium digitatum (green mould) and Penicillium italicum (blue 

mould). Trends in Food Science & Technology 86, 479-491. 

Pereyra, M.M., Garmendia, G., Rossini, C., Meinhardt, F., Vero, S., Dib, J.R (2022). Volatile 

organic compounds of Clavispora lusitaniae AgL21 restrain citrus post-harvest 



123 
 

pathogens. Biological Control 174, 105025. 

Rosenberger, D.A (2009). Fungicides, biocides, and sanitizers for managing postharvest 

pathogens in apples. New York Fruit Quarterly 17(3), 3-7. 

Sánchez-Torres, P. (2021). Molecular mechanisms underlying fungicide resistance in citrus 

postharvest green mould. Journal of Fungi 7(9), 783. 

Santos, H., Augusto, C., Reis, P., Rego, C., Figueiredo, A.C., Fortes, A.M. (2022). Volatile 

metabolism of wine grape Trincadeira: Impact of infection with Botrytis cinerea. 

Plants 11(1), 141. 

Spadaro, D., Droby, S. (2016). Development of biocontrol products for post-harvest diseases 

of fruit: The importance of elucidating the mechanisms of action of yeast 

antagonists. Trends in Food Science & Technology 47, 39-49. 

Sukmawati, D., Family, N., Hidayat I., Sayyed, R.Z., Elsayed, E.A., Dailin, D.J, Hanapi, S.Z., 

Wadaan, M.A., Enshasy, H.E (2021.) Biocontrol activity of Aureobasidium 

pullulans and Candida orthopsilosis isolated from Tectona grandis L. 

phylloplane against Aspergillus sp. in post-harvested citrus 

fruit. Sustainability 13(13), 7479. 

Thery, T., Lynch, K.M. Arendt, E.K (2019). Natural antifungal peptides/proteins as model for 

novel food preservatives. Comprehensive Reviews in Food Science and Food 

Safety 18(5), 1327-1360. 

Tournas, V.H., Katsoudas, E.J. (2019). Effect of CaCl2 and various wild yeasts from plant 

origin on controlling Penicillium expansum postharvest decays in Golden 

Delicious apples. Microbiology Insights 12, 1178636119837643. 

Türkkan, M., Erper, İ. (2015). Inhibitory influence of organic and inorganic sodium salts and 

synthetic fungicides against bean root rot pathogens. Gesunde Pflanzen 67(2), 83-

94. 



124 
 

Wang, F., Deng, J., Jiao, J., Lu, Y., Yang, L., Shi, Z. (2019). The combined effects of 

Carboxymethyl chitosan and Cryptococcus laurentii treatment on postharvest 

blue mould caused by Penicillium italicum in grapefruit fruit. Scientia 

Horticulturae 253, 35-41. 

Wang, Z., Li, J., Liu, J., Tian, X., Zhang, D., Wang, Q. (2021). Management of blue mould 

(Penicillium italicum) on mandarin fruit with a combination of the yeast, 

Meyerozyma guilliermondii and an alginate oligosaccharide. Biological 

Control 152, 104451. 

Yang, Q., Ma, J., Solairaj, D., Fu, Y., Zhang, H. (2022). Efficacy of Meyerozyma guilliermondii 

in controlling patulin production by Penicillium expansum in Shuijing 

pears. Biological Control 168, 104856. 

Youssef, K., Hussien, A., (2020). Electrolysed water and salt solutions can reduce green and 

blue moulds while maintain the quality properties of ‘Valencia’late 

oranges. Postharvest Biology and Technology 159, 111025. 

Yu, L., Qiao, N., Zhao, J., Zhang, H., Tian, F., Zhai, Q., Chen, W. (2020) Post-harvest control 

of Penicillium expansum in fruits: A review. Food Bioscience 36, 100633. 

Zajc, J., Černoša, A., Sun, X., Fang, C., Gunde-Cimerman, N., Song, Z., Gostinčar, C, (2022). 

From glaciers to refrigerators: The population genomics and biocontrol potential 

of the black yeast Aureobasidium subglaciale. Microbiology Spectrum 10(4), 

e01455-22. 

Zhao, X., Zhou, J., Tian, R., Liu, Y., (2022). Microbial volatile organic compounds: Antifungal 

mechanisms, applications, and challenges. Frontiers in Microbiology 13, 922450. 

Zhao, Q., Shi, Y., Xu, C., Jiang, Z., Liu, J., Sui, Y., Zhang, H. (2023). Control of post-harvest 

blue and grey mould in kiwifruit by Wickerhamomyces anomalus and its 

mechanism of antifungal activity. Postharvest Biology and Technology 201, 



125 
 

112345. 

Zhu, H., Zhao, L., Zhang, X., Foku, J.M., Li, J., Hu, W., Zhang, H. (2019). Efficacy of 

Yarrowia lipolytica in the biocontrol of green mould and blue mould in Citrus 

reticulata and the mechanisms involved. Biological Control 139, 104096. 

Zhu, Y., Zong, Y., Gong, D., Zhang, X., Oyom, W., Yu, L., Wang, X., Bi, Y., Prusky, D. 

(2022). Effects and possible modes of action of Kloeckera apiculata for 

controlling Penicillium expansum in apples. Biological Control 169, 1048. 

