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ABSTRACT 

Aquaponics is an emerging farming technique. Managing and optimising aquaponics systems 

is complex and requires expertise in aquaculture, hydroponics, and microbiology. Effective 

decision-making is crucial to maintaining optimal conditions for plants and fish so the system 

can thrive. Current research emphasises water quality monitoring but lacks the analysis of key 

parameters and their impact on plant growth and system productivity. There is a need for data-

driven solutions to help users, especially beginners, optimise resource use and enhance 

performance. 

The research aimed to develop a decision support system (DSS) for aquaponics that provides 

data-driven insights into plant growth and water quality using Explainable Artificial Intelligence 

(XAI). The following research objectives were used to achieve this: 1) Identify key parameters 

for monitoring plant growth and water quality. 2) Develop machine learning (ML) prediction 

models. 3) Evaluate the performance of different ML algorithms using regression metrics. 4) 

Design and develop a machine learning-based decision support system to facilitate decision-

making in aquaponics. 5) Assess the decision support system’s usability from the aquaponics 

stakeholders’ perspective. 

This study adopted an objectivist ontological stance to determine the feasibility of developing 

a DSS for aquaponics prediction. The epistemological stance was positivism. To meet the 

objectives, a deductive research approach was adopted with a quantitative methodological 

choice. The data parameters collected are plant height, plant diameter, Potential of Hydrogen 

(pH), Total Dissolved Solids (TDS), water temperature, ambient temperature and humidity. An 

experimental design was used to train and evaluate several supervised ML algorithms: linear 

regression, random forest, K-Nearest Neighbor (KNN), eXtreme Gradient Boosting (XGBoost), 

and Multi-Layer Perceptron (MLP). These models were assessed using the regression metrics  

Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), 

R-squared (R²), and Adjusted R-squared. 

The results revealed that both random forest and XGBoost achieved the best performance for 

plant diameter prediction with MSE = 0.00, RMSE = 0.05, and MAE = 0.03 with R² and Adjusted 

R² scores of 94%. In plant height prediction, random forest performed well with MSE = 0.00, 

RMSE = 0.06, and MAE = 0.05, along with a high R² of 93% and Adjusted R² of 92%. XGBoost 

performed well in pH prediction with MSE = 0.02, RMSE = 0.13, and MAE = 0.09, along with 

high R² and Adjusted R² of 79%. In TDS prediction, linear regression performed well with MSE 

= 0.00, RMSE = 0.01, and MAE = 0.01, along with perfect R² and Adjusted R² scores of 100%. 
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A DSS was developed using the FLASK framework to predict plant height and diameter, water 

pH, and TDS. SHapley Additive exPlanations (SHAP) was used to enhance transparency by 

showing each feature's impact on predictions. The usability of DSS was evaluated by 

aquaponics stakeholders  through the System Usability Scale (SUS) by. The DSS obtained a 

usability rating of 72%, which indicates an acceptable level of usability. 

Theoretically, the study demonstrates applying ML and XAI to predict plant growth and water 

quality under South African conditions. Methodologically, it offers a structured approach to 

integrating ML, Internet of Things and AI in aquaponics. Practically, it delivers a DSS to help 

practitioners monitor and optimise key parameters, improving overall system performance and 

outcomes. 

Keywords: Aquaponics, Machine Learning, Regression, Prediction, Decision Support System 
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CHAPTER ONE 

INTRODUCTION AND BACKGROUND 

1.1 Motivation for the study 

As the global human population grows, the demand for food will proportionally increase  (Hsiao 

& Sung, 2020). One key global challenge is producing food for a population that is constantly 

growing, using the limited resources available (Chandramenon et al., 2024). Farming outputs 

and produce suffer from reduced soil quality, insufficient water, and the impact of climate 

change  (Singh et al., 2021; Nair et al., 2025). There is uncertainty in weather patterns due to 

constant fluctuations and extreme weather conditions. According to Statistics South Africa 

(Stats SA), poverty is rapidly growing in South Africa (Statistics South Africa, 2017). South 

Africa is already a water-scarce country and one of the 30 driest countries in the world 

(Bwapwa, 2019).  

Access to and affordability of organic healthy food are big challenges these days.  According 

to the World Health Organisation (WHO), Africa had the sharpest rise in hunger  (World Health 

Organization, 2021). According to Jerry (2020), there is a growing demand for fresh, organic, 

healthy produce to feed a growing global population. Traister (2018) observed that some 

chemically treated food with pesticides has been scientifically proven to be harmful in causing 

various types of diseases, organ damage, and may even lead to death. To feed the world’s 

increasing masses sustainably, a rethinking or shift is required from the existing method of 

growing crops, with more innovative approaches that need to be introduced faster. It is in this 

light that new farming methods such as Hydroponics, Aeroponics and Aquaponics have come 

to fruition (Kok et al., 2024; Nair et al., 2025).  

Aquaponics is a combination of aquaculture and hydroponics. Hydroponics is a soilless 

farming method in a nutrient-rich water solution with or without a medium (Kumar & 

Savaridassan, 2023).  However, aquaculture is the process of cultivating fish in water (Kathuria 

et al., 2024). Aquaponics is a complex system which requires continuous monitoring and water 

quality management, fish health, and plant growth, making it tedious manual labour. This 

necessity has driven the development of smart aquaponics systems that integrate advanced 

technologies such as the Internet of Things (IoT), Machine Learning (ML), Artificial Intelligence 

(AI), and more  (Jiang & Liu, 2024;  Liu & Jiang, 2024; Perumal et al., 2024). These systems 

not only bridge the gap between technology and agriculture but also enhance the efficiency, 

sustainability and productivity of aquaponics farming (Liu & Jiang, 2024;  Sridevi et al., 2024). 

Intelligent Internet of Things (IIoT) is a technology that combines IoT, machine learning (ML), 

and artificial intelligence (AI). IoT enables data collection while ML and AI process data to 

extract valuable insights (Zhang, 2021; Aouedi et al., 2024). The implementation of IIoT 
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technology in aquaponics systems enhances the time taken to gather data. It further provides 

more accurate data, avoiding manual labour interventions. IIoT technology thus assists with 

timely decision-making and optimising system performance through the intelligent analysis of 

the aquaponics system. A Decision Support System (DSS) derives much benefit from using an 

IIoT technology. The benefit is that it can pick up exceptions and anomalies. Furthermore, once 

these slight variations are picked up, changes can be made more proactively instead of 

reactively, which prevents crop losses and operational inefficiencies. The Intelligent Internet of 

Things boosts the power and value of DSS. 

Various studies have explored the predictive models for key aspects of aquaponics, such as 

leaf disease identification, biomass prediction, pH prediction, plant growth, and fish length and 

weight (Ghandar et al., 2021;  Mori et al., 2021; Amano et al., 2022; Debroy & Seban, 2022b; 

Debroy & Seban, 2022a;  Khandakar et al., 2024). Khandakar et al. (2024)  focused on fish 

weight and fish length prediction for fish farming optimisation.  In this study, the team integrated 

local interpretable model-agnostic explanations (LIME) for model transparency. 

The application of Explainable AI (XAI) in smart aquaponics remains limited, with few studies 

focusing on the explainability and interpretability of machine learning (ML) and deep learning 

(DL) models used in this domain. While predictive analytics methods have been widely applied 

in aquaponics research addressing key areas like plant health, fish growth, and environmental 

conditions, these models are often not communicated effectively to end-users for practical, 

real-world decision-making (Liu & Jiang, 2024; Anila & Daramola, 2024). Using IIoT in 

aquaponics more intelligently can lead to smart aquaponics systems, thus contributing to a 

better decision support system. 

The development of decision support systems (DSS) for aquaponics using IIoT would provide 

stakeholders with actionable insights derived from predictive models. Most studies focus on 

generating predictions but fail to integrate these outputs into a user-friendly system that can 

guide daily operations or assist in making strategic decisions (Mori et al., 2021; Debroy & 

Seban, 2022b; Liu & Jiang, 2024). This limits the practical utility of these models in real-world 

aquaponics applications (Anila & Daramola, 2024).  

1.2 Background 

Aquaponics has been an emerging revolution in the farming world (König et al., 2018; Turnsek 

et al., 2020). Aquaponics is a very beneficial food production technique as people can cultivate 

organic vegetables, fruits, and fish simultaneously and efficiently on a small scale using 

minimal resources (Rakocy et al., 2006; Nair et al., 2025). Aquaponics provides for flexibility 

and scalability in the future for larger farming or commercial practices should the need arise. 

The fewer input resources required, such as water, land, the central point of system 
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management, and income generation opportunities, are huge benefits of this type of farming 

(Fruscella et al., 2021:1661). 

There has been a global drive to use technology to improve existing farming practices. The 

recent Coronavirus (COVID-19) pandemic revealed the need to automate and have 

agricultural machinery and farming methods self-regulate. This allows a farmer or organisation 

to remotely manage farms accurately and achieve productivity with minimal need for human 

involvement or intervention. 

With the advent of the 4th industrial revolution (4IR), there has been a giant leap in the Internet 

of Things (IoT) usage and Artificial Intelligence (AI) technologies to achieve higher productivity 

and efficiency in daily operations (Alhnaity et al., 2019; Tai, 2020). However,  combining IoT, 

machine learning (ML), and artificial intelligence (AI) within IIoT technology can significantly 

enhance data-driven decision-making, thereby enabling smart agricultural practices. Likewise, 

aquaponics will benefit when driven towards integrated, smarter technologies.  

Smart aquaponics models generally process data via sensors, and the data collected is 

compared to pre-determined optimal range parameters (Reddy et al., 2020; Sridevi et al., 2024; 

Perumal et al., 2024). A different study used various Grove sensors to monitor the following 

environmental and aquaponics parameter values, namely: sunlight, pH, water, water level, 

water temperature, electrical conductivity, ammonia, etc. When the monitored values fell above 

or below the optimal range, the microcontroller kicked into action (Khaoula et al., 2021). In the 

study conducted by  Valiente et al. (2018) when sensor data showed a value outside the 

optimal range, a message was triggered and sent to the programmed contact via phone or 

web.  Kumar et al. (2016) and Khaoula et al. (2021) demonstrated that cloud storage services 

were used to store collected data. The collected data allows for trends and patterns to be 

established, which enables  different forecasting and prediction capabilities  (Debroy & Seban, 

2022b; Liu & Jiang, 2024). Many aquaponics studies have focused on monitoring and reporting 

via emails, SMS, notifications and so on (Manju et al., 2017;  Hsiao & Sung, 2020). These 

methods reduce the need for manual intervention to help maintain an efficient aquaponics 

system performance. 

Aquaponic units can be installed in the field, greenhouse, tunnel or even indoors  (Mchunu et 

al., 2018; Reyes-Yanes et al., 2020). Factors influencing the aquaponics system are 

compatibility of fish and plants, fish stocking density, amount of fish feed, nitrifying bacteria, 

climate factors, water quality and so on (Nair et al., 2025).  A South African survey conducted 

by Mchunu et al. (2018) concluded that most aquaponics farmers required knowledge of 

technology to increase aquaponics food production. Accurate crop yield is crucial for making 

decisions related to agricultural risk management as well as for feasibility calculations. Start-

up farmers do not know or understand which parameters need to be regulated, by how much, 
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or the roadmap on how to manage an aquaponics system optimally for maximum yield 

(Mchunu et al., 2019).  

Aquaponics is a rapidly growing farming method due to reduced resource consumption, such 

as water, soil, and land. The improvement of aquaponics productivity is possible through the 

application of IIoT, which entails integrating IoT technologies and AI to optimise the aquaponics 

critical parameters for maximum yield (Khaoula et al., 2021; Abbasi et al., 2022; Liu & Jiang, 

2024; Sridevi et al., 2024). 

1.3 Research problem 

Aquaponic systems are relatively complex to monitor and manage due to a lack of expert 

knowledge (Hsiao & Sung, 2020; Karimanzira & Rauschenbach, 2021). Despite aquaponics  

having  the potential to aid sustainable food production, there is still limited research on plant 

growth data trends within aquaponics (Channa et al., 2024). This makes it difficult to 

understand and optimise plant growth performance in aquaponic systems (Chowdhury & 

Asiabanpour, 2024). Careful monitoring and control of key parameters in an aquaponic system 

help maintain optimal conditions for fish health, plant growth, and the activity of 

microorganisms (Debroy et al., 2025; Nair et al., 2025). Identifying these influential parameters 

is essential, as it would allow stakeholders to make informed decisions that optimise the plant 

growth, fish growth, resource usage, and overall system performance (Khandakar et al., 2024; 

Nair et al., 2025). The lack of uncertainty in making decisions and the implementation of 

corrective actions timeously directly affect aquaponics fish and crop yield (Hsiao & Sung, 

2020). In both startup and commercial-level farming, there exists a need for an informed 

decision support tool to optimise aquaponics productivity (Pechlivani et al., 2025).  

So far, systems that provide clear, data-driven insights to stakeholders, particularly those new 

to the field, to optimise aquaponics productivity and improve system outcomes are not 

common. 

1.4 Aim and objectives  

1.4.1 Aim 

This study aimed to develop a decision support system for aquaponics prediction that offers 

data-driven insight into plant growth and water quality parameters using Intelligent Internet of 

Things. 
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1.4.2 Objectives  

The objectives of this study are to: 

1.  Identify the key parameters used to measure plant growth and the monitored water quality 

parameters in aquaponics systems. 

2. Develop a machine learning (ML) prediction model to determine the optimal levels of key 

parameters for the aquaponics system. 

3. Evaluate the performance of the different ML algorithms using suitable regression metrics.  

4. Develop an ML-based data-driven decision support system for aquaponics. 

5. Assess the usability (encompassing effectiveness, efficiency and satisfaction) of a decision 

support system from the perspective of aquaponics stakeholders.  

1.5 Research Questions 

The main research question for this study is: 

How can a decision support system for plant growth and water quality prediction in 

aquaponics be developed through the application of Intelligent Internet of Things? 

 

The sub-research questions are: 

 

1. What are the parameters required for measuring plant growth, and which water quality 

parameters are essential for monitoring in aquaponics systems? 

2. How can an ML prediction model for aquaponics be developed?  

3. What is the comparative performance of the different ML algorithms for aquaponics 

prediction? 

4. How can an ML-based data-driven decision support system for aquaponics be 

developed? 

5.  How can the usability of the decision support system for aquaponics prediction be 

determined from the perspective of stakeholders? 

1.6 Delineation of the study 

This study focused on developing a decision support system for aquaponics stakeholders 

capable of predicting plant growth and water quality while providing actionable insights through 

the integration of machine learning (ML) and Explainable AI (XAI). The data for the study were 

collected from a single field located at the University of Johannesburg, Johannesburg, South 

Africa, under the supervision of the field manager.   
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1.7 Significance of the study 

Rising transport costs, and the high costs of owning vast farming land, has many challenges 

in South Africa and globally. This study encourages startup and subsistence farmers to 

consider aquaponics as a potential food and income source. The developed decision support 

(DSS) tool) and its regular use will provide the users and stakeholders with valuable assurance 

that they are on the correct path to realise the maximum plant growth.  

The study will also provide insights on the parameters with the most impact on plant growth so 

that aquaponics stakeholders can focus on them.  Wider adoption of the DSS deliverable from 

this study when embraced, will enhance aquaponics farming both in South Africa and globally.  

1.8 Thesis outline  

The entire thesis is organised into six chapters. A brief description of the chapters is given 

below.   

Chapter 1: This chapter provides a brief explanation of the following components: motivation 

of the study, background, the problem statement, the aim and objectives of the study, the 

research questions and the significance of the study. 

Chapter 2: This chapter provides an overview of the theoretical background and related 

work of the study. 

Chapter 3: This chapter illustrates the methodology followed to accomplish the research 

objectives. 

Chapter 4: This chapter explains how the data was collected for the experiment. 

Chapter 5: This chapter presents the machine learning experimentation performed on the 

data collected for the study. 

Chapter 6: This chapter explains how the decision support system (DSS) was developed 

and the usability evaluation of the DSS.  

Chapter 7: This chapter presents the contribution and recommendations for future work. 

1.9 Chapter summary  

This chapter presented the motivation for the study, provided a brief background, outlined the 

study aim and objectives, and formulated research questions to guide the investigation toward 

the objectives. Additionally, the chapter highlighted the delineation and significance of the study 

and, finally,  provided an overview of the thesis structure. 
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CHAPTER TWO 

 LITERATURE REVIEW 

  

A literature review is a systematic process of reviewing, collecting, and synthesising previously 

written works (Snyder, 2019). It can be articulated in the form of a comprehensive previous 

scholarly work, a concise report of the latest primary data, or the result. (Cooper, 1998:3; 

Cresswell, 2014:24). 

This chapter consists of three parts: theoretical background,  related work, and research gaps. 

The theoretical background provides theoretical knowledge about key topics that provide the 

foundation for this study. The related work focuses on the review of previous scholarly work on 

smart aquaponics. The research gaps summarise the gaps in the reviewed work. 

2.1 Theoretical background 

This section provides background knowledge on relevant key topics such as hydroponics, 

aquaculture, aquaponics, the Internet of Things, machine learning, explainable artificial 

intelligence (XAI), Intelligent Internet of Things, expert systems and decision support systems.  

2.1.1 Hydroponics  

The word hydroponics originates from two Greek words: ‘hydro’, meaning water, and ‘ponos’, 

meaning labour (Shrestha & Dunn, 2010; Rajaseger et al., 2023; Reddy et al., 2024). 

Hydroponics is a soilless cultivation approach to growing agriculture in a nutrient-rich water 

solution with or without a medium (Shrestha & Dunn, 2010; Kumar & Savaridassan, 2023).  

Commonly used supporting mediums are wood fibre, expanded clay, coir, perlite, vermiculite, 

brick shards, polystyrene packing peanuts, gravel, etc. (Roberto, 2003:16; Shrestha & Dunn, 

2010; Somerville et al., 2014; Rajaseger et al., 2023).  The selection of a medium is based on 

the following characteristics: surface area, pH, cost, weight, life span, water retention, plant 

support, and ease of working with the medium (Somerville et al., 2014). Compared to in-ground 

cultivation, soilless cultivation has various benefits such as: requiring less land, less water, 

minimal fertiliser loss due to chemical, biological or physical processes, minimal human 

intervention and better yield  (Shrestha & Dunn, 2010; Somerville et al., 2014; Kumar & 

Savaridassan, 2023).  There are different types of hydroponic systems in use (Kumar & 

Savaridassan, 2023). 

2.1.1.1 Types of hydroponic systems 

The hydroponics growing method involves two ways: either a liquid system/solution culture or 

an aggregate system/solid media. There is no physical support for the plant root in the liquid 

system, and the nutrient solution is directly transferred to the plant.  The aggregate system 
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uses a support/growing/substrate medium to hold plant roots. If the excess nutrient solution is 

circulating/recycling/recovering in the hydroponic system, then the system is a 

closed/recirculating system, or else it is an open system (Shrestha & Dunn, 2010; Mason et 

al., 2018:12; Resh, 2013:2; Rajaseger et al., 2023; Rajendran et al., 2024). The implementation 

of a mechanical device in the hydroponics system for recirculating the nutrient water makes 

the system an active one. A passive system is where the roots absorb nutrients from the water 

without any mechanical device (gravity) and make use of capillary action (Roberto, 2003:20; 

Jones Jr., 2005:121; Shrestha & Dunn, 2010; Blancaflor et al., 2022; Reddy et al., 2024). There 

are different types of hydroponics techniques: floating/raft system, ebb and flow (flood and 

drain), Nutrient Film Technique (NFT), drip system, wick system, Deep Water Culture system 

(DWC) and aeroponic system (Shrestha & Dunn, 2010; Maucieri et al., 2019:90-93;  Rajaseger 

et al., 2023;   Rajendran et al., 2024;  Naresh et al., 2024). The types of hydroponics are shown 

in Figure 2.1. 

 

 

                                             Figure 2.1: Types of hydroponics  (Shrestha & Dunn, 2010) 

 

a. Floating/Raft system 

In a floating/raft system, plants are grown in plastic cups, which are placed into a Styrofoam 

sheet. Styrofoam floats on aerated nutrient water, and the plants' roots grow into the nutrient 

water ( Jones Jr., 2005:248; Shrestha & Dunn, 2010; Velazquez-Gonzalez et al., 2022;  Luta 

& Siregar, 2023). 
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b. Ebb and flow/ flood and drain  

This system works by flooding the grow tray with a nutrient-rich water solution for a short 

period. Thereafter, the solution is drained back into the reservoir. Hence, this system is also 

referred to as a flood and drain system. This process is completed using a timer-controlled 

pump. The frequency of the process can be timer-controlled and depends on the size and type 

of plants. Factors such as temperature, humidity and the type of growing medium also serve 

to determine the timer settings (Jones Jr., 2005:143; Shrestha & Dunn, 2010; Rajaseger et al., 

2023; Rajendran et al., 2024). 

c. Nutrient Film Technique (NFT) system 

Nutrient Film Technique was developed in England during the ’60s by Dr Allen Cooper (Sharma 

et al., 2018; Bhat et al., 2023).  It was mainly developed to address the shortcomings of the 

ebb and flow system (Kannan et al., 2022). This system is designed in such a way that a 

nutrient-rich water system is completely circulated. This nutrient water is pumped to the growth 

tray using a water pump that operates without time control (Shrestha & Dunn, 2010; Sharma 

et al., 2018; Kannan et al., 2022; Blancaflor et al., 2022). 

d. The drip system 

The submersed pump is controlled with the help of a timer. The function of the timer is to 

activate the pump, thus letting the nutrient-rich solution be dripped into the base part of each 

plant via a tiny drip line (Shrestha & Dunn, 2010; Kannan et al., 2022; Rajaseger et al., 2023; 

Rajendran et al., 2024). 

e. The wick system 

This is a passive system and is one of the simplest hydroponic systems. This system uses a 

wick to link the roots of the growing media and the nutrients. There are no mechanical or 

moving parts in this system.   It uses capillary action (Shrestha & Dunn, 2010; Subakti et al., 

2022; Rajaseger et al., 2023; Prianka et al., 2024). 

f. Deep Water Culture (DWC)  

Deep Water Culture is the simplest of all active hydroponic systems. In this system,  plant roots 

are submerged in the nutrient solution. This allows the roots to have a continuous supply of 

oxygen and water. Plants are supported on a floating platform or base made of Styrofoam. 

This base floats on top of the nutrient solution.  An air pump is used to provide air to the air 

stone, which oxygenates the nutrient solution, ensuring the plant roots receive sufficient 

oxygen (Shrestha & Dunn, 2010; Saaid et al., 2013; Kannan et al., 2022; Rajaseger et al., 

2023; Rajendran et al., 2024). 
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g. Aeroponic system 

An aeroponic system has an enclosed growing chamber. A mist of nutrient-rich solution is 

sprayed at regular intervals. This aeroponic system is the most high-tech type of hydroponic 

gardening currently. Timer controls are used to pump the nutrients, but rather on much shorter 

bursts of a few seconds every couple of minutes (Shrestha & Dunn, 2010;  Rajaseger et al., 

2023; Rajendran et al., 2024). Nutrient-rich water or nutrient solution is required for better crop 

yield and quality. 

2.1.1.2 Hydroponic plant nutrition 

In hydroponics, plants receive all essential nutrients through a nutrient solution (Velazquez-

Gonzalez et al., 2022). The hydroponic system uses dissolved fertiliser salts to supply essential 

nutrients to plants, excluding carbon, hydrogen and oxygen, which are obtained from the air 

(Resh, 2013:31; Velazquez-Gonzalez et al., 2022).   Nutrient solution components are divided 

into macro- or micronutrients based on the quantity of the plant's nutrient requirements (Trejo-

Téllez & Gómez-Merino, 2012:1; Maucieri et al., 2019:94; Kannan et al., 2022; Rajaseger et 

al., 2023). The purpose of these essential nutrients in plants, their roles, and the symptoms of 

deficiency are discussed in the following sections. This information assists the researcher in 

observing whether plants are growing healthily or not. If any deficiency symptoms are 

identified, this contributes to the understanding of which nutrients are lacking.  

a. Essential elements/nutrients 

In general, there are 17 essential elements/nutrients required for optimal plant growth and 

quality (Schwarz, 1995:8; Resh, 2013:9; Kannan et al., 2022; Veazie et al., 2022; Rajaseger 

et al., 2023). The selection of essential elements strictly falls under three criteria (Schwarz, 

1995: 5; Arnon, 1950, 1951, cited in Resh, 2013:9; Veazie et al., 2022). 

1. The plant cannot complete its life cycle if the element is not present. 

2. The element activity must be specific, and the element must not be replaceable by other 

elements. 

3. The element must act within the plant and not result in another element being more easily 

accessible.   

Some elements are required in larger quantities, known as macro elements/macronutrients, 

while some require relatively smaller quantities, known as minor elements/micronutrients/trace 

(Maucieri et al., 2019:94; Blancaflor et al., 2022;  Thakur et al., 2023). The macro elements are 

carbon (C), hydrogen (H), oxygen (O), nitrogen (N), phosphorus (P), potassium (K), calcium 

(Ca), sulfur (S), and magnesium (Mg). The microelements are iron (Fe), chlorine (Cl), 

manganese (Mn), boron (B), zinc (Zn), copper (Cu),  molybdenum (Mo) and Nickel(Ni)  ( 

Schwarz, 1995:8; Resh, 2013:9-10; Blancaflor et al., 2022; Rajaseger et al., 2023;  Thakur et 

al., 2023). Plants also get the following macronutrients: carbon(C), oxygen(O) and 
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hydrogen(H) from carbon dioxide (CO2) and water (H2O) (Resh, 2013:9; Blancaflor et al., 2022; 

Rajaseger et al., 2023).   

The appropriate balance between the macronutrients is required for crop growth. Most of the 

plant's dry weight contains an overall 90-95 % of carbon (C), oxygen (O), and hydrogen (H) 

and the remaining 5-10 % is the rest of the six elements  (Schwarz, 1995:7; Jones Jr., 2005:37-

38; Resh, 2013:9; Kannan et al., 2022).   

b. The role of the essential nutrients in plants 

Each nutrient plays a major role in plant growth.  Even with an adequate supply of nutrients, 

plants may still experience nutrient deficiencies. The nutrients, along with their associated 

deficiency symptoms, are depicted in Table 2.1. 

Table 2.1: Role of plant nutrients and deficiency symptoms 

Nutrients Roles Deficiencies 

Oxygen (O) 

 

Oxygen is an essential nutrient for 

plant growth and the formation of 

sugar, starches and cellulose. It is 

further used in the process of 

respiration as well (Roberto, 2003:27; 

Rajaseger et al., 2023). 

 

Hinders healthy plant growth 

(Velazquez-Gonzalez et al., 2022;  

Rajaseger et al., 2023). 

 

Hydrogen (H) 

 

Hydrogen is vital for the chemical 

reaction process, whereby plant roots 

can absorb nutrients. Hydrogen is 

readily available from water and air. It 

assists with the formation of starches 

and sugars (Roberto, 2003:27; 

Rajaseger et al., 2023).   

 

 Impairs healthy plant growth 

(Velazquez-Gonzalez et al., 2022; 

Rajaseger et al., 2023). 

Carbon (C) 

 

Carbon is found in cell walls and forms 

the backbone of most plant 

biomolecules, including proteins, 

starches, and cellulose, which are 

composed of carbon, hydrogen, and 

oxygen. It serves as both a building 

block and a source of energy, helping 

plants generate sugars through 

photosynthesis, a process driven by 

chlorophyll (Roberto, 2003:27; 

Ahluwalia, 2022:477).  

 

Leads to poor plant growth 

(Velazquez-Gonzalez et al., 2022; 

Rajaseger et al., 2023). 
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Nitrogen (N) 

 

Plants absorb nitrogen through their 

roots to generate amino acids, 

proteins, enzymes and chlorophyll, 

which are essential for plant growth 

(Resh, 2013:11; Roberto, 2003:27;  

Mason et al., 2018:85;  Maucieri et al., 

2019:94; Rajaseger et al., 2023). 

Nitrate and ammonium are the two 

forms of nitrogen that plants can 

absorb (Schwarz, 1995:10, Maucieri 

et al., 2019:94; Rajaseger et al., 2023; 

Thakur et al., 2023; Hong et al., 2024). 

For most plants, nitrate is the primary 

nitrogen source. It is non-toxic and 

can be stored in the plant. A large 

quantity of ammonia intake affects 

plant growth (Maucieri et al., 2019:94; 

Daiane et al., 2021). 

 

Growth is constrained, with shorter 

and leaner stalks. Plant leaves have 

a yellowish colour overall and 

reduced fruit yield  (Roberto, 2003: 

29; Mason et al., 2018:85;  Jones Jr., 

2005:388; Maucieri et al., 2019:94;  

Rajaseger et al., 2023). 

Potassium (K) 

 

Potassium is essential for plant 

health, enhancing disease resistance 

and nutrient absorption  (Rajaseger et 

al., 2023). 

 

The tips and outer edges of the 

leaves die in monocot plants. Leaves 

of dicots are chlorotic at first; 

however,  dead areas soon start to 

develop. Also, it causes weak stems  

(Mason et al., 2018:88; Rajaseger et 

al., 2023). 

Calcium (Ca) 

 

Calcium assists in permeating the 

membrane, assisting in the division of 

cells as well as the formation of the 

cell wall  (Maucieri et al., 2019:96; 

Rajaseger et al., 2023; Thakur et al., 

2023). 

 

Spotted young leaves with irregular 

margins. Distorted young leaves, 

small-sized leaves, shoot and root tip 

death, and restricted bud 

development are other symptoms 

(Mason et al., 2018:89; Veazie et al., 

2022). Stunted plant growth, 

deformation of younger leaf margins, 

stunted root systems without fine 

roots are further symptoms (Maucieri 

et al., 2019:96; Rajaseger et al., 

2023). 

Magnesium (Mg) 

 

Magnesium is useful for building up 

the wall of chlorophyll molecules 

(Maucieri et al., 2019:96; Rajaseger et 

Chlorosis begins to form in the vein 

areas of the leaves, leading to 

yellowing between the veins and a 
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al., 2023).  Magnesium boosts 

glucose synthesis and influences 

enzyme activity, which supports 

healthy leaf development and efficient 

energy production in plants  

(Rajaseger et al., 2023; Thakur et al., 

2023). 

 

reduction in chlorophyll concentration 

(Rajaseger et al., 2023). This 

progresses towards the death of the 

tissue (necrosis). The severely 

affected leaves eventually fall off 

(abscise) (Veazie et al., 2022). 

Phosphorus (P) 

 

Phosphorus promotes the fast growth 

of buds and several flowers, and 

encourages root development of the 

plants  (Maucieri et al., 2019:95; 

Rajaseger et al., 2023). 

 

Plant development and maturity are 

often delayed. Plants are a dark 

green colour and more often than 

not, advance to get a reddish or 

purple colour and display stunted 

growth in the vegetative apex  

(Mason et al., 2018:87;  Maucieri et 

al., 2019:95; Veazie et al., 2022;   

Rajaseger et al., 2023). 

Sulfur (S)  

 

Essential for protein production and 

maintaining plant strength and health 

Rajaseger et al., 2023). 

 

Light yellow leaves, stunting plant 

growth and woody stems (Mason et 

al., 2018:89; Veazie et al., 2022;  

Rajaseger et al., 2023).  

Chlorine (Cl) 

 

Chlorine helps maintain osmotic 

pressure within plant cells and 

supports cell turgor pressure, which is 

essential for optimal water and 

nutrient transfer, as well as overall 

plant health and growth (Thakur et al., 

2023). 

 

Insufficient chlorine can cause leaf 

chlorosis and necrosis, as well as 

leaf wilting, restricted root growth, 

and stunted development (Mason et 

al., 2018:90; Maucieri et al., 2019:97;  

Thakur et al., 2023). 

Iron (Fe) 

 

Iron is required for chlorophyll 

formation and enzyme functions, 

which are critical for photosynthesis 

(Maucieri et al., 2019:96; Rajaseger et 

al., 2023). 

 

Chlorosis between the veins, 

especially in younger leaves, and 

can spread to older leaves, reducing 

root system growth (Mason et al., 

2018:90; Maucieri et al., 2019:96; 

Rajaseger et al., 2023). 

Manganese (Mn) Manganese helps prevent pathogens 

and increases the root cells (Maucieri 

et al., 2019:97). Required for 

photosynthesis and enzyme activities 

(Rajaseger et al., 2023; Thakur et al., 

2023). 

Stunted growth. Chlorosis in the vein 

areas of the leaves begins to form. 

This progresses from the leaf ends or 

periphery and moves inwards 

(Mason et al., 2018:90; Rajaseger et 

al., 2023).  
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Boron (B) Assist with the setting of the fruit and 

developing seed cells, cell division, 

pollen formation, and sugar transport 

(Maucieri et al., 2019:97; Rajaseger et 

al., 2023). 

 

Delicate leaves and stems, 

irregularity in plant growth, and stem 

and root tip death. Incomplete growth 

of young light green leaves of the 

terminal bud and twisted leaves when 

it grows back (Mason et al., 2018:91, 

94; Rajaseger et al., 2023).  Young 

leaves increase their thickness and 

have a leathery consistency (Maucieri 

et al., 2019: 97; Rajaseger et al., 

2023). 

 

Zinc (Zn) Zinc is essential for enzyme activation 

and hormone regulation  (Maucieri et 

al., 2019:97; Rajaseger et al., 2023). 

 

Chlorosis in-between the veins, 

especially in young leaves, inhibited 

growth, distorted leaf margins, and 

spots spread around the entire plant 

(Mason et al., 2018:91; Maucieri et al., 

2019:97; Rajaseger et al., 2023). 

 

Copper (Cu) Copper assists with the respiratory 

process involving photosynthesis and 

is important for enzyme functions 

(Maucieri et al., 2019:97; Rajaseger et 

al., 2023). 

