“——
‘ Cape Peninsula

University of Technology

DEVELOPMENT OF COMPUTE-INTENSIVE WEB APPLICATIONS WITH
NATIVE DESKTOP PERFORMANCE

by

MOEGAMAT ZAHIR TOUFIE

Thesis submitted in fulfiiment of the requirements for the degree
Doctor of Information and Communication Technology

in the Faculty of Informatics and Design

at the Cape Peninsula University of Technology
Supervisor: Dr B. Kabaso

District Six
November 2025

CPUT copyright information
The thesis may not be published either in part (in scholarly, scientific or technical
journals), or as a whole (as a monograph), unless permission has been obtained from

the University.



DECLARATION

I, Moegamat Zahir Toufie, declare that the contents of this thesis represent my own unaided
work, and that the thesis has not previously been submitted for academic examination towards
any qualification. Furthermore, it represents my own opinions and not necessarily those of the
Cape Peninsula University Of Technology (CPUT).

Signed ‘—C Date 1 November 2025



ABSTRACT

A web browser Execution Environment (EE) with the capability of hosting and executing
Compute-Intensive Applications (CIAs) with native-like performance, have long been sought
after. To that end, various technologies have been developed, the most prominent one
being WebAssembly Programming Language (WASM) and to a lesser extent JavaScript
Programming Language (JS). However, having CIAs achieve native desktop performance
within a web browser EE has been elusive, primarily because it lacks the required systems
architecture and design with which to support it.

With that in mind, an empirical hypothesis of: "A web browser EE that can host and execute
ClAs on any device with native desktop performance can be created”, and a research question
of: “What software architecture and design does a new web browser EE need to comprise
of in order to be able to host and execute CIAs with native desktop performance”, were
formed. Methodologically, this study is rooted in Design Science Research (DSR), together
with Concept-Knowledge (C-K) theory, and a positivist philosophical position.

Furthermore, a deductive approach, experimental strategy, mono-method quantitative data
collection and cross-sectional time horizon were used. The delineation was limited to the web
browser EE only. Additionally, all living organisms were excluded from the study, limiting ethical
considerations to the development of a new web browser EE. The Structured/Systematic
Literature Review (SLR) aided in identifying the primary literature which, as expected,
articulates the promising results of WASM, while other technologies such as Rich Internet
Application (RIA) was also touched upon.

Further to that, we also introduced problem areas within benchmarking, that being Operating
System (OS) noise, after which we provided insights into how one might go about mitigating
against OS noise. We then presented our system architecture and design, based on Virtual
Machines (VMs) and their lightweight container sibling. To that end a Linux-based prototype
called System23 (SYS23) was presented, incorporating components such as Control Groups
(Cgroups), namespaces and Secure Computing Mode (Seccomp), which together form the
SYS23 enclave.

We then benchmarked the prototype using PolyBench/C, which was liberally used with the
literature that was discovered. The findings suggest that the prototype supports our hypothesis
and achieves a performance improvement over its WASM counterpart and comes to within
0.45% of its native equivalent. Through that, the singular research question was answered
and a foundation for future research to build upon was also provided. Furthermore, our
methodological, theoretical and practical contributions moved our field of study forward.



ACKNOWLEDGEMENTS

| wish to thank:

» My supervisor, to whom | would like to extend my heartfelt gratitude for his invaluable
patience, ongoing feedback and continual guidance, as well as his willingness to impart
his extensive knowledge and expertise to me. This journey would also not have been
possible without the help of the defence committees and their members, who generously
provided their knowledge, expertise, and guidance.

* My doctoral classmates and cohort members, to whom | am grateful for their help,
guidance, late-night feedback sessions, and never-ending moral support. My thanks
also extend to the CPUT Centre for Postgraduate Studies (CPGS), research assistants,
librarians, and research participants from the university, who supported and inspired me.

« My family, especially my parents, wife, and children, to whom | would be remiss in not
mentioning. Their faith in me has kept my motivation and spirits high throughout this
journey.

» My cats, for all of the entertainment, head bumps, emotional support and company during
those long nights and never-ending days.

Furthermore, no proprietary software was used while pursuing this research, all tools used are
open-source and freely downloadable. The experiments and prototype development, together
with the generation and collection of data, mainly utilised Linux, Vim, and R together with
RStudio, while IATEX and TeXstudio were used in authoring this thesis.



DEDICATION

For Mum, who passed away suddenly in 2020, you innocently bought me
my first book on computers and subsequently a Commodore 64, which
infinitely piqued my interest in the field. May you rest in peace knowing that
those two altruistic acts, changed my life forever.

For Dad, with whom | worked casually as a teen, as exciting as it was to
earn my own money and learn several useful skills, it also quickly made me
realise that working in construction was far less interesting and exciting
than working with computers.



PUBLICATIONS

Chapters from this thesis have been accepted to be presented at a conference and/or accepted
to be published in a scholarly journal resulting in four published papers, as follows.

Initially, Chapters 1 and 2, where Chapter 2 was the primary focus, were presented at an
IEEE international conference in Mauritius, as well as being published in the related IEEE
conference proceedings.

Toufie, Z. & Kabaso, B. 2023. The Next Evolution of Web Browser Execution Environment
Performance. In 2023 International Conference on Atrtificial Intelligence, Big Data,
Computing and Data Communication Systems (icABCD). icABCD 2023. Durban: Institute
of Electrical and Electronics Engineers: 1—7. doi: 10.1109/icABCD59051.2023.10220564.

Then, Chapters 1 through 3, where Chapter 3 was the primary focus, were published in
a Springer Nature scholarly journal. This paper also presented our methodological contribution.

Toufie, Z. & Kabaso, B. 2024a. @ OS Noise Mitigations for Benchmarking Web
Browser Execution Environment Performance. Discover Computing, 27(1): 1-29.
doi: 10.1007/s10791-024-09471-4. Dataset doi: 10.25381/cput.28595438.

Next, Chapters 1 through 4, where Chapter 4 was the primary focus, were presented at an
IEEE international conference in Indonesia, as well as being published in the related IEEE
conference proceedings. This paper also presented our theoretical contribution.

Toufie, Z. & Kabaso, B. 2024b. A Next Generation Web Browser Execution Environment.
In 2024 International Conference on Data and Software Engineering (ICoDSE).
ICoDSE 2024. Indonesia: Institute of Electrical and Electronics Engineers: 1-6. doi:
10.1109/ICoDSE63307.2024.10829873. Dataset doi: 10.25381/cput.28595438.

Lastly, a summary of the completed thesis was published in an ACM scholarly journal. This
paper presented our completed study together with our practical contribution.

Toufie, Z. & Kabaso, B. 2025. A High Performance Web Browser Execution Environment
for Compute-Intensive Applications. ACM Transactions on the Web. 1-30.
(acceptance pending)


https://doi.org/10.1109/icABCD59051.2023.10220564
https://doi.org/10.1007/s10791-024-09471-4
https://doi.org/10.25381/cput.28595438
https://doi.org/10.1109/ICoDSE63307.2024.10829873
https://doi.org/10.25381/cput.28595438

TABLE OF CONTENTS

DECLARATION

ABSTRACT

ACKNOWLEDGEMENTS

DEDICATION

PUBLICATIONS

ABBREVIATIONS AND ACRONYMS

GLOSSARY

1 PREFACE

1.1.
1.2.
1.3.

1.4.

1.5.

1.6.
1.7.

Introduction . . . . . . L
Researchproblem . . . . ... .. .. . .. . ...
Objectives and researchquestion. . . . . . . ... ... ... ... ... . ...,
1.3.1. Objectives. . . . . . . . . e
1.3.2. Hypothesis and research question . . . .. .. ... ... ... ......
Theoretical background and relatedwork . . . . . .. ... ... .. .......
1.4.1. Theoretical background . . . . . . . ... ... .. ... .. ...
1.4.2. Relatedwork . . . . . . . . . . .. .
Design, methodology and ethics . . . . ... ... ... ... ... ........
1.5.1. Design. . . . .
1.5.2. Methodology . . . . . . . . . . e
1.5.2.1. Research philosophy . . ... ... ... ... ... .......
1.5.2.2. Researchapproach . ... ... ... ... ... .........
1.5.2.3. Researchstrategy . . . .. ... .. .. ... .. ... ... ...
1.5.2.4. Methodological choice. . . . . . ... ... ... ... ......
1.5.2.5. Timehorizons . . . ... . ... .. . ... .
1.5.2.6. Data collection techniques and procedures . . . . ... ... ..
1.5.3. Ethics . . . . . . . . e
1.5.3.1. Principle One - The publicinterest . . . . . ... ... .. ....
1.5.3.2. Principle Two - Informedconsent . . . . . . ... ... ......
1.5.3.3. Principle Three-Privacy . . . ... ... ... ... .......
1.5.3.4. Principle Four - Honesty and accuracy . . . ... ... .....
1.5.8.5. Principle Five - Property . . . . ... ... .. ... .......
1.5.3.6. Principle Six - Quality of the artefact . . . . . .. ... ... ...
Delineation . . . . . . . . . e
Outcomes, contribution and significance . . . . . . ... ... ... ... .....

Vi

Xiv

XVii



1.7.1.
1.7.2.

1.7.3.

Outcomes . . . . . . . e
Contribution . . . . . . . . . . e
1.7.2.1. Theoretical contribution . . . . . .. .. ... ... .. ......
1.7.2.2. Methodological contribution . . . . . ... ... ... .......
1.7.2.3. Practical contribution . . . ... ... ... ... .. ... ...
Significance . . . . . ..

1.8. Thesis Structure . . . . . . . . . e e

BACKGROUND

2.1. HistoryoftheWeb . . . . . . . . . .
2.2. ThebirthofJavaScript . . . . . . . . . . . .
2.3. The emergence of WebAssembly . . . . . . . .. .. ... ... ... .. .....
2.4. Astructured literature review . . . . . ..o

24.1.
24.2.
2.4.3.
24.4.

Introduction . . . . . ..
Background . . . . .. L
Aimand objective . . . . . . ...
Methodology . . . . . . . . . e
2441, Protocol. . . . . ...
2.44.2. Searchstrategy . . . ... ... ...
2.4.43. Literatureselection . ... ... .. ... ... ... ... ...
2.44.4. Qualityassessment . . . .. .. ... o
2.4.45. Data extraction and monitoring . . . . . . ... ... ... ...
24.46. Datasynthesis . . . . . . . . .. ... ..
2.4.4.7. References found and discussion . . . ... ... ........

2.5. Thetheoretical grounding . . . . . . . . . . . . e
2.6. SUMMANY . . . . o o e e e e e e

METHODOLOGY
3.1. Typeofresearch . . . . . . . . . . .

3.1.1.
3.1.2.
3.1.3.

Application . . . . . ..
Objectives . . . . . . .
Enquirymode . . . . . . . ...

3.2. Philosophical stance . . . . . . . . ..
3.3. Methodological alignment . . . . . . . .. ... .
3.4. Designtheory . . . . . . . e e
3.5. Researchinstruments . . . . .. . ... . ... ... .. e

3.5.1.
3.5.2.
3.5.3.

Testbed . . . . . . . e e

Benchmarking execution environments . . . . . .. ... ... ... ...
Benchmarking algorithms . . . . . . . ... ... oo

3.6. Data acquisition and evaluation . . . . . ... ... ... ... L.
3.7. Ethical considerations . . . .. .. ... .. .. ... . e
3.8. Researchlimitations . . .. ... ... ... .. ... .. .. .
3.9. Summary . ... e e e e e e e e

SYSTEM ARCHITECTURE AND DESIGN
4.1. Designconsiderations . . . . . . . . . ...

41.1.

Reinventingthewheel . . . . . . .. .. . ... ... . o

vii

23
23
24
27
29
31
31
32
33
33
33
35
36
37
38
38
42
53

54
54
55
56
57
57
58
60
61
62
63
75
76
79
80
81



4.1.2. Compilation pointintime . . ... .. .. ... ... ... .. ... 86

41.3. Processisolation . . . . . ... .. ... 87
4.2. Conceptualdesign . . . . . . . . . e e 88
4.3. Prototype architecture . . . . . . . . .. 91

4.3.1. Nativeisgood, nativeisfast. . . . .. ... ... ... ... . ....... 91

4.3.2. Keepitsimple,stupid . . ... .. ... . ... ... 93

4.3.3. Protecttheinnocent . . .. . ... ... . ... ... . ... ... ... 94

4.3.3.1. Changeroot . .. .. ... . . ... ... 94

4.3.3.2. Security-enhanced Linux . . .. ... ... ... .. ....... 96

4.3.8.3. Securecomputingmode . ... . ... ... ... ... 97

4.3.3.4. Control groups . . . . . . 98

4.3.3.5. Namespacesoverview . . . ... ... ... ... ... ..... 99

4.3.3.6. Control group namespace . . . ... ... ... 100

4.3.3.7. Inter-process communication namespace . . . . . ... ... .. 101

4.3.3.8. Mountnamespace . . . . . . . . . ..o 102

4.3.3.9. Networknamespace. . . .. .. ... ... .. ... .. ..... 103

4.3.3.10. Process namespace . . . . . . . .. i i 105

4.33.11. Timenamespace . . . . . . . . . v i 106
4.3.3.12.Usernamespace . . . . . . . oo it e e e e 108

4.3.3.13. Unix time-sharing namespace . . ... ... ... .. ...... 109

4.4. Datacollection . . .. . .. . . . . . .. 110
4.5. Dataprecision . . . . . . . e e 111
4.6. SUMMANY . . . . o ot e e e e e e 112
FINDINGS AND DISCUSSION 114
5.1. Prototype Evaluation . . . . . . . . . . . 114
5.2. Real-world evaluation . . . . ... ... . ... ... . 115
5.3. Critical analysis . . . . . . . . . . e 117
53.1. Datamining . . . . . . . . . 117
5.3.1.1. correlation . . . ... .. 117

5.3.1.2. covariance . . . . . . ... 117

5.3.2. Basiclinearalgebra . . ... ... ... . . ... ... 118
53.2.1. gemm . . . .. 118

5.3.2.2. gemver . . ... 119

5.3.23. gESUMMV . . . . . . o L it e e 119

58324, symm . . ... e 120

5.3.2.5. syr2k . ..o 120

5.3.2.6. SYrK . . .. 121

5.32.7. trmm . .. e 122

5.3.3. Linearalgebratransform. . . ... ... ... .. ... ... 122
5.833.1. 2mm .o e 122

5.83.3.2. 3mm ..o e 123

53388, atax . . . . . 124

5.833.4. DICO . - o o e 124

5.83.85. doitgen . . . . .. 125

5.83.3.6. mvt . . 125

5.3.4. Linearalgebrasolver. . . . . . . . . . ... ... 126



58.4.1. cholesky . . . .. . . .. ... 126

5.83.42. durbin. . . ... e 127

5.83.43. gramschmidt . . . . . . . .. .. ... . 127

5344, lu . .. e 128

58345, ludemp . . . .. 129

5.3.4.6. trisolv . . . .. e 129

5.835. Medley . . . . . . . . . e 130
5.3.5.1. deriche . . . . . . . . ... 130

5.3.5.2. floyd-warshall . ... ... .. .. .. . ... .. .. 130

5.3.5.3. nussinov . .. ... 131

5.83.6. Stencils . . . . . ... e 132
5.36.1. adi. . . .. .. e 132

5.3.6.2. fdtd-2d . . . . .. . ... e 132

5836.3. heat-3d . . . . . . . .. ... e 133

5.3.6.4. jacobi-1d . . . . . . ... e 134

5.8.6.5. jacobi-2d . . . . .. ... 134

5.3.6.6. seidel-2d . . . . . .. ... e 135

5.4. DiSCUSSION . . . . . . e e e 135
5.5, Proofs . . . . e e 140
5.5.1. Securecomputingmode . . . . . . . ... Lo 140
5.5.2. Controlgroups . . . . . . . e 142
5.5.83. Namespaces . . . . . . . o i e 143
5.6. Limitations . . . . . . . . e 147
B5.7. SYynopsis . . . .. e e e 148
CONCLUSION 150
6.1. Recap . . . . . o o e e 150
6.2. Objectives . . . . . . . e e 151
6.3. Contributions . . . . . . .. e 152
6.4. Conclusion . . . . . . .. e e 153
6.5. Future directions . . . . . . . . . .. 154
BIBLIOGRAPHY 156
APPENDICES 176
BENCHMARKING SUITES 177
SOURCE CODE 188
B.1. System23 secure computing . . . . . ... 188
B.2. Benchmarking harnesses . . . . . . . . . . . . . ... ... e 192
BENCHMARKING RUNBOOK 195
C.1. OSnoise mitigations . . . . . . . . . . . ... . 195
C.2. Native benchmarks . . . . . . . . . . . . e 199
C.3. WebAssembly benchmarks . . . . . ... ... ... .. .. .. .. . . ... 199
C.4. System23 benchmarks. . . . . . . . . . . ... 200



LIST OF FIGURES

1.1 Conceptual Framework . . . . . . .. . .. . . 10
1.2 Conceptual SYS23 Compiler Toolchain . . . . .. .. ... .. ... ... ..., 11
1.3 Conceptual SYS23 Web Application Retrieval . . . . . .. ... ... ... .... 12
1.4 Conceptual SYS23 Web ApplicationUse Cases . . . . . . .. ... ... ..... 13
1.5 Expanded Research Onion taken from Saunders etal. (2019) . . . .. ... ... 14
1.6 Data Collection Choices (Saundersetal.,2019) . ... ... ... ... ..... 16
1.7 Firefox Web Browser Architecture . . . . . . . . . . .. oo 19
2.1 ATypical JS EE Architecture . . . . . . . . . ... 25
2.2 Ajax Web Application Model taken from Garrett (2007) . . . . . . . ... .. ... 26
2.3 A Typical WASM EE Architecture . . . . . . . . .. .. ... 27
2.4 Adapted Phase 2 Flow Diagram (Page etal.,2021) . . . .. ... ... ... ... 30
2.5 Phase 2 Flow Diagram With Results . . . . . .. ... ... ... .. ... .... 39
2.6 Quality Assessment of Six Relevant RIA Studies . . . ... ... ......... 42
2.7 Distribution of Relevant Studiesby Year . . . . . ... ... ... ... ...... 43
2.8 Quality Assessment of 44 Relevant JS Studies . . . . ... ... ... ...... 45
2.9 Quality Assessment of 54 Relevant WASM Studies . . . . .. ... ... ... .. 46
2.10 Adapted Doherty Threshold (Doherty & Thadani, 1982) . . ... ... ... ... 52
3.1 Types of Research Viewpoints (Kumar,2018) . . . ... .. .. ... ... .... 55
3.2 C-K Theory Design Square (Hatchuel & Weil, 2003) . ... ... ... ... ... 60
3.3 Sampling Techniques (Saundersetal.,2019) . . ... ... ... ... ...... 78
4.1 C4 Container (Level 2) Conceptual Design. . . . . . ... ... .. ... ..... 89
4.2 C4 Component (Level 3) Prototype Design . . . . . . .. ... ... .. .. ... 91
4.3 Change Root Example Directory Structure . . . . . . . ... ... ... ...... 95
4.4 Security-Enhanced Linux Decision Process . . . . . . . . . ... ... ... ... 96
4.5 Secure ComputingMode . . . .. .. . ... .. 98
4.6 Control GroUpS . . . . . o o o o e e e e e e e e e e e e e e e e e 99
4.7 Control Groups Namespace . . . . . . . . . . o o i it e e 101
4.8 Inter-Process Communication Namespace . .. ... ... ... ... ...... 101
4.9 MountNamespace . . . . . . . . . . i i i i e e e e e e e 103
4.10 Network Namespace . . . . . . . . . . o o i i i i e e 104
411 Process Namespace . . . . . . . . . o e e 105
412 TiMe Namespace . . . . . . v v v v v e e e e e e e e e e e e e e 107
413 UserNamespace . . . . . . . o o i i e e 108
4.14 Unix Time-Sharing Namespace . . . . . . . . . . .. ... ... 109
4.15 C4 Component (Level 3) Conceptual Design . . . . . .. ... ... ... .... 112
5.1 correlation Benchmarks . . . . . . . . . ... 117



5.2 covariance Benchmarks . . . . . . . . . . . 118

583 gemmBenchmarks. . . . . . . . .. L 118
54 gemverBenchmarks . . . . . . ... ... 119
55 gesummv Benchmarks. . . . . . . . . ... 119
56 symmBenchmarks . . . . . . . . . . . .. 120
5.7 syr2k Benchmarks . . . . . . . . . e 121
5.8 syrkBenchmarks . . . . . . . . .. 121
59 trmmBenchmarks . . . . . . . . . . ... 122
510 2mm Benchmarks . . . . . . . . . . L 123
511 3mm Benchmarks . . . . . . . . . . ... 123
512 atax Benchmarks . . . . . . . . . .. 124
5183 bicgBenchmarks . . . . . . . . .. 124
5.14 doitgen Benchmarks . . . . . . . . . .. 125
5145 mvtBenchmarks . . . . . . . ... 126
5.16 cholesky Benchmarks . . . . . . . . . . . ... ... 126
517 durbin Benchmarks . . . . . . . . . .. 127
5.18 gramschmidt Benchmarks . . . . . . . . . . . . ... ... 128
519 luBenchmarks . . . . . . . . . e e 128
5.20 ludcmp Benchmarks . . . . . . . . .. 129
5.21 trisolvBenchmarks . . . . . . . . . . .. 129
5.22 deriche Benchmarks . . . . . . . . . . . . ... 130
5.28 floyd-warshall Benchmarks . . . . . . .. ... ... 131
5.24 nussinov Benchmarks . . . . . . . . .. . ... 131
5.25 adiBenchmarks . . . . . . . .. .. 132
5.26 fdtd-2d Benchmarks . . . . . . . . . . L 133
5.27 heat-3d Benchmarks . . . . . . . . . .. . 133
5.28 jacobi-1d Benchmarks . . . . . . . . . . ... 134
5.29 jacobi-2d Benchmarks . . . . . . . .. .. 134
5.30 seidel-2d Benchmarks . . . . . . . . . . . 135

Xi



LIST OF TABLES

2.1
2.2
2.3
2.4
2.5
2.6
2.6
2.7
2.7
2.7

3.1
3.2
3.3

4.1

5.1
5.2

A1
A1
A1
A1
A.1
AA
AA
AA
A1
A.1
A.1

SLR SearchTerms . . . . . . . . . . e 34
SLR Primary Publisher Databases and Search Systems . . . . . ... ... ... 34
SLR Secondary Publisher Databases and Search Systems . . . . ... ... .. 35
Inclusion and Quality Criteria . . . . . ... ... ... ... .. L. 36
Additional Quality Criteria, includingQC1andQC2 . . . . . ... .. ... .... 37
SLR Studies Assessed for Eligibility . . . . . . .. ... oo oo oL 40
SLR Studies Assessed for Eligibility (continued) . . . . . . .. ... ... ... .. 41
Relevant Studies Mapped to Benchmarking Suites . . . . . .. ... ... .... 49
Relevant Studies Mapped to Benchmarking Suites . . . . . . ... ... ... .. 50
Relevant Studies Mapped to Benchmarking Suites . . . . . . .. ... ... ... 51
Computer Hardware . . . . . . . . . . 62
Computer Software . . . . . . . . . 63
PolyBench/C v4.2.1 Benchmarks . . . . . . . ... ... ... ... ... ..... 75
Linux OS Namespaces . . . . . . . . . i i i i ittt 100
System23 Prototype vs Native Benchmarks . . . . ... ... ... ... ..... 115
System23 Prototype vs Real-World Benchmarks . . . . ... ... ... ..... 116
Benchmarking Suites Discovered through the Quality Assessments. . . . . . .. 177
Benchmarking Suites Discovered through the Quality Assessments (continued) . 178
Benchmarking Suites Discovered through the Quality Assessments (continued) . 179
Benchmarking Suites Discovered through the Quality Assessments (continued) . 180
Benchmarking Suites Discovered through the Quality Assessments (continued) . 181
Benchmarking Suites Discovered through the Quality Assessments (continued) . 182
Benchmarking Suites Discovered through the Quality Assessments (continued) . 183
Benchmarking Suites Discovered through the Quality Assessments (continued) . 184
Benchmarking Suites Discovered through the Quality Assessments (continued) . 185
Benchmarking Suites Discovered through the Quality Assessments (continued) . 186
Benchmarking Suites Discovered through the Quality Assessments (continued) . 187

Xii



LIST OF LISTINGS

2.1
2.2
2.3
B.1
B.2
B.3
B.4
B.5
B.6
B.7
B.8

Hello World FunctioninC . . . .. ... ... ... ... ... ... . ..... 28
Hello World Functionin JavaScript . . . ... ... ... ... ... ........ 28
Hello World Function in WebAssembly . . . . .. ... ... ... .. ....... 28
System23 Secure Computing Strict Test FilterinC . . . . . ... ... ... ... 188
System23 Secure Computing Pass-Through Test FilterinC . . . . ... ... .. 188
System23 Create Control Groups Script . . . . . . . .. .. ... .. ... 191
System23 Boot Enclave Script . . . . . ... oo 191
System23 Bind Control Groups to Enclave Script . . . . . .. ... ... ..... 191
Bulk Native Benchmarking Script . . . . . . ... ... ... .. 0oL 192
Bulk WebAssembly Benchmarking Script . . . . . ... ... ... ... ..... 193

Bulk System23 Benchmarking Script

Xiii



ABBREVIATIONS AND ACRONYMS

2D Two Dimensional

3D Three Dimensional

ABI Application Binary Interface

Al Artificial Intelligence

AOT Ahead-of-Time

API Application Programming Interface
BPF Berkeley Packet Filter

C C Programming Language

C++ C++ Programming Language

C-K Concept-Knowledge

Cgroup Control Group

CIA Compute-Intensive Application
CPU Central Processing Unit
CPUT Cape Peninsula University Of Technology
CSRF Cross-Site Request Forgery
DAC Discretionary Access Control
DSR Design Science Research

EE Execution Environment

FFI Foreign Function Interface
GID Group ID

GPU Graphics Processing Unit
GWT Google Web Toolkit

Xiv



loT Internet of Things

IP Internet Protocol

IPC Inter-Process Communication

IRQ interrupt request

ISA Instruction Set Architecture

JIT Just-In-Time

JS JavaScript Programming Language
JSVM JavaScript Virtual Machine

LLVM Low-Level Virtual Machine

LLVMIR Low-Level Virtual Machine Intermediate Representation

LSM Linux Security Module

MAC Mandatory Access Control

MIME Multipurpose Internet Mail Extension

NaCl Native Client

NCSA National Center for Supercomputing Applications
NIS Network Information Service

NSA National Security Agency

NUMA Non-Uniform Memory Access

(0133 Operating System

PAPI Performance Application Programming Interface
PID Process ID

PNaCl Portable Native Client

POPI Protection of Personal Information

POSIX Portable Operating System Interface
RIA Rich Internet Application

RISC-V Reduced Instruction Set Computer Version 5

XV



SCoP
Seccomp
SELinux
SLR
SPA
SYS23
TCP/IP
uiD

UTs

Ux

VM

w3cC
WASI
WASM
www
XML
XSS

ZTA

Static Control Parts

Secure Computing Mode
Security-Enhanced Linux
Structured/Systematic Literature Review
Single Page Application

System23

Transmission Control Protocol/Internet Protocol
User ID

Unix Time-Sharing

User Experience

Virtual Machine

World Wide Web Consortium
WebAssembly System Interface
WebAssembly Programming Language
World Wide Web

Extensible Markup Language
Cross-Site Scripting

Zero Trust Architecture

XVi



GLOSSARY

BogoMIPS

Refers to the Bogus Millions of Instructions Per Second measurement, which is a rough
unscientific gauge of processor performance that was developed by Linus Torvalds, the
creator of Linux.

Execution Environment

An Execution Environment is a computer software system that can execute computer
code, the most common ones are Operating Systems and Virtual Machines.

Hyperthreading

Intel Corporation’s proprietary simultaneous multithreading implementation.

Kendall Rank Correlation Coefficient

Kendall's Rank Correlation Coefficient or simply Kendall's Tau, is a nonparametric
measure of the strength and direction of association that exists between two variables
measured on at least an ordinal scale.

OS Noise

Refers to the duration during which a CPU executes instructions unrelated to a specific
application task assigned to that CPU, even when the task is ready to run.

Pearson Correlation Coefficient

Pearson’s Correlation Coefficient is the most common way of measuring a linear
correlation. It is a number between —1 and 1 that measures the strength and direction
of the relationship between two variables.

Portable Operating System Interface

Is a set of standards established by the IEEE Computer Society to ensure compatibility
across operating systems. These standards define the application programming interface
(APl), as well as command-line shells and utility interfaces to maintain software
compatibility with Unix variants and other operating systems.

XVii



Simultaneous Multithreading

Is the process of executing multiple threads simultaneously within the context of physical
CPU cores that are split into two or more logical cores or threads.

Single Page Application

A Single Page Application is an application made up of a single web page, refreshed via
JavaScript.

Spearman Rank Correlation Coefficient

Spearman’s Rank Correlation Coefficient measures the strength and direction of
association between two ranked variables. It is simply the Pearson Correlation Coefficient
of the rankings of the raw data.

Symbolic Expression

Symbolic Expression or s-expression, is a human-readable representation of
semistructured data, which is composed of atoms (symbols), lists and strings. Symbolic
expressions have their roots in the Lisp computer programming languages.

System V

System V (Five) Unix, developed by AT&T Bell Labs, is one of the earliest and most
influential versions of the Unix OS. It played a critical role in shaping the development of
modern Unix computer systems.

System23

System23 is the Execution Environment that this study seeks to develop.

Zero Trust Architecture

A Zero Trust Architecture operates on the principle of trusting no one and nothing by
default. Traditional IT network security follows the castle-and-moat model, where it is
difficult to gain access from outside the network (castle), but once inside (crossed the
moat), everyone is automatically trusted.

XViii



CHAPTER 1

PREFACE

The research discussed within this thesis proposes the development of a new web browser
Execution Environment (EE), specifically one with native desktop performance. This research
was initiated subsequent to performing a Structured/Systematic Literature Review (SLR), as
detailed throughout chapter 2, on what web browser EEs currently exist together with and
focusing on their current state in relation to performance. Also subsequent to the SLR, this
research identified the lack of performance by web browser EEs, as the key problem hindering
Compute-Intensive Applications (CIAs) from being widely developed for the Web.

This chapter examines the foundational proposal of this research by briefly discussing the
following:

Section 1.1. Introduction

Section 1.2. Research problem

Section 1.3. Objectives and research question
Section 1.4. Theoretical background and related work
Section 1.5. Design, methodology and ethics

Section 1.6. Delineation

Section 1.7. Outcomes, contribution and significance

Section 1.8. Thesis structure

1.1. Introduction

For a long time now, all web browsers have had the desire of being able to host and
execute feature-rich, compute-intensive, and complex applications or simply ClAs, within
their EE, while striving to achieve native desktop-level performance. This need has been
present across any device, be it a desktop computer or mobile device which has a web
browser installed on it as stated by Vilk and Berger (2014), Powers et al. (2017), Wagner
(2017) and Wen et al. (2020). Web browsers have pursued various long-term relationships
to this end since their birth in 1990 (Berners-Lee, 1990), but every technology relationship
has always fallen short of expectation, which eventually led to the technology being abandoned.



There was Adobe Shockwave formerly Macromedia Shockwave, which appeared in early
1995. It was anticipated that one could use Adobe Shockwave to create ClAs, but one could
never create anything more than simplistic colourful games and media. The limiting factors
created intentionally by its software architecture and design have led to its engineered inability
to create anything more complex, as can be deduced from its reference guide by Yeaman and
Dawson (1996). Adobe Shockwave still lingers around to this day, but its support was officially
ended by Adobe in 2019.

Soon after, there were Java Applets, which appeared in the middle of 1995. Its software
architecture and design were different and delivered much more feature-richness and thus one
was able to create more feature-rich applications, but not necessarily compute-intensive ones.
Java Applets always felt clunky though, because one had to download and install a plug-in to
gain the functionality. This inherent shortcoming caused it to be viewed as an outsider by all
web browsers as stated in Topic (2016). After numerous highlighted security shortcomings,
many web browsers eventually disabled the functionality by default, so one had to specifically
turn the functionality back on again if one wanted to use it. This was really the start of the end
for Java Applets and it too is no longer supported, since 2019.

Then there was the JavaScript Programming Language (JS), which appeared in late 1995.
This seemed like a relationship made in heaven, it is feature-rich, well-supported, and with a
syntax akin to C Programming Language (C), C++ Programming Language (C++), and Java.
It also did not suffer the fate of being of a plug-in nature but was built into all web browsers,
which made for an exceptionally seamless user experience, by not having to download and
install anything extra to get the functionality.

JS however has flaws in its software architecture and design too, such as not being able to
handle 64-bit arithmetic, not having shared memory across its multitasking threads, having
no unmanaged heap, and being unable to provide any synchronous features, such as raw
Transmission Control Protocol/Internet Protocol (TCP/IP) networking sockets as outlined in
Rossberg et al. (2018) and Fette and Melnikov (2011). JS is still actively used today and for all
intents and purposes, even with its flaws, will remain part of all web browsers for many years
to come.

There was also Macromedia Flash, appearing around 1996. It did seem much more promising
than Adobe Shockwave, with its Three Dimensional (3D) capabilities and being adopted for use
by movie industry heavyweights such as Disney and Fox Studios early on. At the end of the
day though, Macromedia Flash was not quite suited for CIAs. In fact, once Macromedia was
acquired by Adobe, Adobe Flash was shunned by Apple, because its software architecture and
design made it too resource-intensive. Eventually, Apple succeeded in driving its web browser
called Safari apart from Adobe Flash. Adobe Flash is still around these days, although official
support for it ended at the end of 2020.

There were also other short-term relationships, such as those with Apple Quicktime, as well as
Microsoft ActiveX and Silverlight. These technologies never led anywhere either as they were



proprietary in nature and were not well-supported, if at all, beyond specific Operating Systems
(OSs), like Microsoft Windows and Macintosh OS X. If one were using a Unix-based or other
OS, one would have limited or no way at all of viewing the content.

A key challenge preventing web browsers from hosting and executing ClAs with native desktop
performance is the lack of web browser technologies with the necessary software architecture
and design capable of supporting them, as stated in Rossberg et al. (2018). For instance, if
one tried to develop a web browser application that communicates with a server residing on
the internet, across a TCP/IP networking port 7123, it would be impossible to implement.

Even when using the existing WebSocket technology as described in Fette and Melnikov
(2011), it would be impossible because WebSocket only allows for using TCP/IP networking
ports 80 and 443. It is this kind of limitation that is causing a barrier to all web browsers
reaching their full potential. What all web browsers need to move beyond this barrier is an EE,
unconstrained by historical restrictions, limitations and inadequacies, other than those which
would make its use unsafe.

An EE that would easily work with a web browser on a desktop computer as well as a mobile
device across multiple microprocessor chipsets like the Intel/AMD x86_64 ones as well as the
ARM, or even the Sun UltraSPARC ones. An EE that can be easily compiled too, from various
low-level and high-level programming languages, such as Assembler, C, C++, Java, JS or
Python, to name a few. An EE that has similar or if possible, better performance in comparison
to that of a native desktop as proposed by Rossberg et al. (2018) and Wen et al. (2020).

As background, all web browsers have over their history supported several technologies that
have allowed them to host and execute applications. Some of these technologies were directly
built into a web browser, thus not needing any extensions or plug-ins. Others came in the form
of an extension or plug-in, such as Adobe Shockwave, Java Applets and Adobe Flash which
unfortunately, due to the nature of extensions and plug-ins, always seemed to have to play
catch-up once a new version of a web browser was released.

With the arrival of JS, which is both feature-rich and built into every web browser, it became
possible to create applications that are feature-rich, but not necessarily compute-intensive. JS
has since become the de facto technology with which to host and execute applications within
any web browser, as stated by DiPierro (2018). One can attribute the wide acceptance of
JS to the fact that there was no hindrance in deploying it due to its built-in nature, as stated
in Rossberg et al. (2018), as well as its feature-richness, as compared to any other similar
technologies available today.

Many attempts have been made to overcome JSs shortcomings as proposed by Vilk and
Berger (2014), Eich (2015), Rossberg et al. (2018), Reiser and Blaser (2017) and Kataoka
et al. (2018). Such as not providing an unmanaged heap, not being fully multi-threaded and
only being asynchronous in nature, which in turn requires all JS applications to be event-driven
by consequence. Google developed the Google Web Toolkit (GWT), which allows applications



written in a limited form of Java to be hosted within a web browser.

Mozilla’s research division developed asm.js, which allows many programming languages to
be compiled into a limited form of JS as described by Herman et al. (2014). Mozilla’s research
division developed Emscripten, a Low-Level Virtual Machine (LLVM) based compiler, that
compiles C, C++ and Rust programming languages into JS as described by Zakai (2011).
Emscripten has shown the most promise of being able to create CIAs that can be hosted in
any web browser. However, because Emscripten compiles to JS, it is still limited to the same
shortcomings that JS has.

In early 2018, Rossberg et al. (2018) proposed WebAssembly Programming Language
(WASM), which is also built into a web browser. From a performance point of view, it has been
shown to be about twice as fast as JS. More advanced use cases have also been showcased
by Ménétrey et al. (2021). Again, as with Emscripten, WASM uses the Virtual Machine (VM) as
its underlying EE and therefore it too is not an optimal solution, because as with Emscripten, it
is also limited to the same shortcomings that JS has.

1.2. Research problem

When the first web browsers were created, such as the National Center for Supercomputing
Applications (NCSA) Mosaic and the Netscape Navigator, there was no or little need for them
to be able to host and execute ClAs with native desktop performance. As the use of web
browsers have increased over time and across devices such as mobile devices, so has the
need for them to now be able to host and execute ClAs with native desktop performance.

The problem stemming from this need is rather simple, if a web browser cannot host and
execute ClAs with native desktop performance, then users will always be forced into using
their desktop native ClAs instead. This is not ideal, especially when users are becoming more
mobile (Fernando et al., 2013; Kharb et al., 2021).

What users need is something with a radically different software architecture and design,
something that is built from the ground up and that focuses first and foremost on performance.
For instance, a VM based on a low-level instruction set like the Reduced Instruction Set
Computer Version 5 (RISC-V) as described by Waterman and Asanovi¢ (2019). Implemented
as a foundational layer, any programming language can then be implemented for it, such as
Assembler, C or C++. Such an implementation could provide near native-like performance,
given the similarities of it to certain instruction set architectures as found in today’s Central
Processing Units (CPUs).

Once this foundational layer has been created, one could add other layers on top of it, such as
networking, graphics, storage and any other layers that a native desktop would have access
to. Thereby fulfilling our mandate of developing an improved web browser EE by giving it the



capabilities with which to host and execute ClAs with native desktop performance.

To summarise, web browsers cannot host and execute ClAs with native desktop performance,
because the existing web browser technologies are based on software architecture and designs
that make them restrictive, limiting and inadequate, which ultimately forces CIAs to only be
created for, hosted and executed on native desktops.

1.3. Objectives and research question
1.3.1. Objectives

Given the research problem stated above, the goal of this study is to develop a new web
browser EE, which can be used by any web browser to host and execute ClAs with native
desktop performance.

The four key objectives correlating to the research question of this study are to:

Objective 1

Identify the features and limitations of existing web browser EEs that can host and
execute applications.

Objective 2

Employ a suitable research methodology by determining which ones are best aligned to
deliver on the requirements and goal of this study.

Objective 3

Develop a prototype web browser EE that is capable of hosting and executing CIAs with
native desktop performance.

Objective 4

Evaluate and benchmark the performance of the prototype web browser EE against
those discovered through the SLR, thereby testing the empirical hypothesis of this studly.

1.3.2. Hypothesis and research question

The empirical hypothesis of this study is that:

A web browser EE that can host and execute CIAs on any device with native desktop
performance can be created.




Given the hypothesis, the singular research question that this study endeavours to answer and
which can be outlined using the framework as proposed by Kofod-Petersen (2015), is:

Research Question

What software architecture and design does a new web browser EE need to comprise of
in order to be able to host and execute CIAs with native desktop performance?

1.4. Theoretical background and related work
1.4.1. Theoretical background

The theoretical background for this study is based on the most recent advancements within
web browser EEs. Wagner (2017) notes that “we’ve added new capabilities to the Web, like
audio and video streaming, Two Dimensional (2D) and 3D graphics, typography, peer-to-peer
communications, data storage, offline browsing, as well as multitouch, location, and camera
inputs. But we continue to struggle with performance, specifically the ability to run applications
hosted within a web browser as quickly as those on a native desktop”.

Based on that, Wagner (2017) details the performance improvements observed after using
asm.js, which they created, which is a sort of optimised implementation of the JS language.
The study then claims that with asm.js, one could create much faster JS applications than
handwritten JS applications, almost as fast as the native desktop. However, no actual
benchmarking, methods of data collection or analysis was provided with this publication in fact,
no research design or methodology was provided, so it is impossible to verify the provided
claims.

The study further states, that the improved performance when using asm.js is noticed only
when providing specific patterns of code to the underlying EE, being the JS VM. Furthermore,
asm.js still had the same limitations as JS, like the 64-bit arithmetic limitation. One can only
conclude from this that even though some performance improvements have been observed
by optimising the JS code that is executed within the JS VM, it hardly serves as a verifiable
universal solution, especially when the underlying EE is the JS VM, which has known
limitations.

Further to this, Wagner (2017) introduces WASM, which is proposed as the next evolutionary
step to asm.js. Rossberg et al. (2018) provide details on WASM and elaborate further by
stating that it will address various web application problems, such as those that make them
unsafe and slow. Furthermore, previous attempts at solving this problem by using ActiveX,
Native Client or asm.js have always fallen short. Web applications can then be developed
using this new portable low-level programming language, which will give them the properties
that a low-level compilation target should have.



The key point to focus on from this study is that WASM is a new programming language and
not a new EE. In fact, by design, it strongly suggests that implementations of WASM use their
existing JS VM as its underlying EE, together with specific WASM enhancements. One such
enhancement is trying to provide shared memory across threads, this is because the JS VM
was never designed to provide such a feature. So as with Wagner (2017), the approach taken
was to make improvements to the language and not necessarily the EE.

Rossberg et al. (2018) provide some benchmarking where out of the 24 benchmarks that
were run, four were shown to have equal or better performance than a native desktop. This
benchmarking was done across a sampling range of 15 cycles and then averaged. One cannot
help but ponder the idea that if WASM was implemented from the ground up and did not use
the JS VM as its underlying EE, that a better result may have been attainable.

Reiser and Blaser (2017) went even further by proposing a way to cross-compile JS code into
WASM stating that the desire for performance critical web applications will necessitate the need
for faster and more predictable web browser EEs, even though the performance of today’s JS
VMs may be sufficient for current web applications. The study provided some benchmarking
using two different web browsers as part of the analysis, namely Firefox and Chrome, which
details how much improvement there is to the performance of JS code once converted to
WASM. Again the approach taken here is also focused on the language improvements and not
the EE.

Recently, Yan et al. (2021) performed a systematic study of WASM, with the aim of
comprehending its performance benefits. Specific areas covered in that study were across
its source code compilation, using Just-In-Time (JIT) compilation at runtime, analysing the
performance of the EE and analysing its memory management, which is significantly higher in
comparison to JS. Given the nature of the chosen benchmarks, the results of the study were
mixed, which may have contributed to certain generalised conclusions.

The shortcomings or gaps in previous studies, which quickly comes to light, are that they
focused solely on improvements and optimisations to the JS language and have done nothing
or very little to improve the underlying EE, being the JS VM. Given that JS code is executed
within the JS VM, it will continue to be restricted by the current limitations of the JS VM.

Similarly, whilst WASM is proposed as a new programming language, it does little to solve the
existing JS VM restrictions, limitations and inadequacies either. For instance, where WASM
have tried to improve threading, by introducing a form of shared memory between threads,
it comes across more like a makeshift solution, instead of an optimal one, simply because
the proposed solution had to take the existing JS VM architecture and design constraints into
account.



1.4.2. Related work

Other closely related literature for this study is taken from various sources and subject areas
such as, but not limited to, Rich Internet Applications (RIAs) and Single Page Applications
(SPAs), as well as more performance-based research that covers additional areas of JS and
WASM. The first literature that one can find that relates to the exploration of having desktop
equivalent applications on the web is an article by Taft (2003), in which a term is coined by an
employee of Macromedia, by the name of David Mendels, that term was RIA.

Since then, various researchers have explored the subject of RIAs, like Fraternali et al. (2010),
where they capture the meaning of an RIA quite eloquently by stating that RIAs can have an
interface that is based on a single page design, together with subpages. The user’s interactions
are then managed through these subpages, similarly to how a native desktop application
would work. This architecture and design negates the need to refresh the full page with each
user interaction and using JS, individual page elements of the application can then be loaded,
displayed and updated, independently as required.

Similarly, Casteleyn et al. (2014) elaborate further by stating that the same features and
functionality as that of a native desktop application can generally be found in an RIA. The
study by Casteleyn et al. (2014) also provided a good mapping of how the development of the
technologies that produce RIAs have progressed over the preceding decade.

Various other literature, all of which are focused on improving the performance of web
applications were consulted, such as the work of Bourgoin and Chailloux (2015) that provided
innovative ideas of using WebCL as a means to improve web application performance. In
another study by Ho et al. (2017), the authors focus on making improvements to the WebGL
technologies as a means to improve web application performance and then there is the study
by Park et al. (2018) where the idea that was derived was to re-use the optimised code for JS
once it was pre-compiled by its Ahead-of-Time (AOT) compiler.

Malle et al. (2018) and Jangda et al. (2019) provide insights into the performance of applications
executing on a native desktop versus those executing within a web browser. In some cases,
applications were more than twice as fast when executed on a native deskiop compared to
a web browser. The study by Jangda et al. (2019) is especially critical of the performance
of WASM or the lack thereof contrary to the study by Fras and Nowak (2019) who derived
different conclusions surrounding the WASM performance while reviewing it when used to
create SPAs.

Recently, there was also Zakai (2011) and Zakai (2018) who introduced Emscripten, which is
a compiler capable of converting C code into JS code. Again approaching the problem of web
application performance from the JS language point of view. A study by Arteaga et al. (2020)
proposes an innovative optimisation for the WASM compiled code. Taivalsaari and Mikkonen
(2017) round everything off with a comparative study of the state of web applications for the
preceding decade, which provide a good understanding of where the focus of the research on



this topic has been.

Thus from previous research work conducted within this subject area, one can see that the
focus has almost solely been on improving and optimising the JS language. The study
proposed through this research project is to create an innovative software architecture and
design, which will then be used to develop a new web browser EE that is completely new and
not dependent on any existing web browser technologies, including the JS VM. By creating an
optimal software architecture and design, and then developing a new web browser EE based
on it, it is theorised that one can achieve the goal of having a web browser EE host and execute
ClAs with native desktop performance.

1.5. Design, methodology and ethics
1.5.1. Design

This study uses automata theory (Hopcroft et al., 2006), or as it is also known, the theory of
computation (Sipser, 2012) as its foundation, underpinned by programming language theory
(Pierce, 2002; Harper, 2013) and virtualisation theory (Gaj et al., 2015; Randal, 2020). This
study is based on quantitative research using Design Science Research (DSR) as defined by
Peffers et al. (2007), Peffers et al. (2012), Wieringa (2014) and Myers and Venable (2014)
within information systems (Hevner et al., 2004; Hevner & Chatterjee, 2010).

The reasons for choosing DSR are best explained by using Hevner et al’s (2004) seven
proposed guidelines for DSR. These guidelines provide a framework for conducting and
evaluating DSR projects in the field of information systems and related disciplines that
emphasises the creation of practical solutions while adhering to rigorous research principles.
These guidelines also help researchers design and develop innovative artefacts that address
real-world problems. These guidelines will show how DSR is firmly embeded into this study, as
follows:

Guideline 1: Design as an artefact - Where this study seeks to explore the development
of a new web browser EE, as defined by the second objective of this study.

Guideline 2: Problem Relevance - Where the problem domain of this study is web browser
EEs, as outlined in the research problem of this study.

Guideline 3: Design Evaluation - Where this study evaluates the new web browser against
existing ones, as defined by the third objective of this study.

Guideline 4: Research Contributions - Where this study seeks to provide software
architecture and design contributions, as detailed in the methodological
contributions of this study.

Guideline 5: Research Rigour - Where this study seeks to rigorously define the
requirements of the new web browser EE, as outlined in the delineation of
this study.



Guideline 6: Design as a Search Process - Where this study seeks to innovatively develop
this new web browser EE based on current trends and previously unexplored
use cases of existing technologies, as described in the theoretical background,
delineation and methodological contributions of this study.

Guideline 7: Communication of Research - Where this study will seek to publish the
findings hereof in the most relevant manner, through the publication of the
resulting thesis as well as via journal publications and/or conferences.

Another research type evaluated was that of Experimental Research (Babbie, 2016), but it
was found to not completely align with the intent of this study as that type of research focuses
on the experiments and the design of the experiment plan only and does not lend itself to the
creation of an artefact, such as a new web browser EE, which is the primary intent of this
study. Experimental Research is also primarily concerned with exploring cause-and-effect
relationships through controlled experiments, while DSR focuses on creation and evaluation
of practical artefacts to address specific problems in fields such as information systems and
engineering.

Action research (livari & Venable, 2009) was also evaluated but found to not be suitable for
use by this kind of study. The reason for this is that while both Action Research and DSR
involve practical problem-solving, Action Research is characterised by its collaborative and
participatory nature usually with practitioners or stakeholders, with a primary focus on improving
processes, practices and generating recommendations, whereas DSR emphasises the creation
and evaluation of innovative artefacts to address specific problems, often in fields related to
technology and design.

Identify Explore & Develop Benchmarking Derived Conclusions
Existing EEs New EE Performance Documented
(JSVM, etc.) (System23) Analysis Findings
T Iterative
Experimentation

Figure 1.1: Conceptual Framework

The conceptual framework for this study (Kivunja, 2018) is depicted in figure 1.1, which
aligns with this study’s four objectives, the key parts of which are to identify, explore,
develop, benchmark, and then derive conclusions. It is important to note that the
iterative loop relating to the explore, develop and benchmarking parts aligns well with
the expected "Design-Build-Test-Test Loop” cycle of DSR. Where in the context of DSR, the
"Design-Build-Test-Test Loop” cycle is a structured iterative process that researchers follow to
create, evaluate, and refine the artefacts that they develop.

