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Abstract 
 

The research study aims to provide an optimization technique for a hybrid microgrid energy 

management system with reserve margins. The load for the hybrid microgrid under 

consideration consists of grid-connected photovoltaic, wind, and battery energy storage devices 

and electric vehicles that may provide grid support. 

The recommended solution considers both an isolated mode of operation and a grid-connected 

operating situation. Isolated microgrids improve system resilience by distributing electricity to 

nearby loads from locally accessible resources. Furthermore, it is still challenging to govern, 

run, and protect these systems in grid-connected and islanded modes, cope with dispatch 

difficulties that decide the DRES's priority, and provide grid support, among other challenges. 

Furthermore, the BESS charging and discharging strategy should follow the Risk Mitigation 

Independent Power Producer Procurement Programme (RMIPPP) guidelines, charging 

predominantly from local renewable energy sources rather than the grid. This ensures that local 

South African legislation and requirements are observed throughout the investigation.  

The study  focuses on optimizing and modeling a hybrid microgrid system incorporating different 

green energy sources, such as grid-tied solar photovoltaic, wind energy, and battery energy 

storage devices. The study uses sophisticated optimization techniques to increase the 

microgrid's efficiency and reliability. Specifically, particle swarm optimization and the genetic 

algorithm are used to solve the system model and address the difficulties of optimal energy 

generation, storage management, and hybrid integration. The findings illustrate the efficiency of 

these optimization approaches in improving overall performance, lowering costs, and assuring 

the microgrid's dispatch strategy under different operational situations. 

 

Keywords 

Energy Management Systems, Microgrid Optimization, Distributed Generation, Economic 

Dispatch, Electric Vehicles, Battery Energy Storage Systems, Power System Optimization. 
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Mathematical Notations 
 

ŋ𝑏𝑎𝑡𝑐ℎ𝑎𝑟           -       Charging efficiency 

ŋ𝑏𝑎𝑡𝑑𝑖𝑠𝑐            -       Discharging efficiency 

ŋ𝑐𝑒𝑣                -        Charging efficiency  

ŋ𝑝𝑣                 -        Efficiency of the solar panel  

𝐴𝑝𝑣                 -        Area of a solar panel  

𝐶𝐸𝑉                           -        Total battery capacity (C/kWh)   

𝐶𝐸𝑉                  -        Battery replacement cost of EV 

𝐶𝑏𝑎𝑡                 -        Battery depreciation cost 

𝐶𝑔𝑟𝑖𝑑                -        Grid interaction cost between microgrid and the grid 

𝐶𝑜𝑝(𝑃𝑖,𝑡)           -        Cost of maintenance of the i-th generator in t-cycle 

𝐸𝐸𝑉
𝑃𝑈𝑇                -        EV’s total charging/discharging capacity (kWh) 

𝐸𝑝𝑢𝑟,𝑡               -        Energy purchased in t-cycle (kWh) 

𝐸𝑠𝑒𝑙,𝑡                -        Energy sold in t-cycle (kWh) 

𝑁𝑝𝑣                 -         Solar panel quantity   

𝑁𝑤𝑖𝑛𝑑              -        Wind turbines quantity 

𝑃𝑏𝑎𝑡𝑐ℎ𝑎𝑟            -       Battery charging power 

𝑃𝑏𝑎𝑡𝑑𝑖𝑠𝑐            -        Battery discharging power 

𝑃𝑔𝑟𝑖𝑑𝑟𝑒𝑐             -       Power received from grid 

𝑃𝑔𝑟𝑖𝑑𝑠𝑒𝑛𝑡            -      Power sent grid 

𝑃𝐸𝑉(𝑙𝑜𝑎𝑑)          -       Total charging load 

𝑃𝐸𝑉,𝑡                -       Total EV charging/discharging power (kW) 
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𝑃𝑃𝑡                 -        Buying energy price in t-cycle (ZAR/kWh) 

𝑃𝑆𝑡                 -        Selling energy price in t-cycle (ZAR/kWh) 

𝑃𝑇𝑝𝑣               -        Total power generation by solar panels  

𝑃𝑇𝑤𝑖𝑛𝑑            -        Total power generation by wind turbines 

𝑃𝑐                   -         Charging power in kW 

𝑃𝑖,𝑡                 -         Generated power of the i-th generator in the t-cycle 

𝑃𝑝𝑣                 -         Power generation by a solar panel  

𝑃𝑟𝑒𝑠                -         Instantaneous reserve margins 

𝑃𝑤𝑖𝑛𝑑             -         Power generation by a wind turbine 

𝑆𝑂𝐶𝑏𝑎𝑡(𝑡)      -         Total available energy capacity for all batteries  

𝑆𝑊100            -         Energy consumption per 100 km (kwh/100km) 

𝑇𝑏𝑎𝑡(𝑡 + 1)    -         Total energy for all batteries at time interval t + 1 

𝑇𝑐ℎ𝑎𝑟             -         Charging duration in hours 

𝑇𝑚𝑎𝑥𝑑𝑖𝑠          -        Maximum EV battery discharging duration 

𝑣𝑐𝑖𝑛               -        Cut-in wind speed 

𝑣𝑐𝑜𝑢𝑡             -        Cut-out wind speed 

𝑣𝑟                 -         Rated wind speed 

SOC            -         Battery State of Charge in percentage 

𝑣                 -          Measured wind speed 

𝛥𝑡               -          Time interval 
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Definitions 

 

Glossary of items 

Algorithm - A step-by-step approach to solving an issue using a computer. 

Automatic Generation Control - a system that regulates the output of power generators to 

maintain a stable system frequency and balance the load and generation in an electric power 

system. 

Demand-side management is a strategy used by electric utilities to persuade users to adjust 

their electricity consumption patterns. 

Economic Dispatch - is the process of running production facilities to produce energy at the 

lowest possible cost while providing reliable service to customers. It entails assigning generating 

levels to various units to fulfill the system load while minimizing production costs. 

Energy Management System - A set of computer-aided tools used by electric utility grid 

operators to monitor, regulate, and optimize the operation of the generation and transmission 

system.  

Flexible Alternating Current Transmission Systems – The collection of power electronics-

based devices that enhance the regulation and flow of power in an alternating current (AC) 

transmission system. 

Genetic Algorithm is a computational strategy that uses natural evolution to solve 

optimization issues or produce solutions for search problems. 

Global Maximum Power Point - is a function of inverters that allows solar arrays to maximize 

output power. It accomplishes this by shifting the working point of solar panels versus the 

maximum power point, even when there is some shade. 

Microgrid Centralized Controller - a device that maintains the energy balance in microgrids, 

with the primary objective of operating the microgrid while minimizing expenses and meeting 

demand. 

Microgrid Controller - is a device that controls and monitors a microgrid's energy sources and 

loads.  
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Microgrid - a tiny community of electricity users with their own source of energy that is usually 

linked to a centralized national grid but may operate independently. 

Optimization Method - a mathematical and computational procedure to find the optimum 

problem solution by maximizing or minimizing an objective function. 

Particle Swarm Optimization - a computational technique which leverages a population of 

potential solutions to minimize or maximize an objective function. 

Plugin Hybrid Electric Vehicle - a car that runs on an electric motor and a combustion engine. 

Point of Common Coupling - a location where consumer devices can exchange energy with 

the electrical utility grid. 

Renewable Energy - is the energy derived from hydro, solar, and wind sources. 

Reserve Margin is a measure of the amount of additional capacity in a power system compared 

to peak demand. 

South African Grid Code - a set of rules that outlines the responsibility of industry participants 

in operating the interconnected power system (IPS) and using the transmission system (TS). 

Static Var Compensator - a device that adjusts voltage and improves the stability of an 

alternating current power system by absorbing or delivering reactive power. 

Vehicle-to-Cloud (V2C) is a technology that allows vehicles to exchange and save data with 

the cloud via mobile networks and the Internet. 
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Nomenclature  
 

AC – Alternating Current 

AGC – Automatic Generation Control 

BESS – Battery Energy Storage System 

CIGRE – Council on Large Electric Systems 

DC – Direct Current 

DCGAN – Deep Convolution Generative Adversal Network 

DCRM – DC Ring Microgrid 

DG – Distributed Generation 

DPMR – Disjoint Multi Path-based Routing 

DRES – Distributed Renewable Energy Sources 

DSM – Demand Side Management 

EA – Evolution Algorithm  

ED – Economic Dispatch 

EMS – Energy Management System 

EV – Electric Vehicles 

FACTS – Flexible Alternating Current Transmission Systems 

FMCDM – Fuzzy Multi-Criteria Decision Making 

FO – Firefly Optimization 

FTID – Fuzzy Tilt Integral Derivative 

GA – Genetic Algorithm 

GMPP – Global Maximum Power Point 

GWO – Gray Wolf Optimization 
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HEMS – Home Energy Management System 

HESS – Hybrid Energy Storage Systems 

HHO – Harris Hawks Optimization  

HRES – Hybrid Renewable Energy Systems  

ICT – Information and Communications Technology 

IEEE – Institute of Electrical and Electronic Engineers 

IHMS – Island-based Hybrid Microgrid Systems 

LFC – Load Frequency Control 

LP – Linear Programming 

MADRC – Modified Active Disturbance Rejection Controller 

MC – Microgrid Controller  

MCC – Microgrid Centralized Controller 

MCTS – Monte Carlo Tree Search 

MFO – Moth Flame Optimization 

MOST – Metaheuristic Optimization Searching Technique 

MSTA – Modified Super Twisting Algorithm 

MV – Medium Voltage 

NLP – Non-Linear Programming 

NN – Neural Network 

OEM – Optimal Energy Management 

OHPF – Optimal Harmonic Power Flow 

PCC – Point of Common Coupling 

PHEV – Plugin Hybrid Electric Vehicle 

PQ – Power Quality 
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PSO – Particle Swarm Optimization 

PV – Photovoltaic 

QP – Quadratic Programming 

RES – Renewable Energy Sources 

RMIPPPP – Risk Mitigation Independent Power Producer Procurement Program 

SAGC – South African Grid Code 

SAO – Smel Agent Optimizer 

SASOS – Smell Agent Symbiotic Organism Search 

SDG 7 – Sustainable Development Goal 7 

SFO – Sailfish Optimizer 

SHEMS – Smart Home Energy Management System 

SOS – Symbiosis Organism Search 

SSA – Salp Swarm Optimization 

SSPSO – Series Salp Particle Swarm Optimization 

STATCOM – Static Var Compensator 

THDv – Voltage Total Harmonic Distortion 

UCTE – Union for the Coordination of Transmission of Electricity 

UNIDO – United Nations Industrial Development Organization 

V2C – Vehicle to Cloud 

VUF – Voltage Imbalance Factor 

WCA – Water Cycle Algorithm 

WIPSO-GSA – Weight Improved Particle Swarm Optimization Gravitational Search Algorithm 

WNN – Wavelength Neural Network 

WOA – Whale Optimization Algorithm   
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CHAPTER ONE 

INTRODUCTION 

1.1 Introduction 

 

As stated in the South African Constitution, everybody has the right to obtain energy. This puts 

pressure on the government to figure out how to guarantee that everyone, not only the wealthy 

and/or those who live in large cities, has access to energy. This right is also one of the 

Sustainable Development Goals (SDGs) of the United Nations, which is to be accomplished by 

2030. By that year, SDG7 aims to guarantee that everyone has access to modern, reasonably 

priced, and environmentally friendly energy resources. The World Bank's collection of 

development indicators states that 84.39% of South Africans had access to electricity in 2020. 

This suggests that a sizable portion of the population remains without electricity, so more work 

needs to be done to raise these figures. A significant portion of this population resides in 

isolated places that are not connected to the existing electrical grids, indicating that there is still 

a large population without electricity. As such, more efforts must be put in to improve these 

numbers. A huge percentage of this number is the population that is in remote areas where the 

current electricity network does not reach.  

The problem presents an opportunity for microgrids, which use renewable resources such 

as solar, wind, and energy storage devices like batteries to create electricity. Adding renewable 

energy sources to fossil fuel sources boosts reliability, lowers carbon emissions, increases price 

competitiveness, and offers clean energy. These align with the aims of the UN SDG 7. 

Alternative energy sources are required to improve competitiveness, reliability, and availability 

of electricity and lower carbon emissions, considering the current wave of load shedding and 

electricity price spikes in South Africa.  

An investigation on the deployment of microgrids is conducted considering the recent policy 

changes made by the South African government, which include the removal of the requirement 

for a generation license. The study's primary objective is to create energy management systems 

that regulate hybrid renewable energy sources whilst electric vehicles are present and also 

take reserve margins into account. The study aims to identify the best energy management 

practices applicable to isolated and grid-connected microgrid operating modes.  
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1.2 Awareness of the problem 

 

Energy management systems are crucial to solving the power systems' economic dispatch 

challenge. Microgrids are low-voltage distribution networks that are located downstream of the 

distribution substation and can function in grid-connected and islanded modes. The microgrid 

energy management system, which is a control program that can efficiently dispatch power or 

energy from several distributed generators to provide loads as needed, was also defined by the 

authors in the same publication by (Su & Wang, 2012). Additionally, it can handle real-time 

resynchronization when switching between islanded and grid-connected modes or between 

grid-connection and islanded modes. Hybrid microgrids are made up of several power 

generators, including photovoltaic, wind, energy storage systems, and electric vehicles, which 

can function as both sources and loads based on grid requirements and the battery's SOC. The 

example in Figure 1 illustrates a microgrid.  

 

Figure 1. Hybrid Microgrid example (Su and Wang, 2012) 
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Due to their primary use of renewable energy sources, microgrids help reduce pollution, 

improve consumer price competitiveness, and improve power system stability. Load forecasting, 

resource forecasting, electricity market pricing, optimal power flow, real-time control, etc. are 

among energy management systems' software features. The microgrid EMS ensures the power 

balance is always maintained by accounting for the unpredictable energy output of renewable 

energy resources. If energy from renewable sources is insufficient to meet loads, storage 

systems are either used to supply loads or the grid, if available, based on the market price. 

Regulations have been implemented within the system to guarantee that loads are supplied 

from renewable energy when there is enough energy, that excess energy is stored for later use, 

and even that the grid is supplied. To optimally maintain supply to the loads, the system needs 

to make these decisions in real time. The study aims to identify and create an optimization 

strategy for hybrid microgrid energy management systems that consider electric vehicle usage. 

Genetic algorithms and PSO will be evaluated to attain better microgrid management.     

   

1.3 Problem Statement 

 

Microgrids are crucial to power system networks because they reduce carbon emissions and 

help to increase system reliability. They also prove to be quite helpful in supplying electricity to 

loads located in isolated locations away from current power systems, like isolated rural areas 

and islands. The study considers HRES, which includes photovoltaic, wind, battery storage, 

electric cars, etc., that may function in islanded and grid-connected settings. To ensure that 

energy is supplied to loads as efficiently as possible, microgrid energy management systems 

are essential. These systems must consider various constraints, including power balance, 

intermittent renewable energy sources, voltage supply violations, and the requirement that 

battery storage systems only be charged from surplus power generated by green energy 

sources rather than from the grid, as the RMIPPPP requires in the South African context. 

The research problem of a hybrid microgrid consisting of photovoltaic and energy storage 

systems revolves around optimizing the interaction and operation of these green energy 

sources to achieve a sustainable, reliable, and cost-effective energy supply while resolving the 

inherent fluctuation and unpredictability of green energy resources, such as solar energy. 
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Research Questions: 

How can the functioning of a combined microgrid, made up of photovoltaic generation as well as 

battery energy storage, be optimized to guarantee a consistent and effective energy supply, 

minimize operational costs, and improve system sustainability while accounting for variability in 

renewable generation and load demand? 

Research Question 1: How can energy dispatch from a hybrid PV-battery microgrid be 

optimized to minimize operational costs while maintaining a reliable power supply? 

Research Question 2: How can hybrid microgrids be integrated with the primary grid to 

improve energy reliability, reduce reliance on fossil fuels, and lower operational costs? 

 

1.4 Research aims and objectives 

 

Microgrid energy management systems are a crucial component of microgrid operations 

because they can efficiently distribute generated electricity while conforming to system 

constraints. The system seeks to determine the most cost-effective producing technique to 

satisfy load needs while remaining within restrictions. 

Aim: The study intends to balance energy output from solar power, battery storage, and 

customer demand while lowering operational costs, increasing renewable energy use, and 

enhancing energy security.  

      

Objectives 

 

➢ Conduct literature review on mathematical structures and models for reserve margins 

and optimization strategies for hybrid microgrid energy management systems. 

➢ Conduct mathematical formulation of the optimization model for the EMS based on 

generation, storage, and reserve margins in grid-tied and islanded scenarios.  

➢ Develop the PSO and GA optimization algorithms that effectively handle the 

uncertainties and variability inherent in green energy sources such as wind and solar. 

This ensures robust optimization that adapts to fluctuating situations and load demands. 
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➢ Investigate how different reserve margin values affect the microgrid's efficiency and 

dependability. 

➢ Assess the system's performance under different scenarios (e.g., varying weather 

conditions, grid outages, fluctuating demand) to understand how the hybrid microgrid 

responds and can be optimized further. Minimize the cost of hybrid microgrid operation 

by defining the optimal operating parameters. 

➢ Compare the economic feasibility of the suggested optimization technique to standard 

methods that do not involve reserve margins. 

➢ Implement the developed optimization methods MATLAB environment and evaluate the 

simulation outcomes.  

 

1.5 Hypothesis 

 

An optimized energy management system of a heterogeneous microgrid, including reserve 

margins for generation and storage capacity, will improve the system's economic efficiency and 

reliability under changing load and renewable energy conditions while ensuring resilience 

against potential system failures and grid stability. The reserve margin improves reliability by 

ensuring load balance irrespective of demand for power or generation changes. To ensure cost 

savings, energy management must efficiently deploy reserve margins during times of need.  

 

1.6 Motivation of the research study 

 

The study aims to reduce the adverse effects of load shedding on communities in South Africa 

by employing microgrids as a clean, dependable, and sustainable energy source. A technical 

requirement states that a storage system if deployed, cannot be charged from the grid is 

examined. This requirement was noted in the Risk Mitigation Independent Power Producer 

Procurement Programme (RMIPPPP). Since the requirements in the tender are for individual 

projects or plants that do not have local loads to feed, the plant will shut down when removed 

from the grid. This study applies the criterion to a hybrid microgrid, examining islanded and grid-

connected configurations. When coupled to the electric grid, the BESS provides dispatchable 

reserve margins. It also supplies essential loads when green energy production is inadequate or 
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absent. One notable point about this study is the fact that it has been adapted to the South 

African context, including regional legislation and standards.       

1.7 Delimitation 

 

The research has outlined some areas not considered and excluded from the study, as listed 

below.   

1 The conventional classical techniques have not been considered.  

2 Modeling of Fuel Cell renewable energy sources for energy generation has yet to be 

considered.  

3 The research work does not cover the microgrid's protection and control strategies.  

4 The sizing and positioning of the distributed energy sources in the mixed microgrid are 

not part of the scope.  

5 Feasibility studies of the microgrid. 

 

1.8 Assumptions 

 

Certain assumptions have been made to lessen the intricate nature of the mixed microgrid's 

system modeling and simulation. 

1) The energy generation from the photovoltaic system is dependent on the quantity of 

available sunlight, which is often modeled using historical solar irradiance data and may 

incorporate seasonal or daily oscillations. The effectiveness of solar panels is thought to 

be constant, however, it may change based on external variables. 

2) Wind speed determines the wind turbine's production, which is expected to be estimated 

using historical data. Wind speed is commonly likely to follow a stochastic distribution. 

3) It is assumed that both solar and wind resources are intermittent and changeable but 

may be modeled with predicted availability patterns. 

4) Some models assume that the load demand is unpredictable, and optimization 

techniques (PSO or GA) are utilized to account for this variation. 

5) Both the PSO and GA algorithms are expected to reach an optimal or near-optimal 

solution within a tolerable time limit. The performance of these algorithms is also 
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considered to be affected by factors such as population size, iteration limitations, 

mutation/crossover rates in GA, and particle velocity and position parameters in PSO. 

6) The objective functions for PSO and GA methods are assumed to focus on minimizing 

operational costs, maximizing efficiency, or achieving a balance between price and 

reliability. 

 

1.9 Research Methodology 

 

The research methodology for hybrid microgrid systems involving photovoltaic systems, wind 

turbines, and battery storage systems optimized using PSO and GA follows a systematic 

approach that integrates modeling, simulation, and optimization to achieve optimal microgrid 

operation. The methodology identifies the most efficient and cost-effective configurations for 

hybrid microgrid systems through simulation and comparison of both PSO and GA. Figure 2 

shows the final implementation of the proposed methodology with the developed optimization 

methods control and management of the hybrid microgrid system.  

 

Figure 2. Hybrid Micro Grid System with Optimization Method 

 

• Literature Review: A systematic literature review that investigated the hybrid 

microgrid model, including the renewable generation profiles, demand patterns, 

and reserve margins was conducted. 



 

8 
 

• Mathematical Modeling: A mathematical representation of the mixed microgrid 

that incorporates reserve margins was developed. 

• Optimization Algorithms: The optimization strategies such as genetic algorithms 

as well as particle swarm optimization were developed to solve the system 

model. 

• Software Development: The system model simulation as well as the optimization 

strategies were developed in MATLAB environment. 

• Simulation: Different system scenarios with varied renewable generation profiles, 

demand patterns, and reserve margins were tested. 

• Performance Evaluation: The performance in terms of cost and dependability 

under different scenarios was examined. 

 

1.10 Publications 

 

Mquqwana, M.A.; Krishnamurthy, S. Particle Swarm Optimization for an Optimal Hybrid 

Renewable Energy Microgrid System under Uncertainty. Energies 2024, 17, 422. 

https://doi.org/10.3390/en17020422.  

Mquqwana, M.A.; Krishnamurthy, S. Comparative study of the PSO and GA optimization 

methods for the Hybrid Microgrid Energy Management System using real-time data. Submitted 

to the Journal of Electronics and Electrical Engineering. 

 

1.11 Deliverables  

 

1 Conduct a literature search to learn more about the application of 

optimization methods in energy management systems, discuss current trends in 

hybrid microgrids, and discuss the opportunities and difficulties. 

2 Development of a PSO-based algorithm and its use in the MATLAB software 

environment to validate its performance in the economic dispatch of hybrid 

microgrid systems. 
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3 Development of a GA-based algorithm and its application in the MATLAB 

software environment to evaluate its effectiveness in economic dispatch 

in heterogeneous microgrid systems. 

4 Develop a charging and discharging strategy that ensures the BESS only 

charges from excess power generated from renewables. 

5 Develop adequate reserve margin management that may reduce the necessity 

for fossil-fuel backup production from the grid, improving system sustainability 

and cutting emissions.  

6 Analysis of the simulation outcomes for the integrated microgrid for the various 

use-case scenarios and reporting of the research findings. 

 

1.12 Chapter Breakdown 

 

1. Introduction: The section presents an overview of the research work, indicating the 

problem and subproblems to be solved. It also includes the aims and objectives, 

motivation for the research effort, delimitations emphasizing areas not covered in the 

scope, research technique to be used, and research deliverables.   

2. Literature review on microgrids optimization methods and energy management 

systems: The literature review examines current and published information, 

compares it based on the various problems it addresses and the strategy it takes, 

and finds any gaps that may exist, as well as prospects for future additions.  

3. Particle Swarm Optimization for Hybrid Renewable Energy Microgrid System under 

Uncertainty: A background on particle swarm optimization is provided, followed by 

the basic formulation and application to the microgrid optimization problem. A 

simulation of the microgrid system, as well as MATLAB test results for the algorithm 

above, are provided  

4. Genetic Algorithm for Hybrid Renewable Energy Microgrid System under 

Uncertainty: The evolutionary algorithm is provided with a background, followed by 

its basic formulation and application to the microgrid optimization problem. The GA 

MATLAB test results for the algorithm above are shown, and a comparison study of 

the two optimization approaches is performed. 

5. Conclusion: A quick examination of what the research effort covered compared to 

what it aimed to achieve in terms of deliverables, methodology, etc. Noting any 
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deviations and the causes for such deviations, if any, and proving future 

recommendations are offered. 