 

Twisted young leaves and yield 

reduction. Restricted growth and the 

growing tip may die (Mason et al., 

2018:91).  Interveinal chlorosis leads 

to the collapse of the leaves' tissues  

(Maucieri et al., 2019:97; Rajaseger 

et al., 2023). 

Molybdenum (Mo) 

 

Helps in nitrogen metabolism and 

protein synthesis (Jones Jr., 

2005:400;  Maucieri et al., 2019:98; 

Rajaseger et al., 2023). 

 

Chlorosis and necrosis in-between 

the veins in older leaves evolve into 

younger leaves and deformed 

younger leaves (Jones Jr., 2005:400; 

Mason et al., 2018:92; Maucieri et al., 

2019: 98; Rajaseger et al., 2023). 

Nickel (Ni) 

 

Plays a role in nitrogen metabolism 

and enzyme function (Rajaseger et 

al., 2023). 

Reduces plant growth and causes 

leaf deformation (Rajaseger et al., 

2023). 

 

When adding fish into a hydroponics reservoir, it becomes an aquaponics system, which is an 

integrated farming technology (Maucieri et al., 2019:77; Luta & Siregar, 2023). The main 

difference between aquaponics and hydroponics is that fish waste makes reservoir water very 

nutrient-rich, which is critical for plants (Lennard & Goddek, 2019:114; Rajaseger et al., 2023). 
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2.1.2 Aquaculture 

Aquaculture is the process of cultivating fish or other aquatic organisms in water  (Krishna et 

al., 2023; Kathuria et al., 2024). Fish are great, globally demanded aquatic organisms in 

aquaculture and are rich sources of protein and omega-3 (Kusuma et al., 2023; Krishna et al., 

2023; Kathuria et al., 2024).  

 

Many factors influence the growing state of aquaculture, such as aquaculture organisms’ 

species choice, aquaculture organisms' density based on the aquaculture water capacity, the 

number of organisms, and food uses in aquaculture, including water quality parameters 

management  (Deng et al., 2010). However, in aquaculture, water quality plays an important 

role in the growth of aquatic organisms (Deng et al., 2010; Krishna et al., 2023).  Insufficient 

water quality can lead to stress, diseases,  including the death of aquatic organisms, thereby 

negatively impacting productivity, the inability to harvest in the desired time, and industry profit 

as well (Dupont et al., 2018; Krishna et al., 2023). Various parameters are considered to 

assess the water quality, such as pH, hardness, dissolved oxygen, water temperature, carbon 

dioxide, nitrate, nitrite, salinity, Total Dissolved Solids (TDS),  turbidity, water colour and so on 

(Bhatnagar & Devi, 2013; Yildiz et al., 2019: 445; Krishna et al., 2023; Kathuria et al., 2024).  

However, the most commonly monitored parameters are temperature, dissolved oxygen, and 

pH (Abbink et al., 2012; Dupont et al., 2018; Krishna et al., 2023; Khandakar et al., 2024).  

Thus, it is important to keep these parameters in an optimal range for growth performance. 

Table 2.2 specifies the optimum range of water temperature, dissolved oxygen and pH, the 

reason for regulation, and what will happen if it deviates from the optimum range (Wongkiew 

et al., 2017; Dupont et al., 2018; Espinal & Matulić, 2019:39; Lennard & Goddek, 2019:130; 

Verma et al., 2022). 

 

 

Table 2.2: Popularly monitored parameters in aquaculture 

 Temperature Dissolved Oxygen pH 

Optimum  

range 

Depends on the fish 

species 

>5ppm 7 - 8.5 

Reason for 

regulation 

✓ To control disease 

✓ To control oxygen 

consumption 

✓ Fish productivity 

Fish survival ✓ Controls fish 

metabolism 

✓ Microbial activities  
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Deviation 

from 

optimal 

range 

triggers 

The higher temperature 

required frequent 

microbiota biochemical 

activity that demanded 

more oxygen  

✓ Can lead to fish death 

✓ Fish growth became 

slow 

✓ High stress 

✓ Nitrifying biofilter failure 

✓ Fish stress 

✓ Fish growth became 

slow 

 

 

 

2.1.3 Aquaponics 

Aquaponics is a combination of aquaculture and hydroponics (Murdan & Joyram, 2021). The 

word “Aquaponics” is a blend of “Aqua” and “Ponics”. “Aqua” refers to water or aquaculture, 

which is fish farming and “Ponics” branches from Hydroponics, which refers to growing plants 

in water without soil (Thorarinsdottir et al., 2015:9; Murdan & Joyram, 2021).  Compared to 

traditional farming, aquaponics farming has the following benefits: less space for farming 

required, no soil-borne diseases, eliminates pesticides, reduces insect infection and pests, 

produces healthy organic food, hydroponic cultivars can be harvested in less time, increases 

food production, minimal chemical usage, and reduces water consumption massively (Rakocy 

et al., 2006;  Shafeena, 2016;  Manju et al., 2017;  Yanes et al., 2020; John & Mahalingam, 

2021; Ubayasena et al., 2023; Sridevi et al., 2024). Aquaponics is a reliable and sustainable 

solution for global food security (Murdan & Joyram, 2021; Friuli et al., 2021).  

Fish consume the fish feed and excrete waste, primarily in the form of ammonia, through their 

gills, enriching the water with nutrients beneficial for plant growth (Sallenave, 2016; Ru et al., 

2017; Kamil et al., 2020). 

The nitrogen cycle plays a major role in the aquaponics system because it converts fish waste 

into nutrients that are beneficial for plants, resulting in better production (Petrea et al., 2013; 

Ru et al., 2017; Kim et al., 2022). Thus, nitrogen is the main source of nutrients for fish, plants 

and micro-organisms. In this integrated system, water is reused multiple times. This frequent 

water reuse causes the generation and collection of non-toxic nutrients and organic matter, 

which is useful for plants. This non-toxic nutrient and organic matter can contribute to the 

efficient and optimal growth of plant crops. The Nitrosomonas and Nitrospira bacteria convert 

ammonia to nitrite and then to nitrate, respectively (Rakocy et al., 2006; Gnanasagar & Vivek, 

2020; Eneh et al., 2023).  

The aquaponic system can cultivate plants or veggies and fish concurrently (Rakocy et al., 

2006; Sridevi et al., 2024).  The fish grow in the fish tank, and the plant grows in the hydroponic 

grow system.  
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2.1.3.1 Types of aquaponic systems 

An aquaponic unit is a combination of an aquaculture unit and a hydroponic unit. There are 

two main types of aquaponic systems: coupled and decoupled. Coupled aquaponics operates 

with a single closed-loop water recirculation system. There is a direct transfer of the nutrient-

rich water from the fish tank to the hydroponic unit and back (Palm et al., 2019:163;   

Chandramenon et al., 2024). Whereas, in a decoupled aquaponic unit, there are separate 

loops for the aquaculture and hydroponic units. Water does not circulate back from the 

hydroponic unit to the fish tanks, providing independent control over each system  (Goddek et 

al., 2019:202; Chandramenon et al., 2024). A coupled vs decoupled aquaponics system is 

shown in Table 2.3  (Chandramenon et al., 2024). 

 

Table 2.3: Coupled vs decoupled aquaponics system 

Type Features Benefits Demerits 

Coupled Mainly used at a mini/ 
hobby/domestic/ backyard/ 
demonstrative/ small and 
semi-commercial level. 
 
May have short-term nutrient 
peaks and variations. 
 
Production depends on feed 
demand, no of plants and fish. 
 
Gravity influences water flow.  
Single loop systems/ scaling 
from small-medium-large 

Easy to implement, 
maintain, and manage. 
 
Requires less 
infrastructure 
Simple architecture 

pH, temperature, and 
nutrient concentration 
are compromised 
 
Less profitable 
 
Lower commercial 
profile 

Decoupled Mainly used at a semi/ full 
commercial level. 
 
Multiloop systems detached 
units 

More profitable 
 
Improved nutrient stability 
 
Improved pest 
management 

Complex design 
 
Implementation needs 
expertise 
 
Hard system 
maintenance 

 

Commonly used hydroponic grow systems in aquaponics are Media-based systems (MBS), 

Deep Water Culture (DWC), also known as the floating or raft method, and Nutrient Film 

Technique (NFT) (Goddek et al., 2015;  Shafeena, 2016; Kledal et al., 2019:489;  Singh et al., 

2021; Arakkal Thaiparambil & Radhakrishnan, 2022). 

2.1.3.2 Parameters affecting aquaponics plants and fish growth 

The parameters that affect the production of both plant and aquatic animals are the 

concentration of macro- and micronutrients, water, pH, dissolved oxygen, water temperature,  

light,  air temperature, and CO2 in the air (Thorarinsdottir et al., 2015:42; Chandramenon et al., 

2024). However, the fish and plants ratio is an important factor for balanced nutrient distribution 

(Goddek et al., 2015; Dharshan et al., 2024). 
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a. Nutrients  

Nutrients are essential for plant growth; plants get nutrients from fish waste, and the required 

quantity may be moderate or significant (Rakocy et al., 2006; Ru et al., 2017; Chandramenon 

et al., 2024).   Nutrients absorbed by plants can be classified as micronutrients and 

macronutrients. Micronutrients require only smaller quantities, whereas macronutrients require 

larger quantities. All these nutrients must be balanced for optimal plant growth (Thakur et al., 

2023). Plants absorb all required micronutrients and macronutrients from cultured water. 

Nevertheless, water (H2O) and carbon dioxide (CO2) supply carbon (C), oxygen (O) and 

hydrogen (H) to the plants (Rakocy et al., 2006; Ru et al., 2017; Blancaflor et al., 2022; 

Rajaseger et al., 2023). The macronutrients and micronutrients required for aquaponics plants 

are shown in Table 2.4 (Rakocy et al., 2006; Blancaflor et al., 2022; Rajaseger et al., 2023;  

Thakur et al., 2023). 

 

Table 2.4: Macronutrients and micronutrients required for aquaponics plants 

Macronutrients Micronutrients 

Carbon(O) Chlorine (Cl) 

Oxygen(O) Iron (Fe) 

Hydrogen(H) Manganese (Mn) 

Nitrogen (N) Boron (B) 

Potassium (K) Zinc (Zn) 

Calcium (Ca) Copper (Cu) 

Magnesium (Mg) Molybdenum (Mo) 

Phosphorus (P)  

Sulfur (S)  

 

b. Water pH level 

The Potential of Hydrogen (pH) level of a solution indicates the concentration of hydrogen ions 

present in the solution and relative acidity  (Alselek et al., 2022; Lindholm‐Lehto, 2023; 

Chandramenon et al., 2024). pH is a vital parameter in the aquaponics system as it directly 

impacts the lifecycle and health of both fish and cultivated plants, including the performance 

of the nitrifying bacteria  (Maulini et al., 2022;  Kumar et al., 2023; Kok et al., 2024; Channa et 

al., 2024). In the aquaponics system, it is essential to maintain a pH within an acceptable 

range, 6-8, to achieve a stable growth balance among fish, plants, and nitrifiers  (Hsiao & Sung, 

2020; Kumar et al., 2023). If pH varies from the optimal range, it affects the nitrification process, 

fish metabolism,  increases the risk of fish diseases, and hinders plant growth by reducing the 

nutrient absorption rate (Hsiao & Sung, 2020; Chandramenon et al., 2024).  

c. Dissolved Oxygen (DO)  

Dissolved Oxygen (DO) refers to the amount of free and non-compound oxygen present in the 

water (Thorarinsdottir et al., 2015:34; Lorenzo et al., 2019; Channa et al., 2024). DO level is a 
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crucial parameter for indicating water quality (Eze & Ajmal, 2020). The maintained DO level 

helps aquaponics plants with root respiration, transpiration and root growth (Rakocy et al., 

2006).   

DO plays a major role in aquaponics fish growth and bacteria, and restricts the fungal growth 

and rotting of roots (Sallenave, 2016; Channa et al., 2024).  DO intensity in the water is based 

on the fish type and water temperature (Eze & Ajmal, 2020). However, the required 

concentration of DO to keep good health and maximise the warm water fish is 5 ppm (parts 

per million) or 5 mg/L (milligrams per litre), whereas for cold-water fish it is  6.5 ppm or 6.5 

mg/L (Sallenave, 2016). The ideal DO range for a fish is 4-5 ppm (Hsiao & Sung, 2020). 

Nevertheless, the aquatic species will go under stress if the DO concentration goes below 3 

ppm, which causes disease and death (Eze & Ajmal, 2020; Hsiao & Sung, 2020). Kumar et al., 

2023). 

d. Water temperature  

Water temperature in aquaponics is a major factor that influences fish and plant growth 

(Sallenave, 2016; Kumar et al., 2023).  

Aquatic species depend on water temperature. The acceptable water temperature for warm 

water fish is 22 – 29 oC, whereas for cold water fish it is less than 18 °C (Chandramenon et al., 

2024). The optimal temperature for fish is  18°C to 30°C, which is also acceptable for crop and 

nitrifier (Hsiao & Sung, 2020).  However, tilapia can tolerate a wide range of water temperatures 

from 9 oC–42.5 oC (Obirikorang et al., 2021). 

e. Light 

Light is a critical requirement for plant growth and for the photosynthesis process to be carried 

out (Hsiao & Sung, 2020;  Yanes et al., 2020). Sunlight availability for indoor plants poses a 

challenge; however, studies suggest that artificial lighting can effectively replace natural 

sunlight (Yanes et al., 2020; Ghandar et al., 2021; Gnanasagar & Vivek, 2020). 

f. Air temperature 

 Air temperature influences fish and plant growth (Khaoula et al., 2021; Yang et al., 2023). 

Extreme temperature influences aquatic biological activity, photosynthetic rate, and 

transpiration rate. Also, it causes plant stress and hinders plant growth  (Bhat et al., 2023; 

Morchid et al., 2024). 

 

g. Carbon dioxide (CO2) 

CO₂ is included in plant respiration (Morchid et al., 2024). 
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h. Nitrification process  

In water, ammonia can be in two forms: unionised ammonia (NH3) and ionised ammonia 

(NH4
+), together (NH3 + NH4

+), called total ammonia nitrogen (TAN), also known as ammonia 

(Francis-Floyd et al., 2009;  Somerville et al., 2014; Espinal & Matulić, 2019:41; Lindholm‐

Lehto, 2023; Mohamed Ramli et al., 2024). Water temperature, pH, and salinity control the 

proportion between unionised and ionised ammonia ( Lindholm‐Lehto, 2023). Fish excrete 

liquid waste through gills or urine in the form of ammonia ( Thakur et al., 2023).  

Ammonia toxicity depends on water temperature and pH. Higher temperature and pH affect 

the fish’s life (Francis-Floyd et al., 2009;  Somerville et al., 2014; Lindholm‐Lehto, 2023; 

Thakur et al., 2023). Ionised ammonia is not toxic to the fish, whereas unionised ammonia is 

(Pillay, 2004: 4; Espinal & Matulić, 2019: 41).  

 

 

Figure 2.2:  Nitrogen cycle in aquaponics (Francis-Floyd et al., 2009) 

 

The nitrogen cycle is a biological process that helps to eliminate ammonia. The nitrogen cycle 

in aquaponics is shown in Figure 2.2. Ammonia is eliminated from the water by converting it 

into another form of nitrogen, such as nitrite (NO2
-)  and nitrate (NO3

-), with the help of nitrifying 

bacteria, Nitrosospira, Nitrosomonas, Nitrospira, Nitrobacter, and other bacteria (Francis-Floyd 

et al., 2009;   Prosser, 1989 citated in Espinal & Matulić, 2019:41; Lindholm‐Lehto, 2023; Jiang 

& Liu, 2024; Kok et al., 2024). Nitrifying bacteria use oxygen and alkalinity to convert ammonia 

and nitrite into a less toxic byproduct, nitrate (NO3
-). In the pond, nitrate is used as plant 

fertiliser, for microalgae (phytoplankton) or returned to the atmosphere. 
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For a healthy fishpond/tank, the total ammonia nitrogen (TAN) concentration should be 

maintained at less than 1 mg L-1 (Mohamed Ramli et al., 2024).  If it is more than zero, the 

monitoring of UIA in TAN must be undertaken, as this is highly toxic to the fish. UAI that is more 

than 0.05 mg/L (ppm) is harmful to the fish and can even cause death. UIA concentration in 

water is determined by water pH and temperature (Thakur et al., 2023; Eneh et al., 2023). 

Aquaponics systems involve three main organisms, namely: plants, fish, and bacteria. Each 

organism has specific tolerance ranges for key parameters, which can vary depending on the 

plant and fish species. Table 2.5 provides a summary of the specified organisms' tolerance 

range (Sallenave, 2016; Kurian et al., 2019; Singh et al., 2021). However, maintaining optimal 

ranges for these parameters can significantly enhance the overall yield of the aquaponics 

system. Table 2.6 shows the optimal water quality range of (Sallenave, 2016; Shafeena, 2016). 

 

Table 2.5: Aquaponics fish, plant and bacteria water quality parameters and tolerance range 

 Temp pH Ammonia Nitrite Nitrate DO 

Organism Type (oC)  (mg/litre) (mg/litre) (mg/litre) ppm (parts per 

million) / (mg/L) 

Warm water 

fish 

22-32 6-8.5 <3 <1 <400 4 - 6  

Cold water fish 10-18 6-8.5 <1 <0.1 <400 6 – 8 

Plant Leafy  14- 20 5.5-

7.5 

<30 <1 - >3 

In 

general 

18- 30 

Bacteria 14-34 6-8.5 <3 <1 - 4-8 

 

 

Table 2.6: Optimal water quality range of general and tilapia-based aquaponics systems 

Type  Temperature pH TAN NO2 

Nitrite 

NO3 

Nitrate 

DO 

General 

Aquaponics  

System 

65 - 85 0F 

(18.33- 29.44 
0C) 

6-7 <1ppm <1ppm 5 - 150 

ppm 

>5ppm 

Tilapia-

based 

Aquaponics  

System 

81 - 84 0F 

(27.22 – 28.88 
0C) 

7 <1ppm <1ppm 5 - 150 

ppm 

>5ppm 

 

 

It is important to monitor some water quality and environmental parameters to help maximise 

plant and fish growth in your aquaponics system (Hadi et al., 2022). 
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2.1.3.3 Aquaponics monitoring parameters 

Water is a common medium for the three living organisms of an aquaponics system, namely: 

fish, plants and bacteria (Thorarinsdottir et al., 2015:33; Shafeena, 2016; Sallenave, 2016;  

Lennard & Goddek, 2019:124;  Singh et al., 2021). Therefore, it is essential to continuously 

monitor and control water quality parameters, including nitrogen, pH, electrical conductivity 

(EC), dissolved oxygen (DO), total dissolved solids (TDS), temperature, and light conditions, 

to maintain ideal conditions for the healthy and optimal growth of these organisms (Timmons 

& Ebeling, 2010:49; Roberto, 2003:34; Resh, 2013:78;  Somerville et al., 2014; Lennard & 

Goddek, 2019:126; Maulini et al., 2022; Wibowo et al., 2019; Rozie et al., 2020). Among these, 

water temperature is particularly critical and requires close monitoring  (Ekanayake et al., 

2022). Similarly, pH is directly and indirectly related to other water quality parameters, making 

its monitoring equally important (Saha et al., 2018). 

In a newly set up aquaponics system, parameters need to be tested daily to make the required 

parameter value/s corrections at the earliest stage. If the nutrient cycle were balanced in the 

aquaponics system, it would only require weekly testing (Sallenave, 2016).  

For optimal growth and productivity of aquaponics systems benefiting both fish and plants, key 

water quality parameters such as pH, dissolved oxygen, and temperature, along with 

environmental factors like light, humidity, and ambient temperature, must be monitored. 

Remedial actions should be taken promptly if any parameter deviates from the expected values 

(Sallenave, 2016; Hsiao & Sung, 2020; Yanes et al., 2020; Hadi et al., 2022).  

Other water quality parameters, such as TDS and EC, have also been highlighted in various 

studies as essential for effective monitoring (Pappu et al., 2017; Saha et al., 2018; Yanes et 

al., 2020; Rozie et al., 2020).  Monitoring and controlling can be done either manually or 

electronically (Shafeena, 2016; Manju et al., 2017; Hsiao & Sung, 2020). 

Electrical Conductivity (EC): Electrical Conductivity (EC) measures the ability of water to 

conduct an electric current, which is directly correlated with salinity levels. The optimal EC 

range for fish in aquaponics systems is between 100 and 2000 μS/cm (Yanes et al., 2020). 

However, the broader acceptable range extends from  30-5000 μS/cm  (Saha et al., 2018). A 

high EC reading typically indicates water pollution, which can adversely affect the aquatic 

environment. Additionally, the fish population is closely linked to EC levels, as higher densities 

of fish can influence salinity and, consequently, EC readings (Yanes et al., 2020). 

Total dissolved solids (TDS): TDS levels represent the concentration of organic matter, 

dissolved materials, and inorganic salts in water. The ideal TDS level in water is 1000 mg/L. 

Exceeding this optimal range can create a toxic environment for aquatic organisms (Yanes et 

al., 2020). 
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Relative humidity: Relative humidity refers to the amount of moisture in the air. It is essential 

for plant growth as it helps plants thrive. The considerable relative humidity for plants ranges 

from 50% to 80%, although it may vary depending on the plant variety (Yanes et al., 2020; 

Morchid et al., 2024). 

Ambient temperature: Ambient temperature significantly influences plant health. The optimal 

temperature range for most vegetables in aquaponics is between 18°C and 30°C (Yanes et 

al., 2020). 

Aquaponics farming is a multidisciplinary field where knowledge about plants, fish and micro-

organisms is required (Goddek et al., 2015; Channa et al., 2024). Good training, skills, and 

management will lead to successful aquaponics farming. Aquaponics daily management is 

essential as an aquaponics unit has three different living organisms, whilst the common 

medium is water (Goddek et al., 2015; Valiente et al., 2018).  Management embraces fish feed, 

fish tank, grow bed, water flow and monitoring, and maintenance of the environmental 

parameters: pH, temperature, humidity level, water level and many more (Dutta et al., 2018; 

Valiente et al., 2018).  

Aquaponics has many variables and complexities; thus, one needs to be meticulous in 

monitoring the chemistry throughout the circulating water to ensure optimal ratios and 

concentrations of nutrients. Ammonium is a very toxic component. It is thus imperative to watch 

it carefully. Water quality parameter reading is continuously required in aquaponics to check 

whether the system maintains a controlled environment or not (Goddek et al., 2015; Sallenave, 

2016; Deshpande et al., 2024). The controlled environment guarantees the optimal growth of 

fish, vegetables and bacteria simultaneously.  

Monitoring and controlling an aquaponics system manually/traditionally is time-consuming and 

might not be accurate (Shafeena, 2016;  Naser et al., 2019; Channa et al., 2024). If there is 

any abnormality in the parameter reading, the value from the optimal value of the parameter 

needs to be adjusted to maintain the environment and keep it under control.  

Hence, human intervention is intensively required to monitor and control these constantly 

changing values, which are critically required for plant and fish growth production.  This shows 

the necessity of a smart aquaponics system to reduce the burden of human intervention, 

labour, and monotonous tasks (Goddek et al., 2015; Shafeena, 2016; Jerry, 2020; Raman & 

Vasmatkar, 2024). 

Smart aquaponics is an integrated system that uses advanced technologies like IoT, machine 

learning (ML), and automation for real-time monitoring, controlling, and optimising aquaponics 

farming. Recent developments and trends include IoT devices for real-time system 
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management and AI-driven machine learning algorithms to enhance sustainability and 

efficiency (Liu & Jiang, 2024).  

2.1.4 Internet of Things  

The term “ Internet of Things” was devised by Kevin Ashton in 1999  (Corcoran, 2016; Mouha, 

2021). The Internet of Things is a framework that provides a structure to interconnect physical 

devices, sensors, electronics, or additional technologies to collect and exchange data with 

other devices or systems over the internet (Mouha, 2021).  As technology evolves, the 

definition of “Things” also changes (Gubbi et al., 2013). The "Thing" in IoT can be an object 

having a sensor installed in it that can collect data and transfer it across the network, which 

helps to implement, monitor and control operations without human involvement (Jamali et al., 

2020:1; Mouha, 2021). The main aim of IoT is to monitor and control things/objects from 

anywhere in the world, which makes the devices “Smart” (Jamali et al., 2020:1; Maity et al., 

2023).  

 

The IoT integration in certain areas makes it more efficient, practical, safe and intelligent, such 

as smart agriculture, smart water, smart cities, smart cars, smart farming, smart homes, smart 

glasses, smart postal, precision farming, industries, health monitoring, education, security, 

media and many more (Vashi et al., 2017; Reddy et al., 2020; Ammayappan & Smys, 2020; 

Jamali et al., 2020:2; Mouha, 2021; Maity et al., 2023). 

 

2.1.4.1 IoT architecture 

IoT architecture encompasses a collection of physical objects, sensors, cloud services, 

actuators, communication layers, users, business layers and IoT protocols (Jamali et al., 

2020:3). The integration of hardware and software over the network is grounded in 

the anticipated solution. Therefore,  the implementation of IoT architecture may vary; 

depending on the study, it can be a three-layer, four-layer, five-layer or even seven-layer 

architecture (Vashi et al., 2017; Mouha, 2021; Kumar & Sharma, 2023). However, a widely 

accepted IoT technology architecture has three layers, namely, the perception layer, network 

layer and application layer (Lin & Shi, 2014; Jamali et al., 2020:3; Mouha, 2021; Kumar & 

Sharma, 2023; Prasetya et al., 2024). Figure 2.3 portrays the three-layered IoT architecture. 
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Figure 2.3: Three-layer IoT architecture (Mouha, 2021) 

 

Perception Layer: The lowest layer in the standard IoT architecture. This layer involves 

various sensors, actuators and any physical devices. The primary purpose of this layer is to 

collect data from the environment (Jamali et al., 2020:3; Mouha, 2021). 

 

Network Layer: This layer is responsible for transmitting data between the perception layer 

and the application layer. It also establishes a connection between other smart things, 

network devices, and servers (Jamali et al., 2020:3; Mouha, 2021). 

 

Application Layer: This layer establishes the connection between the user and the 

application and provides services according to the user’s needs (Jamali et al., 2020:4; 

Mouha, 2021). 

 

2.1.4.2 IoT in aquaponics  

Integrating technologies such as the internet, sensors, automation systems, robotics, and AI 

in agriculture creates smart agriculture. It aims to enhance crop quality and quantity while 

minimising manual labour (Kassim, 2020; Arjune & Kumar, 2022; Lynda et al., 2023). The 

applications of IoT in agriculture include weather monitoring, disease monitoring, soil condition 

monitoring and irrigation management (Kassim, 2020; Ismaili et al., 2024). The IoT smart 

devices can sense the variations in data, collect, store and send the data over the network 

(Kassim, 2020; Lynda et al., 2023). Various sensors, such as water temperature, Total 

Dissolved Solids (TDS), soil moisture, pH, air humidity, air temperature, precipitation, rain 

detection sensors, dew point sensors and so on, were used in agriculture for monitoring, 

controlling and data collection purposes (Saini & Saini, 2020; Kassim, 2020; Lynda et al., 2023; 

Ismaili et al., 2024). 
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Similarly, IoT technology in aquaponics enables continuous monitoring and autonomous 

control, optimising management and transforming it into a "smart aquaponics" system (Mohd 

Ali et al., 2021; Wan et al., 2022).  The aquaponics farmers monitor the real-time data, which 

enables them to maintain optimal conditions for both fish and plant growth. Renewable energy, 

like solar energy, was also used to run electronic devices connected to the aquaponics unit  

(Murdan & Joyram, 2021; Mohd Ali et al., 2021). 

 

According to IoT's three-layer architecture, the sensors, cameras and actuators are placed in 

the perception layers for monitoring and controlling the parameters. The parameters monitored 

in the aquaponics studies using sensors include water temperature, water level, pH, turbidity, 

electrical conductivity (EC), ammonia, nitrate, Total Dissolved Solids (TDS), plant growth 

condition, soil moisture,  planting environment such as light intensity, temperature,  Carbon 

Dioxide, etc. (John & Mahalingam, 2021;  Udanor et al., 2022; Ekanayake et al., 2022; Wan et 

al., 2022; Abdullah & Mazalan, 2022; Mahmoud et al., 2023; Naputol et al., 2024; Prasetya et 

al., 2024; Abidin et al., 2024; Perumal et al., 2024). The key factors controlled in aquaponics 

studies include water circulation using a pump to regulate water level in the tank, ambient light 

for plant growth, automated fish feeding, heaters to maintain water temperature, and fans to 

regulate ambient temperature for cooling. These controls are essential to achieve optimum 

growth of both plants and fish (John & Mahalingam, 2021; Hadi et al., 2022; Wan et al., 2022; 

Mahmoud et al., 2023; Prasetya et al., 2024; Abidin et al., 2024). 

 

The collected data from the perception layer and information from the application layer are 

transmitted between the layers using network communication technologies and protocols that 

belong to the network layer.  For example, technologies are  Wireless Fidelity (Wi-Fi), 5G 

communication, LongRange (LoRa), LoRaWAN, and Wireless Sensor Networks (WSNs). 

Protocols are Message Queuing Telemetry Transport (MQTT), Internet Protocol, and ZigBee 

(Zaini et al., 2018; Nichani et al., 2018; Wang et al., 2020; Ghandar et al., 2021; Wan et al., 

2022; Silalahi et al., 2022; Alselek et al., 2022; Mahmoud et al., 2023; Abidin et al., 2024; 

Prasetya et al., 2024). 

 

The collected data is processed in the application layer to provide the user with insight via a 

user interface. For prediction, machine learning, Artificial Intelligence or deep learning were 

used. Web interfaces, mobile applications or dashboards are used to monitor and control the 

real-time parameters from anywhere. Data is stored in the cloud and the database (Kyaw & 

Ng, 2017; Pasha et al., 2018; Barosa et al., 2019; Taha et al., 2022; Abdullah & Mazalan, 2022;  

Kim et al., 2022; Taha et al., 2022; Mahmoud et al., 2023; Abidin et al., 2024; Prasetya et al., 

2024; Perumal et al., 2024). 
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The technologies that were used by Anila and Daramola (2024) in their Systematic Literature 

Review study in various aquaponics research are depicted in Figure 2.4. 

 

 

 

 

Figure 2.4: IoT architecture with various technologies in aquaponics studies (Anila & Daramola, 2024) 

 

2.1.5 Machine Learning 

Machine learning is a core area of Artificial Intelligence (AI) (Ray, 2019;  Janiesch et al., 2021). 

Artificial intelligence is the ability of a machine to behave like a human and solve complex 

computer-based problems using large data in a very short time (Joshi, 2020:4).  The term 

“Machine Learning” was coined by Arthur Samuel in 1959  (Joshi, 2020:4).  Machine learning 

refers to a computer program's ability to learn from experience and enhance its performance 

or behaviour over time. According to Tom Mitchell, who in 1997 defined machine learning as: 

“A computer program is said to learn from experience E regarding some task T and some 

performance measure P, if its performance on T, as measured by P, improves with experience 

E” (Géron, 2019:3; Abdel-Fattah et al., 2021).  Machine learning extracts actionable knowledge 

from data by applying machine-learning techniques (Lantz, 2013:10;  Müller & Guido, 2016:1). 
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In machine learning, the functionality involves mapping input data to output results as 

predictions through a systematic machine-learning process. 

2.1.5.1 Machine learning process 

The general machine-learning process is described in 7 steps, which are data collection, data 

preparation, model selection, model training, model evaluation, hyperparameter tuning, and 

model deployment (Panigrahi et al., 2023). The general machine learning process is depicted 

in Figure 2.5. 

 

 

Figure 2.5: The general machine-learning process (Lantz, 2015:17; Panigrahi et al., 2023) 

 

Step1. Data collection 

Data collection is the primary step in the machine learning process (Alzubi et al., 2018). Data 

collection involves gathering relevant information from various sources based on the nature. 

Once the collected data is preprocessed, it is fed into a machine learning model to generate 

actionable insights (Lantz, 2015:16).  

Step 2. Data pre-processing 

Data quality plays a major role in machine learning (Badillo et al., 2020). Data pre-processing 

is intended to prepare the collected data for data analysis (Abdelaziz et al., 2025). The 

collected data may contain noisy, redundant or missing data and inconsistent data (Alzubi et 

al., 2018; Abdelaziz et al., 2025). During the data cleaning, insignificant or redundant data can 

be disregarded (Yang & Shami, 2020). Missing values and outliers can be treated by replacing 

them with calculated statistical measures, such as the mean, mode or median (Dangeti, 

2017:11; Joshi, 2020:151). Once the data is cleaned, the next step is feature selection. 

Although a dataset may contain many features, it is crucial to select only those that are relevant 

to the study’s objectives to ensure effective model training (Alzubi et al., 2018). Additionally, 

the features in the dataset may have different ranges, which can reduce the accuracy and 

performance of the model. To address this, data transformation techniques such as 

normalisation or standardisation are applied to scale the features appropriately, thereby 

improving model performance. To address it, the data transformation process, normalising or 
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standardising, can be applied to the data. Normalising maintains data to a specific range, in 

standardising, the data have a mean of zero and a standard deviation of one, which helps 

improve the accuracy and performance of the model (Abdelaziz et al., 2025). Finally, the 

dataset is split into the train and test sets. The training set is used to train the model, while the 

test set is used to evaluate the model's ability to generalise unseen data (Panigrahi et al., 2023; 

Abdelaziz et al., 2025). Generally, the data is split into higher portion ratios to train the models, 

whilst a smaller portion is used to test the models.    