10



This cycle is repeated as needed, with each iteration leading to enhancements and
improvements in the artefact. Throughout the DSR process, researchers document their
decisions, actions, and the rationale behind their design choices to ensure transparency and
the potential for knowledge dissemination. This process is central to DSR and allows for the
systematic development and improvement of innovative solutions. The goal of DSR is thus to
ensure that the final artefact is not only innovative but also practical and effective in solving the
identified problem.

LLVM
Source Back-ends Machine
Code (Static Compilers) Code
N Front-ends N
(Code Translators)
Cc p—p-|  System23 )| SYS23
Clang m==mp |LLVM IR
AN AN
(T t > WebAssemly —— WASM
D LLVM L
Optimiser
Python ——— PyLLVM — — x86_64 ——» x86_64
AN AN
Fortran ——» Flang — — ARM ——» ARM
AN AN
Go ——» GolLLVM — — RISC ——» RISC-V
AN AN
other... —»| other... — — other... —— other...

Figure 1.2: Conceptual System23 (SYS23) Compiler Toolchain

For the sake of convenience, the new web browser EE that is to be explored and developed
shall provisionally be named System23 (SYS23). Figure 1.2. depicts the conceptual view of the
SYS23 compiler and toolchain, which will primarily look to leverage and enhance the existing
LLVM compiler and toolchain technologies for its needs. The SYS23 compiler is a two stage
static compiler and can be defined as follows:

Stage 1: Translates Low-Level Virtual Machine Intermediate Representation (LLVMIR) code
into SYS23 assembler code.

11



Stage 2: Compiles SYS23 assembler code into SYS23 machine code.

APPLICATION DOMAIN USER DOMAIN
https
WEB SERVER - > WEB BROWSER
SYS23 Application 1 (Original) SYS23 Application 1 (Copy)
Other Application n SYS23 Application n (Copy)

SYS23 DAEMON

Runtime <=p Cache

System Libraries

OPERATING SYSTEM

i

HARDWARE

Figure 1.3: Conceptual SYS23 Web Application Retrieval

Using the C4 architectural model for visualising software architecture (Brown, 2022), figure 1.3.
depicts the C4 software context (level 1) conceptual view of a potential SYS23 application being
downloaded or retrieved from a cache, if already previously downloaded. Figure 1.4. depicts
it's potential use cases:

1. As a client (application 1), when part of a client/server application configuration. Where

12



the backend application server can be either SYS23-based or one based on other existing
technologies, therefore negating the need to rewrite them.

2. As a standalone application (application 2).

APPLICATION DOMAIN USER DOMAIN

https
WEB SERVER - P > WEB BROWSER

SYS23 Application n (Server) 4% SYS23 Application 1 (Client)

Other Application n SYS23 Application 2

SYS23 DAEMON

App Lib 1 Lib n

Runtime <e=p (Cache

System Libraries

OPERATING SYSTEM

i

HARDWARE

Figure 1.4: Conceptual SYS23 Web Application Use Cases

13



14

PHILOSOPHY

ONTOLOGY

EPISTEMOLOGY

APPROACH
STRATEGY Design Science Research
Quantitative
Survey
DATA COLLECTION N—— Case Study
TECHNIQUES and -
PROCEDURES Stratified/Quota

Action Research

Grounded Theory

Ethonography

Archival Research

Figure 1.5: Expanded Research Onion taken from Saunders et al. (2019)



1.5.2. Methodology

The goal of this study is solution-orientated, to produce a web browser EE and the context will
cover all web browsers. Figure 1.5, outlines the complete research methodology for this study,
as based on Saunders et al. (2019) Research Onion, together with additional portions relating
to the research and study types as defined within the research design.

1.5.2.1. Research philosophy

Given the nature of this study, the philosophical position is that of positivism. The reason
for this is that the hypothesis of this study is firmly grounded in positivism, seeking to reveal
a truth by using quantitative data in the form of performance-based statistical data derived
through experimentation. The ontological position or how the researcher views this world is
through realism as a positivist, i.e. viewing the world as being separate from humans and their
interpretation thereof. The epistemological position or how the researcher should investigate
the world is through objectivism as a positivist, i.e. viewing observable evidence as the only
form of defensible scientific findings.

The reasoning for selecting positivism is that when working with computer systems, there is
only one singular reality that exists because when a specific input is given to a computer
system, it will always produce a specific output and this output will never change, not unless
the input changes. The singular reality for this study is the observable evidence generated from
the benchmarking of the new web browser EE. That observable evidence is the only form of
defensible scientific findings that will indicate if the new web browser EE is equal to or better in
performance to existing web browser EEs or not.

1.5.2.2. Research approach

The approach adopted by this study is deductive through iterative development based on
multiple cycles of exploration, design, development and evaluation, which aligns well with the
intent to iteratively develop and measure as defined by DSR. An etic perspective guides this
study so that the researcher can objectively interpret the findings of our benchmarking and
provide a sound value judgement.

1.5.2.3. Research strategy

The strategy employed is that of design science through iterative experimentation, where the
evaluated results can be benchmarked against existing web browser EEs. For this study, the
researcher will be using the JS VM as the baseline web browser EE. It serves as both our
baseline web browser EE and also as the key constraint to overcome.

15



1.5.2.4. Methodological choice

Given the iterative experimentation strategy of this study, a mono-method quantitative choice
(Saunders et al., 2019; Minichiello et al., 1990) based on experiments alone, was used to
gather numerical data derived from benchmarking the performance of the web browser EE.
Alternatively, employing a multi-method quantitative choice that incorporates methods such as
surveys or observations did not align with the iterative experimentation strategy and the nature
of this study and was therefore avoided.

Figure 1.6 shows the data collection choices (Saunders et al., 2019) that are available and were
considered for this study.

CHOICES
| |
Mono-method Multiple Methods
I I
Multi-method Mixed Methods
I I I I
Multi-method Multi-method Mixed Methods Mixed Models
Quantitative Quanlitative Research Research
Studies Studies

Figure 1.6: Data Collection Choices (Saunders et al., 2019)

1.5.2.5. Time horizons

The research was conducted as a cross-sectional study, as described by Bryman (2016). Given
the intent to employ an iterative approach to the study, using a cross-sectional study would
allow one to iteratively track the progress of the study through the benchmarking of the new
web browser EE.

1.5.2.6. Data collection techniques and procedures

Together with the mono-method quantitative choice, this study used a nomothetic data
collection technique and the sampling of the collected benchmarking data was done using
the stratified and/or quota probability sampling methods (Baltes & Ralph, 2022). Performance

16



analysis tools, such as JetStream' and/or PolyBench/C? were then used to analyse the
sampled benchmarking data.

These performance analysis tools were also used by Salim et al. (2020) and Rossberg
et al. (2018) to benchmark and analyse the performance data of WASM. Furthermore, the
existing web browser EEs were used to establish a performance baseline against which the
performance benchmarks of the new web browser EE were compared. Using statistical
inference and numerical comparisons, the researcher was then able to build a view of the
speed of the new web browser EE.

1.5.3. Ethics

Ethical considerations for this study were based around DSR and are best defined by the six
ethical principles, as described by Myers and Venable (2014). The ethical considerations for
this study based on these six principles are as follows.

1.5.3.1. Principle One - The public interest

The new web browser EE developed during this study will be available for use by anyone
that uses a web browser. As the user will already have access to these desktop equivalent
applications, there is no anticipated increase of any existing risk factors. In fact, there may
be a decrease in risk factors due to web browsers being able to host applications within a
sandbox and thereby preventing malware from propagating beyond the sandbox and infecting
their native desktop.

1.5.3.2. Principle Two - Informed consent

Informed consent would be sought formally from all human subjects involved in this study.
However, there was no involvement from any human subject, as all experimentation was based
on computer system laboratory work only. Thus, data privacy or data protection as provided
for by the Protection of Personal Information (POPI) Act (South Africa, 2013) did not pose any
relevance to this study.

1.5.3.3. Principle Three - Privacy

Privacy and confidentiality risks and concerns of individuals and organisations are not
anticipated to increase as the EE executed applications will still execute on the user’s device

"https://browserbench.org/JetStream/
2https://github.com/MatthiasJReisinger/PolyBenchC-4.2.1

17


https://browserbench.org/JetStream/
https://github.com/MatthiasJReisinger/PolyBenchC-4.2.1

within a web browser, with no increased risk of data leakage. Safeguards were sought to
include protecting sensitive data and ensuring that data is stored and handled securely.

1.5.3.4. Principle Four - Honesty and accuracy

The researcher of the study acknowledged all referenced information in the prescribed
Harvard style and committed to make available all research findings for academic and general
public scrutiny. Bias across the research findings has been avoided by utilising known and
well-documented methods of measurement. This allows anyone to scrutinise the research for
plagiarism and the new web browser EE for accuracy.

1.5.3.5. Principle Five - Property

This talks about the ownership of the intellectual property rights of the research findings.
There was no intention to apply for any bursary, scholarship, or any other funding from any
organisation whatsoever and the fact that the research was undertaken by the researcher
hereto, unaccompanied by any other researchers or research assistants, which implies that
the researcher hereto owns the intellectual property rights of the research and findings. The
publishing of the research and findings is thus at the sole discretion of the researcher hereto
under the supervision and guidance of the Cape Peninsula University Of Technology (CPUT).

1.5.3.6. Principle Six - Quality of the artefact

Given the intended aim of the study is to produce a new web browser EE that is comparable
to similar existing web browser EEs, it was deemed sufficient to evaluate the new web browser
EE against existing testing apparatus to measure its accuracy to the produced specifications,
thus ensuring it is of a high quality and has a low risk of failure. It was however not the intent of
this study to build a web browser EE that is fully functional and production ready, but merely a
prototype that demonstrates the results of this study.

As a final note, it is not the intention of this study to advance any military capability or aid in the
loss of life through the use of the new web browser EE. Unfortunately, it will be impossible to
know how the new web browser EE is being used, once this study has been published, which
may very well lead to it being used for military purposes or to aid in the loss of life.

1.6. Delineation

Focusing on the exploration and development objective, figures 1.2-1.4 outline the conceptual
view of the delineation of this study, which includes two parts:

1. A compiler and toolchain.

18



2. A web browser EE.

Using the Firefox web browser as a reference implementation, figure 1.7 details the exact
component within the web browser that this study focussed on, being the EE. The exploration
of the other components within the web browser, such as the user interface, browser and
rendering engines, networking, persistent storage, display backend and Extensible Markup
Language (XML) parser, was not conducted.

User Interface

'

Browser Engine Persistent Storage
(HTML, CSS, etc.) (HDD, SDD, etc.)

' '

Display Backend
(WebGL, etc.)

-+——— Rendering Engine

' i '

Networking Execution Environment
(WebSockets, etc.)

XML Parser

JavaScript VM
(JS, WASM, etc.)

v

Delineation/Scope

Figure 1.7: Firefox Web Browser Architecture

This new web browser EE has a software architecture and design not based on current
web browser technologies, such as JS or WASM, to name a few. Its software architecture
and design is from the ground up and not limited by any existing web browser technologies,
except for those without which its use would be unsafe. It is not the intent that a whole new
web browser be developed, but merely an EE, which can form part of any existing web browser.

For this study, the intention was to use the Firefox web browser to test and benchmark the new
web browser EE. The Firefox web browser is open-source and thus allows one unrestricted
access to its source code, which makes it easy to incorporate the new web browser EE into it.
This is similar to the approach taken by the Tor group by using Firefox as the core to its web

19



browser and then adding the Tor components as described by Dingledine et al. (2004) to it, to
create the Tor web browser.

1.7. Outcomes, contribution and significance
1.7.1. Outcomes

As scoped in section 1.6., the outcome of this study is the development of a new web browser
EE. Together with this, this study adds to the existing knowledge, such as Millhouse (2018), in
the context of web browsers and EEs through the publication of this study and its findings.

1.7.2. Contribution

The contributions of this study can be examined from three perspectives, namely theoretical,
methodological and practical.

1.7.2.1. Theoretical contribution

This study contributes theoretically, by offering insights into improving the performance of web
applications by way of exploring different software architectures and designs for web browser
EEs. Researchers could then in future further enhance the performance of web applications
as it relates to web browser EEs, based on the software architecture and designs developed
through this study.

1.7.2.2. Methodological contribution

This study contributes methodologically, by offering methods and approaches that have been
developed, adapted, or improved, outlining software architectures and designs for web browser
EEs with superior performance as compared to current options. These approaches may
explore areas such as utilising alternative virtualisation methods for hosting the EE, such as
OS level virtualisation, in contrast to the current JS VM that relies on process-level virtualisation.

Additionally, it involves possibly adapting an Instruction Set Architecture (ISA), typically used
for hardware implementations, to be applied in the new virtualisation method. New methods
and approaches for performance benchmarking of web browser EEs may also be developed,
adapted, or improved if existing ones are found to be inadequate or unavailable for the required
context.

20



1.7.2.3. Practical contribution

This study provides practical contributions by establishing a foundation on which a
production-ready web browser EE can be built, by utilising the prototype EE developed through
this study.

1.7.3. Significance

Numerous advantages present themselves if one were to provide web browsers with the ability
to host and execute ClAs, with native desktop performance.

These may include:

1.

1.8.

Increased portability, whereby applications would not be required to be recompiled or
rebuilt, so as to be able to be executed by different and disparate OSs.

. Increased mobility, whereby users could continue using the same application when

moving between a mobile device and a desktop computer.

. Allowing enterprises to increase their staff’s ability to embrace Bring-Your-Own-Devices,

which avoids the need for applications to be installed onto a native desktop, thereby
reducing the complexity that comes with managing applications accessed from those
devices.

. Reducing the support required when installations fail or become unstable due to an OS

update, by avoiding the need to install applications onto a native desktop.

. Reducing the direct and unfettered access of applications to the OS, which in turn limits

the attack surface of malicious applications, since the malware that they may contain will
be executed within a sandboxed environment.

. A large number of organisations and individuals will benefit from this study, as web

browsers are widely used on most mobile devices and desktop computers. Essentially,
anyone who uses a web browser could potentially benefit from its findings.

Thesis Structure

This thesis comprises of six chapters and two appendices, set out as follows:

Chapter 1: Preface'

Provides an introduction and overview of the proposed study.

21



Chapter 2: Background'

Examines the background literature through a rigorous SLR to this research and
discusses the research objective 1, using the review.

Chapter 3: Methodology'

Provides the philosophical stance and research methodology and addresses research
objective 2.

Chapter 4: System Architecture and Design I

Proposes the new web browser EE and addresses research objective 3.

Chapter 5: Findings and Discussion I

Reviews the results obtained from performance testing the new web browser EEs and
addresses research objective 4, while also covering objectives 1 through 3.

Chapter 6: Conclusion'

Articulates the researchers conclusions for this study, together with recommendations
for the future directions of inquiry.

Appendix A: Benchmarking Suites'

Details all of the benchmarking suites discovered through the SLR.

Appendix B: Source Code'

The source code of both the SYS23 prototype, as well as the source code added to the
benchmarking suite.

Appendix C: Benchmarking Runbook I

Details the commands that were used to complete the benchmarking.

22



CHAPTER 2

BACKGROUND

This chapter analyses the existing literature based on the topic of web browser EEs within
the context of performance and also other areas that may relate to or influence aspects of
performance, such as usability and User Experience (UX). This chapter also covers the first
objective of this study, where the study endeavours to:

Objective 1

Identify the features and limitations of existing web browser EEs that can host and
execute applications.

This chapter comprises of the following sections, structured as a chronological record:
Section 2.1. History of the Web
Section 2.2. The birth of JavaScript
Section 2.3. The emergence of WebAssembly
Section 2.4. A structured literature review

Section 2.5. The theoretical grounding

2.1. History of the Web

British scientist, Tim Berners-Lee, invented the World Wide Web (WWW) in 1989 while
working at CERN'. He developed the two proposals for the WWW in March 1989 and May
1990 (Berners-Lee, 1990), then together with Robert Cailliau, a Belgian systems engineer, it
was formalised for internal use at CERN in November 1990.

The main concepts are outlined in chapter 1, which describes important terms, such as
a web of hypertext documents, viewable through a browser, globally distributed as the

'CERN is derived from the acronym for the French ”"Conseil Européen pour la Recherche Nucléaire”, or
European Council for Nuclear Research, a provisional body founded in 1952 with the mandate of establishing a
world-class fundamental physics research organisation in Europe.

23



WorldWideWeb. Initially, the purpose of the Web was to simply share static documents
globally, across as many different devices as possible. The world’s first website had an address
of info.cern.ch and the world’s first Web page® was hosted there. CERN, preserving its history,
has continued running their Web server and one can still access both the website and the Web
page today.

After Tim Berners-Lee publicly announced the WWW in 1991, interest in it quickly spread
across the globe, with Web servers coming online in the US by Christmas of 1991. The
first web browser called Mosaic, was developed by the NCSA at the University of lllinois and
released in 1993, followed closely by the Netscape Navigator, released in 1994. For the first
time, users of personal and Apple computers had access to a web browser, which further
increased the adoption of the WWW.

By 1994, the Web started peaking the interest of the commercial sector at which time the Web
comprised of over 10,000 servers, 5% or 2,000 of which were owned by non-academic and
non-research entities. At that stage, it became clear that the Web had many more use cases
and was no longer seen as a tool for exclusive use by the academic and research world. As
with the release of the Mosaic web browser, the interest generated by the commercial sector
into the Web further increased the adoption of the WWW.

Even though the original idea behind the WWW was to create a global information system using
computers, data networks and hypertext files to simply display pages of static information, by
1995 websites were pushing the limits and technical boundaries of what could be achieved
on the Web. So the WWW and the global community using and supporting it had a need to
evolve it into something more. In 1995 a company called Netscape started looking into moving
beyond having websites with only static information.

What they came up with was a technology capable of executing applications within a web
browser, with the aid of an embedded VM. This technology was the JS EE, which today is the
standardised VM used by all web browsers for this purpose.

2.2. The birth of JavaScript

JS was invented by Brendan Eich in 1995, while he worked at Netscape. There is often some
confusion between JS and Java, where the assumption is that they are the same thing, but
the two have almost nothing in common, other than them having a similar source code syntax.
Also, JS source code is never compiled into a binary format, but rather interpreted at run time
by its VM. Whereas Java source code is compiled into a binary format called byte code, this
byte code is then interpreted by its VM at run time.

2http://info.cern.ch/hypertext/WWW/TheProject.html

24


http://info.cern.ch/hypertext/WWW/TheProject.html

JS was originally called Mocha, but soon after became known as LiveScript, later on it was
again renamed to JS. JS was initially developed for the Netscape 2 web browser, where early
adopters of it were Microsoft’s Internet Explorer 2 web browser, which started supporting it in
late 1995. Later on in 1997, due to its rapid growth and global use, Netscape handed it over
to the standards organisation called ECMA?®. At that stage, JS was adopted as the ECMA-262
standard and also became known as ECMAScript.

A typical architecture for a JS EE is shown in figure 2.1. This includes all of the necessary
components that allow it to take JS source code and translate it directly or indirectly via an
interpreter, into machine code that a CPU can understand. This JS EE architecture is typical of
how it is embedded into the Google Chrome and Microsoft Edge web browsers through what is
known as the V8 JS EE, or how it is embedded into the Mozilla Firefox web browsers through
the SpiderMonkey JS EE.

JavaScript Code
|
Parser
|
Abstract Syntax Tree
Byte Code —_— > Interpreter
'
Profiler CPU

Compiler —>—

Figure 2.1: A Typical JS EE Architecture

Fast forward one decade and 2005 proved to be a revolutionary year for JS, due to the release
of Ajax (Garrett, 2007), a suite of technologies that included JS. Web pages felt more like native
desktop applications when they used Ajax, because it allowed web pages to be more interactive

3Ecma International is a non-profit standards organisation for information and communication systems. The
current name, acquired in 1994, was due to the European Computer Manufacturers Association changing its name
to reflect the organisation’s global reach and activities

25



and responsive, thereby improving the user experience (Kluge et al., 2007). Figure 2.2 depicts
the improvements introduced by Ajax, showing that they are specific to the communication
between the Web server and web browser, in no way does Ajax alter the underlying JS EE.

USER DOMAIN
WEB BROWSER

User Interface

|
HTTP Request

HTML + CSS Data
1

Web Server

' f

Datastores, Backend
Processing, Legacy Systems

SERVER-SIDE SYSTEMS

APPLICATION DOMAIN

CLASSIC WEB
APPLICATION MODEL

USER DOMAIN
WEB BROWSER

User Interface

I
JavaScript Call

* HTML + CSS Data
I

Ajax Engine

|
HTTP Request

XML Data
1

Web and/or XML Server

v f

Datastores, Backend
Processing, Legacy Systems

SERVER-SIDE SYSTEMS

APPLICATION DOMAIN

AJAX WEB
APPLICATION MODEL

Figure 2.2: Ajax Web Application Model taken from Garrett (2007)

Following that, work undertaken by the CommondJS project in 2009, created the foundational
components required for JS to be used outside of a web browser. This gave rise to technologies
such as Node.js, an environment capable of running JS without needing a web browser. Even
Java adopted the idea of allowing JS code to be embedded within Java code. This fundamental
advancement allowed JS to now also be utilised for non-Web related needs and continued JS
adoption even further.

Over the following years, JS went through many refinements and updates, which culminated
in the 2015 release of ECMAScript 6 or JS 6, as it is more commonly known. By this point in

26



time though, many JS flaws and shortcomings were well known and the industry again started
looking for ways to move beyond them. One such innovative technology that attempts to fix
some of the JS flaws and shortcomings was proposed in 2018, named WASM.

2.3. The emergence of WebAssembly

WASM was created by the World Wide Web Consortium (W3C) and made its first public
appearance in early 2015 (Eich, 2015). Its main design goals at the time were to be efficient,
fast, safe and portable. The intent behind these design goals was to try and fix some or all of
the shortcomings of JS. To some extent, WASM has indeed lived up to this expectation.

—— WebAssembly Code ——» JavaScript Code

l
Parser
l
Abstract Syntax Tree
Byte Code > Interpreter
|
> Profiler CPU

Corpler ’

Figure 2.3: A Typical WASM EE Architecture

WASM at its core is based on a virtual ISA, which means that it is not based on any known
physical CPU (Rossberg, 2022). Its virtual nature is specifically designed to allow it to be
portable, so that it can be embedded into many different environments, such as web browsers.
Further to its virtual nature and as with JS, WASM is also sandboxed within its VM, which
means that it does not have any capability to access any functions that are located outside of
its VM, not unless specific APIs within its VM provide access to those functions. Furthermore,
all security concerns must be mitigated by the implementation, so as to prevent potential
vulnerabilities, such as side channel attacks.

27



A typical architecture for a WASM EE is shown in figure 2.3. Immediately one can tell that it
re-uses most of the existing components that form part of the JS EE architecture, this re-use
is intentional and by design. The design further restricts WASM from accessing certain web
browser functions directly, such as those relating to the DOM or Ajax, in order to access those
functions WASM has to use JS APIs.

The WASM source code syntax uses what is called Symbolic Expressions. The rationale
behind using a rather verbose syntax, is that the creators presumed that one will never write
WASM source code directly, instead one would write source code in another language, such
as C, and then compile the C source code into WASM source code using a tool such as LLVM.

#include <stdio.h>

char *greeting() {

return "Hello World";

a b WD =

}

Listing 2.1: Hello World Function in C

Listing 2.1 shows the source code for a Hello World function written in C and listing 2.2
shows the equivalent function in JS.

function greeting() {
return "Hello World";

}

Listing 2.2: Hello World Function in JavaScript

(module

(table 0 anyfunc)

(memory $0 1)

(data (i32.const 16) "Hello World\0O0O")

(export "memory" (memory $0))

(export "_Z8greetingv" (func $_Z8greetingv))

(func $_Z8greetingv (; 0 ;) (result i32)
(i32.const 16)

)

O © 0 NO O WNh =

—_

Listing 2.3: Hello World Function in WebAssembly

The equivalent function written in WASM is shown in listing 2.3, which quite clearly articulates
the verbosity of the WASM programming language. Even though WASM is viewed as

28



the next evolutionary step for being able to execute compute-intensive applications within
web browsers, there are still various shortcomings with it, such as not having adequate
multithreading capabilities, which is a key requirement for creating multithreaded applications.

Even though these shortcomings are being worked on, it is unclear as to what impact the
eventual solutions will have and if they will adequately and completely resolve the existing
shortcomings. Currently, most web browsers incorporate one or both of the industry standard
JS and WASM EEs. In order for this study to propose any further improvements to EEs, that
will allow them to execute compute-intensive applications within web browsers, it is important
to review the research studies that have been undertaken in this area.

Thus an SLR has been undertaken, in order to highlight the gap in the current research relating
to not only the performance of web browser EEs, but also other potential gaps which closely
relates to the area of concern, being web browsers.

2.4. A structured literature review

This SLR uses the structure described by Kofod-Petersen (2015), which has specifically been
created for SLRs in the field of computer science research, but can also be used in the field
of information and communication technology research, given its close relation to computer
science. This structure contains three main phases; planning, conducting and reporting.

Kofod-Petersen’s (2015) structure also states and describes how the three phases can be
further broken down into several steps, where:

Phase 1 involves planning the review and can be broken down into:
1. Identification of the need for a review. (The first objective of this study identified this need)
2. Commissioning a review.
3. Developing a review protocol.

4. Evaluating the review protocol.

Phase 2 involves actually conducting the review and consists of five steps:
1. Identification of research.
2. Selection of primary studies.
3. Study quality assessment.
4. Data extraction and monitoring.

5. Data synthesis.

29



An intuitive way of depicting this phase is through the PRISMA 2020 flow diagram in figure
2.4 created by Page et al. (2021), for use in the field of health care and medical research,
but easily adapted for use in the field of information and communication technology, given its
abstract nature. The flow diagram articulates the various steps of the second (conducting)
phase, which also allows one to clearly depict the results using the same flow diagram, during
the third (reporting) phase.

Y
% Records identified by SC1-SCn from: Records removed before screening:
= Publisher Databases = n Duplicate records removed by RC1 =n
2_‘) Search Systems =n — Records removed by automation tools = n
E Other Websites = n Records removed for other reasons = n
E Citation searching = n
(=] Printed material = n
—
Y l
Records screened = n —| Records removed before retrieval:
Records excluded by RCm = n
Records excluded by RCn = n
O
=
E Studies sought for retrieval = n —| Studies removed before assessment:
g:J Studies excluded by PIC1/PICn = n
= Studies excluded by SIC1/SICn = n
Studies assessed for eligibility =n  —| Studies assessed as not eligible (QC < x):
Studies excluded by QC1-QCn = n
—
8 Studies included in review = n
g Reports of included studies = 2
-
(&)
=

Figure 2.4: Adapted Phase 2 Flow Diagram (Page et al., 2021)

There are three distinct stages within this flow diagram; identification, screening and included.
These three stages align well with the Kofod-Petersen (2015) second phase steps, where
identification covers step 1, screening covers steps 2-4, and included covers step 5. Phase
3 deals with reporting on the findings of the review and consists of:

1. Specifying dissemination strategy.

2. Formatting the main report.

30



3. Evaluating the report.

2.4.1. Introduction

An SLR is a formal process of synthesising the information available from existing research
studies. These research studies can be either primary or secondary research studies, where
primary ones are given the most focus and referenced the most throughout the research being
undertaken. It is important to note that an SLR is in no way a guarantee that one will find all
relevant literature pertaining to the research area in question, even so, it is the intention of the
researcher to uncover close to all available relevant literature that can be readily accessed
today, through various readily available tools.

The reason why we undertake an SLR, besides uncovering all existing relevant literature, is
the potential for the SLR to map out any existing solutions before a researcher even attempts
to propose their own solutions, while also helping researchers avoid introducing any biases
into their work. It also allows researchers to identify gaps within the current knowledge relating
to the research area, as well as highlighting the areas where additional research is required.
These gaps will be discussed in detalil, in the section covering the theoretical grounding of this
research.

Publishing the results of the SLR also benefits the research community by allowing others to
avoid duplicating the effort required when undertaking an SLR. Given all of these benefits lets
look at how this SLR will aid this research by having a brief discussion of it within the desired
context.

2.4.2. Background

Dissecting the singular research question of this study:

Research Question

What software architecture and design does a new web browser EE need to comprise of
in order to be able to host and execute CIAs with native desktop performance?

One comes to understand that the primary focus of this study is concerned with the
performance of web browser EEs. Given also that we have earlier in the chapter provided an
introduction to the two industry standard EEs, namely JS and WASM EEs, it stands to reason
then that the SLR should primarily focus on those two EEs within the context of performance
within web browsers.

31



Together with this primary focus, a secondary focus based on literature relating to performance
from a UX point of view will also briefly be touched upon since the performance aspects of
UX directly relates to and is dependent on the performance of EEs. This is because one
cannot have an adequate UX if the interactive performance and response is too slow, which
is especially true in certain domains, such as gaming, share trading and the remote control of
unmanned vehicles and equipment, to name a few.

2.4.3. Aim and objective

As stated, the goal or aim of this study is to develop a new web browser EE, which can be
used by any web browser to host and execute ClAs, with native desktop performance. Looking
at this together with the first objective of this study, one can derive that this SLR is to provide a
comprehensive and organised overview of existing research and literature on web browser EE
performance.

Unlike a traditional narrative literature review, which may be more narrative and less structured,
an SLR follows a systematic and organised approach. This SLR serves as a foundation for
understanding the state of knowledge on web browser EE performance, assessing its quality,
summarising existing knowledge, identifying research gaps and trends, creating a framework
for understanding, informing future research, supporting evidence-based decision-making, and
contributing to the academic discourse.

Further to this, Kofod-Petersen (2015) states: ”It is assumed that a specific problem (P) is
tackled using some specific constraints, methods and/or approaches (C) to develop a system,
application or algorithm (S)”. So this SLR should seek to answer the four SLR related research
questions as proposed by Kofod-Petersen (2015):

RQ1 "What are the existing solutions to P?”

RQ2 "How does the different solutions found by addressing RQ1 compare to each other with
respect to C?”

RQ3 "What is the strength of the evidence in support of the different solutions?”

RQ4 "What implications will these findings have when creating S?”

Where the variables P, C and S correlate to:

P - EEs that are capable of hosting and executing CIAs, with native desktop performance.
C - Web browser EEs.

S - A new web browser EE.

32



2.4.4. Methodology

A study in the context of this SLR refers to any paper that has been published, either
electronically or in printed form. A very limited amount of these studies may not have been put
through a peer review process, such as personal or corporate blog posts. Where that is known
to be the case, it will be clearly identified.

As afirst step, a protocol needs to be formulated, the aim of which is to minimise bias by having
a pre-defined set of eligibility criteria of what will, and what will not, be included in the SLR.

2.4.4.1. Protocol

The rationale for the protocol of the SLR for this research is formulated around seeking
information that can be used to answer the singular research question within the context of and
relating to performance. Using a robust set of objectives will allow the protocol to bolster and
ensure the transparency, accountability and integrity of the completed SLR.

The objectives of this SLR are to:

1. Use the search terms from Table 2.1 to find all literature related to web browser EEs,
where the studies focus on RIAs, JS and WASM, within the context of performance.

2. Use the selection and removal criteria from section 2.4.4.3. to filter all studies.
3. Use the assessment criteria from Table 2.4 to assign a score to the remaining studies.

4. Remove all studies below the required score.

The remaining subsections following hereto detail the methods to be used in locating, selecting
and analysing identified studies, as part of this protocol.

2.4.4.2. Search strategy

The strategy by which various information retrieval systems and databases were searched,
was to have as few as possible search terms. Each search term would also be composed of
only the technology name and where the result set is initially too large, a context will be added
to refine and reduce the result set.

The search term syntax utilises standard Boolean operator syntax rules, whereby parenthesis
dictate precedence and where the AND, OR and NOT operators assist in filtering out
unneeded studies. String grouping, by using quotation marks, was also applied where the
technology name is made up of multiple words. This forces the multiple words of the technology
name to be seen as one word and prevents the information retrieval systems and databases

33



from producing results for the individual words on their own.

It is important to note that the standard Boolean operators are not case-sensitive, so AND, OR
and NOT can be written in uppercase or lowercase letters. Additionally, different information
retrieval systems and databases may have variations in their specific syntax and support for
Boolean operators, so it is essential to refer to the documentation of the system that is to be
accessed for precise details on how to construct supported Boolean queries. The table below
details the search terms used for this SLR.

Table 2.1: SLR Search Terms

Identifier Search Term Context Used
ST1A JavaScript No
ST1B JavaScript AND Performance Yes
ST2 WebAssembly No
ST3 "Rich Internet Application” No

According to Kofod-Petersen (2015) the most prominent computer science databases that
should be searched are; ACM Digital Library, IEEE Xplore, ISI Web of Knowledge,
ScienceDirect, CiteSeerX, SpringerLink and Wiley Inter Science. One however has to
note that the word database is used rather loosely by Kofod-Petersen (2015), because some of
these databases like CiteSeerX, are actually database aggregators or as they are commonly
known, search systems.

Search systems do not publish any literature themselves but act as intelligent search engines
that are able to search through one or more publisher databases. Often they would also
create extra metadata to accompany literature found in publisher databases, such as citation
cross-referencing.

Table 2.2: SLR Primary Publisher Databases and Search Systems

Publisher Databases Search Systems
ACM Digital Library EbscoHost

IEEE Xplore CiteSeerX
IngentaConnect Google Scholar
JSTOR ResearchGate
SciELO Scopus
ScienceDirect Semantic Scholar
SpringerLink Web of Science

The proposed search systems and publisher databases as suggested by Kofod-Petersen
(2015) were used, since this study is broadly situated in the field of computer science. They

34



were also in turn combined with those reviewed in Gusenbauer (2019) and Gusenbauer and
Haddaway (2020), to derive two sets of search systems and publisher databases, as per Table
2.2, which will be targeted by this SLR.

Together with this, this SLR will also search through lesser known publisher databases that

form part of the ACM Digital Library through what is called The ACM Guide to Computing
Literature. Table 2.3 details these lesser known publisher databases.

Table 2.3: SLR Secondary Publisher Databases and Search Systems

Publisher Databases Search Systems
Academic Press Connected Papers
Butterworth-Heinemann
Hindawi
IBM
IGI Global

Inderscience Publishers

International WWW Conferences Steering Committee
IOS Press

John Wiley & Sons

Kluwer Academic Publishers

Pergamon Press

Usenix Association
VLDB Endowment

One secondary search system, Connected Papers was also reviewed. The benefit of this
search system is that it presents one with an elegantly structured graph of one’s primary
literature and how they are connected to other related literature. As with all other literature
result sets, not all connected literature is of relevance to this study and they were reviewed
following the same protocol as with all other discovered literature.

2.4.4.3. Literature selection

As a secondary phase, we can use the derived selection and removal criteria to filter the
overall set of literature once they have been identified, whilst deferring to the ranking methods
of the various search systems and publisher databases to provide the most representative and
relevant set of results during the initial phase of discovery. Given that the initial set of identified
literature could comprise of several million items, these criteria, once used, should provide a
more manageable set of results which can then be quality assessed.

Selection criteria:

SC1 Empirical studies on JS performance in the context of EEs.

35



SC2 All empirical studies on WASM performance in the context of EEs, as WASM has only
been publicly available since 2018.

SC3 All empirical studies on RIA performance in the context of EEs, as the expectation
was to not find many studies on this subject while searching publisher databases.

Removal criteria:

RC1 Duplicate literature of the same study. Even though this is frowned upon in the scientific
publication world, it does occasionally occur.

RC2 JS related literature before 2014, which would provide this study with a 10-year review
period from 2014 to 2023. Note that JS was created in 1995, but did not become
mainstream until at least 2002.

RC3 Literature that is not in English, unless an English translation is available.

2.4.4.4. Quality assessment

The quality assessment stage aims to eliminate studies that are not thematically relevant,
by using the criteria listed in Table 2.4, namely the relevant primary inclusion criteria (PI1C),
secondary inclusion criteria (SIC) and initial quality criteria (QC).

Table 2.4: Inclusion and Quality Criteria

Identifier Criteria

PIC1 The primary focus of the study is P

PIC2 The study presents empirical results in relation to P and/or S

SIC1 The context of the study is C

SIC2 The study proposes S

QcC1 The aim of the study is clearly stated

Qc2 There is a clear comparison between the assessed study and other studies

All studies are subjected to an initial quality assessment and then evaluated against eight
additional quality criteria as outlined in Table 2.5. By combining those eight criteria with the
initial two, we can assign each study a score ranging from 1 to 10. Depending on how well
a study meets the quality criteria, it can receive a full point (1), a half point (12), or zero points (0).

For this SLR, we will primarily focus on studies that only have zero points up to a maximum of
two quality criteria, while also scoring at least seven points or higher in total.

36



Table 2.5: Additional Quality Criteria, including QC1 and QC2

Identifier Criteria

QCH The aim of the study is clearly stated

QC2 There is a clear comparison between the assessed study and other studies

QC3 Are design decisions justified when proposing a solution

Qc4 Can one reproduce the test data set

QC5 How appropriate is the test data set size

QcC6 Can one thoroughly explain and reproduce the experiments

Qc7 Can one distinguish as to how the algorithms from the assessed study
compares to other algorithms

QcCs Can one explain and justify the performance metrics used

QcC9 Are the results and findings clearly explained

QC10 For the findings presented, does the test evidence support it

2.4.4.5. Data extraction and monitoring

Once the final set of studies have been identified, a data extraction stage will be undertaken to
extract certain data elements from the studies, which will later be discussed. The primary data
elements to be extracted are as follows:

1. Title
Authors
Publication Type

Year

o > 0D

QA Score

Secondary data elements that will also be extracted are:
1. Testbeds
2. Benchmarking EEs

3. Benchmarking Algorithms

The secondary data elements will assist the researcher in formulating this study’s research
instruments, allowing this study to closely align its benchmarking with what has been previously
used, while at the same time being critical of where it may be found to be inadequate and/or
inappropriate.

Further to this, there is an intent by the researcher to continually monitor the publisher
databases and search systems to ascertain if any new studies have been published since
the initial SLR was completed. This is to ensure that this study has reviewed at least the last
decades worth of available studies.

37



2.4.4.6. Data synthesis

Data synthesis in the context of this study, refers to the process of bringing together and
integrating data from various published studies in order to draw meaningful conclusions
or develop a comprehensive understanding of a particular research question. It involves
analysing, summarising, and combining data from different studies or datasets to generate
new insights or to answer the research question that may not be addressed by individual
studies alone.

Data synthesis is commonly used in systematic reviews and meta-analyses, where researchers
aim to systematically review and analyse existing studies on a specific topic. In these cases,
data synthesis involves extracting relevant information from multiple studies, evaluating
the quality of them, and then combining the results to provide a more comprehensive and
statistically robust overview of the available evidence as was done through the SLR of this
study, together with the QA assessments performed.

Furthermore, to the data synthesis performed during the SLR of this study, no statistical
analysis was performed on the set of QA assessed studies with a score equal to or above the
specified threshold, nor on their provided data. In addition, this SLR contains some fundamental
facts extracted and summarised from the identified set of studies, which are presented and
discussed in the subsequent sections. Some insights into areas of research similar to this
study, that require further investigation are also identified and briefly discussed.

2.4.4.7. References found and discussion

The set of studies unearthed through the SLR is believed to be as comprehensive and
extensive as possible given the initial result set, before any refinements or filtering, was at the
time about 76 thousand studies from a total of about 60 million studies across all of the primary
databases alone. Studies were also not only gathered from the various publisher databases
and search systems, but also by cross-checking and analysing the references section of the
studies assessed for eligibility.

Given the age and mainstream use of JS, it was expected that it would result in the biggest
portion of the initial result set, which comprised of 73 thousand studies, followed by RIA with
about two thousand studies and finally WASM with about a thousand studies. Subsequently,
after adding the search context to the JS search, the initial result set was reduced to about 50
thousand studies, which is depicted as a breakdown across the publisher databases, search
systems and citations in the Identification section of 2.5.

The subsequent metrics and process flow depicted in figure 2.5 show the various stages of
refinement and filtering that the discovered set of studies were put through in order to derive at
the final set of 133 studies to be assessed as being directly or indirectly related to this study,
as well as studies relating to areas of unrelated research. After assessing the 133 studies for
quality and alignment to this study it was found that 16 studies are closely aligned with this

38



study and that they form the foundational base hereof. The two reports that were published
refer to this study as well as to a conference paper that was presented and based on these
findings.

)
g Records identified by SC1-SC3 from: Records removed before screening:
= Publisher Databases = 49,656 Duplicate records removed by RC1 = 10
Z_t; Search Systems = 10 — Records removed by automation tools = 0
E Other Websites = 1 Records removed for other reasons = 6,353
= Citation searching = 11
a Printed material = 0
—
Y l
Records screened = 43,317 — Records removed before retrieval:
Records excluded by RC2 = 13,643
Records excluded by RC3 = 1
(O]
=
E Studies sought for retrieval = 29,673 — Studies removed before assessment:
g:J Studies excluded by PIC1/PIC2 = 29,493
8 Studies excluded by SIC1/SIC2 = 47
Studies assessed for eligibility = 133 —| Studies assessed as not eligible (QC < 7):
Studies excluded by QC1-QC10 = 117
—
B Studies included in review = 16
g Reports of included studies = 2
-
O
=

Figure 2.5: Phase 2 Flow Diagram With Results

The studies shown in Table 2.6 together with the databases from which they were extracted,
have been chosen to reflect and describe the present state of web browser EEs with relation
to and in the context of performance, while also providing insight into possible answers to the
singular research question of:

Research Question

What software architecture and design does a new web browser EE need to comprise of
in order to be able to host and execute CIAs with native desktop performance?

39



Table 2.6:

SLR Studies Assessed for Eligibility

Publisher Databases

Total

Studies

ACM Digital Library

55

(Ahnetal., 2014; Arteaga et al., 2020; Bhansali et al., 2022;
Bian et al., 2019; Bourgoin & Chailloux, 2015; Calegari
et al., 2019; Casteleyn et al., 2014; Chandra et al., 2016;
Choi et al., 2019; Fukuda & Yamamoto, 2008; Gong et al.,
2015; HaBler & Maier, 2021; Herrera et al., 2018; Hilbig
et al., 2021; Ho et al., 2017; Hockley & Williamson, 2022;
Jansen & van Groningen, 2016; Kataoka et al., 2018;
Kharraz et al., 2019; Konoth et al., 2018; Lehmann &
Pradel, 2022; Liu et al., 2022; Ma et al., 2019; Makitalo
et al., 2021; Marion & Jomier, 2012; Matsakis et al., 2014;
Miller, 1968; Mgaller, 2018; Musch et al., 2019b; Na et al.,
2016; NieBBen et al., 2020; Park et al., 2016; Park et al.,
2018; Pinckney et al., 2020; Puder et al., 2013; Reiser &
Blaser, 2017; Rempel, 2015; Romano et al., 2020; Romano
& Wang, 2020; Rossberg et al., 2018; Salim et al., 2020;
Selakovic & Pradel, 2016; Serrano, 2018; Serrano, 2021;
Stiévenart et al., 2022; Sun & Ryu, 2018; Titzer, 2022; van
Hasselt et al., 2022; Watt, 2018; Watt et al., 2019; Watt
et al., 2020; Wirfs-Brock & Eich, 2020; Yan et al., 2021;
Zakai, 2011; Zhao et al., 2019)

IEEE Xplore

29

(Caoetal.,2017; De Macedo et al., 2021; De Macedo et al.,
2022; DiPierro, 2018; Dot et al., 2015; Frankston, 2020;
Heo et al., 2016; Liu, 2019; Ménétrey et al., 2021; Park
et al., 2017; Radhakrishnan, 2015; Rahimi, 2021; éipek
et al., 2019; Sipek et al., 2021; Southern & Renau, 2016;
Spies & Mock, 2021; Sun et al., 2019; Szewczyk et al.,
2022; Tushar & Mohan, 2022; Ueda & Ohara, 2017; Verdu
& Pajuelo, 2016; Vilk & Berger, 2014; Wagner, 2017; Wang,
2021; Wang, 2022; Wang et al., 2019; Wen et al., 2020;
Zakai, 2018; Zhuykov et al., 2015)

SpringerLink

23

(Aponte, 2020; Belkin et al., 2019; Borisov & Kosolapov,
2020; Bruyat et al., 2021; Fink & Flatow, 2014; Fras &
Nowak, 2019; Kienle & Distante, 2014; Koper & Woda,
2022; Kozlovics, 2020; Liu & You, 2022; Lyu, 2021; McAnlis
et al., 2014a; McAnlis et al., 2014b; McAnlis et al., 2014c;
Mikkonen et al., 2019; Musch et al., 2019a; Nicula & Zota,
2022; Odell, 2014; Ortiz, 2022; Taivalsaari et al., 2018;
Taivalsaari & Mikkonen, 2018; Yu et al., 2020; Zhuykov &
Sharygin, 2017)

ScienceDirect

(Brito et al., 2022; Huber et al., 2022; Van Es et al., 2017)

(continued on next page)

40



Table 2.6: SLR Studies Assessed for Eligibility (continued)

Publisher Databases | Total Studies

IngentaConnect 1 (Auler et al., 2014)

Kluwer Academic 1 (Cho et al., 2015)

Publishers

Other 21 (Bormann, 2018; Choi & Moon, 2019; Doherty & Thadani,

1982; Eich, 2015; Fette & Melnikov, 2011; Fraternali et al.,
2010; Hardie, 2016; Herman et al., 2014; Jangda et al.,
2019; Jiang & Jin, 2017; Lehmann et al., 2020; Letz et al.,
2018; Lubbers & Greco, 2010; Malle et al., 2018; Mazaheri
et al.,, 2022; McManus, 2018; Rossberg, 2022; Szab6 &
Nehéz, 2019; Taivalsaari & Mikkonen, 2017; Yin et al.,
2015; Zakai, 2017)

Total Studies \133 ‘

Once the quality assessment was completed, some studies were discovered that alluded to
additional areas of research unrelated to this study. These studies can be grouped into the
following areas of research which other researchers may wish to investigate in future studies.

The areas of research, in no particular order are:

1.

Those aspects concerning the energy usage required to execute JS and WASM
applications, particularly on limited-power or low-power devices like Internet of Things
(loT) devices and smartphones, as highlighted by De Macedo et al. (2021).

. Those aspects that relate to attacks targeting a user’s web browser, that aims to

gain control of the user’s web browser and underlying computer system, which was
investigated by Nicula and Zota (2022) and Rahimi (2021).

. Those aspects regarding the use of JS and/or WASM as a way to break hardware security

through side-channel attacks, as observed by Mazaheri et al. (2022).

. Those aspects concerning obfuscating JS and/or WASM code, which is a technique

employed to disguise malicious code as explored by Bhansali et al. (2022), Borisov and
Kosolapov (2020) and Sun et al. (2019).

. Those aspects relating to security vulnerabilities and code efficiencies of the generated

WASM code when compared to the natively equivalent C or C++ code as examined by
Brito et al. (2022), Hilbig et al. (2021) and Liu (2019).

. Those aspects regarding security, where malicious code is injected into WebGL and/or

WASM-based applications, with the aim of sneaking them into a web browser. Distributed
password cracking tools, denial of service slaves, and distributed cryptocurrency mining
or cryptojacking, are examples of such malicious code as researched by Belkin et al.
(2019), Bhansali et al. (2022), Bian et al. (2019), Hilbig et al. (2021), Kharraz et al. (2019),
Konoth et al. (2018), Musch et al. (2019b), Romano et al. (2020) and Yu et al. (2020).

41



2.5. The theoretical grounding

Following on from the brief theoretical background provided in chapter 1, we can now expand
on that by reviewing the studies identified by this study’s SLR, which further seeks to reinforce
our theoretical grounding for this study. We start by looking at the earliest studies related to this
research, in other words, RIA, where the SLR identified six relevant RIA studies that warranted
further in-depth analysis.

Taivalsaari and Mikkonen (2018) °
«» Casteleyn et al. (2014) °
2 Fukuda and Yamamoto (2008) °
2  Fink and Flatow (2014) °
? " Fraternali et al. (2010) o
Kienle and Distante (2014) ° QC. Threshold = 7
\ \ \ \ \ \ \
2 3 4 5 6 7 8

Quality Rating

Figure 2.6: Quality Assessment of Six Relevant RIA Studies

While reviewing the SLR data, one can quickly form a viewpoint that most of the six studies
identified and assessed that pertain to RIA, as per figure 2.6, can be discounted. This is
because none of them cover any aspects pertaining to performance analysis or evaluation
of RIA-based web browser EEs, thus they have no bearing on this study. However, some
interesting ideas were discovered which gives thought to some innovative ways in which one
could possibly try to solve the problem that this study is focused on.

One was that of Mozilla’s project XUL*, which is an XML-based language that aids in the
building of feature-rich and cross-platform applications (Fraternali et al., 2010). Another one
was that of Taivalsaari and Mikkonen (2018), where they reviewed a key technical manifestation
as they put it, which is the Lively Kernel® system, originally created by Sun Microsystems.
Other than those few interesting aspects, the remainder of the studies have nothing more to
offer.

On the whole, the RIA technologies can be viewed as a historical attempt at creating desktop
equivalent applications within a web browser (Casteleyn et al., 2014; Kienle & Distante, 2014),
with varying success. It can be deduced from the data presented in figure 2.7 that studies
focused on RIA technologies have now mostly ceased. One simply has to look at the small

“https://wiki.mozilla.org/XUL
Shttp://lively-kernel.org/

42


https://wiki.mozilla.org/XUL
http://lively-kernel.org/

Number of Relevant Studies

number of studies discovered to form this viewpoint, in comparison with the large number of
studies that were and continue to be discovered for both JS and WASM. Although studies in JS
do seem to be dwindling since 2019, which correlates to an increase in studies into WASM at
that time.