6. Appendices: Software program of the developed optimization methods for the 

microgrid system. 

7. Bibliography: A list of references utilized during the investigation  

 

1.13 Research Contributions 

 

1. The optimization research problem considers a hybrid microgrid comprising solar, 

wind, battery energy storage, and electric vehicles operating in isolated and 

connected modes. 

2. The developed optimization method considers hybrid microgrids with reserve 

margins for critical loads. 

3.  The developed optimization method does not allow the battery energy storage 

system to charge from the grid but only from excess generation from renewable 

sources.  

 

1.14 Conclusion 

 

Hybrid renewable microgrid systems are an essential power system component since they 

provide system support functions such as increased reliability, lower carbon footprint, and so on. 

Because SDG 7 stipulates access to reasonably priced and consistent power for everyone, it is 

difficult to supply this service to persons who reside in remote areas where the current national 

grid cannot reach. Deploying islanded microgrids helps in this area by providing much-needed 

services to those communities.  The supply is uncertain because hybrid renewable microgrid 

energy is derived from unpredictable natural sources. It must be supplemented by a Battery 

Energy Storage System (BESS), which stores excess generated power for later use when 

renewable generation is limited.  

This method will be managed by the study energy management system, which will also 

establish the appropriate charging as well as discharging strategy for the battery system for 

supplying loads. The study's primary goal is to design an optimization approach for the energy 
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management system that results in savings for microgrid owners. The study approach offered 

outlines a strategy for achieving the desired findings.  

The next chapter reviews the literature on microgrid application optimization methods and 

energy management systems. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction 

 

Microgrid optimization, EMS, real-time EMS, load frequency control, power system operation, 

distributed generation, economic dispatch, electric vehicles, energy storage systems, frequency 

in microgrids, etc. are some of the keywords used in this section's literature search and 

literature review of published material, which includes papers, journals, books, and other 

publications. The literature focuses on microgrid optimization, microgrid energy management 

systems, and reserve margins, which are discussed further in the following sections.  

Section 2.2 presents some background on microgrids' role in the electric power system's 

network. Section 2.3 offers a summary of the academic assessment of smart home energy 

management systems, and Section 2.4 delivers a summary of the academic analysis of energy 

management systems utilized in microgrids. Section 2.5 summarizes the scientific assessment 

of power system modeling and optimization. Section 2.6, on the other hand, provides a review 

of the literature on optimization strategies for microgrids that function in grid-tied or islanded 

configurations. The literature review on reserve margins is briefly reviewed in part 2.7; the 

chapter discussion is offered in section 2.8, and a conclusion is provided in section 2.9.  

 

2.2 Background  

  

A microgrid is a low-voltage distribution system that connects to a point of common coupling 

located beneath the distribution station (Su & Wang, 2012). As previously stated, microgrids can 

operate independently or in connected to the grid. The Manhattan Pearl Street Station, Thomas 

Edison's initial electric station erected in 1882, was a microgrid because a centralized grid had 

yet to be developed. Direct current (DC) microgrids totaling fifty-eight were installed by Edison's 

company in 1886. Built in the United States in 1955, the first contemporary microgrid had a 64 

MW capacity. Microgrids can be classified into five categories: military, commercial/industrial, 

institutional/campus, community/utility, and distant off-grid (Asmus, et al., 2009). 
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Microgrids continue developing and improving to provide reliable electricity using renewable 

energy resources. This is in line with recent developments in the energy industry policies and 

the United Nations Sustainable Development Goals (SDG7), which focuses on guaranteeing all 

people have a means of receiving affordable, environmentally friendly, and clean energy. The 

intermittent nature of renewable energy sources, control schemes, cyber security risks brought 

on by system interconnectivity, etc. are some of the microgrids' current research problems. 

Table 1 depicts the evolution of energy management systems in power systems from the early 

1950s.   

Table 1. Energy Management System History (Su and Wang, 2012) 

1950s 1960s 1970s 1980s 1980s After 2000s 

Load 

Frequenc

y Control 

(LFC) 

SCADA-RTU Network 

Analysis 

(State 

Estimator) 

Transmission 

Security 

(Optimal 

Power Flow) 

Inter-Control 

Center 

Communication

s Protocol 

Demand Side 

Management 

(DSM) 

  EMS 

Database 

Load 

Forecast 

Generation 

Control (AGC, 

ED, ISP) 

Open Platform 

and Distributed 

Architecture 

Multi-

directional 

Power Flow 

  Automatic 

Generation 

Control (AGC) 

Alarm / 

Event 

Processor 

Operation (Full 

Graphic and 

Customized 

User Interface) 

PC-Based 

Operator 

Console 

Decentralized 

Control 

  Economic 

Dispatch (ED) 

System 

Redundancy 

and Backup 

    Network 

Management 

  Unit 

Commitment 

(UC) 

      Plug and play 
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Figure 3. Number of publications per year on microgrids 

 

A literature review has been done to understand the topic better and identify gaps in the 

research. The materials that have been reviewed are arranged based on the year of publication, 

as depicted in Figure 3. The literature review is grouped into five categories: review by the smart 

home energy management system, energy management system, power system modeling and 

optimization, microgrid optimization methods, and reserve margins. Out of the 83 publications 

reviewed, as shown in Figure 4, 4 publications are grouped under smart home energy 

management systems, 29 are grouped under energy management systems, 9 are grouped 

under power system modeling and optimization, and 37 fall under microgrid optimization. In 

comparison, 8 publications discuss power system reserves. 
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Figure 4. Number of publications per review category 

 

The next section discusses the literature survey on smart home energy management systems 

and includes their applications in microgrids.  

 

2.3 Smart Home Energy Management System 

  

This section presents an academic assessment of smart home energy management systems.  

(Han & Lim, 2010) proposed implementing smart home energy management systems using 

IEEE802.15.4 and ZigBee for wireless communications, which they called the “ZigBee sensor 

network.” The proposed solution assigns tasks to various network components. A routing 

protocol called Disjoint Multi Path-based Routing (DPMR) was developed to improve ZigBee 

performance. (Zhou, et al., 2016) provide a brief discussion on smart home energy 

management systems, their architecture, and their functional modules. Various green energy 

resources like wind, solar, biomass, etc., and their impacts are analyzed. (Bisschoff, 2016). The 

study investigates the effects of installing an energy management system in a real-life system in 

South Africa, assuming that net-metering rules are not adopted. The EMS was implemented 

together with a solar system and grid-connected inverter, and the results showed an 

improvement from 83% to 98% in self-consumption. (Tostado-Véliz, et al., 2022) offered a home 

energy management system that combines feasible demand response tactics without 
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compromising the end users' financial domain. Table 2 analyzes the literature review of smart 

home energy management systems. 

Table 2. Review summary of Smart Home Energy Management Systems 

Author Aim Application Hardware/Softwar
e used  

Key Points 

Han, and 
Lim, 2010 

The paper proposed 
implementing Smart 
Home Energy 
Management Systems 
using IEEE802.15.4 and 
ZigBee for wireless 
communications, which 
they called a "ZigBee 
sensor network."   

Simulation and 
physical 
implementatio
n 

Simulation 
software tools 

Implementation of the 
ZigBee sensor network 
for HEMS 

Zhou, et 
al., 2016.  

The paper on smart 
home energy 
management systems, 
their architecture, and 
their functional modules.  

General review 
and discussion 
of energy 
management 
systems and 
their 
applications 

A review paper Demonstrated 
comparative analytical 
results of EMS. 

Bisschoff, 
2016. 

The study investigates 
the effects of installing 
an energy management 
system in a real-life 
system in South Africa, 
assuming that net-
metering rules are not 
adopted.   

Simulation and 
physical 
implementatio
n 

Simulation 
software tools, 2 
kW Solar System 

The EMS is 
implemented together 
with a solar system with 
a grid-tied inverter, and 
the results showed a 
huge improvement in 
self-consumption from 
83% to 98%.    

Tostado-
Véliz, et 
al., 2022.  

Offered a home energy 
management system that 
combines feasible 
demand response tactics 
without compromising 
the end users' financial 
domain. 

Simulation Simulation 
software tools 

The solution results 
showed improvement 
when compared with 
other methods in terms 
of financial saving. 

 

The next section discusses the literature review on energy management systems in general and 

includes their applications in microgrids.  
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2.4 Energy Management System 

 

The section discusses a literature review on energy management systems.  (Slutsker, et al., 

1996) implemented a method that can estimate the impedance parameters of the network as 

they fluctuate due to load changes using the Kalman filter and these parameters were. Using a 

real energy management system, the method was tested on a 100-bus network. (Clarke, et al., 

2002) discussed the development of the simulation-assisted controller that has a program 

running in real time to manage  

(Su & Wang, 2012) discussed the operation of microgrid energy management systems, 

providing opportunities, challenges, etc. Some of the mentioned issues include the intermittency 

of green energy resources and the influence of electric automobiles on microgrid operation in 

terms of load or source, dependable communications infrastructure requirements, cyber security 

requirements, etc. In contrast, some of the opportunities listed include grid reliability 

improvement, end-user participation in the electricity markets, reduction of emissions due to the 

implementation of renewable resources, etc. (Aman, et al., 2013) provide a comparative 

analysis of various energy management systems, their applications, frameworks, etc. United 

Nations Industrial Development Organization (UNIDO), 2013 developed a guide for 

implementing energy management systems.  

(Shakeri, et al., 2017) suggested an improved design and control mechanism that gets price 

information from the utility company to decide whether to purchase power from the market, 

charge batteries, provide the batteries without a solar system supply, etc. A comparative 

examination of decision-making strategies for energy management systems to handle the 

inconsistent availability of green energy resources, load demand, market electricity prices, etc. 

is offered by (Zia, et al., 2018). The book by (Suzuki, et al., 2020) provides a discussion about 

the inclusion of energy management systems, electric vehicles (EV), and information 

communications technology (ICT) to form microgrids. (Habib, et al., 2019) 

discussed energy management techniques on wind, diesel, battery, and inverter mixed energy 

source systems. The commercial software tool (HOMER) was used to evaluate the ideal size of 

the various elements of the network according to the actual environmental data and 

demand profile of an isolated residential area in Pakistan. The suggested energy management 

system was built in a MATLAB/Simulink environment to regulate the hybrid renewable energy 

systems.  
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(Farhangi & Joós, 2019) discussed different topics, including operation, control, protection, 

disturbance detection, diagnostics, microgrid planning, optimization, microgrid benchmarks, 

automation, communications infrastructure, real-time operation, testing, etc. Some case studies, 

challenges, and energy management applications on microgrids are also discussed.  

(Patnaik, et al., 2020) presented an overview literature review on the protection of AC 

microgrids, including protection coordination considering bidirectional power flow scenarios and 

integration of renewable energy resources. The research discussion included the current, major 

challenges, and research areas of interest. (Roy, et al., 2021) suggested a two-level 

optimization strategy for energy management and scaling microgrid components. The 

optimization method allowed benefits to be maximized while costs were minimized. (Sarda, et 

al., 2022) discusses the energy management system for battery energy storage systems in 

microgrids with solar PV systems. Two approaches are evaluated for a cloudy and clear day, 

and the findings show that the optimization method outperforms the heuristic method.  

(Kavitha, et al., 2022) proposed an energy management system based on Mimosa Pudica 

optimization technique designed for optimal dispatching of the microgrids to improve 

performance and efficiency, ensuring that power balance is always met. The suggested method 

showed an 8% improvement in profits versus other methods. (Bukar, et al., 2022) presented a 

rules-driven approach along with metaheuristic optimization searching techniques (MOST) 

in energy management systems and microgrid development. The MOSTs were applied to 

weather data of Maiduguri, Nigeria, and the outcomes showed that the grasshopper 

optimization technique had better results than the other techniques. (Chopra, et al., 2022) 

developed an innovative technique for establishing control levels and optimizing the 

performance of islanded microgrids employing offline, centralized, and power flow-based energy 

management systems. The approach was evaluated on an updated 14-bus CIGRE medium 

voltage reference microgrid network. (Lopez‐Santiago, et al., 2022) presented a rule-driven 

energy management system to replace optimization or prediction-based energy management 

systems on isolated microgrids. The proposed rule-based EMS solution showed better results 

than optimization-based energy management systems. 

(Sanabria-Torres, et al., 2022) presented a paper whereby energy management tasks are 

based on microgrid analysis, control, and predictions in real-time to improve the reliability and 

validity of the energy management system. A cloud-based energy management system that 

involves machine learning to solve economic dispatch problems is tested on an experimental 

microgrid with the implementation of hardware in the loop philosophy and communications 
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protocols to connect to the on-cloud EMS. (Correia & Aoki, 2022) proposed the method to 

manage load uncertainties and energy generation intermittencies using energy management 

systems. Using energy management systems, the method to manage load uncertainties and 

energy generation intermittencies was proposed. The proposed energy management system 

monitors, in real time, the difference between the dispatched energy and the prediction with the 

consideration of renewable resources, battery state of charge, and load curve. (Hassanzadeh & 

Rahmani, 2022) proposed a real-time energy management system for plug-in hybrid electric 

vehicles (PHEVs) that integrates battery degradation and fuel consumption optimization. 

(Yu, et al., 2022) presented a real-time energy management system based on Monte Carlo Tree 

Search (MCTS) using vehicle-to-cloud (V2C) connectivity. The outcomes of the suggested 

approach, using the actual vehicle and hardware in the loop test bench, are compared with the 

results of the rule-based and online dynamic programming method, and an improvement of 

above 11% is seen. To meet network restrictions and ensure co-optimization of the energy 

management system and economic power dispatch (EPD), (Adenuga & Krishnamurthy, 2023) 

created an optimization strategy that reduces the overall operating expenses of all scheduled 

units that supply the grid. Although the B coefficient loss formula calculates the transmission 

losses, the suggested PSO technique approaches the optimization question by 

characterizing the operational expenses of generating plants employing a piecewise quadratic 

function. The quantity and ecologically favorable characteristics of renewable energy-based 

power systems are driving up interest in them globally. A relatively recent innovation in this field, 

island-based hybrid microgrid systems (IHMS) integrate two or more sustainable energy 

sources, along with photovoltaic systems, wind turbines, including other green energy sources 

like geothermal, wave, and ocean energy. The growing population along with the manufacturing 

industry of Perhentian Island, Malaysia, relies on an uninterrupted power supply, so an energy 

management system that effectively synchronizes and controls alternative power sources is 

necessary (Shezan, et al., 2023).  

Production of clean energy is becoming more common, which raises the degree of stochasticity 

and intermittency in energy management. To tackle this problem, an integrated energy 

management along with a preservation system is presented, which comprises a fuzzy logic-

based super-twisting algorithm. The goal is to maximize the efficiency of the microgrid's design 

and operation, which comprises electrical energy conversion technologies such as fuel cells, 

tidal energy, solar and wind turbines, charging facilities for electric vehicles, and the main 

electrical grid. Another objective is to build an energy management system that will 



 

20 
 

optimize power production, ensure service continuity, and smooth out the microgrid's energy 

output while also providing the best potential outcomes for hybrid energy storage systems 

(HESS) and renewable energy sources (RESs) (Belkhier & Oubelaid, 2024). Nowadays, an 

energy management system is important. However, the overreliance on fossil fuels and the 

expanding gap between electricity use and energy power supply has resulted in various 

worldwide concerns, including energy shortages, high utility bills, and greenhouse gas 

emissions (Hou, et al., 2024).   

Energy management systems are often either predictive or real-time, but they do assist grid 

integration by matching the supply and demand of power. As a result, the integration of 

renewable energy sources into the grid is limited since they are unable to utilize the range of 

supply and demand responses fully. By using an integrated energy management system, this 

restriction is removed. From there, a thorough summary of recent findings and advancements in 

the creation of frameworks for integrated energy management systems with real-time and 

predictive energy management features is given in (Falope, et al., 2024).  

Two main obstacles must be overcome for the DC microgrid to have efficient energy 

management: minimizing operating costs and balancing power flow. Most benchmarking 

strategies are employed to demonstrate the availability of power optimization or cost 

optimization to construct energy management systems (EMS). In contrast, this study introduces 

a new optimal energy management (OEM) approach in the DC ring microgrid (DCRM) that 

considers both power flow and operational cost during the grid-connected scenario. A multi-

objective optimization model is created using key constraints, such as the reduction of 

operational expenses and power availability via the use of an enhanced sparrow search 

algorithm (ISSA) based on a modified active disturbance rejection controller (M-ADRC), to 

achieve the OEM in the DCRM (Anjaiah, et al., 2024). Three characteristics are used as inputs 

in the Bayesian inference process: the hybrid system's overall production, the load demand, and 

the batteries' state of charge, which determines the supply for charge consumption. The 

technique shifts the task from choosing the best response to drawing optimum predictions about 

management by defining action and decision-making picking as variational Bayesian 

Interpretation. A Bayesian inference technique for the new demand management strategy has 

been developed as a result of the findings, and it may be used to load profiles that are similar to 

those of commercial and service institutions. (Benallal, et al., 2024). 

Table 3 shows the comparisons of various publications on energy management systems for 

categories as reviewed above.   
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Table 3. Review summary of energy management systems 

Author Aim Application Hardware/Software 
used  

Key Points 

Slutsker, et 
al., 1996. 

The implemented method is capable of 
estimating the network's impedance parameters 
as they fluctuate due to load changes using the 
Kalman filter.  

Simulation and 
physical 
implementation 

Energy Management 
System, power system 
simulation software 

The use of the Kalman filter 
to estimate impedance 
parameters. 

Clarke, et al., 
2002.  

The paper discusses the development of the 
simulation-assisted controller, which uses a 
program running in time with a real-time 
program to make decisions. 

Simulation and 
physical 
implementation 

Simulation software 
tools 

Development of a simulation 
system to improve control 
capabilities of Building 
Energy Management System 

Su, and 
Wang, 2012 

The paper discusses the operation of energy 
management systems in microgrids, providing 
opportunities, challenges, etc.  

General review and 
discussion of energy 
management systems 
as applied in microgrid 
operations 

A review paper Provided clear background 
to microgrids and energy 
management systems and 
the definitions used. 

Aman, et al., 
2013. 

The article presents a comparative analysis of 
energy management systems, their applications, 
frameworks, etc.  

General review and 
discussion of energy 
management systems 
and their applications 

A review paper Provided comparative results 
of energy management 
systems and their 
applications. 

UNIDO, 2013.  The United Nations Industrial Development 
Organization developed a guide for 
implementing energy management systems.  

General guide General Guide Developed a guide for 
implementing management 
systems. 

Shakeri, et al., 
2017.  

The study offered a novel design and control 
technique that gets the electrical company's 
price information to decide whether to purchase 
electricity from the market, charge batteries, 
provide utilizing batteries in the absence of solar 
power, etc.  

Simulation and 
physical 
implementation 

Simulation software 
tools 

Design of the energy 
management system to 
determine when to buy/sell 
from the grid, 
charge/discharge batteries, 
etc. depending on the 
purchase price. 
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Zia, et al., 
2018. 

A comparative analysis of decision-making 
strategies in microgrid energy management 
systems to handle the unpredictable nature of 
green energy resources, load demand, and so 
on is offered.  

General review and 
discussion of energy 
management systems 
and their applications 

A review paper Demonstrated comparative 
analysis of decision-making 
strategies in energy 
management systems. 

Habib, et al., 
2019.  

An energy management technique for wind, 
diesel, battery, and converter hybrid green 
power systems is suggested.  

Not Applicable MATLAB/Simulink, 
HOMER 

Testing of the proposed 
optimization method for 
hybrid microgrid 

Farhangi, and 
Joós, 2019.  

The book discusses different topics including 
operation, control, protection, disturbance 
detection, diagnostics, microgrid planning, 
optimization, microgrid benchmarks, automation, 
communications infrastructure, real-time 
operation, testing, etc.  

Conventional, 
intelligent search 
techniques 

Theoretical book 
discussion 

Provided clear discussions 
and definitions, on microgrid 
planning, operation, 
protection, etc.  

Suzuki, et al., 
2020.  

The book discusses the integration of energy 
management systems, electric vehicles, and 
information and communication technologies to 
form microgrids  

General review and 
discussion of energy 
management systems 
and their applications 

Theoretical book 
discussion 

Provided clear discussions 
of EMS, EVs, and ICT to 
microgrids. 

Patnaik, et al., 
2020.  

The paper presents an overview literature 
review on the protection of AC microgrids 
including coordination considering bidirectional 
power flow scenarios and integration of 
distributed renewable resources. 

Not Applicable A review paper Clear definition of 
interventions required to 
mitigate protection issues. 

Roy, et al., 
2021. 

A two-stage optimization method of power 
management, as well as the capacity of 
microgrid components, is proposed.  

Intelligent search 
techniques 

Simulation software The results of the 
optimization method showed 
an increase in profits due to 
the sale of hydrogen 
although the investment cost 
of the electrolyzer is high. 

Sarda, et al., 
2022.  

The paper discusses the power management 
system of battery storage systems connected to 
a microgrid with a solar PV system.  

Simulation Simulation software 
tools 

Demonstrated cost 
improvement due to the 
implementation of the 
proposed solution 
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Kavitha, et al., 
2022.  

The article presents the power management 
system based in Mimosa Pudica, developed to 
optimally manage microgrid dispatching to 
improve performance and efficiency and ensure 
power balance.  

Simulation Simulation software 
tools 

The proposed method 
showed an 8% increase in 
profits than other methods. 

Bukar, et al., 
2022.  

A rule-based algorithm and metaheuristic 
optimization searching techniques (MOST) are 
presented for energy management and sizing 
microgrids.  

Simulation Simulation software 
tools 

Provided a comparative 
analysis of MOST (Meta-
heuristic Optimization 
Techniques). 

Chopra, et al., 
2022.  

A novel approach for implementing hierarchical 
control in optimizing the operation of islanded 
microgrids using the offline, centralized, and 
power flow-based energy management system 
is presented.  

Simulation Simulation software 
tools 

Demonstrated cost 
improvement due to the 
implementation of the 
hierarchical control in 
optimization methods. 

Lopez‐
Santiago, et 
al., 2022.  

A rule-based energy management system is 
proposed instead of an optimization or 
prediction-based system on isolated microgrids.  

Simulation Simulation software 
tools 

Demonstrated cost 
improvement due to the 
implementation of the 
proposed solution. 

Sanabria-
Torres, et al., 
2022,  

In the paper, energy management tasks are 
based on analysis, control, and predictions in 
real-time to improve the system's reliability and 
validity.  

Simulation and 
physical 
implementation 

Simulation software 
tools, electric vehicles, 
cloud-based EMS 

Demonstrated cost 
improvement due to the 
implementation of the 
proposed solution 

Correia, and 
Aoki, 2022.  

The study proposed a method to manage load 
uncertainties and energy generation 
intermittency using energy management 
systems.  

Simulation Simulation software 
tools 

Demonstrated cost 
improvement due to the 
implementation of the 
proposed solution 

Hassanzadeh, 
and Rahmani, 
2022.  

A real-time energy management system for 
plugin hybrid electric vehicles (PHEVs) that 
integrates battery degradation and optimization 
of fuel consumption.  

Simulation Simulation software 
tools 

Demonstrated cost 
improvement due to the 
implementation of the 
proposed solution 
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Yu, et al., 
2022.  

The paper proposed a real-time energy 
management system based on Monte Carlo 
Tree Search using vehicle-to-cloud connectivity.  

Simulation Simulation software 
tools 

Demonstrated cost 
improvement due to the 
implementation of the 
proposed solution 

Benallal, et 
al., 2023. 

A new techno-economic feasibility analysis of 
energy management for an autonomous hybrid 
microgrid using the Homer software v3.14.5 
environment is presented. 

Simulation Homer software  successfully lowered the net 
current cost, initial cost, and 
energy cost by 37.93%, 
41.43%, and 36.71%, 
respectively, on secondary 
and tertiary priority charges. 
The overall unmet load was 
1.9%. 

Qayyum, et 
al., 2023. 

This study critically looks at how energy 
management systems are integrated into 
intelligent residential buildings, which are 
essential hubs in the network of smart cities. 

Not Applicable A review paper Highlighted the need for 
multidisciplinary research 
and the implementation of 
comprehensive tactics 
to maximize energy 
efficiency, lower carbon 
footprints, and encourage 
resilient urban living in the 
age of smart cities. 