Step 3. Algorithm selection 

After the data is prepared for analysis, the researcher will most likely gain insight into what can 

be learnt from the collected data (Lantz, 2015:16). Trends and patterns in the data can be 

uncovered during the analysis of the data, and the type of algorithm that needs to be selected. 

Algorithms enable computers to learn behaviours and patterns based on the given data 

(Chitralekha & Roogi, 2021). The selection of the appropriate algorithm, such as supervised, 

unsupervised, semi-supervised and reinforcement learning, depends on the type of problem 

to be solved (Chitralekha & Roogi, 2021). The problems are, namely, classification, regression, 

anomaly detection, clustering and reinforcement (Alzubi et al., 2018). Selecting the most 

suitable machine learning algorithm can be challenging, as it directly affects prediction 

accuracy and overall model performance. Once a suitable machine learning algorithm is 

chosen, it represents the data in the form of a model (Lantz, 2015:17). 

Step 4. Model training  

The most critical phase in machine learning is model training. In this phase, the model will be 

trained using the training dataset to learn the trends in the given dataset. The prepared data is 

input into the selected machine learning algorithm to train the model and finally make 

predictions. (Panigrahi et al., 2023).  

Step 5. Model evaluation  

It is vital to assess the model's performance to understand how effectively the algorithm learns 

from experience and to estimate the accuracy of the model's results on unseen data (Lantz, 

2015:17). Different metrics are used to evaluate the model. However, the choice of metrics 

depends on the algorithm selected. 

Step 6. Hyperparameter tuning 

Machine learning algorithms adjust the model parameters based on the given data during the 

training process.  Model parameters focus on covering the input data to the desired output 

data. Whereas, other parameter types that are pre-configured before the training process is 

initialised and cannot change during the training process are known as hyperparameters. 

Hyperparameters are involved in building the structure of a model (Elgeldawi et al., 2021; Yu 
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& Zhu, 2020).   

Hyperparameter tuning, or the process of finding optimal hyperparameters, is crucial because 

it involves developing methods to systematically and formally identify the best hyperparameter 

configurations. This process, which is considered an optimisation problem, facilitates better 

learning and understanding of the model's performance (Yu & Zhu, 2020).  

Hyperparameter optimisation determines which hyperparameters to tune and systematically 

adjusts the hyperparameter values to evaluate the model's performance across various 

hyperparameter sets (Yu & Zhu, 2020). The main goal is to determine the best hyperparameter 

combinations effectively and efficiently (Yu & Zhu, 2020). This achieves minimum loss or 

maximum accuracy on a validation set.  Fine-tuning a model's hyperparameters is vital for 

adapting a machine-learning model to different problems (Yu & Zhu, 2020; Yang & Shami, 

2020; Elgeldawi et al., 2021).  

The performance of the machine learning model changes based on the choice and values of 

its hyperparameters. However, it is also important to know how well a model can perform on 

unseen data. For the cross-validation, a statistical method is used to assess the machine 

learning model’s accuracy. This will determine how well a model can perform on unseen data. 

One of the popular cross-validation methods is  K-fold cross-validation (Elgeldawi et al., 2021). 

Grid Search and Random Search are two hyperparameter optimisation techniques used to 

determine the optimal combinations of hyperparameters (Bischl et al., 2023). 

Grid search performs an exhaustive search over a specified set of hyperparameters defined 

by the user and evaluates every possible combination of hyperparameter values using cross-

validation. This method is popularly used to tune model hyperparameters to obtain the best 

combination for determining the best fit (Géron, 2019:79; Dangeti, 2017:286; Yu & Zhu, 2020; 

Bischl et al., 2023). 

Random search is an improved version of grid search. It performs a randomised search over 

hyperparameters to find optimal combinations for the model under consideration. The random 

search is usually computationally intensive compared to the grid search (Yu & Zhu, 2020; 

Elgeldawi et al., 2021; Bischl et al., 2023). The search continues until the entire allocated 

budget is exhausted or the desired accuracy is achieved (Yu & Zhu, 2020). 

Step 7. Model deployment 

The final step in the machine learning process is model deployment. Once the model is 

performing well, it can be deployed for prediction purposes (Lantz, 2015:17;  Dangeti, 2017: 

12). When the model is in use for its intended task,  it is essential to regularly assess whether 

the model is performing  well with the new data  and update it accordingly to ensure getting 

the optimised results (Pruneski et al., 2022). 
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In machine learning, specific terms are frequently used to describe various aspects of the field, 

models, and processes. Table 2.7 addresses the commonly used terms in machine learning. 

 

Table 2.7: Machine learning terms 

Term Meaning Source 

Datasets The data set is ideal when all the data is numerical and it 

does not contain any missing values. 

(Joshi, 2020:22) 

Model  A machine learning model is a mathematical 

representation(rule, formula, or equation) trained to 

identify data patterns. 

(Fenner, 2019:8) 

Entities In machine learning, an entity represents a digital storage 

of data commonly stored in a  CSV file format. 

(Joshi, 2020:22) 

Attribute An attribute represents the column of an entity. A group of 

attributes is an entity. 

(Géron, 2019:9; 

Joshi, 2020:22) 

Data type The stored format of an attribute in an entity uses different 

types. For example,  integer, string, datetime, etc. 

(Joshi, 2020:23) 

Features In machine learning, a feature means a set of attributes 

used for prediction.  It may vary based on the context.  

(Géron, 2019:9) 

 

Predictors In machine learning, the predictors are input variables that 

predict an output. 

(Géron, 2019:9) 

Labels Labels are expected results,  target variables or 

predictions from a trained algorithm. The features are used 

for prediction. Labelled data, together with input data to 

train an algorithm, produces a model in supervised 

learning. 

(Géron, 2019:8) 

Training 

dataset/training 

set/ training 

data 

It is a dataset that is inputted into a selected machine-

learning algorithm to train the model. 

(Müller & Guido, 

2016:17) 

Test dataset/ 

test set/ test 

data 

It is a dataset used to validate the accuracy of the model. 

It is not the same as a training dataset. 

 

(Müller & Guido, 

2016:17) 

Overfitting In machine learning, overfitting means the model performs 

well on the training dataset.  However, the model does not 

perform well during the testing period or for generalising the 

model.  This will lead to high variance. Variance is how the 

data is scattered from the average value.  

(Lantz, 2013: 16; 

Géron, 2019: 28; 

Joshi, 2020: 50; 

Molin, 2021:653) 

Underfitting It is the opposite of overfitting, where the model performs 

poorly on the training dataset. This is because the model is 

too simple to learn the underlying structure of the data. This 

(Géron, 2019:30; 

Molin, 2021:653) 
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leads to high bias. Bias is an error due to the difference 

between the actual value and the predicted value. 

 

 

Machine learning techniques use algorithms to learn patterns from given data and provide 

decisions or predictions without being explicitly programmed  (Mahesh, 2020; Obaido et al., 

2024). Machine learning depends on several algorithms to solve specific problems.  The 

performance of the algorithm depends on the nature of the problem that needs to be solved 

(Mahesh, 2020; Abdel-Fattah et al., 2021). However, the efficacy of machine learning is 

determined by the type and characteristics of input data and the performance of the learning 

algorithms (Sarker, 2021). 

2.1.6 Types of machine learning 

 
There are three main types of machine learning categories, namely: supervised, unsupervised 

and reinforcement learning (Géron, 2019; Shrestha & Mahmood, 2019; Ray, 2019; Joshi, 

2020:10; Janiesch et al., 2021). However, some authors addressed semi-supervised learning 

in their machine-learning category (Géron, 2019:8; Sarker, 2021; Chitralekha & Roogi, 2021; 

Richardson et al., 2022). 

2.1.6.1 Supervised machine learning 

A supervised learning algorithm uses a labelled data set as a pair of inputs and expected output 

to train the model (Müller & Guido, 2016:2; Sarker, 2021). After training, the algorithm will learn 

a pattern (Mahesh, 2020). The pattern can apply to a new data set/test data set, which helps 

with prediction. Supervised learning algorithms are further divided into two: regression and 

classification (Ray, 2019; Janiesch et al., 2021; Sarker, 2021; Obaido et al., 2024). The 

regression algorithm predicts the numeric value. Classification algorithms classify the input 

data set into two or more classes (Russell, 2018:14; Janiesch et al., 2021). Forecasting, corn 

crop yield prediction, car price prediction, annual income prediction and trend analysis are 

some of the uses of regression algorithms. Image classification, cancer detection, spam filters, 

text classification, weather forecasting, and face recognition are some of the uses of 

classification algorithms (Müller & Guido, 2016:26; Géron, 2019:9; Ray, 2019; Sarker, 2021; 

Alnuaimi & Albaldawi, 2024). Differentiating between regression and classification tasks can 

be done by questioning if there is a pattern of continuity in the output. If continuity is identified 

in the possible outputs, this points towards a regression problem. The classification task, 

however, has completely different categorisations and thus shows no signs of continuity (Müller 

& Guido, 2016:26;  Sarker, 2021; Alnuaimi & Albaldawi, 2024). 

Various algorithms come under regression and classification problems. k-Nearest Neighbors, 

Linear Regression, Naïve Bayes,  Logistic Regression, Support Vector Machines (SVMs), 
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Linear Discriminant Analysis (LDA),  Decision Trees and Random Forests are some of them 

(Müller & Guido, 2016:22; Géron, 2019:10; Ray, 2019; Sarker, 2021). 

2.1.6.2 Unsupervised machine learning 

Unsupervised learning algorithms learn by themselves using unlabelled datasets without any 

target variable or supervision provided (Dangeti, 2017:9; Fenner, 2019:445; Sarker, 2021). It 

requires finding hidden patterns and relations in the given data (Dangeti, 2017:9; Naeem et 

al., 2023). It involves a model that is fit for observations. In unsupervised learning, a data set 

of input objects is collected. Unsupervised learning then typically treats input objects as a set 

of random variables. Thereafter, a joint density model is built for the dataset (Ayodele, 2010b: 

13-14). 

Unsupervised learning provides the unknown output and uses an unlabelled dataset without a 

training dataset to find hidden patterns or structures of data in which no target variable exists 

(Dangeti, 2017:304; Géron, 2019:10; Ray, 2019; Janiesch et al., 2021).  

Social network analysis, software fault prediction, segmentation of customers, search engine, 

data mining and knowledge extraction, etc., are some examples of unsupervised learning 

applications (Dangeti, 2017:304; Janiesch et al., 2021; Naeem et al., 2023). 

Clustering, dimensionality reduction, self‐supervised learning, density estimation, and 

association rules are five major types of unsupervised learning tasks (Dangeti, 2017:9; Géron, 

2019: 10; Joshi, 2020:133; Ren et al., 2023;  Obaido et al., 2024). 

2.1.6.3 Semi-supervised learning 

Semi-supervised learning is a combination of supervised and unsupervised learning (Géron, 

2019:14;  Sarker, 2021).  It is suitable when there is insufficient labelled data and the dataset 

contains more unlabelled data than labelled data (Chitralekha & Roogi, 2021; Richardson et 

al., 2022). The model trains based on a small amount of labelled data and predicts on a large 

set of unlabeled data (Richardson et al., 2022). Using labelled data guides the model to learn 

the pattern and then make a prediction using unlabelled data (Chitralekha & Roogi, 2021; 

Richardson et al., 2022; Obaido et al., 2024). The two main types of semi-supervised learning 

methods are self-training and co-training. In the self-training method, the dataset is split into 

three parts such as train data, unlabeled data, and test data. The model trains using the training 

dataset and then makes predictions with the unlabeled data. Then, select the data points with 

the highest prediction probabilities and add them to the training dataset. These selected points 

will no longer be part of the unlabeled dataset. This process repeats until no more high-

probability predictions remain. Finally, evaluate the model's performance using the test 

dataset. In the co-training method, the dataset is split into two views under the sufficiency and 

independence assumptions. Each view is sufficient to train a classifier, and the views are 
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independent of each other. After training, predictions are made on the unlabeled dataset, and, 

according to each view, the high-confidence unlabeled data are added to the new training set. 

Repeat the process until the predictions are optimised (Richardson et al., 2022;   Ning et al., 

2023). The applications of semi-supervised learning are machine translation, speech 

detection, fraud detection,  text classification and so on (Sarker, 2021; Richardson et al., 2022).   

2.1.6.4 Reinforcement learning 

Reinforcement learning is one of the machine learning categories in which an intelligent 

program, learning system or software agent learns from environmental interaction feedback 

and takes action to move to the next stage to achieve a goal (Kaelbling et al., 1996; Sutton & 

Barto, 2018:1; Nandy & Biswas, 2018:1; Géron, 2019:14-15; Elguea-Aguinaco et al., 2023; 

Alnuaimi & Albaldawi, 2024). If the feedback is positive, this is classified as a reward, and if 

the feedback is negative, it is known as a punishment or penalty (Nandy & Biswas, 2018:1; 

Géron, 2019:14; Obaido et al., 2024; Alnuaimi & Albaldawi, 2024).  

Reinforcement learning depends on trial-and-error experiments (Alnuaimi & Albaldawi, 2024).   

The interaction deals with the environment in which real-world scenarios are portrayed. Taking 

the environment into consideration brings about a lot of factors, and more learning is thus 

required (Nandy & Biswas, 2018:2; Alnuaimi & Albaldawi, 2024).   The agent trains itself from 

the learning occurring in the environment.  Due to the volume of information the agent learns,  

it can have different paths to choose from. 

The main elements of reinforcement learning are agent, environment, action, state, reward and 

policy (Dangeti, 2017:361-362; Sutton & Barto, 2018:6; Jia & Wang, 2020; Sarker, 2021). An 

agent is a model that is being trained via reinforcement learning. The environment is the 

training situation that the model must optimise within. An action is a possible step that the 

model can take.  A state can be described as a condition or current position given by the model. 

Reinforcement learning focuses on increasing the aggregate and collective reward, i.e. all the 

rewards accumulated and received by the agent from the environment, instead of the 

immediate reward received from the current state. The software agent understands the current 

state of the environment and takes action to move to the next stage. It also determines how 

an agent will behave at any given time. In a nutshell, a policy is a decision-making process 

that allows changes from the action taken to the present state (Dangeti, 2017:361-362; Sutton 

& Barto, 2018:6; Nandy & Biswas, 2018:54; Jia & Wang, 2020;  Elguea-Aguinaco et al., 2023). 

The objective of reinforcement learning is to create an optimal or close to optimal policy based 

on the rewards received. 

Markov designed a framework to simplify the manner of illustrating features of an intelligence 

problem. The Markov decision process (MDP) framework is used to define the interaction 
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between the environment and the learning agent in terms of rewards, actions, and states 

(Sutton & Barto, 2018: 13; Jia & Wang, 2020; Elguea-Aguinaco et al., 2023). 

Compared to supervised and unsupervised learning, reinforcement learning is used to design 

optimal or near-optimal policies based on rewards received (Dangeti, 2017:359, Sutton & 

Barto, 2018:1; Jia & Wang, 2020). 

The proposed study aims to address a regression problem by predicting numerical values from 

unseen data. Hence, various supervised-based learning regression models were explored, 

namely linear regression, random forest and eXtreme Gradient Boosting (XGBoost), K-Nearest 

Neighbors (KNN), and a multilayer perceptron (MLP). These algorithms were explored 

because they represent the various regression methods, such as linear, tree-based 

ensembles, instance-based, and deep learning. This allows for a comprehensive comparison 

between the algorithms and identifies the most suitable algorithm for the problem to be solved. 

2.1.7 Linear regression 

Regression encompasses the relationship between the value to be predicted and one or more 

predictors. This model is used for representing the relationship between one or more numeric 

input variables and one output variable. The input variable is also known as the independent 

variable or predictor, whereas the output variable is known as the dependent variable/predictor. 

The relationship between the independent and dependent variables is assumed to follow a 

straight line. Regression equations model data using a slope-intercept format. Regression 

analysis usually models complex relationships among data elements. It is also used to estimate 

the impact of a treatment on an outcome. Regression analysis is a pool of many methods that 

can be adapted to almost any machine-learning task. Linear regression is the most basic 

regression models that use straight lines. If there is only a single independent variable, this is 

known as simple linear regression, otherwise, it is known as multiple regression. Both the 

simple linear regression and multiple regression models take it that the dependent variables 

are continuous (Ray, 2019; Joshi, 2020:34).  

Regression analysis aims to build mathematical models that explain the existing relationships 

between variables (Seber & Lee, 2012:2; Roustaei, 2024). 

2.1.7.1 Simple linear regression 

Simple linear regression is one of the simplest forms of regression, which uses the input and 

output variables as a dataset.  If the relationship between the input and output variables is 

linear, the dataset can fit into a straight line (Roustaei, 2024). For this to be achieved, it uses  

the formula below: 

 𝑦 =  𝛼 +  𝛽𝑥  (2.1) 
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Where:  𝑦  = dependent variable; 𝑥 = independent variable; 𝛼 =  intercept (the point where the 

line crosses the ‘𝑦’ axis); 𝛽 =  slope (the slope b indicates how much the line rises for each 

increase in 𝑥).  

The regression analysis is aimed at finding the estimated value for ‘𝛼 ’ and ‘𝛽’ (Lantz, 2013:163; 

Ray, 2019; Roustaei, 2024). To find the optimal estimated values of the intercept ‘𝛼 ’ and slope 

‘𝛽’, the ordinary least squares (OLS) regression estimation method is used. The aim is to 

minimise the sum of the residual, which is the sum of the squared error. In this regression 

estimation method, the intercept and slope are chosen in a certain way to minimise the sum of 

the squared errors. These errors refer to the difference between the predicted dependent 

variable and the actual dependent variable (Lantz, 2013:164;  Roustaei, 2024). 

2.1.7.2 Multiple linear regression 

Multiple regression is an extension of simple linear regression (Roustaei, 2024). Multiple 

linear regression has a many-to-one relationship between many input (independent) 

variables and one output (dependent)  variable (Ray, 2019; He, 2023).   

The multiple linear regression is represented in the following equation: 

 

𝑦  =  𝛼 +  𝛽1𝑥1 +  𝛽2𝑥2 +  𝛽3𝑥3 +  … … . . + 𝛽𝑖𝑥𝑖  +  𝜀 (2.2) 

 

Where: 𝑦   = dependent variable;  𝑥= independent variable; 𝛼  =  intercept (the point where 

the line crosses the ‘y’ axis); 𝛽=  slope (the slope b indicates how much the line rises for 

each increase in x); 𝜀 represents the residual (error); and 𝑖   represents the total number of 

features. 

 

Both simple and multiple linear regression have the same goal, which is to determine the 

values of the coefficient that reduce the prediction error of a linear equation (Priya, 2021). The 

dependent variable y represents the sum of an intercept term added to the product of the 

estimated slope ‘β’ value and the independent variable ‘x’ value for all ‘i’ features (Lantz, 

2013:169; He, 2023; Roustaei, 2024). 

The multivariate technique provides insight into the relationship between the set of 

independent variables and dependent variables. It also sheds light on the relationship between 

the independent variables using multiple regression, partial correlation, and tabulation 

techniques (Ray, 2019). 
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2.1.8 Ensemble learning 

Algorithms generate a model using training data through learning; hence, the algorithms are 

learners. Linear regression, decision tree, logistic regression, neural network, etc., are some 

examples of individual learners or predictors. Ensemble learning is a technique that generates 

a model using a collection of single learners/base learners or weak learners (Zhou, 2012:15;  

Géron, 2019:191; Joshi, 2020:60; Thomas & Gupta, 2020). Ensemble learning algorithms are 

known as ensemble methods (Géron, 2019:191). Weak learners together build a strong learner 

who can perform predictions more accurately and has a better ability to generalise   (Joshi, 

2020:60; Li et al., 2020). 

Different types of ensemble methods are Bagging, Boosting, Stacking, and Voting (Géron, 

2019:191; Zhang et al., 2022;  Mahajan et al., 2023; Khan et al., 2024). 

Bagging: The name bagging is an acronym for “Bootstrap aggregation”.  The bagging method 

is applicable for both classification and regression problems. This method generates several 

weak learners in parallel, which are independent, thereafter, averaging the outcome of each 

weak learner if the solution belongs to the regression problem. In the alternative, find the 

majority vote for the classification problem (Breiman, 1996; Géron, 2019:195-196; Joshi, 

2020:62).  

Boosting: The boosting ensemble method is used for improvement. This method generates 

multiple weak learners in sequence (Géron, 2019:201).  The first weak learner generates a 

model with a training dataset. The second weak learner checks the outcome of the first weak 

learner. If the first weak learner provides poor performance, then the second weak learner 

selects the training data to reduce the error of the previous model.  This process is continued 

until it reaches the desired result. Thus, the stronger learner model will be generated using the 

improved weaker learners (Dangeti, 2017:52; Géron, 2019:201; Joshi, 2020:62). Gradient 

Boosting, Extreme Gradient Boost (XGBoost), and Adaptive Boosting (AdaBoost) are 

examples of boosting algorithms. Boosting may cause overfitting, and this method takes time, 

compared to the bagging ensemble method, because of the sequencing process  (Dangeti, 

2017:52; Joshi, 2020:62).  

Stacking: Stacked generalisation, known as stacking, is an ensemble method used to 

accomplish generalisation accuracy by minimising the generalisation error when combining 

various generalisers (Zhang et al., 2022). This method uses various machine learning 

algorithms to generate predictions using a training set. Later, the predicted outputs will be an 

input for the final predictor or meta-learner to train the model and provide a final prediction  

(Lantz, 2013:338; Naimi & Balzer, 2018; Géron, 2019:210; Zhang et al., 2022; Mahajan et al., 

2023). 

 



 

38 
 

Voting: Voting involves summing the predictions for classification and averaging the 

predictions for regression. Hard voting and soft voting are two types of voting in classification 

problems. Hard voting selects the prediction with the most votes, whereas soft voting combines 

the probabilities from each model and chooses the prediction with the highest overall 

probability (Mahajan et al., 2023; Khan et al., 2024). 

2.1.8.1 Random Forest 

A random forest is a supervised machine learning algorithm and is an ensemble or collection 

of decision trees, depending on the ensemble technique (Khan et al., 2024; Zhao et al., 2025). 

A decision tree is composed of nodes and edges. To form a decision tree structure, the dataset 

needs to be split into smaller datasets based on the feature value. Dataset splits take place in 

a node. A node represents a decision point where the feature value is selected from the dataset 

to split and perform testing on it. There are different types of nodes, namely: root nodes, 

internal nodes and leaf nodes, which are connected by edges (Lantz, 2013:120;  Song & Lu, 

2015; Prajwala, 2015; Obaido et al., 2024). 

The random forest algorithm results in a prediction for the regression problem and the 

category/class for the classification problem.  Random Forest can deal with continuous 

variables and categorical variable datasets for regression problems and classification 

problems, respectively.  A single decision tree’s drawback is overfitting; however, the collection 

of decision trees and the aggregated result reduce overfitting by changing high variance to low 

variance. Random forest is a solution for overfitting (Ray, 2019; Molin, 2021:653). 

The first step in the random forest process randomly selects a subset of features. In the 

decision tree formation split, the feature selection will be from the selected subset (Breiman, 

2001; Zhou, 2012:58; Mienye & Jere, 2024; Khan et al., 2024). Thereafter, different decision 

trees will use the bagging method, which trains different decision trees in parallel and 

aggregates the results (Molin, 2021:653). In the regression algorithm, the final prediction result 

is the average of the output results of all decision trees, whereas in classification, it is 

determined by the majority voting method. The random forest algorithm is given in Table 2.8  

(Wei, 2023; Mienye & Jere, 2024). 
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Table 2.8: Random forest algorithm (Mienye & Jere, 2024) 

Step 1 for i = 1 to T do  

  1.1 Randomly sample 𝑛 instances from 𝐷 with replacement 

1.2 Randomly select 𝑚 features from the total 𝑝 features (where 𝑚<𝑝). 

1.3 Build decision tree ℎ𝑖  based on the sampled instances and attributes. 

 end for 

Step 2 To make predictions for a new instance 𝑥: 

 if a classification task, then: 

  f(𝑥)= arg 𝑚𝑎𝑥𝑐
1

𝑇
∑ 𝐼 (ℎ𝑖 (𝑥) = 𝑐)𝑇

𝑖=1   

 else if regression task then 

   f(𝑥)= 
1

𝑇
∑ [ℎ𝑖 (𝑥)]𝑇

𝑖=1   

 end if 

 

Where: 𝑛 = number of samples; T =  the number of decision trees in the random forest model;𝑝= 

total number of features; 𝑚= randomly selected features; ℎ𝑖  = single decision tree; 𝑐 = output 

of class; 𝐼(. ) = an indicative function; 𝑎𝑟𝑔 𝑚𝑎𝑥𝑐 = select the class  𝑐  corresponding to the 

highest vote; f(𝑥)  = majority vote across trees (classification); f(𝑥)  = average of tree 

predictions (regression). 

In the bagging method, the correlation between the trained decision trees for the prediction 

can be high due to a strong feature selection at the node by all the trees. This will limit the 

improvement of prediction accuracy. Since the decision trees are not correlated in random 

forests, they can improve the prediction accuracy (Mekonnen et al., 2020). The random forest 

can handle missing and noisy data, and it performs well in most problems. 

 2.1.8.2 eXtreme Gradient Boosting (XGBoost) 

Gradient boosting is one of the boosting algorithms. This algorithm develops new base learners 

or weak learners in a sequence and accumulates them into an ensemble. This method tries to 

reduce the errors of the preceding models (Géron, 2019:205; Mokhtar et al., 2022; Khan et al., 

2024). 

Chen and Guestrin (2016) proposed an improved gradient boosting decision tree algorithm, 

which is eXtreme Gradient Boosting (XGBoost). The difference, however, is that XGBoost has 

far better performance and speed due to its efficient utilisation of the CPU core of the machine 

and less complexity (Ramraj et al., 2016; Parsa et al., 2020).  It takes a multithreaded method 

instead of a sequential one. XGBoost is a supervised machine-learning algorithm for tree 

boosting, and it is also scalable and quick to execute (Chen & Guestrin, 2016; Mitchell & Frank, 

2017; Desdhanty & Rustam, 2021). This makes it suitable for both regression and classification 
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problems (Pan, 2018). XGBoost supports arbitrary differentiable loss functions, together with 

the prevention of overfitting (Mitchell & Frank, 2017; Desdhanty & Rustam, 2021). 

 

The XGBoost model generates a weak learner or decision tree (DT) in each iteration and 

predicts the values. Each iteration uses the previous result to boost the current result. The 

result is generated by accumulating weak/base learners. Assume a dataset D= {(x𝑖 ,𝑦𝑖)} (|D| = 

n, x𝑖 ∈ ℝm,   𝑦𝑖 ∈ ℝ)  with n examples and m features  (Chen & Guestrin, 2016; Li et al., 2020). 

 

Weak learner/ decision tree representation: 

𝐹 =  {𝑓1, 𝑓2, 𝑓3 … … . 𝑓𝑚 }    (2.4) 

Where: 𝐹 is a feature; 𝑓 is a base learner/ weak learner/decision tree;  𝑚 is the total number 

of features.  

The main task of the XGBoost model is to build t trees so that the predicted value  𝑦̂𝑖
(𝑡)

 up to 

the tth tree (Li et al., 2020). 

Predicted tth tree value: 

𝑦̂𝑖
(𝑡)

 = ∑ 𝑓𝑘 (𝑥𝑖)𝑡
𝑘=1  (2.5) 

 

Where: 𝑓𝑘 (𝑥𝑖) is kth decision tree score in ith observation.     

The mathematical derivation is given below: 

 

𝑦̂
𝑖

(0)
= 0 

𝑦̂
𝑖

(1)
 =  𝑓1 (𝑥𝑖)   = 0 + 𝑓1 (𝑥𝑖)     = 𝑦̂

𝑖

(0)
 + 𝑓1 (𝑥𝑖) 

𝑦̂
𝑖

(2)
 =  𝑓1 (𝑥𝑖) +𝑓 2

(𝑥𝑖)   = 𝑦̂
𝑖

(1)
 + 𝑓2(𝑥𝑖) 

……. 

𝑦̂
𝑖

(𝑡)
 =  ∑ 𝑓𝑘 (𝑥𝑖)

𝑡
𝑘=1   = 𝑦̂

𝑖

(𝑡−1)
 + 𝑓𝑡(𝑥𝑖) 

 

 

 (2.6) 

 

 

Where:  𝑦̂𝑖
(𝑡)

  is the predicted value  of the ith iteration;  𝑦̂𝑖
(𝑡−1)

    is the total predicted value 

from the previous iteration; 𝑓𝑡(𝑥𝑖) is the decision tree result of ith round. 

However, it is also important to consider how to split the leaf nodes, how to determine the leaf 

nodes' predicted value on each decision tree, and how each decision tree connects to the 

previous decision tree. All these are determined by the Objective function (Li et al., 2020). 
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a. Objective function 

The observation function helps to check how well the model can fit into a given sample dataset.  

Fewer errors means the best fit. The main aim when creating a model is to minimise the error. 

In XGBoost, the objective function has two parts: the loss function and the 

penalty/regularisation term, respectively. The loss function helps to prevent the complexity of 

the model and evaluates how well the model can predict based on the training data. The 

regularisation term helps reduce overfitting (Chen & Guestrin, 2016;  Pan, 2018; Li et al., 2020; 

Li et al., 2021).  

The model objective function is shown below: 

𝑂𝑏𝑗(𝜃) =  𝐿(𝜃)  +  𝛺(𝜃)  (2.7) 

 

Where: L is a loss function;  𝛺 is a regularisation term.  

The expanded expression is given below: 

𝑚𝑖𝑛𝐿(𝑡)(𝑦, 𝑦̂(𝑡)) =  𝑚𝑖𝑛 (∑ 𝑙 (𝑦𝑖 , 𝑦̂𝑖
(𝑡)

) + ∑ 𝛺(𝑓𝑘)

𝑡

𝑘=1

𝑛

𝑖=1

) 
(2.8) 

Where: 𝑙 (𝑦𝑖 , 𝑦̂𝑖
(𝑡)

)  is a loss function which measures the difference between the actual value 

(𝑦𝑖) and the predicted value 𝑦̂𝑖
(𝑡)

; t is the number of trees;   ∑ 𝛺(𝑓𝑘)𝑡
𝑘=1    is the regularisation 

term, which measures the complexity of the whole model.  

The regularisation term is defined as: 

𝛺(𝑓𝑘) =  𝛾𝑇𝑘 +  1 2⁄  𝜆 ∑ 𝑤𝑘𝑗
2

𝑇𝑘

𝑗=1

 

(2.9) 

Where: 𝞨= Regularisation term to evaluate the complexity of the model and to prevent being 

too difficult; 𝛺(𝑓𝑘)  is an objective function to avoid overfitting; 𝑓𝑘 is the kth decision tree; The 

parameter 𝛾𝑇𝑘  is used to control the number of leaf nodes 𝑇, whereas 𝜆 𝑖𝑠 used to control 

the weight of the leaf node j. 𝑇𝑘 is the number of leaf nodes in the kth tree;  

𝑤𝑘𝑗 is the result of the jth leaf node in the kth tree. 

To optimise the objective function, substitute the predicted value 𝑦̂𝑖
(𝑡)

  of the ith sample in the 

tth iteration in the objective function. The simplified objective is given below: 

𝑚𝑖𝑛𝐿(𝑡) =  𝑚𝑖𝑛 (∑ [𝑔𝑖 𝑓𝑡 (𝑥𝑖)  +  
1

2
 ℎ𝑖 𝑓𝑡

2(𝑥𝑖) ] +  𝛺(𝑓𝑘)

𝑛

𝑖=1

) 

(2.10) 

 

Where: 𝑔𝑖  is the first derivative of the loss function; ℎ𝑖   is the second derivative of the loss 

function. 𝛺(𝑓𝑘) is a regularisation term. 
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b. Build the next learner 

To obtain an even fixed tree structure q(x) of leaf node j, compute the weight  𝑤𝑗
∗ of j leaf 

(Chen & Guestrin, 2016).  

The formula is below: 

𝑤𝑗
∗ =  − 

∑ 𝑔𝑖𝑖∈𝐼𝑗

∑ ℎ𝑖 +  𝜆′
𝑖∈𝐼𝑗 

 
(2.11) 

 

 

Where: 𝐼𝑗  = {𝑖|𝑞 (𝑥𝑖) =  𝑗} as the set of leaf nodes j in the decision tree; 𝜆′ is the 

regularisation parameter; 𝑔𝑖  and ℎ𝑖   represent the first and second derivatives of the loss 

function, respectively. 

 

To evaluate the quality of the tree structure (q) use the scoring function. 

𝐿̃(𝑡)(𝑞) = −
1

2
 ∑

(∑ 𝑔𝑖𝑖∈𝐼𝑗
)

2

∑ ℎ𝑖 +    𝜆𝑖∈𝐼𝑗 
  

𝑇

𝑗=1

 +  𝛾𝑇 

(2.12) 

 

Where: 𝐿̃(𝑡)(𝑞) is a scoring function, which is used to measure the quality of the tree structure 

q.; 𝜆 is the regularisation parameter; First and second loss function derivatives are 𝑔𝑖  and ℎ𝑖 ; 

 𝛾𝑇 to control the number of leaf nodes 𝑇. 

c. Best Split 

The XGBoost model used a greedy algorithm to divide the leaf node into left and right nodes 

and iteratively add the branches (Li et al., 2021). 

The following formula is used to find the best split on any given node. 