12
= RIA
JS
10 — = WASM
8 — __
6 —
4 -
- l
. L1 0 B M |
Lo ©
o o
(aV] Al

2017
2018
2019
2020
2021
2022

Year

Figure 2.7: Distribution of Relevant Studies by Year

Next, we turn to JS, where the SLR assisted in identifying 44 relevant studies, with 6 studies
being directly applicable to this study, see figure 2.8. The foremost web browser EE is
considered to be JS or simply the JavaScript Virtual Machine (JSVM), a technology that
gave rise to what is ordinarily referred to as Web 2.0, the next progression of the WWW that
revolutionised the web browser. Web 2.0 can be characterised by a shift in how the internet
is used, by being more interactive and interconnected, and can be described by an increased
presence of user-generated content and enhanced user-friendliness.

The reviewed JS studies can be grouped into several common research themes or areas:

1. The Emscripten and asm.js derivatives.
2. Enhancing the JS type system.

3. Improving JS compilation.

43



4. Analysing JS performance and its underlying EE.

5. Improving the JS programming language.

6. Performance tuning the JSVM to improve usability.

7. JSVM caching and memory management techniques.

8. The remaining studies focused on JS reviews, spanning a decade or more.

Studies relating to the research area of Improving JS compilation can also be further
categorized into subfields such as:

1. AOT compilation.
2. JIT compilation.

3. JS compilation tooling.

Given the dynamically typed nature of JS, some studies have proposed possible solutions by
pairing a statically typed system with JS instead of the default dynamically typed one. That
would allow for the use of AOT compilation or to improve the JIT compilation performance,
where the former is preferred. Other studies explored ways of using tools such as Emscripten,
as a way of cross-compiling programming languages such as C and C++ that are statically
typed, into JS. However, this approach is irrelevant to this study and can be seen as counter
productive, as it introduces additional execution overhead to applications that originally did not
require it.

Additional intriguing technologies that were revealed through the JS segment of the SLR
were those relating to Microsoft’'s Xax browser plugin model, Google’s Native Client (NaCl)
and Portable Native Client (PNaCl) (Douceur et al., 2008). Xax offers an innovative method
for executing legacy applications within a web browser by providing features such as native
code execution, consistent OS and library interfaces, and memory isolation. However, only
a single research paper has ever been published in regards to Xax, there has also been no
public review of any prototype nor any publication of any scientific data, given that one has no
alternative but to regard the concept as theoretical.

More exploration of Xax, NaCl, and PNaCl is justified, as those technologies focus on using
web browsers as a delivery mechanism, while also using them to distribute and execute
native applications. The logical assumption behind these studies is that to achieve the same
performance of native applications executing on a desktop within web applications, one would
require the delivery of native applications through the web browser. As such, those completed
studies could provide a possible foundation for the proposed solution in this study.

The studies on JS shed some light and understanding of what causes native desktop
environments to outperform JS EEs. This performance gap is primarily due to the dynamically
typed system that JS is based on, which requires interpretation at runtime. Since native
applications are executed directly by the underlying ISA, it is nearly impossible for an interpreted

44



language like JS to achieve the same level of performance due to the additional processing and
overhead that is incurred by the interpreter.

Zakai (2011) o
Dot et al. (2015) ]
Puder et al. (2013) °

Vilk and Berger (2014) °

Yin et al. (2015) °

Zakai (2018) °

Ahn et al. (2014) o

Choi and Moon (2019)
Na et al. (2016)

Park et al. (2016)
Serrano (2021)

Gong et al. (2015) o
Choi et al. (2019) °
Ueda and Ohara (2017) °
Liu et al. (2022)

Radhakrishnan (2015)
Selakovic and Pradel (2016)
Serrano (2018)

Zhuykov and Sharygin (2017)
Bourgoin and Chailloux (2015)
Calegari et al. (2019)

Chandra et al. (2016)

Jiang and Jin (2017)

McAnlis et al. (2014a)

Southern and Renau (2016)
Auler et al. (2014)

Kataoka et al. (2018)

Sun and Ryu (2018)

Szab6 and Nehéz (2019)

Verdd and Pajuelo (2016)

Zhao et al. (2019)

Zhuykov et al. (2015)

Cao et al. (2017)

Matsakis et al. (2014)

McAnlis et al. (2014b)

Rempel (2015)

Taivalsaari and Mikkonen (2017)
Heo et al. (2016) °
Odell (2014) °
Sipek et al. (2019) °
McAnlis et al. (2014c) o

Park et al. (2017) °
DiPierro (2018)
Frankston (2020)

Studies
e 6 6 06 0 O
e 6 6 0 O

QC Threshold = 7
\ \ \ \ \ \ \ \ \

8 9

-
N
w
N
(6]
(o))
~

Quality Rating

Figure 2.8: Quality Assessment of 44 Relevant JS Studies

45



Studies

Yan et al. (2021) °
Herrera et al. (2018) °
Rossberg et al. (2018) °

De Macedo et al. (2021)

De Macedo et al. (2022)
Hockley and Williamson (2022)
Malle et al. (2018)

Wang (2021)

Spies and Mock (2021) °
Szewczyk et al. (2022) °
Jangda et al. (2019) °
Arteaga et al. (2020) °

Reiser and Blaser (2017) °

Tushar and Mohan (2022) °

NieBen et al. (2020) °

Park et al. (2018) °

Salim et al. (2020) °

Bruyat et al. (2021)
Titzer (2022)

Watt et al. (2019)

Watt et al. (2020)

van Hasselt et al. (2022)
Sipek et al. (2021)
Makitalo et al. (2021) °
Wang (2022) °
Koper and Woda (2022)

Lyu (2021)

Pinckney et al. (2020)

Wang et al. (2019)

Wirfs-Brock and Eich (2020)

Fras and Nowak (2019)

HaBler and Maier (2021)

Huber et al. (2022)

Ménétrey et al. (2021)

Taivalsaari et al. (2018)

Wagner (2017)

Ma et al. (2019)

Mikkonen et al. (2019)

Musch et al. (2019a)

Stiévenart et al. (2022)

Van Es et al. (2017)

Kozlovi¢s (2020)

Lehmann et al. (2020)

Watt (2018)

Wen et al. (2020)

Aponte (2020)

Jansen and van Groningen (2016)
Lehmann and Pradel (2022)
Romano and Wang (2020)

Zakai (2017)

Eich (2015)

Letz et al. (2018)

Mgller (2018)

Ortiz (2022)

QC Threshold = 7

\ \ \ \ \ \ \ \
1 2 3 4 5 6 7 8

Quality Rating

Figure 2.9: Quality Assessment of 54 Relevant WASM Studies

46



Revisiting the latest advancements in EE technologies, WASM emerged as a key focus, with
54 relevant studies identified. Of these, eight were deemed directly relevant to this research,
as shown in figure 2.9. WASM was first announced in 2015 (Eich, 2015) with an initial release
in 2017 (Wagner, 2017; Zakai, 2017) and is considered to be the next evolutionary step in the
advancement of Web applications. It is an intermediary software-based ISA, not linked to any
hardware-based ISA and its compiled code is distributed in a binary format, unlike JS which is
distributed in a plain text format.

Similar to JS, the studies evaluated for WASM can be grouped into several common research
areas or themes:

1. Introduction to WASM and its preceding technologies.

2. Reusing the JSVM for other programming languages such as WASM.
3. Cross-compilation other programming languages to WASM.

4. Analysing WASM performance and energy consumption.

5. Caching and/or reusing AOT compiled WASM code.

6. Exploring the WASM architecture and specification.

7. Analysing WASM malware, vulnerabilities and obfuscation.

8. The development of SPAs

9. The remaining studies that delved into UI/UX and the overall architectural aspects of the
web browser.

Given that WASM has only been around for about six years at the time of this study, it is a fairly
new technology and as expected quite a few studies have been covering various aspects of
it to date. At least 18 or one third of the relevant WASM studies deal with aspects pertaining
to performance and/or energy consumption in comparison to both JS and native applications.
This is not surprising given its predecessor’s known limitations when it comes to performance
and serves to again highlight the overall need to improve on the performance thereof.

The directly relevant studies into WASM, that provide foundational viewpoints and data for this
study are those by De Macedo et al. (2021), De Macedo et al. (2022), Herrera et al. (2018),
Hockley and Williamson (2022), Malle et al. (2018), Rossberg et al. (2018), Wang (2021)
and Yan et al. (2021). The study by Rossberg et al. (2018) is the primary foundational study
on which this study is based. Rossberg et al’s (2018) study offers valuable insights into the
performance of current web browser EEs as well as providing useful data that indicates that
further research into the field is warranted.

The number one takeaway from these directly relevant studies, as well as from the
non-directly relevant studies are that the performance of WASM applications as compared
to JS applications, as well as their equivalent native desktop applications, is that the
results are quite varied. In some instances, the WASM applications will perform better

47



(Malle et al., 2018) and in other instances worse (De Macedo et al., 2021; De Macedo
et al., 2022; Herrera et al., 2018; Hockley & Williamson, 2022; Jangda et al., 2019; Rossberg
et al., 2018; Wagner, 2017; Yan et al., 2021).

The paper by Malle et al. (2018) was especially interesting from the viewpoint that it found
certain WASM applications to be faster than their equivalent native desktop applications, but it
could not explain why that is and that further investigation was required. The second takeaway
looking at the energy consumption of WASM applications as compared to JS applications, as
well as their equivalent native desktop applications, is that the results are also quite varied.
Native desktop applications use less energy than WASM applications, which in turn use less
energy than JS applications (De Macedo et al., 2022; HaBler & Maier, 2021; van Hasselt
et al., 2022)

Then looking at the various benchmarking suites and techniques used across the relevant
WASM studies, we find that several studies used PolyBench/C as part of their benchmarking
methodology (NieBBen et al., 2020), while the study by Jangda et al. (2019) argues that any
benchmarking using PolyBench/C is flawed because the benchmarks use applications that are
too small to fully benchmark performance. This will need to be considered and mitigated when
formulating the benchmarking methodology of this study.

Other benchmarking techniques used consist of subsets from the Rosetta Code®, which is
a programming chrestomathy Web site (Arteaga et al., 2020; De Macedo et al., 2021; Malle
et al., 2018), as well as compute-intensive algorithms such as those relating to Prime numbers,
Fibonacci numbers, Floyd-Warshall paths, Huffman coding, permutations, Fast Fourier
transforms and the comparison as well as sorting of millions of random numbers. All of which
are good options which can be looked at when formulating the benchmarking methodology of
this study.

Table A.1 summarises all of the benchmarking suites discovered through the SLR, while Table
2.7 maps those discovered benchmarking suites to the various relevant studies of this SLR
together with how the performance results of those studies were measured. Less than half of
the relevant studies articulated some form of performance results, where most of them were
measured across multiple runs from which the arithmetic mean (z) or geometric mean (b) were
taken.

The difference between using the arithmetic and geometric means for performance
benchmarking (Szewczyk et al., 2022; Van Es et al., 2017) is well documented by Fleming
and Wallace (1986), where they argue that the geometric mean is preferable for performance
benchmarking over the arithmetic mean in certain situations. They emphasise two primary
reasons highlighting the advantages of the geometric mean in performance benchmarking,
particularly when dealing with data involving growth rates, ratios or situations where extreme
values might significantly affect the results. These two primary reasons are:

Shttps://rosettacode.org/

48


https://rosettacode.org/

1. Sensitivity to Changes: The geometric mean is less sensitive to extreme values or

outliers than the arithmetic mean. In performance benchmarking, outliers or extreme
values can skew the data and distort the overall picture of performance. The geometric
mean’s property of mitigating the impact of extreme values makes it more robust for
comparisons across different entities or time periods.

. Multiplicative Nature: Performance measures often involve ratios or percentages
that represent growth rates or other multiplicative relationships. The geometric mean
is suitable for dealing with multiplicative processes, as it preserves the proportional
relationships between different observations. It accurately represents the rate of change
over time, making it a more appropriate measure for performance comparisons in certain

contexts.
Table 2.7: Relevant Studies Mapped to Benchmarking Suites

Study Benchmarking Suites Result Measurements
Ahn et al. (2014) JSB, KRA, OCT and SUN Unspecified

Arteaga et al. (2020) RS1 Unspecified

Auler et al. (2014) CLG Unspecified

Bourgoin and Chailloux (2015) AL1 Indirectly specified
Chandra et al. (2016) OC1, SUN and JE1 Indirectly specified
Choi et al. (2019) OoCT Unspecified

Choi and Moon (2019) AL2 Indirectly specified
De Macedo et al. (2021) CL1 and RS2 Unspecified

De Macedo et al. (2022) CL1 and RS2 Unspecified

Dot et al. (2015)

KRA, OCT and SUN

9warmupruns < T = 1

Gong et al. (2015) OCT and SUN Unspecified
Heo et al. (2016) JSB .
_ 1
=5y
r=1
Herrera et al. (2018) OST )
30 30
o~ (1)
r=1
Jangda et al. (2019) PBC, SP06 and SP17 Unspecified
Jansen and van Groningen (2016) | AL3 Unspecified
Kataoka et al. (2018) SUN Unspecified
Koper and Woda (2022) AL4 .
50 50
o~ (1T
r=1
Lehmann et al. (2020) SP17 Unspecified
Matsakis et al. (2014) SUN Unspecified

49

(continued on next page)




Table 2.7: Relevant Studies Mapped to Benchmarking Suites

Ménétrey et al. (2021)

PBC

r=1
Na et al. (2016) OCT, SUN and PBC .
10 10
o~ (11
r=1
Nief3en et al. (2020) PBC
1 100
= — Ty
100 p—
Park et al. (2016) OCT
1 10
= — Ty
10 r=1
Park et al. (2017) SUN Unspecified
Park et al. (2018) OCT Unspecified
Pinckney et al. (2020) AL5 Unspecified
Puder et al. (2013) AL6 and CLG Unspecified
Radhakrishnan (2015) KRA, OCT and SUN )
10 10
r=1
Reiser and Blaser (2017) AL7 Unspecified
Rossberg et al. (2018) PBC Unspecified
Salim et al. (2020) CLG, JET and PBC Unspecified
Serrano (2018) OCT, JET and SUN
1 30
Tr=— Ty
30 p—
Serrano (2021) AL8 and JET Unspecified
Sipek et al. (2021) AL9
1 300
50warmupruns < T = —— T
P 300 2 ™"
r=1
Southern and Renau (2016) OCT .
500 500
o~ (IT=)
r=1
Spies and Mock (2021) PBC

15\ 15
(i)
r=1

Szewczyk et al. (2022)

PBC and SP17

Unspecified

50

(continued on next page)




Table 2.7: Relevant Studies Mapped to Benchmarking Suites

Titzer (2022) PBC
100
_ 1
T =— T
100 "
r=1
Tushar and Mohan (2022) AL10 Unspecified
Ueda and Ohara (2017) ACM Unspecified
Van Es et al. (2017) LAR Unspecified
Wang (2021) PBC .
10 10
r=1
Wang (2022) WAB Unspecified
Wen et al. (2020) SP06 s
_ 1
=33
r=1
Yan et al. (2021) PBC and CHS .
5 5
o~ (1)
r=1
Zakai (2011) AL11 Unspecified
Zakai (2018) AL12 Unspecified

One innovative technology that was brought to light is that of the WebAssembly System
Interface (WASI) (HaBler & Maier, 2021; Lehmann et al., 2020; Ménétrey et al., 2021; Salim
et al., 2020; Spies & Mock, 2021; Stiévenart et al., 2022; Szewczyk et al., 2022; Wang, 2022),
which is both an Application Binary Interface (ABI) as well as an Application Programming
Interface (API) with a POSIX-like set of syscall functions, specifically adapted to suit the needs
of WASM.

WASI is intended to be modular and as portable as WASM is, by not being bound to any one
specific ISA, OS or software library. WASI gives rise to some interesting possibilities and ideas,
for instance, what if one embedded a WASI-like layer within a sandbox that could host and
execute NaCl-like applications or even plain native applications. These applications could then
easily be downloaded through the web and safely executed on any compatible device, without
the need to be interpreted, converted or compiled.

Other studies also discovered, act as supplementary evidence in support of this study,
where they provide further insights into other areas that may relate to or influence aspects
of performance, such as usability and UX. These studies include those by Miller (1968) and
Doherty and Thadani (1982).

With the advent of computer systems, it was originally argued by psychologists such as Miller
(1968), that a response time of two seconds from a computer system, was the longest that a

51



user should wait, before their attention began to stray. Later though, Doherty and Thadani’s
(1982) observed that a sub-400 millisecond response time dramatically increased a user’s
interactions or the number of transactions that they are able to complete, at different skill levels.

o
o _ - Expert
Lfo) — — Novice
Average
o H
o _| H
o
< '
< ; —
—~\ %)
8 E £
o S S
L A I
2 o > g
(7)) © %
c 5 <
.8 o $
I3 = =
|_
(4] =
@ = B
S 9 ] k=
=S 5 2
. « o o
o}
7]
D
o | N T
o N e
S TN T
— N T
o) Teel
\
\
\—
e
[ I I I |
0 500 1000 1500 2000

System Response Time (ms)

Figure 2.10: Adapted Doherty Threshold (Doherty & Thadani, 1982)

This threshold is commonly known as the Doherty Threshold today, where if a computer system
responds in sub-400 milliseconds, it is deemed to have exceeded the Doherty Threshold and
may even become addictive to users in certain use cases, such as online gaming. It is thus
believed that having web browser EEs respond in under sub-400 milliseconds would not only
provide some psychological benefits to users, but also assist in keeping them more engaged

and making them more productive.

52



2.6. Summary

In this chapter, we detailed the history of web browser EEs, after which we systematically
gathered and discussed the literature closely related to web browser EEs within the context
of performance. We then identified the most prominent literature that forms the theoretical
grounding for this study based on three areas of interest, being RIA, JS and WASM.

In the next chapter we will delve into the philosophical stance and research methodology for
this study and expand on the details already introduced in chapter 1.

53



CHAPTER 3

METHODOLOGY

This chapter considers the philosophical stance together with the research methodology used
for this study. This chapter also covers the second objective of this study, where the study aims
to:

Objective 2

Employ a suitable research methodology by determining which ones are best aligned to
deliver on the requirements and goal of this study.

This chapter covers aspects pertinent to the research foundation of this study, across the
following areas:

Section 3.1. Type of research

Section 3.2. Philosophical stance

Section 3.3. Methodological alignment
Section 3.4. Design theory

Section 3.5. Research instruments

Section 3.6. Data acquisition and evaluation
Section 3.7. Ethical considerations

Section 3.8. Research limitations

3.1. Type of research

Expanding on the underpinning theory that was selected for this study in section 1.5., together
with insights extracted from the SLR, we can now definitively state that we will be investigating
run-time systems, specifically web browser EEs, which is a sub-category of programming
language theory (Pierce, 2002; Harper, 2013) and a sibling to virtualisation theory (Gaj
et al., 2015; Randal, 2020), which is also a sub-category of programming language theory.

54



Together with this, we will also propose as to how another sub-category of programming
language theory called Foreign Function Interfaces (FFls) (Grimmer et al., 2018; Rossberg
et al., 2018; Pinckney et al., 2020), could be implemented in the proposed solution that would
allow for sandboxing of the EE, which is an important security requirement for any web browser
EE. These theories constitute the What of this study, the How is more straight forward and
aligned with the How of the primary studies uncovered in the SLR.

For the How of this study, we previously stated that we intend experimenting with a prototype EE
artefact and extracting performance data from it, then comparing that data to the performance
data of existing web browser EEs. Given the field within which this study falls, namely computer
science, together with the discussed What and How, we can assert that this study is an applied
computer science study, which can be mapped through Kumar’s (2018) three viewpoints as
depicted in figure 3.1. This mapping shows the primary viewpoints together with the secondary
supportive viewpoints for this study.

[ Primary Types of
[ ] Secondary Research
Enquir
Application Objectives quiry
Mode

Descriptive | | Correlation | | Exploratory | | Explanatory

[ 1 [ 1

Pure Applied Quantitative| | Qualitative

Figure 3.1: Types of Research Viewpoints (Kumar, 2018)

3.1.1. Application

This study pertains to the category of applied research, which aims to address tangible
real-world challenges. Applied research refers to a systematic and purposeful investigation
that is conducted to address specific, practical problems or issues in the real world. The
primary objective of applied research is to generate knowledge, information, or solutions that
can be directly used or applied to improve existing processes, products, policies, or practices
(Saunders et al., 2019; Sanders et al., 2022).

55



Key characteristics of applied research include:

1.

Practical Focus: Applied research is focused on addressing practical issues and finding
solutions to real-world problems. It aims to provide tangible benefits and improvements
in various domains.

. Problem-Solving Orientation: The research is guided by the need to solve specific

problems or challenges. Researchers work to identify practical solutions that can have a
positive impact on society, industries, or individuals.

. Utilisation of Existing Knowledge: Applied research often builds upon existing

knowledge and theories, using them as a foundation to address specific problems and
develop innovative solutions.

. Interdisciplinary Approach: It often involves an interdisciplinary approach, drawing

from multiple fields of study to create comprehensive solutions. Collaborations across
disciplines are common in applied research.

Application of Technology and Methods: Technology and various research methods
are frequently used to develop and implement new processes, systems, products, or
services that address the identified problems.

Action-Oriented and Timely: Applied research aims for timely and actionable results.
It is designed to provide solutions that can be implemented and make a difference in a
relatively short period.

Feedback and Adaptation: Applied research often involves a feedback loop, where
findings are evaluated and refined based on the outcomes of practical application. This
iterative process helps improve and adapt solutions over time.

The goal is to ensure that the research outcomes have a direct and positive impact on the real
world.

3.1.2. Objectives

This study has a correlation research objective, which means that the research focuses on
exploring and analysing the relationship between variables to determine the extent to which
changes in one variable are associated with changes in another. The objective is to measure
the degree and direction of correlation between the variables, which helps in understanding
patterns and potential predictive relationships.

For this study, the two variables under observation will be:

1.

EE Overhead - The overhead imposed by EEs in order for them to execute an application,
for example parsing the source application code and compiling it into machine code as in
the case of JS code.

56



2. EE Performance - The performance of EEs when executing an application.
Methods used by the objective will include:

1. Correlation Analysis: Statistical techniques such as the Pearson Correlation Coefficient,
Spearman Rank Correlation Coefficient, or the Kendall Rank Correlation Coefficient
may be used to quantify the strength and direction of the relationship between the two
variables.

2. Data Collection: Data is collected on multiple variables of interest from a sample or
population to perform correlation analysis.

3. Data Interpretation: The results obtained from correlation analysis are interpreted to
understand the nature and strength of the relationship between the two variables.

3.1.3. Enquiry mode

This study’s inquiry mode is quantitative, which refers to the approach or method used to
collect and analyse numerical or quantifiable data in a study. This is based on the belief that
in quantitative research, the focus is on collecting data that can be measured and analysed
statistically to identify patterns, relationships, and trends (Bryman & Bell, 2011). The inquiry
mode involves systematic and structured data collection methods to gather information from a
sample or population.

Some common quantitative inquiry modes or methods are: surveys and questionnaires;
experiments; observational studies; structured interviews; secondary data analysis; content
analysis; ex post facto (after-the-fact or causal-comparative) research; and cross-sectional
studies (Creswell & Creswell, 2018; Saunders et al., 2019). Consequently, this study will
conduct controlled experiments to manipulate variables and measure the effects on outcomes,
allowing for cause-and-effect conclusions.

3.2. Philosophical stance

By definition and according to Bryman & Bell (2011) as well as Bryman (2016), a positivist
philosophical position or stance, often associated with the positivist school of thought,
is characterised by an empirical and scientific approach to understanding the world.
Furthermore, Creswell & Creswell (2018) and Saunders et al. (2019) asserted that the
philosophical and epistemological stance of positivism emphasises the importance of empirical
evidence, observation, and the scientific method as the primary means to gain knowledge and
understanding of the natural and social phenomena.

Bryman & Bell (2011), Bryman (2016), Creswell & Creswell (2018) and Saunders et al. (2019)
suggest that the key characteristics of a positivist philosophical stance include:

57



1. Empirical Observation and Measurement: Where positivists believe that knowledge
should be based on empirical evidence obtained through sensory experience and direct
observation. Measurement and quantification are emphasised to achieve objectivity and
rigour in understanding phenomena.

2. Scientific Method: Where positivists advocate for the application of the scientific method,
which involves systematic observation, experimentation, data collection, analysis, and
the formulation of hypotheses and theories. Hypotheses are tested and verified through
empirical research to establish scientific laws or principles.

3. Objectivity and Neutrality: Where positivism aims for objectivity in research, minimising
the influence of personal biases, values, and interpretations. The researcher is seen as
an objective observer, separate from the subject of study.

4. Generalisation and Prediction: Where positivists seek to generalise research findings
to broader populations or situations, aiming for universal laws or principles. The goal is to
make predictions based on observed patterns and relationships.

5. Reductionism: Where positivism often involves breaking down complex phenomena into
simpler, analysable parts to study their individual characteristics and relationships.

6. Critical Realism: Where positivism embraces a realist ontology, asserting that there is a
reality external to the human mind that can be known and understood through empirical
investigation.

7. Value-Free Science: Where positivism advocates for separating value judgements and
ethical considerations from the scientific inquiry, focusing solely on empirical facts and
phenomena.

In light of this, a positivist philosophical stance aligns well with this study in view of the fact that it
emphasises the importance of empirical or statistical evidence as well as the scientific method
in acquiring knowledge and understanding the world, thereby striving to build a systematic,
structured and objective understanding of reality.

3.3. Methodological alignment

Considering that this study will be using DSRs methodology as part of its strategy, in addition
to its alignment with Hevner et al’s (2004) seven proposed guidelines for DSR, DSR and
positivism also shares certain foundational principles that allow them to work well together
in several ways (livari & Venable, 2009):

1. Empirical Foundation:

Positivism DSR
Emphasises the importance of empirical | Grounded in empirical observations and
evidence in the pursuit of knowledge. practical experiences, seeking to solve

real-world problems through systematic
design and evaluation.

58



. Scientific Rigour and Methodology: Both positivism and DSR uphold the principles of
scientific rigour and methodological approach.

Positivism

DSR

Advocates for a rigorous scientific method.

Follows a structured design process,
often characterised by iterative cycles of
design, implementation, evaluation, and
refinement.

. Objective and Systematic Approach:

Positivism

DSR

Seeks objectivity and neutrality in the
research process, aiming to minimise
biases and subjectivity.

Shares this objective by adopting a
systematic approach to design, focusing
on the creation of artefacts or solutions
guided by well-defined criteria and
objectives.

. Hypothesis Testing and Validation:

Positivism DSR
Emphasises  formulating  hypotheses | Follows a similar approach, where design
and testing them through empirical | hypotheses are formulated based on

observations.

a theoretical foundation, and these
hypotheses are then tested and validated
through the design and evaluation of
artefacts.

. Generalisation and Applicability:

Positivism

DSR

Aims for generalisability of findings to
broader populations or contexts.

The aim is to produce artefacts (designs,
models, methods) that are not only
effective for a specific problem but can
also be generalised and applied to similar
problems or domains.

. Evidence-Based Decision Making: Both

decision-making.

philosophies advocate for evidence-based

Positivism DSR
Relies on empirical evidence to draw | Uses evidence from the design,
conclusions and make informed decisions. | implementation, and  evaluation  of

artefacts to inform design decisions
and improvements.

59




7. Quantitative and Qualitative Data Analysis:

Positivism DSR
Often employs quantitative data analysis | Quantitative evaluation methods are used
techniques, that align with certain aspects | to assess the effectiveness and efficiency
of DSR. of design artefacts. However, DSR
also acknowledges the value of qualitative
analysis to understand user experiences
and gather feedback.

While DSR aligns with a positivist philosophy in these aspects, it is important to note that DSR
also recognises the value of interpretivism and pragmatism, especially in understanding user
needs, involving stakeholders, and considering contextual factors during the design process.
DSR often incorporates a mix of approaches, including positivist, interpretivist, and pragmatic
elements, to create effective and usable design solutions.

3.4. Design theory

The primary objective of design theory is to advance design science by capturing the model of
thought which is specific to design. In the field of engineering and more specifically software
engineering, the creation of formal design theories is akin to a pursuit of increased generality,
abstraction, and rigour. This pursuit follows a variety of paths, one of which gave rise to
Concept-Knowledge (C-K) theory which, together with DSR, will be used by this study. DSR
and C-K theory are both frameworks used in the field of design and innovation, and they can
be complementary in guiding and structuring the design process (Hatchuel et al., 2013).

Disjunction/partition/validation

C < K

Expansion by Expansion by
- partition - deduction
- inclusion - experiment

\ v
C > K

Conjunction/activate

Figure 3.2: C-K Theory Design Square (Hatchuel & Weil, 2003)

As previously elaborated in section 1.5.1., DSR is a methodology used to address complex
problems and create innovative solutions. It involves a structured process of creating and

60



evaluating artefacts to solve specific problems. These artefacts could be designs, models,
methods, or even software systems. DSR emphasises the importance of rigour, relevance,
and design knowledge in the research and development process.

C-K Theory is a theoretical framework used to explain and support the innovation and design
process. It focuses on the creation and integration of concepts C and knowledge K in the
design and innovation activities. The theory distinguishes between existing knowledge K and
the creation of new concepts C, highlighting the importance of exploring the space of possible
concepts and their relationships (Hatchuel & Weil, 2003).

As one can see from figure 3.2, C-K theory fits well with this study’s research approach of
deduction and research strategy of experimentation, as deduction and experimentation are
inherently part of its design cycle. Looking deeper, DSR and C-K theory integrate with each
other and are complementarity in the following ways:

1. Idea Generation and Exploration: C-K theory emphasises the exploration of the
concept space C to generate novel ideas and concepts. DSR can use this theoretical
foundation to guide the ideation and concept development phase, ensuring a systematic
and structured approach.

2. Artefact Development and Iteration: DSR focuses on developing artefacts to solve
specific problems. C-K theory can guide the iterative development of artefacts by
emphasising the evolution and refinement of concepts C based on acquired knowledge K
and feedback from evaluations.

3. Relevance and Rigour: DSR emphasises the importance of both rigour and relevance
in design research. C-K theory, with its emphasis on the creation of meaningful and
novel concepts C, aligns with the need for relevance. It also helps structure the research
process in a rigorous manner.

4. Understanding the Conceptual Space: C-K theory helps in understanding and
navigating the conceptual space by distinguishing between existing knowledge K and
the creation of new concepts C. This understanding can guide the design process by
allowing researchers to strategically explore and select concepts for artefact creation.

In summary, C-K theory provides a theoretical foundation for understanding the conceptual
space and generating novel ideas, while DSR offers a structured methodology to develop
and evaluate artefacts based on these ideas. Integrating C-K theory into the DSR process
can enhance the ideation and concept development phases, resulting in more innovative and
relevant solutions to complex problems.

3.5. Research instruments

Research instruments are tools that are used to collect, measure and analyse data that
were collected in relation to the hypothesis, research question and objectives (Bryman &

61



Bell, 2011; Bryman, 2016). The research instruments that will be used in this study can
be divided into three distinct parts, namely the testbed, which is a controlled and real-world
like environment, used for benchmarking; the EE artefacts being benchmarked; and the
benchmarking algorithms.

3.5.1. Testbed

The testbed is composed of an Intel-based computer hardware running the latest versions of
the Fedora' variant of the Linux OS. Note that Fedora is the free community version of the
commercial RedHat?® Linux OS. Therefore when a reference is made to RedHat or RedHat

documentation, it implies Fedora as well.

The technical details of the testbed are as per Tables 3.1 and 3.2:

Table 3.1: Computer Hardware

Component CPU

Aspect Details

Model Intel Core i7-7567U @ 3.50 GHz
Frequency Base 3.50 GHz, Max 4.00 GHz
Architecture x86_64 (supports 32-bit and 64-bit applications)
Hyperthreading per CPU Core | 2

CPU Cores per Socket 2

Sockets 1

Total CPUs 4

BogoMIPS 6,999.82

Byte Order Little Endian

Component GPU

Aspect Details

Model Intel Iris Plus Graphics 650
Capacity up to 32 GiB VRAM
Component Memory

Aspect Details

Capacity 16 GiB RAM

Speed 2,133 MT/s (DDR4 2,400 MT/s)

For benchmarking purposes a sibling pair of CPUs will be isolated, tuned and used as the

"https://fedoraproject.org/
2https://www.redhat.com/

62


https://fedoraproject.org/
https://www.redhat.com/

discrete CPU hardware for the benchmarked EEs. A sibling pair of CPUs refers to the
Hyperthreading or Simultaneous Multithreading threads that reside within a single CPU Core.
Therefore, a sibling pair of CPUs will share certain resources like the L1 and L2 CPU caches,
data lanes and so forth. Similar CPU hardware were also used by the SLR relevant studies
of Jangda et al. (2019), Na et al. (2016), Stiévenart et al. (2022), Szewczyk et al. (2022) and
Verdu and Pajuelo (2016).

Table 3.2: Computer Software

Component | OS

Aspect Details

Type Fedora Linux

Architecture | x86_64 (64-bit)

Version 39 (released on 7 Nov 2023)
Kernel 6.9.x

Bash (shell) | 5.2.x

3.5.2. Benchmarking execution environments

The EEs will consist of two distinct computer software environments that will allow for
measuring the existing and proposed solutions performance. For the existing solution, the
most recent version 20.12.x of the Node.js* JSVM which can also execute WASM-based
programming code, will be used. For the proposed solution, the newly engineered SYS23 EE,
which executes compiled C-based programming code, will be used.

In order to have the best OS environment within which to benchmark the EEs, it is
recommended to use computer hardware that contains a CPU with multiple CPU cores.
At minimum it should contain at least two CPU cores per socket, each having at least two
hyperthreads per CPU core. Having such a configuration will allow one to isolate one of the
CPU cores and dedicate it to the benchmarking activity, without being influenced excessively if
at all, by OS noise (de Oliveira et al., 2023), while the remaining CPU core will be used by the
OS and the other applications.

The following Linux OS or simply kernel configurations will be set, in order to provide the
best low latency OS environment by reducing the OS noise within which the two EEs will be
measured:

1. CPU lIsolation: By default, the kernel's scheduler distributes threads evenly across
all available CPUs. To prevent non-application or system threads from affecting one’s
application threads, one can utilise the isolcpus kernel command line option. Load

3https://nodejs.org/

63


https://nodejs.org/

balancing for the isolated CPUs are disabled by this option, causing threads to be
directed to the non-isolated CPUs by default.

Note that in order for an application thread to use an isolated CPU one must specifically
pin the application to the isolated CPU using the taskset command. For example,
to pin the System23 runtime with a process ID of 999 to CPU 7, one would issue this
command:

Shell Command

$ taskset -pc 6 999

pid 999’s current affinity list: 0-5

pid 999’s new affinity list: 6

Using isolcpus can enhance the performance of applications that are sensitive to
jitter or latency. Periodically, the kernel scheduler must interrupt all CPUs to assess if
rebalancing or process migration is necessary. CPUs that have been flagged as being
isolated avoid those interrupts, thereby reducing the overhead they might otherwise
introduce to the applications running on the CPUs. Below is an example of how one
would isolate CPUs 7 and 8 by adding it to the kernel command line, using the grubby
command:

Shell Command

$ grubby —--update-kernel DEFAULT --args="isolcpus=6,7"

To confirm that the kernel command line was indeed updated, use:

Shell Command

$ grubby --info DEFAULT | grep args

args="... ro rhgb quiet isolcpus=6,7"

To verify that the requested CPUs were indeed isolated, one can use this command after
rebooting:

Shell Command

$ cat /sys/devices/system/cpu/isolated

&6=T7

One can also see which CPUs were not isolated using this command:

64



Shell Command

$ cat /sys/devices/system/cpu/possible

0-5

Even when isolcpus is used, several system threads will still be allocated to the
isolated CPUs, by the kernel. One can however still move some of these system threads
to the non-isolated CPUs. The following command will move all system threads, namely
threads with a parent process ID of 2 to CPUs 1 through 6:

Shell Command

$ pgrep -P 2 | xargs -i taskset -pc 0-5 {}

pid 3’s current affinity list: 0-7
pid 3’s new affinity list: 0-5

pid 4’s current affinity list: 0-7
pid 4’s new affinity list: 0-5

Alternatively one can also use the tuna command to move all system threads away
from CPUs 7 and 8:

Shell Command

$ tuna isolate —--cpus=6,7

To verify system thread migrations, one can display the thread or CPU affinities of all
threads, by utilising the tuna command, where Oxff means that the thread can execute
on any CPU and an integer value means that it is pinned to that specific CPU. In the
below example, process with ID 13 is pinned to CPU 4 and process with ID 17 is pinned
to CPU 1:

65



$ tuna show_threads
thread ctxt_switches

pid SCHED. rtpri affinity voluntary nonvoluntary cmd
1 OTHER 0 Oxff 18027 3219 systemd
2 OTHER 0 Oxff 6750 29 kthreadd
3 OTHER 0 Oxff 11 0 pool_workqueue_release
4 OTHER 0 Oxff 2 0 kworker/R-rcu.g
5 OTHER 0 Oxff 2 0 kworker/R-rcu.p
6 OTHER 0 Oxff 2 0 kworker/R-slub_
7 OTHER 0 Oxff 2 0 kworker/R-netns
13 OTHER 0 3 6 1 kworker/R-mm_pe
14 OTHER 0 Oxff 51 3 rcu-tasks_kthread
15 OTHER 0 Oxff 14 0 rcu_-tasks_rude_kthread
16 OTHER 0 Oxff 7 0 rcu_-tasks_trace_kthread
17 OTHER 0 0 1158153 3390 ksoftirgd/0

Additionally, one should move all kernel workqueues to the CPUs that have not been
isolated. For instance, to allocate all workqueues to CPUs 1 through 6, use a bit mask of
0x3f, where the default is 0xff:

Shell Command

$ find /sys/devices/virtual/workqueue -name cpumask -exec echo 3f > {} \;

One can list the current kernel workqueue affinities, to confirm that they have moved:

Shell Command

$ find /sys/devices/virtual/workqueue -name cpumask -print -exec cat {}

\Y;

/sys/devices/virtual/workqueue/cpumask

3f
/sys/devices/virtual/workqueue/writeback/cpumask
3f

To verify that the CPUs were successfully isolated, one can check the number of thread
context switches occurring on each CPU:

66



Shell Command

S perf stat -e ’sched:sched switch’ —-a -A --timeout 30000

Performance counter stats for ’'system wide’:

CPUO 149,090 sched:sched_switch
CPUL 118,949 sched:sched_switch
CPU2 155,864 sched:sched_switch
CPU3 124,657 sched:sched_switch
CPU4 288,309 sched:sched_switch
CPU5 517,772 sched:sched_switch
CPU6 1,077 sched:sched_switch
CPU7 2,772 sched:sched_switch

30.036827225 seconds time elapsed

A very low context switch count should be shown for the isolated CPUs.

. Timer Ticks: The kernel’s scheduler operates at regular intervals on individual cores
to manage the transition between active threads, these are called timer ticks. These
timer ticks can lead to unpredictable delays in applications sensitive to latency. If you
have isolated specific cores to your application, each running a single thread, you can
mitigate against these interruptions by employing the kernel command line option called
nohz_full , to reduce the number of timer tick interrupts.

For example, if one has already isolated CPUs 7 and 8 using isolcpus , then one can
use this command to reduce the interrupt timer ticks on the same CPUs:

Shell Command

$ grubby —--update-kernel DEFAULT --args="nohz full=6,7"

To confirm that the kernel command line was indeed updated, use:

Shell Command

$ grubby —--info DEFAULT | grep args

args="... ro rhgb quiet nohz full=6,7"

To verify what boot time kernel parameters were set do the following after rebooting:

67



Shell Command

$ cat /proc/cmdline

BOOT_IMAGE= (hd0,msdosl) /... ro rhgb quiet nohz_full=6,7

One can then use this command to verify that the timer tick frequency has indeed been
reduced by using the perf command:

Shell Command

$ perf stat —-e ’'irqg.vectors:local_timer entry’ —-a —-A —-—timeout 30000

Performance counter stats for ’system wide’:

CPUO 27,074 irg.vectors:local_timer_entry
CPU1 25,419 irg.vectors:local_timer_entry
CPU2 27,279 irg.vectors:local_timer_entry
CPU3 25,923 irg.vectors:local_timer_entry
CPU4 26,061 irg.vectors:local_timer_entry
CPUS 25,390 irg.vectors:local_timer_entry
CPU6 2 irg.vectors:local_timer_entry
CPU7 3 irg.vectors:local_timer_entry

30.077830680 seconds time elapsed

Note that the timer tick cannot be completely eliminated.

. CPU Frequency Scaling: Maximising the CPU frequency will assist in negating the
need for the CPU to increase or decrease its frequency as the workload increases or
decreases. As the frequency scaling is uncontrollable by a user, it is advisable to have a
stable and uniform frequency so as to avoid any unpredictable speedups or slowdowns
by the CPU, which could lead to erratic results, even when running the exact same task
over and over.

This command will show one how long it takes a CPU to switch frequency, which can be
a considerable amount of time:

Shell Command

$ cpupower frequency-info | grep "transition latency"

maximum transition latency: 20.0 ps

Use this command to ensure that one is able to manipulate the CPU core frequency, this
should list all of the available scaling governors:

68



Shell Command

$ cpupower frequency-info | grep governors

available cpufreqg governors: conservative ondemand userspace powersave

performance schedutil

Thereafter, use this command to list all of the available CPU frequency scaling governors,
whereby there should be a policy for each CPU:

Shell Command

$ find /sys/devices/system/cpu -name scaling governor

/sys/devices/system/cpu/cpufreq/policy6/scaling_governor
/sys/devices/system/cpu/cpufreq/policy4/scaling_governor
/sys/devices/system/cpu/cpufreq/policy2/scaling_governor
/sys/devices/system/cpu/cpufreqg/policy0/scaling_governor
/sys/devices/system/cpu/cpufreq/policy7/scaling_governor
/sys/devices/system/cpu/cpufreq/policy5/scaling_governor
/sys/devices/system/cpu/cpufreq/policy3/scaling_governor
/sys/devices/system/cpu/cpufreq/policyl/scaling_governor

One can then set the scaling governor for the desired CPU to the maximum frequency,
which is also known as the performance level frequency. For example to set the maximum
frequency for CPU 8, one would use this command:

Shell Command

$ echo performance > /sys/devices/system/cpu/cpufreq/policy7/scaling governon

. Interrupt Affinity: Latency spikes from interrupt request (IRQ) processing can be
minimised by adjusting the CPU affinity to IRQs. This can be done using the
irgbalance command, which will also automatically isolate any CPU cores that were
specified as part of the kernel command line parameter isolecpus . Execute this
command to isolate the CPU cores previously specified by isolcpus :

Shell Command

$ irgbalance —-—-foreground —--oneshot

One can check the CPU affinity for all IRQs by using this command:

69



Shell Command

$ find /proc/irq/ -name smp affinity list —print -exec cat {} \;

/proc/irqg/0/smp_affinity_list
0-5
/proc/irqg/l/smp_affinity_list
0-5

One can also monitor any isolated CPU, to ensure that they are not receiving any IRQs,
here CPU 8 has been isolated and should be processing zero IRQs:

Shell Command

$ watch cat /proc/interrupts

Every 2.0s: cat /proc/interrupts example.com: Wed Jul 31 20:57:02 2024
CPUO 000 CPU7
0: 42 ... 0 IO-APIC 2-edge timer
g 0 0 IO-APIC l-edge 18042
8: 1 0 IO-APIC 8-edge rtc0
9z 0 0 IO-APIC 9-fasteoi acpi

. Disable Swap: A significant page fault and latency spike will be incurred when attempting
to retrieve data that has been swapped from microchip-based memory to disk-based
memory, as disk-base memory access is far slower than microchip-based memory
access. One can prevent this by disabling disk-based memory swapping:

Shell Command

$ swapoff -a

Note that sometimes one may find that the disk-based memory swapping automatically
re-enables itself because of some builtin OS safeguards. To prevent that from happening,
one can use the systemctl command to shutdown the disk-based memory swapping,
including any safeguards. Firstly one has to find all active swap units.

70



Shell Command

$ systemctl —--type swap

UNIT LOAD ACTIVE SUB DESCRIPTION

dev-mapper—-luks.swap loaded active active /dev/mapper/luks

dev-zram0.swap loaded active active Compressed Swap on /dev/zram0

Thereafter one has to stop each swap unit.

Shell Command

$ systemctl stop ’'dev-mapper-luks.swap’

Finally masking each unit, where this masking is what prevents it from automatically
restarting.

Shell Command

$ systemctl mask ’'dev-mapper-luks.swap’

Created symlink /etc/systemd/system/dev-mapper-luks.swap — /dev/null.

One can then verify that we are no longer swapping to disk by displaying the current swap
information:

Shell Command

$ swapon —--show

. Disable Transparent Huge Pages: Transparent Huge Pages is a feature of the kernel,
whereby it automatically promotes regular sized memory pages into huge pages. This
process can lead to latency spikes both during the promotion of memory pages and when
memory compaction occurs. The support of Transparent Huge Page can be disabled by
executing the following command:

Shell Command

$ echo never > /sys/kernel/mm/transparent _hugepage/enabled

. Disable NUMA Memory Balancing: Automatic migration of memory pages between
Non-Uniform Memory Access (NUMA) nodes will cause memory page faults and latency

71



spikes for applications using the affected memory. Automatic NUMA memory balancing
can be disabled by disabling the numad service as well as executing the following
command:

Shell Command

$ echo 0 > /proc/sys/kernel/numa balancing

. Disable Mitigations for CPU Vulnerabilities: Mitigations against CPU vulnerabilities
should be turned off, as those mitigations can have an unknown negative affect on
certain types of application processing. It is entirely possible that a certain mitigation can
effect an application executing in one EE while having no effect on a similar application
executing in another EE.

CPU mitigations against vulnerabilities typically reduce the CPUs performance in the
following ways:

(a) Speculative Execution Mitigations: Speculative execution allows CPUs to run
faster by guessing ahead, limiting or disabling it reduces these performance gains,
leading to slower execution of instructions.

(b) Increased Context Switching: The overhead of additional context switches slows
down CPU performance, especially in workloads that involve frequent transitions
between user and kernel modes.

(c) Memory Fencing and Cache Management: Additional memory fencing and cache
management overhead increases latency, as it interrupts normal operations and
forces the CPU to reload data from slower memory sources.

(d) Disabling  Hyperthreading/Simultaneous  Multithreading: Disabling
Hyperthreading/Simultaneous Multithreading effectively reduces the number of
simultaneous execution threads, meaning the CPU can handle fewer tasks in
parallel, leading to lower overall performance.

(e) Increased Synchronisation and Locking: Increase the need for context
switches, synchronisation, and cache invalidation. More synchronisation means
less concurrency, which can bottleneck performance, especially in multi-core or
multi-threaded applications.

Therefore, in order to level the playing field for all applications and EEs it is best to entirely
disable these mitigations (Szewczyk et al., 2022). To begin, one can list all of CPU
mitigations that have been implemented and in turn these mitigations can be disabled:

72



Shell Command

$ lscpu

NUMA :

NUMA node (s) :
NUMA nodeO CPU(s):

Vulnerabilities:
Gather data sampling:

Itlb multihit:
Lltf:

Mds :

Meltdown:

Mmio stale data:
Retbleed:

Spec rstack overflow:

0-7

Not affected

KVM: Mitigation: VMX disabled

Mitigation; PTE Inversion; VMX conditional cache
SMT vulnerable

Clear CPU buffers;
Mitigation; PTI

flushes,
Mitigation; SMT vulnerable
Unknown: No mitigations

Not affected

Not affected

Spec store bypass: Mitigation; Speculative Store Bypass disabled via
prctl
Spectre vl: Mitigation; usercopy/swapgs barriers and __user

pointer sanitization

Spectre v2: Mitigation; Retpolines, IBPB conditional, IBRS_FW,
STIBP conditional, RSB filling, PBRSB-eIBRS Not
affected

Srbds: Not affected

Tsx async abort: Not affected

At boot time one can disable all mitigation as follows:

Shell Command

$ grubby —-—-update-kernel DEFAULT —--args="mitigations=off"

As before, to confirm that the kernel command line was indeed updated, use:

Shell Command

$ grubby —-—-info DEFAULT | grep args

args="... ro rhgb quiet mitigations=off"

As before, one can verify what boot time kernel parameters were set using the following,
after rebooting:

73



Shell Command

$ cat /proc/cmdline

BOOT_IMAGE= (hd0,msdosl) /... ro rhgb quiet mitigations=off

Listing the CPU mitigations again will now show that no mitigations are enabled and that
the CPU is vulnerable to exploits:

Shell Command

$ lscpu

NUMA :

NUMA node(s) :

NUMA nodeO CPU(s) : 0-7
Vulnerabilities:

Gather data sampling: Not affected

Itlb multihit: KVM: Mitigation: VMX disabled

Lltf: Mitigation; PTE Inversion; VMX wvulnerable
Mds: Vulnerable; SMT vulnerable

Meltdown: Vulnerable

Mmio stale data: Unknown: No mitigations

Retbleed: Not affected

Spec rstack overflow: Not affected

Spec store bypass: Vulnerable

Spectre vl: Vulnerable: __user pointer sanitization and

usercopy barriers only; no swapgs barriers

Spectre v2: Vulnerable, IBPB: disabled, STIBP: disabled,
PBRSB-eIBRS: Not affected

Srbds: Not affected

Tsx async abort: Not affected

In order to measure how effective each OS configuration change is in mitigating against OS
noise, one should use an OS profiling tool such as the Linux Kernel OS Noise Tracer*. This will
provide one with an indication of the source of any OS noise as well as performance metrics
that can be used to best tune the OS for benchmarking purposes.

The relevance and importance of these OS level configurations in mitigating against OS noise
is one aspect that has been found to be missing from the vast majority of SLR relevant studies,
except for the study by Szewczyk et al. (2022). This aspect is so crucial that if not mitigated
against, it can dramatically change the results of the measured performance (de Oliveira et al.,
2023).

“https://docs.kernel.org/trace/osnoise-tracer.html

74


https://docs.kernel.org/trace/osnoise-tracer.html

3.5.3. Benchmarking algorithms

Researchers depend on empirical evidence, but quantifying the precise advantages of a
solution analytically is often challenging. In collaborative research areas such as computer
science, it is advantageous for the community to adopt a shared set of benchmarks to evaluate
their work. These benchmark suites improve the reproducibility of experiments, enabling more
consistent comparisons of results across various studies (Yuki, 2014).