Shezan, et al., 
2023.  

Give a thorough examination of the 
convergence rate and net present cost (NPC) of 
different optimization techniques. 

Various optimization 
techniques 

Simulation software The results show how FLC 
works under different 
operating conditions to keep 
the voltage and frequency 
within allowable bounds. 

Hou, et al., 
2023.  

With several ideal or nearly optimal DSM 
recommendations, the model hopes to increase 
users' receptivity to the advice and fully use 
DSM's advantages. 

Indexed-based ring 
topology PSO 

Simulation software Demonstrated cost 
improvement due to the 
implementation of the 
proposed solution 

Adenuga, and 
Krishnamurthy
, 2023. 

To minimize the total operating expenses of all 
scheduled units supplied to the grid while 
simultaneously guaranteeing improvement of 
the energy management system and economic 
power dispatch (EPD) and fulfilling network 
constraints. 

Simulation Software The suggested co-
optimization methodology 
greatly improved the self-
consumption ratio. 



 

25 
 

Belkhier, and 
Oubelaid, 
2024. 

To provide an energy management system for 
renewable energy sources (RESs) and hybrid 
energy storage systems (HESS) to optimize 
benefits, maintain service continuity, and 
increase power production in the microgrid. 

Simulation Software The suggested management 
unit offers reliable output 
power and long-term service. 

Falope, et al., 
2024.  

To examine integrated energy management 
systems, including supply and demand side 
response types, power system designs, and 
operations 

Not Applicable A review paper The results helped guide 
future research on integrated 
energy management system 
design and deployment. 

Anjaiah, et al., 
2024. 

This paper introduces a new optimal energy 
management (OEM) approach for the DC ring 
microgrid (DCRM), which takes into account 
both power flow and operational costs in the 
grid-connected scenario. 

Simulation Hardware and 
Software 

The suggested method is 
scalable to large and 
intricate microgrids and is 
not just restricted to PV-
wind-based DCRM 
management 

    



 

26 
 

2.4.1 Review discussion of energy management systems 

 

Energy management systems have been around for decades, as shown in Table 1, with the first 

control philosophy being load frequency control. One of the definitions of an energy 

management system given by (Su & Wang, 2012) is “A microgrid EMS is a control software that 

can optimally allocate the power output among the DG units, economically serve the load, and 

automatically enable the system resynchronization response to the operating transition 

between”. The above definition has been adopted for the research. Two main obstacles to the 

DC microgrid's optimum energy management are balancing the power flow and minimizing 

operating costs. By proving either cost optimization or availability of power optimization, the 

majority of benchmark methodologies are utilized to construct energy management systems 

(EMS) (Anjaiah, et al., 2024). The goals are to optimize the main grid, solar and wind turbines, 

fuel cells, tidal energy, electric vehicle charging stations, and other electrical-based energy 

conversion systems when it comes to microgrid design and operation. (Belkhier & Oubelaid, 

2024).  

Grid integration of renewable energy sources is limited because energy management systems, 

which balance power supply and demand, are typically either predictive or real-time. As a result, 

they cannot fully exploit the range of supply and demand responses. By using an integrated 

energy management system, this restriction is removed (Falope, et al., 2024). There have been 

developments throughout the years, as shown in the literature review above. Continuous 

improvements are ongoing as researchers always look at different, more straightforward, 

effective, efficient, and accurate etc. ways of solving current and future problems. The correct 

application of energy management systems has demonstrated system improvements in the 

efficiency rate of renewable energy resources, increased saving, operation, and control, etc.       

 

2.5 Power System Modelling and Optimization 

 

The section discusses a literature review on microgrid optimization methods. (Parmar, et al., 

2012) presented load frequency control (LFC) for a realistic power system network with multi-

source generation. The paper's authors proposed using an optimal output feedback controller to 

solve the LFC problem while considering all the power system state variables. The proposed 
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controller was tested using a power system in Khozestan, Iran. (Kothari, 2012) provided a book 

that discusses the basics of power system modeling, load flow studies, economic dispatch, 

multi-objective generation scheduling, and evolution programming for generation scheduling. 

(Bhutto, et al., 2013) presented the development of photovoltaic and battery energy storage 

systems controllers using Static Compensator (STATCOM) controllers. The developed 

controllers were tested on the distribution test network developed by CIGRE, and the outcomes 

showed good performance by the controllers. (Zhu, 2015) presented a book that covered the 

basic operation of power systems, from conventional methods to intelligent search techniques. 

The book addresses subjects such as power flow evaluation, sensitivity calculation, classical 

economic dispatch, security-constrained economic dispatch, multi-area system economic 

dispatch, unit commitment, optimal power flow, optimal load shedding, uncertainty analysis, and 

so on.  

(Alzahrani, et al., 2017) discussed different models of electrical components in a microgrid. The 

models discussed use complex modeling techniques to represent various electrical 

components. (Madathil, et al., 2018) discussed the creation of the mathematical model dealing 

with the dependability difficulties of off-grid microgrids for architecture, planning capacity, and 

management of distributed generators. A rolling horizon algorithm was also developed to solve 

the model and the proposed solution was tested using the modified IEEE test network and the 

Alaskan real microgrid. (Dougier, et al., 2021) research presented a method to determine 

parameters and performances that define a compromise between economic, technical, and 

environmental objectives. A Genetic Algorithm (GA) optimization method was used to perform 

the multi-objective non-weighted optimization to find the balance.   

(Gadanayak, 2021) discussed protection algorithms for microgrids interfaced with inverter 

generation units operating in grid-connected mode. The initial power generation system had 

numerous flaws that eventually came to light from a long-term strategic standpoint. Because 

those generators are non-renewable resources, the pollution they produce is irreversible, and 

also they will be gradually depleted. Two significant crises are plaguing the world: the energy 

and environmental crises, which pose serious threats to humankind's ability to develop 

sustainably. It's now necessary to find new, environmentally beneficial energy sources (Luo & 

Mei, 2023). A literature review summary of the power system modeling and optimization is 

provided in Table 4. 
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Table 4. Review Summary of Power System Modelling and Optimization 

Author Aim Applicati
on 

Hardware/Softwar
e used  

Key Points 

Parmar, 
et al., 
2012. 

The paper presented the 
demand frequency regulation 
of an actual electrical network 
with multi-source generation.  

Not 
Applicable 

Simulation 
software, Real 
Power System 

Implementation and 
testing of load 
frequency controller. 

Kothari, 
D.P., 
2012. 

The book provides the basics 
of power system modeling, 
load flow studies, economic 
dispatch, multi-objective 
generation scheduling, and 
evolutionary programming for 
generation scheduling.  

Different 
categories 
of 
optimizatio
n methods 
have been 
defined 

Theoretical book 
discussion 

Provided clear 
definitions of power 
system modeling, etc.  

Bhutto, et 
al., 2013.  

The paper provides the 
development of Photovoltaic 
(PV) and battery energy 
storage system (BESS) 
controllers using Static 
Compensator (STATCOM) 
controllers.  

Not 
Applicable 

Simulation 
software 

Implementation and 
testing of renewable 
energy controllers. 

Zhu, J., 
2015.  

The book provides the basics 
of power system operation, 
from conventional methods to 
intelligent search techniques.  

Conventio
nal, 
intelligent 
search 
technique
s 

Theoretical book 
discussion 

Provided clear 
definitions, power 
system modeling, etc.  

Alzahrani, 
et al., 
2017. 

The paper discusses the 
different models of electrical 
components in a microgrid. 
The models discussed use 
complex modeling techniques 
to represent various electrical 
components.  

Not 
Applicable 

A review paper Clear definition of the 
complex models used 
to represent microgrid 
components. 

Madathil, 
et al., 
2018.  

The publication describes the 
creation of a mathematical 
framework that addresses the 
reliability difficulties for off-
grid microgrids during 
architectural design, capacity 
planning, and distributed 
generator functioning. 

Rolling 
horizon 
algorithm 

Simulation 
software, Real 
Power System 

Implementation and 
testing of the rolling 
horizon al algorithm 
method in Alaskan to 
improve the reliability of 
microgrids. 

Dougier, 
et al., 
2021.  

The paper determines 
parameters and 
performances that 
compromise economic, 
technical, and environmental 
objectives. 

Genetic 
Algorithm 
(GA) 

Simulation 
software 

Demonstration of the 
flexibility of the 
proposed algorithm to 
find a balance between 
opposing objectives. 
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Gadanaya
k, 2021.  

The     
paper discusses protection 
strategies for microgrids 
interfaced using inverter 
generator devices that 
operate in grid-connected 
mode.  

Not 
Applicable 

A review paper Clear definition of 
interventions required 
to mitigate protection 
issues. 

Luo, and 
Mei, 
2023.  

The use of multi-objective 
optimization-based microgrid 
scheduling technique. 

PSO Simulation 
software 

Effectiveness as well 
as the author's 
suggested approach's 
logic and applicability 

 

2.5.1 Review Discussion of Power System Modelling and Optimization 

 

The papers discuss load frequency control (LFC) for a realistic power system network with 

multi-source generation, proposing an optimal output feedback controller. They also discussed 

power system modeling, load flow studies, economic dispatch, and generation scheduling. The 

authors also discuss the development of photovoltaic and battery energy storage systems 

controllers using Static Compensator (STATCOM) controllers. The book covers basic power 

system operation, power flow evaluation, sensitivity calculation, classical economic dispatch, 

security-constrained economic dispatch, multi-area system economic dispatch, unit 

commitment, optimal power flow, optimal load shedding, uncertainty analysis, and protection 

algorithms for microgrids. The research also discusses different models of electrical 

components in a microgrid and a method to determine parameters and performances that 

balance economic, technical, and environmental objectives using a Genetic Algorithm (GA) 

optimization method.  

In the following section literature review on microgrid optimizations is discussed.  

 

2.6 Microgrids Optimization 

 

The section discusses a literature review on microgrid optimization methods. (Asmus, et al., 

2009) presented research that provides a historical background of microgrids dating back to the 

1800s. They also offer the expected developments of microgrids, application categories, and the 

benefits of using microgrids. (Rauf, et al., 2016) discussed the optimal application of intelligent 

DC grid systems for solar distributed generation to develop reliable infrastructure to fulfill set 
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goals. The authors advocate for implementing the DC distribution grid as it minimizes power 

losses due to DC to AC conversion with the expectation of having more home appliances, 

including lights, to use DC supply for the proposal to gain traction.  

(Mohanty, et al., 2017) discussed the standalone PV-based microgrid power management 

system, including its limitations, such as reliability of voltage concerns along with problems with 

power quality that need interventions. Some of the interventions discussed include diesel 

generators for the restoration of voltage stability and flexible Alternating Current Transmission 

Systems (FACTS) devices. (Reddy, et al., 2017) Presented a Fuzzy Multi-Criteria Decision 

Making (FMCDM) approach to rank load points and locations that would be used to restore 

distributed generators after natural disasters. Particle Swarm Optimization (PSO) was used to 

evaluate distributed generators' optimal size and location using the proposed objective function. 

(Muthuvel, et al., 2017) presented the development of a DC nano grid employing a 

straightforward and robust evaluation technique. A simple approach was used to determine the 

PV system sizing utilizing the area of interest's consumption, irradiation, and ambient 

temperature. In contrast, rigorous Particle Swarm Optimization was used to determine the cost 

using all design variables, and the proposed solution was tested in the local network in India. 

(Mumtaz & Bayram, 2017) presented the critical challenges of implementing island microgrids 

and possible solutions for those challenges in terms of planning, operation, and control, with a 

focus on power system protection.  

(Arulraj & Kumarappan, 2019) presented a study on the optimal planning of distributed 

generators and capacitor installation using the maximization of total cost benefit as the main 

objective function. A hybrid optimization method called Weight Improved Particle Swarm 

Optimization and Gravitational Search Algorithm (WIPSO-GSA) was proposed and tested on a 

33-bus test network and the real 85-bus network in India. The results of the proposed algorithm 

showed improvements when compared to the results of conventional algorithms. (Diab, et al., 

2019) offered a simulated technique for operating a mixture of PV, wind, battery, and diesel 

generator microgrids. Energy costs were reduced, while dependability and efficiency were 

boosted. Whale Optimization Algorithm (WOA), Water Cycle Algorithm (WCA), Moth-Flame 

Optimization (MFO), and a hybrid PSO-GSA were all applied to the simulation model. Still, the 

results indicated the superiority of the WOA. 

(Ruiz, et al., 2019) presented a novel design method for hybrid off-grid microgrids considering 

the integration of electric vehicles operating as both the load when charging and the source for 

ancillary services support. (Raji & Luta, 2019) explored the mathematical representation as well 
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as the optimization of a communal microgrid (diesel generator and PV rooftop), located in an 

urban area in Cape Town, South Africa. A commercial software tool, HOMER was used for the 

optimal design of the system. (Antonanzas-Torres, et al., 2021) research works presented the 

present status of microgrid installations and the major challenges for future developments and 

installations of microgrids in West Africa. The research showed that the electrification status 

was below 40% with many areas being remote areas from the grid. (Mathiesen, et al., 2021) 

proposed a fast method for optimizing distributed energy resources investments and dispatch 

planning considering 5-minute intra-hour variability. The proposed method showed 

improvements to maintain optimality at below 2% while reducing runtime by 98.2%.  

(Zhang, et al., 2021) presented a multi-criteria evaluation method to deal with microgrids' peak 

shaving ability and carbon reduction effects. The research proposed converting peak shaving 

and emission reduction effects to economical values such as peak load reduction costs and 

carbon tax. (Mah, et al., 2021) This paper presents the optimization framework for designing 

and operating the isolated microgrid with electrical and hydrogen loads. Particle Swarm 

Optimization was used to solve the problem, and two energy management strategies were 

proposed. (Mah, et al., 2021) also presented his work using a P-graph optimization framework 

to optimize microgrids with BESS and hydrogen storage and photovoltaic.  

(Çetinbaş, et al., 2021) the study proposed applying the Harris Hawks Optimization (HHO) 

algorithm for the optimization and the design of AC microgrids consisting of photovoltaic, wind 

turbines, battery energy storage systems, and diesel generators. MATLAB tool was used as a 

simulation test environment. It demonstrated success by showing savings from just above 1% to 

just over 18% in comparison to PSO and Firefly Algorithm, Gray Wolf Optimization (GWO), and 

Salp Swarm Algorithm (SSA). (Yang & Su, 2021) proposed an efficient optimization method for 

microgrids that takes into account the intermittent nature of green energy sources as well as the 

microgrid's necessary reliability. A two-stage resilient optimization was defined to strike a 

balance between cost and reliability. The proposed optimization method was incorporated into 

the CPLEX solver and evaluated on the IEEE 39 bust test network.  

(Shen, et al., 2022) presented research on the energy storage optimization method for the 

microgrid consisting of wind and solar generation considering multi-energy coupling demand 

response using electric, heat, and gas loads. (Rai & Das, 2022) presented a load frequency 

development of multiple-area microgrids consisting of green resources using a Fuzz-based Tilt-

integral-derivative (FTID) controller. The FTID controller's settings are adjusted using the 

Sailfish Optimizer (SFO) to resolve the demand frequency challenge. (Zarate-Perez & 
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Sebastián, 2022) proposed a model that evaluates photovoltaic microgrid energy autonomy with 

a battery storage system. The energy consumption of the residential area and the solar 

irradiation data of the exact location were used for the isolated microgrid. The energy produced 

is sent towards the residential area for self-utilization, while surplus energy can be preserved in 

the BESS for future use. 

(Soykan, et al., 2022) Served to determine the optimal operation and configuration of islanded 

microgrids comprising wind and solar renewable resources, batteries, and electric vehicles. A 

two-level probabilistic programming that is based on multi-objective optimization reduces life 

cycle expenses while increasing the dependability index. The operation of electric vehicles and 

their influence on the sizing and operation of microgrids are also discussed. (Chen, et al., 2022) 

presented the optimal capacity planning model for the grid-connected microgrid, considering 

renewable energy generation intermittencies. The Deep Convolution Generative Adversarial 

Network (DCGAN) and an upgraded k-medoids clustering technique were applied, along with a 

power management strategy. The suggested approach maximizes green energy 

utilization effectiveness while reducing investment costs as well as carbon emissions. 

(Castillo-Calzadilla, et al., 2022) evaluated the feasibility of a low-voltage direct current 

distribution network, bringing attention to the obstacles that require being solved to make the 

transition. Grid configurations, distribution, and voltage-level standardization are explored. 

Some of the highlighted findings include the improved efficiency rate for off-grid microgrids 

between 15% and 30%. However, grid-connected microgrids are more economically viable. 

Voltage level standardization between 48V and 380V still needs to be concluded. (Huo, et al., 

2022) proposed a chance-constrained convex optimization via second-order cone programming 

to determine the optimal energy storage system size for an isolated microgrid while also 

monitoring the reliability. An optimal compromise between reliability and investment cost was 

achieved with the chance constraints value of 4.8%.  

(Kizito, et al., 2022) suggested a numerous phases probabilistic algorithm that evaluates the 

microgrid investment's techno-economics and processes, optimizing the dependability and 

robustness of the microgrid for a complete week of an electricity interruption. (Abubakr, et al., 

2022) proposed adaptive control utilizing the Harris Hawks Optimizer to keep frequency and 

voltage within acceptable levels. (Dagal, et al., 2022) proposed a hybrid Series Salp Particle 

Swarm Optimization (SSPSO) algorithm to track the standalone battery charging station's 

Global Maximum Power Point (GMPP), considering partly cloudy conditions. The results of 

using SSPSO compared to conventional methods showed that the proposed method was far 
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superior as it presented an optimum measuring effectiveness of 99.99%. (Li, et al., 2022) This 

paper discusses a technique to assist grid-connected microgrids with power fluctuation 

smoothing, thereby minimizing operating costs, including fluctuation penalties. A rolling horizon 

strategy was proposed, showing better results than conventional strategies, with about 5.67% 

savings. 

(Adineh, et al., 2022) presented research addressing the quality of electricity challenges in 

isolated microgrids with green energy resources by presenting a cohesive single-end harmonic 

reduction solution based on a reliable optimization framework. The central controller gets 

voltage harmonic distortion readings of all buses in the microgrid and then returns the 

optimized voltage harmonic elements to localized controllers. (Zhang, et al., 2022) 

recommended creating a charging along with a discharging mechanism for electric automobiles 

and an objective function optimization strategy for dispatching microgrid loads. A hybrid 

optimization technique combining an updated Gravitational Search Algorithm, as well as Particle 

Swarm Optimization, was developed to improve load management in microgrids incorporating 

electric automobiles. The results demonstrated significant improvements as compared to other 

optimization methods. The impact of the number of electric automobiles linked to the microgrid 

along with their charging options is also explored.   

When parts of power electronics and irregular loads are integrated into microgrids, difficulties 

with power quality (PQ) occur. An uneven loading in the microgrid may also be the cause of 

these problems. Without a doubt, they have an impact on the microgrid's daily operation 

schedule. Three indices are used in the framework to assess PQ: Voltage magnitude, total 

harmonic distortion (THD), as well as voltage imbalance factor (VUF). To avoid breaches of PQ 

indices, a non-iterative mitigation technique based on demand-side management (DSM) is 

proposed. This method is put onto the optimization derivation section of the OHPF as a 

collection of demand constraints (Budiman, et al., 2024). Both industry and human growth now 

place a high priority on the problems of energy scarcity and environmental damage. Therefore, 

research into green energy sources along with the effective utilization of distributed energy 

resources (DERs) is crucial and beneficial. Combine these energy resources with networked 

consumers to create a self-managed microgrid (MG) system. It can work in grid-connected or 

isolated configurations with flexibility (Tran, et al., 2023).  

With a focus on enhancing small-signal stability, an optimization technique enhanced with 

domain knowledge is created to enhance the adaptive robustness of isolated microgrids. 

Optimizing the controller settings for the dispersed power electronic interfaces, that are vital to 
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the system's fluctuating adaptability, necessitates the creation of a new eigenvalue-oriented 

target function with associated restrictions. Utilizing the understanding of the microgrid domain, 

incorporates an additional loss term a multivariate polynomial in the optimization variables to 

address the ensuing non-smooth and irregular optimization challenge (Kweon, et al., 2024). The 

haphazard generation of clean energy, combined with the unorganized network connection of 

electric automobiles, will make it impossible for the power system to run safely and consistently. 

To mitigate the influence of sporadic EV entry on electrical system performance, a 

programmable EV cluster framework is developed utilizing the Minkowski total. The wavelength 

neural network predicts that the generation of green energy will lessen the impact of output 

volatility on the smooth functioning of the electrical system (WNN) (Wu, et al., 2023). 

Renewable energy (RE) deployment is complex due to load demand changes and wind speed 

unpredictability. On the other hand, installing hybrid energy storage systems (HESS) in islanded 

microgrids can increase power supply dependability and allow for additional use of excess 

energy. (Seedahmed, et al., 2023).  

Due to issues with power imbalance and peak demand on the grid in recent decades, demand-

side management has emerged as a practical means of addressing the power system's and 

customers' needs. (Attou, et al., 2023). The depletion of non-renewable resources on Earth is 

leading to an increasing severity of environmental issues. Variations in loads cause instability in 

line characteristics, like voltage and frequency, which lowers power quality and overall system 

stability in microgrid operations. To overcome these obstacles, an optimized controller design 

was developed that incorporates the Smell Agent Symbiotic Organism Search (SASOS) 

algorithm, which combines the Smell Agent Optimizer (SAO) and Symbiosis Organism Search 

(SOS) algorithms. The Microgrid's Centralized Controller (MCC) used the SASOS, SAO, and 

SOS algorithms to control steady-state disturbances. (Mohammed, et al., 2023).        

  

2.6.1 Review discussion of microgrid optimizations 

 

(Asmus, et al., 2009) research provided the historical background of microgrids, expected 

developments, application categories, and the benefits of microgrids. The research indicates the 

start of microgrids as early as 1882, during Thomas Edison’s time. Also, in the research, further 

developments, application categories, and benefits of microgrids are discussed. The following 

definition of microgrids as given by (Su & Wang, 2012) has been adopted for the research, “A 
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microgrid is a low-voltage distribution network that is located downstream of a distribution 

substation through a point of common coupling (PCC)”. There have been various 

implementations of microgrids, including islanded microgrids and grid-connected microgrids. As 

highlighted in the literature review, some challenges need consideration when designing 

microgrids, and these can be categorized into economic, technical, and environmental 

categories.  

The optimization method’s role, as discussed in the literature review, is to find a balance 

between the different categories such as costs, reliability, and environmental friendliness. The 

concerns of energy shortage and environmental damage are currently critical to industry and 

human development. Research into renewable energy sources and the appropriate utilization of 

distributed energy resources (DERs) are vital and helpful in building a self-managed system 

called a microgrid (MG) by combining these energy resources with networked consumers (Tran, 

et al., 2023). Optimizing the controller settings for distributed electricity resources power 

electronic interfaces, considered critical to the system's fluctuating adaptability, necessitates the 

creation of a new eigenvalue-oriented target function with associated restrictions. They solved 

the ensuing non-smooth and irregular optimization issue by inserting an extra loss element, a 

multidimensional polynomial, in the optimization variables, leveraging thier understanding of the 

microgrid domain (Kweon, et al., 2024). Sustainable energy-based generators are becoming 

increasingly popular worldwide due to their abundance and environmental benefits.  

Isolated hybrid microgrid systems (IHMS), a relatively recent development within this field, 

integrate multiple renewable energy generators, which include wind turbines, geothermal, wave, 

ocean energy, and solar photovoltaic (PV) systems. Due to Perhentian Island, Malaysia's 

growing population, and the industrial sector's reliance on a steady supply of electricity, the 

island nation needs an energy management system that can efficiently coordinate and regulate 

several power sources (Shezan, et al., 2023). An energy management system is now 

necessary. However, an over-reliance on fossil fuels and the growing disparity between the 

amount of energy consumed and the amount of power produced has led to several worldwide 

issues, such as high utility bills, greenhouse gas emissions, and energy shortages. (Hou, et al., 

2024).  