𝐿(𝑠𝑝𝑙𝑖𝑡) =
1

2
 [

(∑ 𝑔𝑖𝑖∈𝐼𝐿
)

2

∑ ℎ𝑖 + 𝜆𝑖∈𝐼𝐿 
  +  

(∑ 𝑔𝑖𝑖∈𝐼𝑅
)

2

∑ ℎ𝑖 +  𝜆𝑖∈𝐼𝑅  
 − 

(∑ 𝑔𝑖𝑖∈𝐼 )2

∑ ℎ𝑖 +  𝜆𝑖∈ 𝐼
]  −  𝛾 

(2.13) 

 

Where: 𝐼𝐿  = Left node of the sample set after the split of leaf node𝐼;  𝐼𝑅  = Right node of the 

sample set after the split of leaf node 𝐼;  𝑔𝑖   and ℎ𝑖    are the first and second derivatives of the 

loss function; 𝛾 is the regularisation parameter. 

The XGBoost performs well compared to other tree-boosting methods due to the regularised 

loss function, which controls overfitting. It can reduce the weight of each tree using a given 

constant, which scales down the impact of individual trees on the last score, and column 

sampling performs the same as random forest (Pan, 2018; Desdhanty & Rustam, 2021). 
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2.1.9 K-Nearest Neighbor (KNN) 

KNN is a non-parametric algorithm because it does not make assumptions about the 

elementary data it uses  (Lantz, 2013:67; Alzubi et al., 2018; Ray, 2019; Taunk et al., 2019). It 

was introduced by Fix and Hodges in 1951 (Imandoust & Bolandraftar, 2013; Taunk et al., 

2019). KNN is also known as instance learning or lazy learning because the KNN model does 

not learn during training; instead, the model observes and stores the training data and 

memorises the dataset. In the testing phase, compare the test observation with the training 

observation (Dangeti, 2017:187; Taunk et al., 2019).  KNN solves problems based on 

neighbouring training examples in a given region (Taunk et al., 2019; Abdel-Fattah et al., 2021). 

KNN can be applied to both regression and classification problems without making any 

changes in the architecture (Alzubi et al., 2018; Joshi, 2020:38).  In KNN, ‘K’ denotes the 

number of neighbours that need to be considered to predict the test data point (Bhatia & 

Vandana, 2010). The nearest neighbour is the point with the lowest distance between the 

training and sample points (Bhatia & Vandana, 2010). To measure the distance between the 

query point (target)  and cases from the example sample (training data points),  a metric known 

as the distance metric is used. Euclidean distance is a popularly used distance metric to 

calculate the nearest neighbours by measuring the similarity between two distances (Lantz, 

2013:70; Imandoust & Bolandraftar, 2013; Taunk et al., 2019). 

 

Euclidean distance dist (p,q) between two data points p and q is calculated (Lantz, 2013:70; 

Taunk et al., 2019; Sudheer et al., 2022). 

dist(p, q) = √∑(pi − qi)
2

n

i=1

 

(2.14) 

Where:  p and q are the examples to be compared, each having n features. The term pi 

refers to the value of the ith  feature of example p, while qi refers to the value of the ith feature 

of example q.           

      

 

Once the value of K is selected, it can make the prediction based on KNN examples. In 

classification, the prediction for a new data point is considered by its closest neighbour(s) in 

the training set (Müller & Guido, 2016:24). Whereas in regression, the predicted value will be 

the average of its K- nearest neighbours(Taunk et al., 2019; Imandoust & Bolandraftar, 2013). 

The formula is shown below  (Imandoust & Bolandraftar, 2013; Sudheer et al., 2022). 

 

 

 



 

44 
 

𝑦 =
1

𝐾
∑ 𝑦𝑖

𝑘

𝑖=1

 

(2.15) 

Where: 𝑦𝑖 is the ith  case of the example sample (nearest neighbour); 𝑦 is the predicted value 

for the query point, calculated as the average of the 𝑦𝑖  values of the 𝑘 nearest neighbours; 

𝑘 is the number of nearest neighbours considered. 

 

Other distance functions are Manhattan distance, Chebyshev distance, Mahalanobis distance, 

Bhattacharyya distance, Hamming distance, Cosine distance, Minkowski distance and so on 

(Lantz, 2013:273; Joshi, 2020:134; Zhang et al., 2023). The selection of distance is based on 

the problem that needs to be solved. KNN is simple, easy to implement,  and builds a model 

cheaply (Ray, 2019; Joshi, 2020:38). 

 

2.1.10 Multi-Layer Perceptron (MLP) 

Deep learning is a subset of machine learning. The implementation of artificial neural networks 

into deep learning generates a model for supervised or unsupervised problems using 

structured and unstructured datasets, respectively. Video, image, voice, etc., are examples of 

an unstructured dataset (Dangeti, 2017:267; Janiesch et al., 2021).  There is a significant 

improvement in the performance of classifiers when deep learning is used, as opposed to more 

conventional machine learning methods  (LeCun et al., 2015; Mathew et al., 2021:600). Deep 

learning is capable of learning from a large amount of data (Alzubaidi et al., 2021). Deep 

learning techniques have achieved great strides and a lot of success in pattern recognition, 

speech recognition, handwritten classification, image analysis, Natural Language Processing 

(NLP), and many more (Liu et al., 2017; Alzubaidi et al., 2021). 

An animal’s body has millions of neurons. Neurons are biologically specialised to send and 

receive electrical signals called action potentials between other neurons through the 

connections known as synapses (Awad & Khanna, 2015:129; Géron, 2019:279). 

A neural network is a union of neurons (Awad & Khanna, 2015:130). Aleksander and Morton 

(1990), cited in Haykin (1994:24), defined the neural network as:   

A neural network is a massively parallel distributed processor made up of simple processing units, 

which has a natural propensity for sorting experiential knowledge and making it available for use. It 

resembles the brain in two respects: 

1. Knowledge is acquired by the network from its environment through a learning process. 

2. Interneuron connection strengths, known as synaptic weights, are used to store the acquired 

knowledge. 
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The artificial neuron model replicates biological neurons.  An artificial neural network consists 

of many interconnected processors called neurons (Vui et al., 2013; Janiesch et al., 2021; 

Emmanuel et al., 2022). Artificial neurons are also known as nodes or units (Lipton et al., 2015; 

Janiesch et al., 2021). Figure 2.6 depicts the architecture of the neural network. 

 

 

Figure 2.6:  A neural network architecture (Nielsen, 2015:11) 

 

An ANN consists of one input layer, one or more hidden layers and one output layer. Input layer 

nodes receive input signals from the environment. The layers/s between the input layer and 

output layer are known as hidden layer/s, which are neither input nor output layers. The input 

layer nodes are connected to the hidden layer nodes, which are neurons. The last layer is an 

output layer, which is generated by final nodes that can provide the result or prediction 

(Nielsen, 2015:11; Taud & Mas, 2018:454; Zaras et al., 2022:17; Abdolrasol et al., 2021). 

Artificial Neural Networks became popular after the introduction of a computational model for 

neural network activity using propositional logic by neurophysiologist Warren McCulloch and 

the mathematician Walter Pitts in 1943. This model explains how biological neurons/ artificial 

neurons activate based on the given inputs and perform complex computations to provide an 

output. Also, it is possible to build a network of artificial neurons (Walczak, 2018: 121; Géron, 

2019:278-281). 

In the late 1950s, Frank Rosenblatt proposed a computational model known as the perceptron 

(Rosenblatt, 1962 cited in Bishop, 1995:98; Awad & Khanna, 2015:128; Nielsen, 2015:2-3; 

Wang & Raj, 2017; Rosenblatt, 1958 cited in  Walczak, 2018:121; Géron, 2019:281). A 

perceptron is a single logic unit in an artificial neural network. A simple perceptron is identified 

as an ANN (Walczak, 2018:121). A multilayer perceptron (MLP) is an ANN composed of one 
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or more layers of neurons or multiple perceptrons (Obiora et al., 2023). It is also known as a 

multilayer feedforward neural network (Lai et al., 2022). 

The processing of information takes place through neurons. Each neuron contributes to the 

operation and functioning of a neural network. In the input layer, nodes receive input signals in 

the machine learning model that will be featured in. The nodes in the input layer will connect 

to the neurons in the hidden layer. Each neuron performs a function that includes two activities: 

Backpropagation isadded together with a bias to arrive at the sum of the net input. Secondly, 

calculate the activation function using the sum of the net input result to generate the output 

signal or result or prediction. The activation function takes a single number and performs a 

certain fixed mathematical functional mapping on it (Dangeti, 2017:243). The current layer 

function output will be the input for the next layer, and the decision of whether the neurons 

need to be fired or not. It is used to learn and model complex datasets (Zhou, 2012:8; Vui et 

al., 2013; Awad & Khanna, 2015:129; Dangeti, 2017:2, 268; Zaras et al., 2022:18-19). 

Sigmoid function, Rectified Linear Unit (ReLU) function, Exponential Linear Unit (ELU), 

SoftMax, Tanh, Hyperbolic tangent sigmoid function, and Linear are some of the activation 

functions. The selection of the activation function is critical, which encompasses the generation 

of other neurons for the network performance and accuracy (Haykin, 1994:36; Zhou, 2012:7; 

Awad & Khanna, 2015:130; Dangeti, 2017:242-243; Géron, 2019:288; Zaras et al., 2022:19-

21). A basic artificial neuron is shown in Figure 2.7. 

 

 

Figure 2.7:  Artificial neuron  (Dangeti, 2017:241) 
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The mathematical representation of neuron operation is: 

𝑌 = 𝜃 ( ∑ WiXi + b

𝑛

𝑖=1

) 
(2.16) 

 

Where: output 𝑌 = Active function (Sum of net input + bias); 𝜃 =activation function; Xi= input 

features; Wi= respective weight; b= bias. 

a. Sigmoid 

The sigmoid function is used in logistic regression to squash the real-valued number 

between 0 and 1. The mathematical representation of the sigmoid activation function is 

represented in Equation (Dangeti, 2017:243; Géron, 2019:144; Misra & Dinker, 2025). 

𝜎(𝑥) =  
1

1 + 𝑒−𝑥
 

 (2.17) 

 

Where: 𝜎(𝑥) =   sigmoid function; 𝑥 = input value (feature); e =  Euler's number. 

b. Hyperbolic Tangent (Tanh) 

Tanh is a type of activation function and is very similar to a sigmoid function (Rasamoelina et 

al., 2020). Tanh squashes a real-valued number between -1 and 1 (Dangeti, 2017:243; 

Géron, 2019:288; Joshi, 2020:45). 

The function can be represented as  (Géron, 2019:288; Rasamoelina et al., 2020). 

𝑡𝑎𝑛ℎ(𝑥)  =  2𝜎 (2𝑥)  −  1) 

Or 

𝑡𝑎𝑛ℎ(𝑥) =  
2

1 + 𝑒−2𝑥
− 1 

 (2.18) 

 

Where:  𝑡𝑎𝑛ℎ(𝑥)  = tanh function;  𝜎(𝑥)   = sigmoid function; 𝑥 = input value (feature); e =  Euler's 

number. 

c. A rectified linear unit (ReLU) 

ReLU is a simple nonlinear activation function which is computationally efficient. It performs 

well compared to Sigmoid or Tanh due to the convergence property, improves model 

computational speed, and fixes the vanishing gradient problem  (Dangeti, 2017:243; Habibi 

Aghdam et al., 2018:74; Géron, 2019:288; Joshi, 2020:122). ReLU is linear for all positive 

values and zero for all negative values. However, the output values range from 0 to infinity 

(Rasamoelina et al., 2020). 

The representation is given below (Habibi Aghdam et al., 2018: 74; Géron, 2019:288). 
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𝑅𝑒𝐿𝑈(𝑥) = max (0, 𝑥) (2.19) 

 

Where:  𝑅𝑒𝐿𝑈(𝑥)  = ReLU function;  𝑥 = input value (feature). 

ANN constituted of multiple hidden layers, is a deep neural network (DNN) (Dangeti, 2017:268; 

Albawi et al., 2017; Géron, 2019:286; Zaras et al., 2022:17).  DNN is also known as a deep 

multilayer perceptron (Abdolrasol et al., 2021). DNNs are suitable for supervised, 

unsupervised, reinforcement and hybrid learning types (Mathew et al., 2021:602). Each layer 

is connected to several other layers, where each layer can extract features as it channels to 

the next layers (Mathew et al., 2021:599). DNN algorithms aid in generating a model using 

complex datasets. With the help of non-linear activation, the model maintains a non-linear 

relationship between the input and the expected result. Each layer performs a volume of 

computation (Zaras et al., 2022:19). 

Deep Learning implements different architectures to solve problems within different domains. 

Deep Belief Networks, Convolutional Neural Networks, Restricted Boltzmann Machine (RBM), 

Recurrent Neural Networks and Long Short-Term Memory (LSTM) are examples of deep 

learning architecture (Liu et al., 2017; Shrestha & Mahmood, 2019; Mathew et al., 2021:600; 

Alzubaidi et al., 2021). 

2.1.11 Evaluating model performance 

To assess how well the predicted model values align with the actual values, it is essential to 

evaluate the model's performance. If improvement is required, it can be achieved through 

hyperparameter tuning (Dangeti, 2017:286; Elgeldawi et al., 2021; Sarker, 2021; Janiesch et 

al., 2021). 

 
In regression problems, several key metrics are commonly used to evaluate model 

performance by comparing predicted values with actual values. The metrics explored in this 

study include Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute 

Error (MAE), Coefficient of Determination (R² or R-squared), and Adjusted R-squared (Chicco 

et al., 2021; Kumar et al., 2023; Olafadehan & Ahaotu, 2023). These error metrics depict the 

difference between the predicted and the observed values.  The best algorithm is chosen 

based on the combination of minimal errors (MSE, RMSE, MAE) and the highest values of R-

squared and Adjusted R-squared (Debroy & Seban, 2022b). 

 

 

 

 



 

49 
 

a. Mean Squared Error (MSE)  

Mean squared error is an important evaluation metric for the algorithm’s optimisation in 

regression models, as it minimises the squared differences between predicted and actual 

values.  MSE is useful for detecting outliers. The best value for MAE is 0, and the worst value 

is +∞  (Chicco et al., 2021;  Kumar et al., 2023). 

 

The MSE formula is given below (Chicco et al., 2021). 

𝑀𝑆𝐸 =  
1 

𝑛
 ∑(𝑦𝑖 −  𝑦̂𝑖)2

𝑛

𝑖=1

 
 (2.20) 

 

Where: 𝑛= total number of observations; 𝑦 = actual value of the observation; ŷ =predicted 

value of the observation. 

b. Root Mean Squared Error (RMSE) 

Root mean squared error is one of the most frequently used metrics to assess the accuracy of 

predictions. RMSE is the square root of the Mean Squared Error, MSE. It evaluates the 

standard deviation of the predictions from the actual value. The best value for RMSE  is 0, and 

the worst value is +∞ (Chicco et al., 2021; Kumar et al., 2023). 

The RMSE formula is given below (Chicco et al., 2021). 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑛𝑖 − 𝑦̂𝑖)2𝑛

𝑖=1

𝑛
 

 (2.21) 

 

Where: 𝑛= total number of observations; 𝑦 = actual value of the observation; ŷ =predicted 

value of the observation. 

 

c.  Mean Absolute Error (MAE)  

Mean absolute error is the magnitude of the difference between the predicted value and the 

actual value.  MAE can be used if outliers represent corrupted parts of the data. The best 

value for MAE  is 0, and the worst value is +∞ (Chicco et al., 2021; Kumar et al., 2023). 

The MAE formula is given below (Chicco et al., 2021). 

𝑀𝐴𝐸 =  
1 

𝑛
 ∑|𝑦𝑖 −  𝑦̂𝑖|

𝑛

𝑖=1

 
(2.22) 

 

Where:  𝑛= total number of observations; 𝑦 = actual value of the observation; ŷ =predicted 

value of the observation. 
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d.  Coefficient of Determination (R2 or R-squared) 

R-squared is the measure of the percentage of the variance explained by the model. The 

best value for R-squared is +1, and the worst value is -∞ (Dangeti, 2017:29; Chicco et al., 

2021). 

The R-squared formula is given below (Chicco et al., 2021). 

𝑅2  =  1 −   
∑ (𝑦𝑖 −  𝑦̂𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖 − 𝑦̅ )2𝑛
𝑖=1

 
 (2.23) 

 

Where: 𝑛= total number of observations; 𝑦 = actual value of the observation; ŷ =predicted 

value of the observation. 

e. Adjusted R-squared 

Adjusted R-squared statistic explanation is very similar to R-squared, but it penalises the R-

squared value if more variables without a strong correlation are included in the model 

(Dangeti, 2017:29). The range is less than or equal to R-squared  (Sudheer et al., 2022). 

 

 

The adjusted R-squared formula is given below (Dangeti, 2017:29). 

𝑅𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑
2 =1‐

(1−𝑅2)(𝑛−1)

𝑛−𝑘−1
 (2.24) 

Where: 𝑅2 = sample R-squared; 𝑛= total number of observations; k = number of predictors 

(or) variables. 

 

2.1.12 Explainable AI 

Artificial Intelligence models often have operational behaviours that are difficult to understand 

and explain due to a lack of transparency; hence, these models are considered “black boxes” 

(Adadi & Berrada, 2018; Machlev et al., 2022). However, while the black-box nature of AI can 

produce powerful predictions (Adadi & Berrada, 2018). Enhancing the explainability of machine 

learning models has become essential. This need led to the development of Explainable 

Artificial Intelligence (XAI) (Machlev et al., 2022).  XAI, also known as AI explaining or AI 

explainability, is a technique that explains the underlying processes of AI algorithms and can 

depict the reasoning behind the prediction (Rothman, 2020:3; Mohseni et al., 2021; Saranya 

& Subhashini, 2023; Lee et al., 2023). The XAI process is demonstrated in Figure 2.8. The 

explanations generated by XAI are presented to users through an interactive interface, 

allowing them to easily understand and interpret the AI model's insights (Rothman, 2020:3). 
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This improves the transparency, credibility, and accountability of AI systems, as transparency 

is essential for building trust (Saranya & Subhashini, 2023; Héder, 2023).  

 

 

Figure 2.8: Explainable AI process (Saranya & Subhashini, 2023) 

 

Adadi & Berrada (2018)  addressed four key reasons for explaining AI systems: explaining to 

justify, explaining to control, explaining to improve, and explaining to discover. They concluded 

that explainability is a powerful tool for justifying AI-based decisions, aiding in prediction 

verification, model improvement, and uncovering new insights into the problem at hand. 

 

The two main strategies to interpret (or explain) models are local and global interpretation (or 

explanation). Local interpretation (or Instance explanation) focuses on explaining a specific 

output of the system, while global interpretation (Model explanation) involves understanding 

the model as a whole (Das & Rad, 2020; Machlev et al., 2022; Héder, 2023; Mohseni et al., 

2021). In the local explanation, map 𝑔  (explanation of a model f) is generated each time for 

an individual data point 𝑥 ∈  𝑋 (a single instance of input data from a population X). However, 

in the global explanation is a group of data instances 𝑥 and generating an explanation map 𝑔 

based on the given group of inputs (Das & Rad, 2020). Locally and globally explainable 

algorithms are described in Figure 2.9 and Figure 2.10, respectively.  
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Figure 2.9: Explainable algorithm  (Das & Rad, 2020) 

 

 

 

Figure 2.10: Globally explainable algorithm (Das & Rad, 2020) 

 

XAI system purposes vary based on user demands  (Mohseni et al., 2021). Their study 

identified six commonly used explanations in the design of Explainable AI (XAI) systems, as 

exhibited in  Table 2.9   (Mohseni et al., 2021). 

 

Table 2.9: XAI system design and purposes 

Explanation types Purpose 

How Explanations To explain how the model works. This provides a general 
overview of how the machine learning algorithm works.  

Why Explanations To explain the reason behind the prediction based on a given 
input. 

Why-Not Explanations To clarify the reason for the difference between the user's 
expected output and the model’s prediction. 

What-If Explanations To demonstrate how the output changes with new inputs across 
different algorithms and data. 

How-to Explanations To explain what adjustments to the model or input data would be 
required to get the desired result.  

What-Else Explanations To provide examples of inputs that produce similar or identical 
outputs from the model. 

 

The reasoning behind machine learning model explanations can be designed in various ways, 

depending on user preferences and objectives. Visual explanations, verbal explanations, and 
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analytic explanations are among the different types available (Phillips et al., 2020; Mohseni et 

al., 2021). 

Phillips et al. (2020) organise explanations into two main categories: self-interpretable models 

and post-hoc explanations. A self-interpretable model is an algorithm that can explain its overall 

structure globally and provide local explanations for individual decisions. Examples of self-

interpretable models are decision trees and regressions, which include logistic regression 

models. A post-hoc explanation utilises software tools to provide insights into how an algorithm 

works. Post-hoc explanations are grouped into two: local and global explanations. Commonly 

used local explanation algorithms are Local Interpretable Model- Agnostic Explainer (LIME), 

SHapley Additive exPlanations (SHAP), Counterfactual, Saliency Pixel Algorithm, Class 

Activation Maps (CAM), Gradient-weighted Class Activation Mapping (Grad-CAM) and 

Individual Conditional Expectation (ICE). Global explanation algorithms are:  Partial 

Dependence Plots (PDPs) and Testing with Concept Activation Vectors (TCAV).  Two well-

known  XAI methods are LIME and SHAP (Kalasampath et al., 2025). LIME provides local and 

intuitive explanations. However, it is computationally expensive and may produce inconsistent 

interpretations when the model behaves in a complex manner (Linardatos et al., 2021;  

Kalasampath et al., 2025).  Compared to LIME, SHAP provides both local and global 

explanations. SHAP is a game theory–based method that enhances the interpretability of 

individual predictions by computing the contribution or significance of each feature. It is more 

natural regarding interpretation (Saranya & Subhashini, 2023). SHAP is reliable and 

consistent, with mathematically grounded explanations, making it well-suited for decision-

making processes (Kalasampath et al., 2025). This study focuses on SHAP to interpret 

machine learning based predictions because it is recognised as a unified measure of feature 

importance (Ekanayake et al., 2022). 

2.1.12.1 SHapley Additive exPlanations (SHAP) 

Interpreting a model’s predicted result is crucial in machine learning models, especially to 

understand which features contribute the most to making certain predictions. Explainable AI 

(XAI) technology allows users to understand, interpret and analyse the features that contribute 

to a model's training and its results (Linardatos et al., 2021; Lee et al., 2023). SHapley Additive 

exPlanations  (SHAP) is one of the AI analysis techniques. Lundberg and Lee (2017) proposed  

SHAP values, recognised as a unified measure of feature importance that also enables the 

user to interpret the model’s behaviour for better decision-making (Ergün, 2023).  Additionally, 

variations of SHAP, such as Kernel SHAP,  Deep SHAP and TreeSHAP can be used for specific 

model categories (Ekanayake et al., 2022). A classic equation to compute the SHapley value 

is adopted from cooperative game theory. The SHAP framework helps to understand the 

contribution of each feature by assigning a value to each one for a particular prediction 

(Lundberg & Lee, 2017;  Liu et al., 2024). The computed Shapley value is used as a feature 
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attribute.  SHAP values have various properties which are valuable for model interpretation. 

The properties are local accuracy, missingness and consistency (Lundberg & Lee, 2017; 

Ergün, 2023). 

 

Local accuracy: When approximating the original model 𝑓 for a specific input 𝑥, local 

accuracy requires the explanation model to at least match the output of 𝑓 for the simplified 

input 𝑥′ (Lundberg & Lee, 2017).  

𝑓(𝑥) = 𝑔(𝑥′) = ∅0 + ∑ ∅𝑖𝑥𝑖
′

𝑀

𝑖=1

 
(2.25) 

The explanation model 𝑔(𝑥′) matches the original model 𝑓(𝑥) when 𝑥 =  ℎ𝑥(𝑥′). 

Where 𝑓(𝑥) = Original model; 𝑔(𝑥′) = explanation model; M= Number of simplified input 

features; ∅0 =  attribute an effect;  ℎ𝑥(𝑥′) = mapping function; ∅𝑖 = ith SHapley value; 𝑥𝑖
′  = ith 

simplified input (Shapley, 1953; Lundberg & Lee, 2017). 

Missingness: If the simplified inputs represent feature presence, then missingness requires 

features missing in the original input to have no impact (Lundberg & Lee, 2017). 

𝑥𝑖
′ = 0 ⇒  ∅𝑖 = 0  (2.26) 

Where 𝑥𝑖
′  = ith simplified input ;  ∅𝑖 = ith SHapley value.     

Missingness constrains features where 𝑥𝑖
′ = 0   to have no attributed impact. 

Consistency: Consistency states that if a model changes so that some simplified input’s 

contribution increases or stays the same regardless of the other inputs, the input’s attribution 

should not decrease (Lundberg & Lee, 2017). 

Let 𝑓𝑥(𝑧′)  =  𝑓(ℎ𝑥(𝑧′)) and 𝑧′ \  𝑖 denotes setting 𝑧𝑖
′ = 0. For any two models 𝑓 and 𝑓′, if 

 

                               𝑓𝑥(𝑧′) − 𝑓𝑥
′(𝑧′ \  𝑖) ≥ 𝑓𝑥(𝑧′) −  𝑓𝑥(𝑧′ \  𝑖)                                                        (2.27) 

 

for all inputs 𝑧′ ∈ {0,1}𝑀, then ∅𝑖(𝑓′, 𝑥) ≥  ∅𝑖 (𝑓, 𝑥) . 

Where : 𝑧′ = a vector of features 

For a model 𝑓 and a set of features 𝑀, the Shapley value of the feature 𝑖 is defined as: 

(Lundberg & Lee, 2017; Ergün, 2023): 
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∅𝑖(𝑓, 𝑥) = ∑
|𝑧′| ! (𝑀 − |𝑧′| − 1)!

𝑀!
𝑧′⊆𝑥′ 

[𝑓𝑥(𝑧′) −   𝑓𝑥
′(𝑧′ \  𝑖)] 

 (2.28) 

 

 

Where: |𝑧′| is the number of non-zero entries in 𝑧′ and 𝑧′ ⊆ 𝑥′  represents all 𝑧′vectors, 

where the non-zero entries are a subset of the non-zero entries in 𝑥′. 𝑀 is the total number of 

features. 

A fundamental approach to interpreting machine learning models is to analyse input features 

(attributes) to understand the training process and prediction outcomes. Feature importance 

highlights each feature's contribution to the model, indicating how valuable a specific feature 

is for accurate predictions. The SHAP value is used to calculate the influence of each feature 

on the predicted outcome, providing a clear measure of feature importance in the model's 

predictions (Lee et al., 2023). 

 

The importance of each feature in the machine-learning model can be analysed through the 

SHAP. Feature importance is calculated by averaging the absolute SHAP values for all 

instances of the dataset (Lee et al., 2023). 

 

𝑆0 =
1

𝑁
∑ |∅𝑖|

𝑁

𝑖=0
 

(2.29) 

 

Where: 𝑆0 = mean absolute SHAP value; 𝑁= the number of instances in the dataset; ∅𝑖= the 

SHAP value of the feature for the 𝑖th data instance. 

 

Different methods, namely, Kernel SHAP, Deep SHAP, and Tree SHAP, are used to calculate 

the SHAP value for general machine learning models, deep learning models, and tree-based 

models, respectively (Lee et al., 2023).  

 

Kernel SHAP: Kernel SHAP is a combination of linear LIME and Shapley values. LIME 

provides local interpretations of machine learning models, whereas Shapley values represent 

the importance of each feature for every individual observation in the prediction. Kernel SHAP 

can be applied to certain deep learning  and machine learning models (Keleko et al., 2023).  

The purpose of this algorithm is to perform additive feature attribution by randomly sampling 

coalition vectors, masking features from the input data, and approximating the model’s 

influence through  kernel SHAP linearisation (Das & Rad, 2020;  Keleko et al., 2023).  

 

Deep SHAP:  The Deep SHAP is applicable for deep neural network explanation (Lundberg & 

Lee, 2017). Deep SHAP is considered a combination of Deep Learning Important FeaTures 

(DeepLIFT) and Shapley values. DeepLIFT method is for computing importance scores in a 
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neural network by comparing a neuron’s activation to its reference. Deep SHAP provides both  

local and global explanations of the features (Yang, 2021; Keleko et al., 2023). DeepLIFT 

leverages deep learning features to enhance computational performance and extract deep 

information  (Keleko et al., 2023).  

 

Tree SHAP: Tree SHAP is one of the approaches that reduces the time and memory costs of 

implementing SHAP. It is a specific implementation for the decision-tree-based ensemble 

models like random forest, gradient boosted trees. However, Tree SHAP can be imprecise 

locally because of the intrinsic uncertainty of the decision-tree models in Extreme Gradient 

Boosting (XGBoost) (Yang, 2021; Keleko et al., 2023).    

 

2.1.13 Intelligent Internet of Things  

The general concept of the “Internet of Things” is network connectivity that can send, receive, 

and analyse data. Whereas, “Intelligent Internet of Things” is the same as the IoT concept, 

along with the ability to take action based on analysed results (Prince & Prince, 2018:1). 

According to Zhang (2021), the blend of the IoT and Artificial Intelligence (AI) produces 

an Intelligent Internet of Things.  

 

Artificial Intelligence (AI) is a key to tapping into IoT potential (Schatsky et al., 2017). AI 

technology, especially machine learning, can extract insights from the huge amount of 

collected data and help in pattern identification, prediction, and machine failure early warning. 

and so on (Schatsky et al. 2017; Firouzi, et al., 2020:15).  

 

IoT is capable of exchanging data, whereas Artificial Intelligence technology provides 

worthwhile information. The Intelligent Internet of Things (Intelligent IoT) can make an impact 

in different disciplines. Business operations will improve in operational efficiency, decision-

making, innovation and productivity. The implementation of AI, especially machine learning, in 

the Industrial Internet of Things can predict problems affecting industrial production by reducing 

maintenance and downtime costs, thereby increasing production output, etc.  Data collection 

is much faster due to the IoT, which reduces the labour force and the data collection time 

needed. The Intelligent Internet of Things plays an important role in the improvement of 

consumer fulfilment of a need (Zhang, 2021). 

2.1.14 Expert system 

Intelligence refers to the ability to compute, reason, perceive, learn and solve novel problems, 

along with the ability to act like humans (Gupta & Nagpal, 2020:4, 11). An expert system (ES) 

is a knowledge-based intelligent information system (Liao, 2005; Dubey et al., 2013; Nagori & 

Trivedi, 2014; Rajabi et al., 2019; Zhang & Lu, 2021; Aslem & Abu-Naser, 2022; Megdad et al., 
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2022). It is a computer program that can provide information from the knowledge base to the 

user without the presence of human domain experts. This insight is useful during the decision-

making process and for delivering recommendations to a user who may not be a domain expert 

(Bohanec et al., 1990;  Tripathi, 2011; Yelapure & Kulkarni, 2012; Dubey et al., 2013; Aslem & 

Abu-Naser, 2022). Expert systems behave and judge like an experienced domain expert ( 

Aslem & Abu-Naser, 2022; Tan et al., 2022).   

The main components of expert systems are the user interface, rules/inference engine and 

knowledge base (Aslem & Abu-Naser, 2022; Megdad et al., 2022; Tan et al., 2022). A 

diagrammatic representation of an expert system is shown in Figure 2.11. 

 

 

Figure 2.11: Schematic representation of an expert system (Janjanam et al., 2021) 

 

Knowledge base: Expert systems' performance is dependent on the knowledge that is stored 

in the knowledge base (Janjanam et al., 2021; Aslem & Abu-Naser, 2022; Tan et al., 2022). 

Two forms of knowledge are stored in the knowledge base, namely: factual or declarative and 

heuristic or productive knowledge (Tripathi, 2011; Ogidan et al., 2019;  Janjanam et al., 2021). 

Factual knowledge is acceptable facts about a particular domain that can be from experts, 

books, etc., whereas heuristic knowledge is generated based on individual judgement, good 

experience, practice or tacit knowledge and so on (Tripathi, 2011; Ogidan et al., 2019; 

Mohammed et al., 2019). 
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Inference engine: The inference engine is considered the brain of an expert system, where 

analysis and logical reasoning processes take place and find the inference for a specific 

domain problem based on the knowledge that is stored in the knowledge base  (Tripathi, 2011; 

Ogidan et al., 2019).  

User interface:  To make the interaction between the user and the system (Tripathi, 2011; Joy 

& Sreekumar, 2014; Ogidan et al., 2018). 

The knowledge in the knowledge base can be represented in different ways, helping to 

distinguish between the expert systems. Hence, the inference engine uses different 

approaches to speed up the inference process in concluding. Rule-based systems (RBS), 

fuzzy expert systems, frame-based expert systems, Knowledge-based systems (KBS), 

Artificial Neural Network Systems,  hybrid expert systems, etc., are the categories of expert 

systems methodologies that are used when developing an expert system (Liao, 2005; Nagori 

& Trivedi, 2014; Ogidan et al., 2019; Mohammed et al., 2019; Janjanam et al., 2021). 

An expert system uses knowledge and inference procedures to solve a domain-specific 

problem (Ogidan et al., 2019). The inference procedure helps to find the solution for a complex 

problem using knowledge and presents it to the user based on user input (Bohanec et al., 

1990; Tripathi, 2011; Aslem & Abu-Naser, 2022). 

2.1.15 Decision Support System (DSS) 

A Decision Support System (DSS) is an interactive computer system that can support decision-

makers by making an operational, planned or strategic decision to solve an unstructured and 

semi-structured problem using data and models (Ford, 1985; French & Turoff, 2007; Lu et al., 

2007:53; Darbi & Saleh, 2022). A DSS can ease and advance the productivity, effectiveness, 

and efficiency of decision-making (Ford, 1985; Lu et al., 2007:56; Souha et al., 2024). Support 

may be in the form of providing a data summary, future prediction based on the current 

situation, assisting decision-makers to find insights and values, accounting for uncertainties, 

etc. (French & Turoff, 2007). The concept of a DSS was first formulated by Michael S. Scott 

Morton in the early 1970s (Sprague Jr, 1980; Ford, 1985;  Power, 2008). Michael S. Scott 

Morton published his book “Management Decision Systems: Computer-Based Support of 

Decision Making” in 1971 (Power, 2007).  

