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ABSTRACT

Aquaponics is an emerging farming technique. Managing and optimising aquaponics systems
is complex and requires expertise in aquaculture, hydroponics, and microbiology. Effective
decision-making is crucial to maintaining optimal conditions for plants and fish so the system
can thrive. Current research emphasises water quality monitoring but lacks the analysis of key
parameters and their impact on plant growth and system productivity. There is a need for data-
driven solutions to help users, especially beginners, optimise resource use and enhance

performance.

The research aimed to develop a decision support system (DSS) for aquaponics that provides
data-driven insights into plant growth and water quality using Explainable Artificial Intelligence
(XAl). The following research objectives were used to achieve this: 1) Identify key parameters
for monitoring plant growth and water quality. 2) Develop machine learning (ML) prediction
models. 3) Evaluate the performance of different ML algorithms using regression metrics. 4)
Design and develop a machine learning-based decision support system to facilitate decision-
making in aquaponics. 5) Assess the decision support system’s usability from the aquaponics

stakeholders’ perspective.

This study adopted an objectivist ontological stance to determine the feasibility of developing
a DSS for aquaponics prediction. The epistemological stance was positivism. To meet the
objectives, a deductive research approach was adopted with a quantitative methodological
choice. The data parameters collected are plant height, plant diameter, Potential of Hydrogen
(pH), Total Dissolved Solids (TDS), water temperature, ambient temperature and humidity. An
experimental design was used to train and evaluate several supervised ML algorithms: linear
regression, random forest, K-Nearest Neighbor (KNN), eXtreme Gradient Boosting (XGBoost),
and Multi-Layer Perceptron (MLP). These models were assessed using the regression metrics
Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE),
R-squared (R?), and Adjusted R-squared.

The results revealed that both random forest and XGBoost achieved the best performance for
plant diameter prediction with MSE = 0.00, RMSE = 0.05, and MAE = 0.03 with R? and Adjusted
R? scores of 94%. In plant height prediction, random forest performed well with MSE = 0.00,
RMSE = 0.06, and MAE = 0.05, along with a high R? of 93% and Adjusted R? of 92%. XGBoost
performed well in pH prediction with MSE = 0.02, RMSE = 0.13, and MAE = 0.09, along with
high R? and Adjusted R? of 79%. In TDS prediction, linear regression performed well with MSE
=0.00, RMSE = 0.01, and MAE = 0.01, along with perfect R? and Adjusted R? scores of 100%.



A DSS was developed using the FLASK framework to predict plant height and diameter, water
pH, and TDS. SHapley Additive exPlanations (SHAP) was used to enhance transparency by
showing each feature's impact on predictions. The usability of DSS was evaluated by
aquaponics stakeholders through the System Usability Scale (SUS) by. The DSS obtained a

usability rating of 72%, which indicates an acceptable level of usability.

Theoretically, the study demonstrates applying ML and XAl to predict plant growth and water
quality under South African conditions. Methodologically, it offers a structured approach to
integrating ML, Internet of Things and Al in aquaponics. Practically, it delivers a DSS to help
practitioners monitor and optimise key parameters, improving overall system performance and

outcomes.
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CHAPTER ONE
INTRODUCTION AND BACKGROUND

1.1 Motivation for the study

As the global human population grows, the demand for food will proportionally increase (Hsiao
& Sung, 2020). One key global challenge is producing food for a population that is constantly
growing, using the limited resources available (Chandramenon et al., 2024). Farming outputs
and produce suffer from reduced soil quality, insufficient water, and the impact of climate
change (Singh et al., 2021; Nair et al., 2025). There is uncertainty in weather patterns due to
constant fluctuations and extreme weather conditions. According to Statistics South Africa
(Stats SA), poverty is rapidly growing in South Africa (Statistics South Africa, 2017). South
Africa is already a water-scarce country and one of the 30 driest countries in the world
(Bwapwa, 2019).

Access to and affordability of organic healthy food are big challenges these days. According
to the World Health Organisation (WHO), Africa had the sharpest rise in hunger (World Health
Organization, 2021). According to Jerry (2020), there is a growing demand for fresh, organic,
healthy produce to feed a growing global population. Traister (2018) observed that some
chemically treated food with pesticides has been scientifically proven to be harmful in causing
various types of diseases, organ damage, and may even lead to death. To feed the world’s
increasing masses sustainably, a rethinking or shift is required from the existing method of
growing crops, with more innovative approaches that need to be introduced faster. It is in this
light that new farming methods such as Hydroponics, Aeroponics and Aquaponics have come
to fruition (Kok et al., 2024; Nair et al., 2025).

Aquaponics is a combination of aquaculture and hydroponics. Hydroponics is a soilless
farming method in a nutrient-rich water solution with or without a medium (Kumar &
Savaridassan, 2023). However, aquaculture is the process of cultivating fish in water (Kathuria
et al., 2024). Aquaponics is a complex system which requires continuous monitoring and water
quality management, fish health, and plant growth, making it tedious manual labour. This
necessity has driven the development of smart aquaponics systems that integrate advanced
technologies such as the Internet of Things (loT), Machine Learning (ML), Artificial Intelligence
(Al), and more (Jiang & Liu, 2024; Liu & Jiang, 2024; Perumal et al., 2024). These systems
not only bridge the gap between technology and agriculture but also enhance the efficiency,
sustainability and productivity of aquaponics farming (Liu & Jiang, 2024; Sridevi et al., 2024).
Intelligent Internet of Things (lloT) is a technology that combines IoT, machine learning (ML),
and artificial intelligence (Al). loT enables data collection while ML and Al process data to

extract valuable insights (Zhang, 2021; Aouedi et al., 2024). The implementation of lloT
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technology in aquaponics systems enhances the time taken to gather data. It further provides
more accurate data, avoiding manual labour interventions. lloT technology thus assists with
timely decision-making and optimising system performance through the intelligent analysis of
the aquaponics system. A Decision Support System (DSS) derives much benefit from using an
lloT technology. The benefit is that it can pick up exceptions and anomalies. Furthermore, once
these slight variations are picked up, changes can be made more proactively instead of
reactively, which prevents crop losses and operational inefficiencies. The Intelligent Internet of

Things boosts the power and value of DSS.

Various studies have explored the predictive models for key aspects of aquaponics, such as
leaf disease identification, biomass prediction, pH prediction, plant growth, and fish length and
weight (Ghandar et al., 2021; Mori et al., 2021; Amano et al., 2022; Debroy & Seban, 2022b;
Debroy & Seban, 2022a; Khandakar et al., 2024). Khandakar et al. (2024) focused on fish
weight and fish length prediction for fish farming optimisation. In this study, the team integrated

local interpretable model-agnostic explanations (LIME) for model transparency.

The application of Explainable Al (XAl) in smart aquaponics remains limited, with few studies
focusing on the explainability and interpretability of machine learning (ML) and deep learning
(DL) models used in this domain. While predictive analytics methods have been widely applied
in aquaponics research addressing key areas like plant health, fish growth, and environmental
conditions, these models are often not communicated effectively to end-users for practical,
real-world decision-making (Liu & Jiang, 2024; Anila & Daramola, 2024). Using lloT in
aquaponics more intelligently can lead to smart aquaponics systems, thus contributing to a

better decision support system.

The development of decision support systems (DSS) for aquaponics using lloT would provide
stakeholders with actionable insights derived from predictive models. Most studies focus on
generating predictions but fail to integrate these outputs into a user-friendly system that can
guide daily operations or assist in making strategic decisions (Mori et al., 2021; Debroy &
Seban, 2022b; Liu & Jiang, 2024). This limits the practical utility of these models in real-world

aquaponics applications (Anila & Daramola, 2024).

1.2 Background

Aqguaponics has been an emerging revolution in the farming world (Kénig et al., 2018; Turnsek
et al., 2020). Aquaponics is a very beneficial food production technique as people can cultivate
organic vegetables, fruits, and fish simultaneously and efficiently on a small scale using
minimal resources (Rakocy et al., 2006; Nair et al., 2025). Aquaponics provides for flexibility
and scalability in the future for larger farming or commercial practices should the need arise.

The fewer input resources required, such as water, land, the central point of system



management, and income generation opportunities, are huge benefits of this type of farming
(Fruscella et al., 2021:1661).

There has been a global drive to use technology to improve existing farming practices. The
recent Coronavirus (COVID-19) pandemic revealed the need to automate and have
agricultural machinery and farming methods self-regulate. This allows a farmer or organisation
to remotely manage farms accurately and achieve productivity with minimal need for human

involvement or intervention.

With the advent of the 4th industrial revolution (4IR), there has been a giant leap in the Internet
of Things (IoT) usage and Artificial Intelligence (Al) technologies to achieve higher productivity
and efficiency in daily operations (Alhnaity et al., 2019; Tai, 2020). However, combining loT,
machine learning (ML), and artificial intelligence (Al) within lloT technology can significantly
enhance data-driven decision-making, thereby enabling smart agricultural practices. Likewise,

aquaponics will benefit when driven towards integrated, smarter technologies.

Smart aquaponics models generally process data via sensors, and the data collected is
compared to pre-determined optimal range parameters (Reddy et al., 2020; Sridevi et al., 2024;
Perumal et al., 2024). A different study used various Grove sensors to monitor the following
environmental and aquaponics parameter values, namely: sunlight, pH, water, water level,
water temperature, electrical conductivity, ammonia, etc. When the monitored values fell above
or below the optimal range, the microcontroller kicked into action (Khaoula et al., 2021). In the
study conducted by Valiente et al. (2018) when sensor data showed a value outside the
optimal range, a message was triggered and sent to the programmed contact via phone or
web. Kumar et al. (2016) and Khaoula et al. (2021) demonstrated that cloud storage services
were used to store collected data. The collected data allows for trends and patterns to be
established, which enables different forecasting and prediction capabilities (Debroy & Seban,
2022b; Liu & Jiang, 2024). Many aquaponics studies have focused on monitoring and reporting
via emails, SMS, notifications and so on (Manju et al., 2017; Hsiao & Sung, 2020). These
methods reduce the need for manual intervention to help maintain an efficient aquaponics

system performance.

Aquaponic units can be installed in the field, greenhouse, tunnel or even indoors (Mchunu et
al.,, 2018; Reyes-Yanes et al.,, 2020). Factors influencing the aquaponics system are
compatibility of fish and plants, fish stocking density, amount of fish feed, nitrifying bacteria,
climate factors, water quality and so on (Nair et al., 2025). A South African survey conducted
by Mchunu et al. (2018) concluded that most aquaponics farmers required knowledge of
technology to increase aquaponics food production. Accurate crop yield is crucial for making
decisions related to agricultural risk management as well as for feasibility calculations. Start-

up farmers do not know or understand which parameters need to be regulated, by how much,
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or the roadmap on how to manage an aquaponics system optimally for maximum yield
(Mchunu et al., 2019).