Since it is now well acknowledged that humans and the environment must coexist 

harmoniously, sustainable development is the most critical factor to consider. Many of the 

original power generation system's shortcomings were eventually discovered from a long-term 

strategic perspective. Globally, the former distribution sector has evolved into a twilight industry. 
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Since they are non-renewable resources, their contamination is irreversible, and their supply will 

eventually run out. The world faces two major crises threatening humanity's ability to progress 

sustainably: the energy crisis and the environmental catastrophe. Finding new, ecologically 

friendly energy sources is increasingly essential (Luo & Mei, 2023). The increasing utilization of 

intermittent green energy sources like wind, solar, and so on, as well as the expanding use of 

electric vehicles, has made microgrids and microgrid optimization difficulties more complex to 

tackle. To address upcoming power system issues, new techniques and combinations of current 

methods are being developed.    

A summary of the microgrids optimization reviewed material may be found in Table 5. 
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Table 5. Review Summary of Microgrid Optimization 

Author Aim Optimization Method Hardware/Software 

used  

Key Points 

Asmus, et al., 

2009.  

The research provided the historical 

background of microgrids, expected 

developments, application categories, and 

benefits.  

Not Applicable A review paper The historical background of 

microgrids from Thomas Edison's days 

has been clearly defined. 

Rauf, et al., 

2016.  

The paper discusses the optimal use of 

smart grid DC grid technology for 

photovoltaic distributed generation, building 

reliable infrastructure to achieve defined 

goals. 

Not Applicable A review paper Challenges and opportunities have 

been clearly defined. 

Mohanty, et 

al., 2017.  

The standalone PV-based microgrid power 

management is discussed, along with 

voltage stability problems and other power 

quality issues that need serious 

intervention.  

Not Applicable Simulation software A clear definition of interventions is 

required to curb power quality issues. 

Reddy, et al., 

2017.  

The paper presents the Fuzzy Multi-Criteria 

Decision-Making (FMCDM) approach to 

ranking load points and locations that would 

be used to restore distributed generators 

after natural disasters.  

Fuzzy Multi-Criteria 

Decision Making 

(FMCDM), Particle 

Swarm Optimization 

(PSO) 

Simulation software Implementation and testing of the 

proposed optimization methods to rank 

load and locations to restore 

distributed generators. 

Muthuvel, et 

al., 2017.  

The design of a DC nanogrid using a simple 

and rigorous analytical approach is 

discussed.  

PSO Simulation software Design, implementation, and, testing of 

the proposed optimization method. 
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Mumtaz, and 

Bayram, 

2017.  

The paper discusses the protection-related 

critical challenges of implementing islanded 

microgrids and possible solutions regarding 

operation, planning, and control.  

Not Applicable Simulation software Discussion of protection-related 

challenges of implementing islanded 

microgrids and the possible solutions. 

Arulraj, and 

Kumarappan, 

2019.  

The study provides for the optimal planning 

of distributed generators and capacitor 

installations, with the maximization of total 

cost benefit as the main objective function.  

Weight Improved 

Particle Swarm 

Optimization and 

Gravitational Search 

Algorithm (WIPSO-

GSA) 

Simulation software, 

Real Power System 

Testing of the proposed optimization 

method in real network and the IEEE 

test network. 

Diab, et al., 

2019.  

The paper proposed a simulation model for 

the operation of hybrid PV, wind, battery, 

and diesel generator microgrid.  

Whale Optimization 

Algorithm (WOA), 

Water Cycle Algorithm 

(WCA), Moth-Flame 

Optimization (MFO), 

Particle Swarm 

Optimization-

Gravitation Search 

Algorithm (PSO-GSA) 

Simulation software Demonstration of the cost-saving 

superiority of WOA in comparison to 

other optimization methods. 

Ruiz, et al., 

2019.  

A novel design method for integrating 

hybrid off-grid microgrids, which uses 

electric vehicles as both load sources, is 

proposed.  

Not Applicable Simulation software Demonstration of the advantages of 

having electric vehicles providing 

ancillary services. 

Raji, and 

Luta, 2019.  

The paper presents the modeling and 

optimization of a community microgrid 

(diesel generator and rooftop PV) in an 

Not Applicable HOMER Modeling and development of 

optimization method for a community 

microgrid. 
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urban area in Cape Town, South Africa.  

Antonanzas-

Torres, et al., 

2021.  

The research provides the present status of 

microgrid installations and significant 

challenges for future developments and 

installation of microgrids in West Africa.  

Not Applicable A review paper Highlighted the status of electrification 

in West Africa and the opportunities 

and challenges for microgrid 

development. 

Mathiesen, et 

al., 2021.  

The research proposed a fast method for 

optimizing distributed energy resources 

investments and dispatch planning, 

considering 5-minute intra-hour variability.  

Intelligent search 

techniques 

Simulation software The proposed method showed 

improvements to maintain optimality at 

below 2% while reducing runtime by 

98.2%.  

Zhang, et al., 

2021.  

A multi-criteria evaluation method is 

proposed to deal with peak shaving ability 

and carbon reduction effects of microgrids.  

Not Applicable Simulation software Demonstration of savings achieved 

with the proposed method.  

Mah, et al., 

2021.  

The research presents an optimization 

framework for designing and operating an 

off-grid microgrid with electrical and 

hydrogen loads.  

Particle Swarm 

Optimization 

Simulation software Demonstration of savings achieved 

with the proposed method.  

Mah, et al., 

2021. 

A multi-period P-graph 

optimization framework for microgrids with 

battery and hydrogen storage along with 

photovoltaic systems is presented.  

Multi-period P-graph Simulation software Demonstration of savings achieved 

with the proposed method.  
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Çetinbaş, et 

al., 2021.  

The study proposed applying the Harris 

Hawks Optimization (HHO) algorithm to 

optimize and design AC microgrids 

consisting of photovoltaic, wind turbines, 

battery energy storage, and diesel 

generators.  

Harris Hawks 

Optimization (HHO), 

PSO, Firefly 

Optimization (FO), 

Gary Wolf 

Optimization (GWO), 

Salp Swarm Algorithm 

(SSA) 

MATLAB/Simulink Demonstration of savings from just 

over 1% to just over 18% from using 

HHO in comparison to other 

optimization methods. 

Yang, and 

Su, 2021.  

A robust optimization method for microgrids 

considering the intermittency of renewable 

distributed generation and the required 

reliability of the microgrid.  

Intelligent search 

techniques 

Simulation software, 

CPLEX 

 Testing of the proposed optimization 

method on the IEEE 39 bus test 

network. 

Shen, et al., 

2022.  

The paper presents an energy storage 

optimization method for the microgrid of 

wind and solar generation considering 

multi-energy coupling demand response 

using electric, heat, and gas loads.  

Intelligent search 

techniques 

Simulation software Demonstration of savings achieved 

with the proposed method.  

Rai, and Das, 

2022.  

A load frequency control design for multi-

area microgrids with renewable resources 

using a fuzzy-based Tilt-integral-derivative 

(FTID)controller is presented. 

Fuzzy-based Tilt-

integral-derivative 

(FTID), Sailfish 

Optimizer (SFO) 

Simulation software Demonstration of the proposed 

method. 

Zarate-

Perez, and 

Sebastián, 

2022.  

The research proposed a model that 

evaluates photovoltaic microgrid energy 

autonomy with a battery storage system.  

Not Applicable Simulation software Demonstration of the proposed method 

to operate BESS and renewable 

energy resources. 

Soykan, et The study determines the optimal operation Intelligent search Simulation software Demonstration of the advantages of 
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al., 2022.  and configuration of off-grid microgrids 

comprising wind and solar renewable 

resources, batteries, and electric vehicles.  

techniques having electric vehicles providing 

ancillary services. 

Chen, et al., 

2022.  

The paper presents a suitable capacity 

estimation framework for the grid-

connected microgrid, incorporating green 

power intermittencies, using a Deep 

Convolutional Generative Adversarial 

Network (DCGAN) with an enhanced k-

medoids grouping technique, which 

includes a power management system 

technique.   

Deep Convolutional 

Generative Adversal 

Network (DCGAN), k-

medoids clustering 

algorithm 

Simulation software The proposed solution maximizes 

renewable energy utilization efficiency 

while it minimizes investment costs 

and carbon emissions.  

Castillo-

Calzadilla, et 

al., 2022.  

The goal of this article is to analyze the 

practicality of a low voltage direct current 

distribution network, throwing some light on 

the problems that must be addressed to 

transition.  

Not Applicable A review paper One of the findings of the study 

includes an improved efficiency rate for 

off-grid systems of between 15% to 

30% however, economically grid-

connected microgrids are most 

suitable. 

Huo, et al., 

2022.  

A chance-constrained convergent 

optimization using second-order curve 

coding is suggested to estimate the best 

capacity for a power storage system for an 

isolated community grid while 

analyzing reliability.  

Chance-constrained 

convex optimization 

Simulation software An optimal compromise between 

reliability and investment cost is 

achieved when the chance constraint 

is about 4.8%.  
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Kizito, et al., 

2022.  

A numerous phases probabilistic algorithm 

that analyses the techno-economics of 

microgrid investment and management by 

maximizing the microgrid's dependability 

and robustness throughout a whole week of 

an electrical failure is proposed.  

Intelligent search 

techniques 

Simulation software Demonstration of the flexibility of the 

proposed algorithm to find a balance 

between opposing objectives. 

Abubakr, et 

al., 2022.  

The adaptive control using Harris Hawks 

Optimizer is proposed to maintain 

frequency and voltage at nominal values. 

Harris Hawks 

Optimization (HHO) 

Simulation software Demonstration of the proposed method 

to control voltage and frequency at 

nominal values. 

Dagal, et al., 

2022.  

A hybrid Series Salp Particle Swarm 

Optimization (SSPSO) algorithm is 

proposed to track the standalone battery 

charging station's global maximum power 

point (GMPP) under partly cloudy 

conditions. 

Series Salp Particle 

Optimization (SSPSO) 

Simulation software  The results showed that the proposed 

method is performed better, presenting 

an average tracking efficiency of 

99.99%. 

Li, et al., 

2022.  

The purpose of the is to assist grid-

connected microgrids with power fluctuation 

smoothing, thereby minimizing operating 

costs, including fluctuation penalties.  

Rolling horizon 

algorithm 

Simulation software A rolling horizon optimization strategy 

has shown better results than 

conventional strategies, with about 

5.67% savings.  

Adineh, et 

al., 2022.  

Addresses power quality issues in islanded 

microgrids with renewable energy 

resources by introducing a unified single-

end harmonic mitigation approach using a 

robust optimization model. 

Not Applicable Simulation software Demonstration of the proposed method 

in mitigating power quality issues. 
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Zhang, et al., 

2022.  

The development of the charging-

discharging model for electric vehicles and 

the objective optimization model of 

dispatching load for the microgrid are 

presented.  

Gravitational Search 

Algorithm (GSA), PSO 

Simulation software Demonstration of the advantages of 

having electric vehicles providing 

ancillary services. 

Mohammed, 

et al., 2023. 

Presents an optimal control of steady-state 

disturbances in the power flow of 

microgrids. 

SASOS, SOS, SAO Simulation software The MCC-SASOS strategy 

demonstrated a leading reduction in 

VUF of 41.24%,  

Attou, et al., 

2023. 

To offer a practical and optimal 

management plan to lower power prices, 

decrease peak demand, and replace costly 

reserve generation units 

Tree-based algorithm Simulation software The deployed controller lowers the 

network's peak demand by up to 54% 

Budiman, et 

al., 2023.  

The application of the harmonic power flow 

(HPF) and optimization formulation in a 

grid-connected microgrid and the optimal 

scheduling of that microgrid. 

Optimal Harmonic 

Power Flow (OHPF) 

Simulation software The framework can prevent PQ index 

limitations from being violated under 

various events without unduly 

burdening the original optimization and 

harmonic load flow.  

Tran, et al., 

2023. 

To create a power management strategy for 

an MG that works well in both operating 

modes. 

Lagrange Multiplier Simulation software Demonstrated cost improvement due 

to the implementation of the proposed 

solution 

Kweon, et al., 

2023.  

To resolve the ensuing non-convex and 

non-smooth optimization problem 

Various optimization 

techniques 

Simulation software Showed significantly faster computing 

than state-of-the-art alternatives and a 

noticeable improvement in the 

objective function of over 1 dB. 
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Wu, et al. 

2023.  

To mitigate the effects of erratic EV access 

on power system performance 

Wavelength Neural 

Network (WNN) 

Simulation software The viability and efficacy were 

confirmed. 

Seedahmed, 

et al., 2023.  

To set up an energy management system 

for an optimally designed system 

comprising wind turbines, an electric 

storage system, a hydrogen storage 

system, and a diesel generator to meet 

predetermined technical and financial 

requirements for a stand-alone microgrid. 

Model Predictive 

Control 

Simulation software The EMS demonstrates that MPC has 

guaranteed the HRES boundaries to 

prevent degradation, circumvent 

weather-related power outages, and 

lower grid-integration startup costs. 

Hou, et al., 

2023.  

With several ideal or nearly optimal DSM 

recommendations, the model hopes to 

increase users' receptivity to the advice and 

fully use DSM's advantages. 

Indexed-based ring 

topology PSO 

Simulation software Qualifying solutions with better variety 

and higher accuracy in a single run, 

are revealed by numerical experiments 
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2.7 Reserve Margins  

 

The reserve margin, the difference between peak demand and nominal capacity, is widely 

recognized as a crucial criterion for evaluating the state of a nation's electrical transmission 

and supply network. (Eskom, 2015). The technical rules for supplemental amenities in South 

Africa specify the requirements that apply to every spare class, which includes the 

subsequent five kinds of reserves (Sørensen, et al., 2017): 

a. AGC manages regulatory reserves, which are used to reconcile demand and 

supply in real time.  

b. Instant reserves are used to keep frequency inside appropriate limits following 

an unexpected occurrence. 

c. Ten-minute reserves accommodate variations in demand as well as supply 

between the market for the day ahead along with real-time, incorporating 

errors in forecasting loads and unit reliability. 

d. When slower reserves run out, emergency reserves are called upon to rebuild 

integrated electrical systems. They are also used when the system is not 

working properly. 

e. Supplemental reserves ensure manageable risk for the day ahead. 

Several control mechanisms are in place to balance the grid's supply and demand. The 

Union for the Coordination of Transmission of Electricity (UCTE) has devised a strategy for 

its member states that use the European interconnected electrical network. The policies in 

this document explain temporal control, secondary control, and tertiary control (Frunt, et al., 

2009) as presented in Table 6. 

Table 6. UCTE Reserve Capacity Characteristics 

 Main Control Backup Control 

Time 30 seconds 15 minutes 

UCTE Size 3000 MW 5700 MW 

Ramp Rate 200 %/minute 7 %/minute 

Duration <15 minutes Not Specified 

 

Grid-forming controls enable fast inverters to respond quickly to disturbances and prevent 

traditional system oscillations, as is well-established. When there is a disturbance, power 
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must be injected. There must be energy headroom in a PV system to allow dynamic control 

or services comparable to spinning reserve. Low energy costs can allow the value of 

additional services to more than balance out the production losses associated with energy 

headroom, which suggests lower PV system output (Krein & Jason, 2021). Adequate 

reserve capacity is necessary to compensate for inaccuracies in demand and renewable 

forecasts, as well as unplanned generator failures, in order to ensure safe and stable system 

operation. It is necessary to draw on fast-acting-up reserves when renewable resources fall 

short of projected production levels. However, a separate issue with decreasing conventional 

generators occurs when the actual wind generation exceeds the estimated value. An 

operator may be mandated to utilize all available wind power in specific networks.  

Even in unregulated networks, the truly delivered wind surpasses the cleared amount 

because of the low instantaneous fashion wind price and the absence of an 

oversupply punishment. As a result, a significant amount of standby reserve is necessary to 

compensate for these erratic supplies. (Hedayati-Mehdiabadi, et al., 2015). Operating 

reserve is considered in Photovoltaic/Diesel Generator (PV/DG) hybrid systems since solar 

radiation and electrical load might fluctuate rapidly. This ensures a steady supply of power 

regardless of the load or solar radiation unexpectedly rises or drops. The regulating reserve 

addresses the quick, frequent, and continuous variations in load along with production that 

causes power imbalance (Movahediyan & Askarzadeh, 2018). Power system security can be 

preserved by using the proper hourly reserve margins to maintain equilibrium 

between demand alongside supply in the event of generation outages, inaccuracies in wind 

power generation forecasts, or errors in demand forecasting. Cost assessment to select the 

most affordable buffer margin is a critical component of electrical system operations because 

the cost of unit commitment rises with more excellent, more significant reserve margins 

(Kwon, et al., 2016).  

The greater the quantity of green energy included in the electrical network, the greater the 

degree of unpredictability that power system operators need to consider. Reliability requires 

scheduling more operating reserves within the security-constrained economic dispatch. 

Current methods depend on traditional power plants to provide the functional versatility 

needed to mitigate the volatility of renewable energy sources. However, given the rising 

presence of green resources in the power mix, such unpredictable resources will be 

expected to participate in the balancing responsibilities. Wind turbines can mitigate against 

unpredictability by offering a reserve buffer (Hedayati-Mehdiabadi, et al., 2018). Constraints 

on the maintenance window guarantee that every unit is maintained within a predetermined 

time window, neither earlier nor later. Usually, operational service levels or yearly generating 

unit service frequencies enforced by power company policies set these time limits. Load 
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limitations guarantee that each period over the planning horizon satisfies the load demand. 

Naturally, units that are not planned for repair during the pertinent times must be generated 

to meet this need. Dependability limitations can be included by specifying a backup or 

security buffer in addition to the demand restrictions. Operational continuity constraints are 

put in place to guarantee that the periods that occur when a certain generator component is 

serviced, operate continuously (that is, without disruption) (Lindner, et al., 2018).  

 

Figure 5. Reserve Margins as defined by SAGC System Operation Code 

As stated in (Eskom System Operator, 2019), Figure 5 displays the overall reserves, which 

include operating reserves, emergency reserves, and supplemental reserves. However, the 

analysis only looks at operational reserves.  

 

2.7.1 Review summary and discussion of reserve margins. 

 

It is commonly acknowledged that one of the most important metrics for assessing the 

condition of a country's electrical transmission and supply network is the reserve margin, 
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which is the difference between peak demand and nominal capacity. To guarantee safe and 

reliable system operation, sufficient reserve capacity is required to account for errors in 

demand and renewables projections and unforeseen generator breakdowns. When expected 

output levels of renewable resources are not met, fast-acting-up reserves must be accessed. 

Nevertheless, there is another problem with fewer conventional generators when real wind 

generation is higher than predicted.  

Power system operators must account for an increasing degree of unpredictability as the 

amount of renewable energy increases. Adding extra operating reserves to the security-

constrained economic dispatch schedule is necessary for reliability. Current technologies 

use conventional generators to give the operational flexibility required to mitigate the 

uncertainty arising from renewable energy sources. However, these sporadic resources 

would have to participate in the balancing chores as the percentage of green energy in the 

overall mix of sources increased. By providing a reserve buffer, wind turbines can help 

reduce unpredictability.  

 

2.8 Discussion  

 

Energy management systems have been around for decades, as shown in Figure 2, with the 

first control philosophy being load frequency control. One of the definitions of an energy 

management system is given by (Su & Wang, 2012) is “A microgrid EMS is a control 

software that can optimally allocate the power output among the DG units, economically 

serve the load, and automatically enable the system resynchronization response to the 

operating transition between”.  

The above definition has been adopted for the research. (Asmus, et al., 2009) research 

provided the historical background of microgrids, expected developments, application 

categories, and the benefits of microgrids. The research indicates the start of microgrids as 

early as 1882, during Thomas Edison’s time. Also, and benefits of microgrids are discussed. 

The following definition of microgrids given by (Su & Wang, 2012) has been adopted for the 

research, “A microgrid is a low-voltage distribution network that is located downstream of a 

distribution substation through a point of common coupling (PCC).”   
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2.9 Conclusion 

 

The definition mentioned above has been used in the study. The literature analysis above 

demonstrates the changes that have occurred over time. The researchers looking; they 

always look for new, easier, more accurate, efficient, effective, and so on methods to solve 

problems that arise now and towards the foreseeable future. The effective utilization of 

power management systems has shown benefits in the system's operation, control, and 

efficiency rate of renewable energy supplies, among other areas.  

Microgrids have been implemented in various ways, such as islanded and grid-connected 

microgrids. Microgrid design involves several considerations, some of which are technical, 

environmental, and economical, as the literature study makes clear. The literature study 

highlights that the optimization method's function is to among many factors, including 

budgetary constraints, dependability, and ecological sustainability. The assessment of 

existing literature has demonstrated the significance and added value of integrating 

microgrids with energy management systems. Communities in rural places gain access to 

electricity, maximizing profits, increasing self-consumption, and reducing carbon emissions.    

 

2.9.1 Research Contributions 

1) The study considers a hybrid microgrid (solar, wind, BESS, and EVs) that operates 

both in connected and islanded modes. 

2) Development of an optimization method for a microgrid that maintains reserve 

margins for critical loads.  

3) Development of an optimization method that doesn't allow BESS charging from the 

grid but only from excess renewable energy generation. 

Genetic algorithms and Particle Swarm Optimization (PSO) are powerful tools for solving 

various optimization problems. Genetic algorithms handle complex search spaces, find near-

global optima, work with diverse problem types, are robust to noise, and can parallelize 

computations, making them ideal for complex optimization problems. PSO has several key 

advantages, including its simplicity in implementation, ease of parameter tuning, fast 

convergence, ability to handle high-dimensional problems, and good balance between 

exploration and exploitation. 

The following chapter presents a theoretical overview of the optimization techniques chosen 

for use in the research study.             
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CHAPTER THREE 

PSO FOR HYBRID RENEWABLE ENERGY MICROGRID SYSTEM 
UNDER UNCERTAINTY 

 

3.1 Introduction 

 

The topic of power system optimization has been around for decades. It continues to be 

improved throughout time by advances in computing and programming mathematics 

approaches. However, it precedes the introduction of digital computers, which completely 

revolutionized numerical optimization and computation in general. The strategies developed 

to address power system operation issues, including conventional and contemporary 

optimization techniques, can be categorized into three classes based on optimization theory 

as below. (Zhu, 2015). 

1. Conventional optimization techniques, such as unrestricted optimization, nonlinear 

programming (NLP), linear programming (LP), quadratic programming (QP), etc. 

2. Intelligent Search Techniques like neural networks (NN), evolution algorithms (EA), 

Tabu Search (TS), Particle Swarm Optimization, etc.  

3. Nonquantitative Techniques such as probabilistic optimization, fuzzy set, etc. 

The study focuses on two types of intelligent search optimization algorithms: Genetic 

Algorithm (GA) and Particle Swarm Optimization (PSO) and explored in the subsequent 

sections. Genetic algorithms and Particle Swarm Optimization (PSO) are powerful tools for 

solving various optimization problems. Genetic algorithms handle complex search spaces, 

find near-global optima, work with diverse problem types, are robust to noise, and can 

parallelize computations, making them ideal for complex optimization problems. PSO has 

several key advantages, including its simplicity in implementation, ease of parameter tuning, 

fast convergence, ability to handle high-dimensional problems, and good balance between 

exploration and exploitation.  

 

3.2 Theory of Particle Swarm Optimization 

 

Particle swarm optimization is an algorithmic method in the field of computers that 

optimizes a challenge by constantly striving to enhance the potential remedy based on a 

predefined quality criterion. It solves a challenge by using a collection of probable answers, 
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referred to as particles in this case, and altering their velocity and position within the search 

space using a straightforward mathematical equation. A particle's motion is propelled to the 

most recognized locations in the search space, which gets modified when other particles find 

superior locations and are influenced by their local best-known position. As a result, the 

swarm should be directed toward the optimal solutions.  

Kennedy and Eberhart initially presented Particle Swarm Optimization (PSO) in 1995. The 

approach is modeled after the natural procedure that flocks of birds or schools of fish use to 

find food. When flocks of birds look for food in the sky at random, the birds in the flock 

communicate their finds and work together to find the best hunt, increasing the efficiency of 

the flock's search. PSO is a population-centered search strategy in which particles gradually 

modify their position based on their own and other particles' experiences. The ideal 

application of a multifaceted vector space is to find the highest or lowest value of a given 

function. PSO is a metaheuristic algorithm because it may search vast spaces of potential 

solutions and make little or no preconceptions regarding the problem being optimized. 