  



126 
 

CHAPTER 5 

Evaluating Non-Saccharomyces Yeasts for Post-Harvest Biocontrol: 

Viability, Interactions, and Stability on Apples and Oranges 

 

Abstract 

Non-Saccharomyces yeasts exhibit potential as biocontrol agents for managing post-harvest 

diseases in apples and oranges. Despite extensive research on biocontrol methods, achieving 

sustainable agricultural practices require effective implementation and a comprehensive 

understanding of the interactions among biocontrol yeasts, host fruits and environmental 

conditions. The aim of this study was to investigate the interactions and efficacy of selected 

non-Saccharomyces yeasts on fruit surfaces, evaluate their stability following oven drying, and 

determine the minimum inhibitory concentration (MIC) required to inhibit mould growth. 

Three yeast strains, Suhomyces pyralidae (Y63), Pichia kluyveri (Y64), and Meyerozyma 

guilliermondii (Y88) were screened for compatibility using the growth inhibition seeding assay 

and co-inoculated in liquid medium. The yeasts were applied to fruit and their viability 

evaluated. Their viability on fruit surfaces and stability post-drying were also assessed. The 

MIC values were evaluated against Penicillium italicum and Botrytis cinerea using a radial 

inhibition assay. Results showed no antagonistic interactions between yeast strains; however, 

competition was observed when co-inoculated in liquid medium. The yeast isolates exhibited 

varying levels of survival on both apples and oranges. Viability on apples was highest for S. 

pyralidae (91%), followed by M. guilliermondii (38%) and P kluyveri (26%). On oranges, all 

yeast exhibited reduced viability, averaging 6%. The drying process led to a reduction in yeast 

viability, with P. kluyveri and M. guilliermondii maintaining 45% and 19% viability, 

respectively, while S. pyralidae showed a 99% decrease. In terms of inhibitory activity, S. 

pyralidae and P. kluyveri achieved complete (100%) inhibition of B. cinerea spore germination 
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at a concentration of 105 cells/mL, while M. guilliermondii demonstrated 96% inhibition at the 

same concentration. These findings indicate that these yeasts show potential as effective 

biocontrol agents for post-harvest disease management. 

 

Keywords: Biocontrol yeasts, yeast interactions, post-harvest, oven drying, viability and 

minimum inhibition concentration 

 

5.1 Introduction 

Effective crop protection is vital for sustaining high productivity and crop quality. Fungal 

pathogens pose a major pre- and post-harvest threat, leading to significant economic losses and 

potential health risks. (Lamenew et al., 2019; Sun et al., 2021; Iqbal et al., 2022). Controlling 

plant pathogens is therefore crucial, and microorganisms and their metabolites offer promising 

biotechnological solutions for sustainable crop protection across the food chain (Lamenew et 

al., 2019; Pereyra et al., 2020; Comitini et al., 2023). Biological control has emerged as an 

environmentally and economically viable alternative to chemical fungicides (Wisniewski et al., 

2016; Lamenew et al., 2019; Pereyra et al., 2020; Huang et al., 2021). Yeasts, which naturally 

inhabit diverse environments including fruit and vegetable surfaces, have been widely explored 

for biocontrol applications against various plant pathogens (Freimoser et al., 2019; Lamenew 

et al., 2019; Zhimo et al., 2020 Gao et al., 2021). 

 

Interest in non-Saccharomyces yeasts has grown, with numerous studies highlighting their 

potential as biocontrol agents against specific fungal pathogens (Freimoser et al., 2019; 

Lamenew et al., 2019; Casas‐Godoy et al., 2021). These yeasts combine strong antifungal 

activity with advantageous properties such as antagonistic efficacy, culturability, 

formulatability, ease of application and stress resistance, enhancing their suitability for 
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biocontrol (Wisniewski and Droby 2012; Freimoser et al., 2019; Hernandez-Montiel et al., 

2021). Given that major post-harvest diseases are typically caused by moulds, many biocontrol 

agents target these pathogens effectively by competing for essential resources such as nutrients, 

oxygen and space (Zhang et al., 2010; Spadaro and Droby, 2016; Lamenew et al., 2019). 

 

Biocontrol yeasts interact with other microorganisms within their own or different species, and 

with host fruits during post-harvest stages, providing essential ecological functions (Topalović 

and Heuer, 2019; Agirman et al., 2023). Interactions between these antagonist yeasts and the 

fruit hosts have been extensively studied, revealing their critical role in various biocontrol 

systems (Sui et al., 2015; Spadaro and Droby, 2016). The potential of biocontrol yeasts in 

reducing fruit decay depends on their ability to colonise fruit surfaces and adapt to diverse 

environmental conditions in the field and during storage (Tian et al., 2004; Sharma et al., 2014; 

Pereyra et al., 2020).  

 

Rapid colonisation is influenced by yeast concentration and host fruit species, as specific 

antagonists have nutrient preferences (Lamenew et al., 2019). Species such as Candida 

oleophila, Clavispora lusitaniae and Pichia fermentans serve as biocontrol models, with 

several commercial products available to control post-harvest fruit diseases (Jijakli et al., 1993; 

Droby et al., 1998; Lahlali et al., 2004; Pe´rez et al., 2016, 2017, 2019). The response varies 

by fruit and cultivar, and depends on physiological maturity (Spadaro and Droby, 2016).  