Table 3.3: PolyBench/C v4.2.1 Benchmarks

Benchmark Description
2mm 2 Matrix Multiplications (ax A B+ C + 8 x D)
3mm 3 Matrix Multiplications ((A % B) = (C % D))
adi Alternating Direction Implicit solver
atax Matrix Transpose and Vector Multiplication
bicg BiCG Sub Kernel of BiCGStab Linear Solver
cholesky Cholesky Decomposition
correlation Correlation Computation
covariance Covariance Computation
deriche Edge detection filter
doitgen Multi-resolution analysis kernel (MADNESS)
durbin Toeplitz system solver
fdtd-2d 2-D Finite Different Time Domain Kernel
floyd-warshall | Vertice pairs shortest path in a weighted graph
gemm Matrix-multiply C=alpha.A.B+beta.C
gemver Vector Multiplication and Matrix Addition
gesummyv Scalar, Vector and Matrix Multiplication
gramschmidt | Gram-Schmidt decomposition
heat-3d Heat equation over 3D data domain
jacobi-1d 1-D Jacobi stencil computation
jacobi-2d 2-D Jacobi stencil computation
lu LU decomposition
ludcmp LU decomposition followed by Forward Substitution
mvt Matrix Vector Product and Transpose
nussinov Dynamic programming algorithm for sequence alignment
seidel-2d 2-D Seidel stencil computation
symm Symmetric matrix-multiply
syr2k Symmetric rank-2k update
syrk Symmetric rank-k update
trisolv Triangular solver
trmm Triangular matrix-multiply

75



PolyBench/C which uses the polyhedral model, is an example of such a benchmark suite that
many studies now utilise (Jangda et al., 2019; Ménétrey et al., 2021; Na et al., 2016; NieBen
et al., 2020; Rossberg et al.,, 2018; Salim et al., 2020; Spies & Mock, 2021; Szewczyk
et al., 2022; Titzer, 2022; Wang, 2021; Wang, 2022; Yan et al., 2021), significantly aiding in
establishing a common foundation for empirical validations. The benchmarking algorithms that
will be used by this study are the PolyBench/C algorithms as per Table 3.3, that were used by
other related studies as per the SLR.

The polyhedral model is a versatile representation for arbitrarily nested loops that can be
algebraically represented in the Static Control Parts (SCoP) format. The SCoP format contains
four elements for each statement, namely, iteration domains, access relations, dependence
polyhedra/relations and the program schedule. Originally, all array subscripts, loop bounds,
and branch conditions needed to be affine functions of loop index variables and global
parameters for analysis. Ongoing research has however significantly broadened the range of
analysable programs by polyhedral frameworks.

In addition, the PolyBench/C algorithms implement the Performance Application Programming
Interface (PAPI)°, which allows for in-depth performance benchmark reporting (Barry
et al., 2023). PAPI supplies a standardised interface and methodology for performance counter
data collection from diverse hardware and software components. These include hardware
components such as CPUs, Graphics Processing Units (GPUs) and more, as well as virtual
and cloud environments from most major technology manufacturers.

This industry-wide collaboration ensures seamless integration of PAP| with new architectures
as they are released. As the popularity of the PAPI component architecture increases,
performance tools that interface with PAPI will automatically gain the capability to measure
these new data sources. From a software engineering and research point of view, PAPI allows
one to extract the relationship between the performance of hardware processing and software
performance.

3.6. Data acquisition and evaluation

Selecting the best sampling technique for measuring computer software performance depends
on various factors, including the specific goals of one’s performance analysis, the nature of
the software, and the available resources (Pace, 2021). Some commonly used sampling
techniques for computer software performance analysis are:

1. Time-Based Sampling: Collect performance metrics at regular time intervals, such as
every millisecond, second, minute, and so on. This technique provides a consistent view
of software performance over time and is useful for identifying trends and patterns.

Shttps://icl.utk.edu/papi/

76


https://icl.utk.edu/papi/

10.

Event-Based Sampling: Capture performance data based on specific events or triggers
within the software, such as system calls, exceptions, or user interactions. This technique
is valuable for understanding performance during critical events or scenarios.

Transaction-Based Sampling: Capture performance metrics for each transaction or
user interaction with the software. This technique is particularly useful for systems with
high transaction volumes, such as web applications.

Percentage-Based Sampling: Sample a certain percentage of transactions or requests
for performance measurement. For example, you could sample 10% of requests,
providing an overview of the system’s performance while reducing the data collection
overhead.

. Adaptive Sampling: Dynamically adjust the sampling rate based on system conditions,

workload, or performance characteristics. For instance, increase the sampling rate during
peak usage periods to capture more data during high-load scenarios.

. Stratified Sampling: Divide the software into different strata, such as modules,

components or user types and collect performance metrics independently for each
stratum. This allows for a focused analysis of specific areas within the software.

. Critical Path Sampling: Focus on sampling the critical paths or most

performance-sensitive sections of the software. This approach helps identify bottlenecks
and areas that significantly impact overall performance.

. Random Sampling: Select samples randomly from the software’s execution. This

technique can help avoid bias and ensure a representative sample of the software’s
performance.

. User-Based Sampling: Sample performance based on specific user profiles or personas

to understand how different types of users experience the software. This is especially
useful for applications with diverse user interactions and role-based access restrictions.

Load-Based Sampling: Adjust the sampling rate based on the current system load
or traffic. Higher sampling rates during heavy load periods can provide insights into
performance under stress.

The choice of the sampling technique will depend on factors such as the criticality of the
application, the nature of performance requirements, the workload characteristics, and the
available tools and resources. It is often beneficial to combine multiple sampling techniques
to gain a comprehensive understanding of software performance. Experimentation and
adaptation based on the specific context are key to finding the most effective sampling approach
for a particular software system (Baltes & Ralph, 2022).

77



Sampling

Probability Non-probability
Simple Systematic Stratified Cluster Quota Volunteer Haphazard
Simple  Systematic  Stratified  (random) Quota Snowball  Self- Convenience
random random random Cluster selection
Purposive
Extreme Homogeneous Critical Opportunistic
case case
Heterogeneous Typical Politically Theoretical
case important
Multi-stage

(any sampling design that occurs in two or more successive stages using
probability, non-probability or a combination of techniques)

Figure 3.3: Sampling Techniques (Saunders et al., 2019)

The data acquisition and evaluation that will be employed by this study have been formulated
and partially based on what was discovered through the SLR. The primary as well as the other
studies identified through the SLR have mostly employed non-probability purposive sampling,
by utilising homogeneous sampling involving a small set of specific compute-intensive
workloads. Having a small set of specific compute-intensive workloads from which to sample
benchmarking data from is considered both rational and logical.

In non-probability sampling methods, excluding quota sampling, determining an appropriate
sample size is ambiguous. There are no set rules, unlike in probability sampling. Instead, it
is crucial and foundationally critical to establish a logical link between your chosen sampling
approach and the objective and scope of your research. The selected sample can serve
specific purposes, such as illustrating a specific aspect or generalising findings to theories,
rather than representing a whole population (Saunders et al., 2019).

These samples are available in C and are software applications that are based on
compute-intensive algorithms as listed in the previous section. These samples are also
easily converted into JS and WASM to allow for uniform benchmarking across the three EEs.
Having uniformly implemented algorithms to benchmark across the three EEs is considered
fundamental to the validity of the benchmarking data collected and the overall validity of this

78



study.

In addition to the homogeneous sampling, heterogeneous sampling aspects will also be added
in to allow for a multi-stage type sampling regime as suggested by Saunders et al’s (2019) in
figure 3.3. Given that, it would be impossible to collect benchmarking data from every possible
compute-intensive algorithm ever invented, having a multi-stage sampling regime will at the
very least allow for a wider benchmarking view than with some previous studies.

3.7. Ethical considerations

In addition to Myers and Venable’s (2014) six ethical principles which this study intends
to adhere to, there are also other ethical considerations for non-participant based applied
experimental computer science studies, where researchers do not directly involve human
subjects but conduct experiments on computer systems or software. These ethical
considerations are critical in ensuring responsible research and technology development. They
include:

1. Data Privacy and Security: Ensure that sensitive data used in experiments, if any, is
handled and stored securely, following best practices for data privacy and security to
prevent unauthorised access or breaches.

2. Responsible Data Usage: Use data ethically and responsibly, obtaining appropriate
permissions and ensuring that data is used for the intended purpose without causing
harm or violating privacy.

3. Avoidance of Bias and Fairness: Check for biases in data, algorithms, or models that
may lead to unfair outcomes, discrimination, or perpetuation of inequalities. Strive for
fairness and inclusivity in system behaviour.

4. Transparency and Reproducibility: Promote transparency in reporting methodologies,
assumptions, and results to facilitate the replication and validation of experiments by the
wider research community.

5. Appropriate Use of Artificial Intelligence (Al): Apply Al and machine learning
responsibly, ensuring that systems are explainable, accountable, and not used to
propagate misinformation, harm, or malicious intent.

6. Environmental Impact: Consider and mitigate the environmental impact of experiments,
algorithms, or technologies, striving for energy-efficient and sustainable solutions.

7. Compliance with Laws and Regulations: Adhere to applicable laws, regulations, and
guidelines governing the use of technology, ensuring compliance with ethical standards
set by relevant authorities.

8. Avoidance of Harm: Design and conduct experiments in a way that minimises the risk
of harm to individuals, communities, or the environment. Prioritise safety and well-being.

79



10.

11.

12.

13.

. Conflict of Interest Disclosure: Disclose any potential conflicts of interest that could

influence the design, conduct, or reporting of the experiment, ensuring transparency in
relationships with stakeholders.

Ethical Use of Algorithms: Ensure that algorithms developed or used in experiments
are designed with ethical considerations, respecting human rights, and avoiding potential
harm or discrimination.

Accountability and Responsibility: Take responsibility for the outcomes and
implications of the experiments, communicating results accurately and avoiding
exaggeration or misrepresentation.

Informed Decision Making: Provide clear information to stakeholders and
decision-makers regarding the capabilities, limitations, and potential risks associated with
the experimental technology.

Oversight and Review: Seek ethical oversight and review of research proposals and
experiments by internal or external ethics committees to ensure compliance with ethical
guidelines and standards.

Adhering to these ethical considerations will help ensure that this study is conducted in a
responsible and beneficial manner, contributing positively to society and the advancement of
technology.

3.8.

Research limitations

This study may encounter several common limitations that can affect the validity,
generalisability, and robustness of its findings. Some common research limitations that we
are aware of and may strive to mitigate are:

1.

Sample Size and Representativeness: Limited sample size can affect the
generalisability of results to a broader population. If the sample is not representative
of the target user base or system users, the findings may not be applicable in real-world
scenarios.

. Sampling Bias: Bias in the selection of participants or systems can skew the results and

compromise the validity and reliability of the study. Biased sampling may not accurately
reflect the diversity of the population or system usage patterns.

. Generalisability of Findings: The controlled settings of experiments may limit the

real-world applicability and generalisability of the findings. Extrapolating results to
different contexts or scenarios should be done cautiously.

. Laboratory vs. Real-World Conditions: Experiments conducted in a controlled

laboratory settings may not accurately mimic real-world conditions, potentially affecting
the relevance and applicability of the results in practical settings.

80



10.

11.

12.

. Operationalisation and Measurement: Defining and measuring variables in a precise

and consistent manner can be challenging. Ambiguities or inconsistencies in the
operationalisation of variables may impact the reliability and validity of the measurements.

. Limited Time Frame: Constraints on time may limit the depth and breadth of the study.

Long-term effects, user learning curves, or system performance over extended periods
may not be adequately captured.

. Resource Constraints: Limited resources, including budget, technology, or personnel,

can constrain the scale and scope of the study, impacting the comprehensiveness and
robustness of the research.

. Uncontrolled Variables: Unforeseen variables or confounding factors that are not

controlled can introduce noise into the study, making it challenging to isolate the effects
of specific variables of interest.

. Ethical Limitations: Ethical constraints, such as limitations on data collection, privacy

concerns, or restrictions on human experimentation, can affect the design and execution
of experiments.

Technological Limitations: The technological limitations of existing tools, frameworks,
or platforms may restrict the complexity and realism of the experimental setup, thereby
affecting the accuracy of results.

Simplicity of Models: Simplified models or assumptions may be necessary to make the
experiment tractable, but they can oversimplify real-world complexities, potentially limiting
the accuracy of predictions or insights.

Publication Bias: Studies with statistically significant or positive results are more likely
to be published, leading to a bias in the available literature and potentially skewing the
overall understanding of a particular phenomenon.

Acknowledging and addressing these limitations in research designs, methodologies, and
interpretations are crucial for improving the rigour, relevance, and applicability of applied
experimental computer science studies. Researchers should transparently communicate these
limitations to provide context for the findings and guide future research directions.

3.9.

Summary

In this chapter, we provided the philosophical stance together with the research methodology
that will be used for this study. We then looked at the design theory and discussed how this
study aligns with DSR. We also then suggest a set of existing and previously used research
instruments, that were used with similar studies as outlined in the SLR. As outlined in the SLR
it was found that the PolyBench/C benchmarking suite formed an integral part of those study’s
research instruments, and as such its use in our study was both prudent and expected.

81



Further to that, we also briefly noted the ethical implications of our study and what was required
in order for this study to uphold a high standard of ethics. We also then reviewed the limitations
of this study in detail, so that any conclusions derived at, can be fully understood within
the context within which they were attained. Finally, we outlined how data will be acquired
through experiments and then evaluated so that we can derive sound conclusions which will
be presented in chapter 5.

In the next chapter, we will present a system architecture and design for a proposed solution,
which re-evaluates and builds on what was presented in chapter 1.

82



CHAPTER 4

SYSTEM ARCHITECTURE AND DESIGN

This chapter examines ways to improve the performance of web browser EEs through the
creation of a new web browser EE, better suited to current user performance demands. This
chapter also covers this research’s objective three, where the researcher endeavours to:

Objective 3

Develop a prototype web browser EE that is capable of hosting and executing CIAs with
native desktop performance.

This chapter explores aspects of the new web browser EE based on the following:
Section 4.1. Design considerations
Section 4.2. Conceptual design
Section 4.3. Prototype architecture
Section 4.4. Data collection
Section 4.5. Data precision

Section 4.6. Evaluation

4.1. Design considerations

Before we delve into the actual web browser EE prototype architecture and design, let us first
ponder what key characteristics such an ideal prototype would be comprised of in a perfect
world. Three distinct characteristics come to mind, first there is the ability to receive and
execute high-performance applications, second is the ability to employ a high-performance
runtime environment, and the third is to employ a Zero Trust Architecture (ZTA) so that in the
event of executing a malicious application, it is unable to harm the device within which it is
executing (Rose et al., 2020).

To further understand these three characteristics and to form a high-level view of each, we will
now dissect each characteristic.

83



4.1.1. Reinventing the wheel

The ability to receive and execute high-performance applications is synonymous with natively
installing software on a computer system. Harnessing that ability through a web browser by
simply browsing to a specific web page, which would trigger a natively compatible application
from downloading on one’s computer system, would thus be ideal. Instead of trying to create a
universally compatible computer language that is capable of being executed on every existing
computer system.

One would thus avoid reinventing the wheel by creating a solution to a problem that has
already been solved, typically with existing, well-established methods or technologies. By using
deductive reasoning, one can formulate several reasons as to why avoiding the reinvention of
the wheel is beneficial:

1. Efficiency

(a)

Time Savings: Given that existing solutions have already been designed, developed
and field tested, it stands to reason that reusing existing solutions can save a
considerable amount of time in comparison to creating a completely new solution.
This allows one to instead focus on adding unique aspects in support of a web
browser EE.

Resource Optimisation: Given also then that valuable resources are not used for
developing a new solution, it reduces the need for duplicating efforts. Thereby
allowing resources to be used more effectively elsewhere, for example to enhance
existing solutions so as to improve the security robustness of the proposed web
browser EE.

2. Quality and Reliability

(@)

Proven Solutions: Existing solutions have typically over time been repeatedly tested,
analysed extensively in various forms, and actively used as intended. That mature
nature of existing solutions gives rise to them being viewed as well-established
solutions with proven reliability and track record as compared to new solutions that
are still immature and unproven.

Reduced Bugs: Furthermore, given the extensive repeated testing, analysis and
everyday use of well-established solutions, it can result in fewer design defects and
bugs as compared to developing a new solution from scratch, which still needs
to advance through several cycles of testing and analysis, together with extensive
everyday use.

3. Cost Savings

(@)

Development Costs: Developing a new solution can be expensive in terms of both
time and money, as it stands to reason that any new development would require
some margin of time to complete, as well as some amount of funding to cover the
development effort and required resources. Whereas using an existing solution, one

84



would be able to leapfrog those initial time and cost constraints, since they have
already been consumed.

Maintenance Costs: Maintaining custom solutions can also be costly compared
to using widely adopted tools and libraries with community support, since custom
solutions tend to be niche, proprietary and not extensively supported or used.
Instead, adopting widely used tools and libraries with community support, tend to
cost much less, given the extensive support nature of communities, such as the
open-source community.

4. Focus on Innovation

(a)

Unique Value: As stated before, by reusing existing solutions for common problems,
developers can concentrate on creating unique features and innovations that add
real value to the proposed web browser EE, since their focus is not on creating a
new solution from scratch.

Competitive Advantage: In turn, developers can also focus on creating differentiators
rather than rebuilding basic foundational components. This would aid in quickly
realising truly innovative features for the proposed web browser EE, instead of
delivering basic foundational components that does not help to advance the
widespread usage of a new web browser EE.

5. Standardisation

(a)

Interoperability:  Using standard well-established solutions ensures better
compatibility and integration with other systems and tools, given they have been
utilised extensively and have matured to such a degree that many layers of
compatibility, together with many integrations, have been incorporated into them.

Community Support: Well-established solutions often have strong community
support, including documentation, forums, and updates, especially those that are
made available as open-source solutions. In fact, in some instances open-source
solutions are considered to be better than some closed-source or proprietary
solutions, given that they are not constrained by development resource limitations
that are driven by profit.

6. Learning and Growth

(@)

(b)

Knowledge Sharing: Leveraging existing solutions allows developers to learn from
the collective knowledge and experience of the community. Whereas, if one were
to create a new solution then all developers would be equally novice and have very
little knowledge of the solution, given its infancy.

Best Practices: Using standard existing solutions helps in adopting best practices
based on their usage patterns, that have been refined over time. Comparatively,
when creating a new solution that has yet to present established usage patterns
from which to formulate any set of best practices, may take some time to realise.

7. Risk Reduction

85



(a) Reduced Risk: Using a known, reliable and well-established solution mitigates the
risks associated with developing and deploying untested newly developed solutions.
This common understanding holds true, where maturity is commonly proportional to
robustness of well-established solutions.

(b) Predictable Outcomes: Established solutions provide more predictable results,
making further development planning and execution smoother as compared to newly
developed solutions that still need to formulate a baseline from which to establish a
predictable pattern planning and execution outcomes.

Considering this, having a web browser EE that is capable of executing tried and tested natively
compatible applications should be considered the best solution with which one would be able
to fully take advantage of the benefits of ClAs.

4.1.2. Compilation point in time

AOT compilation and JIT compilation are two distinct methods used to translate source code
into machine code that a computer system can execute (Bourgoin & Chailloux, 2015; HaBler
& Maier, 2021; Herman et al., 2014; McAnlis et al., 2014a; McAnlis et al., 2014b; Ménétrey
et al., 2021; NieBBen et al., 2020; Park et al., 2017; Park et al., 2018; Salim et al., 2020; Serrano,
2018; Serrano, 2021; éipek et al., 2019; Szewczyk et al., 2022; Titzer, 2022; Van Es et al.,
2017; Wang, 2022; Zhuykov et al., 2015). Comparing the two methods:

1. AOT Compilation

(a) Definition: AOT compilation refers to the process of compiling source code into
machine code before the application is executed. This typically happens during the
software build process.

(b) Performance: Since the code is already compiled before execution, there is
no compilation overhead at runtime, leading to potentially faster startup times.
The compiler can also perform extensive optimisations because it has the entire
codebase available.

(c) Deployment. AOT compiled code is platform-specific, meaning the compiled binary
must match the target architecture of the computer system.

(d) Portability: Less portable compared to JIT because different binaries are needed for
different ISAs and OSs.

(e) Error Detection: Errors can be detected at compile time, providing a chance to catch
and fix issues before deployment.

(f) Examples: C, C++, and Rust are typically AOT compiled programming languages.
2. JIT Compilation

(a) Definition: JIT compilation involves compiling source or intermediate code into
machine code, typically at runtime, as the program is being executed.

86



(b) Performance: May have a slower startup time due to the compilation overhead during
execution. Can optimise code based on runtime information, potentially leading to
better optimisations when compared to AOT.

(c) Deployment: JIT compiled code is more adaptable because it compiles on the target
machine, making it platform-agnostic.

(d) Portability: Highly portable since the same code can run on any platform with a
compatible JIT compiler.

(e) Error Detection: Some errors may only be detected at runtime, which can make
debugging more complex.

(f) Examples: Java, JS and WASM are typically JIT compiled programming languages.

Given the overhead imposed by JIT-based programming languages, one should thus seek
to use AOT-based programming languages from a performance-based point of view (HaBler
& Maier, 2021; Herman et al., 2014; McAnlis et al., 2014a; McAnlis et al., 2014b; Ménétrey
et al., 2021; Park et al., 2017; Park et al., 2018; Salim et al., 2020; Serrano, 2018; Serrano,
2021; éipek et al., 2019; Szewczyk et al., 2022; Titzer, 2022; Van Es et al., 2017; Wang, 2022;
Zhuykov et al., 2015).

4.1.3. Process isolation

Employing a ZTA is both prudent and wise when using a web browser, given the level
of malicious activity that takes place across the Internet (Belkin et al., 2019; Bhansali
et al., 2022; Bian et al., 2019; Borisov & Kosolapov, 2020; Brito et al., 2022; De Macedo
et al., 2021; Douceur et al., 2008; Fras & Nowak, 2019; Hilbig et al., 2021; Kharraz
et al., 2019; Konoth et al., 2018; Lehmann et al., 2020; Mazaheri et al., 2022; Musch
et al., 2019a; Musch et al., 2019b; NieBen et al., 2020; Rahimi, 2021; Rose et al., 2020; Sun
et al.,, 2019; Sun & Ryu, 2018; Wang et al., 2019; Wen & Wang, 2007; Wirfs-Brock &
Eich, 2020; Yin et al., 2015; Yu et al., 2020). The common experience is that not a day goes by
that one does not hear of another entity or individual that has fallen victim to a malicious web
site.

Given this, if one was to be able to download and execute natively compatible applications from
the Internet, one would need to ensure that the application has limited access to resources
available on the computer system (Rose et al., 2020; Wen & Wang, 2007). Failing to do so
would allow malicious applications to take over a user’s computer system, steal their data, and
then use said data to perform all sorts of illegal activities.

One mechanism that one can use to limit an application’s access to computer system resources
is by isolating its processes and then only allowing a very limited and specific set of resources to
be accessible (Rose et al., 2020; Wen & Wang, 2007). Using this foundation, the characteristic
of process isolation can therefore be assumed to be crucial for several reasons, primarily
revolving around security, stability, and performance, which can be articulated as follows:

87



1. Security

(@)

Containment of Malicious Content: By isolating web pages and their associated
processes, web browsers can prevent malicious applications on one page from
affecting others. This helps mitigate attacks such as Cross-Site Scripting (XSS)
and Cross-Site Request Forgery (CSRF).

Protection Against Vulnerabilities: If a vulnerability is exploited in one process, the
attacker is contained within that process and cannot easily access or control other
processes. This limits the scope and impact of the attack.

Sandboxing: Each isolated process can run with limited privileges, reducing the risk
of system-level exploits. This means that even if a process is compromised, the
attacker’s ability to harm the computer system is restricted.

2. Stability

(@)

Crash Containment: If a web page or its associated processes crashes, only the
process handling that specific page or application is affected. This prevents the
entire browser from crashing and ensures that other open tabs remain unaffected
and functional.

Resource Management: Isolating processes helps manage resource usage more
effectively. If one web page or their associated processes consumes excessive
memory or CPU, it can be managed or terminated without impacting other web
pages.

3. Performance

(a)

(b)

Efficient Multithreading: Modern CPUs have multiple cores, and process isolation
allows web browsers to take advantage of these cores by running different processes
concurrently. This can lead to better performance and responsiveness.

Prioritisation: Browsers can prioritise processes based on user interaction. For
instance, the web page that the user is actively engaging with can be given a higher
priority, ensuring a smoother experience.

Overall, process isolation enhances the user experience by making web browsers more
secure, stable, and responsive, especially when executing natively compatible applications.

Let us now look at what a potential web browser EE architectural design may look like when
employing these three characteristics.

4.2. Conceptual design

Reflecting on the design constraints while considering what a well-aligned architecture might
look like, we can expand on and dig deeper into the design presented in figure 1.3, section 1.5.
What has been derived at is a simple yet elegant conceptual design with which to solve the

88



problem at hand, which is depicted in figure 4.1.

In the design, the containers represent the different parts of a complete web browser, the lines
connecting the containers represents the interactions between them, such as communication
protocols, API calls, and data flows to name a few, while the users depict the people or systems
that interact with the containers.

USER DOMAIN

Other Native Application 1

App Lib 1 Lib n

Other Native Application n

App Lib 1 Lib n

SYS23 Enclave 1

Internet » Native Application 1 (Client) -

SYS23 Enclave n

Native Application n

O]
http(s)

—_— WEB BROWSER

@)
App Lib 1 Lib n
1@

¢

OPERATING SYSTEM -«

¢

HARDWARE

Figure 4.1: C4 Container (Level 2) Conceptual Design

The key component or crown jewel of the design is the SYS23 enclave, which
is based on existing container technologies similar to that of Docker (Fras &
Nowak, 2019; Kozlovis, 2020; Manco et al., 2017; Randal, 2020; Szewczyk et al., 2022)

89



and LXC (Manco et al., 2017; Randal, 2020). The simple idea is to use a specifically crafted
container within which one can execute untrusted native applications.

Dissecting the design, one is presented with the following containers:

1.

Web Browser: Facilitates the downloading of the natively compatible application. It
will provide the web server with the relevant details with which it can determine which
of the available applications, given the user’s computer system ISA and OS, should be
downloaded to the user’s computer system.

. System23 Daemon: Receives the downloaded application and orchestrates the isolation

of the application into its own enclave, which restricts the functions of the applications and
its processes. This daemon would manage the full lifecycle of the enclaves together with
their various restrictions.

. System23 Enclave: Is the actual enclave that is heavily restricted to what functions the

application and its processes can perform.

In addition to the containers, the design also depicts the relationships or connections between
the containers, which are numbered as follows:

1.

This relationship depicts an example internet connection from an application executing
in a SYS23 enclave. Those network connections would be managed by the
network namespace as described later and would allow for example, client/server type
applications.

. This relationship depicts the stock standard http and https connections that are facilitated

via one’s web browser.

. This relationship depicts how a web browser would integrate with the SYS23 daemon.

The mechanism used could for example be that of a Multipurpose Internet Mail Extension
(MIME) (Freed & Borenstein, 1996) type trigger.

. This relationship depicts the interactions between the SYS23 daemon and all of its

enclaves.

. This relationship depicts the interactions between the SYS23 enclaves and the OS, which

as will be described later, will be facilitated by the Secure Computing Mode (Seccomp)
restrictions built into the SYS23 enclave.

This idea and design is similar to that of Wen and Wang’s (2007) with their untrusted EE,
but it comes without the overhead of a fully fledged VM or OS, which makes it smaller and
more compact, thus requiring fewer resources. The prominent aspect of the SYS23 enclave
is that it fully encapsulates the execution of an application, where the application can only
perform functions that the SYS23 enclave allows. Also, the SYS23 executes native applications
that have previously been built using an AOT compiler, thus it does not require any JIT compiler.

Let us now look at these aspects in more detail.

90



4.3. Prototype architecture

Building on the design considerations and the conceptual design, we can now look at what a
high-performance web browser EE might look like together with what sort of technologies it
would contain.

[ Included

Linux
[ ] Excluded

Kernel

Change Security
Root Enhanced
(chroot) (selinux)

Figure 4.2: C4 Component (Level 3) Prototype Design

4.3.1. Native is good, native is fast

As argued in the design considerations, running native machine code is the most performance
efficient way of executing ClAs, because executing native machine code is generally considered
better than executing interpreted code for several reasons (Arteaga et al., 2020; Belkin et al.,
2019; Bourgoin & Chailloux, 2015; Brito et al., 2022; Cho et al., 2015; Choi & Moon, 2019;
De Macedo et al., 2021; De Macedo et al., 2022; Douceur et al., 2008; HaBler & Maier, 2021;
Herrera et al., 2018; Hockley & Williamson, 2022; Jangda et al., 2019; Jansen & van Groningen,
2016; Jiang & Jin, 2017; Konoth et al., 2018; Koper & Woda, 2022; Lehmann et al., 2020; Letz
et al., 2018; Liu et al., 2022; Lyu, 2021; Ma et al., 2019; Malle et al., 2018; McAnlis et al.,
2014a; McAnlis et al., 2014b; Ménétrey et al., 2021; Musch et al., 2019a; Na et al., 2016; NieBBen
et al., 2020; Powers et al., 2017; Reiser & Blaser, 2017; Rossberg, 2022; Rossberg et al., 2018;
Sipek et al., 2021; Spies & Mock, 2021; Stiévenart et al., 2022; Sun et al., 2019; Szewczyk
et al., 2022; Titzer, 2022; Tushar & Mohan, 2022; Van Es et al., 2017; van Hasselt et al., 2022;
Verdu & Pajuelo, 2016; Vilk & Berger, 2014; Wagner, 2017; Wang, 2021; Wang, 2022; Wang
etal., 2019; Wen et al., 2020; Wen & Wang, 2007; Yin et al., 2015; Yu et al., 2020; Zakai, 2011;

91



Zakai, 2017; Zakai, 2018; Zhuykov & Sharygin, 2017). These reasons can be summarised as
follows:

1. Performance

(a) Execution Speed: Native machine code runs directly on the hardware without the
need for an intermediary, making it significantly faster than interpreted code, which
must be translated on-the-fly.

(b) Optimisation: Compilers can optimise native machine code during the compilation
process, taking advantage of specific hardware features and performing advanced
optimisations that are not possible in an interpreted environment.

2. Resource Utilisation

(a) Efficiency: Native machine code tends to use system resources more efficiently
because it runs directly on the CPU and can be optimised for memory and CPU
usage.

(b) Lower Overhead: Interpreted code requires an interpreter, which adds overhead and
consumes additional memory and CPU cycles.

3. Predictability

(a) Consistent Performance: The performance of native machine code is more
predictable because it does not depend on the interpreter’s runtime performance,
which can vary based on different factors.

(b) Deterministic Behaviour: Native machine code execution is more deterministic,
which is crucial for real-time and embedded systems where timing is critical.

4. Security

(a) Reduced Attack Surface: Running native machine code reduces the attack surface
associated with the interpreter. Interpreters can have vulnerabilities that native code
execution avoids.

5. Deployment

(a) Standalone Executables: Native machine code can be compiled into standalone
executables, simplifying deployment since there is no need to distribute an
interpreter with the application.

(b) Compatibility: While native machine code is platform-specific, it can be highly tuned
for a given environment, ensuring maximum performance and reliability for that
platform.

Overall, the choice between native machine code and interpreted code depends on the specific
requirements of the application, including performance, resource constraints, and portability
needs. For SYS23 the C programming language was used with which to test and benchmark
the prototype artefact.

92



4.3.2. Keep it simple, stupid

In the design considerations, specifically section 4.1.2., we described how AOT
compiled programming languages are more desirable than JIT ones as they avoid
the need for an interpreter. Currently, quite a few programming languages exist that
are required to be interpreted at runtime, such as Python, Java, JS, and WASM
to name a few (Ahn et al., 2014; Auler et al., 2014; Chandra et al., 2016; Cho
et al., 2015; Choi et al., 2019; De Macedo et al., 2021; De Macedo et al., 2022; Douceur
et al.,, 2008; Frankston, 2020; Gong et al, 2015; Grimmer et al., 2018; HaBler &
Maier, 2021; Herrera et al., 2018; Jangda et al., 2019; Jansen & van Groningen, 2016; Konoth
et al.,, 2018; Koper & Woda, 2022; Letz et al., 2018; Maas et al., 2017; Manco
et al., 2017; Matsakis et al.,, 2014; McAnlis et al., 2014a; Na et al., 2016; Park
et al., 2017; Powers et al., 2017; Reiser & Blaser, 2017; Rossberg et al., 2018; Salim
et al., 2020; Selakovic & Pradel, 2016; Serrano, 2018; Serrano, 2021; Sipek
et al.,, 2019; Southern & Renau, 2016; Spies & Mock, 2021; Sun & Ryu, 2018; Szabd
& Nehéz, 2019; Titzer, 2022; Tushar & Mohan, 2022; Ueda & Ohara, 2017; Van Es
et al., 2017; Wang, 2021; Wang, 2022; Wang et al., 2019; Wen et al., 2020; Wirfs-Brock &
Eich, 2020; Yan et al., 2021; Zakai, 2011; Zhuykov et al., 2015; Zhuykov & Sharygin, 2017).

In order to interpret these programming languages, their runtime environments usually employ
a VM. However, when employing a VM, it brings with it all of the overhead that is required to
transform the programming language into native machine code so that the CPU can execute
the application. This overhead can significantly impact the performance of the application.

Conversely, applications that do not require any interpretation at runtime are not constrained
by any VM or the overhead that comes with it. Applications that have been developed in the
C and C++ programming languages (Brito et al., 2022; De Macedo et al., 2021; De Macedo
et al., 2022; DiPierro, 2018; Douceur et al., 2008; Fras & Nowak, 2019; HaBler & Maier, 2021;
Jangda et al., 2019; Jiang & Jin, 2017; Koper & Woda, 2022; Lehmann et al., 2020; Lehmann
& Pradel, 2022; Malle et al., 2018; McAnlis et al., 2014b; NieBen et al., 2020; Rossberg et al.,
2018; Salim et al., 2020; Spies & Mock, 2021; Szab6 & Nehéz, 2019; Szewczyk et al., 2022;
Ueda & Ohara, 2017; Zakai, 2018) are often considered some of the fastest due to several key
factors:

1. Low-Level Access: C and C++ provides direct access to memory and hardware through
pointers, thereby enabling fine-tuned optimisations that are not possible in higher-level
languages.

2. Minimal Overhead: The C and C++ languages have minimal runtime overhead. It lacks
features like garbage collection and extensive runtime type checking, which can slow
down execution in other languages.

3. Efficient Compilation: C and C++ compilers, such as GCC and Clang, are highly
optimised and produce efficient machine code. These compilers have been refined over
decades to generate code that runs very close to the hardware’s potential speed.

93



4. Simple Language Constructs: C and C++ are relatively simple languages with a small
number of keywords and constructs, which allows for more straightforward and faster
execution.

5. Portability: C and C++ are highly portable and can be compiled for virtually any
architecture, allowing the same code to be run efficiently on different hardware platforms.

6. Control Over System Resources: C and C++ gives programmers fine-grained control
over system resources such as CPU and memory. This control allows for optimisations
that can lead to significant performance improvements.

These characteristics make the C and C++ programming languages ideal choices for
performance-critical applications where speed and performance are essential, such as with
the SYS23.

4.3.3. Protect the innocent

Focussing specifically on the Linux OS and understanding the importance of application
and process isolation, we can propose the following technologies, noting that similar
technologies also exist within other OSs such as Windows. Containers such as the ones
that are available through Docker are a form of process isolation, combined with resource
management and security features (Biradar et al., 2018; Fras & Nowak, 2019; Manco
et al., 2017; Randal, 2020; Yu et al., 2020). The concept of a container does not exist inside of
Linux or any other currently existing OS.

A container is a term that is used to describe a combination of OS technologies, such as change
root, namespaces, Control Groups (Cgroups), and Seccomp, which are features that one can
use to isolate processes from one another. Isolating a process this way is not an all or nothing
approach as you can be very selective over what resources are isolated and which ones are
not. For SYS23, the intent is to use a combination of these Linux OS features. Let us now look
at each technology and how they would form part of the SYS23 enclave.

4.3.3.1. Change root

Change root or chroot is a Linux shell command that allows one to set the root directory
of a process to any other directory. This enables one to hide the computer system’s
actual root directory and provide any process with a fake root directory or jail. Hiding the
computer system’s actual root directory from a potentially malicious process has many security
advantages, foremost of which is that in no way can the malicious process access any OS or
user files (Ménétrey et al., 2021; Randal, 2020; Shepherd & Markantonakis, 2024; The Linux
Foundation, 2024) thus rendering the malicious process harmless from a file access point of
view.

94



|

/bin letc /opt /proc /run lusr Ivar
/fakeroot
|
| \ \ | \ \ \
/bin /etc /opt /proc /run /usr /var

Change Root Jail

Figure 4.3: Change Root Example Directory Structure

The following shell command example and figure 4.3 shows how one would create a fake
root called /fakeroot for a new shell process. Note that the new root directory does need
to contain all of the required OS files and other libraries in order for the process to execute
successfully.

Shell Command

S mkdir /fakeroot && chroot /fakeroot bash

Change root is not a very secure mechanism to use and using it on its own is not going to
provide one with a foolproof solution with which to protect one’s files. Also using change
root programmatically within say C programming code has a few caveats, such as the fact
that when using the change root system call, the current working directory is not switched
automatically (Randal, 2020; Shepherd & Markantonakis, 2024; The Linux Foundation, 2024).
Also relative paths still refer to directories and files outside of the new root directory.

Change root is a useful tool for specific use cases, particularly when lightweight isolation or
testing environments are needed. However, for more robust isolation, security, and ease of
use, modern isolation technologies such as those provided by control groups, namespaces,
and Seccomp are preferred by SYS23.

95



4.3.3.2. Security-enhanced Linux

A security architecture for Linux OS called Security-Enhanced Linux (SELinux) gives
administrators additional control over who can access a Linux system by utilising access
control security policies. It was originally created as a set of patches for the Linux kernel
utilising Linux Security Modules (LSMs) by the National Security Agency (NSA) of the United
States (Randal, 2020; Shepherd & Markantonakis, 2024; The Linux Foundation, 2005). In
2000, SELinux was made available to the open-source community and in 2003 it was merged
into the upstream Linux kernel version 2.6.

A flexible Mandatory Access Control (MAC) solution, as provided by SELinux is integrated
into the Linux kernel. An application or process operating as a user (UID or SUID) has the
user’s permissions to objects like files, connections, and other processes under standard
Linux Discretionary Access Control (DAC). Utilising a MAC-based OS kernel shields the Linux
system from faulty or malevolent programs that could harm or even destroy it.

Every user, application, process, and file on the Linux system has its access and transition
permissions defined by SELinux. Then, using a security policy that defines how strict or
lenient a particular Linux system should be, SELinux regulates the interactions of these entities
(Shepherd & Markantonakis, 2024; The Linux Foundation, 2005). How strict a policy to
implement for their Linux systems is to be considered by the system administrators. The policy
is comprehensive and can be applied with varying degrees of severity, which gives SELinux
complete fine-grained control over the Linux system.

. Action
Subject Request SELinux

(e.g. an Security
application) Server

Permission Object
Granted? (e.g. afile)

SELinux
Policy
Database

Access
Denied

Figure 4.4: Security-Enhanced Linux Decision Process

When a subject, such as an application, attempts to access an object, such as a file, the
SELinux policy enforcement server in the Linux kernel checks an access vector cache, where
subject and object permissions are cached. If a decision cannot be made based on data in the
access vector cache the request continues to the security server, which looks up the security
context of the application and the file in a matrix, based on which permission is then granted
or denied. This decision process is depicted in figure 4.4. The security context of subjects
and objects are applied from the pre-installed policy, which also provides the information to

96



populate the security server’s matrix.

SELinux can operate in one of three modes: enforcing, permissive and disabled. Instead of
running in enforcing mode, SELinux can run in permissive mode, where the access vector
cache is checked and denials are merely logged, as SELinux does not enforce the policy. This
can be useful for troubleshooting and for developing or fine-tuning SELinux policy. Disabled
mode should be avoided, as the system does not enforce the SELinux policy and does not label
any persistent objects such as files, consequently enabling SELinux in the future becomes
quite difficult (Shepherd & Markantonakis, 2024; The Linux Foundation, 2005).

When SELinux is used together with SYS23, it secures all of the resources outside of the
SYS23 enclave and does not play any part within the SYS23 enclave.

4.3.3.3. Secure computing mode

Seccomp is a feature within the Linux kernel that allows one to filter the hundreds of system calls
from a process to the kernel. Seccomp provides fine-grained access control to system calls
through one of two operating modes. The first, called strict mode, utilises a list of predefined
system calls that are allowed, the second, called filfer mode, utilises a user customisable
filter based on the Berkeley Packet Filter (BPF) rule system (Randal, 2020; Shepherd &
Markantonakis, 2024; The Linux Foundation, 2023j).

In strict mode, Seccomp restricts processes to a limited set of allowed system calls, namely
read, write, sigreturn, and exit . The read and write system calls are only
allowed for file descriptors that are already open, furthermore, all other system calls are
automatically denied. Any process that attempts to initiate a denied system call while operating
in strict mode will immediately be terminated by the Linux kernel. Figure 4.5 shows how an
example Application A would be restricted.

In filter mode, Seccomp restricts processes to a custom set of allowed system calls as well as
setting conditions as to when or how it should be restricted. If a process is allowed to use the
fork or clone system calls, then the resulting child process will also be constrained to the
same list of system calls as the parent process. As with strict mode, any process that attempts
to initiate a denied system call can be immediately terminated or some other action can also
be configured, such as logging the attempted breach or redirecting the call to another process
for processing. Figure 4.5 shows how an example Application B would be restricted.

Seccomp is a useful mechanism with which one can limit the interactions of a process with the
underlying OS. It can also provide a strong layer of additional protection to the SYS23 enclave,
whereby it can limit the attack surface for any malicious applications that may execute within
the enclave, for example by restricting system calls related to the reading and writing of files
residing external to the enclave (Randal, 2020; Shepherd & Markantonakis, 2024; The Linux
Foundation, 2023j). For these reasons, Seccomp forms a valuable part of the SYS23 solution.

97



Application A
System Calls

>
O Q < < o Q < <
. Kernel , .
fork clone read write socket bind exit return
APIs
3 3 3 3 3 £ 3 E
< < < < o [m) < <
Application B

System Calls

Figure 4.5: Secure Computing Mode

4.3.3.4. Control groups

Cgroups are a Linux kernel mechanism that can be used to impose usage limits on certain
system resources, such as the maximum amount of CPU usage that can occur or the
maximum amount of memory that can be used by a process, to name a few. By setting
limits to certain system resources one can prevent any single process from using or
claiming all available system resources, which in turn would cause the underlying computer
system to become overloaded, unresponsive and unusable (Biradar et al., 2018; Fras &
Nowak, 2019; Randal, 2020; Shepherd & Markantonakis, 2024; The Linux Foundation, 2023b).

Cgroups are hierarchical in structure where child Cgroups automatically inherit certain
immutable attributes from their parent Cgroup. Every process within a Linux-based OS belongs
to at least one Cgroup. The Linux kernel exposes Cgroups through a pseudo-filesystem called
the cgroupfs which can be located within the Linux filesystem as /sys/fs/cgroup . Figure
4.6 depicts how various applications may utilise Cgroups to assist them in managing their

system resource needs.

Furthermore, Cgroups are divided into the following set of high-level subsystem controllers,
which allows one to manage the underlying system resources as required:

1. Block 10: Manages access to 1/0O on block devices.

2. CPU: Manages CPU usage and scheduling.
3. CPUSET: Manages specific CPU allocations to specific processes.
4. Device: Manages access to devices.

5. Memory: Manages memory usage and limits.

98



6. Network: Manages network usage and limits.

7. Process: Manages process limits.

Application A ‘ Application B ’ Application C Application D

Kernel

Figure 4.6: Control Groups

When utilised within the SYS23 enclave, one can quickly see the advantages that Cgroups will
bring to the management of the enclave by providing a mechanism within which one is able to
limit and restrict the amount of system resources an application executing within the enclave
maybe able to gain access to (Biradar et al., 2018; Randal, 2020; Shepherd & Markantonakis,
2024; The Linux Foundation, 2023b). By doing so we can easily restrict a malicious application
from trying to exhaust the system resources and render it unresponsive or unusable.

4.3.3.5. Namespaces overview

Change root stems from first generation Portable Operating System Interface (POSIX)
computer systems and can be seen as a rudimentary form of namespaces. Namespaces
are a Linux kernel feature that allows one to wrap system resources in an abstraction layer.
Doing so allows one to make processes within the namespace believe that they have their own
isolated instance of the system resource. Changes to the system resource are only visible
to other processes that are members of the same namespace (Randal, 2020; Shepherd &
Markantonakis, 2024; The Linux Foundation, 2023¢).

Table 4.1 lists the currently available namespaces that one may utilise within Linux, either

directly from the command-line or through the use of a programming interface when using
a programming language such as C/C++.

99



Table 4.1: Linux OS Namespaces

Namespace Description

Cgroup Isolates the control group root directory

IPC Isolates interprocess communication resources
MNT Isolates filesystem mount points

NET Isolates networking interfaces

PID Isolates the process identification number space
Time Isolates the system boot and other monotonic clocks
User Isolates the user and group identifications

UTS Isolates the hostname and NIS domain name

4.3.3.6. Control group nhamespace

A Cgroup namespace is a feature of the Linux kernel that isolates Cgroup hierarchies
for processes executing within that namespace essentially, it is related to the concept of
namespace isolation. The Cgroup namespace provides a virtualised view of a process’s
Cgroup hierarchy as described in section 4.3.3.4. This virtualised view enables processes
executing within one Cgroup namespace to have a different view of its Cgroup hierarchy
as compared to other processes and their Cgroup hierarchies running in their Cgroup
namespaces (Biradar et al., 2018; The Linux Foundation, 2023a).

When creating a new Cgroup namespace, it will be initialised with the virtualised view of the
Cgroup hierarchy that is based on the Cgroup of the parent process. Therefore processes
executing in the new Cgroup namespace will be limited to viewing only the portion of the overall
Cgroup hierarchy that is related to the parent process. An example of this virtualised view is
given in figure 4.7, where both processes, each of which contains a memory related Cgroup
has its own unique view of the Cgroup hierarchy.

As depicted in figure 4.7, we can see that processes within one Cgroup namespace see their
own Cgroup as the root of their hierarchy. Therefore, from their perspective, their Cgroup
appears as the root, and they are unable to see or access Cgroups outside their own hierarchy.
Cgroup namespaces do not provide for the isolation of system resources, they only provide for
the isolation of the related Cgroup hierarchies. Isolation of the system resources are enforced
by Cgroups itself, as described earlier.

The obvious benefit of being able to isolate Cgroup hierarchies is that one process cannot
change the details of Cgroups that they do not have access to, thus a malicious process would
be unable to manipulate Cgroups systemwide. Given the inclusion of Cgroups within the SYS23
design, it stands to reason to include Cgroup namespaces as well.

100



CGroup CGroup
Namespace A Namespace B

Process 1 Process 2

/sys/fs/cgroup/memory/conf1

/sys/fs/cgroup/memory/conf2

Figure 4.7: Control Groups Namespace

4.3.3.7. Inter-process communication namespace

An Inter-Process Communication (IPC) namespace is a feature of the Linux kernel that isolates
IPC resources, specifically System V IPC objects and POSIX message queues, such as
semaphores, shared memory segments, and message queues, to name a few. As with other
types of namespaces, this isolation ensures that processes from one IPC namespace, can
share System V IPC objects and POSIX queues within that namespace, but cannot directly
access or engage with System V IPC objects and POSIX queues from other IPC namespaces
(Biradar et al., 2018; The Linux Foundation, 2023c).

IPC IPC
Namespace A Namespace B

Process 1
IPC
PCY A lowed |21y Allowed
Calls Denied
Process 2

Figure 4.8: Inter-Process Communication Namespace

System V IPC and POSIX message queues are a set of mechanisms in Unix-like OSs that
allows processes to communicate with each other and synchronise their operations. There
are three primary System V IPC and POSIX message queue components supported by IPC
namespaces (The Linux Foundation, 2023c):

1. Semaphores: Provide a process synchronisation mechanism, ensuring that multiple
processes can safely access shared system resources, such as memory segments.

101



2. Shared Memory: Provides a mechanism that allows multiple processes to utilise the
same physical memory segments.

3. Message Queues: Provide a mechanism whereby processes can send and receive
messages between them, using a queue-like structure.

Other System V IPC and POSIX message queue components such as spinlocks (Waterman
& Asanovi¢, 2019) and mutexes (Ueda & Ohara, 2017; Waterman & Asanovi¢, 2019) are
currently not supported by IPC namespaces. Furthermore, both System V and POSIX-based
message queues are supported by IPC namespaces. POSIX message queues are similar
in purpose to System V message queues, but they are part of the POSIX standard, which
aims to improve portability and consistency across different Unix-like systems (The Linux
Foundation, 2023c).

Figure 4.8 shows the segregation of inter-process communications between processes, both
within and outside of the IPC namespaces. IPC is a fundamental part of any well-designed and
implemented application and as such, any SYS23 enclave would be less than optimal in design
if such a mechanism was not supported by it. As such IPC namespaces form an integral part
of the SYS23 enclave.

4.3.3.8. Mount namespace

A mount namespace is a feature of the Linux kernel that isolates the mount points of a
filesystem so that processes in one mount namespace cannot access any mount points
inside other mount namespace or from the rest of the Linux kernel. Each mount namespace
has its own view of the underlying file system mount points and as with other namespaces,
changes to a mount point within one mount namespace does not propagate to any other
mount namespace, see figure 4.9 for an example visual representation. In turn, mount point
changes in the rest of the Linux kernel do not propagate to any mount namespaces once
created (Biradar et al., 2018; The Linux Foundation, 2023d).

Mount namespaces and chroot are both techniques used in Unix-like computer systems
to isolate processes and their associated mount points. The mount point isolation created by
mount namespaces also create a fake root directory or jail that is similar to what chroot
provides, except that it is much more secure, as it does not include any of the limitations that
chroot does.