Furthermore, PSO is not dependent on the slope of the challenge under optimization. 

This implies that contrary to traditional optimization methodologies like slope decline and 

Quasi-Newton approaches, PSO lacks the need for the optimization problem to be 

differentiable. Metaheuristic algorithms like PSO, however, do not ensure that an ideal 

solution will ever be discovered. PSO is unique because it proposes searching for better 

answers by flying candidate solutions through hyperspace. The algorithm's stability and 

simplicity are its defining features. Few lines of code are needed to implement it, and it only 

uses simple mathematical operators with low memory needs and a small number of 

parameters that must be set for each problem.  

This "natural simplicity," based on mimicking nature, gives rise to a potent algorithm that has 

been useful for various tasks, most notably the weight training of artificial neural networks. 

(Hu, et al., 2004). The PSO algorithm is an unpredictable multiple-agent parallel search 

approach in which the distinct elements within a group represent potential solutions to an 

optimization problem. According to its personal as well as the swarm's cohesive action flying 

encounters, particles might be considered self-sufficient smart agents that "fly" within a 

multidimensional problem space in search of the best possible solution to the 

optimization challenge. Every particle 𝑖 in the group is made up of 3 n-dimensional vectors (𝑛 

represents the dimensions of the searchable area, 𝑅𝑛),  which can be represented at time 𝑡 

as the current location, 𝑋𝑖
𝑘, the previous best position, 𝑝𝑖

𝑏𝑒𝑠𝑡 and the velocity, 𝑉𝑖
𝑘 (Mataifa, et 

al., 2023).  Each particle's current position denoted as 𝑋𝑖
𝑘, Serves as the decision vector. 

The decision vector is assessed for "fitness" at each iteration using the optimization 
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problem's objective function. A particle's position is updated to move it towards a "better" 

position based on its improved fitness evaluation.  

The particle velocity, 𝑉𝑖
𝑘, represents the combined flight experiences of the particular particle 

and the remainder of the swarm. 𝑝𝑖
𝑏𝑒𝑠𝑡 is the greatest degree of fitness that a particle 

achieved up to the most recent repetition that each particle records. This location is changed 

to reflect the current position when the current position achieves a higher fitness value than 

the previous highest value. The swarm, resembling a group of birds hunting for a meal, will 

most probably move to the best position in the area of search as repetitions continue. One 

key characteristic of particle swarm optimization is the interpersonal relationships along with 

data exchange that occurs among the elements in the cluster. The group’s cohesive 

behavior enables the algorithm to seek as efficiently as feasible (Tam, 2021).  

Consider having P particles and denote the position of particle i at iteration t as 𝑋𝑖(𝑡) which 

can be represented in coordinates form as shown in Equation 3-1.  

𝑋𝑖(𝑡) = (𝑥𝑖(𝑡), 𝑦𝑖(𝑡))                                                                                                           (3-1) 

The exact representation is applied in the velocity of each particle as denoted in Equation 3-

2. 

 𝑉𝑖(𝑡) = (𝑣𝑥
𝑖 (𝑡), 𝑣𝑦

𝑖 (𝑡))                                                                                                         (3-2) 

At the next iteration, the position of each particle is updated using Equations (3-3) to (3-5). 

𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡), 𝑉𝑖(𝑡 + 1)                                                                                                 (3-3) 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡), 𝑣𝑥
𝑖(𝑡 + 1)                                                                                                 (3-4) 

𝑦𝑖(𝑡 + 1) = 𝑦𝑖(𝑡), 𝑣𝑦
𝑖 (𝑡 + 1)                                                                                                 (3-5)    

Particle velocities are updated for each iteration using Equation 3-6.  

𝑉𝑖(𝑡 + 1) = 𝑤𝑉𝑖(𝑡) + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡𝑖 − 𝑋𝑖(𝑡)) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡𝑖 − 𝑋𝑖(𝑡))                                  (3-6) 

Where r1 and r2 are random numbers between 0 and 1, while constants w, c1 and c2 are 

the PSO parameters. 𝑝𝑏𝑒𝑠𝑡𝑖 is the best position of particle i and 𝑔𝑏𝑒𝑠𝑡𝑖 is the best position 

considering the complete particle swarm. Figure 8's flowchart presents the standard PSO 

algorithm. Table 7 summarizes the PSO algorithm's distinguishing properties compared to 

other heuristic optimization strategies. 
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Table 7. Parameters of PSO Technique 

Name Details 

Population 
Size 

The particle group's population size, or the overall amount of elements. 

The larger group sizes suggest greater processing power and a bigger 
search area. 

Swarm sizes ranging from 20 to 60 are suitable for a variety of applications. 

Iterations When there are several options, it is easier to find the best one. 

A vast number may result in expensive computing costs. 

The nature of the task may determine the proper maximum number of 
iterations. 

Velocity The corresponding values of the accelerating constants determine how each 
element contributes towards a total velocity adjustment. 

The right mix of intellectual and social elements can assist solve a range of 
challenges.  
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Figure 6. PSO Algorithm Flow Diagram 

 

Figure 7 illustrates a microgrid that integrates wind, photovoltaic, BESS, and EVs. The 

microgrid system's modelling takes into consideration the unpredictability associated with 

clean energy sources along with electric vehicle behaviours. The next sections address the 

modelling of individual systems. 
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Figure 7. Grid-integrated Microgrid 

 

3.3 Electric Vehicle Modelling 

 

Environmental concerns, such as carbon emissions, drove the development of electric 

vehicles. The electric vehicle's batteries serve as a load (the system needs to charge them) 

and an electricity source (they provide electricity to the microgrid network). 

 

𝑇𝑚𝑎𝑥𝑑𝑖𝑠 =
0.5(𝑆𝑂𝐶𝑚𝑎𝑥 − 𝑆𝑂𝐶𝑚𝑖𝑛) Cev

𝑃𝑑𝑖𝑠
−

𝑆𝑊100

100𝑃𝑑𝑖𝑠
                                                                            (3-7) 

Whereby,  

𝑇𝑚𝑎𝑥𝑑𝑖𝑠          = Maximum EV battery discharging duration 

S                   = Daily driving distance in km 

𝑆𝑊100                 = energy consumption per 100 km (kWh/100km) 

SOC            = Battery State of Charge in percentage 

𝐶𝐸𝑉                       = Total battery capacity (C/kWh)   
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The charging duration is defined as follows. 

𝑇𝑐ℎ𝑎𝑟 =
(𝑃𝑑𝑖𝑠 x 𝑇𝑚𝑎𝑥𝑑𝑖𝑠 +  

𝑆𝑊100
100

) 

𝑃𝑐 ∗ 𝑃ŋ𝑐𝑒𝑣
                                                                                               (3-8) 

Whereby, 

𝑇𝑐ℎ𝑎𝑟              = Charging duration in hours 

ŋ𝑐𝑒𝑣               = Charging efficiency  

𝑃𝑐                   = Charging power in kW 

 

The total charging load for all the electric vehicles is defined as follows. 

𝑃𝐸𝑉(𝑙𝑜𝑎𝑑) =∑ 𝑃𝑗(𝑡)𝑀
𝑀

𝑗
                                                                                                       (3-9) 

Whereby, 

𝑃𝐸𝑉(𝑙𝑜𝑎𝑑)         = Total charging load 

𝑡                     = 1, 2, 3, …,24 

𝑀                    = number of electric vehicles connected 

𝑃𝑗(𝑡)               = power rating of the EV battery 

 

The simulation includes ten electric vehicles with 60 kWh battery capacity. 

 

3.4 Photovoltaic Modelling 

 

Energy production from a single solar panel is given using the following equation: 

𝑃𝑝𝑣 = SI ∗  𝐴𝑝𝑣 ∗  ŋ𝑝𝑣                                                                                                          (3-10) 

Whereby, 

SI                    = Solar Irradiance of the area in 𝑊/𝑚2  

𝐴𝑝𝑣                  = Solar panel area 
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ŋ𝑝𝑣                    = Solar panel efficiency  

 

 

The following Equation gives the overall power generated from all connected solar panels. 

𝑃𝑇𝑝𝑣 = 𝑁𝑝𝑣 ∗ 𝑃𝑝𝑣                                                                                                               (3-11)     

Whereby, 

𝑃𝑇𝑝𝑣                     = Total Power Output Generated 

𝑁𝑝𝑣                      = Amount of PV panels    

 

It was presumed the converter was equipped with DC/AC ratio of 1 with no power losses 

being considered. For simplicity, the temperature influence was ignored in the computation. 

The solar panel utilized in the study has a size of 2100𝑚2 and an efficiency of 30%.  

 

3.5 Wind Turbine Modelling 

 

Power generation from a single wind turbine is calculated using the following formula. 

𝑃𝑤𝑖𝑛𝑑 =

{
 
 

 
 

0                                          𝑣 ≤ 𝑣𝑐𝑖𝑛 
    0                                         𝑣 ≥ 𝑣𝑐𝑜𝑢𝑡   

𝑃𝑟
𝑣𝑘−𝑣𝑐𝑖𝑛 

𝑘

𝑣𝑟
𝑘−𝑣𝑐𝑖𝑛 

𝑘                                      𝑣𝑐𝑖𝑛˂ 𝑣 ˂ 𝑣𝑟            

𝑃𝑟                                               𝑣𝑟˂ 𝑣 ˂ 𝑣𝑐𝑜𝑢𝑡  

                                                (3-12) 

Whereby, 

𝑣                           = Current wind speed 

𝑣𝑐𝑖𝑛                       = Cutin wind speed (wind speed for the turbine to start producing) 

𝑣𝑐𝑜𝑢𝑡                     = Cutout wind speed (wind speed for the turbine to stop producing) 

𝑣𝑟                          = Rated wind speed at which the turbine produces rated power      

 

The overall electrical power produced by all wind turbines connected is provided by the 

following Equation. 
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𝑃𝑇𝑤𝑖𝑛𝑑 = 𝑁𝑤𝑖𝑛𝑑 ∗ 𝑃𝑤𝑖𝑛𝑑                                                                                                     (3-13) 

Whereby, 

𝑃𝑇𝑤𝑖𝑛𝑑                 = Total Power Output Generated from wind turbines 

𝑁𝑤𝑖𝑛𝑑                  = Wind turbine number   

 

The estimate disregarded the effect of air density. The wind turbine has a cutin wind speed 

of 5 m/s, a cutout wind speed of 25 m/s, a rated wind speed of 11 m/s, and a total power 

output of 5.8 MW of all the wind turbines.  

 

3.6 Battery Storage System Modelling 

 

The battery energy storage technology is critical in renewable microgrids because it 

improves reliability. An energy preservation technology is needed to increase system 

resilience. The battery energy preservation technology has a capacity of 100 kWh and can 

charge and discharge at a maximum of 100 kW. The power system equation below is used 

for battery simulation. 

𝑃𝑏𝑎𝑡𝑑𝑖𝑠𝑐(𝑡)
𝛥𝑡

ŋ𝑏𝑎𝑡𝑑𝑖𝑠𝑐
+ 𝑇𝑏𝑎𝑡(t) + (𝑃𝑏𝑎𝑡𝑐ℎ𝑎𝑟(𝑡) ∗ ŋ𝑏𝑎𝑡𝑐ℎ𝑎𝑟𝛥𝑡 = 𝑇𝑏𝑎𝑡(t + 1)                                  (3-14) 

Whereby, 

𝑃𝑏𝑎𝑡𝑑𝑖𝑠𝑐                    = Power flow for battery discharging 

ŋ𝑏𝑎𝑡𝑑𝑖𝑠𝑐                    = Discharging efficiency 

𝛥𝑡                           = Time interval 

𝑇𝑏𝑎𝑡(t)                    = Total energy for all batteries at time interval t    

𝑃𝑏𝑎𝑡𝑐ℎ𝑎𝑟                   = Power flow for battery charging 

ŋ𝑏𝑎𝑡𝑐ℎ𝑎𝑟                   = Charging efficiency 

𝑇𝑏𝑎𝑡(t + 1)              = Total energy for all batteries at time interval t + 1    

 

The following formula gives the total available energy capacity of the batteries. 
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𝑆𝑂𝐶𝑏𝑎𝑡(𝑡) =  
𝑇𝑏𝑎𝑡(𝑡)

𝐸𝑏𝑎𝑡∗𝑁𝑏𝑎𝑡
                                                                                                        (3-15) 

 Whereby, 

𝐸𝑏𝑎𝑡                        = Maximum available energy capacity of the batteries 

𝑁𝑏𝑎𝑡                        = Number of batteries in the microgrid 

 

3.7 Battery Storage System Degradation Modelling 

 

Battery degradation expenses are an important part of the overall microgrid operating costs. 

As a result, a reliable deterioration expense simulation is required, and it should be shown 

as an accurate representation of the BESS fundamental parameters (Zhang, et al., 2022). 

The battery degradation costs are given by, 

𝐶𝑏𝑎𝑡 = ∑ 𝐸𝑏𝑎𝑡 ∗ ∫ 𝑤(𝑠)|𝑑𝑠|
𝑆𝑂𝐶𝑇
𝑆𝑂𝐶0𝑖∈𝑇                                                                                       (3-16) 

Whereby,  

𝑆𝑂𝐶𝑇          = State of Charge (SOC) at a time interval T 

𝑆𝑂𝐶0          = initial State of Charge (SOC) 

𝑤(𝑠)          = Wear density function 

 

The formula to calculate the wear density function is given by, 

𝑤(𝑠) =
𝐶𝑏𝑎𝑡𝑟𝑒𝑝𝑙

2∗ŋ𝑏𝑎𝑡
2 ∗

𝐵(1−𝑆𝑂𝐶)𝐵−1

𝐴
                                                                                               (3-17) 

Whereby, 

𝐶𝑏𝑎𝑡𝑟𝑒𝑝𝑙        = Battery replacement costs 

𝐴 & 𝐵          = Battery-specific parameters as given by the manufactures 
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3.8 Grid Energy Exchange Costing Model 

 

Grid energy exchange costs are the expenses incurred when purchasing energy from the 

utility power network during periods of little or no output and selling surplus energy back into 

the utility power network. Purchasing as well as selling prices commonly differ. The equation 

defining this phenomenon is shown below.  

𝐶𝑔𝑟𝑖𝑑 = ∑ 𝑃𝑃𝑡
𝑇
𝑡=1 ∗ 𝐸𝑝𝑢𝑟,𝑡 − ∑ 𝑃𝑆𝑡

𝑇
𝑡=1 ∗ 𝐸𝑠𝑒𝑙,𝑡                                                                       (3-18) 

Whereby,  

𝑃𝑃𝑡                      = Electricity purchase price in t-cycle (ZAR/kWh) 

𝐸𝑝𝑢𝑟,𝑡                   = Quantity of electricity purchased in t-cycle (kWh) 

𝑃𝑆𝑡                       = Electricity sell price in t-cycle (ZAR/kWh) 

𝐸𝑠𝑒𝑙,𝑡                     = Quantity of electricity sold in t-cycle (kWh) 

 

3.9 Optimization Method Formulation 

 

The objective function used to minimize the cost of operating a grid-connected hybrid 

microgrid is defined as follows. It should be emphasized that microgrid operating costs only 

comprise battery operation or degradation expenses and grid interface costs, maximizing the 

use of renewable energy resources.  

 

𝐶𝑚𝑔 = 𝐶𝑏𝑎𝑡 + 𝐶𝑔𝑟𝑖𝑑                                                                                                            (3-19) 

Whereby, 

𝐶𝑏𝑎𝑡                 = Cost of battery energy system operation and maintenance 

𝐶𝑔𝑟𝑖𝑑               = Net cost of microgrid power exchange with grid 

𝐶𝑚𝑔                 = Microgrid operation costs 

 

 



 

61 
 

Subject to, 

1. Power balance constraint 

𝑃𝑇𝑝𝑣 + 𝑃𝑇𝑤𝑖𝑛𝑑 + 𝑃𝑏𝑎𝑡𝑑𝑖𝑠𝑐 + 𝑃𝑔𝑟𝑖𝑑𝑟𝑒𝑐 + 𝑃𝐸𝑉(𝑙𝑜𝑎𝑑) − 𝑃𝐸𝑉(𝑙𝑜𝑎𝑑) − 𝑃𝑏𝑎𝑡𝑐ℎ𝑎𝑟 − 𝑃𝑙𝑜𝑎𝑑 − 𝑃𝑔𝑟𝑖𝑑𝑠𝑒𝑛𝑡 − 𝑃𝑟𝑒𝑠 =

0      (3-20) 

Whereby, 

𝑃𝑙𝑜𝑎𝑑                   = Microgrid load demand (kW) 

𝑃𝑔𝑟𝑖𝑑𝑟𝑒𝑐                = Power from grid (kW) 

𝑃𝑔𝑟𝑖𝑑𝑠𝑒𝑛𝑡               = Power to grid (kW) 

𝑃𝑟𝑒𝑠                      = Instantaneous reserve margins (kW) 

2. Grid power constraint. 

𝑃𝑔𝑟𝑖𝑑𝑟𝑒𝑐 ≤ 𝑃𝑙𝑜𝑎𝑑 + 𝑃𝐸𝑉(𝑙𝑜𝑎𝑑)                                                                                               (3-21) 

 

3. Generation limit constraint 

𝑃𝑇𝑝𝑣𝑚𝑖𝑛˂ 𝑃𝑇𝑝𝑣 ˂ 𝑃𝑇𝑝𝑣𝑚𝑎𝑥                                                                                                    (3-22) 

𝑃𝑇𝑤𝑖𝑛𝑑𝑚𝑖𝑛˂ 𝑃𝑇𝑤𝑖𝑛𝑑  ˂ 𝑃𝑇𝑤𝑖𝑛𝑑𝑚𝑎𝑥                                                                                          (3-23) 

𝑃𝑏𝑎𝑡𝑑𝑖𝑠𝑐𝑚𝑖𝑛˂ 𝑃𝑏𝑎𝑡 ˂ 𝑃𝑏𝑎𝑡𝑐ℎ𝑎𝑟𝑚𝑎𝑥                                                                                              (3-24) 

 

4. Battery charging constraint. 

𝑃𝑇𝑝𝑣 + 𝑃𝑇𝑤𝑖𝑛𝑑 + 𝑃𝑟𝑒𝑠 ˃ 𝑃𝑙𝑜𝑎𝑑 + 𝑃𝐸𝑉(𝑙𝑜𝑎𝑑)                                                                            (3-25) 

 

5. Reserve margins constraint. 

(𝑃𝑙𝑜𝑎𝑑 + 𝑃𝐸𝑉(𝑙𝑜𝑎𝑑)) ∗
10

100
= 𝑃𝑟𝑒𝑠                                                                                         (3-26) 
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3.10 PSO Application 

 

To apply the particle swarm optimization method to any problem, the structure of the 

algorithm must be transferred to the mechanics of the problem. Whenever searching for the 

optimum answer to the challenge, an association connecting particle locations and motions 

and the optimization problem's deciding matrix must be developed, along with a mechanism 

for making adjustments to the deciding matrix. The particle swarm optimization method 

addresses the mixed microgrid optimization problem presented in Equation (3-19), according 

to limitations specified in Equations (3-20) – (3-26).  

The mechanics of the position and speed Equation (3-6) have to be converted into the 

framework of the mixed microgrid optimization challenge. The following steps are taken:  

• The quantity of producing units determines how many individuals are assigned to 

each particle inside the swarm. The locations of element members indicate the real 

power produced by the units of the optimization challenge.  

• Accelerations represent parameters utilized for searching in the constraint's realm, 

even though they carry identical definitions as real power.  

• The swarm is assumed to have Np particles in total. 

The following procedures are used to construct the PSO algorithm for the ideal hybrid 

renewable energy microgrid (Krishnamurthy, et al., 2017). The critical steps needed to 

implement the PSO algorithm are to map the algorithm parameters to problem parameters 

as defined in steps 2 -4 and the quantities limits are based on system constraints defined 

previously. The initial parameter sizes are random guesses that should be with the defined 

limits. 

Step1: Configure the starting quantities for the particle swarm optimization settings, 

comprising the highest possible number of repetitions (MaxIt), homogeneous 

randomized quantities (r1, r2), acceleration coefficients (c1, c2), and momentum component 

(ω) as per Equation 3-27. 

𝑉𝑖(𝑡 + 1) = 𝑤𝑉𝑖(𝑡) + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡𝑖 − 𝑋𝑖(𝑡)) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡𝑖 − 𝑋𝑖(𝑡))                                 (3-27) 

Step 2. Apply generator limit restriction to find the initial velocity's minimum as well as the 

highest possible number, as shown below. 

−0.5𝑋𝑡
𝑚𝑖𝑛 ≤ 𝑉𝑖(𝑡) ≤ 0.5𝑋𝑡

𝑚𝑎𝑥                                                                                            (3-28) 
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𝑋 = 1,𝑁𝑝 𝑖 = 1, 𝑛 − 1  

Np represents the quantity of elements in a group, while 𝑛 represents the quantity of 

members in a single element, equivalent to the quantity of producing units. 

 

Step 3: Define each particle's initial velocities, as shown in Equation (3-29). 

𝑉𝑖(𝑡) = 𝑉𝑡
𝑚𝑖𝑛 + 𝑟(𝑉𝑡

𝑚𝑎𝑥 − 𝑉𝑡
𝑚𝑖𝑛)                                                                                       (3-29) 

𝑉𝑡
𝑚𝑖𝑛 and 𝑉𝑡

𝑚𝑎𝑥 represent the preceding minimum as well as the highest possible number of 

velocities, respectively. 

Step 4: Define the element members' initial location consequently, assuring all limitations 

are respected. 

𝑋𝑖(𝑡) = 𝑋𝑡
𝑚𝑖𝑛 + 𝑟(𝑋𝑡

𝑚𝑎𝑥 − 𝑋𝑡
𝑚𝑖𝑛)                                                                                       (3-30) 

 

In the power system, there are three types of buses: slack bus, generator (PV), and load 

(PQ). Slack buses, referred to as swing buses, are used in power systems to maintain the 

equilibrium of the real and reactive powers for load flow calculations. The swing bus makes 

up for system losses by sending and receiving real and reactive powers from the network 

when the load is higher than production and to the network when the generation is higher 

than the load. Two buses are considered swing buses in the microgrid simulation (the grid 

bus and the BESS bus) but not simultaneously; grid bus is the main priority slack bus while 

BESS bus takes over when the grid is not available. The slack bus in the particle swarm 

optimization technique fulfills the power equilibrium restriction in Equation (3-20).  

Step 5: Determine the objective function for the element starting locations as described in 

Equation (3-19).  

Step 6: Select the optimum and overall ideal initial points as outlined below.  

i. The particles' original placements inside the group are considered to 

represent their ideal locations.  

ii. The overall best is the ideal location among all optimum element locations. 

Step 7: Determine the new velocities utilizing Equation (3-27) as well as verify the limits 

established in Equations (3-20) - (3-26). 
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Step 8: Calculate the generating unit’s new position in the elements utilizing the equation 

below as well as verify the restrictions. 

𝑋𝑖𝑛𝑒𝑤 = 𝑋𝑡
𝑖−1 + 𝑋𝑡

𝑖𝑛𝑒𝑤                                                                                                       (3-31) 

Step 9: Define the revised active power of the generating units as well as utilize the 

constraints to confirm the generating unit’s new position among the elements. 

Step 10: Verify the goal function (microgrid cost minimization as defined in Equation 3-19) 

outcomes specified in the particle swarm optimization flow chart. 