 

A primary challenge in using biocontrol yeasts is their limited tolerance to fluctuating 

environmental conditions and the difficulties in developing a stable formulation; in addition, 

proprietary restrictions limit accessible information on microorganism formulation (Carbó et 
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al., 2018; Palazzini et al., 2020). During the production process, biocontrol agents encounter 

various severe abiotic and biotic stresses that affect their viability (Sui et al., 2015; Lorenz et 

al., 2020). Preservation techniques, such as drying, have been used to enhance biocontrol yeast 

stability (Casas‐Godoy et al., 2021). However, further research is required to understand effects 

of environmental factors on biocontrol systems, especially regarding yeast viability and 

efficacy (Lahlali and Jijakli, 2009; Liu et al., 2013; Sui et al., 2015). This study aimed to 

investigate the interactions between S. pyralidae, P. kluyveri and M. guilliermondii, evaluate 

their viability on apple and orange surfaces, assess their stability post-drying, and determine 

the minimum inhibitory concentration against P. italicum and B. cinerea. 

 

5.2 Materials and Methods 

5.2.1. Selection and screening of yeast strains 

Three yeast strains, Suhomyces pyralidae (Y63), Pichia kluyveri (Y64) and Meyerozyma 

guilliermondii (Y88) were obtained from the culture collection of the Agricultural Research 

Council (ARC Infruitec-Nietvoorbij, Stellenbosch, South Africa). These yeasts were selected 

based on prior research by Gomomo et al. (2022). A cross-screening procedure was performed 

whereby the selected yeasts were screened against each other. To prepare the yeast cultures, a 

loopful of each pure yeast colony from the yeast malt agar (YMA) plates was transferred to 

test tubes containing 5 mL of sterilised yeast malt broth (YMB) and incubated at 28°C for 2 

days, as described by Gomomo et al. (2022). A modified seeding growth inhibition assay was 

applied, following the methodology of Mewa-Ngongang et al. (2019b).  

 

In this assay, YMA plates were seeded with each yeast strain (S. pyralidae, P. kluyveri, or M. 

guilliermondii) at a concentration of 1×106 cells/mL, used as the sensitive yeast. The same 

yeasts were then tested as antagonistic (“killer”) yeasts against each other, with the cell 
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concentrations adjusted to 1×108 cells/mL. Ten microlitre of each culture were spotted onto the 

seeded YMA plates. As a positive control, the commercial fungicide, N-trichloromethylthio-

4-cyclohexene-1,2-dicarboximide, commonly known as Captan (800 g/kg; Universal Crop 

Protection (Pty) Ltd, Kempton Park, South Africa) was applied at a concentration of 0.5 g/L. 

The plates were then incubated at 28°C for four days, with each treatment replicated three 

times. Inhibition zones, indicating antimicrobial activity, were identified by clear areas 

surrounding the yeast colonies or the Captan control (Figure 5.1). 

 

Figure 5.1: (A) Antagonistic activity of Pichia kluyveri (Y64) and Meyerozyma guilliermondii 

(Y88) against Suhomyces pyralidae (Y63). (B) Antagonistic activity of S. pyralidae and P. 

kluyveri (Y64) against M. guilliermondii (Y88). (C) Antagonistic activity S. pyralidae and M. 

guilliermondii against P. kluyveri. Each plate is a representative example of three YMA plates 

replicates. Cap – the commercial fungicide (N-trichloromethylthio-4-cyclohexene-1,2-

dicarboximide), common name Captan at a concentration of 0.5 g/L. 

 

5.2.2 Biocontrol yeasts interactions 

The yeast strains S. pyralidae Y63, P. kluyveri Y64 and M. guilliermondii Y88 were cultured 

by transferring pure yeast colonies into test tubes containing 5 mL of sterilised yeast malt broth 

(YMB) and incubating them at 28°C for 2 days. Cells were counted as described by Gomomo 

et al. (2022). To prepare individual and combined inocula, 1×106 cells/mL of each yeast strain 

was transferred into fresh YMB. For the co-culture experiments, each yeast strain was co-

inoculated at 1×106 cells/mL into the same YMB. The yeast treatment conditions are detailed 

in Table 5.1, with each treatment replicated three times. The test tubes were incubated at 28°C 
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for 6 days, and samples were plated on YMA after 1 day and after 6 days of incubation. The 

YMA plates were further incubated at 28°C for 2-3 days to observe yeast growth and 

interactions. 

 

Table 5.1 Treatments used in test tubes that contain yeast malt broth during yeast interaction 

assay. 

Treatments Treatment description 

1 Suhomyces pyralidae 

2 Pichia kluyveri 

3 Meyerozyma guilliermondii 

4 S. pyralidae + P. kluyveri 

5 S. pyralidae + M. guilliermondii 

6 P. kluyveri+ M. guilliermondii 

7 S. pyralidae + P. kluyveri + M. guilliermondii 

 

5.2.3 Yeast viability on fruits 

Two-day-old yeast cell suspensions (5 mL) of S. pyralidae, P. kluyveri and M. guilliermondii 

were transferred to Erlenmeyer flasks containing 100 mL of sterile YMB and incubated at 28°C 

with constant agitation at 150 rpm using a rotary shaker (LM-53OR, RKC Instrument Inc., 