Aquaponics is a rapidly growing farming method due to reduced resource consumption, such
as water, soil, and land. The improvement of aquaponics productivity is possible through the
application of [loT, which entails integrating loT technologies and Al to optimise the aquaponics
critical parameters for maximum yield (Khaoula et al., 2021; Abbasi et al., 2022; Liu & Jiang,
2024; Sridevi et al., 2024).

1.3 Research problem

Aquaponic systems are relatively complex to monitor and manage due to a lack of expert
knowledge (Hsiao & Sung, 2020; Karimanzira & Rauschenbach, 2021). Despite aquaponics
having the potential to aid sustainable food production, there is still limited research on plant
growth data trends within aquaponics (Channa et al., 2024). This makes it difficult to
understand and optimise plant growth performance in aquaponic systems (Chowdhury &
Asiabanpour, 2024). Careful monitoring and control of key parameters in an aquaponic system
help maintain optimal conditions for fish health, plant growth, and the activity of
microorganisms (Debroy et al., 2025; Nair et al., 2025). |dentifying these influential parameters
is essential, as it would allow stakeholders to make informed decisions that optimise the plant
growth, fish growth, resource usage, and overall system performance (Khandakar et al., 2024;
Nair et al., 2025). The lack of uncertainty in making decisions and the implementation of
corrective actions timeously directly affect aquaponics fish and crop yield (Hsiao & Sung,
2020). In both startup and commercial-level farming, there exists a need for an informed

decision support tool to optimise aquaponics productivity (Pechlivani et al., 2025).

So far, systems that provide clear, data-driven insights to stakeholders, particularly those new
to the field, to optimise aquaponics productivity and improve system outcomes are not

common.

1.4 Aim and objectives

1.4.1 Aim
This study aimed to develop a decision support system for aquaponics prediction that offers

data-driven insight into plant growth and water quality parameters using Intelligent Internet of

Things.



1.4.2 Objectives

The objectives of this study are to:

1. ldentify the key parameters used to measure plant growth and the monitored water quality

parameters in aquaponics systems.

2. Develop a machine learning (ML) prediction model to determine the optimal levels of key

parameters for the aquaponics system.
3. Evaluate the performance of the different ML algorithms using suitable regression metrics.
4. Develop an ML-based data-driven decision support system for aquaponics.

5. Assess the usability (encompassing effectiveness, efficiency and satisfaction) of a decision

support system from the perspective of aquaponics stakeholders.

1.5 Research Questions

The main research question for this study is:
How can a decision support system for plant growth and water quality prediction in

aquaponics be developed through the application of Intelligent Internet of Things?

The sub-research questions are:

1. What are the parameters required for measuring plant growth, and which water quality
parameters are essential for monitoring in aquaponics systems?
How can an ML prediction model for aquaponics be developed?

3. What is the comparative performance of the different ML algorithms for aquaponics
prediction?

4. How can an ML-based data-driven decision support system for aquaponics be

developed?

5. How can the usability of the decision support system for aquaponics prediction be

determined from the perspective of stakeholders?

1.6 Delineation of the study

This study focused on developing a decision support system for aquaponics stakeholders
capable of predicting plant growth and water quality while providing actionable insights through
the integration of machine learning (ML) and Explainable Al (XAl). The data for the study were
collected from a single field located at the University of Johannesburg, Johannesburg, South

Africa, under the supervision of the field manager.



1.7 Significance of the study

Rising transport costs, and the high costs of owning vast farming land, has many challenges
in South Africa and globally. This study encourages startup and subsistence farmers to
consider aquaponics as a potential food and income source. The developed decision support
(DSS) tool) and its regular use will provide the users and stakeholders with valuable assurance

that they are on the correct path to realise the maximum plant growth.

The study will also provide insights on the parameters with the most impact on plant growth so
that aquaponics stakeholders can focus on them. Wider adoption of the DSS deliverable from

this study when embraced, will enhance aquaponics farming both in South Africa and globally.

1.8 Thesis outline

The entire thesis is organised into six chapters. A brief description of the chapters is given

below.

Chapter 1: This chapter provides a brief explanation of the following components: motivation
of the study, background, the problem statement, the aim and objectives of the study, the

research questions and the significance of the study.

Chapter 2: This chapter provides an overview of the theoretical background and related

work of the study.

Chapter 3: This chapter illustrates the methodology followed to accomplish the research

objectives.
Chapter 4: This chapter explains how the data was collected for the experiment.

Chapter 5: This chapter presents the machine learning experimentation performed on the

data collected for the study.

Chapter 6: This chapter explains how the decision support system (DSS) was developed

and the usability evaluation of the DSS.

Chapter 7: This chapter presents the contribution and recommendations for future work.

1.9 Chapter summary

This chapter presented the motivation for the study, provided a brief background, outlined the
study aim and objectives, and formulated research questions to guide the investigation toward
the objectives. Additionally, the chapter highlighted the delineation and significance of the study

and, finally, provided an overview of the thesis structure.
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CHAPTER TWO
LITERATURE REVIEW

A literature review is a systematic process of reviewing, collecting, and synthesising previously
written works (Snyder, 2019). It can be articulated in the form of a comprehensive previous
scholarly work, a concise report of the latest primary data, or the result. (Cooper, 1998:3;
Cresswell, 2014:24).

This chapter consists of three parts: theoretical background, related work, and research gaps.
The theoretical background provides theoretical knowledge about key topics that provide the
foundation for this study. The related work focuses on the review of previous scholarly work on

smart aquaponics. The research gaps summarise the gaps in the reviewed work.

2.1 Theoretical background

This section provides background knowledge on relevant key topics such as hydroponics,
aquaculture, aquaponics, the Internet of Things, machine learning, explainable artificial

intelligence (XAl), Intelligent Internet of Things, expert systems and decision support systems.

2.1.1 Hydroponics

The word hydroponics originates from two Greek words: ‘hydro’, meaning water, and ‘ponos’,
meaning labour (Shrestha & Dunn, 2010; Rajaseger et al., 2023; Reddy et al.,, 2024).
Hydroponics is a soilless cultivation approach to growing agriculture in a nutrient-rich water
solution with or without a medium (Shrestha & Dunn, 2010; Kumar & Savaridassan, 2023).
Commonly used supporting mediums are wood fibre, expanded clay, coir, perlite, vermiculite,
brick shards, polystyrene packing peanuts, gravel, etc. (Roberto, 2003:16; Shrestha & Dunn,
2010; Somerville et al., 2014; Rajaseger et al., 2023). The selection of a medium is based on
the following characteristics: surface area, pH, cost, weight, life span, water retention, plant
support, and ease of working with the medium (Somerville et al., 2014). Compared to in-ground
cultivation, soilless cultivation has various benefits such as: requiring less land, less water,
minimal fertiliser loss due to chemical, biological or physical processes, minimal human
intervention and better yield (Shrestha & Dunn, 2010; Somerville et al., 2014; Kumar &
Savaridassan, 2023). There are different types of hydroponic systems in use (Kumar &
Savaridassan, 2023).

2.1.1.1 Types of hydroponic systems

The hydroponics growing method involves two ways: either a liquid system/solution culture or
an aggregate system/solid media. There is no physical support for the plant root in the liquid

system, and the nutrient solution is directly transferred to the plant. The aggregate system



uses a support/growing/substrate medium to hold plant roots. If the excess nutrient solution is
circulating/recycling/recovering in the hydroponic system, then the system is a
closed/recirculating system, or else it is an open system (Shrestha & Dunn, 2010; Mason et
al., 2018:12; Resh, 2013:2; Rajaseger et al., 2023; Rajendran et al., 2024). The implementation
of a mechanical device in the hydroponics system for recirculating the nutrient water makes
the system an active one. A passive system is where the roots absorb nutrients from the water
without any mechanical device (gravity) and make use of capillary action (Roberto, 2003:20;
Jones Jr., 2005:121; Shrestha & Dunn, 2010; Blancaflor et al., 2022; Reddy et al., 2024). There
are different types of hydroponics techniques: floating/raft system, ebb and flow (flood and
drain), Nutrient Film Technique (NFT), drip system, wick system, Deep Water Culture system
(DWC) and aeroponic system (Shrestha & Dunn, 2010; Maucieri et al., 2019:90-93; Rajaseger
etal.,, 2023; Rajendran et al., 2024; Naresh et al., 2024). The types of hydroponics are shown

in Figure 2.1.
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Figure 2.1: Types of hydroponics (Shrestha & Dunn, 2010)

a. Floating/Raft system

In a floating/raft system, plants are grown in plastic cups, which are placed into a Styrofoam
sheet. Styrofoam floats on aerated nutrient water, and the plants' roots grow into the nutrient
water ( Jones Jr., 2005:248; Shrestha & Dunn, 2010; Velazquez-Gonzalez et al., 2022; Luta
& Siregar, 2023).



b. Ebb and flow/ flood and drain

This system works by flooding the grow tray with a nutrient-rich water solution for a short
period. Thereafter, the solution is drained back into the reservoir. Hence, this system is also
referred to as a flood and drain system. This process is completed using a timer-controlled
pump. The frequency of the process can be timer-controlled and depends on the size and type
of plants. Factors such as temperature, humidity and the type of growing medium also serve
to determine the timer settings (Jones Jr., 2005:143; Shrestha & Dunn, 2010; Rajaseger et al.,
2023; Rajendran et al., 2024).

c. Nutrient Film Technique (NFT) system
Nutrient Film Technique was developed in England during the '60s by Dr Allen Cooper (Sharma

et al., 2018; Bhat et al., 2023). It was mainly developed to address the shortcomings of the
ebb and flow system (Kannan et al., 2022). This system is designed in such a way that a
nutrient-rich water system is completely circulated. This nutrient water is pumped to the growth
tray using a water pump that operates without time control (Shrestha & Dunn, 2010; Sharma
et al., 2018; Kannan et al., 2022; Blancaflor et al., 2022).

d. The drip system

The submersed pump is controlled with the help of a timer. The function of the timer is to
activate the pump, thus letting the nutrient-rich solution be dripped into the base part of each
plant via a tiny drip line (Shrestha & Dunn, 2010; Kannan et al., 2022; Rajaseger et al., 2023;
Rajendran et al., 2024).

e. The wick system

This is a passive system and is one of the simplest hydroponic systems. This system uses a
wick to link the roots of the growing media and the nutrients. There are no mechanical or
moving parts in this system. It uses capillary action (Shrestha & Dunn, 2010; Subakti et al.,
2022; Rajaseger et al., 2023; Prianka et al., 2024).

f. Deep Water Culture (DWC)

Deep Water Culture is the simplest of all active hydroponic systems. In this system, plant roots
are submerged in the nutrient solution. This allows the roots to have a continuous supply of
oxygen and water. Plants are supported on a floating platform or base made of Styrofoam.
This base floats on top of the nutrient solution. An air pump is used to provide air to the air
stone, which oxygenates the nutrient solution, ensuring the plant roots receive sufficient
oxygen (Shrestha & Dunn, 2010; Saaid et al., 2013; Kannan et al., 2022; Rajaseger et al.,
2023; Rajendran et al., 2024).



g. Aeroponic system

An aeroponic system has an enclosed growing chamber. A mist of nutrient-rich solution is
sprayed at regular intervals. This aeroponic system is the most high-tech type of hydroponic
gardening currently. Timer controls are used to pump the nutrients, but rather on much shorter
bursts of a few seconds every couple of minutes (Shrestha & Dunn, 2010; Rajaseger et al.,
2023; Rajendran et al., 2024). Nutrient-rich water or nutrient solution is required for better crop

yield and quality.