Mount namespaces are generally considered more secure than chroot for the following
primary reasons:

1. Broader Isolation Scope: While chroot changes the root directory of the current
process and its child processes to a specific directory that can be escaped if they
have elevated privileges, such as root access. Mount namespaces provide a more
comprehensive level of isolation by creating an entirely separate view of the filesystem
for the processes within that mount namespace (The Linux Foundation, 2024).

102



2. Namespace Hierarchies: While chroot only changes the apparent root directory for
a process, it still shares the same global mount table with all other processes. Whereas
each mount namespace has its own mount table, allowing for more fine-grained control
over what filesystems and mount points are available (The Linux Foundation, 2024).

3. Flexibility and Control: While chroot creates simple jail environments, mount
namespaces allow for more sophisticated configurations, such as shared or private
mount points, making it possible to control exactly how filesystems and mount points
are propagated between namespaces (The Linux Foundation, 2024).

4. Security Vulnerabilities: While chroot has several well-known methods for escaping
its filesystem jail, especially if the process has root privileges, mount namespaces are
part of a broader namespace mechanism that is designed with modern security in mind,
reducing the chances of escape or unintended interactions with other mount namespaces
or the rest of the Linux kernel (The Linux Foundation, 2024).

MNT MNT
Namespace A Namespace B
Process 1 Process 2
/proc/1/mounts /proc/2/mounts

/ /
/home /run
/dev/shm /opt

Figure 4.9: Mount Namespace

The mount namespace is one of the foundational namespaces, as it also underpins both the
Cgroup and process hamespaces and any other current or future namespaces where aspects
of the filesystem are included as part of their implementation (The Linux Foundation, 2023d).
For these reasons mount namespaces also form a foundational part of the SYS23 enclave as
filesystems are a key component of any isolated environment, without which any application
would find it nearly impossible to execute successfully.

4.3.3.9. Network namespace

A network namespace is a feature of the Linux kernel that isolates the networking environment
such as the Internet Protocol (IP) version 4 and 6 protocol stacks, IP routing tables, firewall
rules, port numbers or sockets, network devices and many other networking components. A

103



network namespace is a virtualised instance of an entire networking environment with its own
routing tables, firewall rules, port numbers, network devices and so forth. Furthermore, the
UNIX domain abstract socket namespace is isolated by network namespaces (Biradar et al.,
2018; The Linux Foundation, 2023f).

NET
Default Namspace
(init)

NET NET
Namespace A Namespace B

Net Devices: eth0 Net Devices: wlan0

- Network .
IP Addresses: 1.1.1.1/24 IP Addresses: 2.2.2.2/24
Routes Bridge Routes
Firewall Rules Firewall Rules
Sockets Sockets
Processes Processes
sysfs sysfs

Figure 4.10: Network Namespace

Upon creation, processes default to inheriting their parent’s network namespace. This default
network namespace is shared with the init process or in simple terms, the first process that
is created when a computer system is booted. When a process becomes a member of its own
network namespace, it is provided with a virtual network device pair consisting of a physical
network device and an equivalent virtual network device. Figure 4.10 presents a rudimentary
view of how the various network namespaces may coexist.

A physical network device can only be a member of one network namespace at any point in
time. When a network namespace ceases to exist, its network devices are allocated back
to the default network namespace, not to the network namespace of its parent. Note that
all physical network devices initially reside within the default network namespace. Also with
the creation of a network namespace, it is automatically assigned its own loopback network
device.

Virtual network device pairs provide a pipe-like communication abstraction that can be used to
create tunnels between two network namespaces, which in turn can be used to create a bridge
between the virtual and physical network devices at either end of the communications channel.
Using this configuration one is able to facilitate networking between two network namespaces
or between a network namespace and the default network namespace.

104



The use cases for a network namespace are significant, in that it can for instance allow one to
do various sorts of network testing with different networking configurations without breaking the
default network namespace. One can also execute untrusted applications in its own network
namespace without fear that it may open up various unknown communications channels,
where those communication channels will be isolated to resources residing only within that
network namespace.

The network namespace is another foundational namespace that forms part of the SYS23
design. Giving the SYS23 enclave networking capabilities allows applications executing within
it to communicate with other remotely located computer systems, which are fundamental to
computer system design principles and concepts such as client/server, distributed computing,
clustering and many more. Therefore, including network namespaces in the SYS23 design is
almost expected otherwise the use cases of the SYS23 enclave would be limited to standalone
applications only or applications that do not require any sort of networking.

4.3.3.10. Process namespace

PID
Namespace A
(Parent Level 0)

PID PID
Namespace B Namespace C
(Child Level 1) (Child Level 1)

P1

P3 P4

=] [

Figure 4.11: Process Namespace

The Process ID (PID) namespace is a feature of the Linux kernel that isolates the process
identifiers, specifically the PID number space, by allowing each set of processes in different
PID namespaces to have their own set of PIDs, without causing any conflicts across the
different namespaces. The PID namespaces can be nested in a tree-like hierarchy several
levels deep, up to a maximum of 32 levels. This indirectly implies that each PID namespace

105



has a parent PID namespace, except for the init process, which is the only exception to
this rule (Biradar et al., 2018; The Linux Foundation, 2023g). One further aspect to note is that
the PID namespace is closely associated with the mount namespace, as will be shown later.

When a new PID namespace is created it will assign the PID of 1 to the first process allocated
to that PID namespace, see figure 4.11 for a depiction. For all intents and purposes, one can
think of this first process as the init process of that PID namespace. The behaviour of this
first process is functionally similar to that of the init process of the Linux kernel, whereby
all newly created processes within the same PID namespace will inherit the first process as its
parent process.

Subsequently, when any first process is terminated, all descendant processes together with all
descendant PID namespaces and their processes will also be terminated. Once a process is
a member of a PID namespace, it can interact with not only any other processes within the
same namespace, but also processes within any direct child or descendant PID namespaces.
It cannot however interact with any processes within its parent PID namespaces.

Note that when a new PID namespace is created, the process that created it will not
automatically be placed within that new PID namespace, only the children of that process will
be allocated to the new PID namespace. This behaviour is slightly different to what happens
when other namespaces are created. Also, processes are able to migrate from a parent
PID namespace to a direct child or descendant PID namespace, but never to a parent PID
namespace, thus migration is only ever available in one direction.

At the point in time when the first process is placed into the new PID namespace, the /proc
filesystem is also shared with this new PID namespace. This is because the Linux kernel
requires thata /proc directory exists, as it holds amongst other things, a numerical hierarchy
and related information of each process currently executing within that PID namespace. Note
that one can also overload this default allocated /proc directory when a mount namespace
is created at the same time as the PID namespace, this will ensure that commands such as
ps function appropriately.

The PID namespace is also another fundamental namespace that forms part of the SYS23
enclave design, as process management and isolation, is core to any application and executing
it successfully. Being able to isolate an untrusted application and its individual processes are
core to being able to safely execute the application that may potentially be malicious in nature,
hence its inclusion in the SYS23 enclave design.

4.3.3.11. Time namespace

The time namespace is a recent feature of the Linux kernel that isolates some specific internal
clocks, that are related to the monotonic and boottime clocks only. The reason why only
those two clocks are virtualised is because of the specific use cases that they relate to or that

106



revolves around live container migrations. Note also that the internal clocks are not necessarily
changed, but an offset can be set which allows those locks to move forward or back in time
(The Linux Foundation, 2023h).

Figure 4.12 shows which specific offsets can be set per time namespace and as previously
stated only the offsets that relate to the monotonic and boottime clocks can be changed when
a new time namespace is created. As with other namespaces, these offsets cannot be changed
after the time namespace has been created, as they are immutable in nature. These offsets
make it easier to migrate a live container or to restore one from hibernation, a checkpoint or
shapshot.

Time Time
Namespace A Namespace B

CLOCK_PROCESS_CPUTIME_ID
CLOCK_REALTIME
CLOCK_REALTIME_COARSE
CLOCK_REALTIME_RAW
CLOCK_TAI
CLOCK_THREAD_CPUTIME_ID

CLOCK_BOOTTIME
CLOCK_BOOTTIME_ALARM
CLOCK_MONOTONIC
CLOCK_MONOTONIC_COARSE
CLOCK_MONOTONIC_RAW

Figure 4.12: Time Namespace

Given that only those offsets relating to the monotonic and boottime clocks can be manipulated
in isolation, it leaves numerous other clocks exposed to the time namespace for manipulation,
such as those clocks relating to the real-time clock. Therefore if one was to set the system
time within a time namespace, it will in fact also change the time outside of the namespace
and across all other namespaces. This allows for caveats from a security point of view, which
can be manipulated.

The time namespace is not necessarily fundamental to the use case underpinning SYS23
however, if any future use case presents itself that may take advantage of this feature, it will
be readily available given its inclusion within the SYS23 design. For now though, one may
consider it to be a dormant feature.

107



4.3.3.12. User namespace

The user namespace as per figure 4.13 is a feature of the Linux kernel that isolates User IDs
(UIDs) and Group IDs (GIDs), which allows each user namespace to have its own set of user
and group identifiers. User namespaces can be nested up to 32 levels deep, which is true for
other namespaces too. Also, as with other namespaces, once a parent and child relationship
has been created, it cannot be changed. This isolation allows processes executing in different
user namespaces to have different ownership and privileges, even if they share the same UIDs
and GIDs (Biradar et al., 2018; The Linux Foundation, 2023i).

User
Namespace B

User
Namespace A

Mount
Namespace A

uid: 10-19 AL uid: 0-5
Namespace A

k | J |
Y \

kuid: 2000-2009 kuid: 1000-1005

Figure 4.13: User Namespace

Allowing processes to have different ownership and privileges depending on the user
namespace within which they are executing, is accomplished by assigning different UIDs and
GID to different user namespaces. Given then that security privileges are linked to UIDs and
GIDs, processes are limited to which operations they can execute given these UID and GID
assignments. Noting then that each process can only belong to one user namespace, it allows
one to set the security context of processes per user namespace.

A common use case of user namespaces is to allow processes executing within a user
namespace to execute with the highest privileges, commonly called root privileges, while
limiting its reach to within the namespace only. The process can thereby perform any
operation that it requires to while in reality, those operations have no effect outside of the user
namespace. As an example, when trying to read from a secured directory such as /proc,
which requires root privileges, a root user within a user namespace would be able to access
that directory, but they will not be able to see its full contents as it appears outside of the
namespace.

Another useful and unique feature of the user namespace is that it is capable of owning
all other types of namespaces within its 32 levels of nested hierarchy. When a new user
namespace is created, the process that creates it can also create any of the other types of
namespaces, within the context of this user namespace. Therefore, a process might start in a
user namespace and then create its own network and mount namespaces. Within that context,
the user namespace encapsulated processes will be able to, for instance, manage network

108



interfaces and mount filesystems as if it were the root user, but only within the confines of the
respective namespaces.

The user namespace forms an integral part of the SYS23 enclave and as such, it is part of the
foundational layer of the enclave. The most obvious reason for its use is to provide adequate
protection against untrusted applications executing within the enclave, that may require root
privileges. Limiting the untrusted application’s reach to within the enclave, allows one to be
liberal with one’s privilege access allocations within the user namespace, while still maintaining
full security outside of the user namespace and across the rest of the computer system.

4.3.3.13. Unix time-sharing namespace

The Unix Time-Sharing (UTS) namespace is a feature of the Linux kernel that isolates two very
specific system resources related to the host name and Network Information Service (NIS)
domain name. The host name relates to the name of the computer system, which is typically
used by various applications to identify the computer system on a network and the domain
name is used by the NIS to group computer systems together into subsets when managing
network service across large networks (Biradar et al., 2018; The Linux Foundation, 2022).

When a process creates a new UTS namespace, that namespace inherits the host and domain
names from the parent process. As with other namespaces, changes within a specific UTS
namespace after creation are restricted to that UTS namespace only. Figure 4.14 shows how
different UTS namespaces would manage their own host and domain names.

uTsS UTS
Namespace A Namespace B
OS Type: Fedora Linux OS Type: Fedora Linux
OS Release: 39 OS Release: 39
Version: 6.9.12-100 Version: 6.9.12-100
Hostname: host1 Hostname: host2
Domain Name: abc.org Domain Name: xyz.net

Figure 4.14: Unix Time-Sharing Namespace

UTS namespaces have the advantage that they allow a single computer system to appear
as if it is many different computer systems, which is a foundational aspect of most virtualised
and containerised computer systems. The UTS namespace pairs well with the network
namespace, given the underlying networking aspects of both the host and domain names and

109



how they pair with networking devices and their IP addresses.

As with the time namespace, the UTS namespace is also not necessarily fundamental to
the underpinning use case of SYS23 however, for any future use case that may arise, it
has been included in the SYS23 design. One aspect where UTS namespaces may provide
a security mitigation is by hiding the underlying computer system’s actual host and domain
names. Thereby shielding its true identity from any malicious application that may have been
able to take advantage of it.

4.4. Data collection

Wieringa (2014) asserts that a DSR project involves iterative cycles of designing and
investigating. The design task is itself broken down into three specific subtasks, namely,
problem investigation, treatment design, and treatment validation. These three subtasks
are collectively referred to as the design cycle, as researchers repeat them multiple times
throughout the project.

This design cycle is embedded within a broader cycle called the engineering cycle. In this
larger cycle, the validated treatment produced by the design cycle is implemented, utilised, and
assessed in the real world. In order to adequately evaluate the prototyped artefact, we need to
collect performance data first during the design cycle and then during the engineering cycle.

The data collection design of this study intends to facilitate the gathering of performance data
through the existing benchmarking harness as employed within the PolyBench/C benchmarking
suite. With PolyBench/C algorithms that have an execution time in the order of a few
nanoseconds, it is critical to validate any performance number by repeating the execution
several times. An included companion script is available to perform a reasonable performance
measurement of an algorithm.

Shell Command

$ geec -03 -I utilities -I linear-algebra/kernels/atax utilities/polybench.c
linear-algebra/kernels/atax/atax.c -DPOLYBENCH TIME -o atax_time

When an algorithm is compiled with the -DPOLYBENCH TIME option, as shown above for
the atax algorithm, the script will execute the benchmark five times, while eliminating the two
outmost times, and check that the deviation of the three remaining executions does not exceed
a given threshold of 5%. For this study though, we additionally repeat the execution of this
script 10 times and then take the mathematical mean of all 10 runs.

110



4.5. Data precision

Data precision design in research, particularly in computer science, refers to the level of
detail and exactness with which data is collected, stored, measured, manipulated and
presented. It is critical in ensuring the accuracy and reliability of computations, algorithms,
and system processes. The precision impacts the results of numerical calculations, the
behaviour of algorithms, and the overall performance of computer software (Bartz-Beielstein
et al., 2020; Bryman, 2016; Bryman & Bell, 2011; Creswell & Creswell, 2018; Sanders
et al., 2022; Saunders et al., 2019; Wang, 2021; Yu et al., 2020).

It is thus crucial to the reliability and validity of the research findings. Consider a scenario
where a computer scientist is developing a simulation for climate modeling that requires
calculating the temperature changes over time.

Using both high and low-precision measurements, one will observe the following:

1. High Precision Measurements: The scientist uses double-precision floating-point
numbers (typically 64 bits) to represent temperature values.

Example High Precision Data:
15.123456789012345 °C, 15.123456789012346 °C, 15.123456789012347 °C

2. Low Precision Measurements: The scientist uses single-precision floating-point
numbers (typically 32 bits) to represent temperature values.

Example Low Precision Data:
15.123457 °C, 15.123457 °C, 15.123457 °C

The implications of the two levels of precision within the study are:

1. High Precision Measurements: The double-precision representation allows for more
decimal places, providing a more detailed and accurate representation of temperature
changes. This is crucial for simulations that require high fidelity over long periods or
involve small variations.

2. Low Precision Measurements: The single-precision representation has fewer decimal
places, which may be sufficient for less detailed simulations but can lead to rounding
errors and less accurate results over time.

In this example, high-precision measurements ensure that the simulation can accurately model
the minute temperature changes, which is essential for making reliable predictions about
climate patterns. Low-precision measurements might be faster and use less memory but could
result in less accurate models, potentially leading to incorrect conclusions or predictions. For
this reason, this study aims to provide a high level of accuracy and reliability for the findings by
employing high-precision measurements during its data collection phases.

111



4.6. Summary

In this chapter, we furnished a prototype architecture and design as outlined in figure 4.1, for
a new web browser EE that is based on existing Linux OS features, such as namespaces,
Cgroups and Seccomp. The prototype incorporates native application compatibility to both the
CPU and OS, together with execution isolation, which will deliver improved performance for
ClAs. Bringing all of the various components or building blocks together, one can depict a
summarised view of this new web browser EE, as per figure 4.15.

USER DOMAIN

SYS23 Enclave

Native Application (Client)

App Lib 1 Lib n

Allow

|<€== Deny

j<== Deny

SECURE COMPUTING

NAMESPACES

CONTROL GROUPS

.

1 2 n OPERATING SYSTEM

t

HARDWARE 1 2 n

Figure 4.15: C4 Component (Level 3) Conceptual Design

Furthermore, given that the proposed architecture and design are based on existing
architectural patterns and OS features, it allows for rapid and straightforward implementation
within existing compatible devices. While also continuing to ensure that the user’s devices that
incorporate this architecture and design remain safe from malicious downloaded applications
by ring-fencing the downloaded application.

We also briefly discussed the data collection design that utilises the PolyBench/C benchmarks
and reasoned as to why its use as a benchmarking suite is acceptable, but also appropriate.
Following that, we also briefly examined the aspect of data precision, the mathematical
difference between low and high precision measurements, and concluding with how a high
precision data collection implementation benefits this study and adds to the rigour of the

112



presented findings.

In the next chapter, we will look at how the prototype performs against both native
implementations of the benchmarking algorithms and implementations based on existing web
browser EEs. A critical discussion is then undertaken based on the interpretation of the
findings.

113



CHAPTER 5

FINDINGS AND DISCUSSION

This chapter evaluates the performance of the new web browser EEs by comparing it to
existing ones using various metrics. This chapter also covers this research’s objective four,
where the researcher endeavours to:

Objective 4

Evaluate and benchmark the performance of the prototype web browser EE against
those discovered through the SLR, thereby testing the empirical hypothesis of this studly.

This chapter reports on the data collected by looking at the following:
Section 5.1. Prototype evaluation
Section 5.2. Real-world evaluation
Section 5.3. Critical analysis
Section 5.4. Discussion

Section 5.5. Synopsis

5.1. Prototype Evaluation

This section summarises the performance of the benchmarks when executed within the SYS23
prototype as compared to that of the native desktop. As expected, the native desktop
outperformed the SYS23 prototype for the most part. However, a few surprising results of
some benchmarks stand out, where the SYS23 performance for the 3mm, adi, jacobi-1d, and
syrk benchmarks outperformed their native equivalents. A later section ponders the possible
reasons for these anomalies.

114



Table 5.1: System23 Prototype vs Native Benchmarks

Benchmark System23 Native Differential’ Speed Up
2mm 2370166196 s 2.363493631s -0.006672565s -0.2823 %
3mm 4.012183164s  4.012725930s  0.000542766 s
adi 9.960964131s  9.961349930s  0.000385799 s
atax 0.005988229s  0.005970464 s -0.000017765s -0.2975 %
bicg 0.009938297 s 0.009923197 s -0.000015100s -0.1522 %
cholesky 1.515222131s  1.514085262s -0.001136869s -0.0751 %
correlation 5860367264 s  5.843906095s -0.016461169s -0.2817 %
covariance 5860343597 s 5.843348830s -0.016994767 s  -0.2908 %
deriche 0.242219765s  0.240564130 s -0.001655635s -0.6882 %
doitgen 0.549359296 s  0.548080830s -0.001278466s -0.2333 %
durbin 0.002974097 s 0.002968196s -0.000005901 s -0.1988 %
fdtd-2d 1.404423562s  1.401325230 s -0.003098332s -0.2211 %
floyd-warshall 14.059311031s  14.023624363 s -0.035686668 s -0.2545 %
gemm 0.623021030 s 0.620031664 s -0.002989366 s -0.4821 %
gemver 0.023476263s  0.023426596 s -0.000049667 s  -0.2120 %
gesummv 0.004354730 s 0.004346029 s -0.000008701s -0.2002 %
gramschmidt  10.761396297 s [10.678539132s| -0.082857165s -0.7759 %
heat-3d 2097793696 s 2.072167530s -0.025626166 s -1.2367 %
jacobi-1d 0.000650531s  0.000654328 s  0.000003797 s
jacobi-2d 1.403825897 s 1.396950464 s -0.006875433s  -0.4922 %
lu 5434344996 s 5359398498 s -0.074946498 s  -1.3984 %
ludemp 5.216614332s 5174912364 s -0.041701968s -0.8058 %
mvt 0.020398962s  0.020365464 s -0.000033498 s  -0.1645 %
nussinov 5530813497 s 5520036464 s -0.010777033s -0.1952 %
seidel-2d 19.749028795s  19.718044265s -0.030984530s -0.1571 %
symm 2.588202763s  2.568486063s -0.019716700s -0.7676 %
syr2k 3.805913932s  3.745486996 s -0.060426936s -1.6133 %
syrk 0.831422029s  0.840600996 s  0.009178967 s
trisolv 0.002476862s  0.002464864 s -0.000011998 s  -0.4868 %
trmm 2.400019431s  2.398117464s -0.001901967 s -0.0793 %

Execution time is measured in seconds to within a nanosecond.
'The differential between the SYS23 prototype and the native benchmarks.

5.2. Real-world evaluation

This section summarises the performance of the benchmarks when executed within the SYS23
prototype as compared to that of WASM. As expected, the SYS23 prototype outperformed
WASM for the most part. However, one surprising result of the benchmarks stands out, where

115



the WASM performance for the gramschmidt benchmark outperformed both the SYS23 and

native equivalents. A later section considers the possible reasons for these anomalies.

Table 5.2: System23 Prototype vs Real-World Benchmarks

Benchmark System23 WASM Differential’  Speed Up
2mm 2.370166196s 5169499997 s  2.799333801s  54.1510 %
3mm 4.012183164s  8.291966664 s  4.279783500s  51.6136 %
adi 9.960964131s  12.045733330s  2.084769199s  17.3071 %
atax 0.005988229's  0.012099999s  0.006111770s  50.5105 %
bicg 0.009938297 s 0.014033333s  0.004095036 s  29.1808 %
cholesky 1.515222131s  2.726199996s  1.210977865s  44.4200 %
correlation 5860367264 s  6.405766663s  0.545399399s  8.5142 %
covariance 5860343597 s 6.259666664 s  0.399323067s  6.3793 %
deriche 0.242219765s  0.283299997 s  0.041080232s  14.5006 %
doitgen 0.549359296's  1.092633329s  0.543274033s  49.7215%
durbin 0.002974097s  0.007466664 s  0.004492567 s  60.1683 %
fdtd-2d 1.404423562s  4.351133329s  2.946709767 s  67.7228 %
floyd-warshall 14.059311031s  46.623133330s 32.563822299 s  69.8448 %
gemm 0.623021030s  2.575133330s  1.952112300s  75.8063 %
gemver 0.023476263s  0.036733330s  0.013257067 s  36.0900 %
gesummy 0.004354730's  0.006000000s  0.001645270 s  27.4212 %
gramschmidt  10.761396297 s [10.300333331s| -0.461062966 s
heat-3d 2.097793696 s 9.462366665s  7.364572969s  77.8301 %
jacobi-1d 0.000650531s  0.003699998 s  0.003049467 s  82.4181 %
jacobi-2d 1.403825897s  5.507033330s  4.103207433s  74.5085 %
lu 5.434344996s  9.728866664 s  4.294521668's  44.1421 %
ludemp 5.216614332s  9.064333330s  3.847718998s  42.4490 %
mvt 0.020398962s  0.027066666 s  0.006667704's  24.6344 %
nussinov 5530813497 s  11.583899996s  6.053086499 s  52.2543 %
seidel-2d 19.749028795s  23.018199997 s  3.269171202s  14.2025 %
symm 2588202763 s  4.407899996s  1.819697233s  41.2826 %
syr2k 3.805913932s  5991033331s  2.185119399s  36.4732 %
syrk 0.831422029s 2552399997 s  1.720977968's  67.4259 %
trisolv 0.002476862's  0.004033333s  0.001556471s  38.5902 %
trmm 2.400019431s  2.842799998's  0.442780567s  15.5755 %

Execution time is measured in seconds to within a nanosecond.
"The differential between the SYS23 prototype and the WASM benchmarks.

116



5.3. Critical analysis
5.3.1. Data mining
5.3.1.1. correlation

The correlation benchmark as depicted in figure 5.1 calculates the correlation coefficients
(Pearson’s) representing the normalised form of covariance (Yuki & Pouchet, 2016). The
benchmarks have the following characteristics depicted in green:

+ A significantly close performance result of less than 0.5% of the SYS23 benchmark to
that of the native one.

* A minor, within 20% performance improvement of the SYS23 benchmark over that of the
WASM one.

System23 vs Native System23 vs WebAssembly
125- !

100 -

o
o

75- 1

50-

25- i‘

Density (10 Rounds)

g g
\\\

Density (10 Rounds)

-
5.84 5.85 5.86 6.0 6.2 6.4
Execution Time (s) Execution Time (s)

Native D System23 JS/WASM D System23

Figure 5.1: correlation Benchmarks

5.3.1.2. covariance

The covariance benchmark as depicted in figure 5.2 calculates the covariance, which is a
statistical measure that indicates the degree to which two variables are linearly related (Yuki &
Pouchet, 2016). The benchmarks have the following characteristics depicted in green:

* A significantly close performance result of less than 0.5% of the SYS23 benchmark to
that of the native one.

* A minor, within 20% performance improvement of the SYS23 benchmark over that of the
WASM one.

117



Density (10 Rounds)

60-

o
o

n
o

System23 vs Native

5.84 5.85

Execution Time (s)

Native D System23

5.86

Density (10 Rounds)

150 -

100 -

50 -

0-

System23 vs WebAssembly

/!/
)

il

5.9 6.0 6.1

Execution Time (s)

JS/WASM [ | System23

6.2

Figure 5.2: covariance Benchmarks

5.3.2. Basic linear algebra

5.3.2.1.

The gemm benchmark as depicted in figure 5.3 is a generalised matrix multiplication calculation
(Yuki & Pouchet, 2016). The benchmarks have the following characteristics depicted in green:

* A significantly close performance result of less than 0.5% of the SYS23 benchmark to

+ A significant, within 90% performance improvement of the SYS23 benchmark over that of

gemm

that of the native one.

the WASM one.

Density (10 Rounds

)
N
o
S

System23 vs Native

i
A
|-

i
[
[
| i
[

0.6150 0.6175 0.6200 0.6225

Execution Time (s)

Native [ | System23

Ay
\ /

0.6250

Density (10 Rounds)

w
=]
oS

n
o
o

System23 vs WebAssembly

o
o

15 2.0

Execution Time (s)

JS/WASM [ | System23

25

Figure 5.3: gemm Benchmarks

118




5.3.2.2. gemver

The gemver benchmark as depicted in figure 5.4 is a multiple matrix-vector multiplication
calculation (Yuki & Pouchet, 2016). The benchmarks have the following characteristics depicted

in green:

* A significantly close performance result of less than 0.5% of the SYS23 benchmark to

that of the native one.

* A substantial, within 50% performance improvement of the SYS23 benchmark over that

of the WASM one.

System23 vs Native

3000 -

2000 -

1000 -

Density (10 Rounds)

1
1
1
T
1
%
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

0.0236

0.0233 0.0234 0.0235

Execution Time (s)

Native D System23

System23 vs WebAssembly

3000 - E

|

s
g |
s !
3 2000- i
o i
o |
> !
@ i
S 1000- i
o i |
|

0- . \

' 0.026 0.030 0.034
Execution Time (s)
JS/WASM || system23

Figure 5.4: gemver Benchmarks

5.3.2.3. gesummv

System23 vs Native

30000- :

i

i

]

. i

%) 1

8 20000- ;
>

o 1

o i

o 1

z i

el i

‘S 10000~ -

[0} 1

a ]

i

i

i

1

0 7 1

0.00433 0.00434 0.00435 0.00436
Execution Time (s)
Native [ | System23

0.00437

System23 vs WebAssembly

|
|

i
“‘;
20000- |

Density (10 Rounds)

|
\

!
1
1
i
;
'
10000-
1
i
i
i
i
i
:

" 0.0045 0.0050 0.0055

Execution Time (s)

JS/WASM || System23

0.0060

Figure 5.5: gesummv Benchmarks

119




The gesummyv benchmark as depicted in figure 5.5 is a summed matrix-vector multiplication
calculation (Yuki & Pouchet, 2016). The benchmarks have the following characteristics depicted
in green:

* A significantly close performance result of less than 0.5% of the SYS23 benchmark to
that of the native one.

* A substantial, within 50% performance improvement of the SYS23 benchmark over that
of the WASM one.

5.3.2.4. symm

The symm benchmark as depicted in figure 5.6 is a symmetric matrix multiplication calculation
(Yuki & Pouchet, 2016). The benchmarks have the following characteristics depicted in green:

+ A substantially close performance result of less than 1% of the SYS23 benchmark to that
of the native one.

* A substantial, within 50% performance improvement of the SYS23 benchmark over that
of the WASM one.

System23 vs Native System23 vs WebAssembly

25- : é
20- |

20- /:\

@ @ \;‘
kel kel ‘
= S 15- \:
g = g
S s ||
z 10 =1
@ §7] i
c c =
a a :
5- 5° 5

|

0- 0- =

254 2.56 258 2.60 25 30 35 40 45
Execution Time (s) Execution Time (s)
Native ] System23 JS/WASM [ ] System23
Figure 5.6: symm Benchmarks
5.3.2.5. syr2k

The syr2k benchmark as depicted in figure 5.7 is a symmetric rank 2k update calculation (Yuki
& Pouchet, 2016). The benchmarks have the following characteristics depicted in green:

* A minorly close performance result of less than 2% of the SYS23 benchmark to that of
the native one.

120



* A substantial, within 50% performance improvement of the SYS23 benchmark over that

of the WASM one.

System23 vs Native

7.5-

5.0-

37 38

Density (10 Rounds)

Execution Time (s)

Native D System23

System23 vs WebAssembly
20- !
2 5
2 15
2 i
o -
o« :
o 1
Z 1o0- i
= i\
@ i
8 i
5 [
i
i
oo MR
"~ 4o 4ls 50 6.0
Execution Time (s)
JS/WASM [ | system23

Figure 5.7: syr2k Benchmarks

5.3.2.6. syrk

The syrk benchmark as depicted in figure 5.8 is a symmetric rank & update calculation (Yuki &

Pouchet, 2016). The benchmarks have the following characteristics depicted in green:

* An interestingly reverse result, whereby the SYS23 benchmark outperformed that of the

native one.

+ A significant, within 90% performance improvement of the SYS23 benchmark over that of

the WASM one.

System23 vs Native
40-
30-

20-

Density (10 Rounds)

0.82 ' 0.84 0.86
Execution Time (s)

Native D System23

System23 vs WebAssembly
40-
Q 30- ‘
c
>
o
g i
o
= 20- |
2
@ i
2 !
[ 5‘
O 10- 1
f%
|
[E-—
T 1o 15 20 2'5
Execution Time (s)
JS/WASM [ | System23

Figure 5.8: syrk Benchmarks

121



5.3.2.7. trmm

The trmm benchmark as depicted in figure 5.9 is a triangular matrix multiplication calculation
(Yuki & Pouchet, 2016). The benchmarks have the following characteristics depicted in green:

* A significantly close performance result of less than 0.5% of the SYS23 benchmark to
that of the native one.

* A minor, within 20% performance improvement of the SYS23 benchmark over that of the

WASM one.
System23 vs Native System23 vs WebAssembly
60- ) 40+ g
i il
@ ) ‘;\
e 2 30- i
& 40- & i
o o ‘-\
= < 20- [t
) = lil
‘B ‘@ i
& & i
8 20- A i)
10- | [H
1N
)
!,
0 : 0 2
2.38 2.40 242 24 25 26 27 28
Execution Time (s) Execution Time (s)
Native ] System23 JS/WASM [ ] System23

Figure 5.9: trmm Benchmarks

5.3.3. Linear algebra transform
5.3.3.1. 2mm

The 2mm benchmark as depicted in figure 5.10 is a linear algebra transform operation that
involves performing two matrix multiplications (Yuki & Pouchet, 2016). The benchmarks have
the following characteristics depicted in green:

+ A significantly close performance result of less than 0.5% of the SYS23 benchmark to
that of the native one.

+ A significant, within 90% performance improvement of the SYS23 benchmark over that of
the WASM one.

122



System23 vs Native

60-

40-

A

20-

Density (10 Rounds)

2.425 2.450

2.400

2.350 2375

Execution Time (s)

Native D System23

Density (10 Rounds)

System23 vs WebAssembly

3 4
Execution Time (s)

JS/WASM [ | system23

Figure 5.10: 2mm Benchmarks

5.3.3.2. 3mm

The 3mm benchmark as depicted in figure 5.11 is another linear algebra transform operation
that involves performing three matrix multiplications (Yuki & Pouchet, 2016). The benchmarks

have the following characteristics depicted in green:

+ An almost even result, whereby the SYS23 benchmark is almost exactly the same as the

native one.

* A significant, within 90% performance improvement of the SYS23 benchmark over that of

the WASM one.

System23 vs Native

20-

Density (10 Rounds)

3.99 402

Execution Time (s)

Native D System23

Density (10 Rounds)

7.5-

5.0-

25-

0.0-

System23 vs WebAssembly

t
|

“!

4 5 6 7
Execution Time (s)

JS/WASM [ | System23

Figure 5.11: 3mm Benchmarks

123




5.3.3.3. atax

The atax benchmark as depicted in figure 5.12 calculates A” x Az (Yuki & Pouchet, 2016).
The benchmarks have the following characteristics depicted in green:

* A significantly close performance result of less than 0.5% of the SYS23 benchmark to
that of the native one.

« A significant, within 90% performance improvement of the SYS23 benchmark over that of
the WASM one.

System23 vs Native System23 vs WebAssembly
& 40000 & 40000
el el
c c
=} >
o o
o @
o o
= =
£ 20000- £ 20000-
c C
[ A\, [
) M h )
J i
0- 0- !
0.005950 0.005975 0.008000 0.007 0.009 0.011 0.01
Execution Time (s) Execution Time (s)
Native || System23 JS/WASM [ | System23

Figure 5.12: atax Benchmarks

5.3.3.4. bicg

System23 vs Native System23 vs WebAssembly
é 40000~ |
150000 - '

o) i @ 30000-

c l c

8 100000- : 3

o 1 o

2 : 2 20000-

2 i 2

3 i 3 .

© 50000- i @ i

o 1 0 10000- |
i ||

0- \___/ A\ / \_ 0-

]
0.00992 0.00993 0.00994 0.00995 0.010 0.011 0.012 0.013 0.014
Execution Time (s) Execution Time (s)
Native || System23 JS/WASM [ ]| System23

Figure 5.13: bicg Benchmarks

124



The bicg benchmark as depicted in figure 5.13 is a calculation of the BiConjugate Gradient
STABilized method (BICGSTAB) (Yuki & Pouchet, 2016). The benchmarks have the following
characteristics depicted in green:

* A significantly close performance result of less than 0.5% of the SYS23 benchmark to
that of the native one.

* A substantial, within 50% performance improvement of the SYS23 benchmark over that
of the WASM one.

5.3.3.5. doitgen

The doitgen benchmark as depicted in figure 5.14 is a calculation of the Multiresolution
ADaptive NumErical Scientific Simulation (MADNESS) (Yuki & Pouchet, 2016). The
benchmarks have the following characteristics depicted in green:

+ A significantly close performance result of less than 0.5% of the SYS23 benchmark to
that of the native one.

* A substantial, within 50% performance improvement of the SYS23 benchmark over that
of the WASM one.

System23 vs Native System23 vs WebAssembly

1250- : 600- |

1000- i
) i )
© el
c € 400-
3 750- ; 3
o o
2 2
= s00- =
2 2 200-
[0 [
a) a

250-

0- ; 0-
0.548 0549 0.550 0% 07 0’8 0'9 10 11
Execution Time (s) Execution Time (s)
Native D System23 JS/WASM D System23
Figure 5.14: doitgen Benchmarks
5.3.3.6. mvt

The mvt benchmark as depicted in figure 5.15 calculates the matrix vector multiplication
followed by another matrix vector multiplication using the transposed matrix (Yuki & Pouchet,
2016). The benchmarks have the following characteristics depicted in green:

125



+ A significantly close performance result of less than 0.5% of the SYS23 benchmark to
that of the native one.

* A substantial, within 50% performance improvement of the SYS23 benchmark over that
of the WASM one.

System23 vs Native System23 vs WebAssembly

5000 - i z

i A

L 4000 - ‘\!\
4000~ : \:
) i ) i
j 1 c . 1
3 3000- : 3 000
o i o ‘i
= i o ‘\-
- b T 2000- !
2 2000- ! 2 }5\
2 : 4 '
] : 3 I \
1000- i i 1000- \

: - !\

: i

0- : ol R

0.0203 0.0204 0.0205 0.020 0.022 0.024 0.026
Execution Time (s) Execution Time (s)
Native [ | System23 JS/WASM [ ] System23

Figure 5.15: mvt Benchmarks

5.3.4. Linear algebra solver

5.3.4.1. cholesky

System23 vs Native System23 vs WebAssembly
1500 - - -
|t
(\E 1500-
_ i _
(2] ‘ 1 ]
B 1000- i 2
3 1 3 1000-
[ans 1| [an
2 } d 2
= i >
g) 500 } :\‘ éc’ 500
F
i
0 ) 2VAN o i
1510 1515 1.520 1525 15 20 255
Execution Time (s) Execution Time (s)
Native [ | System23 JS/WASM [ | System23

Figure 5.16: cholesky Benchmarks

The cholesky benchmark as depicted in figure 5.16 is an algorithm that decomposes a
matrix into triangular matrices (Yuki & Pouchet, 2016). The benchmarks have the following

126



characteristics depicted in green:

* A significantly close performance result of less than 0.5% of the SYS23 benchmark to
that of the native one.

* A substantial, within 50% performance improvement of the SYS23 benchmark over that
of the WASM one.

5.3.4.2. durbin

The durbinbenchmark as depicted in figure 5.17 is a special case of Toelitz systems that utilises
an algorithm for solving Yule-Walker equations (Yuki & Pouchet, 2016). The benchmarks have
the following characteristics depicted in green:

+ A significantly close performance result of less than 0.5% of the SYS23 benchmark to
that of the native one.

* A significant, within 90% performance improvement of the SYS23 benchmark over that of
the WASM one.

System23 vs Native System23 vs WebAssembly
: 150000 -
3e+05- ;

@ E )

el - el

c 1 =

] : >

o ! O 100000 -

0C 2e+05- 1 [an

o i o

= ; =

2 2

8 1e+05- 8 50000 -

0e+00- : 0- !
0.002965 0.002970 0.002975 0.003 0.004 0.005 0.006 0.007 0.008

Execution Time (s) Execution Time (s)

Native D System23 JS/WASM D System23

Figure 5.17: durbin Benchmarks

5.3.4.3. gramschmidt

The gramschmidt benchmark as depicted in figure 5.18 calculates QR decomposition with
Modified Gram Schmidt (Yuki & Pouchet, 2016). The benchmarks have the following
characteristics depicted in green:

» A substantially close performance result of less than 1% of the SYS23 benchmark to that
of the native one.

127



+ An interestingly reverse result, whereby the WASM benchmark outperformed that of the
SYS23 one.

System23 vs Native System23 vs WebAssembly
8- ' 1
e ﬂ \ s :
%) N %) i
e i 2 i
- = :
g Y g 0
e v : \ e’ ﬁ/ :
< : = :
2 é \ N
8 e : 8 s ;
0 : 0 :
10.6 10.7 " 108 10.9 10.4 10.6 " 108
Execution Time (s) Execution Time (s)
Native D System23 JS/WASM D System23
Figure 5.18: gramschmidt Benchmarks
5.344. lu

The lu benchmark as depicted in figure 5.19 calculates LU decomposition without pivoting (Yuki

& Pouchet, 2016). The benchmarks have the following characteristics depicted in green:

* A minorly close performance result of less than 2% of the SYS23 benchmark to that of

* A substantial, within 50% performance improvement of the SYS23 benchmark over that

the native one.

of the WASM one.

System23 vs Native System23 vs WebAssembly
i
8- %] “
- 7o |
< 6- < 6 4
j c d
3 3
o o i
o o \i‘
T 4- z 4
2 = il
® @ fil
c c .
9] 3 1=
Q - 0 2- [
3
|
1|
0- 0- =
5.30 5.35 5.40 5.45 550 6 7 8 9 10
Execution Time (s) Execution Time (s)
Native D System23 JS/WASM D System23

Figure 5.19: lu Benchmarks

128




5.3.4.5. ludcmp

The ludemp benchmark as depicted in figure 5.20 is a system of linear equations using LU
decomposition followed by forward and backward substitutions (Yuki & Pouchet, 2016). The
benchmarks have the following characteristics depicted in green:

» A substantially close performance result of less than 1% of the SYS23 benchmark to that
of the native one.

* A substantial, within 50% performance improvement of the SYS23 benchmark over that
of the WASM one.

System23 vs Native System23 vs WebAssembly
a : o
i i
F 6- : @ :
© - kel 5
5 0 S 4- 0
e] ! o M\
o T o | '
= i o
= ’ = R
2 Z2, M
@ 5 2 \
o o- o \

|

R

52 5.3 5.4 5 6 7 8 9
Execution Time (s) Execution Time (s)
Native D System23 JS/WASM D System23

Figure 5.20: ludcmp Benchmarks

5.3.4.6. trisolv

0e+00 - J

System23 vs Native System23 vs WebAssembly
i
[
16405 - [t 75000 -
m [ 5 m
c 1 f=
=1 | A \ =
& I &
p | : o 50000-
- / i -
2 5e404- / ' =
[72] / 1 (%2}
& i 5
= : \ A 25000-
i
0.00246 0.00247 " 0.00248 0.0025 0.0030 0.0035 0.0040
Execution Time (s) Execution Time (s)
Native [ | System23 JS/WASM [ | System23

Figure 5.21: trisolv Benchmarks

129



The trisolv benchmark as depicted in figure 5.21 is a triangular matrix solver using forward

substitution (Yuki & Pouchet, 2016). The benchmarks have the following characteristics
depicted in green:

+ A significantly close performance result of less than 0.5% of the SYS23 benchmark to
that of the native one.

* A substantial, within 50% performance improvement of the SYS23 benchmark over that
of the WASM one.

5.3.5. Medley

5.3.5.1. deriche

The deriche benchmark as depicted in figure 5.22 is an implementation of the Deriche recursive
filter, which is a generic filter that can be used for both smoothing and edge detection (Yuki &
Pouchet, 2016). The benchmarks have the following characteristics depicted in green:

* A substantially close performance result of less than 1% of the SYS23 benchmark to that
of the native one.

* A minor, within 20% performance improvement of the SYS23 benchmark over that of the
WASM one.

System23 vs Native System23 vs WebAssembly

i i
/ \\ 3000 -
)

2000 -

4000 -

)

w
3
S
o

2000 - [i |

| 1000-
1000-

Density (10 Round.
Density (10 Rounds)

0.2405 0.2410 0.2415 0.2420 024 0.25 0.26 0.27 0.28

Execution Time (s) Execution Time (s)

Native [ | System23 JS/WASM [ ] System23

Figure 5.22: deriche Benchmarks

5.3.5.2. floyd-warshall

The floyd-warshall benchmark as depicted in figure 5.23 calculates the shortest paths between

each pair of nodes in a graph (Yuki & Pouchet, 2016). The benchmarks have the following
characteristics depicted in green:

130



+ A significantly close performance result of less than 0.5% of the SYS23 benchmark to
that of the native one.

* A significant, within 90% performance improvement of the SYS23 benchmark over that of
the WASM one.

System23 vs Native System23 vs WebAssembly
30- 1
i 20-

@ : )
-CC’ ! -g 15-
3 20- : 3
o 1 o
e 1 e
z / i\ 2"
2 ! \ 2
. ! \\/ “’
[a) ! o 5-

0 : 0- é‘

14.025 14.050 14.075 14.100 ' 20 30 40
Execution Time (s) Execution Time (s)
Native D System23 JS/WASM D System23

Figure 5.23: floyd-warshall Benchmarks

5.3.5.3. nussinov

System23 vs Native System23 vs WebAssembly

Density (10 Rounds)
Density (10 Rounds)

'
:
1
1
i
1
* a
:
1
1
1
:

5.475 5.500 5525 5.550 6 8 10

Execution Time (s) Execution Time (s)
Native D System23 JS/WASM D System23

Figure 5.24: nussinov Benchmarks

The nussinov benchmark as depicted in figure 5.24 is an instance of dynamic programming
where the algorithm is used for predicting RNA folding (Yuki & Pouchet, 2016). The benchmarks
have the following characteristics depicted in green:

131



+ A significantly close performance result of less than 0.5% of the SYS23 benchmark to
that of the native one.

* A significant, within 90% performance improvement of the SYS23 benchmark over that of
the WASM one.

5.3.6. Stencils
5.3.6.1. adi

The adi benchmark as depicted in figure 5.25 is a calculation of the Alternating Direction Implicit
method for two-dimensional heat diffusion (Yuki & Pouchet, 2016). The benchmarks have the
following characteristics depicted in green:

+ An almost even result, whereby the SYS23 benchmark is almost exactly the same as the
native one.

* A minor, within 20% performance improvement of the SYS23 benchmark over that of the

WASM one.
System23 vs Native System23 vs WebAssembly
: /
i
2 10- i 2 10- H
5 - \ = !
=} > :
o - o :
o \ @ i
o ; o ‘: ‘
> : = i
®  5- ; ® 5- ‘i
c = c !
o) o) ! ‘
a ; e [il
C e
: o
; 1 ‘\
0 ' 0- 1
9.900 9.925 9.950 9.975 10.000 10.0 10.5 11.0 115 12.0
Execution Time (s) Execution Time (s)
Native D System23 JS/WASM D System23

Figure 5.25: adi Benchmarks

5.3.6.2. fdtd-2d

The fdtd-2d benchmark as depicted in figure 5.26 is a calculation of the Simplified
Finite-Difference Time-Domain method for two-dimensional data, which based on Maxwell’s
equation, models electric and magnetic fields (Yuki & Pouchet, 2016). The benchmarks have
the following characteristics depicted in green:

* A significantly close performance result of less than 0.5% of the SYS23 benchmark to
that of the native one.

132



+ A significant, within 90% performance improvement of the SYS23 benchmark over that of

the WASM one.

System23 vs Native System23 vs WebAssembly
200-
150 -
) 7
° T 150-
3 =}
& &
o 100~ S
= Z 100-
) )
= =
) 5
50-
o a g
0- - 0-
1.395 1.400 1.405 1.410 2 3
Execution Time (s) Execution Time (s)
Native D System23 JS/WASM D System23

Figure 5.26: fdtd-2d Benchmarks

5.3.6.3. heat-3d

The heat-3d benchmark as depicted in figure 5.27 is a calculation using the Heat equation
over three-dimensional space (Yuki & Pouchet, 2016). The benchmarks have the following
characteristics depicted in green:

« A minorly close performance result of less than 2% of the SYS23 benchmark to that of
the native one.

+ A significant, within 90% performance improvement of the SYS23 benchmark over that of
the WASM one.

System23 vs Native System23 vs WebAssembly
. 80-
150- -
'
_ ; _ 60-
n 1 %)
el - el
S 100- - S
o ! o
o 1 o
o i o 40-
= ' =
. 3
3 8 2-
E
0- i 0-
2.06 2,07 2.08 2.09 240 2 4 6 8
Execution Time (s) Execution Time (s)
Native || System23 JS/WASM [ ] System23

Figure 5.27

: heat-3d Benchmarks

133




5.3.6.4. jacobi-1d

The jacobi-1d benchmark as depicted in figure 5.28 is a Jacobi-style stencil computation
over one-dimensional data using a three-point stencil pattern (Yuki & Pouchet, 2016). The
benchmarks have the following characteristics depicted in green:

* An interestingly reverse result, whereby the SYS23 benchmark outperformed that of the
native one.

+ A significant, within 90% performance improvement of the SYS23 benchmark over that of
the WASM one.

System23 vs Native System23 vs WebAssembly
' '
i 40000 -
40000- i
1
i
& : @ 30000-
S 30000- - °
C 1 =
> . >
o ! o]
o 1 o
o 1 o
T 20000- - = 20000~
> i > i
B i @ i
C < c
o ! @ !
O 40000- i O 10000- i
i i
i i
i i
1 il
0- | 0- |
0.00063 0.00064 0.00065 0.00066 0.001 0.002 0.003 0.004
Execution Time (s) Execution Time (s)
Native D System23 JS/WASM D System23

Figure 5.28: jacobi-1d Benchmarks

5.3.6.5. jacobi-2d

System23 vs Native System23 vs WebAssembly
200-
150 -
2 150- o)
c c
> >
€ & 100-
o o
— 100- -
= =
= =
c c
5] & 50-
0O 50- a
|
0- 0- ¢
1.390 1.395 1.400 " 1405 ) 2 3 4 5
Execution Time (s) Execution Time (s)
Native [ | System23 JS/WASM [ ] System23

Figure 5.29: jacobi-2d Benchmarks

134



The jacobi-2d benchmark as depicted in figure 5.29 is a Jacobi-style stencil computation over
two-dimensional data using a five-point stencil pattern (Yuki & Pouchet, 2016). The benchmarks
have the following characteristics depicted in green:

* A significantly close performance result of less than 0.5% of the SYS23 benchmark to
that of the native one.

* A significant, within 90% performance improvement of the SYS23 benchmark over that of
the WASM one.

5.3.6.6. seidel-2d

The seidel-2d benchmark as depicted in figure 5.30 is a Gauss-Seidel style stencil computation
over two-dimensional data using a nine-point stencil pattern. Similar to Jacobi-style stencils,
the Gauss-Seidel style stencil is derived from the Gauss-Seidel method for solving systems of

linear equations (Yuki & Pouchet, 2016). The benchmarks have the following characteristics
depicted in green:

+ A significantly close performance result of less than 0.5% of the SYS23 benchmark to
that of the native one.