Ohta-ku Tokyo, Japan) for 2 days. After incubation, the cultures were centrifuged at 10,000 

rpm for 15 min at 4°C. The cell-free supernatant was discarded, and the yeast cell pellets were 

stored in a -20°C freezer for 1 day. The yeast pellets were then resuspended in 500 mL of sterile 

distilled water. The mixed treatment containing all three yeasts was prepared in a 1:1:1 ratio. 
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Five treatments were evaluated in a post-harvest biocontrol viability assay on "Cara Cara" 

navel oranges and "Golden Delicious" apples. Each experimental unit consisted of a 

rectangular fruit-packaging box holding five oranges or five apples, with each treatment 

replicated six times. The fruits were washed, surface-sterilised by spraying with 70% ethanol 

(v/v) and allowed to dry. After drying, the fruits were submerged in the yeast cell formulation 

for 2 min to ensure even coating, following the method by Lahlali et al. (2009) (see Figure 

5.2).  

 

The control treatments were submerged in sterile purified water. The treated fruits were 

incubated at ±20°C for 7 days. After incubation, the fruits were washed with 30 mL saline 

solution, agitated at 150 rpm using a rotary shaker (LM-53OR, RKC Instrument Inc., Ohta-ku 

Tokyo, Japan) for 20 min, with rotations at 5 min intervals. Samples were then plated out on 

YMA, and 1 mL aliquot of each washing solution was collected for serial dilutions. Each 

treatment was plated on YMA after 1 day and again after 7 days, with plates incubated at 25°C 

for 2-3 days to assess yeast viability on the fruit surfaces. 

 

Figure 5.2: Representative samples showing a submerged apple and an orange in yeast cell 

formulation. 
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5.2.4 Drying and stability of yeasts 

Yeasts cultures were prepared by transferring 100 µL of the 2-day-old culture into fresh 10 mL 

of YMB and incubating for 3 days. One millilitre of each culture was then transferred to a 

sterile 2 mL microtube and centrifuged at 13,400 rpm for 5 min. The supernatant was discarded, 

and the resulting yeast pellets were dried in a laboratory oven at 33°C for 3 days, with three 

replicates for each treatment. Yeast viability was assessed by plating the cultures before and 

after drying. Dried yeast pellets were stored at room temperature (22°C) and plated to assess 

viability at 3, 7 and 21 days post-drying. The YMA plates were incubated at 28°C for 2-3 days 

to determine yeast survival.  

 

5.2.5 Evaluation of Minimum Inhibiting Concentration 

The minimum yeast cell concentration of S. pyralidae, P. kluyveri and M. guilliermondii 

required to inhibit the growth of Penicillium italicum PPRI 10380 and Botrytis cinerea PPRI 

30807 was determined using radial inhibition assay, described by Núñez et al. (2015). Fresh 

yeast cell suspensions (5 mL) were prepared as previously detailed, with serial dilutions 

ranging from 102 to 107 cells/mL for each yeast strain. The diluted yeast suspensions were 

plated on YMA, and once the plates were dry, a 20 µL spore suspension (1×105 spores/mL) of 

P. italicum and B. cinerea was spotted at the centre of each YMA plate (Figure 5.3). Negative 

control plates received only the spore solution, while positive controls contained the fungicide 

Captan at a concentration of 0.5 g/L. The YMA plates were incubated at 25°C for 4 days to 

observe mould inhibition.  
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The mould radial inhibition (MRI) was calculated using the mathematical expression:  

MRI = [(D0-Dt)/D0] × 100  

with D0 representing the average diameter of the mould growth on the negative control plates 

and Dt representing the diameter of the mould growth on the yeast-treated plates (Núñez et 

al., 2015).  

 

 

 

 

 

 

 

 

 

 

Figure 5.3: Illustration of Botrytis cinerea growth (A) and the inhibitory effect of the yeast 

isolate on B. cinerea (B) on yeast malt agar. D₀ denotes the colony diameter on the untreated 

control plates, while Dₜ indicates the colony diameter on plates treated with the yeast isolate. 

Each plate shown is a representative example from three replicates. 

 

5.3 Results and Discussion 

5.3.1 Cross-screening of biocontrol yeasts 

Cross-screening assays were conducted to assess potential antagonistic activity among S. 

pyralidae Y63, P. kluyveri Y64, and M. guilliermondii Y88 on YMA plates. Results indicated 

that no inhibition zones were observed between any of the yeast strains (Figure 5.1), suggesting 

no antagonistic effects among them. This compatibility supports the potential use of these 

strains as a combined biocontrol consortium to combat fruit spoilage moulds, as also noted by 

Sipiczki (2016), who highlighted that yeast interactions often yield inhibition "halos" or zones 

due to nutrient competition or inhibitory compound release. 

A B 

D0 

Dt 
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The potential of the individual yeast strains for pathogen inhibition, previously documented by 

Gomomo et al. (2022) and current studies, underscores the possible enhanced biocontrol 

effectiveness when applied as a combination. Interestingly, S. pyralidae did not exhibit 

antagonistic effects against M. guilliermondii Y88, contrasting prior findings by Mewa-

Ngongang et al. (2019b), where S. pyralidae inhibited M. guilliermondii Y0848 in vitro assays. 

This suggests that antagonistic activity may be strain dependent. Mewa-Ngongang et al. 