2.1.1.2 Hydroponic plant nutrition

In hydroponics, plants receive all essential nutrients through a nutrient solution (Velazquez-
Gonzalez et al., 2022). The hydroponic system uses dissolved fertiliser salts to supply essential
nutrients to plants, excluding carbon, hydrogen and oxygen, which are obtained from the air
(Resh, 2013:31; Velazquez-Gonzalez et al., 2022). Nutrient solution components are divided
into macro- or micronutrients based on the quantity of the plant's nutrient requirements (Trejo-
Téllez & Gomez-Merino, 2012:1; Maucieri et al., 2019:94; Kannan et al., 2022; Rajaseger et
al., 2023). The purpose of these essential nutrients in plants, their roles, and the symptoms of
deficiency are discussed in the following sections. This information assists the researcher in
observing whether plants are growing healthily or not. If any deficiency symptoms are

identified, this contributes to the understanding of which nutrients are lacking.

a. Essential elements/nutrients

In general, there are 17 essential elements/nutrients required for optimal plant growth and
quality (Schwarz, 1995:8; Resh, 2013:9; Kannan et al., 2022; Veazie et al., 2022; Rajaseger
et al., 2023). The selection of essential elements strictly falls under three criteria (Schwarz,
1995: 5; Arnon, 1950, 1951, cited in Resh, 2013:9; Veazie et al., 2022).

1. The plant cannot complete its life cycle if the element is not present.
2. The element activity must be specific, and the element must not be replaceable by other
elements.

3. The element must act within the plant and not result in another element being more easily
accessible.

Some elements are required in larger quantities, known as macro elements/macronutrients,
while some require relatively smaller quantities, known as minor elements/micronutrients/trace
(Maucieri et al., 2019:94; Blancaflor et al., 2022; Thakur et al., 2023). The macro elements are
carbon (C), hydrogen (H), oxygen (O), nitrogen (N), phosphorus (P), potassium (K), calcium
(Ca), sulfur (S), and magnesium (Mg). The microelements are iron (Fe), chlorine (Cl),
manganese (Mn), boron (B), zinc (Zn), copper (Cu), molybdenum (Mo) and Nickel(Ni) (
Schwarz, 1995:8; Resh, 2013:9-10; Blancaflor et al., 2022; Rajaseger et al., 2023; Thakur et

al., 2023). Plants also get the following macronutrients: carbon(C), oxygen(O) and

10



hydrogen(H) from carbon dioxide (CO2) and water (H20) (Resh, 2013:9; Blancaflor et al., 2022;
Rajaseger et al., 2023).

The appropriate balance between the macronutrients is required for crop growth. Most of the
plant's dry weight contains an overall 90-95 % of carbon (C), oxygen (O), and hydrogen (H)
and the remaining 5-10 % is the rest of the six elements (Schwarz, 1995:7; Jones Jr., 2005:37-
38; Resh, 2013:9; Kannan et al., 2022).

b. The role of the essential nutrients in plants

Each nutrient plays a major role in plant growth. Even with an adequate supply of nutrients,
plants may still experience nutrient deficiencies. The nutrients, along with their associated

deficiency symptoms, are depicted in Table 2.1.

Table 2.1: Role of plant nutrients and deficiency symptoms

Nutrients Roles Deficiencies

Oxygen (O) Oxygen is an essential nutrient for | Hinders  healthy plant growth
plant growth and the formation of | (Velazquez-Gonzalez et al., 2022;
sugar, starches and cellulose. It is | Rajaseger et al., 2023).
further used in the process of
respiration as well (Roberto, 2003:27;
Rajaseger et al., 2023).

Hydrogen (H) Hydrogen is vital for the chemical | Impairs healthy plant growth
reaction process, whereby plant roots | (Velazquez-Gonzalez et al., 2022;
can absorb nutrients. Hydrogen is | Rajaseger et al., 2023).

readily available from water and air. It
assists with the formation of starches
and sugars (Roberto, 2003:27;
Rajaseger et al., 2023).

Carbon (C) Carbon is found in cell walls and forms | Leads to poor plant growth
the backbone of most plant | (Velazquez-Gonzalez et al., 2022;
biomolecules, including proteins, | Rajaseger et al., 2023).

starches, and cellulose, which are
composed of carbon, hydrogen, and
oxygen. It serves as both a building
block and a source of energy, helping
plants generate sugars through
photosynthesis, a process driven by
chlorophyll (Roberto, 2003:27;
Ahluwalia, 2022:477).
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Nitrogen (N)

Plants absorb nitrogen through their
roots to generate amino acids,
proteins, enzymes and chlorophyll,
which are essential for plant growth
(Resh, 2013:11; Roberto, 2003:27;
Mason et al., 2018:85; Maucieri et al.,
2019:94; Rajaseger et al., 2023).
Nitrate and ammonium are the two
forms of nitrogen that plants can
absorb (Schwarz, 1995:10, Maucieri
etal., 2019:94; Rajaseger et al., 2023;
Thakur et al., 2023; Hong et al., 2024).
For most plants, nitrate is the primary
nitrogen source. It is non-toxic and
can be stored in the plant. A large
quantity of ammonia intake affects
plant growth (Maucieri et al., 2019:94;
Daiane et al., 2021).

Growth is constrained, with shorter
and leaner stalks. Plant leaves have
a yellowish colour overall and
reduced fruit yield (Roberto, 2003:
29; Mason et al., 2018:85; Jones Jr.,
2005:388; Maucieri et al., 2019:94;
Rajaseger et al., 2023).

Potassium (K)

Potassium is essential for plant
health, enhancing disease resistance
and nutrient absorption (Rajaseger et

al., 2023).

The tips and outer edges of the
leaves die in monocot plants. Leaves
of dicots are chlorotic at first;
however, dead areas soon start to
develop. Also, it causes weak stems
(Mason et al., 2018:88; Rajaseger et
al., 2023).

Calcium (Ca)

Calcium assists in permeating the
membrane, assisting in the division of
cells as well as the formation of the
(Maucieri et al., 2019:96;
Rajaseger et al., 2023; Thakur et al.,
2023).

cell wall

Spotted young leaves with irregular
margins. Distorted young leaves,
small-sized leaves, shoot and root tip
death, and restricted bud
development are other symptoms
(Mason et al., 2018:89; Veazie et al.,
2022). Stunted plant growth,
deformation of younger leaf margins,
stunted root systems without fine
roots are further symptoms (Maucieri
et al., 2019:96; Rajaseger et al.,
2023).

Magnesium (Mg)

Magnesium is useful for building up

the wall of chlorophyll molecules

(Maucieri et al., 2019:96; Rajaseger et

Chlorosis begins to form in the vein
areas of the leaves, leading to

yellowing between the veins and a
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al, 2023).

glucose synthesis and

Magnesium boosts
influences
enzyme activity, which supports
healthy leaf development and efficient
energy production in plants
(Rajaseger et al., 2023; Thakur et al.,

2023).

reduction in chlorophyll concentration
(Rajaseger et al., 2023). This
progresses towards the death of the
tissue (necrosis). The severely
affected leaves eventually fall off
(abscise) (Veazie et al., 2022).

Phosphorus (P)

Phosphorus promotes the fast growth
of buds and several flowers, and
encourages root development of the
(Maucieri et al., 2019:95;
Rajaseger et al., 2023).

plants

Plant development and maturity are
often delayed. Plants are a dark
green colour and more often than
not, advance to get a reddish or
purple colour and display stunted
growth in the vegetative apex
(Mason et al., 2018:87; Maucieri et
al., 2019:95; Veazie et al., 2022;
Rajaseger et al., 2023).

Sulfur (S) Essential for protein production and | Light yellow leaves, stunting plant
maintaining plant strength and health | growth and woody stems (Mason et
Rajaseger et al., 2023). al., 2018:89; Veazie et al., 2022;

Rajaseger et al., 2023).

Chlorine (Cl) Chlorine helps maintain osmotic | Insufficient chlorine can cause leaf
pressure within plant cells and | chlorosis and necrosis, as well as
supports cell turgor pressure, which is | leaf wilting, restricted root growth,
essential for optimal water and | and stunted development (Mason et
nutrient transfer, as well as overall | al., 2018:90; Maucieri et al., 2019:97;
plant health and growth (Thakur et al., | Thakur et al., 2023).

2023).
Iron (Fe) Iron is required for chlorophyll | Chlorosis between the veins,

formation and enzyme functions,
which are critical for photosynthesis
(Maucieri et al., 2019:96; Rajaseger et
al., 2023).

especially in younger leaves, and
can spread to older leaves, reducing
root system growth (Mason et al.,
2018:90; Maucieri et al., 2019:96;
Rajaseger et al., 2023).

Manganese (Mn)

Manganese helps prevent pathogens
and increases the root cells (Maucieri
et al., 2019:97). Required for
photosynthesis and enzyme activities
(Rajaseger et al., 2023; Thakur et al.,
2023).

Stunted growth. Chlorosis in the vein
areas of the leaves begins to form.
This progresses from the leaf ends or
periphery and moves inwards
(Mason et al., 2018:90; Rajaseger et
al., 2023).

13




Boron (B)

Assist with the setting of the fruit and
developing seed cells, cell division,
pollen formation, and sugar transport
(Maucieri et al., 2019:97; Rajaseger et
al., 2023).

Delicate leaves and stems,
irregularity in plant growth, and stem
and root tip death. Incomplete growth
of young light green leaves of the
terminal bud and twisted leaves when
it grows back (Mason et al., 2018:91,
94; Rajaseger et al., 2023).

leaves increase their thickness and

Young

have a leathery consistency (Maucieri
et al.,, 2019: 97; Rajaseger et al,
2023).

process involving photosynthesis and
is important for enzyme functions
(Maucieri et al., 2019:97; Rajaseger et
al., 2023).