* A minor, within 20% performance improvement of the SYS23 benchmark over that of the

WASM one.
System23 vs Native System23 vs WebAssembly
400- ; 300-
'
2 300 m )
5 [ 3 S 200-
o [ o
o | \ 28
= ) i e
= 200- [ hatt
= Fil =
@ / i | B
2 e g 100-
O 100- / Al fa
|
J I 1
0 : 0
19.72 19.73 19.74 1975 C 20 21 22 23
Execution Time (s) Execution Time (s)
Native D System23 JS/WASM D System23

Figure 5.30: seidel-2d Benchmarks

5.4. Discussion

At the start of this study, we stated that the goal or overall objective was to develop a new
web browser EE, which can be used by any web browser to host and execute ClAs with native

135



desktop performance. In conjunction with that goal, this study endeavoured to answer a singular
research question using the framework proposed by Kofod-Petersen (2015). That singular
research question was:

Research Question

What software architecture and design does a new web browser EE need to comprise of
in order to be able to host and execute CIAs with native desktop performance?

Together with the research question, a hypothesis was formed which stated that:

A web browser EE that can host and execute CIAs on any device with native desktop
performance can be created.

In the broader scope of our research, being able to derive a solution that could aid in the
execution of ClIAs with native desktop performance, while also being able to embed it within a
web browser, would allow our hypothesis to be scientifically tested. Furthermore the results of
this hypothesis test would demonstrate whether our hypothesis is or is not supported by the
evidence, as was generated by our benchmarking.

Let’s now review the key findings of not just objective four, but all four objectives of this study.

Objective 1

Identify the features and limitations of existing web browser EEs that can host and
execute applications.

While working through objective one, we compiled an extensive list of literature that dealt
with the performance of web browser EEs. From that list of literature we were able to identify
all of the historical and existing web browser EEs, as well as the unique features of each.
Furthermore, we were also able to ascertain the limitations of each, especially where it
pertained to the aspect of performance, relative to that of a native desktop.

We were then able to draw inferences from the primary literature, which indicated that further
investigation into web browser EEs was warranted. Together with that, we were also able to
identify where the most rewarding opportunities were for improvements to the performance of
web browser EEs. Those opportunities revolved around finding a safe way to execute natively
compatible applications within a web browser.

136



To that end, we then focussed our efforts on experimenting with innovative ways of executing
native applications within a web browser, while ensuring that the application could not harm
the rest of the computer system. In turn, given the high-performance capabilities of executing
native applications, we would be able to meet and even possibly exceed the Doherty Threshold.

Objective 2

Employ a suitable research methodology by determining which ones are best aligned to
deliver on the requirements and goal of this study.

While deriving a suitable methodology that this study could be grounded on that would cover
objective two, we again used the learnings from objective one. We analysed the literature to
understand what methodologies those other studies used and then proceeded to formulate a
set of methodologies that would best suit this study.

While compiling a well-aligned set of methodologies for this study, we also became aware
of other aspects of the methodology that may need refining, such as enhancing existing
benchmarking suites so that they are made up of samples that more accurately represent
use cases of current times. Another aspect that was also missed by almost every other study
except one, was the existence of OS noise and how to mitigate against it.

As part of this study, we then proceeded to investigate the effect of OS noise on benchmarking.
The results of those tests confirmed that OS noise tends to degrade benchmarking results and
as a consequence, one may find that one’s results are not as accurate as one may desire or
require. Given that, we would go as far as to suggest that OS noise mitigations must always be
deployed whenever one needs to benchmark any computer software.

Objective 3

Develop a prototype web browser EE that is capable of hosting and executing CIAs, with
native desktop performance.

For our third objective, we fully immersed ourselves in current technological trends and
possibilities to devise a truly innovative solution to a challenging problem. Our investigations
revealed that the Linux OS has several features that one can easily combine into a
high-performance and secure web browser EE.

Using these Linux OS features together with other ideas that relate to container and VM
technologies, we were able to create a container-like structure that we refer to as an enclave,
because of its process isolation characteristics. This enclave would allow one to execute
a native application without compromising on security, as the application executing within it
would be completely isolated from the rest of the computer system.

By utilising this enclave we were able to present a possible solution to the problem of being
able to execute ClAs within a web browser. Obviously, the proposed solution is merely a very

137



rudimentary prototype however, it provides a sound basis for a fundamental shift in thinking, as
to how we go about executing CIAs within a web browser.

Objective 4

Evaluate and benchmark the performance of the prototype web browser EE against
those discovered through the SLR, thereby testing the empirical hypothesis of this studly.

For objective four, the key findings of our research indicate that our proposed SYS23 solution
would provide a significant improvement in performance as compared to existing web browser
EEs such as WASM. To this end, we can infer from the results that the proposed SYS23
solution would on average be 42% faster in performance than its WASM counterpart. Together
with that, the proposed SYS23 solution should also perform to within 0.45% of the performance
of its native equivalent.

When looking at the results of the SYS23 prototype versus those of WASM in more detail, one
can quickly form the view that the performance improvements presented by SYS23 are fairly
consistent, even though the degree of said performance improvement may vary, in part due to
the underlying nature of the algorithm being benchmarked. Suffice it to say though given the
varying nature of the benchmarking algorithms one could form a generalised view supporting
the claim that in general, the SYS23 prototype should always outperform WASM. The extent to
which the SYS23 prototype would outperform its WASM equivalent could be as low as 6% and
as high as 82%.

One anomaly that did present itself was with the gramschmidt benchmark, whereby WASM
outperformed the SYS23 prototype. This is not surprising, given the fact that WASM
outperformed the native equivalent benchmark as well. If one had to infer a reason for this
anomaly, one could only assume that the WASM application code had undergone some sort
of optimisation that is not present within either the native equivalent or the SYS23 prototype.
One could further speculate that the optimisation in question relates to how the applications
manage their memory allocation and management, given that the gramschmidt benchmark
makes use of large blocks of memory for the decomposition calculation.

That said, instead of an optimisation being in play, which could be causing the anomaly, it could
also be the remaining OS noise which is playing a part in that specific benchmark. Further and
deeper analysis is required to really shed some light on this anomaly. When looking at how
the SYS23 prototype performs against its native equivalent, we can see similar performance
anomalies with 3mm, adi, jacobi-1d and syrk, whereby the SYS23 prototype outperformed its
native equivalent. Given that the application code is 100% the same, one can only infer again
that some OS noise is to blame for this, as the assumption would be that the SYS23 prototype
would always be at least a fraction of a second slower than its native counterpart given the
extra CPU cycles required with which to manage the enclave.

In comparison to the literature reviewed as part of the SLR, we can now suggest based on

138



the findings that the path to even greater performance improvements within a web browser,
especially where it relates to ClAs, is by pursuing solutions that reuse what already exists
today and by utilising native applications as compared to creating ever-increasing numbers
of new interpreted languages with which to solve the problem. It stands to reason that an
interpreted language could never outperform its native equivalent, simply because it will always
be handicapped by the overhead required for its JIT compilation and optimisation features.

Other studies and research in this area seem to have for the most part focused on optimising
the existing EEs and their interpreted languages, being JS and WASM, instead of going back
to basics and trying to find a way in which to reuse what already exists, namely executing
native applications in a secure manner. By utilising what already exists natively, we would also
automatically gain all of the decades worth of optimisations, refinements and expertise that
have gone into these native technologies, such as Assembler, C and C++, to name but a few.

Also by utilising these native technologies, not only do we gain on the technology side, but we
also gain on the human capital side, whereby we get to reuse those existing skills that many
programmers, developers and software engineers already possess, instead of having a whole
new cycle by which we have a cohort of people learning the latest and trendiest language
that is trying to solve the problem. There is something to be said about having a foundational
understanding of software engineering and then building on that foundation, instead of being a
"“Jack of all trades, master of none”.

The obvious counter-arguments to this proposed SYS23 prototype is that it is not easily
ported to all existing OSs, which we touch on briefly in the following section. Another
counter-argument is that it would be challenging to decide on what is a perfectly and
universally usable configuration for the various components like Cgroups, namespaces and
Seccomp. However just as both JS and WASM have evolved over time to allow for more and
more features, one could start from a similar baseline with SYS23, whereby it enforces the
most severe restrictions and over time the industry can allow for less restrictions once they
have been proven to favour usability with no or minimal sacrifice to security.

From a practical point of view, one could implement a SYS23 like solution in specific use cases
where the author/provider of the native application and the consumers are part of the same
trusted group or organisation. In such a use case, one could substantially lessen or even
remove the execution restrictions in favour of usability over security, since the applications
would be implicitly trusted. From a theoretical point of view, the SYS23 prototype serves as a
foundation on which to build upon, from additional research to help refine the proposed solution
to advocating to technology providers like Apple to build the required safeguards into future
versions of their OSs, thereby making it easier to port the proposed solution to their OSs.

139



5.5. Proofs

In this section, we seek to formalise the concepts of Linux Seccomp, Cgroups, and namespaces
in mathematical form using set theory, characteristic functions, and proposition logic, we then
propose lemmas for each one, and then prove them using a theoretical framework.

5.5.1. Secure computing mode

Linux Seccomp operates like a security sandbox, allowing processes to declare a limited set of
system calls they can invoke, thereby reducing the attack surface of malicious processes.

Lemma 1.1 (Process Isolation Through System Call Access Restriction Using Set Theory and
Characteristic Functions). Given a set of system calls S = {s1, s2, ..., sn}, and a policy O which
allows a subset S’ C S of system calls, any process P that adheres to the policy O can only
invoke elements from S’. If P attempts to invoke any system call s € S\ S’, the invocation will
be denied or result in termination.

Proof of Process Isolation Using Secure Computing. We can formalise the proof related to the
concept of restricting system call access based on predefined rules by proving that under the
Seccomp policy, the process P can only invoke system calls from the allowed subset S’ and
no other.

Let S = {s1,s2,...,s,} represent the set of all possible system calls available in a Linux
environment. Let O be the Seccomp policy that defines a subset S’ C S as the allowed system
calls for a process P. Specifically, policy O blocks any system call s € S\ 5.

Assume process P is executing in a Linux environment with Seccomp enabled and policy O
applied. Process P can only invoke system calls that belong to the set S/, as defined by policy
O. If process P attempts to invoke a system call s € S\ S’, the Seccomp filter will intercept this
call and block it, either by returning an error or terminating the process.

The Seccomp system functions as a filter that enforces policy O. This can be modelled as a
characteristic function fo(s) defined as:

1 ifse s
fo(S){ , (5.1)
0 ifses\s

The function fo(s) evaluates to 1 if the system call s is allowed or s € S’, and 0 if the system
call is blocked or s € S\ S'.

Suppose process P attempts to invoke a system call s; € S\ S’. By definition of Seccomp, the
policy O blocks the invocation of any system call not in S’, so:

140



fo(sa) =0 (5.2)

This implies that the invocation of s; will be denied, either by terminating the process or by
returning an error. Therefore, for any process P running under the Seccomp policy O, it is
impossible to successfully invoke a system call s € S\ S’. The process can only invoke system
calls in the allowed subset S/, which proves that Seccomp restricts the system call interface as
intended. |

In conclusion, if a process P is constrained by Seccomp with policy O, the process can only
invoke system calls from the allowed subset S’ C S, and any attempt to invoke system calls
outside this set will be blocked or return an error. This behaviour enforces the security sandbox
limitations of Seccomp.

Lemma 1.2 (Process lIsolation Through System Call Access Restriction Using Proposition
Logic). If a Seccomp filter F' is applied to a process P to restrict certain system calls S(s),
then any unauthorised system call attempted by the process will result in termination or an
error.

Proof of Process Isolation Using Secure Computing. We can formalise the proof related to the
concept of restricting system call access based on predefined rules by proving that under the
Seccomp policy, the process P can only invoke system call s from the allowed system calls
S(s). The call will be successful if the system call s is within the allowed Seccomp filter set
F(s) otherwise the process will be blocked B(s).

Given that, we can assume the following two premises, firstly if a system call s is in the filter set
F(s), it will not be blocked:

Vs(F(s) — —B(s)) (5.3)

Secondly if a system call s is not in the filter set F(s), it will be blocked:

Vs(—F(s) — B(s)) (5.4)

Therefore, when using the two premises and given that when a process P attempts a system
call S(s) and the system call is not in the filter set —F(s), it will be blocked B(s):

S(s) N—=F(s) — B(s) (5.5)

141



This implies then that if S(s) A =F(s), then B(s), as required, either by terminating the process
or returning an error. [ ]

In conclusion, if any system call S(s) attempted by a process P that is not explicitly permitted
by the Seccomp filter F'(s) will be blocked B(s). This aligns with the function of Seccomp to
enforce security by restricting processes to a predefined set of system calls.

5.5.2. Control groups

Lemma 2.1 (Process Resource Consumption Limit Enforcement Using Set Theory). In a Linux
system, Cgroups ensure that the total resource usage of processes within a Cgroup does not
exceed the specified limits, thereby maintaining system stability and performance.

Proof of Process Resource Consumption Limit Enforcement Using Control Groups. Let R be
the total available resource, such as CPU time and memory to name a few. Let C' be a Cgroup
with a resource limit L such that L < R. Let P, P, ..., P, be the processes within Cgroup C.
Let r; be the resource usage of process F;.

By definition, the Cgroup C enforces that the sum of the resources used by all processes within
the Cgroup does not exceed the limit L. This can be expressed as:

zn:n' S L (56)
i=1

The Linux kernel monitors the resource usage of each process P; within the Cgroup C. If the
sum of the resource usage > " , r; approaches L, the kernel intervenes to ensure the limit is
not exceeded. This can involve throttling processes, denying additional resource allocation, or
terminating processes.

Cgroups are organised hierarchically, meaning that resource limits set at a parent Cgroup level
are propagated to child Cgroups. If C is a parent Cgroup with child Cgroups C4,Cs, ..., Cy,
each with their own limits L, Lo, ..., L,, such that Z;“:l L; < L, the resource usage within
each child Cgroup must also adhere to these limits:

Z ri < L; forallj
iECj

i€Cy

The isolation provided by Cgroups ensures that resource-intensive processes in one Cgroup
do not affect the performance of processes in other Cgroups, which is crucial for maintaining
system stability. [

142



In conclusion, by enforcing resource limits and leveraging the hierarchical structure of Cgroups,
Linux systems ensure that the total resource usage within a Cgroup does not exceed the
specified limits. This guarantees that processes within the Cgroup are contained, thereby
maintaining system stability and performance.

Lemma 2.2 (Process Resource Consumption Limit Enforcement Using Proposition Logic). In
a Linux system, if a process belongs to a Cgroup and the Cgroup has a specific resource limit,
then the process is subject to that resource limit.

Proof of Process Resource Consumption Limit Enforcement Using Control Groups. Let
P(z,g) denote that a process z belongs to a Cgroup ¢g. Let R(g,r) denote that Cgroup
g has a resource limit of . Let S(z,r) denote that a process x is subject to a resource limit of

r.

Assuming then that when process x belongs to Cgroup g, and Cgroup g has a resource limit of
r, it can be expressed as:

P(xz,g9) N R(g,71) (5.8)

Given that, since x belongs to g(P(z,g)) and g has a resource limit of »(R(g,7)), process x
must be subject to r. Using this reasoning, the implication is that S(z,r) and thus:

P(z,9) NR(g,7) = S(z,r) forallx,g,r
(2, 9) N R(g,7) = S(z,7) 9 (5.9)

The simplified model of Cgroups as mechanisms with which one can organise and manage
system resources assist in ensuring that processes do not exceed their allowed resource limits.
[ |

In conclusion, by applying resource limits and utilising the hierarchical structure of Cgroups,
Linux systems ensure that the total resource consumption within a Cgroup remains within
defined boundaries. This containment ensures that processes within the Cgroup are managed
effectively, contributing to overall system stability and performance.

5.5.3. Namespaces

Lemma 3.1 (Process Isolation Through Namespaces Using Set Theory). In an OS with multiple
Linux namespaces, processes that are assigned to different namespaces do not share OS
resources unless explicitly permitted through mechanisms such as shared namespaces or
resource linking.

143



Proof of Process Isolation Using Control Group Namespaces. Each  Cgroup  namespace
provides a unique view of a Cgroup linked to the contained processes. Let N; and N> be two
Cgroup namespaces with processes P, and P,. The Cgroup linked to P; are isolated from
those linked to P, unless there is an explicitly shared Cgroup.

Therefore Cgroups are distinct across namespaces unless explicitly shared:

For all Cgroups G, (5.10)
GN1 N GN2 =0
unless explicitly shared

Proof of Process Isolation Using Inter-Process Communication Namespaces. We can think
of Linux namespaces as creating disjoint sets of resources for processes in the OS. Each
namespace separates certain aspects of the OS resources, and processes in different
namespaces cannot access resources outside of their namespace unless explicitly configured
to do so. We can formalise the proof by breaking down the different namespaces and showing
that the resources they isolate form disjoint sets.

IPC resources, such as message queues, semaphores, and shared memory, are isolated
between namespaces. Processes in one namespace N; cannot interact with IPC mechanisms
in another namespace N,, unless explicitly shared.

IPC resources are therefore distinct across namespaces:

For all IPC resources R, (5.11)
Ry, N Ry, =10
unless explicitly shared

Proof of Process Isolation Using Mount Namespaces. Let P, and P, be two processes in
different mount namespaces N1 and N, respectively. The file system views of P, and P are
different, as N; and N, maintain independent mount points. Thus, P, cannot access files or
directories mounted in Ny, and P, cannot access those in V7 unless there is an explicit shared
mount.

Therefore no process in one mount namespace can access the file hierarchy of another unless
shared:

144



For all filesystems F, (5.12)
Fn, N Fn, = 0
unless explicitly linked

Proof of Process Isolation Using Network Namespaces. Processes in different network
namespaces have independent network interfaces, routing tables and so forth. Let N; and N,
be two network namespaces with processes P, and P,. The networking resources used by
Py are isolated from those used by P, unless explicit bridges or virtual Ethernet pairs are set up.

Therefore networking resources are isolated across namespaces unless explicitly connected:

For all network interfaces I, (5.13)
IN1 N IN2 =10
unless a bridge or virtual Ethernet pairs exists

Proof of Process Isolation Using Process Namespaces. Processes in different PID
namespace hierarchies are only aware of processes in the same or descendant PID
namespaces. Let P, and P, be two processes that belong to PID namespaces N; and N,
respectively. Each PID namespace has its own independent set of PIDs, and processes in V;
cannot see or interact with the PIDs in N,, unless parent-child namespace relationships exist.

Therefore processes in one namespace can only view processes in descendant namespaces:

For all processes P, (5.14)
PN1 N PN2 =0
unless one namespace is a descendant of another

Proof of Process Isolation Using Time Namespaces. Time namespaces allow one to have
different system monotonic and boot-time clocks per namespace. Let N; and N, be two time
namespaces with processes P; and P,. The system monotonic and boot-time clocks used by
P, are isolated from those used by P, unless explicitly duplicated.

Therefore system monotonic and boot-time clocks isolated unless explicitly duplicated:

145



For all system monotonic and boot-time clocks C, (5.15)
Cn,NCn, =10
unless values are explicitly duplicated

Proof of Process Isolation Using User Namespaces. User namespaces allow different
processes to have different views of GIDs and UIDs. In namespace Nj, process P; can
have UID u;, while in namespace N,, process P, could have the same UID w,, but their
permissions are independent due to namespace isolation. Thus, UIDs are mapped separately
in different user namespaces.

Therefore UIDs are isolated unless explicitly mapped:

For all UIDs U, (5.16)
UN1 N UN2 =10

unless explicit user mapping is performed

Proof of Process Isolation Using Unix Time-Sharing Namespaces. UTS namespaces allow
one to have different hostnames and NIS domain names per namespace. Let Ny and N, be
two UTS namespaces with processes P, and P». The UTS system identifiers used by P, are
isolated from those used by P,, unless explicitly duplicated.

Therefore, hostnames and NIS domain names are isolated unless explicitly duplicated:

For all UTSs system identifiers I, (5.17)
In, NIy, = 1)
unless values are explicitly duplicated

In conclusion, each namespace provides a level of isolation, meaning that processes in different
namespaces cannot share or interfere with each other’s resources unless explicitly allowed.

Lemma 3.2. Process Isolation Through Namespaces Using Proposition Logic] In a Linux
system that comprises of multiple namespaces, processes in separate namespaces do not
share OS resources unless explicitly allowed through mechanisms like resource linking or
shared namespaces.

Proof of Process Isolation Using Namspaces. Let P(x,n) and P(y,n) denote that a process x
and y belong to a namespace n. Let R(n,t) denote that namespace n governs resources of

146



type t. Let V(z,t) and V (y, t) denote that a process = and y has a consistent view of resources
of type t.

Assuming then that when process x belongs to namespace n, process y belongs to namespace
n, and namespace n governs resources of type ¢, it can be expressed as:

P(z,n) A P(y,n) A R(n,t) (5.18)

Given that, since both z and y belong to n(P(x,n)) and n(P(y,n)), and n governs resources of
type t(R(n,t)), process x and y must share a consistent view of the resources of type ¢. Using
this reasoning, the implication is that V' (x,t) <» V (y, t) and thus:

P(z,n) A P(y,n) A R(n,t) — (V(z,t) <> V(y,t)) forall z,y,n,t

(5.19)
- VaYyYnYt(P(xz,n) A P(y,n) A R(n,t) — (V(x,t) <> V(y,t)))

In conclusion, processes within the same namespace have a consistent and isolated
perspective on resources of the type governed by that namespace, ensuring both coherence
and isolation between namespaces.

5.6. Limitations

This study sought to answer a singular research question which has now been thoroughly
analysed and discussed in the preceding sections. During the analysis and discussion, certain
limitations have been brought to light. First and foremost, our hypothesis has been tested and
the findings do indeed support it. That said, it stands to reason that the benchmarking that was
used, is but a small subset of all possible scenarios that may exist. To that end, the viewpoint
that we have formed needs to be contextualised to the use cases or benchmarking algorithms
presented, even though one may be tempted to form a generalised opinion.

Then, one also has to be sensitive to the fact that we based our SYS23 prototype on the Linux
OS and its kernel functions, as well as using it to test our hypothesis on. So even though
similar mechanisms do indeed exist in other OSs, such as the Windows-based OSs from
Microsoft, one would struggle to find similar functions on the OS X based OSs from Apple.
Within the Windows-based OSs similar functions for Cgroups are job objects, namespaces are
similar to object manager and silos, and Seccomp is similar to host compute service.

The deficiencies of the OS X OS also hold true for its mobile iOS OSs, while the mobile
equivalents of the Linux-based OS, such as the Android ones from Google and Samsung
contain the same functions as found in their desktop counterparts. Those OSs cover the
mainstream world, but other non-mainstream OSs will need to be further evaluated to see if

147



they contain mechanisms that could be used to create a secure enclave, as proposed by the
SYS23 prototype. Some such OSs that come to mind are those based on Solaris from Oracle
(previously Sun Microsystems) and BSD, which find favour in the scientific community, where
the ability to execute compute-intensive applications through a web browser is sought after.

An interesting proposition would be to propose a design whereby if the required functions are
not available within the given OS, one could provide such mechanisms as an add-on to the
OS, which would allow one to port that design to OS X, iOS, and any other OS that may not
provide such functions out of the box. All that one would need to ensure is that the design
adheres to the three primary aspects of the SYS23 design, namely being able to execute
native applications, being able to be precompiled with an AOT compiler, and most importantly,
provide for the creation of a secure enclave within which the native application can execute
safely.

A final aspect to also keep in mind is that the proposed SYS23 prototype only tries to solve the
problem that exists on the client side of the end-to-end web ecosystem. It does not propose
how one would go about integrating the server-side or the distribution of the native applications
that would be downloaded. Those functions would equally need to be uplifted to accommodate
the requirements of the SYS23 platform as a whole and any shortcomings would need to be
dealt with in order to have a fully functional end-to-end web server to web browser system
together with an efficient user experience.

Given these limitations, we are presented with areas that require further research. We delve
into the specifics of those areas of future research, which relate directly to this study in the next
chapter.

5.7. Synopsis

In this chapter, we analysed the performance of a prototype implementation of our SYS23
system design against both that of native ISA and OS compatible applications as well as
WASM-based applications. Initially, we compared WASM against their native counterparts
and obviously we can observe that the native benchmarks outperformed the WASM ones.
This can simply be explained given the overhead that WASM performance suffers from as an
interpreted language.

Thereafter, we compared WASM against the SYS23-based applications. Here we also
observed that the SYS23-based applications had superior performance, again this can simply
be explained given that the SYS23-based applications require no interpretation at time of
execution and hence their performance would be quite close to that of native ISA and OS
compatible applications. Even by executing within the SYS23 enclave, the SYS23-based
applications still outperform their WASM-based counterparts.

148



In the next and concluding chapter, we will briefly summarise this study and show how all of its
objectives have been dealt with, together with further areas of research that can be undertaken
in this regard.

149



CHAPTER 6

CONCLUSION

In this chapter, we ponder the conclusions that have been derived at as well as to look at
avenues that other researchers may wish to look into, as subsequent studies to the study
undertaken herein.

This chapter summarises the findings and looks to the future through the following:
Section 6.1. Recap
Section 6.2. Objectives
Section 6.3. Conclusion

Section 6.4. Future directions

6.1. Recap

In this study, we set out to investigate the shortcomings within existing web browser EEs,
specifically where they relate to being able to host and execute CIAs with native desktop
performance. We examined the current state of web browser EEs and formed an initial
hypothesis which was that:

Bl |

A web browser EE that can host and execute CIAs on any device with native desktop
performance can be created.

This in turn led us to formulate a singular research question that this study endeavoured to
answer, which was:

Research Question

What software architecture and design does a new web browser EE need to comprise of
in order to be able to host and execute CIAs with native desktop performance?

Subsequent to this we presented four objectives that underpinned this study, which would

150



allow us to answer the singular research question. These four objectives also correlated to the
work presented in chapters 2 through 5. In addition, we also released those four chapters to
the public domain through various conferences and journal publications, with the aim of stress
testing their content with the general scientific community.

In the following sections, we will briefly re-examine the four objectives before presenting our
final conclusion.

6.2. Objectives

Objective 1

Identify the features and limitations of existing web browser EEs that can host and
execute applications.

With objective one we identified the current state of web browser EEs, where we delved
into both their strengths as well as their weaknesses and found that existing web browser
EEs are not currently equipped with the ability to host and execute ClAs with native desktop
performance.

Objective 2

Employ a suitable research methodology by determining which ones are best aligned to
deliver on the requirements and goal of this study.

With objective two we furnished a methodology that formed the foundation of our study which
was deemed sufficient and adequate to align with the outcomes desired from this study.
Together with that we also delivered a contribution relating to OS noise mitigations, which
assisted in improving the benchmarking undertaken with objective four.

Objective 3

Develop a prototype web browser EE that is capable of hosting and executing CIAs, with
native desktop performance.

With objective three we presented a system design for a web browser EE that we propose will
be able to host and execute ClAs with native desktop performance. That design shows how
one would be able to use existing technologies based on the Linux OS to build an isolated EE
within which one would be able to execute untrusted but natively compatible applications that
were downloaded from a web server.

151



Objective 4

Evaluate and benchmark the performance of the prototype web browser EE against
those discovered through the SLR, thereby testing the empirical hypothesis of this studly.

With objective four we benchmarked our presented system design and evaluated it against the
most recently developed web browser EE, that being the WASM-based EE. We also showed
how our system design compared to that of the WASM EE, from where we drew certain
favourable conclusions.

6.3. Contributions

From a contribution point of view, which is best viewed through three lenses, being
methodological, theoretical and practical, we put forward the following.

The methodology contributions presented in this study mark a significant advancement in
the area of benchmarking, where existing approaches have fallen short in mitigating against
OS noise. This critical gap was addressed by this study through the proposed mitigations,
which aid in ensuring that the desired benchmarking is more accurate. The novelty of these
mitigations is that they are not complex to implement and are supported by numerous OSs.
Previous studies have also mostly ignored these OS noise and the effect that they may
ultimately have on the accuracy of the benchmarking results.

A rigorous process was employed with which to implement this methodology and it also
underwent a robust and extensive validation process by utilising PolyBench/C to test the
performance implications and effectiveness of the OS noise mitigations. Practical applications
of this methodology reach far beyond the scope of this study and are suited to all sorts of
computer software performance benchmarking. One limitation that needs to be noted is that
not all OS noise were discoverable and thus not all OS noise could be mitigated against.
Future research would aid in increasing the list of know OS noise mitigations.

This study significantly contributes to the theoretical understanding of application isolation
or application enclaves as referred to in this study. This study proposes to bridge existing
gaps related to the far-reaching use cases of application enclaves and that they are not just
limited to the execution of trusted applications, as per conventional understanding. Theoretical
innovations presented in this study provide a fresh perspective as to how one might use
application enclaves for the specific use case of this study, thereby expanding the theoretic
boundaries of possible use cases of application enclaves.

The development of these theoretical contributions was based on a strong methodology that
involved extensive literature reviews, iterative design and model testing. This process facilitated
an in-depth exploration of existing theories while uncovering their limitations, specifically where
they relate to the execution of CIAs. The implications of these theoretical contributions are
extensive. They not only push forward academic discussions on the execution of ClAs but

152



also have potential applications across various types of computer software. Future theoretical
research could build on these foundations and propose further enhancements to aspects such
as security, AOT compilation and native execution of applications as they relate to application
enclaves.

Substantial practical contributions are made by this study, specifically where it focused on
answering the singular research question by proposing the SYS23 prototype. This prototype
provides a possible solution to the problem of being able to execute CIAs within web browsers
with performance that is equivalent to that of native desktop performance. These contributions
were rigorously tested and benchmarked against both existing solutions and their native
equivalent. The results of the implementation of the SYS23 prototype suggest that it would
indeed far surpass the performance of existing solutions.

The implications of these practical contributions suggest that its use extends well beyond the
focus area of this study. The long-term advantages of this prototype could be significant,
especially in terms of cost savings and learning curve, whereby one would be utilising existing
knowledge and there would be no need to completely rewrite applications, simply to allow them
to execute within a web browser. Although the practical implementation developed in this study
mark a significant advancement, there are still opportunities for further development. While the
approach has proven effective with regard to EEs, it would be valuable to assess its use across
a broader range of benchmarks and use cases.

6.4. Conclusion

In the previous section, we summarised how the objectives of this study were dealt with, which
allowed us to examine the subject area of web browser EEs that can host and execute ClAs
with native desktop performance. We examined the current state of existing web browser EEs
and showed how they are currently not up to the task of hosting and executing ClAs with native
desktop performance.

That conclusion was derived at after we completed an exhaustive SLR together with also
identifying that WASM-based EEs are currently the foremost web browser EE, delivering
substantial performance improvements over its JS-based EEs counterpart. After that, we
present the methodology underpinning our study, together with improvements for benchmarking
computer software performance.

Subsequent to that we then proposed our system design that we believe can be used by web
browsers to host and execute ClAs with equivalent native desktop performance. Finally, we
then benchmarked and evaluated our system design and showed how our design performed
favourably against the foremost existing web browser EE, particularly because it has much
less overhead when executing ISA and OS natively compatible applications.

153



In conclusion, within this context we believe that our study has achieved its goals of answering
our singular research question by presenting a well-designed system architecture, which can be
expanded upon. We also believe that our system design has sufficient merit to warrant further
evaluation. We also acknowledge that our system design is limited and merely a prototype,
where in the following section we suggest further directions for research to improve upon our
system design.

6.5. Future directions

Previously in section 2.4.4.7. we identified areas of research unrelated to this study that require
further investigation. In this section we provide areas of research that relate directly to this
study, that also require further investigation. These future studies would complement this study
with the aim of formulating a full end-to-end solution to the subject area originally investigated.

The related studies that requires further investigation can be summarised as:

1. Binary Artefact Creation: Investigating the compilation of applications so that they are
binary compatible across multiple ISAs and OSs. This may require that certain syntactic
sugar be added to an application’s source code base, so as to allow it to be compiled
more efficiently depending on the target ISA and OS. This would also assume that an
application has one source code base, much like the Linux kernel, instead of multiple
different source code bases.

2. Binary Artefact Repository: Investigating the storage and/or archiving of applications in
their binary state. This storage facility would allow for retaining multiple lifecycle versions
of any one application together with binary compatible versions for multiple ISAs and OSs.
This storage facility would also need to be compatible with various web servers, such as
the open-source Apache web server and the Microsoft Internet Information Services (1IS)
web server.

3. Binary Artefact Distribution: Investigating the distribution mechanisms that could
be employed to more efficiently distribute the applications in their binary state. This
could be facilitated through content delivery networks (CDNs) such as those by Akamai,
Cloudflare and Fastly, to name a few. One could also employ other mechanisms such as
those provided by torrent and other peer-to-peer like technologies.

This obviously does not remove the age-old mechanism of simply downloading an
application in its binary state and installing it on one’s computer system. The only caveat
would be that the execution of said application would still need to occur within the SYS23
enclave.

4. Binary Artefact Fast Downloading: Investigating the downloading mechanism that
could be employed to efficiently download the application in their binary state. This could
be achieved by only downloading the sections of the application that have changed, an

154



example of this would be to use a checksum method to perform a bit-level data transfer.
That mechanism is similar to the one that the rsyne command uses to transfer files,
which allows it to dramatically decrease the amount of data that needs to be transferred.

5. Enclave Adoption: Investigating the broader adoption of the SYS23 enclave on more
ISAs and OSs, such as those based on Apple hardware and its OS X line of OSs,
furthermore adoption on mobile architectures such as those based on Apple mobile
devices and their iOS line of OSs as well as Google’s Android. Adoption on the mobile
architecture based on Google’s Android should be more straight forward because the
Android OS is primarily based on Linux, which is also the foundation on which SYS23
has been prototyped in this study.

6. Enclave Benchmarking: Investigation into a more comprehensive suite of benchmarks,
which are specifically designed to stress test SYS23 enclaves. One could use the
PolyBench/C benchmarking suite as a baseline and expand upon it or one could design a
purpose-built suite of benchmarks. Specific areas that would need benchmarking are
those related to all aspects of ClAs, but also those that require enormous amounts
of processing power such as Artificial Intelligence (Al), 3D rendering, especially in
fast-paced gaming, and high-volume data processing, like pattern matching, to name
a few.

7. Enclave Enhancements: Investigating further enhancements to this study and its SYS23
prototype especially with regard to further hardening its security and reducing its attack
surface. Other aspects relating to the SYS23 enclave can also be expanded upon,
such as improving the management of downloaded applications, caching them for future
reuse and enabling multiple downloaded applications from being able to interact with one
another.

These are only a few possible areas of research that one could investigate further, although
many more may exist. Over time many more possible areas of research may also present
themselves.

155



BIBLIOGRAPHY

Ahn, W., Choi, J., Shull, T., Garzaran, M.J. & Torrellas, J. 2014. Improving JavaScript
Performance by Deconstructing the Type System. In Proceedings of the 35th ACM SIGPLAN
Conference on Programming Language Design and Implementation. PLDI '14. New York:
Association for Computing Machinery: 496-507. doi: 10.1145/2594291.2594332.

Aponte, M. 2020. Create Your Single-Page Application. In Building Single Page Applications in
.NET Core 3 : Jumpstart Coding Using Blazor and C#, Berkeley: Apress, Berkeley, CA, 33—71.
doi: 10.1007/978-1-4842-5747-0_3.

Arteaga, J.C., Donde, S., Gu, J., Floros, O., Satabin, L., Baudry, B. & Monperrus, M.
2020. Superoptimization of WebAssembly bytecode. 2020: Conference Companion of the
4th International Conference on Art, Science, and Engineering of Programming: 36—40. doi:
10.1145/3397537.3397567.

Auler, R., Borin, E., de Halleux, P., Moskal, M. & Tillmann, N. 2014. Addressing JavaScript JIT
Engines Performance Quirks: A Crowdsourced Adaptive Compiler. In Compiler Construction,
vol. 8409, Berlin: Springer, 218-237. doi: 10.1007/978-3-642-54807-9_13.

Babbie, E.R. 2016. The Practice of Social Research. 14th ed. Boston: Cengage Learning.

Baltes, S. & Ralph, P. 2022. Sampling in Software Engineering Research: A Critical Review and
Guidelines. Empirical Software Engineering, 27(4): 1-38. doi: 10.1007/s10664-021-10072-8.

Barry, D., Jagode, H., Danalis, A. & Dongarra, J. 2023. Memory Traffic and Complete
Application Profiling with PAPI Multi-Component Measurements. In 2023 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW). Florida: Institute of
Electrical and Electronics Engineers: 393—402. doi: 10.1109/IPDPSW59300.2023.00070.

Bartz-Beielstein, T., Doerr, C., Berg, D.v.d., Bossek, J., Chandrasekaran, S., Eftimov, T.,
Fischbach, A., Kerschke, P, La Cava, W., Lépez-lbanez, M., Malan, K.M., Moore, J.H., Naujoks,
B., Orzechowski, P., Volz, V., Wagner, M. & Weise, T. 2020. Benchmarking in Optimization: Best
Practice and Open Issues. arXiv, abs/2007.03488: 1-50. doi: 10.48550/arXiv.2007.03488.

Belkin, A., Gelernter, N. & Cidon, I. 2019. The Risks of WebGL: Analysis, Evaluation and
Detection. In Computer Security — ESORICS 2019, Cham: Springer International Publishing,
545-564. doi: 10.1007/978-3-030-29962-0_26.

Berners-Lee, T. 1990. Information Management: A Proposal. CERN, Geneva.

156



Berners-Lee, T., Cailliau, R., Groff, J. & Pollermann, B. 1992. World-Wide Web: The Information
Universe. Electronic Networking, 2(1): 52—-58.

Bhansali, S., Aris, A., Acar, A., Oz, H. & Uluagac, A.S. 2022. A First Look at Code Obfuscation
for WebAssembly. In Proceedings of the 15th ACM Conference on Security and Privacy in
Wireless and Mobile Networks. WiSec '22. New York: Association for Computing Machinery:
140-145. doi: 10.1145/3507657.3528560.

Bian, W., Meng, W. & Wang, Y. 2019. Poster: Detecting WebAssembly-Based Cryptocurrency
Mining. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security. CCS ’19. New York: Association for Computing Machinery:
2685-2687. doi: 10.1145/3319535.3363287.

Biradar, S.M., Shekhar, R. & Reddy, A.P. 2018. Build Minimal Docker Container Using Golang.
In Proceedings of the Second International Conference on Intelligent Computing and Control
Systems. ICICCS 2018. Madurai: Institute of Electrical and Electronics Engineers: 1-4. doi:
10.1109/ICCONS.2018.8663172.

Borisov, P.D. & Kosolapov, Yu.V. 2020. On the Automatic Analysis of the Practical Resistance
of Obfuscating Transformations. Automatic Control and Computer Sciences, 54(7): 619-629.
doi: 10.3103/S0146411620070044.

Bormann, C. 2018. Well-Known URIs for the WebSocket Protocol. Retrieved from https:
/Irfc-editor.org/rfc/rfc8307 [15 April 2024].

Bourgoin, M. & Chailloux, E. 2015. High-level accelerated array programming in the
web browser. ARRAY 2015: Proceedings of the 2nd ACM SIGPLAN International
Workshop on Libraries, Languages, and Compilers for Array Programming: 31-36. doi:
10.1145/2774959.2774964.

Brito, T., Lopes, P, Santos, N. & Santos, J.F. 2022. Wasmati: An efficient static
vulnerability scanner for WebAssembly. Computers & Security, 118: 102745. doi:
10.1016/j.cose.2022.102745.

Brown, S. 2022. The C4 Model for Visualising Software Architecture. Retrieved from https:
/lcdmodel.com [15 April 2024].

Bruyat, J., Champin, PA., Médini, L. & Laforest, F. 2021. WasmTree: Web Assembly for the
Semantic Web. In The Semantic Web, vol. 12731, Cham: Springer International Publishing,
582-597. doi: 10.1007/978-3-030-77385-4 _35.

Bryman, A. 2016. Social Research Methods. 5th ed. Oxford: Oxford University Press.

Bryman, A. & Bell, E. 2011. Business Research Methods. 3rd ed. Oxford: Oxford University
Press.

Calegari, P., Levrier, M. & Balczynski, P. 2019. Web Portals for High-Performance Computing:

157


https://rfc-editor.org/rfc/rfc8307
https://rfc-editor.org/rfc/rfc8307
https://c4model.com
https://c4model.com

A Survey. ACM Transactions on the Web, 13(1): 1-36. doi: 10.1145/3197385.

Cao, B., Shi, M. & Li, C. 2017. The solution of web font-end performance optimization. In 2017
10th International Congress on Image and Signal Processing, BioMedical Engineering and
Informatics (CISP-BMEI). Shanghai: Institute of Electrical and Electronics Engineers: 1-5. doi:
10.1109/CISP-BMEI.2017.8302083.

Casteleyn, S., Garrigds, |. & Mazoén, J.N. 2014. Ten Years of Rich Internet Applications: A
Systematic Mapping Study, and Beyond. ACM Transactions on the Web, 8(3): 1-46. doi:
10.1145/2626369.

Chandra, S., Gordon, C.S., Jeannin, J.B., Schlesinger, C., Sridharan, M., Tip, F. & Choi, Y.
2016. Type Inference for Static Compilation of JavaScript. In Proceedings of the 2016 ACM
SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages,
and Applications. OOPSLA 2016. New York: Association for Computing Machinery: 410-429.
doi: 10.1145/2983990.2984017.

Cho, M., Han, Y., Kim, M. & Kim, S.W. 2015. O2WebCL: an automatic OpenCL-to-WebCL
translator for high performance web computing. Journal of Supercomputing, 71(6): 2050—-2065.
doi: 10.1007/s11227-014-1260-4.

Choi, J., Shull, T. & Torrellas, J. 2019. Reusable Inline Caching for JavaScript Performance. In
Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation. PLDI 2019. New York: Association for Computing Machinery: 889-901. doi:
10.1145/3314221.3314587.

Choi, M.H. & Moon, 1.Y. 2019. Development of Branch Processing System Using WebAssembly
and JavaScript. Journal of information and communication convergence engineering, 17(4):
234-238. doi: 10.6109/jicce.2019.17.4.234.

Creswell, J.W. & Creswell, J.D. 2018. Research Design: Qualitative, Quantitative, and Mixed
Methods Approaches. 5th ed. Los Angeles: SAGE Publications.

De Macedo, J., Abreu, R., Pereira, R. & Saraiva, J. 2021. On the Runtime and Energy
Performance of WebAssembly: Is WebAssembly superior to JavaScript yet? In 2021
36th IEEE/ACM International Conference on Automated Software Engineering Workshops
(ASEW). Melbourne: Institute of Electrical and Electronics Engineers: 255-262. doi:
10.1109/ASEW52652.2021.00056.

De Macedo, J., Abreu, R., Pereira, R. & Saraiva, J. 2022. WebAssembly versus
JavaScript: Energy and Runtime Performance. In 2022 International Conference on ICT for
Sustainability (ICT4S). Plovdiv: Institute of Electrical and Electronics Engineers: 24—-34. doi:
10.1109/ICT4S55073.2022.00014.

de Oliveira, D.B., Casini, D. & Cucinotta, T. 2023. Operating System Noise in the Linux Kernel.
IEEE Transactions on Computers, 72(1): 196—207. doi: 10.1109/TC.2022.3187351.

158



Dingledine, R., Mathewson, N. & Syverson, P. 2004. Tor: The Second-Generation Onion
Router. In USENIX Security Symposium. vol. 4, 303—-320.

DiPierro, M. 2018. The Rise of JavaScript. Computing in Science & Engineering, 20(1): 9—10.
doi: 10.1109/MCSE.2018.011111120.

Dodig-Crnkovic, G. 2002. Scientific Methods in Computer Science. In Proceedings of the
Conference for the Promotion of Research in IT at New Universities and at University Colleges
in Sweden. Skovde, 126—130.

Doherty, W.J. & Thadani, A.J. 1982. The Economic Value of Rapid Response Time (IBM
Technical Report GE20-0752-0). IBM Corporation, New York.

Dot, G., Martinez, A. & Gonzalez, A. 2015. Analysis and Optimization of Engines
for Dynamically Typed Languages. In 2015 27th International Symposium on Computer
Architecture and High Performance Computing (SBAC-PAD). Florianopolis: Institute of
Electrical and Electronics Engineers: 41-48. doi: 10.1109/SBAC-PAD.2015.20.

Douceur, J.R., Elson, J., Howell, J. & Lorch, J.R. 2008. Leveraging Legacy Code to Deploy
Desktop Applications on the Web. In OSDI'08: Proceedings of the 8th USENIX conference
on Operating systems design and implementation. USENIX OSDI 2008. San Diego: USENIX
Association: 339—-354. doi: 10.5555/1855741.1855765.

Eich, B. 2015. From ASM.JS to WebAssembly. Retrieved from https://brendaneich.com/2015/
06/from-asm-js-to-webassembly/ [15 April 2024].

Fernando, N., Loke, S.W. & Rahayu, W. 2013. Mobile cloud computing: A survey. Future
generation computer systems, 29(1): 84—106. doi: 10.1016/j.future.2012.05.023.

Fette, I. & Melnikov, A. 2011. The WebSocket Protocol. Retrieved from https://rfc-editor.org/rfc/
rfc6455 [15 April 2024].

Fink, G. & Flatow, I. 2014. Introducing Single Page Applications. In Pro Single Page Application
Development: Using Backbone.js and ASPNET, Berkeley: Apress, Berkeley, CA, 3—13. doi:
10.1007/978-1-4302-6674-7 1.

Fleming, PJ. & Wallace, J.J. 1986. How Not to Lie with Statistics: The Correct Way
to Summarize Benchmark Results. Communications of the ACM, 29(3): 218-221. doi:
10.1145/5666.5673.

Frankston, B. 2020. The JavaScript Ecosystem. IEEE Consumer Electronics Magazine, 9(6):
84-89. doi: 10.1109/MCE.2020.3009457.

Fras, K. & Nowak, Z. 2019. WebAssembly - Hope for Fast Acceleration of Web Applications
Using JavaScript. In Information Systems Architecture and Technology: Proceedings of 40th
Anniversary International Conference on Information Systems Architecture and Technology -
ISAT 2019, Cham: Springer, 275-284. doi: 10.1007/978-3-030-30440-9_26.

159


https://brendaneich.com/2015/06/from-asm-js-to-webassembly/
https://brendaneich.com/2015/06/from-asm-js-to-webassembly/
https://rfc-editor.org/rfc/rfc6455
https://rfc-editor.org/rfc/rfc6455

Fraternali, P.,, Rossi, G. & Sanchez-Figueroa, F. 2010. Rich Internet Applications. IEEE Internet
Computing, 14(3): 9-12. doi: 10.1109/MIC.2010.76.

Freed, N. & Borenstein, N. 1996. Multipurpose internet mail extensions (MIME) part one:
Format of internet message bodies. Retrieved from https:/rfc-editor.org/rfc/rfc2045 [15 April
2024].

Fukuda, H. & Yamamoto, Y. 2008. A System for Supporting Development of Large Scaled Rich
Internet Applications. In Proceedings of the 2008 23rd IEEE/ACM International Conference
on Automated Software Engineering. ASE '08. LAquila: Institute of Electrical and Electronics
Engineers: 459—-462. doi: 10.1109/ASE.2008.73.

Gaj, P, Skrzewski, M., Stoj, J. & Flak, J. 2015. Virtualization as a Way to Distribute
PC-Based Functionalities. IEEE Transactions on Industrial Informatics, 11(3): 763-770. doi:
10.1109/T11.2014.2360499.

Garrett, J.J. 2007. Ajax: A new approach to web applications. Tech. rep., Adaptive Path.

Gong, L., Pradel, M. & Sen, K. 2015. JITProf: Pinpointing JIT-Unfriendly JavaScript
Code. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering. ESEC/FSE 2015. Bergamo: Association for Computing Machinery: 357-368. doi:
10.1145/2786805.2786831.

Gonzalez, N.M., Morari, A. & Checconi, F. 2017. Jitter-Trace: a low-overhead OS noise tracing
tool based on Linux Perf. In Proceedings of the 7th International Workshop on Runtime and
Operating Systems for Supercomputers ROSS 2017. ROSS ’17. Washington: Association for
Computing Machinery: 1-8. doi: 10.1145/3095770.3095772.

Gregor, S. 2021. Reflections on the Practice of Design Science in Information Systems. In
Engineering the Transformation of the Enterprise: A Design Science Research Perspective,
Cham: Springer, 101-113. doi: 10.1007/978-3-030-84655-8_7.

Grimmer, M., Schatz, R., Seaton, C., Wirthinger, T., Lujan, M. & Madssenbdck, H.
2018. Cross-Language Interoperability in a Multi-Language Runtime. ACM Transactions on
Programming Languages and Systems, 40(2): 1—43. doi: 10.1145/3201898.

Gusenbauer, M. 2019. Google Scholar to overshadow them all? Comparing the sizes of 12
academic search engines and bibliographic databases. Scientometrics, 118(1): 177-214. doi:
10.1007/s11192-018-2958-5.

Gusenbauer, M. & Haddaway, N.R. 2020. Which academic search systems are suitable
for systematic reviews or meta-analyses? Evaluating retrieval qualities of Google Scholar,
PubMed, and 26 other resources. Research Synthesis Methods, 11(2): 181-217. doi:
10.1002/jrsm.1378.

Hardie, T. 2016. Clarifying Registry Procedures for the WebSocket Subprotocol Name Registry.
Retrieved from https://rfc-editor.org/rfc/rfc7936 [15 April 2024].

160


https://rfc-editor.org/rfc/rfc2045
https://rfc-editor.org/rfc/rfc7936

Harper, R. 2013. Practical Foundations for Programming Languages. New York: Cambridge
University Press.

Hassani, H. 2017. Research Methods in Computer Science: The Challenges and Issues. arXiv,
abs/1703.04080: 1-16.

HaBler, K. & Maier, D. 2021. WAFL: Binary-Only WebAssembly Fuzzing with Fast Snapshots.
In ROOTS '21: Reversing and Offensive-oriented Trends Symposium, New York: Association
for Computing Machinery, 23—30. doi: 10.1145/3503921.3503924.