Keen and Scoot-Morton (1978, cited in Lu et al., 2007:54)  mentioned the balance between 

Decision (D), Support (S)  and System (S). Decision (D) focuses on the application selection 

criteria and the aspects of DSS, which are non-technical, functional and analytical concerns. 

Support(S)  revolves around the implementation of the system, it tries to figure out how people 

operate the system, and how to provide help for the users.  In summary, System (S) focuses 

on technology design and development. A successful DSS implementation can support 
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individuals, groups or organisations (Phillips-Wren, 2017:5; Ghandar et al., 2021; Darbi & 

Saleh, 2022; Ali et al., 2023; Papazoglou et al., 2024; Senapaty et al., 2024). 

According to Forgionne (2003:5), a typical DSS can be divided into three sections: input, 

process and output.  The problem-related data and model are stored as input. The available 

data can be from internal and external sources. In the second segment, the decision-maker, 

with the aid of computer technology, processes the data by organising and attaching it to the 

model. Thereafter, the model is used to conduct an experiment or simulation. This helps in 

finding the best solution from the available alternatives. The process segment results, 

parameter requirements, experimental forecast, and recommended actions are reported. In 

the later stage, the obtained feedback from the decision-makers is stored as additional input 

for upcoming opportunities or other processes. 

A single-user DSS provides early-stage support based on Simon's decision-making process. 

It includes input, process and output for each phase. In the intelligence phase, the system 

focuses on input, which involves problem definition, data collection, exploration, and 

preprocessing. In the design phase, the processing section helps in generating alternative 

solutions. Finally, in the choice phase, the output section assists in selecting the best solution 

or action within the problem context  (Forgionne, 2003:5; Phillips-Wren, 2017:5; Milutinovíc et 

al., 2021; Hak et al., 2022).  The DSS architecture is shown in Figure 2.12, which details how 

inputs, processing, and outputs interact to support decision-making.  
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Figure 2.12: Decision support system architecture (Forgionne, 2003:6) 

 

Problem-related data and models are stored as input in the DSS system. The decision maker 

uses a computer or capable device to process the inputs into problem-relevant outputs. 

Processing of the data involves: (a) organising the data into problem parameters, (b) 

structuring the parameters into a model, (c) using the model to experiment with policies and 

events, and (d) identifying the ideal solution to the problem.  After completion of the processing, 

status reports, forecasts and recommendations are generated as output. The processing 

phase provides input feedback as additional data, knowledge, and models that could be used 

as a reference for future decision-making. Output feedback helps to extend, revise or modify 

the original analysis and evaluations.  (Forgionne, 2003:6, 15;  Phillips-Wren, 2017:5).  
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The following sections present a brief overview of the different types of DSS and the application 

of DSS.  This provides the foundation for identifying the kind of DSS that should be developed 

to support stakeholders in the decision-making process. 

2.1.15.1 Types of Decision Support Systems 

A Decision Support System (DSS) can fall under any of the following categories based on 

purpose, users, and delivery namely, communications-driven DSS, data-driven DSS, 

document-driven DSS, knowledge-driven DSS and model-driven DSS (Power, 2008; Darbi & 

Saleh, 2022; Souha et al., 2024). 

a. Communications-driven Decision Support Systems 

Communication-driven DSS is heavily reliant on hybrid networks and electronic communication 

networks and their technologies. These technologies help connect and allow communication 

between collaborating resources and decision makers. Some of the communication-driven 

technologies are bulletin boards, audio and video conferences, as well as groupware (Power, 

2008; Zeebaree & Aqel, 2019; Darbi & Saleh, 2022). 

b. Data-driven Decision Support Systems 

A data-driven decision support system (DSS) focuses on data retrieval and the manipulation 

of organisational internal or external data, and real-time data (Power, 2008). Once the user’s 

requirements are established, this type of DSS will provide queries and management reports. 

This can be taken a step further with more advanced DSS providing online analytical 

processing and data mining. Thus, it can be used for analysing past data and establishing 

patterns and relations (Lu et al., 2007: 58; Darbi & Saleh, 2022). In addition, data-driven DSS 

often incorporate machine learning models to perform predictions (Gaftandzhieva et al., 2023). 

c. Document-driven Decision Support Systems 

A document-driven DSS combines a range of storage and processing technologies to provide 

extensive document retrieval and analysis. The World Wide Web and cloud computing 

technologies have been hailed as platforms for the use of decision support systems (Power, 

2008; Darbi & Saleh, 2022). 

d. Knowledge-Driven Decision Support Systems 

A knowledge-driven DSS focuses on problem-solving by recommending actions to the 

decision-makers with the help of problem-solving expertise (Power, 2002:24). Knowledge-

driven DSS embraces a rule-based system to assist decision-makers in making decisions (Lu 

et al., 2007:58). The expert understands the problem within the particular domain. An expert 

system technology connected to relational databases using web-based user interfaces has 

widened the use of knowledge-based DSS (Power, 2008; Darbi & Saleh, 2022). 
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e. Model-driven Decision Support Systems 

A model-driven DSS focuses on access to and manipulation, simulation and optimisation of 

models. It relies more on mathematical models and optimisation than on huge amounts of data. 

Computer systems make model-driven DSS easy for managers to use. Artificial Intelligence 

applications help to overcome more complex problems (Chai & Jiang, 2011; Hızıroğlu et al., 

2022). The models can be used for different purposes, such as accounting, financial, and 

optimisation. Statistical and analytical tools can be used to obtain basic-level functionality 

(Power, 2002:24; Zeebaree & Aqel, 2019; Darbi & Saleh, 2022). 

 

2.1.15.2 Applications of Decision Support Systems 

Decision Support Systems are used in various fields, namely,  engineering, organisation, 

military, agriculture, health, tourism and so on  (Senapaty et al., 2024; Souha et al., 2024).  

Decision Support Systems assist users in enhancing their activities. For example, a 

knowledge-based DSS for predicting traffic crash events, a web-based  DSS is used for human 

resource management for employee recruitment using Multi-Attribute Utility Theory, a web-

based DSS for remote weather radar maintenance, predicting vegetable prices using a web-

based DSS, recommending appropriate fertilisers to improve crop yield,  and extracting 

information from disaster-related tweets for disaster management (Abou Elassad et al., 2020; 

Febriandirza et al., 2023;  Papazoglou et al., 2024; Rao et al., 2024; Manju et al., 2024; Sinha 

et al., 2024). 

Various technologies are used when developing the DSS, including Artificial Intelligence (AI), 

machine learning, Deep Learning (DL), Natural Language Processing (NLP), Docker, Flask for 

Application Programming Interface (API), a visual interface design tool, Balsamiq mock-up, 

and Google Translate API for real-time translation (Papazoglou et al., 2024; Febriandirza et 

al., 2023; Rao et al., 2024; Sinha et al., 2024).  

A DSS integrates data, analytical models, and artificial intelligence to help both expert and non-

expert users make well-informed decisions within their domain. DSS can integrate various 

models. The artificial intelligence-driven DSS serves for Data-Driven DSS and Knowledge DSS 

functionalities. 

 

2.2 Related work 

In this section, the existing body of scholarly work on prediction within the domain of smart 

aquaponics is reviewed. In this review process,  related work was analysed critically to 

establish the basis which led to the proposed study. 
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Amano et al. (2022)  focused on designing a Bok Choy Leaf Disease identification system in 

Smart Aquaponics. The dataset used for the research was a combination of the researcher's 

collected data and publicly available data from Kaggle. This study performed the identification 

and classification of diseases using machine-vision feature extraction.   Data collection was 

performed using an IP Webcam. The study used IoT sensors to monitor water quality 

parameters, including pH, electrical conductivity (EC), and water temperature. The machine 

learning algorithms applied included Support Vector Machine (SVM), Random Forest (RF), 

and K-Nearest Neighbour (KNN). Based on the evaluation metrics, Precision, Recall, False 

Positive Rate (FPR), Specificity, and F1 Score KNN demonstrated superior performance 

compared to the other algorithms. The study successfully explored the use of machine learning 

algorithms for identifying Bok Choy leaf diseases in a smart aquaponics system.  

However, the study focused only on the determination of the most effective ML algorithm and 

its comparison. The study could have had more benefit if it had built a decision support system 

that provided insights to the stakeholders on the detected disease and the prevention of the 

detected disease. This limitation prevented stakeholders from making informed and 

appropriate system management decisions. 

Debroy & Seban (2022b) presented two prediction models for estimating tomato biomass 

within the aquaponics system, both the Artificial Neural Network (ANN) and its hybrid with fuzzy 

logic, known as Adaptive Neuro-Fuzzy Inference System (ANFIS). The ANN model utilised a 

Feed-forward backpropagation network, while the ANFIS model was also implemented. These 

models were developed to improve the accuracy and efficiency of tomato biomass estimation, 

offering potential advancements in agricultural management within aquaponic setups. The 

evaluation metrics: Mean Absolute Error(MAE), Root Mean Square Error (RMSE) and 

Coefficient of Determination (R2 ) indicated that the ANFIS model had achieved the best 

prediction accuracy compared to the conventional ANN model. The data set included the input 

data information on recirculating water temperature (°C), dissolved oxygen (mg/L), nitrate 

(mg/L), and pH (ppm), while the output data represents tomato fruit biomass (g). Mathematical 

models were used for data collection. The study concluded that temperature, nitrate, and pH 

strongly correlated with tomato weight.  

 

The study presented tomato biomass prediction to enhance economic management, improve 

production rates, and address market supply and demand challenges. However, it lacks 

effective communication of the findings to stakeholders for decision-making, particularly 

regarding the degree of influence of the various parameters that affect tomato weight, which 

could assist in better prioritising of those factors and management thereof. 
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Owusu et al. (2024)  developed an aquaponics system to predict water temperature, where 

the system used heating elements operating concurrently at 5 watts, 10 watts, and 15 watts to 

observe water temperature changes over time. Based on Long Short-Term Memory (LSTM) 

RNN, the prediction model is particularly useful for reducing water temperature fluctuations, 

especially in outdoor aquaponics setups. The performance of the system was evaluated using 

the following metrics: Coefficient of determination (R2), Mean Absolute Error (MAE), Mean 

Absolute Percentage Error (MAPE), and Root-Mean-Square Error (RMSE). The study 

concluded that the LSTM model accurately predicted water temperature. Maintaining water 

temperatures between 20°C and 30°C was identified as essential for the optimal growth and 

health of bacteria, plants, and fish, ensuring a thriving aquaponics ecosystem.  

The study focused its investigation only on water temperature as the predicted parameter and 

could have been broadened to predict other water parameters, as well as plant parameters, 

too. By integration of XAI, the study could enhance transparency and user trust, mainly for 

stakeholders who require not just predictions but also explanations for actionable insights.  

Liu et al. (2024)  proposed a fusion deep learning model (DLDL) for long-term prediction of 

dissolved oxygen (DO) concentration in aquaponics systems. Data was collected using IoT 

sensors, including water quality parameters such as DO, water temperature, pH, turbidity, 

conductivity, and salinity, with the aerator manually controlled to observe variations in DO 

levels. Before prediction, the raw time-series data were broken down using CNN-based 

decomposition to enhance the predictability of the data. Sequential features were then 

extracted using LSTM networks. A masked loss function was used to enable prediction at 

different temporal resolutions. The proposed  model was evaluated against LSTM, Temporal 

Convolutional Network (TCN), CNN-LSTM, and Informer using Mean Squared Error (MSE) 

and Mean Absolute Error (MAE).  The minimum errors are MSE = 0.199 and MAE = 0.355.  

The results indicate that the proposed DLCL model outperforms LSTM, TCN, and CNN-LSTM 

in long-term prediction accuracy. Finally, the predicted DO values were used to control the 

aerator automatically, ensuring sufficient oxygen concentration, promoting the health of 

cultured species, and reducing energy consumption through precise aeration management. 

The study demonstrated success in mitigating the challenges of traditional DO prediction 

models, such as poor stability and insufficient prediction accuracy, as well as the shortcomings 

of threshold-based aeration control.  

In spite of the study's contributions, the study overlooked the effects of various factors that 

influence DO concentration. The model’s absence of explainability restricts its integration with 

DSS, reducing transparency and interpretability for effective decision-making in system 

management. 
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Khandakar et al. (2024) focused on predicting the fish’s length (cm) and weight (g) by analysing 

different parameters such as pH, ammonia, and nitrate levels, temperature (◦C), turbidity 

(NTU), dissolved oxygen (g/mml), pH, ammonia (g/mml), nitrate (g/ml), and the population of 

fish in the pond. The dataset for the study was sourced from freshwater aquaponics catfish 

ponds and was derived from the study titled “An Internet of Things Labelled Dataset for 

Aquaponics Fishpond Water Quality Monitoring System” by Udanor et al. (2022). The data, 

collected using IoT sensors, includes parameters such as temperature, pH, dissolved oxygen, 

turbidity, ammonia, and nitrate levels. The collected data is uploaded to the cloud in real-time 

and is publicly available on Kaggle under the Sensor-Based Aquaponics Fish Pond Datasets 

available at  

https://www.kaggle.com/datasets/e81da8b7666dc7af41cdc3aa5ef96c5547e4f412598a030f40d4445

50965e34f (Udanor et al., 2022). The study used several machine learning models for 

prediction, including Linear Regression, Lasso Regression, Ridge Regression, XGBoost, 

CatBoost, and LightGBM, which were evaluated using metrics such as R², Mean Squared Error 

(MSE), and Mean Absolute Error (MAE). Among these, the LightGBM model performed well 

in predicting fish length and weight. The incorporation of  Explainable AI (XAI) Local 

Interpretable Model-Agnostic Explanations (LIME) for model interpretation represents a 

significant breakthrough, enhancing transparency and building confidence in machine learning 

predictions. This method enables stakeholders and domain experts to comprehend the model's 

results and leverage insights effectively, facilitating more informed and actionable decision-

making.  

 

Explainable AI (XAI) bridges the gap between high performance and interpretability. However, 

whilst insights are provided by the model, there has been oversight in communicating these 

insights to stakeholders effectively using a decision support tool. Incorporating plant growth 

prediction alongside fish growth could provide a more comprehensive view of the aquaponics 

system, leading to more efficient production and management. 

 

Liu & Jiang (2024) implemented machine learning in their research to identify the most 

significant factors contributing to lettuce plant growth and their optimal levels. The study 

applied and evaluated several machine learning algorithms, including Linear Regression, 

Bagging Regressor, Decision Tree, Random Forest, XGBoost, and Artificial Neural Networks. 

The models were assessed using key performance metrics such as Accuracy, Mean Squared 

Error (MSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE). 

XGBoost outperformed other models with 91.6% accuracy and the lowest MAE, followed by 

Random Forest with 90.9% accuracy and Bagging Regressor with 88.5%. A feature importance 

analysis of the best-performing XGBoost model revealed that Nitrogen had the most significant 

impact on plant growth, followed by nitrate, nitrite, light, and phosphorus. The dataset used for 

https://www.kaggle.com/datasets/e81da8b7666dc7af41cdc3aa5ef96c5547e4f412598a030f40d444550965e34f
https://www.kaggle.com/datasets/e81da8b7666dc7af41cdc3aa5ef96c5547e4f412598a030f40d444550965e34f
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the study consisted of data collected from their previous research using IoT sensors. The 

parameters included air temperature, humidity, pH, light intensity, nitrogen, phosphorus, 

potassium levels, and Total Dissolved Solids (TDS). Additionally, camera module sensors were 

used to automatically capture and monitor plant growth, providing valuable insights into the 

system's effectiveness and optimisation (Jiang & Liu, 2024).  

 

The study used feature importance to calculate ranking scores, identifying the parameters that 

most strongly influence plant growth. However, an XAI-based explainability approach can 

provide greater transparency on how and why a parameter influenced the prediction to the 

stakeholders for an informed decision-making process. This study’s implementation had the 

potential to include a tool that enhances stakeholder support and decision-making. 

 

Ghandar et al. (2021)  designed a distributed, data-driven decision support system (DSS) for 

urban farming, designed to operate at two distinct scales. Firstly, on a large scale, the DSS 

supports urban agriculture planning by defining system structures, policies, and updates, while 

also enabling coordination among multiple stakeholders or users. It synchronises production 

with consumer demand in a data-driven way to minimise waste. Secondly, at the unit scale, a 

cyber-physical aquaponics prototype was developed to optimise production processes. A 

digital twin of the aquaponic system was implemented, providing a virtual model continuously 

updated with sensor data and real-time simulations. The proposed planning DSS was 

evaluated with the prototype on the collected data. The study compares the predictive 

performance of the digital twin with machine learning methods for predicting fish growth in 

aquaponics.  

The study incorporated different machine learning algorithms to predict daily fish growth in 

grams and weekly plant growth rate in inches as a subsection of their study. They chose 

Regression (LR), Support Vector Regression (SVR), Decision Tree and ensemble method, and 

the eXtreme Gradient Boosting (XGBoost) decision tree. The parameters used were water 

temperature, room temperature, water pH, total dissolved salt (TDS), fish feed, fish weight, 

and plant length. The sensors used in the grow bed and fish tank to monitor the parameters 

were humidity, room temperature, pH level, and fish feeding. This data was collected over 3 

months. The plant was the white tuberose bulbs, and the fish was the Nile tilapia. To evaluate 

the predictive model’s performance, they used 10-fold cross-validation.  After performance 

evaluation, the authors found that the best plant growth rate prediction model was simple linear 

regression, and the daily fish growth rate prediction was the decision tree or support vector 

regression. The model predicted the daily fish growth in inches and the weekly plant growth in 

inches.  The study results showed that consumer satisfaction was highest when urban farms 

and retail locations were evenly distributed across the urban region in the planning of urban 
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agriculture food production. Furthermore, the developed simulation model accurately predicted 

fish growth, particularly when it was frequently recalibrated with new sensor data.  

The study demonstrated the necessity of a decision support system for planning in agriculture, 

with a focus on predicting fish growth using a simulation model. However, the system is limited 

in its ability to predict plant growth and lacks model explainability as well. Incorporating the 

most influential parameters for both fish and plant growth would enhance predictive accuracy 

and enable stakeholders to use the DSS more effectively for integrated urban agriculture 

planning and optimising aquaponics production. 

This current study performed plant growth and water quality prediction using regression 

models that can predict numerical values. In similar plant growth prediction studies, the results 

showed that linear regression and XGBoost performed well (Ghandar et al., 2021; Liu & Jiang, 

2024). Hence, this study used linear regression, XGBoost, along with random forest,  K-

Nearest Neighbors (KNN), and a multilayer perceptron (MLP) for prediction.  Thereafter, 

evaluate the models using the commonly used metrics in various studies, namely Mean 

Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), 

Coefficient of Determination (R² or R-squared), and Adjusted R-squared (Debroy & Seban, 

2022; Owusu et al., 2024; Khandakar et al., 2024). The machine learning model that  had the 

best performance formed the basis for developing a decision support system for aquaponics 

prediction.  The summary of related work is presented in Table 2.10. 
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Table 2.10: Summary of related work   

Reference Prediction ML- models Evaluation metrics Best 

performance 

Model 

Explainability 

Decision 

support 

system 

(Amano et al., 

2022)    

Bok Choy Leaf 

Disease  

Support Vector Machine 

(SVM), Random Forest 

(RF), and K-Nearest 

Neighbor (KNN) 

Precision, Recall, False 

Positive Rate (FPR), 

Specificity, and F1 Score 

KNN No 
 

     No 

(Debroy & 

Seban, 2022) 

Tomato biomass Artificial Neural Network 

(ANN) and its hybrid with 

fuzzy logic, known as 

Adaptive Neuro-Fuzzy 

Inference System (ANFIS) 

Mean Absolute 

Error(MAE), Root Mean 

Square Error (RMSE) and 

Coefficient of 

Determination (R2 ) 

ANFIS No 
 

No 

(Owusu et al., 

2024) 

Water temperature Long-Short-Term Memory 

(LSTM)  

Coefficient of 

Determination (R2), Mean 

Absolute Error (MAE), 

Mean Absolute 

Percentage Error 

(MAPE), and Root-Mean-

Square Error (RMSE) 

- No 
 

No 

(Liu et al., 

2024)   

Dissolved oxygen LTSM, TCN, LTSF- Linear, 

CNN-LSTM, Informer and 

DLCL 

Mean Square Error 

(MSE) and Mean 

Absolute Error (MAE). 

DLCL  No 
 

      No 

(Khandakar et 

al., 2024) 

Fish’s length (cm) and 

weight (g)  

Linear Regression, Lasso 

Regression, Ridge 

Regression, XGBoost, 

CatBoost, and LightGBM 

R², Mean Squared Error 

(MSE), and Mean 

Absolute Error (MAE) 

LightGBM Yes No 

(Liu & Jiang, 

2024) 

Plant growth Linear Regression, 

Bagging Regressor, 

Decision Tree, Random 

Forest, XGBoost, and 

Artificial Neural Networks 

Accuracy, Mean Squared 

Error (MSE), Mean 

Absolute Error (MAE), 

and Mean Absolute 

Percentage Error (MAPE) 

XGBoost No 
 

No 
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(Ghandar et al., 

2021)  

Fish growth  & Plant 

growth 

Regression (LR),  

Support Vector Regression 

(SVR),  

Decision trees and  

eXtreme Gradient Boosting 

(XGBoost) decision tree  

MAE Plant growth- 

Linear 

regression 

Fish growth – 

Support 

Vector 

Regression 

and  Decision 

Tree 

No 
 

Yes 

This study Plant growth and water 

quality 

linear regression, random 

forest and eXtreme 

Gradient Boosting 

(XGBoost), K-Nearest 

Neighbors (KNN), and a 

multilayer perceptron 

(MLP) 

Mean Squared Error 

(MSE), Root Mean 

Squared Error (RMSE), 

Mean Absolute Error 

(MAE), Coefficient of 

Determination (R² or R-

squared), and Adjusted 

R-squared  

Plant 

diameter 

prediction - 

Random 

Forest and 

XGBoost 

 

Plant height - 

Random 

Forest 

 

pH prediction 

– XGBoost 

 

TDS 

prediction - 

Linear 

regression 

Yes 
 

Yes 
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2.3. Research gap 

In the examination of the body of the related work and literature, it is evident that most 

prediction studies in smart aquaponics have primarily focused on individual parameters, 

especially water quality, while giving limited attention to integrated or multi-parameter 

prediction. Although some studies explored plant growth prediction using image-based 

methods or measurement of plant height, other important growth indicators, such as plant 

diameter, remain underexplored. Furthermore,  none of the previous studies have emphasised 

the need for model explainability and decision support for aquaponics stakeholders (see Table 

2.10). Previous efforts have focused on developing predictive models to generate outputs, but 

have overlooked translating these insights into actionable knowledge for stakeholders in the 

decision-making process. To address these gaps, this study incorporates an explainable AI 

(XAI) model (SHAP) to improve model transparency, uses multiple evaluation metrics for 

robust assessment, and develops a decision support system that identifies key parameters 

influencing plant growth and water quality. By leveraging machine learning and empirical data 

from the South African context, this research enhances predictive capabilities, facilitates better 

decision-making, and contributes to the advancement of smart aquaponics management. 

2.4 Chapter summary 

The chapter covered essential components of this study, such as hydroponics, aquaculture, 

aquaponics, the Internet of Things, machine learning, XAI, Intelligent Internet of Things, expert 

systems and decision support systems, along with related work on prediction in the smart 

aquaponics domain. Finally, the review of related work reveals the research gaps in smart 

aquaponics that motivated this study.  
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CHAPTER THREE 

RESEARCH METHODOLOGY 

 

This chapter presents the methodology adopted for this study. The research onion framework, 

developed by Saunders et al.  (2019:110), is used to describe the methodological choices 

made for this study. The research onion illustrates the various steps to create a research 

design. It contains different layers, starting from the outermost layer: philosophies, 

approaches, strategies, choices, time horizons, techniques and procedures (Saunders et al., 

2019:110).  

The researcher first selected the research philosophy's ontological and epistemological 

stance, which were then linked to the methodological approaches, including research design 

and data collection (Ugwu et al., 2021).  

3.1 Research philosophy 

Research philosophy embodies a critical assumption from the perspective of how the 

researcher sees the world (Ugwu et al., 2021). This influenced and affected the way the 

research was conducted. This relative view of the world meant the knowledge gained was 

influenced by the perception of the researcher (Khatri, 2020). Research philosophy is a belief 

or a set of beliefs about the ways data needs to be collected, analysed and used. The 

researcher had to be conscious and aware while forming beliefs and assumptions. According 

to  Saunders et al. (2019:113), there are three major aspects: ontology, epistemology and 

axiology.  Each of these aspects carries substantial differences, influencing the critical thinking 

and research procedure adopted. The research philosophy that was selected for the study is 

positivism.  

3.1.1 Ontological stance 

Ontology is a branch of metaphysics that stems from philosophy (Smith, 2012:47). Ontology 

is derived from two Greek words, “onto” and “logos”. “Onto” means “being” or “that which is 

everything that exists”, whereas “logos” means “knowledge” or “study” (Ni’mah et al., 2024). 

Put together, it can be referred to as the “Study of being” (Crotty, 2003:10). Ontology deals 

with “the nature of reality” or “nature of existence” (Saunders et al., 2019:133; Ugwu et al., 

2021). It factors into the research assumptions the nature of the world and reality. Ontology is 

a core concept that guides data collection, analysis, and interpretation (Ugwu et al., 2021).  

Objectivism was selected as the ontological stance of this study. Objectivism “ believes that 

there is only one true social reality experienced by all social actors” (Saunders et al., 

2019:135). Objectivism was selected because the study intends to seek the nature of 
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existence based on building the reality of whether a decision support system can be developed 

for aquaponics prediction, which would be independent of human thought or consciousness. 

3.1.2 Epistemology of the study 

Epistemology is one of the three aspects of philosophy. “Epistemology” is derived from two 

Greek words, “episteme” and “logos”. “Episteme” means “knowledge”, “understanding”, or 

“acquaintance”, whereas “logos” means “account”, “argument”, or “reason” (Ni’mah et al., 

2024). Epistemology is “the theory of knowledge” (Ni’mah et al., 2024). The primary source of 

knowledge for this research was the literature review, while new knowledge was gained from 

analysing the data, the findings, and conclusions from the experiments. The study focused on 

a single reality that can be measured; hence, the epistemological stance of this study was 

positivism. The study made predictions based on quantifiable data. 

The knowledge gained thus far within the aquaponics environment has been primarily through 

experimentation as well as surveys from previous studies. The experimental result is presented 

in different ways. It is believed that the proposed decision support system will assist 

aquaponics farmers in making decisions. To find the truth, experiments were conducted to 

predict the aquaponics output using different parameters, namely: pH, TDS, EC, water 

temperature and plant details such as plant height, number of leaves, plant diameter, ambient 

temperature, and humidity. Thereafter, the insights gained from the experiment were presented 

to the aquaponics stakeholders, including farmers, researchers and aquaponics practitioners 

in a meaningful and understandable way.  The stakeholders provided feedback on the study 

to improve the prediction model. This feedback also determined whether the proposed decision 

support system was indeed helpful in making effective decisions for aquaponics farming, and 

thus, the study justified the belief. The source of knowledge was empirical knowledge. 

3.2 Research approach 

The research approach is a plan and roadmap for conducting research. The research 

approach guided how to collect, analyse, and interpret the collected data (Cresswell, 2014:3).  

The selected research approach for this study was deductive, as the literature helped to 

identify relevant theories and ideas that were subsequently tested with collected data 

(Saunders et al., 2019:78). The central research question explored in this study was whether 

a decision support system for aquaponics prediction could be developed to aid stakeholders 

in making better decisions and taking corrective actions. An experiment was carried out, and 

the results were analysed. The test outcomes provided insights into the research question. 
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3.3 Methodological choice  

This study adopted a quantitative methodology because it required experiments with empirical, 

quantifiable data to develop a decision support system that can predict key aquaponics 

parameters. The parameter values for the experiment were collected from the field using 

measuring tools and IoT devices. The collected data was recorded numerically and analysed 

statistically (Creswell, 2014:4). Thereafter, the research sought to investigate the knock-on, 

ripple effects of the variable changes on one another. It was important to establish the 

interdependence of variables as the entire aquaponics system had to be in equilibrium; 

otherwise, it could affect the yield output adversely (Yildiz et al., 2017). 

3.4 Research strategy 

Saunders et al. (2019:173) defined research strategy as a “general plan of how the research 

questions of the study will be answered”. The proposed research aimed to determine various 

parameter values that could support decision-making. A fundamental relationship existed 

between these parameters and the prediction process. To accomplish this objective, the 

research adopted an experimental research strategy and used machine learning techniques 

for experimentation (Saunders et al., 2019:178, 190). The collected data was pre-processed 

through data cleaning and feature engineering. For the experiment, supervised machine 

learning algorithms such as Linear regression, random forest, K-nearest neighbour,  eXtreme 

Gradient Boosting, and multi-layer perceptron were adopted. Data were trained using built-in 

algorithms, and then an optimal model was generated (Takami et al., 2016). The 

experimentation process used the Jupyter Notebook on a web-based computing platform, 

incorporating various built-in libraries such as pandas, numpy, sklearn, matplotlib, etc (Fenner, 

2019:20; Géron, 2019: 48).  

3.5 Research design 

The research design serves as a comprehensive blueprint, outlining how to approach the 

research questions (Saunders et al., 2019:173). Research design provides the structure to 

choose the correct research methods and techniques proposed for collecting and analysing 

the data (Saunders et al., 2019:173). A good research design helps to find accurate answers 

to the problem using collected data during the research. The purpose of the research was to 

develop a decision support system for aquaponics prediction to aid farmers in making 

decisions to achieve maximum productivity.  

The study investigated the research objectives, identified the causes and effects, and observed 

how changes in one variable could affect one or more variables. The research questions were 

used to evaluate the accuracy of the developed prediction models. Thus, the researcher 

employed an experimental research design. The experimental research design of this study 
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influenced the data collection, experimentation, presentation of results, evaluation, and 

interpretation of the findings of this study.  

The insights derived from the study were used as a guide for decision-making and actions, 

resulting in gained insights and wisdom. The overview of the adopted research design is shown 

in Figure 3.1. 

 

Figure 3.1: Overview of the experimental research design (Source: Researcher) 
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The literature review assisted with the basis for identifying the research problem. This helped 

in the formulation of the research aim. From the aim, specific objectives were derived that 

guided the study. The research questions were then developed to align with these objectives. 

The following sections explain the research design in detail. 

 

3.5.1 Data collection 

Primary data for this study are critical and were collected for plant growth and water quality 

parameters (Saunders et al., 2019:338). For the field experiment, a coupled grow-bed-based 

aquaponics unit was set up within a tunnel. A DHT22 IoT sensor was also installed alongside 

the unit (Ghandar et al., 2021; Sunardi et al., 2021).  

During this study, the plant growth dataset comprised the plant height, number of leaves, and 

plant diameter to form the key indicators in assessing the plant growth (Frasetya et al., 2021; 

Mokhtar et al., 2022;  Villanueva et al., 2022). The ambient humidity and temperature were 

also included as key parameters influencing plant growth (Dutta et al., 2018; Abdullah & 

Mazalan, 2022). Plant details were recorded once every week, and on the first day of the week 

(Villanueva et al., 2022). Plant details, height and diameter were measured using a ruler, and 

the number of leaves was physically counted and recorded in an Excel sheet (Mahkeswaran 

& Ng, 2020; Subakti et al., 2022; Udanor et al., 2022; Villanueva et al., 2022).  The ambient 

humidity and ambient temperature data were stored in an SD card via Raspberry Pi 4 (Pappu 

et al., 2017;  Varkey et al., 2021; Alselek et al., 2022). The humidity and temperature 

measurements were recorded within two-minute intervals. Various studies have used different 

time intervals to record the collected data, for example, one-minute or five-minute intervals. 

(Defa et al., 2019; Kjellby et al., 2019). 

 

Water temperature and pH play a crucial role in determining water quality. The pH level reflects 

the acidity of the water. Temperature changes can influence various components of the aquatic 

environment, including the pH as well (Maulini et al., 2022). Temperature and the pH of the 

water also play a role in the nitrification process of breaking down the fish waste and other 

microorganisms (Channa et al., 2024). Fish growth parameters, such as height and weight, 

have also been reported to be significantly influenced by pH and water temperature 

(Khandakar et al., 2024). Dewangan et al. (2023), highlighted the importance of monitoring 

water temperature in water quality management due to the significant relationship between 

temperature and EC/TDS. Since water quality and fish growth performance are directly 

influenced by pH, temperature, TDS, and EC, these parameters are the selected water quality 

parameters for this study. A water quality measuring device was used for collecting all four 

water quality parameters (Yanes et al., 2020; Subakti et al., 2022; Liu et al., 2024). Water 
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quality parameters were collected at four intervals on a daily basis and were recorded into an 

Excel sheet. 

After the field experiment, a dataset of  709 plant detail records and another dataset of 526 

records for the water quality were compiled. Data collection began on 2023-07-28 and 

concluded on 2024-07-08, spanning approximately 4 months and 13 days (133 days), with 4 

cycles conducted during this period. The data collection cycle is shown in Table 3.1. In the next 

step, the collected data had to be cleaned for further analysis. 