Zinc (Zn) Zinc is essential for enzyme activation | Chlorosis in-between the veins,
and hormone regulation (Maucieri et | especially in young leaves, inhibited
al., 2019:97; Rajaseger et al., 2023). | growth, distorted leaf margins, and

spots spread around the entire plant

(Mason et al., 2018:91; Maucieri et al.,

2019:97; Rajaseger et al., 2023).
Copper (Cu) Copper assists with the respiratory | Twisted young leaves and yield

reduction. Restricted growth and the
growing tip may die (Mason et al.,
2018:91). Interveinal chlorosis leads
to the collapse of the leaves' tissues
(Maucieri et al., 2019:97; Rajaseger
et al.,, 2023).

Molybdenum (Mo)

Helps in nitrogen metabolism and
protein Jr.,
2005:400; Maucieri et al., 2019:98;
Rajaseger et al., 2023).

synthesis  (Jones

Chlorosis and necrosis in-between
the veins in older leaves evolve into
younger leaves and deformed
younger leaves (Jones Jr., 2005:400;
Mason et al., 2018:92; Maucieri et al.,

2019: 98; Rajaseger et al., 2023).

Nickel (Ni)

Plays a role in nitrogen metabolism
and enzyme function (Rajaseger et
al., 2023).

Reduces plant growth and causes
leaf deformation (Rajaseger et al.,
2023).

When adding fish into a hydroponics reservoir, it becomes an aquaponics system, which is an
integrated farming technology (Maucieri et al., 2019:77; Luta & Siregar, 2023). The main
difference between aquaponics and hydroponics is that fish waste makes reservoir water very

nutrient-rich, which is critical for plants (Lennard & Goddek, 2019:114; Rajaseger et al., 2023).
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2.1.2 Aquaculture

Aquaculture is the process of cultivating fish or other aquatic organisms in water (Krishna et
al., 2023; Kathuria et al., 2024). Fish are great, globally demanded aquatic organisms in
aquaculture and are rich sources of protein and omega-3 (Kusuma et al., 2023; Krishna et al.,
2023; Kathuria et al., 2024).

Many factors influence the growing state of aquaculture, such as aquaculture organisms’
species choice, aquaculture organisms' density based on the aquaculture water capacity, the
number of organisms, and food uses in aquaculture, including water quality parameters
management (Deng et al., 2010). However, in aquaculture, water quality plays an important
role in the growth of aquatic organisms (Deng et al., 2010; Krishna et al., 2023). Insufficient
water quality can lead to stress, diseases, including the death of aquatic organisms, thereby
negatively impacting productivity, the inability to harvest in the desired time, and industry profit
as well (Dupont et al., 2018; Krishna et al., 2023). Various parameters are considered to
assess the water quality, such as pH, hardness, dissolved oxygen, water temperature, carbon
dioxide, nitrate, nitrite, salinity, Total Dissolved Solids (TDS), turbidity, water colour and so on
(Bhatnagar & Devi, 2013; Yildiz et al., 2019: 445; Krishna et al., 2023; Kathuria et al., 2024).
However, the most commonly monitored parameters are temperature, dissolved oxygen, and
pH (Abbink et al., 2012; Dupont et al., 2018; Krishna et al., 2023; Khandakar et al., 2024).
Thus, it is important to keep these parameters in an optimal range for growth performance.
Table 2.2 specifies the optimum range of water temperature, dissolved oxygen and pH, the
reason for regulation, and what will happen if it deviates from the optimum range (Wongkiew
et al., 2017; Dupont et al., 2018; Espinal & Matuli¢, 2019:39; Lennard & Goddek, 2019:130;
Verma et al., 2022).

Table 2.2: Popularly monitored parameters in aquaculture

Temperature Dissolved Oxygen pH
Optimum Depends on the fish >5ppm 7-8.5
range species
Reason for | v To control disease Fish survival v" Controls fish
regulation v To control oxygen metabolism
consumption v" Microbial activities
v Fish productivity
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Deviation The higher temperature v' Can lead to fish death v’ Fish stress

from required frequent v Fish growth became v’ Fish growth became
optimal microbiota biochemical slow slow

range activity that demanded v High stress

triggers more oxygen v" Nitrifying biofilter failure

2.1.3 Aquaponics

Aquaponics is a combination of aquaculture and hydroponics (Murdan & Joyram, 2021). The
word “Aquaponics” is a blend of “Aqua” and “Ponics”. “Aqua” refers to water or aquaculture,
which is fish farming and “Ponics” branches from Hydroponics, which refers to growing plants
in water without soil (Thorarinsdottir et al., 2015:9; Murdan & Joyram, 2021). Compared to
traditional farming, aquaponics farming has the following benefits: less space for farming
required, no soil-borne diseases, eliminates pesticides, reduces insect infection and pests,
produces healthy organic food, hydroponic cultivars can be harvested in less time, increases
food production, minimal chemical usage, and reduces water consumption massively (Rakocy
et al., 2006; Shafeena, 2016; Manju et al., 2017; Yanes et al., 2020; John & Mahalingam,
2021; Ubayasena et al., 2023; Sridevi et al., 2024). Aquaponics is a reliable and sustainable

solution for global food security (Murdan & Joyram, 2021; Friuli et al., 2021).

Fish consume the fish feed and excrete waste, primarily in the form of ammonia, through their
gills, enriching the water with nutrients beneficial for plant growth (Sallenave, 2016; Ru et al.,
2017; Kamil et al., 2020).

The nitrogen cycle plays a major role in the aquaponics system because it converts fish waste
into nutrients that are beneficial for plants, resulting in better production (Petrea et al., 2013;
Ru et al., 2017; Kim et al., 2022). Thus, nitrogen is the main source of nutrients for fish, plants
and micro-organisms. In this integrated system, water is reused multiple times. This frequent
water reuse causes the generation and collection of non-toxic nutrients and organic matter,
which is useful for plants. This non-toxic nutrient and organic matter can contribute to the
efficient and optimal growth of plant crops. The Nitrosomonas and Nitrospira bacteria convert
ammonia to nitrite and then to nitrate, respectively (Rakocy et al., 2006; Gnanasagar & Vivek,
2020; Eneh et al., 2023).

The aquaponic system can cultivate plants or veggies and fish concurrently (Rakocy et al.,
2006; Sridevi et al., 2024). The fish grow in the fish tank, and the plant grows in the hydroponic

grow system.
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2.1.3.1 Types of aquaponic systems

An aquaponic unit is a combination of an aquaculture unit and a hydroponic unit. There are
two main types of aquaponic systems: coupled and decoupled. Coupled aquaponics operates
with a single closed-loop water recirculation system. There is a direct transfer of the nutrient-
rich water from the fish tank to the hydroponic unit and back (Palm et al., 2019:163;
Chandramenon et al., 2024). Whereas, in a decoupled aquaponic unit, there are separate
loops for the aquaculture and hydroponic units. Water does not circulate back from the
hydroponic unit to the fish tanks, providing independent control over each system (Goddek et
al., 2019:202; Chandramenon et al., 2024). A coupled vs decoupled aquaponics system is
shown in Table 2.3 (Chandramenon et al., 2024).

Table 2.3: Coupled vs decoupled aquaponics system

Type Features Benefits Demerits

Coupled Mainly used at a mini/ Easy to implement, pH, temperature, and
hobby/domestic/ backyard/ maintain, and manage. nutrient concentration
demonstrative/ small and are compromised
semi-commercial level. Requires less

infrastructure Less profitable
May have short-term nutrient Simple architecture
peaks and variations. Lower commercial
profile

Production depends on feed
demand, no of plants and fish.

Gravity influences water flow.
Single loop systems/ scaling
from small-medium-large

Decoupled | Mainly used at a semi/ full More profitable Complex design
commercial level.

Improved nutrient stability | Implementation needs
Multiloop systems detached expertise

units Improved pest
management Hard system
maintenance

Commonly used hydroponic grow systems in aquaponics are Media-based systems (MBS),
Deep Water Culture (DWC), also known as the floating or raft method, and Nutrient Film
Technique (NFT) (Goddek et al., 2015; Shafeena, 2016; Kledal et al., 2019:489; Singh et al.,
2021; Arakkal Thaiparambil & Radhakrishnan, 2022).

2.1.3.2 Parameters affecting aquaponics plants and fish growth

The parameters that affect the production of both plant and aquatic animals are the
concentration of macro- and micronutrients, water, pH, dissolved oxygen, water temperature,
light, air temperature, and CO; in the air (Thorarinsdottir et al., 2015:42; Chandramenon et al.,
2024). However, the fish and plants ratio is an important factor for balanced nutrient distribution
(Goddek et al., 2015; Dharshan et al., 2024).
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a. Nutrients

Nutrients are essential for plant growth; plants get nutrients from fish waste, and the required
quantity may be moderate or significant (Rakocy et al., 2006; Ru et al., 2017; Chandramenon
et al., 2024). Nutrients absorbed by plants can be classified as micronutrients and
macronutrients. Micronutrients require only smaller quantities, whereas macronutrients require
larger quantities. All these nutrients must be balanced for optimal plant growth (Thakur et al.,
2023). Plants absorb all required micronutrients and macronutrients from cultured water.
Nevertheless, water (H.O) and carbon dioxide (CO.) supply carbon (C), oxygen (O) and
hydrogen (H) to the plants (Rakocy et al., 2006; Ru et al., 2017; Blancaflor et al., 2022;
Rajaseger et al., 2023). The macronutrients and micronutrients required for aquaponics plants
are shown in Table 2.4 (Rakocy et al., 2006; Blancaflor et al., 2022; Rajaseger et al., 2023;
Thakur et al., 2023).

Table 2.4: Macronutrients and micronutrients required for aquaponics plants

Macronutrients

Micronutrients

Carbon(O) Chlorine (CI)
Oxygen(O) Iron (Fe)
Hydrogen(H) Manganese (Mn)
Nitrogen (N) Boron (B)
Potassium (K) Zinc (Zn)
Calcium (Ca) Copper (Cu)

Magnesium (Mg)

Molybdenum (Mo)

Phosphorus (P)
Sulfur (S)

b. Water pH level

The Potential of Hydrogen (pH) level of a solution indicates the concentration of hydrogen ions
present in the solution and relative acidity (Alselek et al., 2022; Lindholm-Lehto, 2023;
Chandramenon et al., 2024). pH is a vital parameter in the aquaponics system as it directly
impacts the lifecycle and health of both fish and cultivated plants, including the performance
of the nitrifying bacteria (Maulini et al., 2022; Kumar et al., 2023; Kok et al., 2024; Channa et
al., 2024). In the aquaponics system, it is essential to maintain a pH within an acceptable
range, 6-8, to achieve a stable growth balance among fish, plants, and nitrifiers (Hsiao & Sung,
2020; Kumar et al., 2023). If pH varies from the optimal range, it affects the nitrification process,
fish metabolism, increases the risk of fish diseases, and hinders plant growth by reducing the

nutrient absorption rate (Hsiao & Sung, 2020; Chandramenon et al., 2024).
c. Dissolved Oxygen (DO)

Dissolved Oxygen (DO) refers to the amount of free and non-compound oxygen present in the
water (Thorarinsdottir et al., 2015:34; Lorenzo et al., 2019; Channa et al., 2024). DO level is a
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crucial parameter for indicating water quality (Eze & Ajmal, 2020). The maintained DO level
helps aquaponics plants with root respiration, transpiration and root growth (Rakocy et al.,
2006).