Hatchuel, A. & Weil, B. 2003. A New Approach of Innovative Design: An Introduction to C-K
Theory. In DS 31: Proceedings of ICED 03, the 14th International Conference on Engineering
Design. ICED. Stockholm: Design Society: 1-15.

Hatchuel, A., Weil, B. & Le Masson, P. 2013. Towards an Ontology of Design: Lessons
from C—K Design Theory and Forcing. Research in Engineering Design, 24(2): 147-163. doi:
10.1007/s00163-012-0144-y.

Heo, J., Woo, S., Jang, H., Yang, K. & Lee, J.W. 2016. Improving JavaScript performance via
efficient in-memory bytecode caching. In 2016 IEEE International Conference on Consumer
Electronics-Asia (ICCE-Asia). Seoul: Institute of Electrical and Electronics Engineers: 1-4. doi:
10.1109/ICCE-Asia.2016.7804810.

Herman, D., Wagner, L. & Zakai, A. 2014. The asm.js Specification. Retrieved from http://asmjs.
org/spec/latest/ [15 April 2024].

Herrera, D., Chen, H., Lavoie, E. & Hendren, L. 2018. Numerical computing on the web:
benchmarking for the future. DLS 2018: Proceedings of the 14th ACM SIGPLAN International
Symposium on Dynamic Languages, 53(8): 88—100. doi: 10.1145/3393673.3276968.

Hevner, A.R. 2021. Pedagogy for Doctoral Seminars in Design Science Research. In
Engineering the Transformation of the Enterprise: A Design Science Research Perspective,
Cham: Springer, 185—198. doi: 10.1007/978-3-030-84655-8_12.

Hevner, A.R. & Chatterjee, S. 2010. Design Science Research in Information Systems.
Design Research in Information Systems: Theory and Practice, 22: 9-22. doi:
10.1007/978-1-4419-5653-8 2.

Hevner, A.R., March, S.T., Park, J. & Ram, S. 2004. Design Science in Information Systems
Research. MIS Quarterly, 28(1): 75—105. doi: 10.2307/25148625.

Hilbig, A., Lehmann, D. & Pradel, M. 2021. An Empirical Study of Real-World WebAssembly
Binaries: Security, Languages, Use Cases. In Proceedings of the Web Conference
2021. WWW °21. New York: Association for Computing Machinery: 2696-2708. doi:
10.1145/3442381.3450138.

Ho, X., de Joya, J.M. & Trevett, N. 2017. State-of-the-Art WebGL 2.0. SA 2017: SIGGRAPH

161


http://asmjs.org/spec/latest/
http://asmjs.org/spec/latest/

Asia 2017 Courses: 1-51. doi: 10.1145/3134472.3134479.

Hockley, D. & Williamson, C. 2022. Benchmarking Runtime Scripting Performance in
Wasmer. In Companion of the 2022 ACM/SPEC International Conference on Performance
Engineering. ICPE '22. New York: Association for Computing Machinery: 97-104. doi:
10.1145/3491204.3527477.

Hopcroft, J.E., Motwani, R. & Ullman, J.D. 2006. /ntroduction to Automata Theory, Languages,
And Computation. 3rd ed. London: Addison-Wesley.

Huber, S., Demetz, L. & Felderer, M. 2022. A comparative study on the energy consumption of
Progressive Web Apps. Information Systems, 108(C): 1-13. doi: 10.1016/j.is.2022.102017.

livari, J. & Venable, J.R. 2009. Action research and design science research -Seemingly
similar but decisively dissimilar. In European Conference on Information Systems (ECIS) 2009
Proceedings. Verona: AlS Electronic Library (AlSelL): 1-13.

International Organization for Standardization. 2017. The JSON Data Interchange Syntax -
ISO/IEC 21778:2017. Retrieved from https://www.iso.org/standard/71616.html [15 April 2024].

Jangda, A., Powers, B., Berger, E.D. & Guha, A. 2019. Not So Fast: Analyzing the Performance
of WebAssembly vs. Native Code. In Proceedings of the 2019 USENIX Conference on Usenix
Annual Technical Conference. USENIX ATC 2019. Renton: USENIX Association: 107—120.

Jansen, J.M. & van Groningen, J. 2016. A Portable VM-based implementation Platform
for non-strict Functional Programming Languages. In IFL 2016: Proceedings of the 28th
Symposium on the Implementation and Application of Functional Programming Languages,
New York: Association for Computing Machinery, 1-14. doi: 10.1145/3064899.3064903.

Jiang, C. & Jin, X. 2017. Quick Way to Port Existing C/C++ Chemoinformatics Toolkits to the
Web Using Emscripten. Journal of Chemical Information and Modeling, 57(10): 2407-2412.
doi: 10.1021/acs.jcim.7b00434.

Kataoka, T., Ugawa, T. & Iwasaki, H. 2018. A framework for constructing javascript virtual
machines with customized datatype representations. SAC 2018: Proceedings of the 33rd
Annual ACM Symposium on Applied Computing: 1238—1247. doi: 10.1145/3167132.3167266.

Kharb, L., Chahal, D. & Vagisha. 2021. Smart Mobility: Understanding Handheld Device
Adoption. In Advances in Communication and Computational Technology, Singapore: Springer,
13-29. doi: 10.1007/978-981-15-5341-7 2.

Kharraz, A., Ma, Z., Murley, P, Lever, C., Mason, J., Miller, A., Borisov, N., Antonakakis, M. &
Bailey, M. 2019. Outguard: Detecting In-Browser Covert Cryptocurrency Mining in the Wild. In
The World Wide Web Conference. WWW *19. New York: Association for Computing Machinery:
840-852. doi: 10.1145/3308558.3313665.

Kienle, H.M. & Distante, D. 2014. Evolution of Web Systems. In Evolving Software Systems,

162


https://www.iso.org/standard/71616.html

Berlin: Springer, 201-228. doi: 10.1007/978-3-642-45398-4 7.

Kivunja, C. 2018. Distinguishing between Theory, Theoretical Framework, and Conceptual
Framework: A Systematic Review of Lessons from the Field. International Journal of Higher
Education, 7(6): 44-53. doi: 10.5430/ijhe.v7n6p44.

Kluge, J., Kargl, F. & Weber, M. 2007. The Effects of the Ajax Technology on Web
Application Usability. In Proceedings of the Third International Conference on Web Information
Systems and Technologies - Volume 1: WEBIST. Barcelona: SciTePress: 289-294. doi:
10.5220/0001286102890294.

Kofod-Petersen, A. 2015. How to do a Structured Literature Review in computer science.
ResearchGate.

Konoth, R.K., Vineti, E., Moonsamy, V., Lindorfer, M., Kruegel, C., Bos, H. & Vigna, G.
2018. MineSweeper: An In-Depth Look into Drive-by Cryptocurrency Mining and Its Defense.
In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security. CCS ’18. New York: Association for Computing Machinery: 1714-1730. doi:
10.1145/3243734.3243858.

Koper, D. & Woda, M. 2022. Performance Analysis and Comparison of Acceleration Methods
in JavaScript Environments Based on Simplified Standard Hough Transform Algorithm. In
New Advances in Dependability of Networks and Systems, Cham: Springer, 131-142. doi:
10.1007/978-3-031-06746-4_13.

KozloviCs, S. 2020. webAppOS: Creating the lllusion of a Single Computer for Web Application
Developers. In Web Information Systems and Technologies, vol. 399, Cham: Springer
International Publishing, 1-21. doi: 10.1007/978-3-030-61750-9_1.

Kumar, R. 2018. Research Methodology: A Step-by-Step Guide for Beginners. 5th ed. London:
SAGE Publications.

Lehmann, D., Kinder, J. & Pradel, M. 2020. Everything Old is New Again: Binary Security
of WebAssembly. In Proceedings of the 29th USENIX Security Symposium. Virtual: USENIX
Association: 217-234.

Lehmann, D. & Pradel, M. 2022. Finding the dwarf: recovering precise types from
WebAssembly binaries. In PLDI 2022: Proceedings of the 43rd ACM SIGPLAN International
Conference on Programming Language Design and Implementation, New York: Association for
Computing Machinery, 410-425. doi: 10.1145/3519939.3523449.

Letz, S., Orlarey, Y. & Fober, D. 2018. FAUST Domain Specific Audio DSP Language Compiled
to WebAssembly. In Companion Proceedings of the The Web Conference 2018. WWW
2018. Lyon: International World Wide Web Conferences Steering Committee: 701-709. doi:
10.1145/3184558.3185970.

Liu, A.C. & You, Y.P. 2022. Offworker: An Offloading Framework for Parallel Web Applications.

163



In Web Information Systems Engineering — WISE 2022, Cham: Springer, 170-185. doi:
10.1007/978-3-031-20891-1_13.

Liu, W., Yang, X., Lin, H., Li, Z. & Qian, F. 2022. Fusing Speed Index during Web Page Loading.
Proceedings of the ACM on Measurement and Analysis of Computing Systems, 6: 1-23. doi:
10.1145/3511214.

Liu, Y. 2019. JSOptimizer: An Extensible Framework for JavaScript Program Optimization.
In 2019 IEEE/ACM 41st International Conference on Software Engineering: Companion
Proceedings (ICSE-Companion). Montreal: Institute of Electrical and Electronics Engineers:
168—170. doi: 10.1109/ICSE-Companion.2019.00069.

Lubbers, P. & Greco, F. 2010. HTML5 Websocket: A Quantum Leap in Scalability for the Web.
Retrieved from http://www.websocket.org/quantum.html [15 April 2024].

Lyu, S. 2021. High-Performance Web Frontend Using WebAssembly. In Practical Rust Web
Projects: Building Cloud and Web-Based Applications, Berkeley: Apress, Berkeley, CA,
193-249. doi: 10.1007/978-1-4842-6589-5_6.

Ma, Y., Xiang, D., Zheng, S., Tian, D. & Liu, X. 2019. Moving Deep Learning into Web Browser:
How Far Can We Go? In WWW ’'19: The World Wide Web Conference, New York: Association
for Computing Machinery, 1234—1244. doi: 10.1145/3308558.3313639.

Maas, M., Asanovi¢, K. & Kubiatowicz, J. 2017. Full-System Simulation of Java Workloads with
RISC-V and the Jikes Research Virtual Machine. In 1st Workshop on Computer Architecture
Research with RISC-V. Association for Computing Machinery: 1-7.

Makitalo, N., Bankowski, V., Daubaris, P., Mikkola, R., Beletski, O. & Mikkonen, T. 2021.
Bringing WebAssembly up to Speed with Dynamic Linking. In Proceedings of the 36th Annual
ACM Symposium on Applied Computing. SAC '21. New York: Association for Computing
Machinery: 1727—-1735. doi: 10.1145/3412841.3442045.

Malle, B., Giuliani, N., Kieseberg, P. & Holzinger, A. 2018. The Need for Speed
of Al Applications: Performance Comparison of Native vs. Browser-based Algorithm
Implementations. arXiv, abs/1802.03707: 1-21.

Manco, F.,, Lupu, C., Schmidt, F., Mendes, J., Kuenzer, S., Sati, S., Yasukata, K., Raiciu, C. &
Huici, F. 2017. My VM is Lighter (and Safer) than your Container. In SOSP ’17: Proceedings of
the 26th Symposium on Operating Systems Principles, New York: Association for Computing
Machinery, 218—233. doi: 10.1145/3132747.3132763.

March, S.T. & Smith, G.F. 1995. Design and Natural Science Research on Information
Technology. Decision Support Systems, 15(4): 251-266. doi: 10.1016/0167-9236(94)00041-2.

Marion, C. & Jomier, J. 2012. Real-time collaborative scientific WebGL visualization with
WebSocket. Web3D °12: Proceedings of the 17th International Conference on 3D Web
Technology: 47-50. doi: 10.1145/2338714.2338721.

164


http://www.websocket.org/quantum.html

Matsakis, N.D., Herman, D. & Lomov, D. 2014. Typed Objects in JavaScript. In Proceedings
of the 10th ACM Symposium on Dynamic Languages. DLS ’14. New York: Association for
Computing Machinery: 125-134. doi: 10.1145/2661088.2661095.

Mazaheri, M.E., Bayat Sarmadi, S. & Taheri Ardakani, F. 2022. A Study of Timing Side-Channel
Attacks and Countermeasures on JavaScript and WebAssembly. ISC International Journal of
Information Security, 14(1): 27—46. doi: 10.22042/isecure.2021.263565.599.

McAnlis, C., Lubbers, P., Jones, B., Tebbs, D., Manzur, A., Bennett, S., D’Erfurth, F., Garcia,
B., Lin, S., Popelyshev, |., Gauci, J., Howard, J., Ballantyne, I., Freeman, J., Kihira, T,
Smith, T., Olmstead, D., McCutchan, J., Austin, C. & Pagella, A. 2014a. High-Performance
JavaScript. In HTML5 Game Development Insights, Berkeley: Apress, Berkeley, CA, 43-57.
doi: 10.1007/978-1-4302-6698-3_3.

McAnlis, C., Lubbers, P., Jones, B., Tebbs, D., Manzur, A., Bennett, S., D’Erfurth, F., Garcia,
B., Lin, S., Popelyshey, I., Gauci, J., Howard, J., Ballantyne, I., Freeman, J., Kihira, T., Smith,
T., Olmstead, D., McCutchan, J., Austin, C. & Pagella, A. 2014b. HTML5 Games in C++ with
Emscripten. In HTML5 Game Development Insights, Berkeley: Apress, Berkeley, CA, 283—298.
doi: 10.1007/978-1-4302-6698-3_18.

McAnlis, C., Lubbers, P., Jones, B., Tebbs, D., Manzur, A., Bennett, S., D’Erfurth, F., Garcia, B.,
Lin, S., Popelysheyv, I., Gauci, J., Howard, J., Ballantyne, |., Freeman, J., Kihira, T., Smith, T.,
Olmstead, D., McCutchan, J., Austin, C. & Pagella, A. 2014c. JavaScript Is Not the Language
You Think It Is. In HTML5 Game Development Insights, Berkeley: Apress, Berkeley, CA, 1—13.
doi: 10.1007/978-1-4302-6698-3_18.

McManus, P. 2018. Bootstrapping WebSockets with HTTP/2. Retrieved from https://rfc-editor.
org/rfc/rfc8441 [15 April 2024].

Mikkonen, T., Pautasso, C., Systa, K. & Taivalsaari, A. 2019. On the Web Platform Cornucopia.
In Web Engineering, vol. 11496, Cham: Springer International Publishing, 347-355. doi:
10.1007/978-3-030-19274-7_25.

Miller, R.B. 1968. Response time in man-computer conversational transactions. In AFIPS ‘68
(Fall, part |): Proceedings of the December 9-11, 1968, fall joint computer conference, part |,

New York: Association for Computing Machinery, 267-277. doi: 10.1145/1476589.1476628.

Millhouse, T. 2018. Virtual Machines and Real Implementations. Minds and machines, 28(3):
465—-489. doi: 10.1007/s11023-018-9472-7.

Minichiello, V., Aroni, R., Timewell, E. & Alexander, L. 1990. In-depth Interviewing: Researching
People. Hong Kong: Longman Cheshire.

Maller, A. 2018. Technical Perspective: WebAssembly: A Quiet Revolution of the Web.
Communications of the ACM, 61(12): 106. doi: 10.1145/3282508.

Mouton, J. 2011. How to succeed in your master’s and doctoral Studies: A South African guide

165


https://rfc-editor.org/rfc/rfc8441
https://rfc-editor.org/rfc/rfc8441

and resource book. 2nd ed. Hatfield: Van Shaik Publishers.

Musch, M., Wressnegger, C., Johns, M. & Rieck, K. 2019a. New Kid on the Web:
A Study on the Prevalence of WebAssembly in the Wild. In Detection of Intrusions
and Malware, and Vulnerability Assessment, vol. 11543, Cham: Springer, 23-42. doi:
10.1007/978-3-030-22038-9_2.

Musch, M., Wressnegger, C., Johns, M. & Rieck, K. 2019b. Thieves in the Browser: Web-Based
Cryptojacking in the Wild. In Proceedings of the 14th International Conference on Availability,
Reliability and Security. ARES ’19. New York: Association for Computing Machinery: 1-10. doi:
10.1145/3339252.3339261.

Myers, M.D. & Venable, J.R. 2014. A set of ethical principles for design science
research in information systems. Information & Management, 51(6): 801-809. doi:
10.1016/j.im.2014.01.002.

Ménétrey, J., Pasin, M., Felber, P. & Schiavoni, V. 2021. TWINE: An Embedded Trusted Runtime
for WebAssembly. 2021 IEEE 37th International Conference on Data Engineering (ICDE):
205-216. doi: 10.1109/ICDE51399.2021.00025.

Na, Y., Kim, SW. & Han, Y. 2016. JavaScript Parallelizing Compiler for Exploiting Parallelism
from Data-Parallel HTML5 Applications. ACM Transactions on Architecture and Code
Optimization, 12(4): 1-25. doi: 10.1145/2846098.

Nicula, S. & Zota, R.D. 2022. An Analysis of Different Browser Attacks and Exploitation
Techniques. In Education, Research and Business Technologies, Singapore: Springer, 31—41.
doi: 10.1007/978-981-16-8866-9_3.

NieB3en, T., Dawson, M., Patros, P. & Kent, K.B. 2020. Insights into WebAssembly: compilation
performance and shared code caching in Node.js. CASCON 2020: Proceedings of the 30th
Annual International Conference on Computer Science and Software Engineering: 163—172.

Odell, D. 2014. Boosting JavaScript Performance. In Pro JavaScript Development:
Coding, Capabilities, and Tooling, Berkeley: Apress, Berkeley, CA, 91-118. doi:
10.1007/978-1-4302-6269-5 4.

Ortiz, A. 2022. Using WebAssembly to Teach Code Generation in a Compiler Design
Course. In SIGCSE 2022: Proceedings of the 53rd ACM Technical Symposium on Computer
Science Education V. 2, New York: Association for Computing Machinery, 1167. doi:
10.1145/3478432.3499119.

Pace, D.S. 2021. Probability and Non-Probability Sampling - An Entry Point for Undergraduate
Researchers. International Journal of Quantitative and Qualitative Research Methods, 9(2):

1-15.

Page, M.J., McKenzie, J.E., Bossuyt, PM., Boutron, I., Hoffmann, T.C., Mulrow, C.D.,
Shamseer, L., Tetzlaff, .M., Akl, E.A., Brennan, S.E., Chou, R., Glanville, J., Grimshaw, J.M.,

166



Hrébjartsson, A., Lalu, M.M., Li, T., Loder, E.W., Mayo-Wilson, E., McDonald, S., McGuinness,
L.A., Stewart, L.A., Thomas, J., Tricco, A.C., Welch, V.A., Whiting, P. & Moher, D. 2021. The
PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Systematic
Reviews, 10(1): 1—11. doi: 10.1186/s13643-021-01626-4.

Park, H., Cha, M. & Moon, S.M. 2016. Concurrent JavaScript Parsing for Faster Loading
of Web Apps. ACM Transactions on Architecture and Code Optimization, 13(4): 1-24. doi:
10.1145/3004281.

Park, H., Kim, S. & Moon, S.M. 2017. Advanced Ahead-of-Time Compilation for Javascript
Engine: Work-in-Progress. In Proceedings of the 2017 International Conference on Compilers,
Architectures and Synthesis for Embedded Systems Companion. CASES ’'17. New York:
Association for Computing Machinery: 1-2. doi: 10.1145/3125501.3125512.

Park, H., Kim, S., Park, J.G. & Moon, S.M. 2018. Reusing the Optimized Code for JavaScript
Ahead-of-Time Compilation. ACM Transactions on Architecture and Code Optimization, 15(4):
1-20. doi: 10.1145/3291056.

Peffers, K., Rothenberger, M., Tuunanen, T. & Vaezi, R. 2012. Design Science Research
Evaluation. In Proceedings of the 7th International Conference on Design Science Research
in Information Systems: Advances in Theory and Practice. DESRIST 2012. Las Vegas:
Springer-Verlag: 398—410. doi: 10.1007/978-3-642-29863-9_29.

Peffers, K., Tuunanen, T., Rothenberger, M.A. & Chatterjee, S. 2007. A Design Science
Research Methodology for Information Systems Research. Journal of Management Information
Systems, 24(3): 45—77. doi: 10.2753/MIS0742-1222240302.

Pierce, B.C. 2002. Types and Programming Languages. Cambridge: MIT Press.

Pinckney, D., Guha, A. & Brun, Y. 2020. Wasm/k: delimited continuations for WebAssembly.
In DLS 2020: Proceedings of the 16th ACM SIGPLAN International Symposium on
Dynamic Languages, New York: Association for Computing Machinery, 16-28. doi:
10.1145/3426422.3426978.

Popek, G.J. & Goldberg, R.P. 1974. Formal requirements for virtualizable third generation
architectures. Communications of the ACM, 17(7): 412—421. doi: 10.1145/361011.361073.

Powers, B., Vilk, J. & Berger, E.D. 2017. Browsix: Bridging the Gap Between Unix and the
Browser. ASPLOS 2017: Proceedings of the Twenty-Second International Conference on
Architectural Support for Programming Languages and Operating Systems, 52(4): 253—266.
doi: 10.1145/3093336.3037727.

Puder, A., Woeltjen, V. & Zakai, A. 2013. Cross-compiling Java to JavaScript via tool-chaining.
PPPJ 2013: Proceedings of the 2013 International Conference on Principles and Practices
of Programming on the Java Platform: Virtual Machines, Languages, and Tools: 25-34. doi:
10.1145/2500828.2500831.

167



Radhakrishnan, J. 2015. Hardware dependency and performance of JavaScript engines used
in popular browsers. In 2015 International Conference on Control Communication & Computing
India (ICCC). Trivandrum: Institute of Electrical and Electronics Engineers: 681-684. doi:
10.1109/ICCC.2015.7432981.

Rahimi, N. 2021. A Study of the Landscape of Security Issues, Vulnerabilities, and Defense
Mechanisms in Web Based Applications. In 2021 International Conference on Computational
Science and Computational Intelligence (CSCI). Las Vegas: Institute of Electrical and
Electronics Engineers: 806—811. doi: 10.1109/CSCI54926.2021.00194.

Randal, A. 2020. The Ideal Versus the Real: Revisiting the History of Virtual Machines and
Containers. ACM Computing Surveys, 53(1): 1-31. doi: 10.1145/3365199.

Reiser, M. & Blaser, L. 2017. Accelerate JavaScript Applications by Cross-Compiling to
WebAssembly. VMIL 2017: Proceedings of the 9th ACM SIGPLAN International Workshop
on Virtual Machines and Intermediate Languages: 10—17. doi: 10.1145/3141871.3141873.

Rempel, G. 2015. Defining Standards for Web Page Performance in Business
Applications. In Proceedings of the 6th ACM/SPEC International Conference on Performance
Engineering. ICPE '15. New York: Association for Computing Machinery: 245-252. doi:
10.1145/2668930.2688056.

Rigger, M., Grimmer, M. & Madssenbdck, H. 2016. Sulong - Execution of LLVM-Based
Languages on the JVM: Position Paper. In Proceedings of the 11th Workshop on
Implementation, Compilation, Optimization of Object-Oriented Languages, Programs and
Systems. ICOOOLPS ’16. Rome: Association for Computing Machinery: 1-4. doi:
10.1145/3012408.3012416.

Romano, A. & Wang, W. 2020. WASim: Understanding WebAssembly Applications through
Classification. In Proceedings of the 35th IEEE/ACM International Conference on Automated
Software Engineering. ASE '20. New York: Association for Computing Machinery: 1321-1325.
doi: 10.1145/3324884.3415293.

Romano, A., Zheng, Y. & Wang, W. 2020. MinerRay: Semantics-Aware Analysis for
Ever-Evolving Cryptojacking Detection. In Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering. ASE '20. New York: Association for
Computing Machinery: 1129—1140. doi: 10.1145/3324884.3416580.

Rose, S., Borchert, O., Mitchell, S. & Connelly, S. 2020. Zero Trust Architecture. NIST Special
Publication 800-207: 1-59. doi: 10.6028/NIST.SP.800-207.

Rossberg, A. (ed.) 2022. WebAssembly Specification Release 2.0 - Draft 2022-06-01.
Cambridge: World Wide Web Consortium.

Rossberg, A., Titzer, B.L., Haas, A., Schuff, D.L., Gohman, D., Wagner, L., Zakai, A., Bastien,
J.F. & Holman, M. 2018. Bringing the web up to speed with WebAssembly. Communications of
the ACM, 61(12): 107—115. doi: 10.1145/3282510.

168



Salim, S.S., Nisbet, A. & Lujan, M. 2020. TruffleWasm: A WebAssembly Interpreter on
GraalVM. In 1st Workshop on Computer Architecture Research with RISC-V. VEE ’20.
Lausanne: Association for Computing Machinery: 88—100. doi: 10.1145/3381052.3381325.

Sanders, |., Pilkington, C. & Pretorius, L. 2022. Making Research Methodologies in
Theoretical Computing Explicit. South African Computer Journal, 34(1): 192-216. doi:
10.18489/sacj.v34i1.881.

Saunders, M.N.K., Lewis, P. & Thornhill, A. 2019. Research Methods for Business Students.
8th ed. London: Pearson.

Selakovic, M. & Pradel, M. 2016. Performance Issues and Optimizations in JavaScript:
An Empirical Study. In Proceedings of the 38th International Conference on Software
Engineering. ICSE '16. New York: Association for Computing Machinery: 61-72. doi:
10.1145/2884781.2884829.

Serrano, M. 2018. JavaScript AOT Compilation. In Proceedings of the 14th ACM SIGPLAN
International Symposium on Dynamic Languages. DLS 2018. New York: Association for
Computing Machinery: 50—-63. doi: 10.1145/3276945.3276950.

Serrano, M. 2021. Of JavaScript AOT Compilation Performance. Jan, 5(70): 1-30. doi:
10.1145/3473575.

Sharrock, R., Angrave, L. & Hamonic, E. 2018. WebLinux: a scalable in-browser and client-side
Linux and IDE. L@S 2018: Proceedings of the Fifth Annual ACM Conference on Learning at
Scale: 1-2. doi: 10.1145/3231644.3231703.

Shepherd, C. & Markantonakis, K. 2024. Operating System Controls. In Trusted Execution
Environments, Cham: Springer, 33-53. doi: 10.1007/978-3-031-55561-9_3.

Sipser, M. 2012. Introduction to the Theory of Computation. 3rd ed. Boston: Cengage Learning.
Skiena, S.S. 2008. The Algorithm Design Manual. 2nd ed. London: Springer-Verlag.

Smith, J. & Nair, R. 2005. The Architecture of Virtual Machines. Computer, 38(5): 32—38. doi:
10.1109/MC.2005.173.

Song, J., Ahn, M., Lee, G., Seo, E. & Jeong, J. 2021. A Performance-Stable NUMA
Management Scheme for Linux-Based HPC Systems. IEEE Access, 9: 52987-53002. doi:
10.1109/ACCESS.2021.3069991.

South Africa. 2013. Protection of Personal Information Act, No. 4 of 2013. Government Gazette,
581(37067): 1-76.

Southern, G. & Renau, J. 2016. Overhead of Deoptimization Checks in the V8
JavaScript Engine. In 2016 IEEE International Symposium on Workload Characterization

(IISWC). Providence: Institute of Electrical and Electronics Engineers: 1-10. doi:

169



10.1109/1ISWC.2016.7581268.

Spies, B. & Mock, M. 2021. An Evaluation of WebAssembly in Non-Web Environments. In
2021 XLVII Latin American Computing Conference (CLEI). Cartago: Institute of Electrical and
Electronics Engineers: 1-10. doi: 10.1109/CLEI53233.2021.9640153.

Stievenart, Q., De Roover, C. & Ghafari, M. 2022. Security Risks of Porting C Programs
to Webassembly. In Proceedings of the 37th ACM/SIGAPP Symposium on Applied
Computing. SAC °’22. Virtual: Association for Computing Machinery: 1713-1722. doi:
10.1145/3477314.3507308.

Sun, J., Cao, D., Liu, X., Zhao, Z., Wang, W., Gong, X. & Zhang, J. 2019. SELWasm: A Code
Protection Mechanism for WebAssembly. In 2019 IEEE Intl Conf on Parallel & Distributed
Processing with Applications, Big Data & Cloud Computing, Sustainable Computing &
Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom).
Xiamen: Institute of Electrical and Electronics Engineers: 1099-1106. doi:
10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00157.

Sun, K. & Ryu, S. 2018. Analysis of JavaScript Programs: Challenges and Research Trends.
ACM Computing Surveys, 50(4): 1-34. doi: 10.1145/3106741.

Sun, Y. 2019. Server-Side Rendering. In Practical Application Development with AppRun:
Building Reliable, High-Performance Web Apps Using EIlm-Inspired Architecture, Event
Pub-Sub, and Components, Berkeley: Apress, 191-217. doi: 10.1007/978-1-4842-4069-4 9.

Szab6, M. & Nehéz, K. 2019. C/C++ Applications on the Web. Production Systems and
Information Engineering, 8: 69—87. doi: 10.32968/psaie.2019.005.

Szewczyk, R., Stonehouse, K., Barbalace, A. & Spink, T. 2022. Leaps and bounds:
Analyzing WebAssembly’s performance with a focus on bounds checking. In 2022 IEEE
International Symposium on Workload Characterization (IISWC). Austin: Institute of Electrical
and Electronics Engineers: 256—-268. doi: 10.1109/11ISW(C55918.2022.00030.

Taft, D.K. 2003. Clash over Flash is heating up. eWeek, 20(46): 9—10.

Taivalsaari, A. & Mikkonen, T. 2017. The Web as a Software Platform: Ten Years Later.
In Proceedings of the 13th International Conference on Web Information Systems and
Technologies. WEBIST 2017. Porto: SciTePress: 41-50. doi: 10.5220/0006234800410050.

Taivalsaari, A. & Mikkonen, T. 2018. Return of the Great Spaghetti Monster: Learnings
from a Twelve-Year Adventure in Web Software Development. In Web Information Systems
and Technologies, vol. 322, Cham: Springer International Publishing, 21-44. doi:
10.1007/978-3-319-93527-0_2.

Taivalsaari, A., Mikkonen, T., Pautasso, C. & Systa, K. 2018. Client-Side Cornucopia:
Comparing the Built-In Application Architecture Models in the Web Browser. In Web Information

Systems and Technologies, vol. 372, Cham: Springer International Publishing, 1-24. doi:

170



10.1007/978-3-030-35330-8_1.

The Linux Foundation. 2005. SELinux Command Line Documentation. Retrieved from https:
//man7.org/linux/man-pages/man8/SELinux.8.html [15 April 2024].

The Linux Foundation. 2022. Linux Miscellaneous Information Manual - UTS Namespaces.
Retrieved from https://man7.org/linux/man-pages/man7/uts_namespaces.7.html [15 April
2024].

The Linux Foundation. 2023a. Linux Miscellaneous Information Manual - Cgroup Namespaces.
Retrieved from https://man7.org/linux/man-pages/man7/cgroup_namespaces.7.html [15 April
2024].

The Linux Foundation. 2023b. Linux Miscellaneous Information Manual - Cgroups. Retrieved
from https://man7.org/linux/man-pages/man7/cgroups.7.html [15 April 2024].

The Linux Foundation. 2023c. Linux Miscellaneous Information Manual - IPC Namespaces.
Retrieved from https://man7.org/linux/man-pages/man7/ipc_namespaces.7.html [15 April
2024].

The Linux Foundation. 2023d. Linux Miscellaneous Information Manual - Mount Namespaces.
Retrieved from https://man7.org/linux/man-pages/man7/mount_namespaces.7.html [15 April
2024].

The Linux Foundation. 2023e. Linux Miscellaneous Information Manual - Namespaces.
Retrieved from https://man7.org/linux/man-pages/man7/namespaces.7.html [15 April 2024].

The Linux Foundation. 2023f. Linux Miscellaneous Information Manual - Network Namespaces.
Retrieved from https://man7.org/linux/man-pages/man7/network_namespaces.7.html [15 April
2024].

The Linux Foundation. 2023g. Linux Miscellaneous Information Manual - PID Namespaces.
Retrieved from https:/man7.org/linux/man-pages/man7/pid_namespaces.7.html [15 April
2024].

The Linux Foundation. 2023h. Linux Miscellaneous Information Manual - Time Namespaces.
Retrieved from https:/man7.org/linux/man-pages/man7/time_namespaces.7.html [15 April
2024].

The Linux Foundation. 2023i. Linux Miscellaneous Information Manual - User Namespaces.
Retrieved from https://man7.org/linux/man-pages/man7/user_namespaces.7.html [15 April

2024].

The Linux Foundation. 2023j. Linux System Calls Manual - Seccomp. Retrieved from https:
//man7.org/linux/man-pages/man2/seccomp.2.html [15 April 2024].

The Linux Foundation. 2024. Linux User Commands - Chroot. Retrieved from https://man7.org/

171


https://man7.org/linux/man-pages/man8/SELinux.8.html
https://man7.org/linux/man-pages/man8/SELinux.8.html
https://man7.org/linux/man-pages/man7/uts_namespaces.7.html
https://man7.org/linux/man-pages/man7/cgroup_namespaces.7.html
https://man7.org/linux/man-pages/man7/cgroups.7.html
https://man7.org/linux/man-pages/man7/ipc_namespaces.7.html
https://man7.org/linux/man-pages/man7/mount_namespaces.7.html
https://man7.org/linux/man-pages/man7/namespaces.7.html
https://man7.org/linux/man-pages/man7/network_namespaces.7.html
https://man7.org/linux/man-pages/man7/pid_namespaces.7.html
https://man7.org/linux/man-pages/man7/time_namespaces.7.html
https://man7.org/linux/man-pages/man7/user_namespaces.7.html
https://man7.org/linux/man-pages/man2/seccomp.2.html
https://man7.org/linux/man-pages/man2/seccomp.2.html
https://man7.org/linux/man-pages/man1/chroot.1.html
https://man7.org/linux/man-pages/man1/chroot.1.html

linux/man-pages/mani/chroot.1.html [15 April 2024].

Titzer, B.L. 2022. A fast in-place interpreter for WebAssembly. Proceedings of the ACM on
Programming Languages, 6(OOPSLA2): 646-672. doi: 10.1145/3563311.

Topic, D. 2016. Migrating from Java Applets to plugin-free Java technologies. Oracle
Corporation, Redwood Shores.

Tushar. & Mohan, B.R. 2022. Comparative Analysis Of JavaScript And WebAssembly In The
Browser Environment. In 2022 IEEE 10th Region 10 Humanitarian Technology Conference
(R10-HTC). Hyderabad: Institute of Electrical and Electronics Engineers: 232-237. doi:
10.1109/R10-HTC54060.2022.9929829.

Ueda, Y. & Ohara, M. 2017. Performance competitiveness of a statically compiled language
for server-side Web applications. In 2017 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS). Santa Rosa: Institute of Electrical and Electronics
Engineers: 13-22. doi: 10.1109/ISPASS.2017.7975266.

Van Es, N., Stievenart, Q., Nicolay, J., D’Hondt, T. & De Roover, C. 2017. Implementing
a performant scheme interpreter for the web in asm.js. Computer Languages, Systems &
Structures, 49: 62—81. doi: 10.1016/j.¢.2017.02.002.

van Hasselt, M., Huijzendveld, K., Noort, N., de Ruijter, S., Islam, T. & Malavolta, |. 2022.
Comparing the Energy Efficiency of WebAssembly and JavaScript in Web Applications on
Android Mobile Devices. In EASE 2022: The International Conference on Evaluation and
Assessment in Software Engineering 2022, New York: Association for Computing Machinery,
140-149. doi: 10.1145/3530019.3530034.

Venable, J., Pries-Heje, J. & Baskerville, R. 2012. A Comprehensive Framework for Evaluation
in Design Science Research. In Proceedings of the 7th International Conference on Design
Science Research in Information Systems: Advances in Theory and Practice. DESRIST 2012.
Las Vegas: Springer-Verlag: 423—438. doi: 10.1007/978-3-642-29863-9_31.

Verdu, J. & Pajuelo, A. 2016. Performance Scalability Analysis of JavaScript Applications
with  Web Workers. |EEE Computer Architecture Letters, 15(2): 105-108. doi:
10.1109/LCA.2015.2494585.

Vilk, J. & Berger, E.D. 2014. Doppio: Breaking the Browser Language Barrier. ACM SIGPLAN
Notices, 49(6): 508-518. doi: 10.1145/2666356.2594293.

Sipek, M., Muharemagi¢, D., Mihaljevi¢, B. & Radovan, A. 2021. Next-generation Web
Applications with WebAssembly and TruffleWasm. In 2021 44th International Convention on
Information, Communication and Electronic Technology (MIPRQO). Opatija: Institute of Electrical
and Electronics Engineers: 1695-1700. doi: 10.23919/MIPRO52101.2021.9596883.

Wagner, L. 2017. Turbocharging the Web. [EEE Spectrum, 54(12): 48-53. doi:
10.1109/MSPEC.2017.8118483.

172


https://man7.org/linux/man-pages/man1/chroot.1.html
https://man7.org/linux/man-pages/man1/chroot.1.html
https://man7.org/linux/man-pages/man1/chroot.1.html

Wang, S, Ye, G, Li, M., Yuan, L., Tang, Z., Wang, H., Wang, W., Wang, F.,, Ren, J., Fang, D. &
Wang, Z. 2019. Leveraging WebAssembly for Numerical JavaScript Code Virtualization. IEEE
Access, 7: 182711-182724. doi: 10.1109/ACCESS.2019.2953511.

Wang, W. 2021. Empowering Web Applications with WebAssembly: Are We There Yet?
In 2021 36th IEEE/ACM International Conference on Automated Software Engineering
(ASE). Melbourne: Institute of Electrical and Electronics Engineers: 1301-1305. doi:
10.1109/ASE51524.2021.9678831.

Wang, W. 2022. How Far We've Come — A Characterization Study of Standalone
WebAssembly Runtimes. In 2022 IEEE International Symposium on Workload Characterization
(IISWC). Austin: Institute of Electrical and Electronics Engineers: 228-241. doi:
10.1109/1ISWC55918.2022.00028.

Waterman, A. & Asanovi¢, K. (eds.) 2019. The RISC-V Instruction Set Manual, Volume I:
User-Level ISA, Document Version 20191213. Berkeley: RISC-V Foundation.

Watt, C. 2018. Mechanising and verifying the WebAssembly specification. CPP 2018:
Proceedings of the 7th ACM SIGPLAN International Conference on Certified Programs and
Proofs: 53—65. doi: 10.1145/3167082.

Watt, C., Pulte, C., Podkopaev, A., Barbier, G., Dolan, S., Flur, S., Pichon-Pharabod, J.
& Guo, S.y. 2020. Repairing and Mechanising the JavaScript Relaxed Memory Model. In
Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and
Implementation. PLDI 2020. New York: Association for Computing Machinery: 346-361. doi:
10.1145/3385412.3385973.

Watt, C., Rossberg, A. & Pichon-Pharabod, J. 2019. Weakening WebAssembly. Proceedings
of the ACM on Programming Languages, 3: 1-28. doi: 10.1145/3360559.

Wen, E., Warren, J. & Weber, G. 2020. BrowserVM: Running Unmodified Operating
Systems and Applications in Browsers. In 2020 IEEE International Conference on Web
Services (ICWS). Beijing: Institute of Electrical and Electronics Engineers: 473—480. doi:
10.1109/ICWS49710.2020.00070.

Wen, Y. & Wang, H. 2007. A Secure Virtual Execution Environment for Untrusted Code. In
Proceedings of the 10th international conference on Information security and cryptology. ICISC
2007. Berlin: Springer-Verlag: 156—167. doi: 10.1007/978-3-540-76788-6_13.

Wieringa, R.J. 2014. Design Science Methodology for Information Systems and Software
Engineering. Berlin: Springer-Verlag.

Wirfs-Brock, A. & Eich, B. 2020. JavaScript: The First 20 Years. Proceedings of the ACM on
Programming Languages, 4(77): 1-189. doi: 10.1145/3386327.

Yan, Y., Tu, T., Zhao, L., Zhou, Y. & Wang, W. 2021. Understanding the performance
of webassembly applications. In IMC °21: Proceedings of the 21st ACM Internet

173



Measurement Conference, New York: Association for Computing Machinery, 533-549. doi:
10.1145/3487552.3487827.

Yeaman, J. & Dawson, V. 1996. Macromedia Shockwave for Director. Indianapolis: Hayden
Books.

Yin, J., Tan, G., Bai, X. & Hu, S. 2015. WebC: toward a portable framework for deploying
legacy code in web browsers. Science China Information Sciences, 58(7): 1-15. doi:
10.1007/s11432-015-5285-y.

Yu, G., Yang, G., Li, T., Han, X., Guan, S., Zhang, J. & Gu, G. 2020. MinerGate: A Novel
Generic and Accurate Defense Solution Against Web Based Cryptocurrency Mining Attacks. In
Cyber Security, vol. 1299, Singapore: Springer, 50—-70. doi: 10.1007/978-981-33-4922-3 5.

Yuki, T. 2014. Understanding PolyBench/C 3.2 Kernels. In Proceedings of the 4th International
Workshop on Polyhedral Compilation Techniques. IMPACT. Vienna: Association for Computing
Machinery: 1-5.

Yuki, T. & Pouchet, L.N. 2016. PolyBench 4.2.1 (pre-release). Retrieved from https:/github.
com/MatthiasJReisinger/PolyBenchC-4.2.1/blob/master/polybench.pdf [15 April 2024].

Zakai, A. 2011. Emscripten: an LLVM-to-davaScript compiler. OOPSLA 2011: Proceedings
of the ACM international conference companion on Object oriented programming systems
languages and applications companion: 301-312. doi: 10.1145/2048147.2048224.

Zakai, A. 2017. Why WebAssembly is Faster Than asm.js. Retrieved from https://hacks.mozilla.
org/2017/03/why-webassembly-is-faster-than-asm-js/ [15 April 2024].

Zakai, A. 2018. Fast Physics on the Web Using C++, JavaScript, and Emscripten. Computing
in Science & Engineering, 20(1): 11-19. doi: 10.1109/MCSE.2018.110150345.

Zhao, T., Berger, A. & Li, Y. 2019. Concurrency Control of JavaScript with Arrows. In
Proceedings of the 6th ACM SIGPLAN International Workshop on Reactive and Event-Based
Languages and Systems. REBLS 2019. New York: Association for Computing Machinery:
1—-10. doi: 10.1145/3358503.3361273.

Zhuykov, R. & Sharygin, E. 2017. Ahead-of-time compilation of JavaScript programs.
Programming and Computer Software, 43(1): 51-59. doi: 10.1134/S036176881701008X.

Zhuykov, R., Vardanyan, V., Melnik, D., Buchatskiy, R. & Sharygin, E. 2015. Augmenting
JavaScript JIT with ahead-of-time compilation. In 2015 Computer Science and Information
Technologies (CSIT). Yerevan: Institute of Electrical and Electronics Engineers: 116—120. doi:
10.1109/CSITechnol.2015.7358262.

éipek, M., Mihaljevi¢, B. & Radovan, A. 2019. Exploring Aspects of Polyglot High-Performance
Virtual Machine GraalVM. In 2019 42nd International Convention on Information and
Communication Technology, Electronics and Microelectronics (MIPRO). Opatija: Institute of

174


https://github.com/MatthiasJReisinger/PolyBenchC-4.2.1/blob/master/polybench.pdf
https://github.com/MatthiasJReisinger/PolyBenchC-4.2.1/blob/master/polybench.pdf
https://hacks.mozilla.org/2017/03/why-webassembly-is-faster-than-asm-js/
https://hacks.mozilla.org/2017/03/why-webassembly-is-faster-than-asm-js/

Electrical and Electronics Engineers: 1671-1676. doi: 10.23919/MIPR0O.2019.8756917.

175



APPENDICES

176



APPENDIX A

BENCHMARKING SUITES

This section details all of the benchmarking suites discovered as part of the SLR.

Table A.1: Benchmarking Suites Discovered through the Quality Assessments

Name

ACME Ait' (ACME)

Details

A fictitious implementation of an airline called ACME Air.

Name

Algorithms Custom Set 1 (AL1)

Algorithms

Details

1. Mandelbrot

Computes a Mandelbrot set with 10,000 iterations.

2. Matrix Multiplier

Multiplies 3,000 by 3,000 matrices.

3. Sort

Sorts an unknown amount of integer vectors.

Name Algorithms Custom Set 2 (AL2)

Algorithms Details

1. Factorial Factorial function that executes 10,000! and iterates 10,000 times.
2. Fibonacci Calculates the 45th Fibonacci number.

3. Matrix Multiplication

Multiplies 3 by 3 matrices for 100,000 iterations.

Name Algorithms Custom Set 3 (AL3)

Algorithms Details

1. NFib Naive Fibonacci function that calculates nfib of 38.

2. Primes Sieve program that calculates the 5,000th prime number.

3. Queens A number of placements of 11 Queens on a 11 by 11 chess board.
4. Twice Higher order function Twice, repeated 400 times.

5. Knights Finds a Knights tour on a 5 by 5 chess board.

6. Match Pattern matching (5 levels deep) repeated 3,000,000 times.

7. SPrimes Sieve using Peano numbers, calculating the 280th prime number.

8. Eval Sapl interpreter, with a sieve that calculates the 100th prime number.
9. Hamming List taking the 1,000th Hamming number, repeated 4,000 times.

10. Parser Prolog Parser Combinators parsing a 35,000 lines Prolog program.
11. Prolog Prolog interpreter calculating a four generation family tree.

12. Sort Insertion - 6,000 items, quick - 10,000 items and merge sort - 100,000 items.
Name Algorithms Custom Set 4 (AL4)

Algorithms Details

1. Hough Transform

Simplified standard variant of Hough transform (SHT).

(continued on next page)

'https://github.com/wasperf/acmeair

177


https://github.com/wasperf/acmeair

Table A.1: Benchmarking Suites Discovered through the Quality Assessments (continued)

Name Algorithms Custom Set 5° (AL5)

Algorithms Details

1. C-Ray Ray tracing compute-intensive algorithm.
Name Algorithms Custom Set 6 (AL6)

Algorithms Details

1. Linpack® A function that uses a matrix of 1,500 by 1,500.
2. JBox2D A function that uses its own Piston benchmark.
Name Algorithms Custom Set 7 (AL7)

Algorithms Details

1. ArrayReverse

Computes the reverse of an array with 10,000 elements 999 times.

2. Fib Computes the Fibonacci number of 40.

3. IsPrime Tests if the prime number 23' — 1 is prime.

4. MergeSort Sorts an array of 10,000 double elements using the merge sort algorithm.
5. Nsieve Sieve of Eratosthenes that counts prime numbers between 2 and 39,999.
6. Simjs* Generates one thousand random numbers using the SIM.js library.

7. TspDouble® Nearest neighbor traveling salesman solver for the test data of Tanzania.
8. Tspint The same as TspDouble but uses integer instead of double coordinates.
Name Algorithms Custom Set 8 (AL8)

Algorithms Details

1. almabench.js

Calculates the daily ephemeris for the 21th century.

2. bague.js® Scheme benchmark that solves the Baguenaudier game.

3. basic.js Tiny Basic interpreter.

4. boyer-scm.js Boyer.js belongs to the Octane test suite.

5. earley-scm.js Earley.js belong to the Octane test suite.

6. jpeg.js JPEG encoder/decoder used to encode and decode a 16 by 16 image.
7. js-of-ocaml.js OCaml game of life.

8. leval.js Scheme interpreter.

9. marked.js Markdown parser.

10. maze.js Jigsaw game originally implemented in Scheme by O. Shivers.

1

1. minimatch.js

Popular npm package for file globing.

1

2. minimist.js

Most popular npm package for command line parsing.

1

3. moment.js

Time manipulation library.

14. grcode.js

Builds QRCodes.

1

5. richards+.js

Objects wrapped with JavaScript proxies.

16. rho.js Implementation of the Racket contract system.

17. uuid.js Is another very popular npm package.

18. z80.js A Z80 emulator.

Name Algorithms Custom Set 9 (AL9)

Algorithms Details

1. Fibonacci Calculates the Fibonacci sequence for term n.

2. Collision Detection Performs collision detection of simple 2D shapes.

3. MultiplyIntVec Function that multiplies two integer vectors.

4. Quicksortint The popular divide-and-conquer sort algorithm.

5. ImageThreshold Algorithm to classify pixels as "dark” or "light”.

6. VideoConvolute Algorithm that applies a convolution matrix to a portion of a video.
Name Algorithms Custom Set 10 (AL10)

Algorithms Details

1. Fibonacci Calculates the Fibonacci sequence for term 1 through 51.

2. IsPrime Checks if a number between 1,009 and 2,124,749,677 is prime.

(continued on next page)

178




Table A.1: Benchmarking Suites Discovered through the Quality Assessments (continued)

Name Algorithms Custom Set 11 (AL11)

Algorithms Details

1. Fannkuch From Computer Languages Benchmarks Game.

2. Fasta From Computer Languages Benchmarks Game.

3. Primes Tiny loop that calculates prime numbers.

4. Raytrace Real-world code, from the sphereflake ray-tracer.

5. DLmalloc Doug Lea’s malloc that tests memory access and integer calculations.
Name Algorithms Custom Set 12 (AL12)

Algorithms Details

1. Skinny Vertex skinning algorithm common in 3D graphics.

2. Box2D Popular physics engine for games.

3. zlib Popular compression library.

Name CHStone’ (CHS)

Algorithms Details

1. DFAdd Double-precision floating-point addition.

2. DFDiv Double-precision floating-point division.

3. DFMul Double-precision floating-point multiplication.

4. DFSin Sine function for double-precision floating-point numbers.
5. MIPS Simplified MIPS processor.

6. ADPCM Adaptive differential pulse code modulation decoder and encoder.
7. GSM Global System for Mobile communications linear predictive coding analysis.
8. JPEG JPEG image decompression.

9. Motion Motion vector decoding of the MPEG-2.

10. AES Advanced encryption standard.

11. Blowfish Data encryption standard.

12. SHA Secure hash algorithm.

Name Computer Languages Benchmarks Game® (CLG)
Algorithms Details

1. n-body Performs an N-body simulation of the Jovian planets.