(2019b) demonstrated that S. pyralidae and P. kluyveri exhibited no antimicrobial activity 

against each other, a finding corroborated in the current study. The commercial fungicide 

Captan, used as the positive control, produced inhibition zones for all three yeast strains, with 

M. guilliermondii Y88 showing comparatively lower sensitivity. This observation implies that 

further studies should investigate fungicide tolerance in these biocontrol yeasts to assess their 

compatibility with chemical fungicides. 

 

5.3.2 Biocontrol yeast interactions 

The interactions of the biocontrol yeasts when co-cultured in a liquid medium were further 

examined, revealing both direct and indirect dynamics shaped by mutualism and competition 

(Topalović & Heuer, 2019; Zhang et al., 2020). The interactions showed that after inoculation, 

S. pyralidae showed notable growth when grown alone, with cell counts rising from 1.9×107 

to 5.7×107 cells/mL. However, co-inoculation with P. kluyveri and M. guilliermondii led to 

reduced cell counts, likely due to nutrient competition (Figure 5.4A).  

 

Pichia kluyveri, exhibiting high individual growth (7.8×107 cells/mL), showed a notable 

decrease when co-inoculated with S. pyralidae, with cell counts declining from 3.9×107 to 

1.0×107 cells/mL (Figure 5.4B). Conversely, co-inoculation with M. guilliermondii stimulated 
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growth of P. kluyveri from 2.2×107 to 3.9×107 cells/mL, although subsequent co-culturing with 

both M. guilliermondii and S. pyralidae resulted in declines over time (Figure 5.4B).  

 

For M. guilliermondii, cell counts initially dropped from 2.3×107 to 1.8×107 cells/mL when 

cultured alone. However, co-inoculation with S. pyralidae resulted in a modest increase from 

9×106 to 1.7×107 cells/mL (Figure 5.4C). While S. pyralidae and P. kluyveri thrived when 

inoculated individually, both showed diminished growth when cultured with other strains, 

possibly due to resource competition (Figure 5.4). Although no inhibition zones were observed 

on solid media (Figure 5.1), these results from liquid medium reveal that resource competition 

can still lead to growth disadvantages in mixed cultures. 

 

Schmitt and Breinig (2002) and Sipiczki (2016) found that the inhibition among yeast strains 

was due to the antagonistic isolate secreting a toxic agent into the medium, which killed the 

sensitive yeast. Additionally, Giometto et al. (2021) showed that competitive antagonism in a 

liquid medium allows stronger antagonists to outcompete weaker ones if initial population 

thresholds are met. Some yeasts may also promote the growth of others by breaking down 

complex substrates, such sugars and proteins, into simpler molecules that can be accessible to 

other yeast species (Sipiczki, 2016). This may explain the modest growth observed when M. 

guilliermondii was co-cultured with S. pyralidae (Figure 5.4A, C). Factors such as nutrient 

availability and spatial constraints influence yeast interactions, with varying inhibitory 

compound production in each strain (Celik Ozgen et al., 2018; Granato et al., 2019; Giometto 

et al., 2021).  
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Figure 5.4: Yeast cell counts after (A) Suhomyces pyralidae (Y63), (B) Pichia kluyveri (Y64) and (C) Meyerozyma guilliermondii (Y88) were 

inoculated individually and with the other two yeast and grown for 6 days. 
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5.3.3 Viability of biocontrol of yeasts on fruits 

To determine the survival duration of biocontrol yeasts on fruit surfaces, the yeasts were 

applied to apples and oranges, and monitored over 7 days. The initial cell concentration of the 

yeasts ranged from 105 to 106 cells/mL (Figure 5.5). The yeasts were applied individually and 

as a mixture of the three yeasts (S. pyralidae, P. kluyveri and M. guilliermondii) at a ratio of 

1:1:1. Suhomyces pyralidae started at a concentration of 3.3×105 cells/mL on both apples and 

oranges (Figure 5.5A, B). On apples, it adapted well, increasing to 1.7×106 cells/mL after 1 day 

(Figure 5.5A). However, after 7 days, its cell count dropped to 3×105 cells/mL, maintaining 

91% viability. On oranges, S. pyralidae showed a rapid decline of cell numbers to 1×104 

cells/mL after day 1, resulting in 97% viability loss and struggled to adapt, showing only 10% 

viability with 3.2×104 cells/mL by day 7 (Figure 5.5B).  

 

Meyerozyma guilliermondii, with an initial concentration of 1.8×106 cells/mL, decreased to 

5.4×105 cells/mL after day 1, reflecting 30% viability on apples (Figure 5.5A). By day 7, cell 

concentration reached 7×105 cells/mL, an 8% increase in viability compared to day 1. On 

oranges, its concentration decreased to 1.2×105 cells/mL (7% viability) after day 1, and it 

maintained a similar trend through day 7 with a concentration of 1.3×105 cells/mL (Figure 

5.5B).  

 

The initial cell concentration of P. kluyveri was 3.7×105 cells/mL, which was lower than M. 

guilliermondii but higher than S. pyralidae. On apples, P. kluyveri displayed moderate 

adaptation, increasing to 3.8×105 cells/mL by day 1, but then decreased to 9.7×104 cells/mL by 

day 7, displaying 26% viability (Figure 5.5A). On oranges, P. kluyveri showed a poor response, 

decreasing to 3.6×103 cells/mL by day 1 (99% viability loss), with cell counts of 6.4×10³ 

cells/mL by day 7, and only 2% viability. Across both fruit types, M. guilliermondii was the 
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most stable yeast over time, while P. kluyveri was the least viable, with S. pyralidae performing 

moderately, but thriving more on apples (Figure 5.5A, B). 