DO plays a major role in aquaponics fish growth and bacteria, and restricts the fungal growth
and rotting of roots (Sallenave, 2016; Channa et al., 2024). DO intensity in the water is based
on the fish type and water temperature (Eze & Ajmal, 2020). However, the required
concentration of DO to keep good health and maximise the warm water fish is 5 ppm (parts
per million) or 5 mg/L (milligrams per litre), whereas for cold-water fish it is 6.5 ppm or 6.5
mg/L (Sallenave, 2016). The ideal DO range for a fish is 4-5 ppm (Hsiao & Sung, 2020).
Nevertheless, the aquatic species will go under stress if the DO concentration goes below 3
ppm, which causes disease and death (Eze & Ajmal, 2020; Hsiao & Sung, 2020). Kumar et al.,
2023).

d. Water temperature

Water temperature in aquaponics is a major factor that influences fish and plant growth
(Sallenave, 2016; Kumar et al., 2023).

Aquatic species depend on water temperature. The acceptable water temperature for warm
water fish is 22 — 29 °C, whereas for cold water fish it is less than 18 °C (Chandramenon et al.,
2024). The optimal temperature for fish is 18°C to 30°C, which is also acceptable for crop and
nitrifier (Hsiao & Sung, 2020). However, tilapia can tolerate a wide range of water temperatures
from 9 °C—-42.5 °C (Obirikorang et al., 2021).

e. Light

Light is a critical requirement for plant growth and for the photosynthesis process to be carried
out (Hsiao & Sung, 2020; Yanes et al., 2020). Sunlight availability for indoor plants poses a
challenge; however, studies suggest that artificial lighting can effectively replace natural
sunlight (Yanes et al., 2020; Ghandar et al., 2021; Gnanasagar & Vivek, 2020).

f. Air temperature
Air temperature influences fish and plant growth (Khaoula et al., 2021; Yang et al., 2023).
Extreme temperature influences aquatic biological activity, photosynthetic rate, and
transpiration rate. Also, it causes plant stress and hinders plant growth (Bhat et al., 2023;
Morchid et al., 2024).

g. Carbon dioxide (CO)
CO. is included in plant respiration (Morchid et al., 2024).
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h. Nitrification process

In water, ammonia can be in two forms: unionised ammonia (NHs3) and ionised ammonia
(NH4"), together (NH3 + NH4"), called total ammonia nitrogen (TAN), also known as ammonia
(Francis-Floyd et al., 2009; Somerville et al., 2014; Espinal & Matuli¢, 2019:41; Lindholm-
Lehto, 2023; Mohamed Ramli et al., 2024). Water temperature, pH, and salinity control the
proportion between unionised and ionised ammonia ( Lindholm-Lehto, 2023). Fish excrete

liquid waste through gills or urine in the form of ammonia ( Thakur et al., 2023).

Ammonia toxicity depends on water temperature and pH. Higher temperature and pH affect
the fish’s life (Francis-Floyd et al., 2009; Somerville et al., 2014; Lindholm-Lehto, 2023;
Thakur et al., 2023). lonised ammonia is not toxic to the fish, whereas unionised ammonia is
(Pillay, 2004: 4; Espinal & Matuli¢, 2019: 41).
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Figure 2.2: Nitrogen cycle in aquaponics (Francis-Floyd et al., 2009)

The nitrogen cycle is a biological process that helps to eliminate ammonia. The nitrogen cycle
in aquaponics is shown in Figure 2.2. Ammonia is eliminated from the water by converting it
into another form of nitrogen, such as nitrite (NO2") and nitrate (NOs"), with the help of nitrifying
bacteria, Nitrosospira, Nitrosomonas, Nitrospira, Nitrobacter, and other bacteria (Francis-Floyd
etal., 2009; Prosser, 1989 citated in Espinal & Matuli¢, 2019:41; Lindholm-Lehto, 2023; Jiang
& Liu, 2024; Kok et al., 2024). Nitrifying bacteria use oxygen and alkalinity to convert ammonia
and nitrite into a less toxic byproduct, nitrate (NO3’). In the pond, nitrate is used as plant

fertiliser, for microalgae (phytoplankton) or returned to the atmosphere.
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For a healthy fishpond/tank, the total ammonia nitrogen (TAN) concentration should be
maintained at less than 1 mg L' (Mohamed Ramli et al., 2024). If it is more than zero, the
monitoring of UIA in TAN must be undertaken, as this is highly toxic to the fish. UAI that is more
than 0.05 mg/L (ppm) is harmful to the fish and can even cause death. UIA concentration in

water is determined by water pH and temperature (Thakur et al., 2023; Eneh et al., 2023).

Aquaponics systems involve three main organisms, namely: plants, fish, and bacteria. Each
organism has specific tolerance ranges for key parameters, which can vary depending on the
plant and fish species. Table 2.5 provides a summary of the specified organisms' tolerance
range (Sallenave, 2016; Kurian et al., 2019; Singh et al., 2021). However, maintaining optimal
ranges for these parameters can significantly enhance the overall yield of the aquaponics

system. Table 2.6 shows the optimal water quality range of (Sallenave, 2016; Shafeena, 2016).

Table 2.5: Aquaponics fish, plant and bacteria water quality parameters and tolerance range

Temp pH Ammonia Nitrite Nitrate DO
Organism Type | (°C) (mgl/litre) (mg/litre) | (mg/litre) | ppm (parts per
million) / (mg/L)

Warm water | 22-32 6-8.5 <3 <1 <400 4-6
fish
Cold water fish | 10-18 6-8.5 <1 <0.1 <400 6-8
Plant | Leafy 14- 20 5.5- <30 <1 - >3

In 18- 30 7.5

general
Bacteria 14-34 6-8.5 <3 <1 - 4-8

Table 2.6: Optimal water quality range of general and tilapia-based aquaponics systems

Type Temperature | pH TAN NO; NO: DO
Nitrite Nitrate

General 65 - 85 OF 6-7 <1ppm | <1ppm 5-150 >5ppm

Aquaponics | (18.33- 29.44 ppm

System oC)

Tilapia- 81 -84 F 7 <1ppm | <1ppm 5-150 >5ppm

based (27.22 — 28.88 ppm

Aquaponics | °C)

System

It is important to monitor some water quality and environmental parameters to help maximise

plant and fish growth in your aquaponics system (Hadi et al., 2022).
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2.1.3.3 Aquaponics monitoring parameters

Water is a common medium for the three living organisms of an aquaponics system, namely:
fish, plants and bacteria (Thorarinsdottir et al., 2015:33; Shafeena, 2016; Sallenave, 2016;
Lennard & Goddek, 2019:124; Singh et al., 2021). Therefore, it is essential to continuously
monitor and control water quality parameters, including nitrogen, pH, electrical conductivity
(EC), dissolved oxygen (DO), total dissolved solids (TDS), temperature, and light conditions,
to maintain ideal conditions for the healthy and optimal growth of these organisms (Timmons
& Ebeling, 2010:49; Roberto, 2003:34; Resh, 2013:78; Somerville et al., 2014; Lennard &
Goddek, 2019:126; Maulini et al., 2022; Wibowo et al., 2019; Rozie et al., 2020). Among these,
water temperature is particularly critical and requires close monitoring (Ekanayake et al.,
2022). Similarly, pH is directly and indirectly related to other water quality parameters, making

its monitoring equally important (Saha et al., 2018).

In a newly set up aquaponics system, parameters need to be tested daily to make the required
parameter value/s corrections at the earliest stage. If the nutrient cycle were balanced in the

aquaponics system, it would only require weekly testing (Sallenave, 2016).

For optimal growth and productivity of aquaponics systems benefiting both fish and plants, key
water quality parameters such as pH, dissolved oxygen, and temperature, along with
environmental factors like light, humidity, and ambient temperature, must be monitored.
Remedial actions should be taken promptly if any parameter deviates from the expected values
(Sallenave, 2016; Hsiao & Sung, 2020; Yanes et al., 2020; Hadi et al., 2022).

Other water quality parameters, such as TDS and EC, have also been highlighted in various
studies as essential for effective monitoring (Pappu et al., 2017; Saha et al., 2018; Yanes et
al., 2020; Rozie et al., 2020). Monitoring and controlling can be done either manually or
electronically (Shafeena, 2016; Manju et al., 2017; Hsiao & Sung, 2020).

Electrical Conductivity (EC): Electrical Conductivity (EC) measures the ability of water to
conduct an electric current, which is directly correlated with salinity levels. The optimal EC
range for fish in aquaponics systems is between 100 and 2000 uS/cm (Yanes et al., 2020).
However, the broader acceptable range extends from 30-5000 pS/cm (Saha et al., 2018). A
high EC reading typically indicates water pollution, which can adversely affect the aquatic
environment. Additionally, the fish population is closely linked to EC levels, as higher densities

of fish can influence salinity and, consequently, EC readings (Yanes et al., 2020).

Total dissolved solids (TDS): TDS levels represent the concentration of organic matter,
dissolved materials, and inorganic salts in water. The ideal TDS level in water is 1000 mg/L.
Exceeding this optimal range can create a toxic environment for aquatic organisms (Yanes et
al., 2020).

22



Relative humidity: Relative humidity refers to the amount of moisture in the air. It is essential
for plant growth as it helps plants thrive. The considerable relative humidity for plants ranges
from 50% to 80%, although it may vary depending on the plant variety (Yanes et al., 2020;
Morchid et al., 2024).

Ambient temperature: Ambient temperature significantly influences plant health. The optimal
temperature range for most vegetables in aquaponics is between 18°C and 30°C (Yanes et
al., 2020).

Aquaponics farming is a multidisciplinary field where knowledge about plants, fish and micro-
organisms is required (Goddek et al., 2015; Channa et al., 2024). Good training, skills, and
management will lead to successful aquaponics farming. Aquaponics daily management is
essential as an aquaponics unit has three different living organisms, whilst the common
medium is water (Goddek et al., 2015; Valiente et al., 2018). Management embraces fish feed,
fish tank, grow bed, water flow and monitoring, and maintenance of the environmental
parameters: pH, temperature, humidity level, water level and many more (Dutta et al., 2018;
Valiente et al., 2018).

Aquaponics has many variables and complexities; thus, one needs to be meticulous in
monitoring the chemistry throughout the circulating water to ensure optimal ratios and
concentrations of nutrients. Ammonium is a very toxic component. It is thus imperative to watch
it carefully. Water quality parameter reading is continuously required in aquaponics to check
whether the system maintains a controlled environment or not (Goddek et al., 2015; Sallenave,
2016; Deshpande et al., 2024). The controlled environment guarantees the optimal growth of

fish, vegetables and bacteria simultaneously.