2. fannkuch-redux Repeatedly access a tiny integer-sequence.

3. fasta Generate and write random DNA sequences.

4. spectral-norm Calculate an eigenvalue using the power method.

5. reverse-complement Read DNA sequences and write their reverse-complement.
6. mandelbrot Generate a Mandelbrot set and write a portable bitmap.

7. k-nucleotide Repeatedly update hashtables and k-nucleotide strings.

8. binary-trees Allocate and deallocate many binary trees.

Name

Computer Languages Benchmarks Game® Partial 1 (CL1)

Algorithms

Details

1. fannkuch-redux

Indexed access to tiny integer sequence.

2. fasta

Generate and write random DNA sequences.

(continued on next page)

2https://github.com/vkoskiv/c-ray

Shttp://www.netlib.org/benchmark/linpackjava/
“http://www.simjs.com/ offline, can be accessed through the internet archive.

Shttps://goo.gl/D6VULU

®https://en.wikipedia.org/wiki/Baguenaudier

179


https://github.com/vkoskiv/c-ray
http://www.netlib.org/benchmark/linpackjava/
http://www.simjs.com/
https://goo.gl/D6VULu
https://en.wikipedia.org/wiki/Baguenaudier

Table A.1: Benchmarking Suites Discovered through the Quality Assessments (continued)

Name JetStream'® (JET)

Algorithms Details

1. 3d-cube-SP 3D cube rotation that tests arrays and floating-point math.

2. 3d-raytrace-SP Simple raytracer that tests arrays and floating-point math.

3. acorn-wtb JS-based string manipulation and regular expression performance tester.
4. ai-astar A JS implementation of the A* search algorithm.

5. Air A test that runs allocateStack on hot function bodies.

6. async-fs Mock filesystem that stresses the performance of async iteration.

7. Babylon Non-trivial JS string processing that creates non-trivial object graphs.

8. babylon-wtb Computes the Abstract Syntax Tree of an input JS program.

9. base64-SP Base64 encoder/decoder written in JS

10. Basic Stresses performance of generator functions and finds prime numbers.
11. bomb-workers Runs subtests of the SunSpider benchmark in parallel using Web Workers.
12. box2d JS Box2D physics engine that tests floating point math and data structures.
13. cdjs Measures the performance of over 200 CDx collision detection runs.

14. chai-wtb An assertion library that is commonly used to write unit and integration tests.
15. coffeescript-wtb CoffeeScript compiler testing string manipulation and regular expressions.
16. crypto RSA cypher implemented in JS that tests integer math and arrays.

17. crypto-aes-SP An AES implementation in JS that tests integer math.

18. crypto-md5-SP An MD5 implementation in JS that tests interesting integer math idioms.
19. crypto-sha1-SP An SHA-1 implementation in JS that tests interesting integer math idioms.
20. date-format-tofte-SP JS library functions that test date and time formatting.

21. date-format-xparb-SP Sophisticated date formatting and parsing library test.

22. delta-blue Devirtualisation of JS code that uses idiomatic class hierarchy.

23. earley-boyer Chart parser algorithm with variadic functions and object construction.

24. espree-wtb JS parser testing string manipulation and regular expressions.

25. first-inspector-code-load Measures the first-time parsing of a modern JS code base.

26. FlightPlanner Aircraft flight plan parser that and computes distance, courses, and more.
27. float-mm.c Floating point matrix multiplier.

28. gaussian-blur Gaussian blur that tests numeric analysis speed and uses typed arrays.
29. gbemu Gameboy emulator that tests typed array and property access performance.
30. gce-loops-wasm Loops used to tune the GCC and LLVM vectorisers, compiled to WASM.
31. hash-map Apache Harmony-based HashMap that performs hash table functions.
32. HashSet-wasm A WASM test that replays a set of hash table operations.

383. jshint-wtb Static analysis tool that warns about errors and problems in JS code.

34. json-parse-inspector Tests a set of objects that WebKit's Web Inspector parses.

35. json-stringify-inspector Tests a set of objects that WebKit's Web Inspector stringifies.

36. lebab-wtb Transcompiler that converts ES5 code into ES6/ES7 code.

37. mandreel Tests the Bullet physics engine which is compiled to JS with Mandreel.
38. ML Feedforward neural network trained with different activation functions.

39. multi-inspector-code-load Measures the repeated parsing of a modern JS code base.

40. navier-stokes Solar system simulation that tests math and object access performance.
41. n-body-SP Fluid simulation that emphasises floating point array performance.

(continued on next page)

"http://www.ertl.jp/chstone/ offline, can be accessed through the internet archive.
8http://benchmarksgame.alioth.debian.org/ offline, can be accessed through the internet archive.
®https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html
"%http://browserbench.org/JetStream/

180



http://www.ertl.jp/chstone/
http://benchmarksgame.alioth.debian.org/
https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html
http://browserbench.org/JetStream/

Table A.1: Benchmarking Suites Discovered through the Quality Assessments (continued)

42. octane-code-load Test of code load speed of the jQuery and Closure libraries.

43. octane-zlib A test based on compiling zlib to JS using Emscripten.

44. OfflineAssembler A lexer, parser, and AST layer of the offline assembler for JavaScriptCore.
45. pdfjs JS-based PDF reader that tests array manipulation and bit operations.
46. prepack-wtb A compile time JS source code optimiser.

47. quicksort-wasm A sorting test compiled to WASM with Emscripten.

48. raytrace JS Ray tracer that tests object construction and floating point math.

49. regex-dna-SP Regular-expression-based solution to DNA manipulation.

50. regexp A collection of regular expressions found by the V8 team in 2010.

51. richards Martin Richard’s system language ported to JS.

52. richards-wasm Martin Richard’s system language ported to a hybrid of WASM and JS.
53. segmentation Parallel computation of a time series segmentation algorithm.

54. splay Tests the manipulation of splay trees represented using plain JS objects.
55. stanford-crypto-aes The AES hashing algorithm using the Stanford JS Crypto Library.

56.

stanford-crypto-pbkdf2

The PBKDF2 hashing algorithm using the Stanford JS Crypto Library.

57.

stanford-crypto-sha256

The SHA256 hashing algorithm using the Stanford JS Crypto Library.

58.

string-unpack-code-SP

Unpacks various minified JS libraries.

59. tagcloud-SP

Parses JSON and generates markup for a tag cloud view of the data.

60. tsf-wasm

A Typed Stream Format implementation in WASM.

61. typescript

Tests how quickly Microsoft’'s TypeScript compiler can compile itself.

62. uglify-js-wtb

A JS parser, minifier, compressor, and beautifier.

63. UniPoker 5 card stud poker simulation using Unicode playing card code points.
64. WSL An implementation of a GPU shading language written in JS.

Name JetStream Partial 1 (JE1)

Algorithms Details

1. cdjs Measures the performance of over 200 CDx collision detection runs.
Name JSBench'' (JSB)

Algorithms Details

1. Amazon Real-world stress test of JS found within the Amazon website.

2. Facebook Real-world stress test of JS found within the Facebook website.

3. Google Real-world stress test of JS found within the Google website.

4. Twitter Real-world stress test of JS found within the Twitter website.

5. Yahoo Real-world stress test of JS found within the Yahoo website.

Name Kraken'? (KRA)

Algorithms Details

1. ai-astar A path-finding program that uses A* search.

2. audio-beat-detection Identical to audio-fft, with an insignificant amount of extra stuff at the end.
3. audio-dft A kernel that computes a Discrete Fourier Transform.

4. audio-fft A kernel that computes a Fast Fourier Transform.

5. audio-oscillator A kernel that does an unknown audio oscillation test.

6. imaging-gaussian-blur A kernel that tests gaussion blur on a desaturated image.

7. imaging-darkroom A kernel that tests image negative.

8. imaging-desaturate A kernel that test image desaturation.

(continued on next page)

"http://jsbench.cs.purdue.edu/ offline, can be accessed through the internet archive.

2https://wiki.mozilla.org/Kraken

181



http://jsbench.cs.purdue.edu/
https://wiki.mozilla.org/Kraken

Table A.1: Benchmarking Suites Discovered through the Quality Assessments (continued)

9. json-parse-financial

JSON parser test on financial data.

10.

json-stringify-tinderbox

Stringify an object 1,000 times that uses 450,000+ chars to express.

11.

stanford-crypto-aes

An AES crypto test.

12.

stanford-crypto-ccm

A CCM crypto test.

13.

stanford-crypto-pbkdf2

A PBKDF2 test.

14. stanford-crypto-sha256

A SHA256 crypto test.

Name Larceny R7RS'"® (LAR)

Algorithms Details

1. tower-fib Dual metacircular interpreters running a recursive Fibonacci of 16.

2. nqueens Backtracking algorithm to solve the n-queens puzzle where n 1/4 11.

3. gsort Uses the quicksort algorithm to sort 500,000 numbers.

4. hanoi The classical Hanoi puzzle with problem size 25.

5. tak Calculates the Takeuchi function (tak 35 30 20) using a recursive definition.
6. cpstak Calculates the same tak function using a continuation-passing style.

7. ctak Calculates the same cpstak function capturing the continuation with call/cc.
8. destruct Test of destructive list operations (set-car! and set-cdr!).

9. array1 Test a lot of allocation/initialisation and copying of large 1D arrays.

10. mbrot Generates a Mandelbrot set. Mainly a test of floating-point arithmetic.

11. primes Computes primes less than 50,000 with a list-based sieve of Eratosthenes.
Name Octane'* (OCT)

Algorithms Details

1. Richards OS Kernel test that tests property load/store and function/method calls.

2. Deltablue One-way constraint solver that tests polymorphism.

3. Raytrace A Raytracer test.

4. Regexp Tests based on regular expression operations from 50 popular web pages.
5. NavierStokes 2D NavierStokes equations solver that manipulates double precision arrays.
6. Crypto Encryption and decryption that tests bit operations.

7. Splay Splay trees that exercise the automatic memory management subsystem.
8. SplayLatency Splay test that stresses the Garbage Collection subsystem of a VM.

9. EarleyBoyer Classic Scheme that tests fast object creation and destruction.

10. pdf.js Mozilla’s JS-based PDF reader that tests arrays and typed arrays.

11. Mandreel The 3D Bullet Physics Engine ported from C++ to JavaScript via Mandreel.

12. MandreelLatency

Mandreel with frequent time measurement checkpoints.

13. GB Emulator

Emulates the portable console’s architecture while running a 3D simulation.

14. Code Loading

Measures a JS engine startup time after loading a large JS program.

15. Box2DWeb

The popular 2D physics engine that tests floating point math.

16. zlib

The zlib asm.js/Emscripten test running with workload 1.

17. Typescript

Typescript compiler that measures how long it takes to compile itself.

Name Octane Partial 1 (OC1)

Algorithms Details

1. Richards OS Kernel test that tests property load/store and function/method calls.
2. Deltablue One-way constraint solver that tests polymorphism.

3. Raytrace A Raytracer test.

(continued on next page)

Bhttp://www.larcenists.org/benchmarksAboutR7.html
“https:/developers.google.com/octane offline, can be accessed through the internet archive.

182



http://www.larcenists.org/benchmarksAboutR7.html
https://developers.google.com/octane

Table A.1: Benchmarking Suites Discovered through the Quality Assessments (continued)

4. NavierStokes

2D NavierStokes equations solver that manipulates double precision arrays.

5. Crypto Encryption and decryption that tests bit operations.
6. Splay Splay trees that exercise the automatic memory management subsystem.
Name PolyBench/C'® (PBC)

Algorithms Details

1. 2mm 2 Matrix Multiplications (alpha * A * B * C + beta * D).
2.3mm 3 Matrix Multiplications ((A*B)*(C*D)).

3. adi Alternating Direction Implicit solver.

4. atax Matrix Transpose and Vector Multiplication.

5. bicg BiCG Sub Kernel of BiCGStab Linear Solver.

6. cholesky Cholesky Decomposition.

7. correlation Correlation Computation.

8. covariance Covariance Computation.

9. deriche Edge detection filter.

10. doitgen Multi-resolution analysis kernel (MADNESS).

11. durbin Toeplitz system solver.

12. fdtd-2d 2-D Finite Different Time Domain Kernel.

13. gemm Matrix-multiply C=alpha.A.B+beta.C.

14. gemver Vector Multiplication and Matrix Addition.

15. gesummv

Scalar, Vector and Matrix Multiplication.

16. gramschmidt

Gram-Schmidt decomposition.

17. head-3d Heat equation over 3D data domain.

18. jacobi-1D 1-D Jacobi stencil computation.

19. jacobi-2D 2-D Jacobi stencil computation.

20. lu LU decomposition.

21. ludecmp LU decomposition followed by Forward Substitution.

22. mvt Matrix Vector Product and Transpose.

283. nussinov Dynamic programming algorithm for sequence alignment.

24. seidel 2-D Seidel stencil computation.

25. symm Symmetric matrix-multiply.

26. syr2k Symmetric rank-2k update.

27. syrk Symmetric rank-k update.

28. trisolv Triangular solver.

29. trmm Triangular matrix-multiply.

Name SPEC CPU 2006'° (SP16)

Algorithms Details

1. 410.bwaves Floating Point - Computes 3D transonic transient laminar viscous flow.

2. 416.gamess Floating Point - Wide range Quantum chemical computations.

3. 433.milc Floating Point - Gauge field generator for lattice gauge theory programs.

4. 434.zeusmp Floating Point - Computational fluid dynamics of astrophysical phenomena.
5. 435.gromacs Floating Point - Newtonian equations of motion for up to millions of particles.
6. 436.cactusADM Floating Point - Einstein evolution equation solver.

7. 437 leslie3d Floating Point - Computational Fluid Dynamics with 3D Linear-Eddy Model.

(continued on next page)

Shttps://github.com/MatthiasJReisinger/PolyBenchC-4.2.1

Bhttps://www.spec.org/cpu2006/

183


https://github.com/MatthiasJReisinger/PolyBenchC-4.2.1
https://www.spec.org/cpu2006/

Table A.1: Benchmarking Suites Discovered through the Quality Assessments (continued)

8. 444.namd Floating Point - Biomolecular systems with 92,224 apolipoprotein A-l atoms.
9. 447 dealll Floating Point - Helmholtz-type equation solver using coefficients.

10. 450.soplex Floating Point - Linear solver with a simplex algorithm and sparse algebra.
11. 453.povray Floating Point - Rendering a 1280 by 1024 anti-aliased landscape image.
12. 454 calculix Floating Point - Finite element for linear/nonlinear 3D structural applications.
13. 459.GemsFDTD Floating Point - Solves the Maxwell equations in 3D.

14. 465.tonto Floating Point - Molecular Hartree-Fock wavefunction calculation.

15. 470.lom Floating Point - Simulate incompressible fluids in 3D.

16. 481.wrf Floating Point - Weather modeling from a 30km area over 2 days.

17. 482.sphinx3 Floating Point - Widely-known speech recognition system.

18. 400.perlbench Integer - Workloads based on the Perl programming language.

19. 401.bzip2 Integer - In memory bzip2 compression/decompression algorithm.

20. 403.gcc Integer - GCC code generator for Opeteron.

21. 429.mcf Integer - Public transport scheduler using network simplex algorithm.

22. 445.gobmk Integer - Simulation that plays a game of Go.

23. 456.hmmer Integer - Protein sequence analysis using profile hidden Markov models.
24. 458.sjeng Integer - Highly-ranked chess program that also plays several variants.

25. 462.libquantum Integer - Quantum simulation of Shor’s polynomial-time factorisation.

26.

464.h264ref

Integer - Implementation of the H.264/AVC videostream encoder.

27. 471.omnetpp Integer - Event simulator to model a large Ethernet campus network.
28. 473.astar Integer - Pathfinding library for 2D maps using the A* algorithm.

29. 483.xalancbmk Integer - Transforms XML documents to other document types.
Name SPEC CPU 2017'" (SP17)

Algorithms Details

1. (5/6)00.perlbench_(r/s) Integer - Perl interpreter.

2. (5/6)02.gcc_(r/s) Integer - GNU C compiler.

3. (5/6)05.mcf_(r/s) Integer - Route planning.

4. (5/6)20.omnetpp_(r/s) Integer - Discrete Event simulation - computer network.

5. (5/6)23.xalancbmk_(r/s) Integer - XML to HTML conversion via XSLT.

6. (5/6)25.x264 _(r/s) Integer - Video compression.

7. (5/6)31.deepsjeng(r/s) Integer - Artificial Intelligence: alpha-beta tree search (Chess).

8. (5/6)41.leela_(r/s) Integer - Artificial Intelligence: Monte Carlo tree search (Go).

9. (5/6)48.exchange2_(r/s) Integer - Artificial Intelligence: recursive solution generator (Sudoku).
10. (5/6)57.xz_(r/s) Integer - General data compression.

11. (5/6)03.bwaves_(r/s) Floating Point - Explosion modeling.

12. (5/6)07.cactuBSSN_(r/s) Floating Point - Physics: relativity.

13. 508.namd_r Floating Point - Molecular dynamics.

14. 510.parest_r Floating Point - Biomedical imaging: optical tomography with finite elements.
15. 511.povray._r Floating Point - Ray tracing.

16. (5/6)19.lbm_(r/s) Floating Point - Fluid dynamics.

17. (5/6)21.wrf_(r/s) Floating Point - Weather forecasting.

18. 526.blender.r Floating Point - 3D rendering and animation.

19. (5/6)27.cam4 _(r/s) Floating Point - Atmosphere modeling.

20. 628.pop2_s Floating Point - Wide-scale ocean modeling (climate level).

21. (5/6)38.imagick_(r/s) Floating Point - Image manipulation.

(continued on next page)

https://www.spec.org/cpu2017/

184



https://www.spec.org/cpu2017/

Table A.1: Benchmarking Suites Discovered through the Quality Assessments (continued)

22. (5/6)44.nab_(r/s)

Floating Point - Molecular dynamics.

283. (5/6)49.fotonik3d_(r/s)

Floating Point - Computational Electromagnetics.

24. (5/6)54.roms_(r/s)

Floating Point - Regional ocean modeling.

Name SunSpider'® (SUN)

Algorithms Details

1. 3d-cube Graphical 3D rotating cube algorithm using DHTML.

2. 3d-morph Graphical 3D morphing algorithm.

3. 3d-raytrace Graphical 3D raytracing algorithm.

4. access-binary-trees Binary tree allocation, traversal and deallocation algorithm.

5. access-fannkuch Pancake flipping algorithm that calculates permutations of flips.
6. access-nbody The N-body problem that models the orbits of Jovian planets.
7. access-nsieve A prime number sieve using the sieve of Eratosthenes.

8. bitops-3bit-bits-in-byte Bitwise operation for 3-bit per byte lookup.

9. bitops-bits-in-byte

Bitwise operation for bit per byte lookup.

10. bitops-bitwise-and

Bitwise AND operation algorithm.

11. bitops-nsieve-bits

Bitwise operation for prime number sieve.

12. controlflow-recursive

Recursion and looping operations using Fibonacci .

13. crypto-aes

Cryptography calculations for the AES hashing algorithm.

14. crypto-md5

Cryptography calculations for the MD5 hashing algorithm.

15. crypto-shat

Cryptography calculations for the SHA1 hashing algorithm.

16. date-format-tofte

Various date formatting operations using JS date objects.

17. date-format-xparb

Various date formatting operations using JS date objects.

18. math-cordic

Coordinate rotation digital computer mathematical calculations.

19. math-partial-sums

Mathematical calculations for partial sums.

20. math-spectral-norm

Mathematical calculations for spectral norm of a matrix.

21. regexp-dna

Regular expression operations for DNA data.

22. string-base64

String operations on Base64 data.

23. string-fasta

String operations on random DNA sequences.

24. string-tagcloud

String operations to manipulate a string tag cloud.

25. string-unpack-code

String operations to encode/decode data.

26. string-validate-input

Input string validation operations.

Name

Rosetta'® (ROS)

Details

Various undisclosed algorithms taken from a corpus containing over 1,200 algorithm implementations.

Name

Rosetta Partial 12° (RS1)

Algorithms

Details

1. Banker’s Algorithm

Resource allocation and deadlock avoidance algorithm.

. Addition Chains

Mathematical addition chain and star addition chain algorithms.

. Aliquot Sequence Classifier

Mathematical Aliquot Sequence of a positive integer.

. Babbage Problem

Find the smallest positive integer whose square ends in the digits 269,696.

. Bitwise 10

Read and write bit sequences with the most significant bit first.

OO~ WIN

. Eban Numbers

Find numbers with no letter "e” in it when the number is spelled in English.

(continued on next page)

"8https://webkit.org/perf/sunspider/sunspider.html offline, can be accessed through the internet archive.
Shttps://rosettacode.org/wiki/Rosetta_Code
Dhttps://github.com/KTH/slumps/tree/master/utils/pipeline/benchmark4pipeline_c offline, no longer accessible.

185


https://webkit.org/perf/sunspider/sunspider.html
https://rosettacode.org/wiki/Rosetta_Code
https://github.com/KTH/slumps/tree/master/utils/pipeline/benchmark4pipeline_c

Table A.1: Benchmarking Suites Discovered through the Quality Assessments (continued)

7. Flipping Bits Game Convert an N-by-N square array of zeroes or ones into a target state.
8. Paraffins An organic chemistry tree enumeration algorithm without repetitions.
9. Pascal Matrix Generation A 2-D square matrix containing numbers from Pascal’s triangle.
10. Resistor Mesh Resistance calculator across a grid or 10 by 10 nodes.

11. Runlength Encoding Implementation of a run length text compression encoder/decoder.
12. Zebra Puzzle Tries to answer Einstein’s Riddle of who owns the Zebra.
Name Rosetta Partial 22! (RS2)

Algorithms Details

1. Bead sorting Sort an array of positive integers using the Bead Sort Algorithm.
2. Circle sorting Sort an array of integers into ascending order using Circlesort.
3. Identifier sorting Sort a list of OIDs, in their natural sort order.

4. Lexicographic sorting Given an integer n, return n in lexicographical order.

5. Merge sorting The merge sort is a recursive sort of order n*log(n).

6. Natural sorting Sort a list of strings, in their natural sort order.

7. Quick sorting Sort an array of elements using the quicksort algorithm.

8. Remove duplicates and sort Remove all duplicates of a given array and sort.

Name WABench?? (WAB)

Algorithms Details

1. gce-loops Loops used to tune GCC vectoriser.

2. hashset Hash table operations of web page loading.

3. quicksort Quick sort algorithm implementation.

4. tsf Implementation of a typed stream format.

5. basicmath Basic mathematical computations.

6. bitcount Bit manipulations.

7. jpeg JPEG image compression/decompression.

8. stringsearch Searching given words in phrases.

9. blowfish Symmetric block cipher.

10. rijndael Block cipher with variable length keys.

11. sha Secure hash algorithm.

12. adpcm Adaptive differential pulse code modulation.

13. crc32 32-bit Cyclic Redundancy Check.

14. correlation Correlation computation.

15. covariance Covariance computation.

16. gemm Matrix multiplication.

17. gemver Vector multiplication and matrix addition.

18. gesummyv Scalar, vector and matrix multiplication.

19. symm Symmetric matrix multiplication.

20. syr2k Symmetric rank-2k operations.

21. syrk Symmetric rank-k operations.

22. trmm Triangular matrix multiplication.

23. 2mm Two matrix multiplications.

24. 3mm Three matrix multiplications.

25. atax Matrix transpose and vector multiplication.

(continued on next page)

2" https://github.com/greensoftwarelab/WasmBenchmarks
2https://github.com/wabench/wabench

186


https://github.com/greensoftwarelab/WasmBenchmarks
https://github.com/wabench/wabench

Table A.1: Benchmarking Suites Discovered through the Quality Assessments (continued)

26. bicg BiCG sub kernel of BiCGStab linear solver.
27. doitgen Multiresolution analysis kernel.

28. mvt Matrix vector product and transpose.

29. cholesky Cholesky decomposition.

30. durbin Toeplitz system solver.

31. gramschmidt Gram-Schmidt.

32. lu LU decomposition.

33. ludcmp LU decomposition.

34. trisolv Triangular solver.

35. deriche Edge detection filter.

36. floyd-warshall Computing shortest paths in a graph.
37. nussinov Sequence alignment.

38. adi Alternating direction implicit solver.

39. fdtd-2d 2-D finite-difference time-domain kernel.
40. heat-3d Heat equation over 3D data domain.

41. jacobi-1d 1-D jacobi stencil computation.

42. jacobi-2d 2-D jacobi stencil computation.

43. seidel-2d 2-D seidel stencil computation.

44. bzip2 File compression/decompression.

45. espeak Text-to-Speech synthesiser.

46. facedetection Detecting human faces in images.

47. gnuchess Chess-playing game.

48. mnist A neural network for digit recognition.
49. snappy Data compression/decompression library.
50. whitedb Lightweight NoSQL database.

187




APPENDIX B

SOURCE CODE

This section details portions of the source code that makes up the SYS23 enclave and the bulk
testing harnesses.

B.1. System23 secure computing

First, we have a Seccomp implementation which restricts all types of system calls. When used
to test the benchmarks, it will cause the benchmarks to fail, as expected.

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <linux/seccomp.h>
#include <sys/prctl.h>

int main(int argc, char *argv([])

{

0o N O O WN =

©

printf ("sys23-scmp-strict\n");

—_
—_ O

if (prctl (PR_SET_SECCOMP, SECCOMP_MODE_STRICT) != 0) {

printf ("Setting strict mode failed, terminating!\n");

- a
A W N

exit (1) ;

_ a4
~N O O
[}

printf ("Seccomp strict mode active.\n\n");

— 4
©

execvp (argv[1], &argvI[1]);

NN
- O

exit (0) ;

N
N

Listing B.1: System23 Secure Computing Strict Test Filter in C

Next, we have a Seccomp implementation based on the SYS23 prototype. This implementation
allows certain system calls to pass through and execute as expected. When used to test the
benchmarks, it will allow the benchmarks to execute successfully.

188



0 N O O WN =

g oo a s D BA D DDA DBAEDBASEDSEOOOWOWOWOWOWOWOWWWMNDNDMNDNDDNDNODNDNDNDDNDS 24 =2 =2 2 a4 g o
A WON = O O© 0 NO O A WN—=- O O 00N OGP, WON-—-=L 0O O© 0N OO~ WN—=0O OO00NOO® U WN-—= O O

#include
#include
#include
#include

#include

<seccomp.h
<stdio.h>

<stdlib.h>
<unistd.h>
<sys/prctl

>

.h>

scmp_filter_ctx ctx;

void _exit(int status)

{

seccomp_release (ctx) ;

exit

void whitelist_syscall(int syscall)

if (seccomp_rule_add(ctx,

(status) ;

{
_exit (1) ;
}
return;
}
int main(int argc,

{

char *argv[])

printf ("sys23-scmp-bpf\n");

if (

(ctx = seccomp_init (SCMP_ACT_KILL))
printf ("Setting filter mode failed,

_exit (1) ;

SCMP_ACT_ALLOW, syscall, 0) !=
printf ("Adding syscall filter failed,

== NULL) {

terminating!\n") ;

// Needed by scmp-bpf-sys23 and the PolyBench/C benchmarks

whitelist_syscall (SCMP_SYS (access));
whitelist_syscall (SCMP_SYS(arch_prctl));

whitelist_syscall (SCMP_SYS (brk));

whitelist_syscall (SCMP_SYS(close));
whitelist_syscall (SCMP_SYS (execve));
whitelist_syscall (SCMP_SYS(exit_group));
whitelist_syscall (SCMP_SYS(getrandom)) ;

whitelist_syscall (SCMP_SYS (mmap)) ;

whitelist_syscall (SCMP_SYS (mprotect));
whitelist_syscall (SCMP_SYS (munmap));
whitelist_syscall (SCMP_SYS (newfstatat));
whitelist_syscall (SCMP_SYS (openat)) ;
whitelist_syscall (SCMP_SYS(prctl));
whitelist_syscall (SCMP_SYS (pread64));
whitelist_syscall (SCMP_SYS(prlimit64));

whitelist_syscall (SCMP_SYS(read));
whitelist_syscall (SCMP_SYS(rseq));

189

terminating!\n");



55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

whitelist_syscall (SCMP_SYS(seccomp)) ;
whitelist_syscall (SCMP_SYS(set_robust_list));
whitelist_syscall (SCMP_SYS(set_tid_address));
whitelist_syscall (SCMP_SYS(write));

// Needed by time_benchmark and Bash shell commands
whitelist_syscall (SCMP_SYS(clone));
whitelist_syscall (SCMP_SYS (dup2));

whitelist_syscall (SCMP_SYS(fadvise64)); // grep, sort
whitelist_syscall (SCMP_SYS(fcntl));
whitelist_syscall (SCMP_SYS (futex));

whitelist_syscall (SCMP_SYS(getegid));
whitelist_syscall (SCMP_SYS(geteuid));
whitelist_syscall (SCMP_SYS(getgid));

whitelist_syscall (SCMP_SYS(getgroups)) ; // awk
whitelist_syscall (SCMP_SYS(getpgrp));
whitelist_syscall (SCMP_SYS(getpid));
whitelist_syscall (SCMP_SYS (getppid));
whitelist_syscall (SCMP_SYS(getuid));

whitelist_syscall (SCMP_SYS(ioctl));

whitelist_syscall (SCMP_SYS(1lseek));

whitelist_syscall (SCMP_SYS(pipe2));

whitelist_syscall (SCMP_SYS(pselect6)); // bc
whitelist_syscall (SCMP_SYS(rt_sigaction));
whitelist_syscall (SCMP_SYS(rt_sigprocmask));
whitelist_syscall (SCMP_SYS(rt_sigreturn));
whitelist_syscall (SCMP_SYS(sched_getaffinity)); // grep, sort

whitelist_syscall (SCMP_SYS(setfsgid)); // bc
whitelist_syscall (SCMP_SYS(setfsuid)); // bc
whitelist_syscall (SCMP_SYS(sigaltstack)); // grep

whitelist_syscall (SCMP_SYS(sysinfo));
whitelist_syscall (SCMP_SYS (uname)) ;

whitelist_syscall (SCMP_SYS (unlinkat)); // rm
whitelist_syscall (SCMP_SYS(wait4));

if (seccomp_load(ctx) != 0) {

printf ("Loading context failed, terminating!\n");

_exit (1) ;

printf ("Seccomp filter mode active.\n\n");

execvp (argv [1], &argv[1]);

_exit (0);

Listing B.2: System23 Secure Computing Pass-Through Test Filter in C

Next, we have three components which when executed together configures and then boots the
SYS23 enclave. First, we configure the SYS23 enclave by creating the required Cgroups. In
this instance it will enforce that the SYS23 enclave is pinned to CPU 4, is allowed to use 100%

190



of the CPU capacity and is allowed to use a maximum of 137MB of memory.

1|#!/bin/sh

2

3| USE_CPU=3

4| CPU_MAX=100

5| MEM_MAX=137

6| CGRP_CAT="cpu, cpuset ,memory"

7| CGRP_ROOT_PATH="/system23"

8| CGRP_PATH1="${CGRP_ROOT_PATH}/enclave-1"
9| CGRP_PATH2="${CGRP_ROOT_PATH}/enclave -2"
10

11| cgcreate -g ${CGRP_CAT}:${CGRP_ROOT_PATH}
12| cgcreate -g ${CGRP_CAT}:${CGRP_PATH1}

13| cgcreate -g ${CGRP_CAT}:${CGRP_PATH2}

14

15| cgset -r cpuset.cpus="${USE_CPU}" ${CGRP_PATH1}

-
~N O

N o O W=

N O Ok W=

cgset -r cpu.max="${CPU_MAX}000 100000" ${CGRP_PATH1}
cgset -r memory.max="${MEM_MAX}M" ${CGRP_PATH1}

Listing B.3: System23 Create Control Groups Script

#!/bin/sh

NAMESPACES="--cgroup --ipc --mount --net --pid --time --user --uts"
PID_OPTS="--fork --mount-proc"

USER_OPTS="--map-root-user --map-current-user"

unshare ${NAMESPACES} ${PID_OPTS} ${USER_OPTS} /bin/bash

Listing B.4: System23 Boot Enclave Script

#!/bin/sh

CGRP_CAT="cpu, cpuset ,memory"

CGRP_PATH="/system23/enclave-1"

cgclassify -g ${CGRP_CAT}:${CGRP_PATH} $(pgrep --parent $(pidof unshare)
bash)

Listing B.5: System23 Bind Control Groups to Enclave Script

191



B.2. Benchmarking harnesses

These benchmarking harnesses tie into the base PolyBench/C benchmarks. They execute
them in bulk, whereby all 30 benchmarks will be run as per the desired rounds, while also
ensuring we pin the benchmarks to the CPU that has been isolated. The first script shown
in Listing B.6 executes the benchmarks in a native environment, this serves as our baseline
performance against which all other benchmarks are to be compared.

1| #!/bin/sh

2

3| USE_CPU=3

4| ROUNDS=10

5| SLEEP_TIME=30

6

7| declare -a PBC=("2mm" "3mm" "adi" "atax" "bicg" "cholesky"

8| "correlation" "covariance" "deriche" "doitgen" "durbin" "fdtd-24"
9| "floyd-warshall" "gemm" "gemver" "gesummv" "gramschmidt" "heat-3d"
10| "jacobi-1d" "jacobi-2d" "lu" "ludcmp" "mvt" "nussinov" "seidel-2d"
11| "symm" "syr2k" "syrk" "trisolv" "trmm")

12

13| for BENCHMARK in "${PBC[@]}"

14| do

15 PIN="taskset --cpu-list ${USE_CPU}"

16 CMD="${PIN} ./time_benchmark ./pbc_${BENCHMARK}"

17

18 for ((I = 0 ; I < ${ROUNDS} ; I++ ))

19 do

20 echo "Round ${I}: ${CMD}"

21 eval ${CMD}

22

23 sleep ${SLEEP_TIME}

24 printf "\n"

25 done

26

27 printf "%0.s=" {1..80}

28 printf "\n\n"

29| done

Listing B.6: Bulk Native Benchmarking Script

The next script depicted in Listing B.7 executes the benchmarks within a WASM environment
or VM. While the last script depicted in Listing B.8 executes the benchmarks within a SYS23
environment or enclave.

192



0 N O O WN =

N NN N MNDMNDNDMNDNDMNDDND 2 =2 a2 d o a
© 00N O O WN =+ O O© 00 ~NO O~ WN = O ©

0 N O O WN =

4 4 4 4 4 4 a4 a4 a
© 0 N O oA WN = O ©

#!/bin/sh
USE_CPU=3
ROUNDS=10

SLEEP_TIME=30

declare -a PBC=("2mm" "3mm" "adi" "atax" "bicg" "cholesky"

"correlation" "covariance" "deriche" "doitgen" "durbin" "fdtd-24"
"floyd-warshall" "gemm" "gemver" "gesummv" "gramschmidt" "heat-3d4"
"jacobi-1d" "jacobi-2d" "lu" "ludcmp" "mvt" "nussinov" "seidel-24"
"symm" "syr2k" "syrk" "trisolv" "trmm")

for BENCHMARK in "${PBC[@]}"

do
PIN="taskset --cpu-list ${USE_CPU}"
CMD="${PIN} ./time_benchmark ’node pbc_${BENCHMARKZ}. js’"
for ((I = 0 ; I < ${ROUNDS} ; I++ ))
do
echo "Round ${I}: ${CMD}"
eval ${CMD}
sleep ${SLEEP_TIME}
printf "\n"
done
printf "%0.s=" {1..80}
printf "\n\n"

Listing B.7: Bulk WebAssembly Benchmarking Script

#!/bin/sh

ROUNDS=10
SLEEP_TIME=30

declare -a PBC=("2mm" "3mm" "adi" "atax" "bicg" "cholesky"

"correlation" "covariance" "deriche" "doitgen" "durbin" "fdtd-24"
"floyd-warshall" "gemm" "gemver" "gesummv" "gramschmidt" "heat-3d"
"jacobi-1d" "jacobi-2d" "lu" "ludcmp" "mvt" "nussinov" "seidel-24"
"symm" "syr2k" "syrk" "trisolv" "trmm")

for BENCHMARK in "${PBC[@]}"

do
S23="./scmp-bpf-sys23"
CMD="${S23} ./time_benchmark ./pbc_${BENCHMARK}"
for ((I = 0 ; I < ${ROUNDS} ; I++ ))
do
echo "Round ${I}: ${CMD}"

193



20
21
22
23
24
25
26
27
28

done

eval ${CMD}

sleep ${SLEEP_TIME}
printf "\n"

done

printf
printf

"%0.s=" {1..80%}
"\n\n"

Listing B.8: Bulk System23 Benchmarking Script

194



APPENDIX C

BENCHMARKING RUNBOOK

This section details the benchmarking runbook as used by this study to generate the data as
represented in sections 5.1., 5.2. and 5.3. Note that at this stage all of the needed benchmarks,
together with the SYS23 enclave source code where required, have already been compiled.

C.1. OS noise mitigations

We start off by configuring the OS noise mitigations. It is assumed that the user performing
these commands has the required access level to do so, usually root level access is required.

1. Enable CPU Isolation: Isolate the highest two CPUs namely CPUs 3 and 4.

Shell Command

$ grubby —-—-update-kernel DEFAULT --args="isolcpus=2,3"

Confirm the CPU isolation after rebooting.

Shell Command

$ cat /sys/devices/system/cpu/isolated

2-3

Remove all system threads from CPUs 3 and 4.

Shell Command

$ tuna isolate —--cpus=2,3

Remove all workqueues from CPUs 3 and 4.

Shell Command

$ find /sys/devices/virtual/workqueue -name cpumask —exec echo 3 > {} \;

195



Reconfirm all CPU isolation settings by reviewing all thread context switches.

Shell Command

$ perf stat -e ’sched:sched. switch’ —-a -A —--timeout 30000

Performance counter stats for ’'system wide’:

CPUO 1,179 sched:sched_switch
CPUL 1,022 sched:sched_switch
CPU2 3 sched:sched_switch
CPU3 3 sched:sched_switch

30.030770397 seconds time elapsed

2. Enable Timer Tick Isolation: Reduce the number of timer ticks for the isolated CPUs 3
and 4.

Shell Command

$ grubby —--update-kernel DEFAULT --args="nohz full=2, 3"

Confirm the reduction of timer ticks after rebooting.

Shell Command

S perf stat —-e ’'irqgvectors:local_timer_entry’ —-a —-A —-—-timeout 30000

Performance counter stats for ’'system wide’:

CPUO 30,044 irg.vectors:local_timer_entry
CPU1 627 irg.vectors:local_timer_entry
CPU2 2 irg.vectors:local_timer_entry
CPU3 2 irg.vectors:local_timer_entry

30.027916330 seconds time elapsed

3. Maximise CPU Frequency Scaling: Maximise the CPU frequency scaling for CPUs 3
and 4.

Shell Command

$ echo performance > /sys/devices/system/cpu/cpufreq/policy2/scaling governon

196



Shell Command

$ echo performance > /sys/devices/system/cpu/cpufreq/policy3/scaling governon

Confirm the frequency scaling settings for CPUs 3 and 4.

Shell Command

$ cat /sys/devices/system/cpu/cpufreq/policy2/scaling._governor

performance

Shell Command

$ cat /sys/devices/system/cpu/cpufreq/policy3/scaling governor

performance

4. Enable Interrupt CPU Affinity: Remove IRQ handling from the isolated CPUs 3 and 4.

Shell Command

$ irgbalance --foreground --oneshot

Confirm that the isolated CPUs no longer handle any IRQs.

Shell Command

$ watch cat /proc/interrupts

Every 2.0s: cat /proc/interrupts example.com: Wed Jul 17 13:27:44 2024
CPUO 500 CPU3

0: 42 0 IO-APIC 2-edge timer

1 0 0 IO-APIC l-edge i8042

8: 1 0 IO-APIC 8-edge rtcO

9 0 0 IO-APIC 9-fasteoi acpi

5. Disable Swaps: Do not allow any memory swapping to disk.

Shell Command

$ swapoff -a

197



Shell Command

$ systemctl —--type swap

UNIT LOAD ACTIVE SUB DESCRIPTION

dev-zram0O.swap loaded active active Compressed Swap on /dev/zram0

Shell Command

S systemctl stop ’‘dev-zram0.swap’

Shell Command

$ systemctl mask ’'dev-zram0.swap’

Confirm that swapping to disk has been disabled.

Shell Command

$ swapon —-—show

6. Disable Transparent Huge Pages: Do not allow transparent huge page elevation.

Shell Command

$ echo never > /sys/kernel/mm/transparent _hugepage/enabled

7. Disable NUMA Memory Balancing: Do not allow NUMA memory balancing.

Shell Command

$ echo 0 > /proc/sys/kernel/numa balancing

8. Disable Mitigations for CPU Vulnerabilities: Remove all CPU vulnerability mitigations.

Shell Command

$ grubby —-—-update-kernel DEFAULT --args="mitigations=off"

Confirm that all CPU vulnerability mitigations are removed.

198




Shell Command

$ lscpu

NUMA :
NUMA node (s) : 1
NUMA nodeO CPU(s): 0-3

Vulnerabilities:
Gather data sampling: Vulnerable
Itlb multihit: KVM: Mitigation: VMX disabled
Lltf: Mitigation; PTE Inversion; VMX vulnerable
Mds: Vulnerable; SMT vulnerable
Meltdown: Vulnerable
Mmio stale data: Vulnerable

Reg file data sampling: Not affected

Retbleed: Vulnerable

Spec rstack overflow: Not affected

Spec store bypass: Vulnerable

Spectre vl: Vulnerable: __user pointer sanitization and

usercopy barriers only; no swapgs barriers

Spectre v2: Vulnerable; IBPB: disabled; STIBP: disabled;
PBRSB-eIBRS: Not affected; BHI: Not affected

Srbds: Vulnerable

Tsx async abort: Not affected

C.2. Native benchmarks

Next, we proceed with executing the native PolyBench/C benchmarks and capturing their
performance results. When executing the benchmarking script, one can confirm that the
benchmarks have been pinned to CPU 3.

Shell Command

S ./run-all-native

Round 0: taskset ——-cpu-list 3 ./time_benchmark ./pbc_2mm
INFO] Running 5 times ./pbc_2mm...

[

[INFO] Maximal variance authorized on 3 average runs: 5%...

[INFO] Maximal deviation from arithmetic mean of 3 average runs: 0.67900%
[

INFO] Normalized time: 2.36659066

C.3. WebAssembly benchmarks

Next, we proceed with executing the WASM-based PolyBench/C benchmarks and capturing
their performance results. To confirm that the correct benchmarks are being executed, one can

199



confirm that the node command is executing the JS-based version of the benchmarks, where
node provides the benchmarks with the required WASM-based VM. Note that the full set of
OS noise mitigations are still in effect.

Shell Command

S ./run-all-wasm

Round 0: taskset --cpu-list 3 ./time_benchmark ’'node pbc_2mm. js’

[INFO] Running 5 times node pbc_2mm. js...

[INFO] Maximal variance authorized on 3 average runs: 5%...

[INFO] Maximal deviation from arithmetic mean of 3 average runs: 0.31400%
[INFO] Normalized time: 5.19333333

C.4. System23 benchmarks

Finally, we proceed with executing the native SYS23-based PolyBench/C benchmarks and
capturing their performance results. We start by configuring and booting the prototype SYS23
enclave, after which we proceed with executing the benchmarks using the SYS23 Seccomp
application. Note that we do not need to pin the benchmarks to CPU 3 using taskset as the
SYS23 enclave has that configured as part of the Cgroups configurations.

Shell Command

$ ./sys23-create-cgroups

This step boots the SYS23 enclave using the namespaces required and will create its own shell
environment.

Shell Command

$ ./sys23-boot-enclave

The next step needs to be executed outside of the SYS23 enclave that was just booted, so as
to bind the Cgroup configurations to the running SYS23 enclave.

Shell Command

$ ./sys23-bind-cgroups-to-enclave

Once completed, a fully configured SYS23 enclave should be active and ready to execute the
PolyBench/C benchmarks as follows. Note that as before, the full set of OS noise mitigations
are still in effect.

200



Shell Command

$ ./run-all-sys23

Round 0: ./sys23-scmp-bpf ./time benchmark ./pbc_2mm
sys23-scmp-bpf

Seccomp filter mode active.

[INFO] Running 5 times ./pbc_2mm...

[INFO] Maximal variance authorized on 3 average runs: 5%...

[INFO] Maximal deviation from arithmetic mean of 3 average runs: 0.14500%
[INFO] Normalized time: 2.36739066

201



	 DECLARATION
	 ABSTRACT
	 ACKNOWLEDGEMENTS
	 DEDICATION
	 PUBLICATIONS
	 LIST OF FIGURES
	 LIST OF TABLES
	 LIST OF LISTINGS
	 ABBREVIATIONS AND ACRONYMS
	 GLOSSARY
	1. PREFACE
	1.1. Introduction
	1.2. Research problem
	1.3. Objectives and research question
	1.3.1. Objectives
	1.3.2. Hypothesis and research question

	1.4. Theoretical background and related work
	1.4.1. Theoretical background
	1.4.2. Related work

	1.5. Design, methodology and ethics
	1.5.1. Design
	1.5.2. Methodology
	1.5.2.1. Research philosophy
	1.5.2.2. Research approach
	1.5.2.3. Research strategy
	1.5.2.4. Methodological choice
	1.5.2.5. Time horizons
	1.5.2.6. Data collection techniques and procedures

	1.5.3. Ethics
	1.5.3.1. Principle One - The public interest
	1.5.3.2. Principle Two - Informed consent
	1.5.3.3. Principle Three - Privacy
	1.5.3.4. Principle Four - Honesty and accuracy
	1.5.3.5. Principle Five - Property
	1.5.3.6. Principle Six - Quality of the artefact


	1.6. Delineation
	1.7. Outcomes, contribution and significance
	1.7.1. Outcomes
	1.7.2. Contribution
	1.7.2.1. Theoretical contribution
	1.7.2.2. Methodological contribution
	1.7.2.3. Practical contribution

	1.7.3. Significance

	1.8. Thesis Structure

	2. BACKGROUND
	2.1. History of the Web
	2.2. The birth of JavaScript
	2.3. The emergence of WebAssembly
	2.4. A structured literature review
	2.4.1. Introduction
	2.4.2. Background
	2.4.3. Aim and objective
	2.4.4. Methodology
	2.4.4.1. Protocol
	2.4.4.2. Search strategy
	2.4.4.3. Literature selection
	2.4.4.4. Quality assessment
	2.4.4.5. Data extraction and monitoring
	2.4.4.6. Data synthesis
	2.4.4.7. References found and discussion


	2.5. The theoretical grounding
	2.6. Summary

	3. METHODOLOGY
	3.1. Type of research
	3.1.1. Application
	3.1.2. Objectives
	3.1.3. Enquiry mode

	3.2. Philosophical stance
	3.3. Methodological alignment
	3.4. Design theory
	3.5. Research instruments
	3.5.1. Testbed
	3.5.2. Benchmarking execution environments
	3.5.3. Benchmarking algorithms

	3.6. Data acquisition and evaluation
	3.7. Ethical considerations
	3.8. Research limitations
	3.9. Summary

	4. SYSTEM ARCHITECTURE AND DESIGN
	4.1. Design considerations
	4.1.1. Reinventing the wheel
	4.1.2. Compilation point in time
	4.1.3. Process isolation

	4.2. Conceptual design
	4.3. Prototype architecture
	4.3.1. Native is good, native is fast
	4.3.2. Keep it simple, stupid
	4.3.3. Protect the innocent
	4.3.3.1. Change root
	4.3.3.2. Security-enhanced Linux
	4.3.3.3. Secure computing mode
	4.3.3.4. Control groups
	4.3.3.5. Namespaces overview
	4.3.3.6. Control group namespace
	4.3.3.7. Inter-process communication namespace
	4.3.3.8. Mount namespace
	4.3.3.9. Network namespace
	4.3.3.10. Process namespace
	4.3.3.11. Time namespace
	4.3.3.12. User namespace
	4.3.3.13. Unix time-sharing namespace


	4.4. Data collection
	4.5. Data precision
	4.6. Summary

	5. FINDINGS AND DISCUSSION
	5.1. Prototype Evaluation
	5.2. Real-world evaluation
	5.3. Critical analysis
	5.3.1. Data mining
	5.3.1.1. correlation
	5.3.1.2. covariance

	5.3.2. Basic linear algebra
	5.3.2.1. gemm
	5.3.2.2. gemver
	5.3.2.3. gesummv
	5.3.2.4. symm
	5.3.2.5. syr2k
	5.3.2.6. syrk
	5.3.2.7. trmm

	5.3.3. Linear algebra transform
	5.3.3.1. 2mm
	5.3.3.2. 3mm
	5.3.3.3. atax
	5.3.3.4. bicg
	5.3.3.5. doitgen
	5.3.3.6. mvt

	5.3.4. Linear algebra solver
	5.3.4.1. cholesky
	5.3.4.2. durbin
	5.3.4.3. gramschmidt
	5.3.4.4. lu
	5.3.4.5. ludcmp
	5.3.4.6. trisolv

	5.3.5. Medley
	5.3.5.1. deriche
	5.3.5.2. floyd-warshall
	5.3.5.3. nussinov

	5.3.6. Stencils
	5.3.6.1. adi
	5.3.6.2. fdtd-2d
	5.3.6.3. heat-3d
	5.3.6.4. jacobi-1d
	5.3.6.5. jacobi-2d
	5.3.6.6. seidel-2d


	5.4. Discussion
	5.5. Proofs
	5.5.1. Secure computing mode
	5.5.2. Control groups
	5.5.3. Namespaces

	5.6. Limitations
	5.7. Synopsis

	6. CONCLUSION
	6.1. Recap
	6.2. Objectives
	6.3. Contributions
	6.4. Conclusion
	6.5. Future directions

	 BIBLIOGRAPHY
	 APPENDICES
	A BENCHMARKING SUITES
	B SOURCE CODE
	B.1. System23 secure computing
	B.2. Benchmarking harnesses

	C BENCHMARKING RUNBOOK
	C.1. OS noise mitigations
	C.2. Native benchmarks
	C.3. WebAssembly benchmarks
	C.4. System23 benchmarks