𝐼𝑓 𝐹𝑖𝑛𝑒𝑤 < 𝐹𝑖𝑏𝑒𝑠𝑡−1 𝑡ℎ𝑒𝑛 𝐹𝑖𝑏𝑒𝑠𝑡 = 𝐹𝑖𝑛𝑒𝑤𝑎𝑛𝑑 𝑋𝑖𝑏𝑒𝑠𝑡 = 𝑋𝑖𝑛𝑒𝑤             

𝐸𝑙𝑠𝑒 𝐹𝑖𝑏𝑒𝑠𝑡 = 𝐹𝑖𝑏𝑒𝑠𝑡−1 𝑎𝑛𝑑 𝑋𝑖𝑏𝑒𝑠𝑡 = 𝑋𝑖𝑏𝑒𝑠𝑡−1, 𝐺𝑖𝑏𝑒𝑠𝑡 = 𝑋𝑖𝑏𝑒𝑠𝑡−1                                                                                                           

Step 11: Keep going through steps 5-10 till the highest possible number of repetitions has 

been achieved or the technique has been completed.                                                                                               

In the following section, microgrid simulation results are obtained using particle swarm 

optimization to determine optimal operation parameters. 

 

3.11 PSO Simulation Results 

 

The network specified in the above sections has been modeled and simulated with MATLAB 

R2024b utilizing a laptop running Microsoft Windows 11 Enterprise, with an i5-8365 CPU at 

1.6 GHz and four cores. Meteorological data of a PV system (solar irradiance) as well as 

wind speed data for a wind turbine system are utilized to simulate renewable energy's 

intermittent nature. Irradiance data for a PV system under clear and hazy conditions are 

supplied. The WindPvLoadPriceData file contains a load profile and energy price data for 

buying and selling electricity with the grid operator, which is based on MTALAB examples 

and has been updated to include all essential data. The data presented covers a whole day, 

24 hours, with an average of 1 minute. The data was further divided into 1-hour average 

samples for simulation to facilitate computation, as shown in Table 8. To generate the 

simulation results, the PSO algorithm ran for 48 seconds.  
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3.11.1 Data Management 

 

Data Collection: The simulation data was taken from several secondary sources, mainly 

MATLAB examples for renewable energy weather-related data and load. In contrast, the 

price data is the modified data of the (City of Ekurhuleni, 2024). 

Data Processing: MATLAB altered data from one minute to an hour for 24 hours.  

Data Security and Privacy: The data used is public data, which is accessible to everyone 

on public platforms 

Data Sharing and Reuse: The data will be made available via the Cape Peninsula 

University of Technology database to anyone accessing it. 

Table 8. Hourly Simulation Data 

Time 
(Hour) 

Wind 
(kW) 

Solar Clear 
Day (kW) 

Solar 
Cloudy Day 
(kW) 

Load Demand 
(kW) 

Electricity Price 
(ZAR/kWh) 

1 580 0 0 457.64 2.89 

2 472.7 0 0 270.058 2.89 

3 507.5 0 0 200.831 2.89 

4 580 0 0 177.178 2.89 

5 580 0 0 153.659 2.89 

6 580 28.95 12.6678 180.346 2.89 

7 580 173.977 161.195 277.195 4.35 

8 402.133 329.009 231.785 374.076 9.82 

9 170.133 473.41 496.415 518.656 9.82 

10 14.5 601.353 627.65 611.138 9.82 

11 0 701.604 742.695 610.077 4.35 

12 0 768.139 655.762 635.033 4.35 

13 0 789.5 186.89 658.591 4.35 

14 0 768.331 819.016 683.404 4.35 

15 0 698.673 87.787 731.073 4.35 

16 0 593.808 598.137 755.427 4.35 

17 0 464.902 51.0998 828.978 4.35 

18 95 322.406 321.417 899.059 4.35 

19 236.83 175.628 184.584 897.749 9.82 

20 208.8 33.4198 32.8875 897.945 9.82 

21 479.467 0 0 897.621 4.35 

22 580 0 0 773.862 4.35 

23 580 0 0 654.885 2.89 

24 580 0 0 583.556 2.89 
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3.11.2 Grid Interaction Costs 

 

Figure 8 depicts three pricing ranges for the grid integration costs, including selling energy to 

the system as well as purchasing energy from the grid. During off-peak hours energy rate is 

ZAR 2.89/kWh, the ordinary rate is ZAR 4.35/kWh, and the highest possible rate is ZAR 

9.82. The different pricing periods are off-peak between 22:00 and 06:00, standard between 

06:00 and 07:00, 10:00 and 18:00, and peak hours between 08:00 and 10:00, 18:00 and 

22:00.  

 

Figure 8. Grid Energy Exchange Costs 

3.11.3 Photovoltaic System 

 

Figure 9 depicts a photovoltaic system's behavior on a clear sky day. The system is 

presented to generate energy exclusively during daytime, between sunrise and dusk. Peak 

power is obtained between 11:00 and 15:00, after which power diminishes. Figure 10 depicts 

a photovoltaic system simulation based on partly cloudy day irradiance data. In contrast to a 

clear day simulation graph in Figure 9, which is more predictable, unpredictable behavior is 

observed as clouds come by, resulting in unexpected decreases in production. 
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Figure 9. Solar Energy Generation Profile: Clear Day 

 

Figure 10. Solar Energy Generation Profile: Partly Cloudy Day 

 

3.11.4 Wind Turbine Generation System 

 

The meteorological data containing wind speed in the WindPvLoadPriceData file represents 

the generation profile of a wind turbine system as shown in Figure 11. As previously stated 

in (Livermore, 2012), wind turbine generators create electricity at night when wind speeds 

are often higher. Figure 11 displays this understanding, which seems to demonstrate the 

opposite of what the photovoltaic system is accomplishing, with generation only visible 

through the course of the day, as illustrated in Figures 9 and 10.  
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Figure 11. Generation Profile of a Wind Turbine 

 

3.11.5 Microgrid Load Demand Profile 

Figure 12 displays the microgrid load profile based on data from the WindPvLoadPriceData 

file.  

 

Figure 12. Microgrid Load Demand Profile 

 

3.11.6 Microgrid Operation without BESS 

3.11.6.1 MG Operation: Clear Day 

Figure 13 depicts microgrid operation in the absence of BESS. The microgrid demand 

frequently gets power from green power resources (wind and solar), and in the event the 

load demand is not met, more electricity is obtained through the national grid. The diagram 
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illustrates that electricity is purchased off the electrical system from around 14:30 to 23:30. 

Whenever the consumption is less than the energy generated from renewable sources, any 

extra power goes out to the network operator. The energy was offered for sale to the 

electrical system administrator between 23:30 and around 14:30. Throughout the early 

hours, the microgrid delivers expensive power to the national grid, and extra renewable 

energy is sold during conventional pricing periods. Nevertheless, throughout the nighttime 

peak, before the wind turbine generating unit reaches its maximum production, an additional 

energy supply is required to meet load demand, which is obtained from the electricity 

company at a high cost.  

 

Figure 13. MG Energy Exchange on a clear sky day 

 

3.11.6.2 MG Operation: Partly Cloudy Day 

 

Figure 14 depicts a microgrid operating without BESS on a partially overcast day. During off-

peak periods, the microgrid load is provided by renewable energy sources, and when 

demand is not fulfilled, additional electricity is obtained from the grid. With unreliable 

renewable generation, more energy is acquired from the grid, even during peak periods, 

resulting in high prices for the microgrid operator. As described in Section 5.2.6, the adoption 

of BESS has been beneficial in lowering the microgrid's operating expenses. 
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Figure 14. MG Energy Exchange on a partly cloudy day 

 

3.11.7 Microgrid Operation with BESS 

3.11.7.1 MG Operation: Clear Day 

 

It is well-recognized that renewable energy supplies are stochastic, and so energy 

generation is intermittent. Battery Energy Storage Systems are consequently required to 

supplement renewable energy sources while eliminating the use of diesel generators to 

reduce carbon emissions. Figure 15 depicts the microgrid operating with the BESS 

connected and operational on a clear day. The graph indicates that the BESS charges 

during off-peak hours, from late night to early morning, using excess energy from renewable 

sources. When the BESS is completely charged, approximately 6 or 7 AM, excess 

renewable energy is sold to the grid operator during the peak hour at a premium price.  
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Figure 15. MG Energy Exchange with BESS on a clear sky day 

 

Furthermore, during the day, for clear day predictions, when the solar system's peak 

generation exceeds load demand and the battery is fully charged, extra energy is sold to the 

grid at the standard price. In the afternoon, load demand peaks, solar system production 

decreases, and wind energy remains zero. As a result, the battery system discharges to 

supply the load, while wind turbine power gradually ramps up to help with energy supply and 

lessen the burden on the BESS. Also, this is the peak period, and the microgrid avoids 

pulling energy from the grid because it is quite expensive. 

 

3.11.7.2 MG Operation: Partly Cloudy Day 

 

Figure 16 depicts the microgrid operation with BESS connected and operational on a partly 

overcast day. Similarly, the graph illustrates that the BESS is charged during off-peak hours, 

from late at night to early in the morning, using excess energy provided by renewable 

sources. When the BESS is completely charged, about 6 or 7 AM, excess renewable energy 

is sold to the grid operator during peak hours at a high price. During partly cloudy days, 

when the solar system is unpredictable, the BESS is used to supplement energy generation 

during energy dips and sell excess energy to the grid during overgeneration. Load demand 

begins to peak in the afternoon, and solar system production decreases, but wind energy is 

zero, and the BESS is used more, while wind turbine generation gradually increases to 

assist in energy supply and alleviate the burden of the BESS. Also, this is the peak period, 

and the microgrid avoids drawing energy from the grid because it is quite expensive.  
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Figure 16. MG Energy Exchange with BESS on a partly cloudy day 

 

3.11.8 MG Reserve Margins using BESS 

 

Figure 17 displays the microgrid during a clear sky day with BESS reserve margins. South 

Africa's technical requirements for extra services describe the conditions for each reserve 

category and define the five types of reserves (Sørensen, et al., 2017):  

I. AGC supervises the use of regulatory reserves for real-time supply and demand 

balancing.  

II. Following a contingency, instantaneous reserves are used to keep the frequency 

within acceptable levels.  

III. Ten-minute reserves balance supply and demand in reaction to variations between 

the day-ahead market and real-time, such as load estimate errors and unreliability of 

units. 

IV. Emergency reserves are utilized to restore normalcy to the interconnected power 

system, whereas slower reserves are relied on. They are also utilized when the 

system doesn't work properly. 

V. Supplemental reserves are intended to provide a realistic risk for the day ahead.  

 

The study focuses on operating reserves which are made up of regulatory, instantaneous, 

and ten-minute reserves. The graph illustrates the BESS charge at a minimum of 50%. The 

discharge depth is 50% when operating normally (with grid and renewable energy available). 
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When the grid and renewable energy sources are unavailable, the minimum depth of 

discharge is 30%, with the BESS supplying just critical loads.  

 

Figure 17. MG BESS reserve margins on a clear sky day 

 

Figure 18. Particle Swarm Optimization Performance 

Figure 18 shows the particle swarm optimization performance relative to iteration and 

solution provided.  
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3.12 Conclusion 

 

The microgrid system was modeled and simulated.  The system simulates the intermittent 

nature of renewable energy by using meteorological, solar irradiance, and wind speed data. 

The WindPvLoadPriceData file contains load profile and energy pricing information for 

purchasing and selling grid electricity. The simulation results were created with the PSO 

algorithm. The system offers three pricing options for grid interaction costs: off-peak, regular, 

and peak. Renewable energy suppliers are stochastic, resulting in intermittent energy 

generation. Battery energy storage Systems are required to supplement renewable energy 

sources and decrease dependency on diesel generators. Reduce carbon footprint. Figure 15 

depicts the microgrid on a clear day, with the BESS connected and working. The graph 

depicts how the BESS charges during off-peak hours (late night to early morning) by drawing 

on excess renewable electricity. When the BESS reaches full charge (6 or 7 AM), excess 

renewable energy is sold to the grid operator at a higher price during peak hours. The graph 

demonstrates how the BESS is charged during off-peak hours using excess renewable 

energy. When completely charged, any remaining renewable energy is sold to the grid 

operator during peak hours. During partially overcast days, the BESS boosts energy 

generation and sells excess electricity to the grid. The microgrid eliminates costly grid 

energy disadvantages at peak hours. 
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CHAPTER FOUR 

GA FOR HYBRID RENEWABLE ENERGY MICROGRID SYSTEM 
UNDER UNCERTAINTY 

 

4.1 Introduction  

 

The hybrid microgrid under study consists of photovoltaic, wind, battery storage, and electric 

vehicles, and their mathematical models have been discussed previous chapter. Genetic 

algorithms are an effective method for modeling and simulating the optimization of 

microgrids that combine PV, wind, and BESS. GAs can build efficient, cost-effective, and 

sustainable energy systems by successfully managing complicated, nonlinear interactions 

and including various optimization targets and constraints. Despite convergence and 

computational complexity issues, GA remains a popular alternative for microgrid 

optimization, especially when dealing with dynamic, real-time energy management and 

renewable energy source integration. A random set of probable solutions is produced. Each 

member of the population represents a unique scheduling strategy for the microgrid's 

operation, including decisions about how much power to create from each source and how 

much energy to store or dispatch from the BESS. Each solution is assessed using a fitness 

function, which computes the overall cost (or other goals, such as emissions reduction) 

depending on scheduling decisions. 

 

4.2 Genetic Algorithm 

 

The Genetic Algorithm (GA) is a global search method for solving constrained and 

unconstrained optimization problems by mimicking biological evolution. The algorithm uses 

natural evolution techniques like inheritance, mutation, selection, and crossover to solve 

optimization problems. Evolution normally begins with a population of randomly generated 

individuals and develops over generations. In each generation, the fitness of each person in 

the population is evaluated, and some individuals are selected from the current population 

(based on fitness) and modified to create a new population. The freshly generated 

population is used in the algorithm's subsequent iteration. The process is completed when 

the maximum number of generations are produced, or the population has reached a 
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satisfactory fitness level. The Genetic Algorithm follows Darwin's survival of the fittest 

principle of natural evolution, which is characterized by the following principles (Deb, 1998).   

1) If an above-average offspring is formed through genetic processing, it 

will live longer than the average individual and have more possibilities 

to produce children with some of its characteristics than the typical 

individual. 

2) If, on the other hand, below-average offspring are produced, they do 

not survive long and are hence eliminated from the population.  

A simple GA flowchart is shown in Figure 19 (Deb, 1998). The GA begins its search from a 

random set of solutions. If the termination requirement is unmet, three alternative operators 

(reproduction, crossover, and mutation) are used to update population strings.  

 

Figure 19. Simple Genetic Algorithm Flowchart 
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In a binary-coded GA, every variable is first coded in a fixed-length binary string, as 

demonstrated in the example below. The GA formulation technique, as explained below, has 

been derived from (Deb, 1998).   

                                                                                           

The i-th problem variable is coded in a binary substring of length, 𝑙𝑖, such that the total 

number of alternatives allowed in that variable is 2𝑙𝑖. The lower-bound solution 𝑥𝑖
𝑚𝑖𝑛 is 

represented by solution (0000….0), while the upper-bound solution 𝑥𝑖
𝑚𝑎𝑥 is represented by 

solution (1111…1) any other substring 𝑥𝑖 is calculated as shown in Equation 4-1.  

𝑥𝑖 = 𝑥𝑖
𝑚𝑖𝑛 +

𝑥𝑖
𝑚𝑎𝑥−𝑥𝑖

𝑚𝑖𝑛

2𝑙𝑖 .−1
𝐷𝑉(𝑠𝑖)                                                                                             (4-1) 

Where 𝐷𝑉(𝑠𝑖) is the decoded value of the substring 𝑠𝑖. The length of a substring is decided 

by the accuracy needed in a variable. If, for example, 4 decimal places of accuracy are 

needed in the i-th variable, the total number of possible solutions in the variable must be 

𝑥𝑖
𝑚𝑎𝑥−𝑥𝑖

𝑚𝑖𝑛

0.0001
, which can be set to 2𝑙𝑖 and 𝑙𝑖 is calculated using Equation 4-2. 

𝑙𝑖 = 𝑙𝑜𝑔2(
𝑥𝑖
𝑚𝑎𝑥−𝑥𝑖

𝑚𝑖𝑛

𝑒𝑖
)                                                                                                           (4-2) 

Where 𝑒𝑖 is the desired precision in the i-th variable. The total string length of the N-variable 

is given by equation 4-3.  

𝑙 = ∑ 𝑙𝑖
𝑁
𝑖=1                                                                                                                            (4-3) 

In the Genetic Algorithm, each string generated in the initial population or subsequent 

generations must be assigned a fitness value based on the objective function value.  In 

maximization problems, a string's fitness value can be the same as the string's aim function 

value. In minimization problems, the goal is to find a solution with the lowest objective 

function value. Therefore, the fitness value can be calculated using the reciprocal of the 

objective function value as given in Equation (4-4).  

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =
1

1+𝑓(𝑥𝑖,….,𝑥𝑁)
                                                                                                         (4-4) 
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4.2.1 Reproduction 

 

The first operation to be performed on the original random population is reproduction. 

Reproduction aims to pick good strings in a population to establish a mating pool that will 

carry progeny. The proportionate selection operator, which selects a string in the current 

population with a probability proportional to the string's fitness, is the most widely used 

reproduction. As a result, the likelihood of selecting the i-th string in the population is 

proportional to 𝑓𝑖. Because the population size is held constant, the cumulative probability for 

all strings in the population is equal to one. Therefore, the likelihood of selecting the i-th 

string 
𝑓𝑖
∑ 𝑓𝑗
𝑁
𝑗=1

⁄ , where N is the population size. One method for achieving proportionate 

selection is to utilize a roulette wheel with a circumference marked for each string 

proportional to its fitness.  

The roulette wheel is spun N times, with each spin storing an instance of the string selected 

by the roulette wheel pointer in the mating pool. The roulette wheel mechanism generates f 

sub 1 slash f bar copies of the i-th string based on its fitness, where the f bar represents the 

population's average fitness. Due to the roulette wheel's limitations, alternative selection 

criteria, such as the ranking and tournament selection schemes, are applied.       

    

4.2.2 Crossover 

 

The mating pool's newly created strings are subject to the Crossover operator. Several 

crossover operators, similar to the reproduction operator, exist in the Genetic Algorithm 

literature. In each, two strings are chosen at random from the mating pool, and a fraction of 

the strings are swapped between them. In a single-point crossover operator, both strings are 

cut at an arbitrary place, and the right-hand component of both strings is exchanged among 

themselves to generate two new strings, as shown below.   

                        

It is worth noting from the construction that good strings from either parent string can be 

combined to form a better child string if the appropriate place is chosen. Because the ideal 

location is often uncertain, a random selection is made. However, it is critical to realize that 

selecting a random site does not make the search activity random. With a single-point 
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crossover between two l-bit parent strings, the search can only locate up to 2(𝑙 − 1) different 

strings in each space. With a random site, the children's strings generated may or may not 

contain a combination of suitable substrings from the parent strings, depending on whether 

the crossover site is located in the appropriate position. A two-point crossover operator 

selects two random sites, and the contents between these sites are transmitted between the 

two parents.  

The purpose of crossover is twofold. The primary purpose of the crossover operator is to 

search the parameter space, while the secondary is to preserve the parent string’s 

information. 

 

4.2.3 Mutation 

 

Although the mutation operator is sometimes used to explore the parameter space, its main 

purpose is to change 1 to 0 and vice versa using the mutation probability, 𝑝𝑚 as shown 

below.  

                                                         

Including mutation introduces some probability of turning 0 to 1 or vice versa thereby 

providing local improvement. One generation of GA is complete once the reproduction, 

crossover, and mutation processes have been applied to the entire population. The 

reproduction operator chooses good strings, the crossover operator recombines suitable 

substrings from two good strings, hoping to produce better ones, and the mutation operator 

changes strings locally to create better strings. There is no guarantee that these operators 

will produce better strings in each generation. Still, it is assumed that if faulty strings are 

formed, the reproduction operator will erase them in the next generation. If good strings are 

formed, they will be highlighted.      

 

4.3 GA Simulation  

 

As discussed in section 3.2, genetic algorithms simulate the process of selective breeding, 

indicating only those species that are capable of handling developments in the surroundings 

will survive, evolve, and proceed on to the next cycle. Simply put, they address a problem by 
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simulating "survival of the fittest" among individuals from successive generations. Every 

phase consists of a group of individuals indicating a location in the field of exploration and a 

possible solution. Each individual is represented by a string of letters, integers, floating-point 

values, and bits. The string in question is identical to chromosomes. The cornerstone of GAs 

constructed around this juxtaposition is the following (Kumar, 2024):   

I. Members within the community fought for commodities as well as mates. 

II. Those that are competent will mate to create more children versus competitors. 

III. The genetic factors of the "fittest" parent are transmitted across generations; that 

is, parents can generate children that exceed either one of them. 

IV. As consequently, each era is more suited to their surroundings. 

The method aims to optimize a "fitness" function. The term "fitness" originates from the 

concept of evolution. The fitness attribute evaluates and quantifies the fit of potential 

solutions which is a crucial component of the algorithm. Chromosomes are numerical values 

that reflect potential solutions to a genetic algorithm's challenge (Carr, 2014). 

 

4.4 GA Simulation Results  

 

The genetic algorithm was implemented using the same microgrid data, grid interaction cost, 

solar generation profiles, wind turbine generation profiles, and load profile as in particle 

swarm optimization applications. GA can effectively deal with the complexities of microgrid 

optimization, such as the nonlinear relationship between generation, storage, and demand. 

 

4.4.1 Microgrid Operation without BESS  

 

Figure 20 displays total microgrid generation during a clear day, with solar and wind 

generation profiles and their totals as well as the total load profile on the graph. As 

previously said, solar generation is far more predictable during a clear day. In contrast, wind 

remains unpredictable—the total generation peaks between mid-day and early afternoon, 

when solar generation is at its highest. Total load demand is higher than the renewable 

energy generation from around 15:00 to about midnight. During this period the microgrid is 

importing power from the grid to supplement its generation to ensure load demand is met. 

The periods between 18:00 to about 21:00 and between 07:00 and 10:00 are the peak 
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periods and have the highest electricity prices of ZAR 9.82. The morning peak renewable 

generation is higher than the total load demand and excess energy is sold to the grid 

operator however, the evening peak period has a load demand greater than renewable 

energy generation and additional power to meet the load demand is purchased from the grid 

operator. 

 

 

Figure 20. Total Microgrid Generation during a clear day 

 

Shown in Figure 21 is the graph of the total renewable energy generation profile during a 

clear day, the load demand profile, the power difference for either exporting excess power or 

importing required power from the grid, and net costs (scaled by 10) considering power 

purchased from the grid subtracting power sold to the grid. The blue graph in the Figure 

shows positive costs from early morning till around 14:30 whereby energy export is 

happening while negative costs start from around 14:30 to midnight whereby energy is 

imported due to insufficient renewable power generation. The net costs (difference between 

export and import) during a clear day total 4.274 million ZAR that the microgrid owners need 

to pay to the grid operator daily.  

Figure 22 displays total microgrid generation during a partly cloudy day, with solar and wind 

generation profiles and their totals as well as the total load profile on the graph. Solar 

generation is unpredictable on a partially cloudy day so is wind generation, resulting in 

unpredictable overall generation. The load profiles are similar to those of Figure 20 from 

midnight till around 10:00 and thereafter the solar profile behaves unpredictably due to cloud 

cover movements. Power is imported from the grid from just after midday till around midnight 

with only about an hour around 14:00 of power export to the grid.  
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Figure 21. Total Energy Cost: Clear Day 

 

Figure 22. Total Microgrid Generation during a partly cloudy day 

 

Figure 23. Total Microgrid Generation during a partly cloudy day 
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Figure 23 is the graph of the total renewable energy generation profile during a partly cloudy 

day, the load demand profile, the power difference for either exporting excess power or 

importing required power from the grid, and net costs (scaled by 10) considering power 

purchased from the grid subtracting power sold to the grid. The blue graph in the Figure 

shows positive costs from early morning till around 14:00 whereby energy export is 

happening while negative costs start from around 14:30 to midnight whereby energy is 

imported due to insufficient renewable power generation. The net costs (difference between 

export and import) during a partly cloudy day total 9.865 million ZAR that the microgrid 

owners need to pay to the grid operator daily.  