Monitoring and controlling an aquaponics system manually/traditionally is time-consuming and
might not be accurate (Shafeena, 2016; Naser et al., 2019; Channa et al., 2024). If there is
any abnormality in the parameter reading, the value from the optimal value of the parameter

needs to be adjusted to maintain the environment and keep it under control.

Hence, human intervention is intensively required to monitor and control these constantly
changing values, which are critically required for plant and fish growth production. This shows
the necessity of a smart aquaponics system to reduce the burden of human intervention,
labour, and monotonous tasks (Goddek et al., 2015; Shafeena, 2016; Jerry, 2020; Raman &
Vasmatkar, 2024).

Smart aquaponics is an integrated system that uses advanced technologies like 0T, machine
learning (ML), and automation for real-time monitoring, controlling, and optimising aquaponics

farming. Recent developments and trends include loT devices for real-time system
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management and Al-driven machine learning algorithms to enhance sustainability and
efficiency (Liu & Jiang, 2024).

2.1.4 Internet of Things

The term “ Internet of Things” was devised by Kevin Ashton in 1999 (Corcoran, 2016; Mouha,
2021). The Internet of Things is a framework that provides a structure to interconnect physical
devices, sensors, electronics, or additional technologies to collect and exchange data with
other devices or systems over the internet (Mouha, 2021). As technology evolves, the
definition of “Things” also changes (Gubbi et al., 2013). The "Thing" in IoT can be an object
having a sensor installed in it that can collect data and transfer it across the network, which
helps to implement, monitor and control operations without human involvement (Jamali et al.,
2020:1; Mouha, 2021). The main aim of loT is to monitor and control things/objects from
anywhere in the world, which makes the devices “Smart” (Jamali et al., 2020:1; Maity et al.,
2023).

The loT integration in certain areas makes it more efficient, practical, safe and intelligent, such
as smart agriculture, smart water, smart cities, smart cars, smart farming, smart homes, smart
glasses, smart postal, precision farming, industries, health monitoring, education, security,
media and many more (Vashi et al., 2017; Reddy et al., 2020; Ammayappan & Smys, 2020;
Jamali et al., 2020:2; Mouha, 2021; Maity et al., 2023).

2.1.4.1 loT architecture

loT architecture encompasses a collection of physical objects, sensors, cloud services,
actuators, communication layers, users, business layers and loT protocols (Jamali et al.,
2020:3). The integration of hardware and software over the network is grounded in
the anticipated solution. Therefore, the implementation of loT architecture may vary;
depending on the study, it can be a three-layer, four-layer, five-layer or even seven-layer
architecture (Vashi et al., 2017; Mouha, 2021; Kumar & Sharma, 2023). However, a widely
accepted loT technology architecture has three layers, namely, the perception layer, network
layer and application layer (Lin & Shi, 2014; Jamali et al., 2020:3; Mouha, 2021; Kumar &
Sharma, 2023; Prasetya et al., 2024). Figure 2.3 portrays the three-layered loT architecture.
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Figure 2.3: Three-layer loT architecture (Mouha, 2021)

Perception Layer: The lowest layer in the standard loT architecture. This layer involves
various sensors, actuators and any physical devices. The primary purpose of this layer is to

collect data from the environment (Jamali et al., 2020:3; Mouha, 2021).

Network Layer: This layer is responsible for transmitting data between the perception layer
and the application layer. It also establishes a connection between other smart things,

network devices, and servers (Jamali et al., 2020:3; Mouha, 2021).

Application Layer: This layer establishes the connection between the user and the
application and provides services according to the user’s needs (Jamali et al., 2020:4;
Mouha, 2021).

2.1.4.2 10T in aquaponics

Integrating technologies such as the internet, sensors, automation systems, robotics, and Al
in agriculture creates smart agriculture. It aims to enhance crop quality and quantity while
minimising manual labour (Kassim, 2020; Arjune & Kumar, 2022; Lynda et al., 2023). The
applications of IoT in agriculture include weather monitoring, disease monitoring, soil condition
monitoring and irrigation management (Kassim, 2020; Ismaili et al., 2024). The loT smart
devices can sense the variations in data, collect, store and send the data over the network
(Kassim, 2020; Lynda et al., 2023). Various sensors, such as water temperature, Total
Dissolved Solids (TDS), soil moisture, pH, air humidity, air temperature, precipitation, rain
detection sensors, dew point sensors and so on, were used in agriculture for monitoring,
controlling and data collection purposes (Saini & Saini, 2020; Kassim, 2020; Lynda et al., 2023;
Ismaili et al., 2024).
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Similarly, 10T technology in aquaponics enables continuous monitoring and autonomous
control, optimising management and transforming it into a "smart aquaponics" system (Mohd
Ali et al., 2021; Wan et al., 2022). The aquaponics farmers monitor the real-time data, which
enables them to maintain optimal conditions for both fish and plant growth. Renewable energy,
like solar energy, was also used to run electronic devices connected to the aquaponics unit
(Murdan & Joyram, 2021; Mohd Ali et al., 2021).

According to loT's three-layer architecture, the sensors, cameras and actuators are placed in
the perception layers for monitoring and controlling the parameters. The parameters monitored
in the aquaponics studies using sensors include water temperature, water level, pH, turbidity,
electrical conductivity (EC), ammonia, nitrate, Total Dissolved Solids (TDS), plant growth
condition, soil moisture, planting environment such as light intensity, temperature, Carbon
Dioxide, etc. (John & Mahalingam, 2021; Udanor et al., 2022; Ekanayake et al., 2022; Wan et
al., 2022; Abdullah & Mazalan, 2022; Mahmoud et al., 2023; Naputol et al., 2024; Prasetya et
al., 2024; Abidin et al., 2024; Perumal et al., 2024). The key factors controlled in aquaponics
studies include water circulation using a pump to regulate water level in the tank, ambient light
for plant growth, automated fish feeding, heaters to maintain water temperature, and fans to
regulate ambient temperature for cooling. These controls are essential to achieve optimum
growth of both plants and fish (John & Mahalingam, 2021; Hadi et al., 2022; Wan et al., 2022;
Mahmoud et al., 2023; Prasetya et al., 2024; Abidin et al., 2024).

The collected data from the perception layer and information from the application layer are
transmitted between the layers using network communication technologies and protocols that
belong to the network layer. For example, technologies are Wireless Fidelity (Wi-Fi), 5G
communication, LongRange (LoRa), LoRaWAN, and Wireless Sensor Networks (WSNSs).
Protocols are Message Queuing Telemetry Transport (MQTT), Internet Protocol, and ZigBee
(Zaini et al., 2018; Nichani et al., 2018; Wang et al., 2020; Ghandar et al., 2021; Wan et al.,
2022; Silalahi et al., 2022; Alselek et al., 2022; Mahmoud et al., 2023; Abidin et al., 2024;
Prasetya et al., 2024).

The collected data is processed in the application layer to provide the user with insight via a
user interface. For prediction, machine learning, Atrtificial Intelligence or deep learning were
used. Web interfaces, mobile applications or dashboards are used to monitor and control the
real-time parameters from anywhere. Data is stored in the cloud and the database (Kyaw &
Ng, 2017; Pasha et al., 2018; Barosa et al., 2019; Taha et al., 2022; Abdullah & Mazalan, 2022;
Kim et al., 2022; Taha et al., 2022; Mahmoud et al., 2023; Abidin et al., 2024; Prasetya et al.,
2024; Perumal et al., 2024).
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The technologies that were used by Anila and Daramola (2024) in their Systematic Literature

Review study in various aquaponics research are depicted in Figure 2.4.
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Figure 2.4: |oT architecture with various technologies in aquaponics studies (Anila & Daramola, 2024)

2.1.5 Machine Learning

Machine learning is a core area of Artificial Intelligence (Al) (Ray, 2019; Janiesch et al., 2021).
Artificial intelligence is the ability of a machine to behave like a human and solve complex
computer-based problems using large data in a very short time (Joshi, 2020:4). The term
“Machine Learning” was coined by Arthur Samuel in 1959 (Joshi, 2020:4). Machine learning
refers to a computer program's ability to learn from experience and enhance its performance
or behaviour over time. According to Tom Mitchell, who in 1997 defined machine learning as:
“A computer program is said to learn from experience E regarding some task T and some
performance measure P, if its performance on T, as measured by P, improves with experience
E” (Géron, 2019:3; Abdel-Fattah et al., 2021). Machine learning extracts actionable knowledge
from data by applying machine-learning techniques (Lantz, 2013:10; Mdller & Guido, 2016:1).
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In machine learning, the functionality involves mapping input data to output results as

predictions through a systematic machine-learning process.

2.1.5.1 Machine learning process

The general machine-learning process is described in 7 steps, which are data collection, data
preparation, model selection, model training, model evaluation, hyperparameter tuning, and

model deployment (Panigrahi et al., 2023). The general machine learning process is depicted

in Figure 2.5.
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Figure 2.5: The general machine-learning process (Lantz, 2015:17; Panigrahi et al., 2023)

Step1. Data collection

Data collection is the primary step in the machine learning process (Alzubi et al., 2018). Data
collection involves gathering relevant information from various sources based on the nature.
Once the collected data is preprocessed, it is fed into a machine learning model to generate
actionable insights (Lantz, 2015:16).