 

 

Table 3.1: Data collection cycle 

Cycle Starting date Ending date 

1 2023-07-28 2023-08-28 

2 2023-10-24 2023-11-13 

3 2024-02-27 2024-03-26 

4 2024-05-13 2024-07-08 

 

3.5.2 Data pre-processing 

In this study, data preprocessing was performed using the Python programming language, 

which is a prime language for data science and machine learning applications (Oscar et al., 

2023). The preprocessing code was executed within the code cells of Jupyter Notebook 

(Géron, 2019: 48). Duplicate records were identified and discarded (Dabool et al., 2024). Since 

manual recording was adopted, this has prevented the detection of missing data in the plant 

and water quality dataset. Furthermore, outliers were detected using boxplots and afterwards 

handled by replacing them with the mean value, which is a central measure of the data 

distribution (Molin, 2021:13; Wilson et al., 2021).  The independent and dependent variables 

were identified from the collected datasets to predict plant diameter, plant height, water pH, 

and water TDS. Thereafter, the dataset was split into training and test sets using an 80:20 

ratio, respectively (Wilson et al., 2021; Kumar et al., 2023; Daniel et al., 2025). Through the 

feature engineering process, the features were scaled to a uniform range to improve model 

performance, since the dataset contained features with fluctuating scales (Keerthana et al., 

2021; Abdelaziz et al., 2025). Hence, MinMaxScaler normalisation was used in this study to 

ensure that all feature values were scaled to fall within the range of 0 to 1(Molin, 2021: 562; 

Seegobin et al., 2024). After data pre-processing, the datasets were ready to be input into 

various supervised algorithms to perform the prediction.    

3.5.3 Model Selection 

In this study, plant diameter and plant height are considered as dependent (output) variables 

for plant growth prediction, whereas pH and TDS are considered dependent variables for water 

quality prediction. Thus, the independent (input) variables for plant growth predictions are plant 

height, plant diameter, number of leaves, ambient temperature and ambient humidity. 
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Whereas, in water quality prediction, pH, temperature, EC and TDS are independent (input) 

variables. The following supervised machine learning models were selected for the prediction. 

Linear regression: It was selected because it is computationally simple and easy to 

implement (Kadam et al., 2025).  A linear regression model aims to identify a general important 

pattern that connects independent variables and dependent variables. Furthermore, linear 

regression strives to establish a relationship between these variables, extending towards 

predicting dependent variables for specified input values (Kim et al., 2022).  It is typically used 

as a baseline model to obtain preliminary insights into the data (Kadam et al., 2025).  

Random Forest (RF): It is an ensemble of decision trees that combines the outputs of 

individual trees to produce the final prediction (Wie, 2023).  Due to the manual, physical 

collection of data, as well as exposure to varied climatic conditions, noise, or errors are present 

in the collected data. RF was chosen as it reduces overfitting and handles missing or noisy 

data (Molin, 2021:653; Kadam et al., 2025). RF is used in many prediction studies due to its 

high accuracy and robustness (Wie, 2023).  

K-nearest neighbour (KNN): In this study, the KNN model was selected for the prediction 

process because it is a simple, non-parametric and instance-based machine learning algorithm 

that does not require a specific training phase (Ozaga et al., 2024). The dataset used in this 

study is relatively small. KNN is tailored for this type of collected data because it does not make 

prior assumptions about the input variables. It also provides good accuracy on a small data 

size (Seyghaly et al., 2024).    

eXtreme Gradient Boosting (XGBoost): XGBoost is a decision tree-based ensemble ML 

algorithm (Desdhanty & Rustam, 2021). It is selected in this study because of its ability to 

handle missing data, high accuracy, control overfitting, computational efficiency and high 

scalability (Mahajan et al., 2023; Wen et al., 2024). It uses various techniques to improve model 

performance and efficiency. Techniques, namely, parallelisation, optimising objective functions 

and regularisation. Additionally, it is apt for finding the key features in the given dataset, which 

is useful for feature selection and understanding the relationships within the data (Khan et al., 

2024).  

Multilayer Perceptron (MLP): It is a deep artificial neural network that consists of several 

interconnected perceptrons. MLP is used in the study to predict plant growth and water quality. 

During the training process, a series of input-output pairings assists with learning to represent 

the dependencies between the input features and the expected output.   MLP also has a good 

nonlinear fitting ability whilst being suitable for complex datasets, and it minimises training 

errors  (Zaras et al., 2022:19; Taud & Mas, 2018: 454; Obiora et al., 2023). 
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The criteria for selecting the specific machine learning models for prediction are summarised 

in Table 3.2. 

 

Table 3.2: Overview of the attributes of the selected ML Algorithms 

Algorithm SI Acc HO HMA  NLR  CLD  References 

Linear 
Regression 

High Medium Prone to 
overfitting if not 
regularised 

Poor No No (Lantz, 2013:161,169; 

Rashidi et al., 2019; 

Joshi, 2020: 36; Kim et 

al., 2022; Kadam et al., 

2025) 

Random 
Forest (RF) 

Medium High Robust to 
overfitting 

Good Yes Yes (Kadam et al., 2025;  Wei, 

2023) 

 

KNN High Medium to 
High 

Prone to 
overfitting if K is 
not chosen 
correctly 

Poor Yes No (Sudheer et al., 2022; 

Zhang et al., 2023; Ozaga 

et al., 2024; Seyghaly et 

al., 2024) 

XGBoost Medium 
to Low 

High Robust to 
overfitting with 
regularisation 

Good Yes Yes (Friedman, 2001; Chen & 

Guestrin, 2016 ; Mahajan 

et al., 2023;  Khan et al., 

2024; Daramola et al., 

2025) 

Multilayer 
Perceptron 
(MLP) 

Low High Prone to 
overfitting if not 
regularised 

Poor Yes Yes (Taud & Mas, 2018: 454; 
Obiora et al., 2023) 

SI: Simplicity of implementation 
Acc: Accuracy 
HO: Handling overfitting 
HMD: Handling of missing data 
NLR: Non-linear relationships 
CLD: Efficiency with complex and large datasets 

 

3.5.4 Model training 

The preprocessed data was used to train the selected machine learning algorithms to identify 

trends in the dataset and finally make predictions (Panigrahi et al., 2023).  After training, the 

algorithm  represents the data in the form of a model (Lantz, 2015:16). The model was applied 

to the test dataset to evaluate how well it could generate accurate predictions. Thereafter, 

model performance was assessed using appropriate evaluation metrics 
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3.5.5 Model evaluation 

The performance of the selected supervised machine learning models was evaluated using 

standard regression metrics, namely Mean Squared Error (MSE), Root Mean Squared Error 

(RMSE), Mean Absolute Error (MAE), R-squared (R²), and Adjusted R-squared (Adjusted R²).  

These are the most frequently used regression metrics in the literature (Sudheer et al., 2022; 

Debroy & Seban, 2022; Owusu et al., 2024; Khandakar et al., 2024). Finally, the metrics results 

were compared by checking the minimal error in MSE, MAE and RMSE and the highest score 

in R² and Adjusted R² (Sudheer et al., 2022; Khandakar et al., 2024).  

3.5.6 Hyperparameter tuning 

Hyperparameter techniques help to enhance the model's performance. Hyperparameter tuning 

techniques, GridSearch and RandomSearch, were used in this study for a comparative 

analysis (Elgeldawi et al., 2021). To split the data into several combinations, both 5-fold and 

10-fold cross-validation methods were used (Lauguico et al., 2020; Khandakar et al., 2024). 

Then, the best hyperparameters were selected to train the selected supervised algorithms to 

predict the output. Two options of 5-fold and 10-fold were used to create a basis to 

experimentally determine the cross-validation option that would produce the best performance. 

3.5.7 Model Deployment 

A data-driven Decision Support System (DSS)  using machine learning was developed in order 

to deploy the best-performing models. It was developed as a Python web application using the 

Flask framework, deployed on PythonAnywhere (Mufid et al., 2019). The developed DSS  was 

made to be accessible to the various participants from anywhere (Gao et al., 2021). 

Participants could provide input data via the website. The system provided the participant with 

the predicted output, together with insights of the most significant factors contributing to the 

predicted value.  

3.5.8 User feedback and communication 

The usability of the developed DSS was evaluated using the System Usability Scale (SUS),  

which is a standardised self-completed questionnaire (Setemen et al., 2019; Saunders et al., 

2019:505, 506). The SUS questionnaire was created using Google Forms and integrated into 

the DSS website. Participants were invited to explore and evaluate the developed DSS 

(Setemen et al., 2019; Saunders et al., 2019: 505). The targeted population consists of 

aquaponics practitioners,  researchers and aquaponics community members (Saunders et al., 

2019:295).  Invitations to participate in the survey were distributed through various 

communication channels, including email, WhatsApp, and Facebook. Once the respondent 

completes the questionnaire, their responses are saved automatically (Brooke, 1996; 

Saunders et al., 2019: 544). A convenient sampling technique was used, where each 

participant volunteered to participate in the evaluation (Saunders et al., 2019: 324). Due to the 

voluntary nature of participation and online questionnaires, the survey experienced a relatively 
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low response rate; hence  in the study used a less representative sample (Chelghoum, 2024). 

Out of 127 individuals invited, only 16 responded, and 14 of those completed the SUS 

questionnaire in full. The collected data were analysed quantitatively, and insights were 

communicated using graphs and tables. 

3.6 Ethical considerations   

The ethical approval for this study was obtained from the Faculty of Informatics and Design 

Research Ethics Committee of the Cape Peninsula University of Technology (CPUT). Since 

the study involved human participants, all participants of this study were informed of their rights 

before participation(Saunders et al., 2019:55).  

3.6.1 Protection of people  

The aquaponics unit is situated at the University of Johannesburg (UJ) in Johannesburg, South 

Africa. Officials at the aquaponics site were not subjected to any harmful chemicals or products 

that could adversely affect their health. 

3.6.2 Protection of the environment 

Aquaponics units are environmentally safe and made from food-grade plastic so as not to 

release toxins into the environment.  The aquaponics unit also encompasses three living 

organisms: plants, bacteria and fish. This aquaponics system maintained a good ethical 

relationship and provided value to the natural environment. The study did not use any 

pesticides in the aquaponics unit that would harm the living organisms. The research ensured 

that the data collection did not cause any harm to the aquaponics unit's living organisms and 

the environment.   

3.6.3 Data storage 

The data were stored electronically on common digital storage devices and were kept at CPUT. 

The data did not contain sensitive information. It primarily included the collected data and 

feedback from the aquaponic farmers. Private information of aquaponics farmers was not 

stored. 

3.6.4. Informed consent 

The participants in the evaluation survey gave their informed consent, and participation was 

voluntary. 
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3.7 Chapter summary 

In this chapter, a summary of how the researcher designed the study is provided, along with 

the justification for the choice. The chosen research aspects applied in the study were ontology 

and epistemology. The ontological stance of the study was objectivism, whereas positivism 

was adopted for epistemology. The research approach was deductive and used the 

quantitative methodological choice to conduct an experiment, which was selected as the 

research strategy. Towards the end of this chapter, the ethical considerations applied in this 

study were explained. 
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CHAPTER FOUR 

DATA COLLECTION   

 

A vital step in the research process is gathering data, which forms the basis for insightful 

analyses and conclusions. This chapter explains how data was collected from the field and 

recorded to conduct the experiment. 

4.1 Data collection 

Experimentation is one of the data collection methods (Taherdoost, 2021; Ganesha & Aithal, 

2022). For this study, the primary data were collected from the field experiment. Aquaponics 

was set up in a real-world setting; thus, the field experiment provided a high external and 

ecological validity.  Ecological validity indicates how much the outcome of the study can be 

generalised to real-life conditions (Taherdoost, 2021; Ganesha & Aithal, 2022). Continuous 

quantitative data were collected and recorded from the field (Ganesha & Aithal, 2022).  

Data collection commenced on the 28th of July 2023 and concluded on the 8th of July 2024. 

This amounts to a period of 11 months (346 days). Data was collected in 4 cycles during this 

period. Table 4.1 presents the data collection cycle. The following sections explain how data 

were collected for this study. 

 

Table 4.1: Data collection cycle 

Cycle Starting date Ending date 

1 2023-07-28 2023-08-28 

2 2023-10-24 2023-11-13 

3 2024-02-27 2024-03-26 

4 2024-05-13 2024-07-08 

 

4.1.1 Aquaponics setup 

In this study, a media grow-bed-type coupled aquaponics system was set up within a tunnel in 

Johannesburg, South Africa, for data collection. Three 102 cm x 108 cm media grow bed units 

with one 1000 litre tank holding 27 Mozambique Tilapia fish were used.  In each grow bed, 

nine leafy lettuces were planted within a 12 cm distance of one another, and numbers were 

assigned to the plants. The plant numbering is shown in Figure 4.1. 
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Grow bed - 1 Grow bed - 2 Grow bed - 3 

 
Figure 4.1: Plant numbering in grow beds  

 

The aquaponics setup and fish used for this study are displayed in Figure 4.2 and Figure 4.3. 

 

 

Figure 4.2: Aquaponics setup  
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Figure 4.3: Mozambique Tilapia Fish  

 

4.1.2. Data recording 

Manual measuring instruments were used to determine the plant details and water quality 

details (Saunders et al., 2019:403). Humidity and ambient temperature measurements were 

done using an IoT device. 

4.1.2.1  Plant details 

The plant diameter and plant height were measured using a measuring scale and recorded in 

centimetres, and the leaves were counted manually.  A sample of measuring the plant height 

and diameter is shown in Figures 4.4 and 4.5. The plant growth was visually inspected, taking 

into account of the plant height, number of leaves, and leaf area (diameter) (Pandey et al., 

2017; Frasetya et al., 2021; Qadeer et al., 2020). Plant details were measured once a week. 

Plant height was measured from the grow bed level to the longest leaf of the plant (Valiente et 

al., 2018; Villanueva et al., 2022). Plant diameter/area was measured from one leaf end to 

another leaf end. 
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Figure 4.4: Plant height measuring  

 

 

 

 
 

Figure 4.5: Plant diameter measuring  
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4.1.2.2 Water parameter 

The selected water quality parameters for this study were pH, water temperature, TDS and 

EC.  The Nf-7 in 1 water quality tester pen was used to measure the water quality. Water quality 

measurement was conducted using a test pen, is depicted in Figure 4.6.  The units that were 

used in this study to measure the water quality are microsiemens per centimetre (μS/cm) for 

EC, parts per million (ppm)  for TDS  and Celsius (°C) for water temperature (Eneh et al., 2023;  

Abidin et al., 2024; Dewangan & Shrivastava, 2024). The water quality was measured daily, 

four times a day, between 9:00 AM to 12:00 PM. The results were recorded in an Excel sheet. 

More accuracy was ensured by calibrating the water quality tester each time before use. This 

procedure was followed as per the guidelines in the instrument manual located in the 

packaging (Mandap et al., 2018; Wibowo et al., 2019).  

 

 

Figure 4.6: Water quality measurement  

 

 

4.1.2.3 Ambient temperature and humidity 

The sensor DHT22, Node-RED, a visual programming tool and Raspberry Pi  were used in 

this study for ambient humidity and temperature data collection and visualisation (Lekić & 

Gardašević, 2018; Ekanayake et al., 2022; Arigela et al., 2024).  
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DHT22 Sensor:  It is a low-cost, reliable, and effective sensor for measuring ambient 

temperature and humidity. It is important to collect the ambient temperature where plant growth 

is directly dependent (Ghandar et al., 2021). 

Node-RED: This is a flow-based JavaScript development tool built on the Node.js platform 

and is used for visual programming (Lekić & Gardašević, 2018; Arigela et al., 2024). It is used 

for connecting hardware devices, API, and online services whilst providing a user-

management interface (Lekić & Gardašević, 2018; Arigela et al., 2024). This development tool 

allows users to add or remove nodes and connect them for communication without writing 

code (Lekić & Gardašević, 2018; Garbev, 2022). 

Raspberry Pi: It is an inexpensive, high-speed open-source computer device that consumes 

minimal power  whilst being portable, making it ideal for IoT applications (Pappu et al., 2017; 

Dutta et al., 2018; Hosny et al., 2023). In this study, the Raspberry Pi 4 model B with 4GB of 

RAM and a 16 GB SD card was used (Hosny et al., 2023). 

DHT22 was set up to collect the ambient temperature and humidity, which is shown in Figure 

4.7.  The collected data was recorded into an SD card in the Raspberry Pi unit. The data was 

recorded every two minutes and saved in a Comma-separated values file format.   

 

  

 

Figure 4.7: DHT22 used to collect ambient temperature and humidity data  

 

Installed Node-RED on the Raspberry Pi for visualising real-time data. When the user 

connected over the WIFI, ‘aqua_2’, they were able to access the Node-RED dashboard locally.  

It allowed the user to monitor the ambient humidity and ambient temperature data (Garbev, 
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2022).  Figure 4.8 depicts the block diagram of the Node-RED, DHT22 and Raspberry Pi 

integration that was used in this study.  

 

 
 
 

Figure 4.8: Architecture of IoT-based data collection and visualisation   

 

A sample dashboard, which visualises ambient temperature and humidity at 10-minute 

intervals for 2023-11-16, is shown in Figure 4.9.  

 

 

 

Figure 4.9: Node-RED dashboard display with ambient temperature and humidity  
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Data collection for this study was conducted over four cycles from the years, 2023 to 2024. To 

assist with prediction, the weekly average values of ambient temperature and humidity 

parameters were calculated and recorded to link with plant growth details. During the data 

collection, no missing data were identified for both plant and water quality parameters, due to 

data being recorded manually. However, anomalies were detected during the water quality 

data capturing, where the pH meter provided a strange reading in one instance. A UPS unit 

was installed to provide backup power for sensor data collection, mitigating the impact of load 

shedding. This was immediately replaced with a functioning unit and calibrated accordingly. 

The study ensured the precise and systematic documentation of all parameters. All recorded 

parameters were cross-checked by a senior field engineer onsite as well.  

4.2 Chapter summary 

This chapter describes the aquaponics setup used for the field study and explains how plant 

data, environmental data, and water quality data were all collected and recorded. Plant details, 

including height, diameter, and the number of leaves, were all manually measured using  the 

appropriate tools. Ambient temperature and humidity, were measured and recorded using IoT 

devices. Water quality parameters such as, water temperature, TDS, EC, and pH, were 

manually collected using a water quality test pen and recorded accordingly. 
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CHAPTER FIVE 
MACHINE LEARNING EXPERIMENTATION 

 

This chapter describes how the experiment was conducted using selected machine learning 

models.  Initially, the hardware and software specifications used in the study to conduct the 

experiments are explained. This is followed by the data preparation processes, model 

development, model training and finally the model evaluation.  The chapter then presents and 

discusses the results obtained from the various experiments. The study finally explores the 

application of SHapley additive explanations (SHAP) which assisted to identify the most 

influential features and interpreting the models.  

5.1 Hardware and software specifications 

The hardware and software specifications required for the machine learning experiment are 

explained in the following sections. 

5.1.1 Hardware 

The hardware specification used in this study is given in Table 5.1. 

 

Table 5.1: Hardware specification used for this study 

Operating System Windows 10 Home Single Language  

Version 22H2 

CPU Intel(R) Core(TM) i7-1165G7 @ 2.80GHz   

System Type x64 

RAM 8,00 GB 

 

 

5.1.2 Software 

Python programming language was used for machine learning as it supports a wide range of 

libraries focussing on data science and machine learning, including NumPy, matplotlib, 

pandas, sklearn, and others. It is also well-suited for web application development (Molin, 

2021:3; Castro et al., 2023). Jupyter Notebook was the platform used to develop the machine 

learning model which is an open-source, browser-based tool. This tool serves as a virtual lab 

notebook for coding, results execution, documentation, and visualisations (Prathanrat & 

Polprasert, 2018; Wang et al., 2021). The Python code was typed into the Jupyter Notebook’s 

code cell (Géron, 2019:48).  
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The main libraries used for ML model development are as follows: 

NumPy: Library that performs mathematical operations on arrays, including shape 

manipulation, mathematical primitives, and sorting  (Molin, 2021:40;  Castro et al., 2023). 

Pandas: This library is built on top of the NumPy library and is primarily used for data analysis 

and manipulation (Molin, 2021:40; Castro et al., 2023). Pandas provide two primary data 

structures, namely DataFrame and Series which assists in working with data (Molin, 2021:49; 

Castro et al., 2023). A frequently used data structure is the Data Frame (Castro et al., 2023). 

The Data Frame is a two-dimensional data structure that comprises rows and columns (Molin, 

2021:56; Castro et al., 2023). The Series class provides a data structure for single-type arrays 

(Molin, 2021:53).  

 

Scikit-learn/ sklearn: is a popular machine learning library that assists to build a model 

through implementing various learning algorithms and evaluating their performance (Fenner, 

2019:20; Joshi, 2020:222; Castro et al., 2023; Molin, 2021:538). It has the ability to create 

pipelines that streamlines the preprocessing process and ensures that both the training and 

testing sets are treated consistently (Molin, 2021:570). 

 

Matplotlib: This library is used to create a wide range of plots and visualisations for data 

analysis (Castro et al., 2023). 

 

Table 5.2 lists the libraries and versions used to develop the machine learning models. 

 

Table 5.2: Libraries used for the experiment 

  

 

 

 

 

 

 

Libraries Version 

Python 3.9.0 

sklearn 1.3.0 

shap 0.46.0 

Pandas 2.2.3 

xGboost 1.7.4 

matplotlib 3.5.1 
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5.2 Dataset 

Two datasets were used in this study for predictions. One focused on plant-related predictions, 

and the other was used for water quality-related predictions. 

I. Plant dataset  

The collected data were stored in an Excel sheet which contains 709 records. Details 

such as the number of leaves, plant diameter, plant height, ambient temperature, and 

ambient humidity were recorded. 

II. Water dataset 

The collected data were stored in an Excel sheet into 526 records. These include 

details such as the pH, TDS, EC, and water temperature. 

5.3 Data preparation 

Data analysis helps to explore the hidden patterns, relations between variables and trends 

(Dangeti, 2017:11;  Humayun et al., 2023). Data pre-processing prepares the raw data for 

analysis by addressing missing values, noisy data, and inconsistent formatting (Abdelaziz et 

al., 2025). Data preparation (wrangling) is part of data analysis (Molin, 2021:6). Data cleaning 

and data transformation are two tasks undertaken in this study as data preparation (Molin, 

2021:119).   During the data cleaning phase, redundant records were removed, and outliers 

were replaced with the median. After this process, the plant dataset contained 691 records, 

while the water dataset had 524 records. 

The feature selection process is important in data preprocessing (Abdelaziz et al., 2025). The 

dependent and independent variables were identified from both datasets to predict plant 

diameter, plant height, water pH, and water TDS. Thereafter, the dataset was split into a 

standard percentage ratio of 80:20 as a training and test set, respectively (Géron, 2019:31; 

Kumar et al., 2023; Daniel et al., 2025).  

The features in the dataset had different ranges, which can result in increased complexity and 

confusion. To improve model performance, it is necessary to scale all features to the same 

range through the feature engineering process (Molin, 2021:633; Keerthana et al., 2021; 

Abdelaziz et al., 2025). Hence, MinMaxScaler normalisation was applied separately to the 

feature and target variables in both the training and testing sets. This ensures that the values 

are scaled to fall within the range of 0 to 1 (Géron, 2019:72; Molin, 2021:562; Seegobin et al., 

2024). After data cleaning, splitting, and scaling, the dataset was ready for model training 

(Obiora et al., 2023). 
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5.4 Model development 

The supervised ML models Linear Regression (LR), Random Forest (RF), Deep Multilayer 

Perceptron (DML), eXtreme Gradient Boosting (XGBoost) and k-nearest neighbour (KNN) 

were selected for the prediction experiment. The plant and water quality datasets were used 

in the experiment (Islam et al., 2018; Keerthana et al., 2021; Ghandar et al., 2021;   Kumar et 

al., 2023;  Khandakar et al., 2024; Liu & Jiang, 2024). Hyperparameters were selected to 

structure the models, and this helps to enhance the model's performance  (Elgeldawi et al., 

2021). Hyperparameter tuning directly impacts the accuracy and generalisation capabilities of 

machine learning models (Dabool et al., 2024). Widely used hyperparameter tuning 

techniques, such as Gridsearch and Randomsearch were used to optimise the model's 

performance (Bischl et al., 2023; Dabool et al., 2024). Gridsearch performs an exhaustive 

search over a predefined set of hyperparameters, whereas Randomsearch performs a 

randomised search over hyperparameters to find optimal combinations for improving model 

performance (Yu & Zhu, 2020; Dabool et al., 2024). Randomsearch may perform better 

compared to  Gridsearch, particularly when some hyperparameters are not uniformly 

distributed.  Table 5.3 shows the various hyperparameters selected for the respective ML 

models.  The best hyperparameter values were thus selected using this process (Dangeti, 

2017,117; Molin, 2021,625; Ubayasena et al., 2023; Khandakar et al., 2024).  

The GridSearchCV and RandomSearchCV classes from Scikit-learn were used in this study 

for hyperparameter tuning (Molin, 2021:627; Khandakar et al., 2024; Abdelaziz et al., 2025). 

To split the data into multiple combinations, 5-fold and 10-fold cross-validation were used in 

hyperparameter tuning, which are commonly used and recommended (Fenner, 2019: 129). 5-

fold allows each model to be trained and tested, which reduces the chances of overfitting and 

provides a more accurate model performance assessment (Ozaga et al., 2024). 10-fold 

provides robust estimation because it uses 90% of the data for testing, whereas 10 % of the 

data is used for testing  (Lantz, 2013;319, 322).  The random splitting of data ensured a 

reduction in the chances of coincidental features getting more importance (Müller & Guido, 

2016:252, 254; Joshi, 2020:166). Scikit-learn’s k-fold cross-validation was used for cross-

validation (CV) (Molin, 2021:628).  
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Table 5.3: Hyperparameters selected for ML models  

Models Hyperparameters Description Reference 

Random 

Forest 

n_estimators The number of trees in the random 

forest 

(Molin, 2021:206; 

Olafadehan & Ahaotu: 

2023) 

max_features The maximum number of features 

that are evaluated for splitting at 

each node 

(Molin, 2021:185; 

Olafadehan & Ahaotu: 

2023) 

max_depth  The maximum depth of the tree. 

The Decision Tree stops right there. 

(Molin, 2021:180; 

Olafadehan & 

Ahaotu:2023) 

min_samples_split The minimum number of samples a 

node must have before it can be 

split. 

(Molin, 2021:185; 

Olafadehan & 

Ahaotu:2023) 

min_samples_leaf  The minimum number of samples a 

leaf node must have 

(Molin, 2021:185;  

Olafadehan & Ahaotu: 

2023) 

forest__bootstrap Whether bootstrap samples are 

used or not 

(Molin, 2021:196) 

KNN n_neighbors   Number of neighbours  (Molin, 2021:663) 

weights  Each neighbour’s impact on the  

prediction 

(Fenner, 2019:363) 

Algorithm The algorithm used to compute the 

nearest neighbours 

(Giuseppe, 2018:289; 

Fenner, 2019:363) 

leaf_size Leaf size of the tree-based 

algorithm  

(Giuseppe, 2018:289; 

Fenner, 2019:363) 

XGBoost learning_rate determines the contribution each 

tree will make to the final estimator 

(Molin, 2021:655) 

n_estimators Number of trees to control the 

ensemble training 

(Géron, 2019:206) 

 

max_depth Maximum depth of the tree (Géron, 2019:182) 

Subsample The fraction of training instances to 

be used for training each tree. 

(Géron, 2019:209) 

 

MLP hidden_layer_size Number of neurons in the hidden 

layer 

(Dangeti, 2017:344) 

max_iter Maximum number of iterations (Dangeti, 2017:39) 

Activation Activation function  (Dangeti, 2017:262) 

Solver Optimiser for the reduction of errors (Dangeti, 2017:262) 

Alpha Regularisation strength to avoid 

overfitting 

(Dangeti, 2017:262; 

Molin, 2021:669; 

Fenner, 2019:300) 

learning_rate Used to control the rate of 

convergence of the algorithm 

(Dangeti, 2017:287) 

batch_size Number of observations considered 

at each iteration  

(Géron, 2019:321; 

Dangeti, 2017:39) 

early_stopping Stop training as soon as the 

validation error reaches a minimum 

(Géron, 2019:142) 

 

learning_rate_init Initial learning rate  (Géron, 2019:355) 

Linear 

Regression 

fit_intercept  Exploration into models with 

different biases 

(Dangeti, 2017:38; 

Fenner, 2019:340; 

Olafadehan & Ahaotu, 

2023; Khandakar et 

al., 2024) 

copy_x  Copy all variables in the dataset. (Fenner, 2019:382;  

Khiem et al., 2022; 
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Olafadehan & Ahaotu, 

2023)  

 

5.5 Model training 

The selected supervised ML algorithms were used to train and predict the target variables. To 

optimise the model performance, the hyperparameters were fine-tuned using Gridsearch and 

Randomsearch (Ubayasena et al., 2023; Khandakar et al., 2024). Hyperparameter fine-tuning 

was done for the different prediction cases (plant diameter, plant height, water pH, and water 

TDS). The optimal hyperparameters that produced the best model performance for plant 

diameter, plant height, water pH, and water TDS predictions are presented in Tables 5.4 – 5.7.   

 

Table 5.4: Hyperparameters used in Gridsearch with 10-fold CV for plant diameter prediction 

ML models Hyperparameters 

Linear Regression  fit_intercept: [True, False] 

 copy_x: [True, False] 

Random Forest n_estimators: [50, 112, 175, 237, 300] 

max_features: ['sqrt', 'log2', 0.5] 

max_depth: [10, 20, 30, None] 

min_samples_split: [2, 5, 10] 

min_samples_leaf: [1, 2, 4] 

bootstrap: [True, False] 

KNN n_neighbors: np.arange(1, 10) 

weights: ['uniform', 'distance'] 

algorithm: ['auto', 'ball_tree', 'kd_tree', 'brute']   

leaf_size: np.arange(20, 40, 5) 

XGBoost learning_rate: [0.01, 0.1, 0.2] 

n_estimators: [100, 200], 

max_depth: [3, 4, 5], 

subsample: [0.8, 0.9, 1.0], 

MLP hidden_layer_sizes: [(200, 150, 100, 50),(150, 100, 50), (120, 

80, 40), (100, 50, 30), (50, 30)] 

max_iter: [10000, 50000]  

activation: ['relu'], 

solver: ['adam'], 

alpha: [0.0001, 0.001, 0.01] 

learning_rate: ['constant', 'adaptive'] 

batch_size: ['auto', 32, 64, 100,128] 

early_stopping': [True, False] 

learning_rate_init : [0.001, 0.01, 0.1] 
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Table 5.5: Hyperparameters used in Gridsearch with 5-fold CV for plant height prediction 

ML models Hyperparameters 

Linear Regression  fit_intercept: [True, False] 

 copy_x: [True, False] 

Random Forest n_estimators: [10, 50, 112, 175, 237, 300] 

max_features: [1.0] 

max_depth: [10, 20, 30, None] 

min_samples_split: [2, 5, 10] 

min_samples_leaf: [1, 2, 4] 

bootstrap: [True, False] 

KNN n_neighbors: np.arange(1, 5) 

weights: ['uniform', 'distance'] 

algorithm: ['auto', 'ball_tree', 'kd_tree', 'brute']   

leaf_size: np.arange(10, 30, 60) 

XGBoost learning_rate: [0.01, 0.05, 0.1] 

n_estimators:  [50, 100, 200] 

max_depth: [2, 3, 4] 

subsample: [0.8, 0.9, 1.0] 

MLP 

 

hidden_layer_sizes: [(200, 150, 100, 50), (150, 

100, 50), (120, 80, 40), (100, 50, 30), (50, 30)] 

max_iter: [10000, 20000, 50000], 

activation: ['relu', 'tanh'] 

solver: ['adam'], 

alpha: [0.0001, 0.001, 0.01] 

learning_rate: ['constant', 'adaptive'] 

batch_size: ['auto', 32, 64, 100,128] 

early_stopping': [True, False] 

learning_rate_init : [0.001, 0.005, 0.01] 

 

 

Table 5.6: Hyperparameters used in Gridsearch with 10-fold CV for water pH prediction 

ML models Hyperparameters 

Linear Regression  fit_intercept: [True, False] 

 copy_x: [True, False] 

Random Forest n_estimators: [50, 112, 175, 237, 300] 

max_features: ['sqrt', 'log2', 0.5] 

max_depth: [10, 20, 30, None] 

min_samples_split: [2, 5, 10] 

min_samples_leaf: [1, 2, 4] 

bootstrap: [True, False] 

KNN n_neighbors: np.arange(1, 5) 

weights: ['uniform', 'distance'] 

algorithm: ['auto', 'ball_tree', 'kd_tree', 'brute']   
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leaf_size: np.arange(25, 30, 5) 

XGBoost learning_rate: [0.01, 0.1, 0.2] 

n_estimators:  [100, 200] 

max_depth: [3, 4,5] 

subsample: [0.8, 0.9, 1.0] 

MLP 

 

hidden_layer_sizes: [(200, 150, 100, 50),(150, 100, 50), (120, 80, 

40), (100, 50, 30), (50, 30)] 

max_iter: [10000, 50000], 

activation: ['relu'] 

solver: ['adam'], 

alpha: [0.0001, 0.001, 0.01] 

learning_rate: ['constant', 'adaptive'] 

batch_size: ['auto', 32, 64, 100,128] 

early_stopping': [True, False] 

learning_rate_init : [0.001, 0.01, 0.1] 

 

 

Table 5.7: Hyperparameters used in Gridsearch with 10-fold CV for water TDS prediction 

ML models Hyperparameters 

Linear Regression  fit_intercept: [True, False] 

 copy_x: [True, False] 

Random Forest n_estimators: [50, 112, 175, 237, 300] 

max_features: ['sqrt', 'log2', 0.5] 

max_depth: [10, 20, 30, None] 

min_samples_split: [2, 5, 10] 

min_samples_leaf: [1, 2, 4] 

bootstrap: [True, False] 

KNN n_neighbors: np.arange(1, 10) 

weights: ['uniform', 'distance'] 

algorithm: ['auto', 'ball_tree', 'kd_tree', 'brute']   

leaf_size: np.arange(20, 40, 5) 

XGBoost learning_rate: [0.01, 0.1, 0.2] 

n_estimators:  [100, 200] 

max_depth: [3, 4,5] 

subsample: [0.8, 0.9, 1.0] 

MLP 

 

hidden_layer_sizes: [(200, 150, 100, 50),(150, 

100, 50), (120, 80, 40), (100, 50, 30), (50, 30)] 

max_iter: [10000, 50000] 

activation: ['relu'] 
solver: ['adam'], 

alpha: [0.0001, 0.001, 0.01] 

learning_rate: ['constant', 'adaptive'] 

batch_size: ['auto', 32, 64, 100,128] 

early_stopping': [True, False] 

learning_rate_init : [0.001, 0.01, 0.1] 
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Linear Regression  fit_intercept: [True, False] 

 copy_x: [True, False] 

 

5.6 Model performance evaluation 

The ML models were evaluated on the test dataset using the metrics Mean Squared Error 

(MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), R-squared (R²), and 

Adjusted R-squared (Adjusted R²) to assess their performance (Dangeti, 2017:29; Chicco et 

al., 2021). The evaluation metrics, purpose, and the best and worst value range are presented 

in Table 5.8. 