 

The initial cell concentration for the yeast mixture was 2.2×106 cells/mL. On apples, the 

population decreased to 1.2×106 cells/mL by day 1 (55% viability), potentially indicating early 

competitive or environmental stress (Figure 5.5A). By day 7, the mixture's cell count was 

3.6×105 cells/mL, maintaining a higher population than S. pyralidae and P. kluyveri 

individually, though its viability was only 17%, likely due to resource-sharing dynamics as 

suggested by Sui et al. (2015) and Spadaro and Droby (2016).  

 

On oranges, the mixture declined to 3.1×105 cells/mL after day 1, representing 14% viability 

(Figure 5.5B), suggesting that oranges may be less favourable due to their high acidity 

(Haïssam, 2011; Liu et al., 2012; Sui et al., 2015) and natural antimicrobial compounds, such 

as flavonoids and essential oils (Jing et al., 2014. Calo et al., 2015; Spadaro and Droby, 2016). 

By day 7, the cell count was 1.8×105 cells/mL, outperforming S. pyralidae (3×104 cells/mL), 

P. kluyveri (6×103 cells/mL) and M. guilliermondii (3×104 cells/mL) applied individually 

(Figure 5.5B), although its viability (8%) remained low compared S. pyralidae individually.  

 

Qian et al. (2020) reported that the population of the yeast Rhodotorula mucilaginosa on apple 

surfaces incubated at 20°C exhibited a gradual increase from 0 to 48 h. This observation 

supports their findings that certain yeast species experience a slight initial population growth 

within the first 24 h of incubation, although this can vary depending on the yeast species and 

environmental conditions. Similar studies Lahlali et al. (2009) and Li et al., (2011) observed 

population growth of the yeasts Pichia anomala and Rhodotorula mucilaginosa on apples. 

However, the current study reveals a different trend. Lahlali et al. (2011) and Aloui et al. (2015) 
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found that the yeasts Pichia guilliermondii and Wickerhamomyces anomalus remained stable 

for the first 24 h of incubation on oranges, followed by an increase reaching a maximum 

concentration of 3.4×107 cells/mL, which contrasts with findings of this study These 

discrepancies may stem from differences in yeast species, environmental factors, and the 

physiological characteristics of the fruit, all of which are crucial for yeast viability (Spadaro 

and Droby, 2016). 

 

Studies on Candida sake show that populations increased significantly on grape berries within 

24 h of incubation under both controlled and outdoor conditions (Calvo-Garrido et al., 2014). 

Quantitative analyses of cultivable populations showed notable increases during grape ripening 

(Martins et al., 2015). However, it should be noted that grape berries differ from other fruits 

like apples and oranges in terms of surface characteristics and environmental interactions, 

which can affect yeast population dynamics and viability. Understanding the factors 

influencing yeast survival and stability on fruit surfaces is essential, as viability is crucial for 

sustaining biocontrol efficacy. Yeasts need to remain viable on fruit surfaces to effectively 

inhibit the growth of spoilage microorganisms and pathogens (Hershkovitz et al., 2013; 

Massart et al., 2015; Spadaro and Droby, 2016). Any decrease in cell numbers could reduce 

the antagonistic effect of the biocontrol yeasts. 
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Figure 5.5: Suhomyces pyralidae (Y63), Pichia kluyveri (Y64), Meyerozyma guilliermondii 

(Y88) viability in colony forming units/mL on apples (A) and oranges (B) tested individually 

and in combination with each other. 
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5.3.4 Post-drying stability of biocontrol yeasts 

The stability of S. pyralidae, P. kluyveri and M. guilliermondii was assessed following drying 

at 33°C. The yeast S. pyralidae began with an initial cell concentration of 1.5×108 cells/mL, 

which decreased to 1.3×106 cells/mL after 3 days of drying and further to 1.2×106 cells/mL 

after 7 days. By day 21, viable cells decreased to 1.1× 10⁶ cells/mL (Figure 5.6), indicating a 

99% average viability loss from the drying process through storage.  

 

Pichia kluyveri, initially at 1.7×108 cells/mL, showed a decline in cell concentration to its 

lowest count of 2.6×107 cells/mL after 21 days (Figure 5.6). After drying, P. kluyveri showed 

45% viability, which decreased to 16% over the storage period. Meyerozyma guilliermondii, 

with an initial concentration of 1.8×108 cells/mL, dropped to 3.3×107 cells/mL after drying, 

reflecting 19% viability. Viability declined to 2.4×107 cells/mL after 7 days, and further to 

2.3×107 cells/mL after 21 days of storage (Figure 5.6), maintaining an average viability of 13% 

viability over this period. All three yeasts showed a rapid initial viability loss after drying but 

reached stability, with minimal decline observed during storage. 

 

According to Alp and Bulantekin (2021), microbial cell viability is more stable in a dry state. 

During the drying process, yeasts experience mechanical, structural, and oxidative constraints 

that impact cell components including the cell wall, plasma membrane, mitochondria, vacuoles, 

peroxisomes, lipid droplets, and nucleus (Abee and Wouters, 1999; Van De Guchte et al., 2002; 

Rapoport et al., 2019; Casas‐Godoy et al., 2021). This stress likely contributed to the initial 

rapid viability decrease observed in this study. Júnior et al. (2018) and Casas-Godoy et al. 