Step 2. Data pre-processing

Data quality plays a major role in machine learning (Badillo et al., 2020). Data pre-processing
is intended to prepare the collected data for data analysis (Abdelaziz et al., 2025). The
collected data may contain noisy, redundant or missing data and inconsistent data (Alzubi et
al., 2018; Abdelaziz et al., 2025). During the data cleaning, insignificant or redundant data can
be disregarded (Yang & Shami, 2020). Missing values and outliers can be treated by replacing
them with calculated statistical measures, such as the mean, mode or median (Dangeti,
2017:11; Joshi, 2020:151). Once the data is cleaned, the next step is feature selection.
Although a dataset may contain many features, it is crucial to select only those that are relevant
to the study’s objectives to ensure effective model training (Alzubi et al., 2018). Additionally,
the features in the dataset may have different ranges, which can reduce the accuracy and
performance of the model. To address this, data transformation techniques such as
normalisation or standardisation are applied to scale the features appropriately, thereby

improving model performance. To address it, the data transformation process, normalising or
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standardising, can be applied to the data. Normalising maintains data to a specific range, in
standardising, the data have a mean of zero and a standard deviation of one, which helps
improve the accuracy and performance of the model (Abdelaziz et al., 2025). Finally, the
dataset is split into the train and test sets. The training set is used to train the model, while the
test set is used to evaluate the model's ability to generalise unseen data (Panigrahi et al., 2023;
Abdelaziz et al., 2025). Generally, the data is split into higher portion ratios to train the models,

whilst a smaller portion is used to test the models.
Step 3. Algorithm selection

After the data is prepared for analysis, the researcher will most likely gain insight into what can
be learnt from the collected data (Lantz, 2015:16). Trends and patterns in the data can be
uncovered during the analysis of the data, and the type of algorithm that needs to be selected.
Algorithms enable computers to learn behaviours and patterns based on the given data
(Chitralekha & Roogi, 2021). The selection of the appropriate algorithm, such as supervised,
unsupervised, semi-supervised and reinforcement learning, depends on the type of problem
to be solved (Chitralekha & Roogi, 2021). The problems are, namely, classification, regression,
anomaly detection, clustering and reinforcement (Alzubi et al., 2018). Selecting the most
suitable machine learning algorithm can be challenging, as it directly affects prediction
accuracy and overall model performance. Once a suitable machine learning algorithm is

chosen, it represents the data in the form of a model (Lantz, 2015:17).
Step 4. Model training

The most critical phase in machine learning is model training. In this phase, the model will be
trained using the training dataset to learn the trends in the given dataset. The prepared data is
input into the selected machine learning algorithm to train the model and finally make

predictions. (Panigrahi et al., 2023).
Step 5. Model evaluation

It is vital to assess the model's performance to understand how effectively the algorithm learns
from experience and to estimate the accuracy of the model's results on unseen data (Lantz,
2015:17). Different metrics are used to evaluate the model. However, the choice of metrics

depends on the algorithm selected.
Step 6. Hyperparameter tuning

Machine learning algorithms adjust the model parameters based on the given data during the
training process. Model parameters focus on covering the input data to the desired output
data. Whereas, other parameter types that are pre-configured before the training process is
initialised and cannot change during the training process are known as hyperparameters.

Hyperparameters are involved in building the structure of a model (Elgeldawi et al., 2021; Yu
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& Zhu, 2020).

Hyperparameter tuning, or the process of finding optimal hyperparameters, is crucial because
it involves developing methods to systematically and formally identify the best hyperparameter
configurations. This process, which is considered an optimisation problem, facilitates better

learning and understanding of the model's performance (Yu & Zhu, 2020).

Hyperparameter optimisation determines which hyperparameters to tune and systematically
adjusts the hyperparameter values to evaluate the model's performance across various
hyperparameter sets (Yu & Zhu, 2020). The main goal is to determine the best hyperparameter
combinations effectively and efficiently (Yu & Zhu, 2020). This achieves minimum loss or
maximum accuracy on a validation set. Fine-tuning a model's hyperparameters is vital for
adapting a machine-learning model to different problems (Yu & Zhu, 2020; Yang & Shami,
2020; Elgeldawi et al., 2021).

The performance of the machine learning model changes based on the choice and values of
its hyperparameters. However, it is also important to know how well a model can perform on
unseen data. For the cross-validation, a statistical method is used to assess the machine
learning model’s accuracy. This will determine how well a model can perform on unseen data.

One of the popular cross-validation methods is K-fold cross-validation (Elgeldawi et al., 2021).

Grid Search and Random Search are two hyperparameter optimisation techniques used to

determine the optimal combinations of hyperparameters (Bischl et al., 2023).

Grid search performs an exhaustive search over a specified set of hyperparameters defined
by the user and evaluates every possible combination of hyperparameter values using cross-
validation. This method is popularly used to tune model hyperparameters to obtain the best
combination for determining the best fit (Géron, 2019:79; Dangeti, 2017:286; Yu & Zhu, 2020;
Bischl et al., 2023).

Random search is an improved version of grid search. It performs a randomised search over
hyperparameters to find optimal combinations for the model under consideration. The random
search is usually computationally intensive compared to the grid search (Yu & Zhu, 2020;
Elgeldawi et al., 2021; Bischl et al., 2023). The search continues until the entire allocated

budget is exhausted or the desired accuracy is achieved (Yu & Zhu, 2020).
Step 7. Model deployment

The final step in the machine learning process is model deployment. Once the model is
performing well, it can be deployed for prediction purposes (Lantz, 2015:17; Dangeti, 2017:
12). When the model is in use for its intended task, it is essential to regularly assess whether
the model is performing well with the new data and update it accordingly to ensure getting

the optimised results (Pruneski et al., 2022).
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In machine learning, specific terms are frequently used to describe various aspects of the field,

models, and processes. Table 2.7 addresses the commonly used terms in machine learning.

Table 2.7: Machine learning terms

dataset/training
set/ training
data

learning algorithm to train the model.

Term Meaning Source

Datasets The data set is ideal when all the data is numerical and it (Joshi, 2020:22)
does not contain any missing values.

Model A machine learning model is a mathematical (Fenner, 2019:8)
representation(rule, formula, or equation) trained to
identify data patterns.

Entities In machine learning, an entity represents a digital storage (Joshi, 2020:22)
of data commonly stored in a CSV file format.

Attribute An attribute represents the column of an entity. A group of | (Géron, 2019:9;
attributes is an entity. Joshi, 2020:22)

Data type The stored format of an attribute in an entity uses different | (Joshi, 2020:23)
types. For example, integer, string, datetime, etc.

Features In machine learning, a feature means a set of attributes (Géron, 2019:9)
used for prediction. It may vary based on the context.

Predictors In machine learning, the predictors are input variables that | (Géron, 2019:9)
predict an output.

Labels Labels are expected results, target variables or (Géron, 2019:8)
predictions from a trained algorithm. The features are used
for prediction. Labelled data, together with input data to
train an algorithm, produces a model in supervised
learning.

Training It is a dataset that is inputted into a selected machine- (Mller & Guido,

2016:17)

Test dataset/
test set/ test
data

It is a dataset used to validate the accuracy of the model.

It is not the same as a training dataset.

(Mller & Guido,
2016:17)

Overfitting

In machine learning, overfitting means the model performs
well on the training dataset. However, the model does not
perform well during the testing period or for generalising the
model. This will lead to high variance. Variance is how the

data is scattered from the average value.

(Lantz, 2013: 16;
Géron, 2019: 28;
Joshi, 2020: 50;

Molin, 2021:653)

Underfitting

It is the opposite of overfitting, where the model performs
poorly on the training dataset. This is because the model is

too simple to learn the underlying structure of the data. This

(Géron, 2019:30;
Molin, 2021:653)
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leads to high bias. Bias is an error due to the difference

between the actual value and the predicted value.

Machine learning techniques use algorithms to learn patterns from given data and provide
decisions or predictions without being explicitly programmed (Mahesh, 2020; Obaido et al.,
2024). Machine learning depends on several algorithms to solve specific problems. The
performance of the algorithm depends on the nature of the problem that needs to be solved
(Mahesh, 2020; Abdel-Fattah et al., 2021). However, the efficacy of machine learning is
determined by the type and characteristics of input data and the performance of the learning
algorithms (Sarker, 2021).

2.1.6 Types of machine learning

There are three main types of machine learning categories, namely: supervised, unsupervised
and reinforcement learning (Géron, 2019; Shrestha & Mahmood, 2019; Ray, 2019; Joshi,
2020:10; Janiesch et al., 2021). However, some authors addressed semi-supervised learning
in their machine-learning category (Géron, 2019:8; Sarker, 2021; Chitralekha & Roogi, 2021;
Richardson et al., 2022).

2.1.6.1 Supervised machine learning

A supervised learning algorithm uses a labelled data set as a pair of inputs and expected output
to train the model (Muller & Guido, 2016:2; Sarker, 2021). After training, the algorithm will learn
a pattern (Mahesh, 2020). The pattern can apply to a new data set/test data set, which helps
with prediction. Supervised learning algorithms are further divided into two: regression and
classification (Ray, 2019; Janiesch et al., 2021; Sarker, 2021; Obaido et al., 2024). The
regression algorithm predicts the numeric value. Classification algorithms classify the input
data set into two or more classes (Russell, 2018:14; Janiesch et al., 2021). Forecasting, corn
crop yield prediction, car price prediction, annual income prediction and trend analysis are
some of the uses of regression algorithms. Image classification, cancer detection, spam filters,
text classification, weather forecasting, and face recognition are some of the uses of
classification algorithms (Muller & Guido, 2016:26; Géron, 2019:9; Ray, 2019; Sarker, 2021;
Alnuaimi & Albaldawi, 2024). Differentiating between regression and classification tasks can
be done by questioning if there is a pattern of continuity in the output. If continuity is identified
in the possible outputs, this points towards a regression problem. The classification task,
however, has completely different categorisations and thus shows no signs of continuity (Miller
& Guido, 2016:26; Sarker, 2021; Alnuaimi & Albaldawi, 2024).

Various algorithms come under regression and classification problems. k-Nearest Neighbors,

Linear Regression, Naive Bayes, Logistic Regression, Support Vector Machines (SVMs),
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Linear Discriminant Analysis (LDA), Decision Trees and Random Forests are some of them
(Mller & Guido, 2016:22; Geéron, 2019:10; Ray, 2019; Sarker, 2021).

2.1.6.2 Unsupervised machine learning

Unsupervised learning algorithms learn by themselves using unlabelled datasets without any
target variable or supervision provided (Dangeti, 2017:9; Fenner, 2019:445; Sarker, 2021). It
requires finding hidden patterns and relations in the given data (Dangeti, 2017:9; Naeem et
al., 2023). It involves a model that is fit for observations. In unsupervised learning, a data set
of input objects is collected. Unsupervised learning then typically treats input objects as a set
of random variables. Thereafter, a joint density model is built for the dataset (Ayodele, 2010b:
13-14).

Unsupervised learning provides the unknown output and uses an unlabelled dataset without a
training dataset to find hidden patterns or structures of data in which no target variable exists
(Dangeti, 2017:304; Geéron, 2019:10; Ray, 2019; Janiesch et al., 2021).

Social network analysis, software fault prediction, segmentation of customers, search engine,
data mining and knowledge extraction, etc., are some examples of unsupervised learning
applications (Dangeti, 2017:304; Janiesch et al., 2021; Naeem et al., 2023).

Clustering, dimensionality reduction, self-supervised learning, density estimation, and
association rules are five major types of unsupervised learning tasks (Dangeti, 2017:9; Géron,
2019: 10; Joshi, 2020:133; Ren et al., 2023; Obaido et al., 2024).