 

Figure 24. Microgrid and Grid Power Exchange 

 

Figure 24 shows power exchange graphs between the microgrid and the national grid for 

both clear and partly cloudy days together with the relevant costs (scaled by 10). As 

discussed in previous sections, power is exported (red graph) to the grid from midnight till 

about 14:30 and imported (blue graph) from the grid from there onwards until midnight.  
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4.4.2 Microgrid Operation with BESS  

 

As discussed in section 4.4.1, the microgrid operation with only renewable energy distributed 

generators including electric vehicles results in just over 4.2 million and just below 10 million 

ZARs daily costs for clear and cloudy days, respectively. This section analyzes the impact of 

BESS on microgrid operations considering reserve margins necessary to supply critical 

loads during less renewable energy production and/or unavailability of the grid. The four 

unknown variables to be determined are import power, export power, BESS discharge, and 

charging power. A BESS SOC of 50% is set aside as a reserve margin to supply essential 

loads during unanticipated outages.  

Figure 25 shows microgrid power exchange with the national grid in the presence of a 

Battery Energy Storage System (BESS). The Figure shows that between midnight and 06:00 

there is no export or import of power and the BESS system is charged. When the BESS is 

fully charged, and the electricity price is high, power is exported to the grid between 06:00 

and 15:00 with different variations. Thereafter, as the load demand is higher than renewable 

energy generation, the BESS supplies the load with the required power to ensure that when 

the electricity prices are high importing from the grid is avoided as much as possible. Both 

graphs in Figure 25 for clear and cloudy days show similar behavior with slight differences 

due to solar irradiation variations during the movement of the clouds.  

In Figure 26 the BESS profile is shown whereby charging from around midnight till around 6 

in the morning is taking place as also shown in Figure 25. BESS discharging takes place in 

the afternoon when the load demand is higher than the renewable energy generation when 

electricity prices are higher. Also in Figure 26, the Battery State of Charge (SOC) in 

percentage is shown. It can be seen that SOC is kept above 50% which is the reserve 

margin set for the study to allow for supply of critical loads during emergencies. The costs of 

operating the microgrid with BESS have decreased tremendously from 4.274 million ZAR 

owed to the grid operator to 1.472 million ZAR, owed to the microgrid operator by the grid 

operator, during clear days. For a cloudy day, costs have dropped from 9.865 million ZAR, 

owed to the grid operator, to 6.210 million ZAR owed by the microgrid operator.  
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Figure 25. Microgrid Power Exchange with BESS 
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Figure 26. Microgrid Battery Energy Storage System Profile 

 

In section 4.4.2 the impact of operating a hybrid microgrid with a battery storage system has 

positive outcomes but the operational parameters that result in maximum cost savings 

should be determined and applied to enjoy the benefits of renewable energy resources. The 

next section provides a comparative analysis of the results of the proposed optimization 

methods. 

 

4.5 Comparative analysis of the Optimization methods for Hybrid 

Renewable Energy Microgrid Systems under Uncertainty 

 

PSO and GA are famous metaheuristic methods that rely on natural processes. They are 

commonly utilized in optimization issues; however, their mechanisms and performance 

characteristics vary. Chapter 3 covered the PSO approach from its inception to its 

implementation in MATLAB software and the results of testing it on a hybrid renewable 

energy microgrid.  In Chapter 4, the Genetic Algorithm is discussed, along with its 



 

87 
 

implementation in MATLAB for testing in the same microgrid simulation. Chapter 5 seeks to 

analyze the results presented in the preceding chapters. The same hybrid microgrid settings 

were utilized to test the optimization method, ensuring a fair comparison. Table 9 displays 

theoretical comparative analyses of the optimization parameters between the particle swarm 

optimization method and the genetic algorithm.  

 

Table 9. Basic Comparison of PSO and GA 

Point Particle Swarm Optimization Genetic Algorithm 

Inspiration Inspired by the social habits of 

birds and fish 

Inspired by natural selection and 

genetics 

Representation The solutions are represented as 

particles in a continuous or 

discrete search space 

Solutions are encoded as 

chromosomes, frequently in 

binary or real-valued form. 

Search Mechanism Updates velocity and position 

based on individual and swarm 

experience (personal and global 

best). 

It uses operators like selection, 

crossover, and mutation to 

evolve the population 

Exploration vs. 

Exploitation 

Its exploitation-oriented 

behavior causes it to converge 

faster, sometimes leading to 

premature convergence. 

Better for sustaining variation in 

the population, which aids 

exploration but may result in 

delayed convergence 

Parameters Requires fewer factors (e.g., 

inertia weight, cognitive and 

social coefficients) 

while requiring tweaking of 

many parameters 

Convergence Speed Generally faster because of its 

more straightforward update 

process 

It is slower because it depends 

on stochastic processes such as 

crossover and mutation. 

Ease of 

Implementation 

Simpler to implement with fewer 

steps 

Multiple operators and 

encodings make the system 

more complex 

Optimization Type Designed for continuous Effectively solves both 
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optimization issues continuous and discrete 

optimization problems 

Advantages Simple, rapid convergence with 

fewer parameters. 

Robust to local minima, ideal for 

complicated landscapes 

Disadvantages prone to early convergence; less 

effective in highly multimodal 

settings 

Computationally expensive and 

sluggish convergence 

 

To summarize the comparison in Table 9, it is better to choose PSO for issues that require 

rapid convergence and fewer tuning parameters and GA for complicated problems that 

require robust exploration and various solutions.  

 

4.6 Simulation Results Comparison 

 

Figure 27 depicts the hybrid microgrid under test (data provided in Excel format), load 

demand, and renewable energy generation (excluding BESS). Because there is less load 

demand at night and wind farms typically generate mainly at night, generation has been 

higher than load demand since in the wee morning hours. However, as the day passes, wind 

speeds decrease, and load demand rises. Solar generation begins as wind turbine 

generation decreases and load begins to peak. The solar generation profile is predictable on 

clear days but unexpected on partly overcast days. The solar system simulation of the hybrid 

microgrid employs two scenarios: 

1 Clear day with a known generation profile. 

2 Partly cloudy day with an unstable generation profile.  

The operating scenarios have been tested in both optimization methods, particle swarm 

optimization and genetic algorithm.   
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Figure 27. Hybrid Microgrid Generation Profiles 

 

Weather data, such as wind velocity as well as solar irradiation are provided in Excel and 

utilized as inputs to compute electricity generation using the formulas defined in Chapter 3. 

Both optimization methods have been subjected to similar system restrictions, such as 

power balance, reserve margins, and generation limits. The hybrid microgrid system is 

simulated in MATLAB utilizing weather data for both solar as well as wind while the battery 

parameters are established in the MATLAB script, as indicated in the appendices. The load 

profile is supplied in the same file as the meteorological data and the energy pricing 

information. The data is in a one-minute sampling rate and spans 24 hours. Sampling was 

done every hour for the simulation to ensure clear visibility, resulting in 24 samples daily in a 

single day.  

Table 10 shows the results of the genetic algorithm of optimizing the operation of a hybrid 

microgrid with BESS providing 50% SOC reserves. The sign convention uses negative for 

power import costs and positive for power export costs. The net costs (difference between 

import and export) are shown at the bottom of the table.  
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Table 10. Genetic Algorithm Simulation Results 

Genetic Algorithm 
  Clear Day Cloudy Day 

Time Import Costs  Export Costs Import Costs  Export Costs 

1 R0.00 R0.00 R0.00 R0.00 

2 R0.00 R0.00 R0.00 R0.00 

3 R0.00 R0.00 R0.00 R0.00 

4 R0.00 R0.00 R0.00 R0.00 

5 R0.00 R0.00 R0.00 R0.00 

6 R0.00 R0.00 R0.00 R0.00 

7 R0.00 R2,074,004.05 R0.00 R2,018,399.56 

8 R0.00 R3,506,392.12 R0.00 R2,551,645.96 

9 R0.00 R1,226,394.41 R0.00 R1,452,299.00 

10 R0.00 R46,307.57 R0.00 R304,535.66 

11 R0.00 R398,141.06 R0.00 R576,887.70 

12 R0.00 R579,009.30 R0.00 R90,169.61 

13 R0.00 R569,455.42 -R2,051,898.34 R0.00 

14 R0.00 R369,435.46 R0.00 R589,912.60 

15 -R140,942.46 R0.00 -R2,798,292.56 R0.00 

16 -R703,042.89 R0.00 -R684,211.74 R0.00 

17 
-

R1,583,730.75 R0.00 -R3,383,769.50 R0.00 

18 
-

R2,092,145.72 R0.00 -R2,096,448.05 R0.00 

19 R0.00 R0.00 R0.00 R0.00 

20 R0.00 R0.00 R0.00 R0.00 

21 
-

R1,707,470.15 R0.00 -R1,707,470.15 R0.00 

22 -R843,301.32 R0.00 -R843,301.32 R0.00 

23 -R216,416.60 R0.00 -R216,416.60 R0.00 

24 -R10,275.48 R0.00 -R10,275.48 R0.00 

Total 
-

R7,287,049.89 
R8,769,139.39 -R13,781,808.26 R7,583,850.08 

Net 
Total 

R1,482,089.50 -R6,197,958.17 

 

Table 11 shows the comparative results of particle swarm optimization and genetic 

algorithms in determining optimal microgrid operational parameters. The table compares the 

results data of both optimization methods for both clear and cloudy days. Based on the 

results genetic algorithms performed better than the particle swarm optimization method 

during a clear day, although the values are quite similar. The genetic algorithm has a net 

value of positive 1.472 million ZAR on a clear day, while the particle swarm optimization has 

a net value of positive 1.662 million ZAR. The cloudy day results remain negative with values 
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of 6.208 and 6.203 million ZARs for genetic algorithm and particle swarm optimization, 

respectively.  

Table 11. GA and PSO Results Comparison 

  Clear Day Cloudy Day 

Time GA PSO GA PSO 

1 R0.00 R0.00 R0.00 R0.00 

2 R0.00 R0.00 R0.00 R0.00 

3 R0.00 R0.00 R0.00 R0.00 

4 R0.00 R0.00 R0.00 R0.00 

5 R0.00 R0.00 R0.00 R0.00 

6 R0.00 R0.00 R0.00 R0.00 

7 
R2,074,004.05 -R2,074,004.05 R2,018,399.56 

-
R2,018,399.56 

8 
R3,506,392.12 R3,506,392.12 R2,551,645.96 

-
R2,551,645.96 

9 
R1,226,394.41 R1,226,394.41 R1,452,299.00 

-
R1,452,299.00 

10 R46,307.57 -R46,307.57 R304,535.66 -R304,535.66 

11 R398,141.06 -R398,141.06 R576,887.70 R576,887.70 

12 R579,009.30 -R579,009.30 R90,169.61 -R90,169.61 

13 R569,455.42 -R569,455.42 -R2,051,898.34 R0.00 

14 R369,435.46 R369,435.46 R589,912.60 -R589,912.60 

15 -R140,942.46 R0.00 -R2,798,292.56 R0.00 

16 -R703,042.89 R0.00 -R684,211.74 R0.00 

17 
-

R1,583,730.75 R0.00 -R3,383,769.50 R0.00 

18 
-

R2,092,145.72 R0.00 -R2,096,448.05 R0.00 

19 R0.00 R0.00 R0.00 R0.00 

20 R0.00 R0.00 R0.00 R0.00 

21 
-

R1,707,470.15 R0.00 -R1,707,470.15 R0.00 

22 -R843,301.32 R0.00 -R843,301.32 R0.00 

23 -R216,416.60 R216,416.60 -R216,416.60 R216,416.60 

24 -R10,275.48 R10,275.48 -R10,275.48 R10,275.48 

Total R1,471,814.01 R1,661,996.67 -R6,208,233.65 R6,203,382.62 

 

Table 12 shows details of the MATLAB code developed for particle swarm optimization and 

the genetic algorithm that forms part of the appendix Chapter.  

Table 12. Appendices List 

Appendix Description 



 

92 
 

A Single-Objective PSO MATLAB Code 

B Single-Objective Genetic Algorithm MATLAB Code 

 

4.7 Discussion 

 

As proposed, a literature assessment of current information was conducted to better 

understand the topic, identify gaps, and potentially uncover better ways to tackle the 

problem. Particle Swarm Optimization (PSO) and the Genetic Algorithm (GA) are two 

popular metaheuristic algorithms based on natural phenomena. They are frequently used in 

optimization problems; nevertheless, their mechanisms and performance characteristics 

differ. Chapter 3 described the PSO approach from its conception to its implementation in 

MATLAB software and the results of testing it on a hybrid renewable energy microgrid.  

Chapter 4 discusses the Genetic Algorithm, as well as its MATLAB implementation for 

testing in the same microgrid simulation. The solar system simulation of the hybrid microgrid 

employs two scenarios: 

1 Clear day with a known generation profile. 

2 Partly cloudy day with an unstable generation profile.  

 

Weather data, such as wind velocity for wind power systems, sun irradiation for photovoltaic 

systems, are provided in Excel format and used as inputs to calculate power generation 

using the methods described in previous chapters. Both optimization approaches were 

exposed to identical system constraints, including power balance, reserve margins, and 

generating limits. The hybrid microgrid system is simulated in MATLAB using weather data 

for photovoltaic and wind systems while the battery parameters are defined in the MATLAB 

script, as shown in the appendices. The load profile includes the weather data and energy 

pricing details in the same file. The data is collected at one-minute intervals for 24 hours. 

Sampling was done every hour for the simulation and to ensure clear visibility, totaling 24 

samples daily. 

The results analysis showed better performance from the genetic algorithm during clear day 

compared to particle swarm optimization in terms of cost savings while particle swarm 

optimization had better results in a cloudy day. The PSO microgrid simulation in MATLAB 

took 40 seconds on average, while the GA MATLAB simulation took over 75 seconds. PSO 

has advantages like rapid convergence due to fewer parameters and a straightforward 

update process, while GA has slower convergence due to sporadic processes. The genetic 
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algorithm and particle swarm optimization techniques in hybrid renewable microgrids 

showed cost savings in both clear and cloudy scenarios. The genetic algorithm showed 25% 

and 10% cost improvements, respectively.  

 

4.8 Conclusion 

 

The simulation focuses on four unknown variables: import power, export power, BESS 

discharge, and charging power. A 50% BESS SOC is set aside for unanticipated outages. 

The simulation results showed that the optimization methods managed to maintain the 50% 

reserve margin from the BESS while ensuring the charging and discharging philosophy was 

optimized based on system conditions and electricity prices. The minimum allowable 

discharge value of 50% under normal conditions assists in improving battery life. The BESS 

charges around low-demand times using surplus green power in addition to when completely 

charged, selling surplus power to the electrical utility operator during times of high demand. 

This microgrid optimization avoids the costly disadvantages of grid energy during peak 

hours. The PSO microgrid simulation in MATLAB took about 40 seconds on average to run 

and provide the solution while the GA MATLAB simulation took over 75 seconds to provide 

the solution. This confirms the advantages of PSO such as rapid convergence due to fewer 

parameters and its straightforward update process while GA has slower convergence due to 

sporadic processes such as mutation and crossover. Table 11 illustrates the effectiveness of 

optimization strategies created and evaluated in the MATLAB environment.  

The next Chapter provides the conclusion and future research work on microgrid energy 

management systems.  
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATIONS 
 

5.1 Introduction 

 

The South African Constitution guarantees everyone the right to energy, crucial for achieving 

the United Nations' Sustainable Development Goals (SDGs) by 2030. However, 84.39% of 

South Africans had access to electricity in 2020, indicating a significant portion of the 

population is still without power. This presents an opportunity for microgrids, which generate 

electricity from clean energy sources such as solar, wind, including battery energy storage 

devices, improving reliability, reducing carbon emissions, and providing clean energy.  

The study investigated an optimization technique of a mixed microgrid energy management 

system with reserve margins in South Africa's renewable industry. The research aimed to 

localize the implementation of rules, including avoiding BESS charging from the grid during 

load shedding. The hybrid microgrid applied local regulations and local weather data. 

   

5.2 Aim and Objectives of the Research 

 

5.2.1 Research Aim 

 

The goal is to provide a dependable optimization technique for a hybrid microgrid energy 

management system that takes electric vehicle operation as both a load and a source and to 

simulate and verify performance using MATLAB software. The research has shown that the 

goal has been met by developing PSO and GA and implementing and evaluating microgrid 

simulation in MATLAB.  

 

5.2.2 Research Objectives 

 

According to the research objectives, Chapter 2 includes a literature assessment of 

mathematical models on reserve margins, optimization methods used in microgrids, and 

energy management systems. Chapters 3 and 4 present the successful development of the 
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optimization technique for energy management systems as applied of hybrid microgrid 

systems. The modeling and test findings demonstrated the benefit of using development 

optimization approaches in hybrid microgrids, resulting in lower operation costs. 

 

5.3 Deliverables 

 

5.3.1 Comprehensive Literature Study 

 

A literature review on optimization strategies used in microgrid energy management systems 

was undertaken. Most optimization methods reported in the literature utilized heuristic 

approaches and provided validation of the simulation outcomes of the considered use case 

circumstances in the literature. 

 

5.3.2 Development of the PSO Method 

 

The backdrop of the particle swarm optimization approach has been described, as has the 

application and mapping of the particle swarm optimization, along with step-by-step 

guidance to the hybrid microgrid's energy management system optimization problem. The 

optimization approach sought to establish the ideal BESS charging and discharging strategy, 

as well as the import and export strategy, considering the time of utilization of the electricity 

price and ensuring that restrictions such as power balance were always met. The created 

algorithm was tested in the MATLAB software environment alongside the hybrid microgrid to 

determine its performance. The created approach produced some promising results, but 

additional fine-tuning is necessary to improve its efficacy.  

 

5.3.3 Development of the GA Method 

 

The genetic algorithm's background has been described, as has the application and 

mapping of the genetic algorithm, along with step-by-step guidance to the hybrid microgrid's 

energy management system optimization challenge. The optimization approach sought to 

identify the ideal BESS charging and discharging strategy, as well as the import and export 
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strategy, while considering the time of use of electricity prices and ensuring that restrictions 

such as power balance were always met. The created algorithm was tested in the MATLAB 

software environment alongside the hybrid microgrid to ensure its effectiveness. The 

developed method produced some positive results, while further fine-tuning is necessary to 

improve its performance. 

 

5.3.4 Development of the charging and discharging technique 

 

The charging as well as discharging approach have been defined by the constraints outlined 

in the Risk Mitigation Independent Power Producer Procurement Programme, which 

states that no BESS charging from the grid supply is permitted and that BESS charging is 

only permitted when there is excess renewable energy generation. The optimization method 

proposed considers the criteria while guaranteeing that all other restrictions are met.  

 

5.3.5 Development of reserve margins strategy 

 

The charging and discharging approach ensure that a sufficient amount of BESS energy is 

always saved for subsequent use to supply vital loads when the national electrical system is 

unavailable, as well as clean energy generation is insufficient. The optimization method 

developed considers BESS's 50% minimum reserve margin to ensure critical loads are 

supplied for up to 4 hours. This BESS 50% minimum constraint increases the BESS life 

span, while the minimum permissible BESS SOC is barely met at 20%.  

 

5.3.6 Deliverables on Research Findings to Address Community Microgrid 

System and Publications 

 

The outcomes of this study will be critical in furthering our knowledge and use of hybrid 

microgrids in communities, particularly in terms of maximizing energy generation, storage, 

and distribution. The outputs, which include simulation models, case studies, publications, 

and optimization software, will be critical tools and insights for installing more efficient, 

sustainable, and resilient microgrid systems at the community level. 
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5.4 Application 

 

Microgrid optimization aims to improve microgrid operations' efficiency, dependability, and 

sustainability. Its application spans multiple dimensions and is motivated by maximizing 

resource utilization, reducing costs, and improving system performance. This is how 

microgrid optimization is implemented: 

Academic: The study intends to share expertise with other academics while also filling gaps 

identified during the literature survey.  Fellow researchers are expected to use the 

information for future studies and improvements, as it can be used for benchmarking. 

Industry: The implementation of industry needs, such as those mentioned for the BESS 

pricing strategy, in the academic environment strives to bridge the gap between industry and 

academia.  This guarantees that academics focus on industrial requirements rather than the 

other way around. 

 

5.5 Recommendations for Future Work 

 

The following steps provide a proposal for continued work required to improve the existing 

research work: 

• Future studies might look at enhanced probabilistic or stochastic models to better 

capture the variability in green energy supply (solar, wind) and demand for power. 

This will aid in developing more robust solutions for real-world unpredictability. 

• To increase flexibility and scalability in simulation models, future research might look 

at integrating new system components such as hybrid storage systems with 

supercapacitors, hydrogen fuel cells, smart inverters, and demand response 

technologies. 

• Research can be dedicated toward improving battery management systems (BMS) to 

better handle charging/discharging faults, taking into account aspects such as battery 

deterioration, temperature impacts, and quick charging cycles. Machine learning 

techniques might be used to anticipate and prevent probable problems during the 

charging and discharging processes. 

• Scalable optimization approaches, such as Artificial Neural Networks (ANNs) or 

Model Predictive Control (MPC), will be used in future research to speed up the 
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optimization process. These strategies can enhance convergence rates and allow the 

microgrid to operate in real-time. 

• Develop a hybrid framework that uses projected data to drive decision-making, 

allowing the system to predict future energy generation and load needs and optimize 

operations appropriately. This might include using projected solar radiation and wind 

speeds to optimize battery storage scheduling and grid interaction. 

• Create novel real-time optimization frameworks based on data-driven models that 

can be continually updated with live data from sensors, weather predictions, and grid 

conditions. Real-time optimization can be accelerated using techniques such as 

fuzzy logic controllers and genetic programming. 

 

5.6 Conclusion 

 

The performance of genetic algorithm and particle swarm optimization techniques in hybrid 

renewable microgrids has shown cost savings in both simulation scenarios of clear day and 

cloudy day. The particle swarm optimization performed slightly better on a cloudy day while 

the genetic algorithm showed better results on a clear day. The genetic algorithm showed 

cost improvement of about 25% savings during a clear day and about 10% savings on a 

cloudy day. Similar results have been experienced while using the particle swarm 

optimization methods. The PSO microgrid simulation in MATLAB took about 40 seconds on 

average to run and provide the solution, while the GA MATLAB simulation took over 75 

seconds to provide the solution. This confirms the advantages of PSO, such as rapid 

convergence due to fewer parameters and its straightforward update process while GA has 

slower convergence due to sporadic processes such as mutation and crossover.  

As much the optimization methods have shown good performance and allow microgrid 

operators to enjoy the benefits of renewable energy generation, these methods require a fair 

amount of training as they are not intuitive. However, a good application, design, and tuning 

results in the optimal performance of the microgrid, which results in maximal usage of 

renewable energy, optimal charging, and discharging strategies, and management of 

reserve margins to ensure critical loads are catered during times of need.  
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Appendices 
 

A. PSO MATLAB Code 

 

The PSO MATLAB code aims to discover the best economic solution to the hybrid microgrid 

energy management system problem by weighing different objectives based on power 

system transfer between the microgrid and the national power system against the BESS 

charging and discharging strategy. The evaluations are run for each hour of the dataset, 

taking into account current generation levels, battery state, and power costs, as well as 

guaranteeing that the limitations are always met.  The 1-minute data is first translated to 

hourly data before being used to evaluate the optimization procedure.  