 

Table 5.8: Evaluation metrics, purpose and value range 

Evaluation metrics  Purpose Value range Reference 

Mean Squared Error 
(MSE) 

Squares of the difference 
between the predicted and 
actual value 

best value = 0 and 
worst value = +∞ 

(Chicco et al., 2021; 
Kumar et al., 2023; 
Priya, 2021; 
Sudheer et al., 2022) 

Root Mean Squared 
Error (RMSE) 

The square root of the 
Mean Squared error  

best value = 0 and 
worst value = +∞ 

(Chicco et al., 2021; 
Priya, 2021; 
 Kumar et al., 2023) 

Mean Absolute Error 
(MAE) 

Difference between the 
predicted value and the 
actual value   

best value = 0 and 
worst value = +∞ 

(Chicco et al., 2021; 
Priya, 2021; Kumar et 
al., 2023) 

R-squared (R²) Difference in variance with 
dependent variables 

best value = +1 
worst value = −∞ 

(Dangeti, 2017:29; 

Chicco et al., 2021; 

Priya, 2021;  

Sudheer et al., 2022) 

Adjusted R-squared 
(Adjusted R²)  

R-squared is adjusted for 
the number of independent 
variables in the model. 
 

Less than or equal 
to R² 

(Sudheer et al., 2022) 

The evaluation metrics and the corresponding scores of the best-performing models for 

different predictions, namely plant diameter, plant height, water pH, and water TDS, are 

presented in the subsequent sections. Both Gridsearch and Randomsearch were used for 

hyperparameter tuning with 5-fold and 10-fold cross-validation. The results of the best models 

are discussed here, while the remaining scores are provided in Appendix C for simplicity. 
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5.6.1 Plant diameter prediction 

Table 5.9 presents the evaluation scores for plant diameter prediction experiments when Gridsearch 

10-fold cross-validation was used.  

 

Table 5.9: Plant diameter prediction using Gridsearch with 10-fold CV  

ML models Mean 

Squared 

Error 

(MSE) 

Root Mean 

Squared Error 

(RMSE) 

Mean Absolute 

Error (MAE) 

R-

squared 

Adjusted- R-

squared 

Linear Regression 0.02 

 

0.15 

 

0.11 

 

0.54 0.53 

Random Forest 0.00 0.05 

 

0.03 

 

0.94 

 

0.94 

 

KNN 0.01 0.09 0.06 0.82 0.82 

XGBoost 0.00 0.05 0.03 0.94 0.94 

MLP 0.00 0.07 0.04 0.86 0.86 

 

Based on the evaluation metrics scores (Table 5.9) random forest (RF), and XGBoost 

produced the best performance for plant diameter prediction. This was followed by MLP, KNN, 

and Linear Regression. Both random forest (RF) and XGBoost achieved minimal error metrics, 

with MSE, RMSE, and MAE values of 0.00, 0.05, and 0.03, respectively. These models also 

demonstrated high predictive accuracy, as reflected in their R-squared and Adjusted R-

squared scores of 0.94 (94%).  

 

5.6.2 Plant height prediction 

Table 5.10 depicts the performance evaluation scores for plant height prediction using 

Gridsearch with 5-fold cross-validation. 

 

Table 5.10: Plant height prediction using Gridsearch with 5-fold CV 

ML models Mean Squared 

Error (MSE) 

Root Mean 

Squared 

Error 

(RMSE) 

Mean 

Absolute 

Error (MAE) 

R-

squared 

Adjusted- 

R-

squared 

Linear 

Regression 

0.01 0.09 0.06 0.80 0.80 

Random Forest 0.00 0.06 0.05 0.93 0.92 

KNN 0.00 0.06 0.04 0.91 0.91 

XGBoost 0.00 0.06 0.05 0.92 0.92 

MLP 0.00 0.06 0.04 0.92 0.92 

 

Gridsearch with 5-fold cross-validation provided the best overall performance. The Random Forest (RF) 

model, when tuned using Gridsearch with 5-fold cross-validation, achieved the highest performance 

(see Table 5.10). This was followed by MLP, XGBoost, KNN, and Linear Regression. RF achieved 

minimal MSE, RMSE, and MAE values of 0.00, 0.06, and 0.05, respectively, along with high R-squared 
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and Adjusted R-squared scores of 93% and 92%. 5-fold cross-validation with Gridsearch for RF 

produced the most suitable models for plant height prediction, followed by MLP, XGBoost, KNN, and 

Linear Regression 

5.6.3 Water pH prediction 

The best-performed evaluation scores for water pH prediction are shown in Table 5.11. 

Table 5.11: Water pH prediction using Gridsearch with 10-fold CV  

ML models Mean 

Squared 

Error 

(MSE) 

Root Mean 

Squared 

Error 

(RMSE) 

Mean 

Absolute 

Error (MAE) 

R-squared Adjusted- R-

squared 

Linear Regression 0.03 0.19 0.15 0.55 0.54 

Random Forest 0.02 0.13 0.09 0.78 0.77 

KNN 0.02 0.13 0.09 0.78 0.77 

XGBoost 0.02 0.13 0.09 0.79 0.79 

MLP 0.03 0.18 0.15 0.60 0.59 

 

In the water pH prediction experiment, 10-fold cross-validation using Gridsearch achieved the 

best overall performance (Table 5.11). XGBoost performed the best among all models in the 

10-fold cross-validation using Gridsearch for water pH prediction. This was followed by RF, 

KNN, MLP, and Linear Regression.  The XGBoost model achieved minimal MSE, RMSE, and 

MAE error values of 0.02, 0.13 and 0.09, along with high R-squared and Adjusted R-squared 

scores of 79%.  

5.6.4 Water TDS prediction 

The water TDS prediction performance evaluation, scored using Gridsearch 10-fold cross-

validation experiment, is shown in Table 5.12. 

Table 5.12: Water TDS prediction using Gridsearch with 10-fold CV  

ML models Mean 

Squared 

Error 

(MSE) 

Root 

Mean 

Squared 

Error 

(RMSE) 

Mean Absolute 

Error (MAE) 

R-

squared 

Adjusted- R-

squared 

Linear Regression 0.00 0.01 0.01 1.00 1.00 

Random Forest 0.00 0.03 0.01 0.97 0.97 

KNN 0.00 0.02 0.01 0.99 0.99 

XGBoost 0.00 0.03 0.01 0.98 0.98 

MLP 0.00 0.02 0.01 0.99 0.99 

 

In the water TDS prediction experiments, Gridsearch with 10-fold cross-validation delivered 

the best overall performance (Table 5.12).  The Linear Regression model particularly achieved 

minimal error values of 0.00 for MSE, 0.01 for RMSE, and 0.01 for MAE, along with R-squared 
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and Adjusted R-squared scores of 100%. This was followed by  KNN, MLP, XGBoost, and 

Linear Regression. Experiments on plant diameter, plant height, water pH, and water TDS 

prediction using Linear Regression, Random Forest, XGBoost, KNN, and MLP were conducted 

with Gridsearch and Randomsearch using 5-fold and 10-fold cross-validation. Overall, 

Gridsearch delivered better performance scores compared to Randomsearch. 

5.7 Model explainability 

Explainable AI aims to clarify and interpret machine learning models.  In this study, SHapley 

Additive Explanations (SHAP)  was used to present the mean absolute SHAP values through 

a bar graph and provide a global explanation of the selected models' predictions using a 

summary plot (Linardatos et al., 2021; Ekanayake et al., 2022). A deeper understanding of the 

features or parameters in an aquaponics system provides insight into their interdependencies 

and their combined impact on achieving optimal plant and fish production within the system. 

Bar graph: The visualisation demonstrates how each feature influences the prediction. The 

bars are coloured red and blue. Red bars denote features that positively influence the 

prediction, while blue bars denote features that negatively influence it. The length/size of each 

bar signifies the strength of the feature’s effect on the model’s prediction, with longer bars 

indicating a stronger influence. The order of the bars in the graph reflects the importance of 

each feature in influencing the model's prediction, from the most influential feature to the least 

influential feature. 

 

Summary plot:   Visualises how each feature contributes to the model's predictions throughout 

the entire dataset. The red dot indicates high feature values, whereas the blue dot indicates 

low feature values. Points that are further from zero on the X-axis denote features with a higher 

or lower contribution to the prediction.   

 

5.7.1 Plant diameter 

The feature height has the greatest influence in predicting plant diameter, as shown in Figure 

5.1, with a mean absolute SHAP value of +0.09, indicating that as plant height increases, the 

predicted diameter also increases, positively impacting the prediction. The second most 

influential feature is leaves, with a mean absolute SHAP value of +0.04, which also contributes 

positively to the diameter prediction. In comparison, humidity and temperature have relatively 

smaller positive effects, with mean absolute SHAP values of +0.03 and +0.02, respectively. 
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Figure 5.1: Mean absolute SHAP values of the random forest model for plant diameter prediction 

 

The SHAP analysis for plant diameter prediction showed that plant height is the most influential 

factor, with the number of leaves, ambient humidity, and ambient temperature following in 

order of importance. Plants' morphological characters, such as plant height and number of 

leaves, served as key indicators in this study (Alshammari et al., 2024). Ambient humidity and 

temperature directly influence plant growth and plant development, as they are essential for 

transpiration and the photosynthetic processes (Chia & Lim, 2022). High humidity during 

transpiration can reduce air circulation, causing plants to halt transpiration and nutrient uptake 

from the growing medium. Long periods of such humidity saturation may lead to gradual rotting 

of the plants. Higher temperatures contribute to speeding up physiological processes with 

positive and negative effects. The increased temperatures promote faster growth and higher 

yield however, it also on the other hand removes the functional components from leaves due 

to high transpiration rates (Chowdhury et al., 2021). Fluctuations in ambient temperature affect 

atmospheric moisture levels, thereby causing changes in ambient humidity. Hence, it is 

essential to monitor and maintain ambient humidity and temperature for optimal plant growth.  

According to Figure 5.2, higher values of plant height led to an increase in the predicted plant 

diameter, while a lower number of leaves resulted in a slight decrease in the prediction. Low 

humidity levels are associated with an increase in the predicted plant diameter, whereas high 

humidity levels have a slight decreasing effect. However, the temperature values are more 

evenly distributed, with both positive and negative impacts on the predicted diameter. High 

temperatures can either positively or negatively affect the prediction, depending on the specific 

data point. 
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Figure 5.2: SHAP global explanation of the random forest model for plant diameter prediction 

              

5.7.2 Plant height 

The diameter feature exhibits the highest mean absolute SHAP value of +0.1 as shown in 

Figure 5.3, making it the most influential factor in the model's prediction of plant height. This 

indicates that as the diameter increases, the model predicts a higher plant height. The second 

most influential feature is leaves, with a mean absolute SHAP value of +0.06, which also 

positively contributes to the prediction. Among the environmental factors, temperature and 

humidity play a less significant role, with temperature showing a mean absolute SHAP value 

of +0.04 and humidity having the least positive contribution with a mean absolute SHAP value 

of +0.01. 

 

Figure 5.3: Mean absolute SHAP values of the random forest model for plant height prediction 

                                                 

In plant height prediction, SHAP analysis revealed that plant diameter had the most significant 

influence, followed by the number of leaves,  ambient temperature and ambient humidity. Plant 
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growth was determined by the width of the leaves and the number of leaves. Ambient 

temperature influences the speed of energy processing in plants. Furthermore, humidity has a 

direct bearing on the photosynthesis process and thus influences the growth and development 

of plants  (Chia & Lim, 2022). 

 

According to Figure 5.4, high values for the features' diameter, leaves, and temperature 

contribute to an increase in the predicted plant height. In contrast, humidity is more evenly 

distributed between positive and negative contributions. However, high humidity slightly 

increases the predicted plant height, while low humidity slightly decreases it. 

 

 

 

Figure 5.4: SHAP global explanation of the random forest model for plant height prediction 

 

5.7.3 Water pH 

The TDS feature demonstrated the highest mean absolute SHAP value of +0.19 as seen in 

Figure 5.5, making it the most influential factor in the pH model's prediction. This indicates that 

as the TDS increases, the model predicts a higher pH value. The second most influential 

feature is temperature, with a mean absolute SHAP value of +0.06, which also positively 

contributed to the prediction. EC has the least positive contribution with a mean absolute SHAP 

value of +0.03. 
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Figure 5.5: Mean absolute SHAP values of XGBoost for water pH prediction 

 

In the pH prediction SHAP analysis, TDS indicated the most influential feature, followed by 

water temperature and EC. The pH level indicates the acidity or alkalinity of the water. This 

has a direct effect on how well the fish and other organisms survive in the water.  There is a 

strong correlation between EC and TDS in the water. The relationship between EC and TDS 

was influenced by the temperature and pH of the water (Dewangan & Shrivastava, 2024). 

When the water temperature and pH increase, more toxic ammonia is produced (Maulini et al., 

2022). Excess acid or alkali in the water can be toxic for many organisms as well, and thus, it 

is critical to monitor and maintain the pH level as much as possible (Kok et al., 2024) 

According to Figure 5.6, low TDS values are associated with an increase in the predicted pH 

value. Also, it is noted that low-temperature values contributed to both increases and 

decreases in the predicted pH value. Additionally, low EC values slightly increase the predicted 

pH value, whereas high EC value decreases the predicted pH value. 

 

 

Figure 5.6: SHAP global explanation of the XGBoost model for water pH prediction 
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5.7.4 Water TDS 

The EC feature exhibits the highest mean absolute SHAP value of +0.18, making it the most 

influential factor in the TDS model's prediction, as shown in Figure 5.7. This indicates that as 

EC increases, the model predicts a higher TDS value. The second most influential feature is 

pH, with a mean absolute SHAP value of +0.01, which also contributes positively to the 

prediction. However, the feature temperature, with a mean absolute SHAP value of +0, does 

not significantly contribute to the TDS prediction. 

 

 

Figure 5.7: Mean absolute SHAP values of linear regression for water TDS prediction    

 

Based on the SHAP analysis for TDS prediction, EC appeared as a strong influencing feature 

due to its high correlation with TDS. TDS reflects the amount of total nutrients, concentration 

of dissolved ions, salt and organic matter present in the water, whereas EC measures the 

ability of water to conduct electricity.  Dissolved solids in water consist of ions, which are 

responsible for its ability to conduct electricity. This creates a strong correlation between EC 

and TDS, as an increase in the concentration of dissolved ions leads to higher EC values. 

Therefore, EC can be used as an indicator of TDS in water.  However, the relationship between 

these two parameters is not always linear, as their behaviour can be influenced by various 

factors such as pH, water temperature, and the types of dissolved solids present in the water 

(Dewangan & Shrivastava, 2024). Temperature can affect both EC and TDS. Higher 

temperatures increase the electrical conductivity of water by enhancing ion mobility and also 

raise the solubility of salts and certain minerals, resulting in higher TDS levels. Therefore, it is 

important to measure water temperature along with EC and TDS (Dewangan et al., 2023). 
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According to Figure 5.8, high EC values increase the predicted TDS value, while low EC values 

decrease it. Similarly, low pH values slightly increase the prediction, whereas high pH values 

slightly decrease it. In addition, high-temperature values slightly increase the prediction, while 

low-temperature values slightly decrease it.  

 

 

Figure 5.8: SHAP global explanation of the linear regression model for water TDS prediction 

 

5.8 Chapter summary 

In this chapter, the hardware and software specifications used to perform the machine learning 

experiment are described in detail. The experiment involved applying various models to make 

predictions, followed by an evaluation of their performance using regression metrics. Finally, 

the chapter explored feature importance, using SHAP (SHapley Additive Explanations) to 

understand the contribution of each feature to the model's predictions. 
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CHAPTER SIX 
DECISION SUPPORT SYSTEM DEVELOPMENT AND EVALUATION 

 

This chapter outlines the development and evaluation of the decision support system for 

aquaponics plant growth and water quality predictions. The system was developed using the 

Flask framework and deployed on PythonAnywhere. The  System Usability Scale (SUS)  was 

used to evaluate the usability of the developed system. The SUS is a reliable, free-of-cost 

instrument used for worldwide assessments of system usability applications (Brooke, 1996;  

Kortum & Bangor, 2013).  

6.1 Requirements of the decision support system for aquaponics prediction 

Aquaponics is a complex system that combines various disciplines. Various aquaponic and 

environmental parameters are thus crucial to the monitoring and control. However, deciding 

which parameters to be monitored and controlled can be tricky and challenging, as 

requirements vary. Additionally, changes in one parameter can influence others within the 

system.  

The requirements of the aquaponics decision support system were identified based on 

research gaps in the literature and the key features of a DSS (Ghandar et al., 2021; Pechlivani 

et al., 2025). These include support for semi-structured or unstructured decision-making, 

provision of accurate predictions and actionable insights, and an interactive user interface  

(Darbi & Saleh, 2022; Pechlivani et al., 2025). Previous studies have primarily concentrated 

on developing predictive models and have not addressed the model explainability or the 

translation of model outputs to support decision-making (Ghandar et al., 2021; Amano et al., 

2022;  Debroy & Seban, 2022; Owusu et al., 2024; Liu et al., 2024; Khandakar et al., 2024; Liu 

& Jiang, 2024).  To address these overlooked areas, the researcher defined requirements that 

would enable the DSS to predict key aquaponics parameters, such as plant growth, water 

quality, and to also rank the influencing factors in priority order. These functionalities will 

provide stakeholders with a clear direction on which parameters should be considered for 

aquaponics monitoring and control. This will improve both system performance and decision-

making effectiveness. 

The requirements of the proposed decision support system are the following: 

i. It must be able to assist stakeholders in recognising the key parameters that require 

monitoring and controlling. 

ii. The system must predict plant height, plant diameter, water pH, and water TDS based 

on user inputs.  

iii. The system ranks the influencing parameters from highest to lowest.  
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iv. This system’s ranking must provide guidance on which parameters need to be 

prioritised for monitoring and control to ensure optimal system performance.  

v. The stakeholders must be able to provide feedback on the usability of the system.  

vi. The system must be accessible from mobile devices and computers on any browser 

over the internet. 

6.2 System design of the decision support system  

This study aimed to develop a decision support system that assists stakeholders in the 

decision-making process. To achieve this, a data-driven decision support system was designed 

based on machine learning (ML).  The purpose of the ML prediction was to identify the best 

algorithm for predicting plant diameter, plant height, water pH and water TDS  (see Section 

5.6).  Thereafter, the best-performing algorithms were used to design a DSS using the Flask 

framework. The design allowed the stakeholders to provide input and receive predictions, 

accompanied by relevant explanations as a response from the DSS system. The system used 

ML-specific models to predict plant growth or water quality parameters. In addition, it presented 

the most influential parameters that contributed to the prediction, ranked from highest to 

lowest. Later, the system enabled users to evaluate its usability from their own perspective. 

The insights enabled stakeholders to monitor system performance more effectively and take 

corrective action on parameters according to their prioritisation, if necessary. The system has 

front-end and back-end components. The front-end handles the user interface, while the back-

end is responsible for the business logic. The web-based architecture of the data-driven DSS 

system is shown in Figure 6.1. 

 

 

 

Figure 6.1: The web-based architecture of the data-driven DSS  
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Through the user interface (UI), users can access the system and send requests. These 

requests may involve loading web pages or making predictions. The request passes through 

the web server and the Web Server Gateway Interface (WSGI) to the Flask framework 

application. Based on the request, the system processes the data and sends a response back 

to the user.  

The proposed DSS had a user interface that enabled users to interact effectively with the 

system. A user could navigate through the system, select the type of prediction to be 

performed, and then provide the required input data. After, the system will process the 

information provided and generate a prediction for the user. The process workflow of the 

decision support system is shown in Figure 6.2. 

 

 



 

111 
 

 

 

Figure 6.2: Process flow of the decision support system 
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The system loads at the home page, where a user is presented with a brief overview of the 

project’s purpose. From there, a user can navigate through the system using the main menu 

options such as Aquaponics, Prediction, and Feedback. When a user selects the Aquaponics 

option, the user is provided with a brief introduction about aquaponics. Choosing the Prediction 

option allows a user to select one of the prediction options that are available, such as plant 

height, plant diameter, water pH, or water TDS. After making a choice by clicking a radio button, 

the user is prompted to input the relevant data into text fields and then required to click the 

Submit button to generate a prediction. The system first validates the input format. If the data 

entered is incorrect or incomplete, the user is prompted to re-enter the information. Once valid 

inputs are provided, the system processes the data in the backend and generates the 

prediction results along with a ranked list of the most influential parameters from the highest 

to lowest. If the user wishes to evaluate the usability of the system, it can be done by selecting 

the Feedback option, which allows the user to rate the usability of DSS based on the user’s 

experience of the system.  

6.3 Decision support system development  

This section explains Python web application development using the Flask framework. It also 

expands on the web page layout and the deployment of the developed application on 

PythonAnywhere. 

6.3.1 Flask framework 

Flask is a lightweight micro framework for Python web development created by Armin 

Ronacher   (Copperwaite & Leifer, 2015:1;  Grinberg, 2018:3; Mufid et al., 2019). Flask has 

three main dependencies: routing, debugging and Web Server Gateway Interface (WSGI) 

subsystems, which come from Wekzeug; the template engine from the Jinja2 package; and 

command line integration from the Click package  (Grinberg, 2018:3; Mufid et al., 2019). It 

provides developers with the libraries for handling web development tasks and allows them to 

integrate the extension based on the project requirements.  

The development process utilised Flask version 3.0.3, Pandas version 2.2.3, Python version 

3.9.13, and Bootstrap version 5.1.3. Cascading Style Sheets (CSS) were used to style HTML 

pages. The developed prototype is named AquaGrowForecast. The website’s main menu 

(Navigation bar) and its objectives are summarised in Table 6.1. 
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Table 6.1: Website's main menu  

Website Menu Objective 

Home Page Explanation about the project. 

Aquaponics Introduction to aquaponics. 

Prediction Allows users to select options and make predictions, navigating to respective 
pages based on their choices. 

Feedback Enables users to provide feedback by completing a survey. 

 

6.3.2 Layout of webpages 

Webpage layout design is shown in figures 6.3 – 6.9. 

a. A brief introduction about the project is given on the homepage. The layout is shown 

in Figure 6.3. 

 

Figure 6.3: The home page layout 

 

b. The aquaponics webpage provides a brief description of aquaponics to the user. The 

web page layout is shown in Figure 6.4.  

 

 

Figure 6.4:  Aquaponics web page layout 
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c. In the prediction page,  the user can select an option to proceed with the desired 

prediction. The page layout is shown in Figure 6.5. 

 

 

Figure 6.5: The prediction page layout 

 

 

d. When a user selects the "Plant diameter prediction" option, the system navigates the 

user to the appropriate page where the user can input the required details for the 

output. The diameter prediction page layout is shown in Figure 6.6. 

 

 

 

Figure 6.6: The diameter prediction page layout  
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e. When a user selects the "Plant height prediction" option, the system navigates the user 

to the height prediction page, where the user can input the required details for the 

output. The height prediction page layout is shown in  Figure 6.7. 

 

 

Figure 6.7: The height prediction page layout 

 

 

f. When a user selects the "Water pH" option, the system will navigate to the pH prediction 

page, where the user can input the required details to generate the output. The water 

pH prediction page layout is shown in Figure 6.8. 

 

 

Figure 6.8: The water pH prediction page layout 
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g. When a user selects the "Water TDS prediction" option, the system navigates the user 

to the TDS prediction page, where the user can input the required details for the output. 

The TDS prediction page layout is shown in Figure 6.9. 

 

 

 

Figure 6.9: The TDS prediction page layout 

 

The participants were presented with the opportunity to use the system, after which they 

provided feedback on its usability. 

The feedback page consists of three sections: 

1. Informed Consent – This section provides participants with the purpose of the 

feedback process and seeks their voluntary agreement to participate. Figure 6.10 

below provides a structure of informed consent. 
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Figure 6.10: Section 1- informed consent form  

 

 

2. Aquaponics Background – This page was used to obtain information on the 

background, role and aquaponics experience level of the participant.  The options are 

shown in Figure 6.11. 
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Figure 6.11: Section 2 - Aquaponics background form 
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6.3.3 Deploying Flask Apps: PythonAnywhere 

PythonAnywhere is a cloud-based online Integrated Development Environment (IDE) 

(https://www.pythonanywhere.com/) based on the Python programming language  (Visvizi et 

al., 2020; Suryawanshi, 2021; Sarala et al., 2021). PythonAnywhere was founded by Giles 

Thomas and Robert Smithson in 2012 (Suryawanshi, 2021).  It provides web hosting services, 

which fall under the platform as a service (PaaS) model (Suryawanshi, 2021). PaaS is a service 

that enables web developers to host their websites on a platform that is managed and 

controlled by a third party (Stouffer, 2015:248). In the PythonAnywhere environment, users 

can deploy the Flask framework or Django framework applications, and it also allows users to 

write, edit and run the code directly (Visvizi et al., 2020; Suryawanshi, 2021).  The developed 

Flask application is deployed using PythonAnywhere. 

 

The PythonAnywhere link for predicting plant height, plant diameter, water pH and water 

TDS is available on annjiby.pythonanywhere.com. The link to the feedback survey is:  

AquaGrowForecast - Survey. Figures 6.12 and 6.13 shows typical instances (screenshots) of 

the system under use. 

 
 
 
 

 
 

Figure 6.12:  Screenshot of plant diameter prediction 

 
 

https://www.pythonanywhere.com/
https://annjiby.pythonanywhere.com/
https://docs.google.com/forms/d/e/1FAIpQLSf0xjJ3pZ2b509GDvp5LiJ4iGKFKIVorS3NPaYtJXQkgF1fNQ/viewform
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Figure 6.13: Screenshot of pH prediction 

 

6.4 Usability evaluation using SUS 

This section describes the procedure that was used to assess the usability of the developed 

DSS by using the System Usability Scale (SUS) questionnaire. The SUS is a survey instrument 

to measure the usability of the variability of products and services, including websites, which 

was developed by Brooke in 1986 (Kortum & Bangor, 2013; Setemen et al., 2019).   The SUS 

is a five-point Likert scale consisting of 10 questions or survey items that users of the website 

will respond to (Setemen et al., 2019; Kortum & Bangor, 2013).  The usability measurement 

assesses how well users can interact with the developed system. According to  ISO 9241-11, 

usability measures should cover effectiveness, efficiency and satisfaction (Brooke, 1996). 

 
i. Effectiveness measures the ability of users to complete tasks using the system and the 

quality of the output of the performed tasks (Brooke, 1996; Kortum & Bangor, 2013). 

ii. Efficiency measures the resources consumed by the user to perform the tasks (Brooke, 

1996;    Kortum & Bangor, 2013). 

iii. Satisfaction measures a user’s assessment based on how well the developed system 

met his or her needs (Brooke, 1996; Kortum & Bangor, 2013). 

It has been a trusted and reliable tool for assessing system usability, due to the speed and 

cost-effectiveness of implementation. A SUS template already exists, which is a tried and 

tested template. A basic tweaking of the SUS template would ensure that it is effective in the 

context of a particular study. 
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The participants rated each question on a scale from 1 to 5, with 1 indicating strong 

disagreement and 5 indicating strong agreement with the statement (Brooke, 1996).    

The basic approach adopted is to let the users experience and work on the website. Later, 

they were requested to complete the survey. 

The updated SUS questions/ items are presented below in Table 6.2. 

 

Table 6.2: Updated SUS questions/items 

No. SUS items Strongly  

disagree 

Strongly  

agree 
 

1. I think that I would like to use 

AquaGrowForecast system frequently. 

 

 

     

1 2 3 4 5 

2. I found AquaGrowForecast system 

unnecessarily complex. 

 

     

1 2 3 4 5 

3. I thought AquaGrowForecast system was 

easy to use. 

 

     

1 2 3 4 5 

4. I think that I would need the support of a 

technical person to be able to use 

AquaGrowForecast system. 

 

     

1 2 3 4 5 

5. I found the various functions in 

AquaGrowForecast system were well 

integrated. 

 

     

1 2 3 4 5 

6. I thought there was too much inconsistency 

in AquaGrowForecast system. 

 

     

1 2 3 4 5 

7. I would imagine that most people would 

learn to use AquaGrowForecast system 

very quickly. 

 

     

1 2 3 4 5 

8. I found AquaGrowForecast system very 

cumbersome to use. 

 

     

1 2 3 4 5 

9. I felt very confident 

using AquaGrowForecast system. 

 

     

1 2 3 4 5 

10. I needed to learn a lot of things before I 

could get going 

with AquaGrowForecast system. 

 

     

1 2 3 4 5 
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6.5 Criteria for selecting participants to evaluate the developed system 

Aquaponics practitioners, including researchers and members of the aquaponics community, 

were selected to evaluate the developed system through a survey that involved answering 

SUS (System Usability Scale) questions/ items. Requests were sent via email, WhatsApp, and 

Facebook. In total, 127 requests were sent. Table 6.3 shows the number of requests sent 

through each platform. 

 

Table 6.3: Request-sent platforms and population 

Request-sent platforms Population 

Email 90 

Facebook 22 

WhatsApp 15 

Total 127 

 

A total of 16 responses were received. However, one participant did not score an item, and 

another did not specify their role in the aquaponics field. Hence, these two responses were 

eliminated and the remaining 14 respondents who answered all three sections were used for 

the evaluation.  

6.6 Evaluation results 

This segment provides a summary of the surveyed information based on the 3 sections 

addressed in the feedback page.  

Section 1: 

All 14 respondents had voluntarily participated in the feedback survey. 

Section 2: 

This section provides a background summary of the participants in the aquaponics field. 

Table 6.4 depicts the participants’ aquaponics background summary based on their roles, 

years of experience, and country of residence.  
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Table 6.4: Aquaponics background summary 

Questions Aquaponics background with the number of participants in 

parentheses) 

What is your role(s) in the field 

of aquaponics? 

Researcher (7), Hobbyist (4), Student (2) and Farmer & 

researcher (1) 

How many years of experience 

do you have in the field of 

aquaponics? 

1-3 years  (7), Less than 1 year (5), 7-10 years (1) and 4-6 (1) 

Country of residence South Africa (5), India (4), United Kingdom (1), Germany (1), 

Zimbabwe (1), Australia (1) and Philippines (1)  

  

Section 3: 

This part summarises each item based on the scale provided by the participants. The 

participants answered the SUS items using a scale ranging from 1 (Strongly Disagree) to 5 

(Strongly Agree), exhibiting their level of agreement or disagreement with each statement. This 

scale helps to assess the usability of the developed system based on participants’ views. The 

odd-numbered items have positive meanings, while the even-numbered items have negative 

meanings. 

Item 1: I think that I would like to use the AquaGrowForecast system frequently.  

This is to establish the practical assistance that this developed system would render to the 

participant. 

Summary: The majority, 12 out of 14 (scale 4 and 5),  participants provided positive ratings, 

where they would use the developed system frequently. Question 1 summary is depicted in 

Figure 6.14. 

  

 

Figure 6.14: SUS item 1 responses 
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Item 2: I found the AquaGrowForecast system unnecessarily complex.  

This question is to determine if the AquaGrowForecast system is unnecessarily complicated 

to use. 

Summary: The majority of participants, 11 out of 14 (scale 1 and 2), confirmed that they don’t 

find the system unnecessarily complex.  Item 2 summary is depicted in Figure 6.15. 

 

 

Figure 6.15: SUS item 2 responses  

 

Item 3: I thought the AquaGrowForecast system was easy to use. 

This question is to ensure consistency with the above question and validate if the system 

was easy to use. 

Summary: A total of 11 out of 14 participants (scale 4 and 5) reported back that the system 

was easy to use. Item 3 summary is depicted in Figure 6.16. 
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Figure 6.16: SUS item 3 responses 

 

Item 4: I think that I would need the support of a technical person to be able to use the 

AquaGrowForecast system.  

 

This tries to ascertain if the system is straightforward and does not require any technical 

knowledge, etc., to use the system. 

 

Summary: With 8 out of 14 (scale 1 and 2), there is a balanced overview of the participants 

expressing the need for a technical person to assist with the developed system. Item 4 

summary is depicted in Figure 6.17. 

 

 

 

Figure 6.17: SUS item 4 responses 

 

Item 5: I found the various functions in the AquaGrowForecast system were well 

integrated. This ensures that the participant finds the system seamless and continuous.  
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Summary: 11 out of 14 feedback points (scale 4 and 5) expressed confidence that the 

system is well integrated. Item 5 summary is depicted in Figure 6.18. 

 

 

 

Figure 6.18: SUS item 5 responses  

 

Item 6: I thought there was too much inconsistency in the AquaGrowForecast system. 