(2021) reported that the yeasts can survive prolonged dry periods by entering an anhydrobiotic 

state, reducing metabolic activity, which may explain the limited decline in cell numbers during 

storage.  
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Previous studies on Naumovia castellii and Lachancea kluyveri showed an average of 50% 

viability after drying, with cells dried in the presence of trehalose 16% viability increase, 

suggesting the supplement's role in preserving yeast viability and efficacy when applied to fruit 

surfaces (Rodríguez-Porrata et al., 2010). Notably, the drying impact on viability varies by 

yeast species, reflecting species-specific metabolic and life cycle characteristics (Casas-Godoy 

et al., 2021). Factors such as drying conditions and physical properties such as pellet size (Van 

Engeland et al., 2019), can affect post-drying viability. Additionally, incorporating solid 

carriers before drying can improve yeast quality (Casas-Godoy et al., 2021). The ability of 

these yeasts to endure drying and remain stable during storage highlights their potential as 

viable biological control agents in agricultural applications.  

 

Figure 5.6: Suhomyces pyralidae (Y63), Pichia kluyveri (Y64), Meyerozyma guilliermondii 

(Y88) viability in colony forming units/mL before and after drying. 

 

5.3.5 Evaluation of the Minimum Inhibitory Concentrations  

The minimum inhibitory concentrations (MICs) were evaluated for S. pyralidae Y63, P. 
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pyralidae achieved complete (100%) inhibition of B. cinerea PPRI 30807 spore germination 

at a concentration of 105 and 53% inhibition at 104 cells/mL. At concentrations between 102 

and 103 cells/mL, the yeast demonstrated an average inhibition of 19% (Figure 5.7A).  

 

Pichia kluyveri completely inhibited B. cinerea PPRI 30807 growth at a minimum 

concentration of 105 cells/mL, while achieving 37% inhibition at 104 cells/mL. The yeast 

displayed an average inhibition of 9% at cell concentrations ranging from 102 to 103 cells/mL 

(Figure 5.7A). Meyerozyma guilliermondii showed 96%, 35% and 19% inhibition against B. 

cinerea PPRI 30807 at cell concentrations 105, 104 and 103 cells/mL, respectively (Figure 

5.7A). All three yeasts displayed 100% inhibition at concentrations 106 and 107 cells/ mL 

against B. cinerea.  

 

In contrast, inhibition levels were reduced against P. italicum PPRI 10380, and none of the 

yeasts showed complete inhibition (Figure 5.7B). Suhomyces pyralidae demonstrated 86%, 

45% and 32% inhibition of P. italicum PPRI 10380 spores at cell concentrations 107, 106 and 

105 cells/mL, respectively, with an average inhibition of 14% at concentrations ranging from 

102 to 104 cells/mL (Figure 5.7B). Pichia kluyveri exhibited 42%, 34% and 24% inhibition 

against P. italicum PPRI 10380 at cell concentrations 107, 106 and 105 cells/mL, respectively, 

and achieved an average inhibition of 15% at lower concentrations (102, 103 and 104 cells/mL) 

(Figure 5.7B). The yeast M. guilliermondii achieved 27% average inhibition against P. italicum 

PPRI 10380 at concentrations ranging from 102 to 107 cells/mL.  

 

The results suggest that a concentration of 105 cells/mL is sufficient for the three yeast isolates 

to inhibit B. cinerea spore germination. However, even at a concentration of 107 cells/mL, they 

could not fully prevent P. italicum spore germination. These findings are consistent with 
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Cordero-Bueso et al. (2017), who reported that, P. kluyveri and M. guilliermondii inhibit the 

growth of B. cinerea within a similar concentration range of 103 to 106 cells/mL. Additionally, 

Cordero-Bueso et al. (2017) observed that, P. kluyveri and M. guilliermondii effectively inhibit 

the growth of P. expansum within the same concentration range, supporting the findings of this 

study on the antagonistic activity of these yeasts against Penicillium species. Maluleke et al. 

(2022) further reported that Pichia kudriavzevii inhibits B. cinerea at concentrations as low as 

10² cells/mL. 

A 
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B 

 

Figure 5.7: Minimum inhibitory concentration (MIC) of three yeast isolates (Suhomyces 

pyralidae Y63, Pichia kluyveri Y64, Meyerozyma guilliermondii Y88) in colony-forming 

units/mL, and Captan (Cap), a commercial fungicide, against Botrytis cinerea PPRI 30807 (A) 

and P. italicum PPRI 10380 (B) determined through the radial inhibition assay. Data represent 

the means of three replicates, with standard deviations included. 
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yeasts. In contrast, P. kluyveri showed the highest viability after the drying process, and all 

three yeasts showed stability throughout the storage period. These findings suggest that further 

investigation into the interactions among these yeast strains could provide valuable insights 

into the underlying mechanisms contributing to their observed behaviour.  
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CHAPTER 6 

General Conclusions and Recommendations 

6.1 Summary and Conclusions 

The agricultural industry plays a critical role in global food security, with fruits serving as a 

vital component of a balanced diet and a significant contributor to the global economy. 

Ensuring the quality of fruits throughout production, harvest, transportation, and storage is 

essential for meeting the nutritional and economic demands of a growing global population. 