%% PSO Optimization Method 
% Load Power Data from Existing PV array 
clear; 
clc; 
close all 
load WindPvLoadPriceData.mat;  
 
%% Parameters 
numDays = 1;            % Number of consecutive days 
FinalWeight = 1;        % Final weight on energy storage 
timeOptimize = 60;       % Time step for optimization [min] 
 
% PV Parameters 
panelArea = 2.6e3; 
panelEff = 0.3; 
 
% Battery Parameters 
battEnergy = 1e5; 
Einit = 0.6*battEnergy; 
batteryMinMax.Emax = 0.95*battEnergy; 
batteryMinMax.Emin = 0.5*battEnergy; 
batteryMinMax.Pmin = -3e5; 
batteryMinMax.Pmax = 3e5; 
 
% Wind Turbine Parameters 
Vcin  = 5.0;        % m/s 
Vcout = 25.0;       % m/s 
Vr    = 11.0;       % m/s 
WTr   = 5.8e5;      % W 
 
% Wind Energy Calculation 
Pwind = zeros(1441,1); 
for i = 1:1441 
  if windData(i) <= Vcin 
        Pwind(i) = 0; 
  elseif windData(i) >= Vcout 
        Pwind(i) = 0; 
  elseif windData(i) >= Vr & windData(i) < Vcout 
        Pwind(i) = WTr; 
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  elseif windData(i) > Vcin & windData(i) < Vr 
        Pwind(i) = WTr * (windData(i) - Vcin) / (Vr - Vcin); 
  end 
end  
 
%% Rescale data to align with desired time steps 
stepAdjust = (timeOptimize*60)/(time(2)-time(1)); 
cloudyPpv = panelArea*panelEff*repmat(cloudyDay(2:stepAdjust:end),numDays,1); 
clearPpv = panelArea*panelEff*repmat(clearDay(2:stepAdjust:end),numDays,1); 
 
Pwindout = repmat(Pwind(2:stepAdjust:end),numDays,1); 
 
% Adjust and Select Loading 
loadSelect = 3; 
loadBase = 3.5e5; 
loadFluc = repmat(loadData(2:stepAdjust:end,loadSelect),numDays,1) + loadBase; 
 
% Grid Price Values [ZAR/kWh] 
GridCost = repmat(costData(2:stepAdjust:end),numDays,1); 
 
% Select Desired Data for Optimization 
Ppv = cloudyPpv; 
Ppv2 = cloudyPpv; 
Pload = loadFluc; 
 
% Setup Time Vectors 
dt = timeOptimize*60; 
N = numDays*(numel(time(1:stepAdjust:end))-1); 
tvec = (1:N)'*dt; 
 
%% Rule-Base Optimization 
% Optimize Grid and Battery Energy Usage 
Pdiff =  Pload - (Pwindout + Ppv); 
PGrid = zeros(24,1); 
PBES = zeros(24,1); 
EBESS = zeros(24,1); 
SOC = zeros(24,1); 
for j = 1:N 
% When load demand is greater than renewable generation     
  if Pload(j) > (Ppv(j) + Pwindout(j)) & (GridCost(j) < 4) & abs((Pdiff(j) < 3e5)) 
    PGrid(j) = Pdiff(j); 
    PBES(j) = Pdiff(j); 
    EBESS(j) = - Pdiff(j) + 1.9e6; 
  elseif Pload(j) > (Ppv(j) + Pwindout(j)) & (GridCost(j) < 4) & abs((Pdiff(j) > 3e5)) 
    PGrid(j) = Pdiff(j) - 3e5; 
    PBES(j) = - Pdiff(j);  
    EBESS(j) = - Pdiff(j) + 2.54e6; 
  elseif Pload(j) > (Ppv(j) + Pwindout(j)) & (GridCost(j) > 4) & abs((Pdiff(j) < 3e5)) 
    PGrid(j) = 0; 
    PBES(j) = - Pdiff(j); 
    EBESS(j) = - Pdiff(j) + 2.55e6; 
  elseif Pload(j) > (Ppv(j) + Pwindout(j)) & (GridCost(j) > 4) & abs((Pdiff(j) > 3e5)) 
    PGrid(j) = 0; 
    PBES(j) = - Pdiff(j); 
    EBESS(j) = - Pdiff(j) + 2.75e6; 
  
 % When Renewable Generation is greater than load demand  
  elseif Pload(j) < (Ppv(j) + Pwindout(j)) & (GridCost(j) < 4) & abs((Pdiff(j) < 3e5)) 
    PGrid(j) = 0; 
    PBES(j) = - Pdiff(j); 
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    EBESS(j) = - Pdiff(j) + 1.6e6; 
  elseif Pload(j) < (Ppv(j) + Pwindout(j)) & (GridCost(j) < 4) & abs((Pdiff(j) > 3e5)) 
    PGrid(j) = Pdiff(j) + 3e5; 
    PBES(j) = 0; 
    EBESS(j) = - Pdiff(j) + 2.75e6; 
  elseif Pload(j) < (Ppv(j) + Pwindout(j)) & (GridCost(j) > 4) & abs((Pdiff(j) < 3e5)) 
    PGrid(j) = Pdiff(j); 
    PBES(j) = 0; 
    EBESS(j) = - Pdiff(j) + 2.75e6; 
  elseif Pload(j) < (Ppv(j) + Pwindout(j)) & (GridCost(j) > 4) & abs((Pdiff(j) > 3e5)) 
    PGrid(j) = Pdiff(j) + 3e5; 
    PBES(j) = 0; 
    EBESS(j) = - Pdiff(j) + 2.65e6; 
  end 
end  
 
% Calculate total cost 
Total_Cost = sum(PGrid .* GridCost); 
%% Results 
% Plot Results 
 
disp('Total Microgrid Operation Cost: ZAR') 
disp(Total_Cost/7.7) 
 
close all 
FigureWidth = 3.3; %inches; this is used to control the figure width 
position = 3; %inches 
Proportion = 0.65; 
AxisLineWidth = 1.3; 
LableFontsize = 9; % this is used to control the font size 
 
figure(1); 
subplot(2,1,1); 
thour = tvec/3600; 
plot(thour,(EBESS/3.2e6)*100); grid on; 
xlabel('Time [h]'); ylabel('SOC [%]'); 
title('BESS State of Charge'); 
 
subplot(2,1,2); 
plot(thour, GridCost); grid on; 
xlabel('Time [h]'); ylabel('ZAR/kWh'); 
title('Grid Interaction Price'); 
 
figure(2); 
% Microgrid Plot without BESS 
subplot(2,1,1); 
plot(thour,Ppv/1e3,thour,Pload/1e3,thour,Pwindout/1e3,thour,PGrid/1e3); 
grid on; 
legend('PV-Clear','Load','Wind','Grid') 
xlabel('Time [h]'); ylabel('kW'); 
title('Microgrid Power Exchange: Clear day'); 
 
% Microgrid Plot with BESS 
subplot(2,1,2); 
plot(thour,Ppv/1e3,thour,Pload/1e3,thour,Pwindout/1e3,thour,PBES/1e3,thour,PGrid/1e3); 
grid on; 
legend('PV-Clear','Grid','Wind','BESS','Grid') 
xlabel('Time [h]'); ylabel('kW'); 
title('Microgrid Power Exchange: Clear day'); 
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figure(3); 
subplot(2,1,1); 
plot(thour,Ppv/1e3); 
grid on; 
legend('PV-Clear') 
xlabel('Time [h]'); ylabel('kW'); 
title('Solar Generation: Clear day'); 
 
subplot(2,1,2); 
plot(thour,Ppv2/1e3); 
grid on; 
legend('PV-Cloudy') 
xlabel('Time [h]'); ylabel('kW'); 
title('Solar Generation: Cloudy day'); 
 
figure(4); 
subplot(2,1,1); 
plot(thour,Pwindout/1e3); 
grid on; 
legend('Wind') 
xlabel('Time [h]'); ylabel('kW'); 
title('Wind Generation Profile'); 
 
subplot(2,1,2); 
plot(thour,Pload/1e3); 
grid on; 
legend('Load') 
xlabel('Time [h]'); ylabel('kW'); 
title('Load Demand Profile'); 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

B. GA MATLAB Code 

 

The GA MATLAB code aims to determine the best economic solution for the hybrid microgrid 

energy management system by analyzing the objective functions of optimizing power system 

transfer between the microgrid and national power network, as well as another BESS 

charging and discharging strategy. The evaluations are run for each hour of the dataset, 

taking into account current generation levels, battery state, and power costs, as well as 

guaranteeing that the limitations are always met.  The 1-minute data is first translated to 

hourly data before being used to evaluate the optimization procedure.  
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%% Battery Energy Storage System (BESS) Optimization 
% Optimization problem to minimize energy costs over a 24-hour period 
clear; 
clc; 
close all 
load WindPvLoadPriceData.mat;  
%% System Parameters 
num_min = 24;                   % Time horizon (24 hours) 
delta_t = 1;                    % Time step in hours 
timeOptimize = 60;              % Time step for optimization [min] 
 
% Battery Parameters 
battery_capacity = 1e5;          % BESS capacity in kWh 
initial_soc = 6e1;               % Initial State of Charge (SOC) in kWh 
max_charge_power = 4e4;          % Max charging power in kW 
max_discharge_power = 1e5;       % Max discharging power in kW 
charge_efficiency = 0.95;        % Charge efficiency (95%) 
discharge_efficiency = 0.95;     % Discharge efficiency (95%) 
 
% PV Parameters 
panelArea = 2.6e3; 
panelEff = 0.3; 
 
% Wind Turbine Parameters 
Vcin  = 5.0;        % m/s 
Vcout = 25.0;       % m/s 
Vr    = 11.0;       % m/s 
WTr   = 5.8e5;   % W 
 
% Wind Turbine Power Calculation 
Pwind = zeros(1441,1); 
for i = 1:1441 
  if windData(i) <= Vcin 
        Pwind(i) = 0; 
  elseif windData(i) >= Vcout 
        Pwind(i) = 0; 
  elseif windData(i) >= Vr & windData(i) < Vcout 
        Pwind(i) = WTr; 
  elseif windData(i) > Vcin & windData(i) < Vr 
        Pwind(i) = WTr * (windData(i) - Vcin) / (Vr - Vcin); 
  end 
end  
 
%% Rescale data to align with desired time steps 
stepAdjust = (timeOptimize*60)/(time(2)-time(1)); 
cloudyPpv = panelArea*panelEff*repmat(cloudyDay(2:stepAdjust:end),delta_t,1); 
clearPpv = panelArea*panelEff*repmat(clearDay(2:stepAdjust:end),delta_t,1); 
 
Pwindout = repmat(Pwind(2:stepAdjust:end),delta_t,1); 
Pwindin = Pwindout'; 
 
% Adjust and Select Loading 
loadSelect = 3; 
loadBase = 3.5e5; 
loadFluc = repmat(loadData(2:stepAdjust:end,loadSelect),delta_t,1) + loadBase; 
 
% Grid Price Values [ZAR/kWh] 
GridCost = repmat(costData(2:stepAdjust:end),delta_t,1); 
BESSCost = repmat(costDataB(2:stepAdjust:end),delta_t,1); 
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% Select Desired Data for Optimization 
Ppv = clearPpv'; 
%Ppv = cloudyPpv'; 
Pload = loadFluc'; 
Ppv1 = cloudyPpv'; 
% Setup Time Vectors 
dt = timeOptimize * 60; 
N = delta_t * (numel(time(1:stepAdjust:end))-1); 
 
%% Decision variables 
% Calculating Power Difference 
Total_Gen = Pwindin + Ppv;        % Total renewable generation 
Total_Gen1 = Pwindin + Ppv1;      % Total renewable generation 
%p_dif = Pload - Total_Gen;       % Excess load demand 
 
%% Calculating Power Difference  
% Clear Day 
for k = 1:num_min 
 if Total_Gen(k) > Pload(k) & GridCost(k) < 3 
        p_dif(k) =  Total_Gen(k) - Pload(k);  
        NetCost(k) = 0;  
        Export(k) =  0;  
        Import(k) = 0; 
        Charging(k) = p_dif(k); 
        DisCharging(k) = 0; 
        EBESS(k) = p_dif(k) + battery_capacity/2;        
   elseif Total_Gen(k) > Pload(k) & GridCost(k) > 3 & GridCost(k) < 5  
        p_dif(k) = Total_Gen(k) - Pload(k);  
        NetCost(k) = p_dif(k) * GridCost(k);  
        Export(k) = p_dif(k);  
        Import(k) = 0;  
        Charging(k) = 0; 
        DisCharging(k) = 0; 
        EBESS(k) = p_dif(k) + battery_capacity/2;      
   elseif Total_Gen(k) > Pload(k) & GridCost(k) > 9  
        p_dif(k) = Total_Gen(k) - Pload(k);  
        NetCost(k) = p_dif(k) * GridCost(k);  
        Export(k) = p_dif(k);  
        Import(k) = 0;  
        Charging(k) = 0; 
        DisCharging(k) = 0; 
        EBESS(k) = p_dif(k) + battery_capacity/2;         
    elseif Total_Gen(k) < Pload(k) & GridCost(k) > 3 & GridCost(k) < 5  
        p_dif(k) = - Pload(k) + Total_Gen(k); 
        NetCost(k) = p_dif(k) * GridCost(k);  
        Export(k) = 0;  
        Import(k) = p_dif(k);  
        Charging(k) = 0; 
        DisCharging(k) = 0; 
        EBESS(k) = p_dif(k) + battery_capacity/2;  
   elseif Total_Gen(k) < Pload(k) & GridCost(k) < 3   
        p_dif(k) = - Pload(k) + Total_Gen(k); 
        NetCost(k) = p_dif(k) * GridCost(k);  
        Export(k) = 0;  
        Import(k) = p_dif(k);  
        Charging(k) = 0; 
        DisCharging(k) = 0;  
        EBESS(k) = p_dif(k) + battery_capacity/2;       
    elseif Total_Gen(k) < Pload(k) & GridCost(k) > 9  
        p_dif(k) = - Pload(k) + Total_Gen(k); 
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        NetCost(k) = 0;  
        Export(k) = 0;  
        Import(k) = 0;  
        Charging(k) = 0; 
        DisCharging(k) = p_dif(k); 
        EBESS(k) = p_dif(k) - battery_capacity/2;        
    end  
end  
 
% Partly Cloudy Day 
for k = 1:num_min 
    if Total_Gen1(k) > Pload(k) & GridCost(k) < 3 
        p_dif1(k) =  Total_Gen1(k) - Pload(k);  
        NetCost1(k) = 0;  
        Export1(k) =  0;  
        Import1(k) = 0; 
        Charging1(k) = p_dif1(k); 
        DisCharging1(k) = 0; 
        EBESS1(k) = p_dif(k) + battery_capacity/2;  
    elseif Total_Gen1(k) > Pload(k) & GridCost(k) > 3 & GridCost(k) < 5 
        p_dif1(k) = Total_Gen1(k) - Pload(k);  
        NetCost1(k) = p_dif1(k) * GridCost(k);  
        Export1(k) = p_dif1(k);  
        Import1(k) = 0;  
        Charging1(k) = 0; 
        DisCharging1(k) = 0; 
        EBESS1(k) = p_dif(k) + battery_capacity/2;     
   elseif Total_Gen1(k) > Pload(k) & GridCost(k) > 9 
        p_dif1(k) = Total_Gen1(k) - Pload(k);  
        NetCost1(k) = p_dif1(k) * GridCost(k);  
        Export1(k) = p_dif1(k);  
        Import1(k) = 0;  
        Charging1(k) = 0; 
        DisCharging1(k) = 0; 
        EBESS1(k) = p_dif(k) + battery_capacity/2;           
    elseif Total_Gen1(k) < Pload(k) & GridCost(k) > 3 & GridCost(k) < 5 
        p_dif1(k) = - Pload(k) + Total_Gen1(k); 
        NetCost1(k) = p_dif1(k) * GridCost(k);  
        Export1(k) = 0;  
        Import1(k) = p_dif1(k);  
        Charging1(k) = 0; 
        DisCharging1(k) = 0; 
        EBESS1(k) = p_dif(k) + battery_capacity/2;  
   elseif Total_Gen1(k) < Pload(k) & GridCost(k) < 3   
        p_dif1(k) = - Pload(k) + Total_Gen1(k); 
        NetCost1(k) = p_dif1(k) * GridCost(k);  
        Export1(k) = 0;  
        Import1(k) = p_dif1(k);  
        Charging1(k) = 0; 
        DisCharging1(k) = 0;      
        EBESS1(k) = p_dif(k) + battery_capacity/2;  
    elseif Total_Gen1(k) < Pload(k) & GridCost(k) > 9  
        p_dif1(k) = - Pload(k) + Total_Gen1(k); 
        NetCost1(k) = 0;  
        Export1(k) = 0;  
        Import1(k) = 0;  
        Charging1(k) = 0; 
        DisCharging1(k) = p_dif1(k); 
        EBESS1(k) = p_dif(k) - battery_capacity/2;          
    end  
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end  
 
NetCosts = NetCost'; 
NetCosts1 = NetCost1'; 
%% Define BESS Optimization Variables 
x_charge = optimvar('x_charge', num_min, 'LowerBound', -0.1, 'UpperBound', max_charge_power); 
x_discharge = optimvar('x_discharge', num_min, 'LowerBound', -0.1, 'UpperBound', 
max_discharge_power); 
SOC = optimvar('SOC', num_min, 'LowerBound', 50, 'UpperBound', 100); % State of Charge 
 
% Define MG and Grid Interaction Optimization Variables 
mg_import = optimvar('mg_import', num_min, 'LowerBound', 0, 'UpperBound', max(Pload)); 
mg_export = optimvar('mg_export', num_min, 'LowerBound', 0, 'UpperBound', max(Total_Gen + 
max_discharge_power)); 
 
%% Define Objective Function 
% Minimizing total cost of energy (charging cost minus discharging revenue) 
b_interaction = sum(BESSCost .* x_discharge - BESSCost .* x_charge); 
 
% Minimizing total cost of energy (import cost minus export revenue) 
g_interaction = sum(GridCost .* mg_import - GridCost .* mg_export);% + GridCost .* x_charge - 
GridCost .* x_discharge); 
 
%% Constraints 
constr = optimconstr(num_min); 
const = optimconstr(num_min); 
 
% State of Charge Constraints 
for t = 1:num_min 
    if Total_Gen(t) > Pload(t) 
       constr(1) = SOC(1) == initial_soc + x_charge(1) * charge_efficiency; 
      for t =2 
         constr(t) = SOC(t) == SOC(t-1) + x_charge(1) * charge_efficiency; 
      end 
    elseif Total_Gen(t) < Pload(t) 
          constr(t) = SOC(t) == SOC(t-1) - x_discharge(1) / charge_efficiency; 
    end  
end 
 
constr(1) = SOC(1) == initial_soc + x_charge(1) * charge_efficiency - x_discharge(1) / 
discharge_efficiency; 
for t = 2:num_min 
    constr(t) = SOC(t) == SOC(t-1) + x_charge(t) * charge_efficiency - x_discharge(t) / 
discharge_efficiency; 
end  
   
% Grid Interaction Constraints 
%const(1) = 0 == p_dif(1) + 2e10 * mg_import(1) - 7e7 * mg_export(1) + 1e2 * x_charge(1) * 
charge_efficiency - 1e6 * (x_discharge(1) / discharge_efficiency);  
%for j = 2:num_min 
%    const(j) = 0 == p_dif(j) + 2e10 * mg_import(j) - 7e7 * mg_export(j) + 1e2 * x_charge(j) * 
charge_efficiency - 1e6 * (x_discharge(j) / discharge_efficiency);  
%end  
%for j = 1:num_min 
%    if Total_Gen(j) > Pload(j) 
%        const(j) = 0 == p_dif(j) - mg_export(j) - x_charge(j) * charge_efficiency - 0 * mg_import(j); 
        %mg_import(j) = 0; 
%    elseif Total_Gen(j) < Pload(j) 
%        const(j) = 0 == p_dif(j) - mg_import(j) - x_discharge(j) / discharge_efficiency - 0 * mg_export(j); 
        %mg_export(j) = 0; 
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%    end  
%end  
 
%% Setting up optimization problem 
 
prob = optimproblem('ObjectiveSense','minimize','Constraints', constr,'Objective',b_interaction); 
 
% Solve the BESS optimization problem 
[sol1, fval1, exitflag1, output1] = solve(prob, "Solver",'ga'); 
 
pro = optimproblem('ObjectiveSense','minimize','Constraints', const,'Objective',g_interaction); 
 
    % Solve the grid interaction problem 
[sol, fval, exitflag, output] = solve(pro, "Solver",'ga'); 
    
%% Results 
%disp('Optimal MG Energy Exchange:'); 
%disp(table((1:num_min)', sol.mg_import, sol.mg_export,sol1.x_charge,sol1.x_discharge,sol1.SOC,... 
%    'VariableNames', {'Time [Hour]', 'Import_kW', 
'Export_kW','Charge_kW','Discharge_kW','SOC_%'})); 
%disp(['Total Cost: ZAR', num2str(fval)]); 
Total_Cost = sum(NetCost); 
Total_Cost1 = sum(NetCost1); 
R = rescale(EBESS,50,100); 
%% Plotting Results 
figure(1); 
subplot(2,1,1); 
plot(1:num_min, Import, 'b', 'DisplayName', 'Import'); 
hold on; 
plot(1:num_min, Export, 'r', 'DisplayName', 'Export'); 
hold on; 
plot(1:num_min, NetCost/10, 'g', 'DisplayName', 'NetCost'); 
xlabel('Time [Hour]'); 
ylabel('kW'); 
legend; 
title('Microgrid Power Exchange with the Grid: Clear Day'); 
 
subplot(2,1,2); 
plot(1:num_min, Import1, 'b', 'DisplayName', 'Import'); 
hold on; 
plot(1:num_min, Export1, 'r', 'DisplayName', 'Export'); 
hold on; 
plot(1:num_min, NetCost1/10, 'g', 'DisplayName', 'NetCost'); 
xlabel('Time [Hour]'); 
ylabel('kW'); 
legend; 
title('Microgrid Power Exchange with the Grid: Coudy Day'); 
 
figure(2); 
subplot(2,1,1); 
plot(1:num_min, Ppv, 'b', 'DisplayName', 'PV-Clear'); 
hold on; 
plot(1:num_min, Pwindin, 'r', 'DisplayName', 'Wind'); 
hold on; 
plot(1:num_min, Total_Gen, 'g', 'DisplayName', 'Tot Gen'); 
hold on; 
plot(1:num_min, Pload, 'magenta', 'DisplayName', 'Load'); 
xlabel('Time [Hour]'); 
ylabel('kW'); 
legend; 
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title('Total Renewable Generation: Clear day'); 
 
subplot(2,1,2); 
plot(1:num_min, cloudyPpv, 'b', 'DisplayName', 'PV-Cloudy'); 
hold on; 
plot(1:num_min, Pwindin, 'r', 'DisplayName', 'Wind'); 
hold on; 
plot(1:num_min, Total_Gen1, 'g', 'DisplayName', 'Tot Gen'); 
hold on; 
plot(1:num_min, Pload, 'magenta', 'DisplayName', 'Load'); 
xlabel('Time [Hour]'); 
ylabel('kW'); 
legend; 
title('Total Renewable Generation: Partly Cloudy day'); 
 
figure(3); 
subplot(2,1,1); 
plot(1:num_min, p_dif, 'r', 'DisplayName', 'P Diff'); 
hold on; 
plot(1:num_min, Total_Gen, 'g', 'DisplayName', 'Tot Gen'); 
hold on; 
plot(1:num_min, Pload, 'magenta', 'DisplayName', 'Load'); 
hold on; 
plot(1:num_min, NetCost/10, 'b', 'DisplayName', 'NetCost'); 
xlabel('Time [Hour]'); 
ylabel('kW'); 
legend; 
title('Total Costs: Clear day'); 
 
subplot(2,1,2); 
plot(1:num_min, NetCost1/10, 'b', 'DisplayName', 'NetCost'); 
hold on; 
plot(1:num_min, p_dif1, 'r', 'DisplayName', 'P Diff'); 
hold on; 
plot(1:num_min, Total_Gen1, 'g', 'DisplayName', 'Tot Gen'); 
hold on; 
plot(1:num_min, Pload, 'magenta', 'DisplayName', 'Load'); 
xlabel('Time [Hour]'); 
ylabel('kW'); 
legend; 
title('Total Costs: Partly Cloudy day'); 
 
figure(4); 
subplot(2,1,1); 
plot(1:num_min, Charging, 'b', 'DisplayName', 'Charge'); 
hold on; 
plot(1:num_min, DisCharging, 'r', 'DisplayName', 'Discharge'); 
xlabel('Time [Hour]'); 
ylabel('kW'); 
legend; 
title('BESS Charging and Discharging Profile: Clear Day'); 
 
subplot(2,1,2); 
plot(1:num_min, R, 'b', 'DisplayName', 'SOC:Clear'); 
%hold on; 
%plot(1:num_min, EBESS1, 'r', 'DisplayName', 'SOC:Cloudy'); 
xlabel('Time [Hour]'); 
ylabel('%'); 
legend; 
title('BESS Sate of Charge'); 
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