This is a follow-up question to the previous question to ensure validation of the above answers 

and establish more certainty in the feedback. 

Summary: 10 out of 14 responses (scale 1 and 2) show that the participants did not feel there 

was an inconsistency in the system. The Item 6 summary is depicted in Figure 6.19. 

 

 

 

Figure 6.19: SUS item 6 responses 
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Item 7: I would imagine that most people would learn to use the AquaGrowForecast 

system very quickly.  

This is to establish if the participant sees it as a potentially easy system to use for the 

general public and other users. 

Summary: 11 out of 14 responses (scale 4 and 5) showed confidence in people being able 

to learn to use the system easily. Item 7 summary is depicted in Figure 6.20. 

 

 

Figure 6.20: SUS item 7 responses 

 

Item 8: I found the AquaGrowForecast system very cumbersome to use.  

This is to validate the above questions as well as get feedback on whether the system had any 

unnecessary complications. A need to streamline the system more, if required, is established. 

Summary: 10 out of 14 responses (scale 1 and 2) showed that they don’t believe the system 

to be cumbersome to use. The item 8 summary is depicted in Figure 6.21. 
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Figure 6.21: SUS item 8 responses 

 

Item 9: I felt very confident using the AquaGrowForecast system. This is to get an idea of 

whether the participant was comfortable and reassured of the system’s operation and their use 

of it. 

Summary: With 12 out of 14 responses (scale 4 and 5), it is clear that the majority of the 

respondents are confident in using the AquaGrowForecast system. The item 9 summary is 

depicted in Figure 6.22. 

 

 

 

Figure 6.22: SUS item 9 responses 

 

Item 10: I needed to learn a lot of things before I could get going with the 

AquaGrowForecast system. 
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This is to establish if the participant needed a lot of preparation or background knowledge 

before using the developed system. 

Summary: 5 out of 14  participants (scale 4 and 5) need to learn a lot of things before using 

the developed AquaGrowForecast system. However, half (7) of the participants (item points 1 

and 2) suggested they don’t need to learn a lot of things to get going with the 

AquaGrowForecast system. Item 10 summary is depicted in Figure 6.23. 

 

 

 

Figure 6.23: SUS item 10 responses 

 

The received individual scores are meaningless in isolation. Hence, an SUS Score needs to 

be calculated to measure the overall usability of the system. The individual scores are shown 

in Table 6.5. 

Table 6.5: Individual scores 

Participants I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 

1.  4 3 3 4 3 3 5 2 4 4 

2.  4 4 4 3 4 2 3 2 3 4 

3.  2 2 3 3 5 2 4 3 4 3 

4.  4 4 4 4 4 4 5 4 4 5 

5.  4 1 5 4 5 2 4 2 4 4 

6.  1 1 3 1 2 3 4 3 4 1 

7.  4 2 4 2 4 2 4 2 3 2 

8.  4 2 4 2 3 1 4 1 4 3 

9.  4 1 4 2 5 1 3 1 5 1 

10.  4 2 4 2 5 2 4 2 5 4 

11.  5 1 5 1 5 1 5 1 5 1 

12.  4 2 5 2 4 1 4 2 4 2 

13.  4 1 4 2 5 3 4 3 5 2 

14.  5 1 5 3 5 1 3 1 5 2 
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6.6.1 Calculating average system usability scores 

The following method was applied to calculate the SUS score. The item score contributions 

from each question. Each item's/question's score contribution range is from 0 to 4. For odd-

number items 1, 3, 5, 7, and 9, the score contribution is the scale position minus 1 (x-1). For 

even-number items 2, 4, 6, 8, and 10, the contribution is subtracting the scale position from 5 

(5-x). To obtain the System Usability score, multiply the sum of the item scores by 2.5. This 

ranges from 0 (extremely poor usability) to 100 (excellent usability) (Brooke, 1996).  

Total score = Sum of ((Score of each odd-numbered item − 1) + (5 − Score of each even-

numbered item)) 

The calculated System Usability score is shown in Table 6.6. 

Table 6.6: System Usability score 

Participants I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 Total 

score 

*2.5 

(System 

Usability 

score  ) 

1. 4 3 3 4 3 3 5 2 4 4 23 57.5 

2. 4 4 4 3 4 2 3 2 3 4 23 57.5 

3. 2 2 3 3 5 2 4 3 4 3 25 62.5 

4. 4 4 4 4 4 4 5 4 4 5 20 50 

5. 4 1 5 4 5 2 4 2 4 4 29 72.5 

6. 1 1 3 1 2 3 4 3 4 1 25 62.5 

7. 4 2 4 2 4 2 4 2 3 2 29 72.5 

8. 4 2 4 2 3 1 4 1 4 3 30 75 

9. 4 1 4 2 5 1 3 1 5 1 35 87.5 

10. 4 2 4 2 5 2 4 2 5 4 30 75 

11. 5 1 5 1 5 1 5 1 5 1 40 100 

12. 4 2 5 2 4 1 4 2 4 2 32 80 

13. 4 1 4 2 5 3 4 3 5 2 31 77.5 

14. 5 1 5 3 5 1 3 1 5 2 35 87.5 

 

The system Usability score, along with each participant's background, is shown in Table 6.7. 
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Table 6.7: Individual’s System Usability score 

Participants Role Years of 

experience 

Country SU score 

1.  Hobbyist Less than 1 year South Africa 57.5 

2.  Farmer; Researcher 1-3 years South Africa 57.5 

3.  Researcher Less than 1 year India 62.5 

4.  Researcher Less than 1 year Philippines 50 

5.  Researcher 1-3 years South Africa 72.5 

6.  Researcher 7-10 years Australia 62.5 

7.  Researcher 1-3 years South Africa 72.5 

8.  Hobbyist Less than 1 year South Africa 75 

9.  Researcher 1-3 years India 87.5 

10.  Student 1-3 years India 75 

11.  Hobbyist 4-6 years United Kingdom 100 

12.  Student 1-3 years Germany 80 

13.  Hobbyist 1-3 years India 77.5 

14.  Researcher Less than 1 year Zimbabwe 87.5 

 

In this survey, individual participants' SUS scores ranged from 50 to 100, where 50 represented 

marginally acceptable usability and 100 indicated excellent usability. The highest score of 100 

was achieved by a hobbyist with 4–6 years of experience, while the lowest score of 50 was 

reported by a researcher with less than 1 year of experience. When analysing the data based 

on each role: 

i. Researchers: The usability scores varied widely, ranging from 50 to 87.5. This 

group demonstrated the broadest experience levels, spanning from less than 1 year 

to over 10 years in the aquaponics field. The variation in scores suggests that 

researchers' perception of usability may be influenced by their extensive and 

diverse expertise in the domain. 

ii. Hobbyists: This group exhibited scores ranging from 57.5 to 100, with experience 

levels between less than 1 year and 6 years. The highest score of 100 was recorded 

in this category, indicating that hobbyists with moderate experience may find the 

system particularly intuitive and user-friendly.  

iii. Students: Scores for students were relatively consistent, falling between 75 and 

80. All participants in this group had 1–3 years of experience, suggesting a more 

uniform perception of system usability compared to the other groups. 

iv. Farmer and researcher: With 1–3 years of experience, a score of 57.5 was 

recorded, classified as moderately acceptable. This suggests that the system's 

usability meets a basic standard but may require enhancements to better align with 

the needs and expectations of users in this category.  

Finally, the converted mean score of the SUS is placed into the following categories: 

acceptance level, grading scale, and adjective rating. Bangor et al. (2009) developed the 

categories for the SUS scores. The Acceptability range is categorised into three sections: “Not 
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Acceptable”, “Marginal”, and “Acceptable”. The letter grade scale is classified as ‘A’,  ‘B’, ‘C’, 

‘D’, and ‘F’.  This is an alternate way to understand the absolute meaning of an SUS score. 

The adjective ratings are split into seven: “Worst Imaginable”, “Poor”, “OK”, “Good”, “Excellent” 

and “Best Imaginable”. These provide a subjective label for an individual study’s mean SUS 

score (Bangor et al., 2009; Setemen et al., 2019). A System Usability Scale is shown in Figure 

6.24. 

 

.  

Figure 6.24: System Usability Scale (Bangor et al., 2009) 

 

The analysis emphasises system usability perceptions, influenced by the roles and experience 

levels of participants within the aquaponics field. The mean SUS score of the developed 

system after evaluation was 72.68, indicating that the system is acceptable in terms of the 

system usability scale shown in Figure 6.22. As per the Grade Scale, it falls under a rating of  

‘C’ category, and the adjective rating is “Good”. The implication is that the system has good 

usability. This also gives the assurance that users find the system easy to use. 

6.7 Chapter summary 

This chapter explained how the decision support system was developed and evaluated. The 

results section presents the participants' responses and feedback, along with an overview of 

their basic background. The insights from the results highlight the usability of the developed 

system as acceptable.  
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CHAPTER SEVEN 
CONCLUSION AND RECOMMENDATIONS 

 

This chapter provides a summary of this study’s research objectives. It also discusses the 

contributions of the study, the study’s limitations, and concludes with recommendations and 

suggestions for future research. 

7.1 Research summary 

The study aimed to develop a decision support system capable of predicting plant growth, 

specifically in terms of plant diameter and height for the hydroponics component, as well as 

predicting the water quality for the aquaculture component of aquaponics. To achieve this, four 

research objectives were formulated as stated in Section 1.4.2. The thesis chapters were 

structured to address these research objectives.  

Chapter One introduces the study’s motivation, background, aim, objectives, and research 

questions, highlighting its significance and scope. This chapter is concluded with an overview 

of the thesis structure.  

Chapter Two provides a theoretical overview, covering key concepts such as hydroponics, 

aquaculture, aquaponics, machine learning, decision-making, decision support systems, the 

Internet of Things (IoT), intelligent IoT, expert systems, and explainable AI. Additionally, the 

chapter identifies the gaps in existing studies and highlights areas that require further research 

exploration.  

Chapter Three discusses the research philosophy, approach, methodological choices, and 

strategy. Experimental research design was outlined, as illustrated in Figure 3.1. The chapter 

also describes the data collection and analysis methods. Finally, the ethical considerations that 

guided the study were explained.  

Chapter Four explains how aquaponics was set up for plant, water, and environment data 

collection and how data was collected using various methods, such as manual and  IoT 

technologies. Thereafter, how the collected data was stored for experimentation is further 

explained.  

Chapter Five presents the machine learning experimentation for aquaponics and the 

evaluation process. Experiments were performed using selected supervised machine learning 

algorithms, and the models' performances were evaluated using regression metrics. Finally, 

the most influential features for the aquaponics predictions were identified using SHAP — 

SHapley Additive exPlanations. 
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Chapter  Six presents the development, deployment, and evaluation of the decision support 

system for aquaponics prediction. The usability and effectiveness of the developed system 

were assessed by using the  System Usability Scale (SUS).  

Chapter Seven provides a summary of the research objectives, contributions, and 

recommendations for future research. 

The following explains how the related activities were carried out and how they contributed to 

achieving the study's objectives. 

Objective 1:  To identify the key parameters used to measure plant growth and the 

monitored water quality parameters in aquaponics systems. 

A detailed review of the existing literature was conducted to identify the parameters commonly 

considered for assessing plant growth and water quality in aquaponics systems. The review 

found the parameters used to estimate plant growth to be ambient temperature, light intensity, 

plant height, stem diameter, and leaf area. The determination of water quality in aquaculture 

was not restricted to one parameter. The review showed that several parameters, such as pH, 

temperature, total dissolved solids (TDS), electrical conductivity (EC), ammonia, and dissolved 

oxygen, are used to assess the water quality.  However, most studies emphasise pH and water 

temperature due to the significant impact they have on the maintenance of water quality and 

supporting fish growth in aquaponics systems. 

Based on these findings, this study selected the following parameters, plant height, leaf count, 

plant diameter, ambient temperature and ambient humidity to determine the plant growth.  For 

water quality analysis, pH, water temperature, TDS, and EC parameters were selected.  

Objective 2:  To develop a prediction model that can be used to determine the optimal level 

of aquaponics systems by using machine learning (ML). 

This study explored four possibilities to predict plant growth and water quality in a tunnel-based 

media aquaponics system. By either estimating plant height or plant diameter, plant growth 

was established whereas water quality was determined by estimating either pH or TDS. For 

plant height estimation in plant growth, the following features, plant diameter, number of 

leaves, ambient temperature, and ambient humidity were considered. Features such as plant 

height, number of leaves, ambient temperature, and ambient humidity were considered for 

plant diameter estimation. For water quality pH estimation, the considered parameters were 

TDS, water temperature, and EC. Meanwhile, for water TDS estimation in water quality, the 

following features, pH, water temperature, and EC, were considered.  Thereafter, five 

supervised machine learning algorithms, namely, Linear Regression (LR), Random Forest 

(RF), Multilayer Perceptron (MLP), eXtreme Gradient Boosting (XGBoost), and k-Nearest 
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Neighbor (KNN), were developed to realise aquaponics prediction covering the aspects of 

plant growth and water quality. 

Objective 3: To determine the performance of the different ML algorithms based on regression 

metrics such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean 

Absolute Error (MAE), R-squared and Adjusted R-Squared. 

The developed ML models were evaluated and compared using various regression metrics: 

Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), 

R-squared, and Adjusted R-squared. When evaluation was done, the conclusion derived was 

that the Random Forest algorithm outperformed others in predicting plant height and plant 

diameter. In the prediction of pH, eXtreme Gradient Boosting (XGBoost) performed the best. 

Linear Regression was found to be the most effective for predicting TDS. These results were 

based on the criteria to minimise errors and produce the most precise predictions for each 

parameter.   

Objective 4. To design and develop an ML-based decision support system for aquaponics to 

support decision-making. 

Post evaluation, the models with the best performance were selected to design and develop 

the decision support system (DSS) for aquaponics prediction using the Flask framework. After 

the user selects the various prediction options, the developed DSS could predict plant growth 

or water quality. The system then provided insights to users by ranking parameters based on 

their influence in the selected prediction, from high to low, using SHapley Additive exPlanations 

(SHAP) values. 

Objective 5. To assess the usability of a decision support system for aquaponics prediction 

from the perspective of aquaponics stakeholders. 

To evaluate the effectiveness of the developed DSS, a usability feedback survey was 

conducted by using the System Usability Scale (SUS). After the evaluation, the developed DSS 

obtained an overall score of 72.68%. This indicated the favourable acceptance of the system 

and  highlighted the system’s usability and potential value for aquaponics stakeholders and 

practitioners. 

7.2 Contributions of the study 

This study has made theoretical, methodological and practical contributions, which are 

discussed below. 

7.2.1 Theoretical contribution 

This study offers a theoretical contribution by providing a better understanding of how machine 

learning models can be applied to predict plant growth and water quality in the context of an 
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aquaponics system. Another theoretical contribution is the implementation of explainable AI 

(XAI) in aquaponics farming to identify the parameters which have the highest influence on 

plant growth, and also to predict water quality based on data collected under South African 

weather conditions. Furthermore, the study advances theoretical knowledge in decision 

support systems by illustrating how machine learning predictions can enhance decision-

making processes and improve operational outcomes in aquaponics. The incorporation of the 

System Usability Scale (SUS)  evaluation method further contributes to the understanding of 

users’ system acceptance. 

7.2.2 Methodological contribution 

This study investigated the application of intelligent Internet of Things, which includes the 

integration of IoT, machine learning, and AI (decision support system) for aquaponics 

prediction. Most aquaponics studies have applied machine learning for various aquaponics 

predictions, or IoT for data collection, or both. However, the integration of the Intelligent Internet 

of Things that combines ML, IoT, and AI has not been extensively explored. Also, this study 

addressed the problem of the lack of explainability of aquaponics solutions through the 

application of explainable AI.   

7.2.3 Practical contribution 

The practical contribution of this study lies in developing a decision support system (DSS) for 

aquaponics. The developed DSS will assist practitioners in making data-driven decisions, 

improving efficiency, and ensuring sustainability in aquaponics operations. The system will 

provide valuable insight based on the sizable data previously captured and processed by the 

trained ML models. Inexperienced newcomers and aquaponics hobbyists can be guided on 

the plant growth and water quality parameters expected at various intervals of the aquaponics 

cycle. Users of relatively bigger aquaponics setups can be assisted in validating their collected 

data against the values presented by this DSS for aquaponics prediction. The Aquaponics web 

application is easy to use, as per the SUS Survey conducted, and thus, data is presented in a 

readable and concise manner to the stakeholders. The most crucial parameters are provided 

so that the user can be aware of the parameters that have the most impact on overall plant 

growth and water quality. 

7.3 Limitations of the study 

The limitations that were observed during and after the study are outlined below:  

i. Limited parameters:  A limited number of parameters for prediction, which may not fully 

capture the complexity of aquaponics systems. The investigation did not incorporate 

elements such as extended ambient environmental conditions and more detailed water 

and nitrogen quality cycle parameters. Incorporating an extensive set of parameters would 
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increase the scale of the study tremendously, thus, the most critical and impactful 

parameters were selected and used. 

 

ii. Different aquaponics settings: The results could not be applied to different system 

configurations because the aquaponics environment was set in a grow-bed system. Other 

aquaponics setup options, such as floating raft systems, Nutrient Film Technique (NFT)  or 

Deep Water Culture (DWC), were not used in this study. 

 

iii. Study duration: Due to the short time frame during which the data was gathered, it might 

not accurately represent seasonal or long-term trends. An extended period of observation 

would provide more insights into the system's performance over time and enable a more 

accurate depiction of seasonal changes. 

 

iv. Restricted number of IoT devices: The study's reliance on a small number of IoT devices 

might have limited the extent of system monitoring and data collection. Better system 

performance monitoring and analysis may be possible with more complete data from a 

larger range of IoT devices. 

 

v. Deployment: XGBoost was initially selected for water pH prediction because it had the 

best performance. However, it could not be deployed on the PythonAnywhere platform due 

to library incompatibility. Therefore, random forest, which had a comparatively good 

performance and was compatible with the PythonAnywhere platform, was deployed. 

 

vi. Low farmer engagement: Furthermore, the study observed a lower number of farmers’ 

participation in the DSS evaluation, which might have restricted the amount of feedback 

gathered. It needs to be considered that aquaponics is still growing, hence, there are not 

many aquaponics farmers and practitioners in South Africa yet. Time constraints and 

insufficient use of technology for existing farmers are possibly other reasons. 

7.4 Recommendations 

Given the severe poverty and unemployment situation in South Africa, farming solutions such 

as aquaponics can be further investigated and possibly supported by the national or local 

government.  

Aquaponics has the advantage of using the least amount of land or area while providing 

maximum fish and crop yield, which is highly beneficial twofold. Urban areas have limited 

space/land availability, whereas rural areas struggle with very limited water resources. Both 

these constraints are addressed by aquaponics through minimal land and water usage 
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requirements. The government can look at training, providing funding and market accessibility 

for these potential users/stakeholders. Workshops and training sessions can help upskill 

inexperienced stakeholders. 

Aquaponics setups can be scaled up by farmers as per the needs of their customers or the 

clients they sell their crops to. Local shops and restaurants can be provided with cost-effective, 

organic, fresh food produce from nearby areas instead of complicated logistics and expensive 

transportation. 

The adoption of the developed decision support system for aquaponics can guide the users 

and the aquaponics workforce. The government can provide a platform for work seekers and 

aspirants who would like to get into the aquaponics field.  Many fields connected within 

aquaponics have many opportunities for learning and specialising in its various fields and 

gaining valuable experience in the process. The government can even look at setting up 

potential organic food hubs and markets for communities and residents to benefit from such 

food production methods.  

The infrastructure, small enterprise development initiatives, and funding must have a proper 

framework and must be implemented consistently. This will encourage interest from investor 

communities. This, in turn, will also encourage and broaden the usage of cutting-edge 

technologies such as artificial intelligence (AI), machine learning, and the Internet of Things 

(IoT) in aquaponics. The most cost-effective and reliable systems will easily gain adoption, 

leading to optimal aquaponics farming production. 

7.5 Future work 

Further research opportunities in aquaponics are outlined below: 

i. Expanding plant selection, fish selection and system architecture in aquaponics: 

This study used leafy lettuce in hydroponics and Mozambique Tilapia in aquaculture. The 

scope of the study can be expanded to a wider variety of plants and fish, including 

various hydroponics system setups in aquaponics (Hao et al., 2020; Naputol et al., 2024; 

Liu & Jiang, 2024; Channa et al., 2024). Larger modular or scalable aquaponics unit 

setups can be investigated and further explored. The advantage of a scalable model is 

that it can be initially offered in a cost-effective, small setup for local communities. The 

local community can derive economic benefit with just a small investment, subscription 

or rent-to-own model. Moreover, and importantly, since unemployment is a dire situation 

in South Africa, local jobs in the community can be created after initial training is provided 

on the aquaponics units' setup process and maintenance. When the demand for fresh, 
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organic produce increases, the units can easily be scaled up to a larger unit that 

produces more output.   

 

ii. Long-term, seasonal and climate-inclusive aquaponic research: Access to publicly 

available aquaponics data remains limited and challenging (Channa et al., 2024). The 

creation and use of an efficient dataset within the aquaponic environment is one of the 

primary requirements for the aquaponic study (Taji et al., 2023). Studies thus far have 

focused on a much shorter data collection timeline. More detailed and long-term data 

collections, incorporating seasonal and various climatic conditions, can be done  (Liu & 

Jiang, 2024; Anila & Daramola, 2024).  

 

iii. Explainable AI methods in aquaponics: Despite the increasing use of IoT and 

machine learning technologies in aquaponics, research has not been able to incorporate 

ML interpretability techniques adequately enough to explain how predictions are made. 

ML  interpretation will support the aquaponics community in advanced decision-making 

( Ekanayake et al., 2022). An explainable AI (XAI) method, namely SHAP, was utilised in 

this study to identify the most influential features. Expanding with more XAI methods 

could provide a comprehensive comparison with other explainability techniques (Das & 

Rad, 2020; Ekanayake et al., 2022; Anila & Daramola, 2024).  

 

iv. Prediction model: Five prediction models were used in the study, which allowed for the 

investigation of the most successful of these prediction models. Finding additional 

machine learning and deep learning algorithms, particularly for complex systems, could 

be advantageous and yield better results (Liu & Jiang, 2024). Particular attention should 

be given to predictive analytics using deep learning in aquaponics, along with 

comparative evaluation against other machine learning models (Lauguico et al., 2020; 

Taji et al., 2023; Liu & Jiang, 2024). 

 

v. Smart aquaponics system for monitoring and control:  In the field of aquaponics 

research, the majority of IoT technologies are focused on monitoring. However, control 

mechanisms are becoming more essential to minimise human interaction and increase 

management effectiveness in maximising yield (Anila & Daramola, 2024). This can lead 

to an intelligent and self-regulating aquaponics system (Mahmoud et al., 2023). 
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vi. Blockchain in aquaponics: Blockchain technology makes aquaponics supply networks 

more transparent and traceable (Manju et al., 2024). It can be used to track every step 

of the aquaponics supply chain from seed to the actual final produce sold to the 

consumer. This will allow for complete visibility of the entire process to the customer. A 

comprehensive understanding of the aquaponics harvesting process among 

stakeholders and customers will contribute significantly to the holistic development of 

aquaponics systems. 

 

vii. Technology integration in aquaponics: Smart aquaponics represents a growing field 

of investigation, where existing studies often integrate IoT, machine learning, or a 

combination of both technologies. Smart technology integration, including expert 

systems, blockchain, explainable AI (XAI), IoT, and machine learning, needs to be 

investigated (Anila & Daramola, 2024). Smart technology integration in aquaponics will 

lead to benefits such as lower labour demands, improved product quality, and more 

sustainability (Wang et al., 2020; Mahmoud et al., 2023). 

 

viii. Aquaponics predictions: Real-time monitoring of the aquaponics system is aided by 

basic sensors, which are sourced cost-effectively. However, sensors for ammonia, nitrite, 

and nitrate are costly and difficult to obtain. Machine learning can be used to bridge the 

gap of having to purchase these expensive sensors by predicting the values needed 

(Channa et al., 2024). A growing world population requires food security for survival.  

Mounting concerns over food security have placed great emphasis on developing  

methods to accurately forecast anticipated crop yields (Muruganantham et al., 2022). 

This crop yield prediction requirement can be addressed by using relevant sensors and 

machine learning technologies, which enable better alignment between supply quantities 

and market demand. 

 

ix. Decision support system for smart aquaponics: Future studies could incorporate a 

wider range of larger data sets thus enhancing the decision support system (DSS) by 

predicting crop and fish yields more accurately. Real-time data monitoring and collection 

from sensors or IoT devices could be integrated to continuously update predictions and 

make automatic adjustments based on constantly changing conditions. This can support 

an end-to-end smart aquaponics solution, which will provide the entire range of 

prediction, monitoring, controlling and decision support in aquaponics (Ramirez, 2024; 

Sridevi et al., 2024; Anila & Daramola, 2024). A future study could focus on building a 

fully automated aquaponics system that adjusts itself without any outside intervention. 

This system can regulate itself based on the external weather patterns predicted for that 

geographical area. This can ensure optimal adaptation to the outside weather and 
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climatic conditions that have an effect on the productivity of the aquaponics system. The 

web or app interface can provide feedback, recommendations, and suggestions in 

response to queries from aquaponics practitioners (Ubayasena et al., 2023; Senapaty et 

al., 2024). 

 

x. Enhancing aquaponics evaluation through stakeholder participation: Increasing 

stakeholder participation in future evaluation studies will help improve the breadth and 

relevance of the findings. As indicated by Anila and Daramola (2024), very few studies 

have thoroughly examined the validation of the suggested aquaponics systems, which 

does not permit effective evaluation of the proposed solution. A mobile application can 

be developed, thus enabling broader accessibility and increased adoption among 

stakeholders (Eneh et al., 2023).     

 

xi. Emerging evaluation methods and metrics in aquaponics for new technologies: 

Comparison, observation, and expert feedback were used to evaluate the prototype, 

whereas performance evaluation metrics were used to assess the machine learning 

model (Anila & Daramola, 2024).  As indicated by Anila and Daramola (2024), further 

evaluation methods need to be explored as technologies such as IoT, machine learning, 

explainable AI (XAI), and blockchain are increasingly integrated. The business and 

organisational requirements and objectives also need to be considered.  
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Appendix C: Experimental data 

 

Table C.1: Plant diameter prediction using Gridsearch with 5-fold CV  

ML models Mean 

Squared 

Error 

(MSE) 

Root Mean 

Squared Error 

(RMSE) 

Mean Absolute 

Error (MAE) 

R-

squared 

Adjusted- R-

squared 

Linear Regression 0.02 0.15 0.11 0.54 

 

0.53 

 

Random Forest 0.00 0.05 0.03 0.93 0.93 

 

KNN 0.01 0.09 0.06 0.84 0.83 

XGBoost 0.00 0.05 0.03 0.93 0.93 

MLP 0.01 0.08 0.06 0.82 0.81 

 

 

Table C.2: Plant diameter prediction using Randomsearch with 5-fold CV  

ML models Mean 

Squared 

Error 

(MSE) 

Root Mean 

Squared Error 

(RMSE) 

Mean 

Absolute 

Error (MAE) 

R-

squared 

Adjusted- R-

squared 

Linear Regression 0.02 

 

0.15 

 

0.11 

 

0.54 

 

0.53 

 

Random Forest 0.00 0.05 

 

0.03 

 

0.93 

 

0.93 

 

KNN 0.01 0.09 0.06 0.82 0.82 

XGBoost 0.00 0.05 0.03 0.94 0.94 

MLP 0.01 0.07 0.05 0.85 0.86 

 

 

Table C.3: Plant diameter prediction using Randomsearch with 10-fold CV  

ML models Mean 

Squared 

Error 

(MSE) 

Root Mean 

Squared Error 

(RMSE) 

Mean Absolute 

Error (MAE) 

R-squared Adjusted- R-

squared 

Linear    

Regression 

0.02 

 

0.15 

 

0.11 

 

0.54 

 

0.53 

 

Random Forest 0.00 

 

0.05 

 

0.03 

 

0.94 

 

0.93 

 

KNN 0.01 0.09 0.06 0.82 0.82 

XGBoost 0.00 0.05 0.03 0.94 0.94 

MLP 0.01 0.07 0.05 0.85 0.86 
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Table C.4: Plant height prediction using Gridsearch with 10-fold CV 

ML models Mean 

Squared 

Error 

(MSE) 

Root Mean 

Squared 

Error 

(RMSE) 

Mean 

Absolute 

Error (MAE) 

R-

squared 

Adjusted- 

R-

squared 

Linear Regression 0.01 0.09 0.06 0.80 0.80 

Random Forest 0.00 0.06 0.05 0.92 0.92 

KNN 0.00 0.07 0.05 0.91 0.91 

XGBoost 0.00 0.06 0.05 0.92 0.92 

MLP 0.00 0.06 0.05 0.92 0.92 

 

 

Table C.5: Plant height prediction using Randomsearch with 5-fold CV 

ML models Mean 

Squared 

Error (MSE) 

Root Mean 

Squared 

Error 

(RMSE) 

Mean 

Absolute 

Error (MAE) 

R-

squared 

Adjusted- 

R-

squared 

Linear Regression 0.01 0.09 0.06 0.80 0.80 

Random Forest 0.00 0.06 0.05 0.92 0.92 

KNN 0.00 0.07 0.05 0.91 0.91 

XGBoost 0.00 0.06 0.05 0.92 0.92 

MLP 0.00 0.06 0.05 0.92 0.91 

 

 

 

Table C.6: Plant height prediction using Randomsearch with 10-fold CV 

ML models Mean 

Squared 

Error (MSE) 

Root Mean 

Squared 

Error 

(RMSE) 

Mean 

Absolute 

Error 

(MAE) 

R-squared Adjusted- 

R-

squared 

Linear Regression 0.01 0.09 0.06 0.80 0.80 

Random Forest 0.00 0.06 0.05 0.92 0.92 

KNN 0.00 0.07 0.05 0.91 0.91 

XGBoost 0.00 0.06 0.05 0.92 0.92 

MLP 0.00 0.06 0.05 0.92 0.91 

 

 

Table C.7: Water pH prediction using Gridsearch with 5-fold CV  

ML models Mean Squared 

Error (MSE) 

Root Mean 

Squared 

Error 

(RMSE) 

Mean 

Absolute 

Error (MAE) 

R-squared Adjusted- R-

squared 

Linear Regression 0.03 0.19 0.15 0.55 0.54 

Random Forest 0.02 0.14 0.10 0.77 0.76 

KNN 0.02 0.13 0.09 0.79 0.78 

XGBoost 0.02 0.13 0.09 0.79 0.79 

MLP 0.03 0.17 0.14 0.65 0.64 

 

 



 

175 
 

Table C.8: Water pH prediction using Randomsearch with 5-fold CV  

ML models Mean 

Squared 

Error (MSE) 

Root Mean 

Squared 

Error 

(RMSE) 

Mean 

Absolute 

Error (MAE) 

R-squared Adjusted- R-

squared 

Linear Regression 0.03 0.19 0.15 0.55 0.54 

Random Forest 0.02 0.14 0.10 0.77 0.76 

KNN 0.02 0.13 0.09 0.78 0.77 

XGBoost 0.02 0.15 0.12 0.71 0.71 

MLP 0.03 0.18 0.14 0.59 0.59 

 

 

Table C:9 Water pH prediction using Randomsearch with 10-fold CV  

ML models Mean 

Squared 

Error (MSE) 

Root Mean 

Squared 

Error 

(RMSE) 

Mean 

Absolute 

Error (MAE) 

R-squared Adjusted- R-

squared 

Linear Regression 0.03 0.19 0.15 0.55 0.54 

Random Forest 0.02 0.13 0.09 0.77 0.77 

KNN 0.02 0.13 0.09 0.78 0.77 

XGBoost 0.02 0.15 0.12 0.71 0.71 

MLP 0.03 0.18 0.14 0.59 0.59 

 

 

Table C.10: Water TDS prediction using Gridsearch with 5-fold CV  

ML models Mean 

Squared 

Error 

(MSE) 

Root Mean 

Squared 

Error 

(RMSE) 

Mean Absolute 

Error (MAE) 

R-squared Adjusted- R-

squared 

Linear Regression 0.00 0.01 0.01 0.99 0.99 

Random Forest 0.00 0.02 0.01 0.99 0.99 

KNN 0.00 0.02 0.01 0.99 0.99 

XGBoost 0.00 0.02 0.01 0.98 0.98 

MLP 0.00 0.03 0.02 0.98 0.98 

 

 

Table C.11: Water TDS prediction using Randomsearch with 5-fold CV  

ML models Mean 

Squared 

Error (MSE) 

Root 

Mean 

Squared 

Error 

(RMSE) 

Mean Absolute 

Error (MAE) 

R-squared Adjusted- 

R-squared 

Linear Regression 0.00 0.01 0.01 0.99 0.99 

Random Forest 0.00 0.03 0.01 0.98 0.98 

KNN 0.00 0.02 0.01 0.99 0.99 

XGBoost 0.00 0.03 0.01 0.98 0.98 

MLP 0.00 0.02 0.02 0.99 0.99 
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Table C.12: Water TDS prediction using Randomsearch with 10-fold CV 

ML models Mean 

Squared 

Error (MSE) 

Root 

Mean 

Squared 

Error 

(RMSE) 

Mean Absolute 

Error (MAE) 

R-squared Adjusted- R-

squared 

Linear Regression 0.00 0.01 0.01 1.00 1.00 

Random  Forest 0.00 0.03 0.01 0.98 0.97 

KNN 0.00 0.02 0.01 0.99 0.99 

XGBoost 0.00 0.03 0.01 0.98 0.98 

MLP 0.00 0.02 0.02 0.99 0.99 

 

 

 

 

 