To ensure fruit quality, it is essential to protect them from mould-induced spoilage at all stages. 

Traditional chemical fungicides are effective but present challenges such as fungicide 

resistance, health risks, and environmental concerns. 

 

This study investigates the potential of biocontrol yeasts as sustainable and environmentally 

friendly alternatives to chemical fungicides. It evaluates the antifungal activity of Suhomyces 

pyralidae, Aureobasidium melanogenum, Meyerozyma guilliermondii, and Zygoascus 

hellenicus against multiple strains of Botrytis cinerea and species of Penicillium. The findings 

offer a viable solution to integrated pest management (IPM) by presenting yeasts as effective, 

natural biocontrol agents. 

 

This study confirmed that the selected yeasts inhibit mould growth through various 

mechanisms, including competition for nutrients and space, rapid colonisation, secretion of 

extracellular enzymes (proteases, chitinases, glucanases, pectinases), and the release of volatile 

organic compounds (VOCs), as evidenced by dual culture, spore germination, and VOC assays. 

Dual culture, spore germination, and VOC assays revealed that these mechanisms effectively 

inhibit the growth and spore germination of B. cinerea and Penicillium species. 
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Novel findings included the discovery of Pichia kluyveri (Y64) achieving complete inhibition 

of various Penicillium species. The VOCs identified, including alcohols (isobutanol, isoamyl 

alcohol, 2-phenylethanol) and esters (isoamyl acetate, 2-phenethyl acetate), displayed 

inhibitory effects that varied with the level of competition between yeast and mould. 

Synergistic effects were observed with less-studied VOCs, such as isobutanol, which 

contributed to enhanced mould. Specific VOCs identified in this study and their unique 

inhibitory effects against these pathogens had not been reported. 

 

Yeasts perform comparably to commercial fungicides, with added advantages such as multiple 

antifungal mechanisms and the potential for rotation with chemical fungicides to mitigate 

resistance. The study highlighted the yeasts' effectiveness in controlling spoilage on apples, 

strawberries, and oranges, emphasising the role of fruit characteristics on the efficacy of 

biocontrol. 

 

Preventive and curative applications of yeasts were both effective. Preventive treatments 

inhibited spore germination, while curative treatments controlled mould growth even after 

infection had begun. Furthermore, yeast-to-yeast interactions showed no antagonism. The 

findings here contribute new insights into the potential for combining yeasts in biocontrol 

formulations, particularly for enhancing efficacy. This research also identified the importance 

of post-harvest viability and stability of yeasts. Although the yeasts survived post-harvest 

drying processes, further optimisation is required to enhance their viability for commercial 

applications. Protective agents and improved drying methods may strengthen yeast 

formulations, ensuring long-term efficacy during storage and transportation. The study 

underscores the potential of biocontrol yeasts to reduce reliance on chemical fungicides, 

improve food safety, and support sustainable agricultural practices. 
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This research demonstrates that yeasts such as A. melanogenum, S. pyralidae, Z. hellenicus, 

and M. guilliermondii employ diverse antifungal mechanisms, including enzymatic activity, 

space and nutrient competition, and VOC production, to inhibit mould spoilage. 

 A. melanogenum produced antimicrobial compounds effective against mycelial growth, 

while S. pyralidae, M. guilliermondii, and P. kluyveri inhibited spore germination of B. 

cinerea and Penicillium species. 

 P. kluyveri exhibited unique VOC-mediated antagonism, achieving complete inhibition 

of certain Penicillium species. 

 S. pyralidae, A. melanogenum, and P. kluyveri inhibited B. cinerea on apples and 

strawberries, while M. guilliermondii was most effective against P. digitatum and P. 

italicum on oranges. 

These yeasts maintained viability after drying and demonstrated strong antifungal activity 

even at lower concentrations, comparable to commercial fungicides. The findings highlight 

their potential as sustainable alternatives for post-harvest mould control in the agricultural 

industry. 

6.2 Recommendations 

To advance the practical application of biocontrol yeasts, future research should focus on 

several key areas. Efficacy assessment should involve investigating the individual and 

combined efficacy of biocontrol yeasts across a broader range of fruits and under various pre- 

and post-harvest conditions. Additionally, the synergistic effects of volatile organic compounds 

(VOCs) and their specific roles in mould inhibition should be evaluated. Integrated approaches 

should explore the combination of biocontrol yeasts with other microorganisms, such as 

antagonistic bacteria, to enhance antifungal efficacy. It is also important to assess the feasibility 

of integrating biocontrol yeasts with reduced concentrations of commercial fungicides to 

minimise resistance development. 
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Formulation development should focus on optimising the drying processes of biocontrol yeasts, 

particularly those explored in the current study, and investigating protective agents to improve 

yeast viability and stability during storage and transport. Furthermore, the development of 

powdered formulations capable of maintaining antifungal activity under diverse environmental 

conditions is essential. Large-scale field trials should be conducted to validate laboratory 

findings on the effectiveness of yeast applications in preventing fungal diseases during pre-

harvest. These trials should also assess the long-term stability and efficacy of biocontrol yeasts 

in enhancing crop protection before harvest. By addressing these areas, biocontrol yeasts can 

be effectively integrated into agricultural practices, promoting environmentally sustainable and 

economically viable mould management solutions. 

 