2.1.6.3 Semi-supervised learning

Semi-supervised learning is a combination of supervised and unsupervised learning (Géron,
2019:14; Sarker, 2021). It is suitable when there is insufficient labelled data and the dataset
contains more unlabelled data than labelled data (Chitralekha & Roogi, 2021; Richardson et
al., 2022). The model trains based on a small amount of labelled data and predicts on a large
set of unlabeled data (Richardson et al., 2022). Using labelled data guides the model to learn
the pattern and then make a prediction using unlabelled data (Chitralekha & Roogi, 2021;
Richardson et al., 2022; Obaido et al., 2024). The two main types of semi-supervised learning
methods are self-training and co-training. In the self-training method, the dataset is split into
three parts such as train data, unlabeled data, and test data. The model trains using the training
dataset and then makes predictions with the unlabeled data. Then, select the data points with
the highest prediction probabilities and add them to the training dataset. These selected points
will no longer be part of the unlabeled dataset. This process repeats until no more high-
probability predictions remain. Finally, evaluate the model's performance using the test
dataset. In the co-training method, the dataset is split into two views under the sufficiency and

independence assumptions. Each view is sufficient to train a classifier, and the views are
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independent of each other. After training, predictions are made on the unlabeled dataset, and,
according to each view, the high-confidence unlabeled data are added to the new training set.
Repeat the process until the predictions are optimised (Richardson et al., 2022; Ning et al.,
2023). The applications of semi-supervised learning are machine translation, speech

detection, fraud detection, text classification and so on (Sarker, 2021; Richardson et al., 2022).

2.1.6.4 Reinforcement learning

Reinforcement learning is one of the machine learning categories in which an intelligent
program, learning system or software agent learns from environmental interaction feedback
and takes action to move to the next stage to achieve a goal (Kaelbling et al., 1996; Sutton &
Barto, 2018:1; Nandy & Biswas, 2018:1; Geéron, 2019:14-15; Elguea-Aguinaco et al., 2023;
Alnuaimi & Albaldawi, 2024). If the feedback is positive, this is classified as a reward, and if
the feedback is negative, it is known as a punishment or penalty (Nandy & Biswas, 2018:1;
Géron, 2019:14; Obaido et al., 2024; Alnuaimi & Albaldawi, 2024).

Reinforcement learning depends on trial-and-error experiments (Alnuaimi & Albaldawi, 2024).
The interaction deals with the environment in which real-world scenarios are portrayed. Taking
the environment into consideration brings about a lot of factors, and more learning is thus
required (Nandy & Biswas, 2018:2; Alnuaimi & Albaldawi, 2024). The agent trains itself from
the learning occurring in the environment. Due to the volume of information the agent learns,

it can have different paths to choose from.

The main elements of reinforcement learning are agent, environment, action, state, reward and
policy (Dangeti, 2017:361-362; Sutton & Barto, 2018:6; Jia & Wang, 2020; Sarker, 2021). An
agent is a model that is being trained via reinforcement learning. The environment is the
training situation that the model must optimise within. An action is a possible step that the
model can take. A state can be described as a condition or current position given by the model.
Reinforcement learning focuses on increasing the aggregate and collective reward, i.e. all the
rewards accumulated and received by the agent from the environment, instead of the
immediate reward received from the current state. The software agent understands the current
state of the environment and takes action to move to the next stage. It also determines how
an agent will behave at any given time. In a nutshell, a policy is a decision-making process
that allows changes from the action taken to the present state (Dangeti, 2017:361-362; Sutton
& Barto, 2018:6; Nandy & Biswas, 2018:54; Jia & Wang, 2020; Elguea-Aguinaco et al., 2023).
The objective of reinforcement learning is to create an optimal or close to optimal policy based

on the rewards received.

Markov designed a framework to simplify the manner of illustrating features of an intelligence

problem. The Markov decision process (MDP) framework is used to define the interaction

34



between the environment and the learning agent in terms of rewards, actions, and states
(Sutton & Barto, 2018: 13; Jia & Wang, 2020; Elguea-Aguinaco et al., 2023).

Compared to supervised and unsupervised learning, reinforcement learning is used to design
optimal or near-optimal policies based on rewards received (Dangeti, 2017:359, Sutton &
Barto, 2018:1; Jia & Wang, 2020).

The proposed study aims to address a regression problem by predicting numerical values from
unseen data. Hence, various supervised-based learning regression models were explored,
namely linear regression, random forest and eXtreme Gradient Boosting (XGBoost), K-Nearest
Neighbors (KNN), and a multilayer perceptron (MLP). These algorithms were explored
because they represent the various regression methods, such as linear, tree-based
ensembles, instance-based, and deep learning. This allows for a comprehensive comparison

between the algorithms and identifies the most suitable algorithm for the problem to be solved.

2.1.7 Linear regression

Regression encompasses the relationship between the value to be predicted and one or more
predictors. This model is used for representing the relationship between one or more numeric
input variables and one output variable. The input variable is also known as the independent
variable or predictor, whereas the output variable is known as the dependent variable/predictor.
The relationship between the independent and dependent variables is assumed to follow a
straight line. Regression equations model data using a slope-intercept format. Regression
analysis usually models complex relationships among data elements. It is also used to estimate
the impact of a treatment on an outcome. Regression analysis is a pool of many methods that
can be adapted to almost any machine-learning task. Linear regression is the most basic
regression models that use straight lines. If there is only a single independent variable, this is
known as simple linear regression, otherwise, it is known as multiple regression. Both the
simple linear regression and multiple regression models take it that the dependent variables
are continuous (Ray, 2019; Joshi, 2020:34).

Regression analysis aims to build mathematical models that explain the existing relationships
between variables (Seber & Lee, 2012:2; Roustaei, 2024).
2.1.7.1 Simple linear regression

Simple linear regression is one of the simplest forms of regression, which uses the input and
output variables as a dataset. If the relationship between the input and output variables is
linear, the dataset can fit into a straight line (Roustaei, 2024). For this to be achieved, it uses

the formula below:

y =a+ fx (2.1)
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Where: y = dependent variable; x = independent variable; a = intercept (the point where the
line crosses the ‘y’ axis); § = slope (the slope b indicates how much the line rises for each

increase in x).

The regression analysis is aimed at finding the estimated value for ‘a ' and ‘f’ (Lantz, 2013:163;
Ray, 2019; Roustaei, 2024). To find the optimal estimated values of the intercept ‘a ' and slope
‘B’, the ordinary least squares (OLS) regression estimation method is used. The aim is to
minimise the sum of the residual, which is the sum of the squared error. In this regression
estimation method, the intercept and slope are chosen in a certain way to minimise the sum of
the squared errors. These errors refer to the difference between the predicted dependent

variable and the actual dependent variable (Lantz, 2013:164; Roustaei, 2024).

2.1.7.2 Multiple linear regression

Multiple regression is an extension of simple linear regression (Roustaei, 2024). Multiple
linear regression has a many-to-one relationship between many input (independent)

variables and one output (dependent) variable (Ray, 2019; He, 2023).

The multiple linear regression is represented in the following equation:

y = a + Blx1 + B2x2 + F3x3 + ......+ Bixi + ¢ (2.2)

Where: y = dependent variable; x= independent variable; a« = intercept (the point where
the line crosses the ‘y’ axis); f= slope (the slope b indicates how much the line rises for
each increase in x); € represents the residual (error); and i represents the total number of

features.

Both simple and multiple linear regression have the same goal, which is to determine the
values of the coefficient that reduce the prediction error of a linear equation (Priya, 2021). The
dependent variable y represents the sum of an intercept term added to the product of the
estimated slope ‘B’ value and the independent variable ‘x’ value for all ‘i’ features (Lantz,
2013:169; He, 2023; Roustaei, 2024).

The multivariate technique provides insight into the relationship between the set of
independent variables and dependent variables. It also sheds light on the relationship between
the independent variables using multiple regression, partial correlation, and tabulation
techniques (Ray, 2019).
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2.1.8 Ensemble learning

Algorithms generate a model using training data through learning; hence, the algorithms are
learners. Linear regression, decision tree, logistic regression, neural network, etc., are some
examples of individual learners or predictors. Ensemble learning is a technique that generates
a model using a collection of single learners/base learners or weak learners (Zhou, 2012:15;
Géron, 2019:191; Joshi, 2020:60; Thomas & Gupta, 2020). Ensemble learning algorithms are
known as ensemble methods (Géron, 2019:191). Weak learners together build a strong learner
who can perform predictions more accurately and has a better ability to generalise (Joshi,
2020:60; Li et al., 2020).

Different types of ensemble methods are Bagging, Boosting, Stacking, and Voting (Géron,
2019:191; Zhang et al., 2022; Mahajan et al., 2023; Khan et al., 2024).

Bagging: The name bagging is an acronym for “Bootstrap aggregation”. The bagging method
is applicable for both classification and regression problems. This method generates several
weak learners in parallel, which are independent, thereafter, averaging the outcome of each
weak learner if the solution belongs to the regression problem. In the alternative, find the
majority vote for the classification problem (Breiman, 1996; Géron, 2019:195-196; Joshi,
2020:62).

Boosting: The boosting ensemble method is used for improvement. This method generates
multiple weak learners in sequence (Géron, 2019:201). The first weak learner generates a
model with a training dataset. The second weak learner checks the outcome of the first weak
learner. If the first weak learner provides poor performance, then the second weak learner
selects the training data to reduce the error of the previous model. This process is continued
until it reaches the desired result. Thus, the stronger learner model will be generated using the
improved weaker learners (Dangeti, 2017:52; Géron, 2019:201; Joshi, 2020:62). Gradient
Boosting, Extreme Gradient Boost (XGBoost), and Adaptive Boosting (AdaBoost) are
examples of boosting algorithms. Boosting may cause overfitting, and this method takes time,
compared to the bagging ensemble method, because of the sequencing process (Dangeti,
2017:52; Joshi, 2020:62).

Stacking: Stacked generalisation, known as stacking, is an ensemble method used to
accomplish generalisation accuracy by minimising the generalisation error when combining
various generalisers (Zhang et al.,, 2022). This method uses various machine learning
algorithms to generate predictions using a training set. Later, the predicted outputs will be an
input for the final predictor or meta-learner to train the model and provide a final prediction
(Lantz, 2013:338; Naimi & Balzer, 2018; Géron, 2019:210; Zhang et al., 2022; Mahajan et al.,
2023).
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Voting: Voting involves summing the predictions for classification and averaging the
predictions for regression. Hard voting and soft voting are two types of voting in classification
problems. Hard voting selects the prediction with the most votes, whereas soft voting combines
the probabilities from each model and chooses the prediction with the highest overall
probability (Mahajan et al., 2023; Khan et al., 2024).

2.1.8.1 Random Forest

A random forest is a supervised machine learning algorithm and is an ensemble or collection

of decision trees, depending on the ensemble technique (Khan et al., 2024; Zhao et al., 2025).

A decision tree is composed of nodes and edges. To form a decision tree structure, the dataset
needs to be split into smaller datasets based on the feature value. Dataset splits take place in
a node. Anode represents a decision point where the feature value is selected from the dataset
to split and perform testing on it. There are different types of nodes, namely: root nodes,
internal nodes and leaf nodes, which are connected by edges (Lantz, 2013:120; Song & Lu,
2015; Prajwala, 2015; Obaido et al., 2024).

The random forest algorithm results in a prediction for the regression problem and the
category/class for the classification problem. Random Forest can deal with continuous
variables and categorical variable datasets for regression problems and classification
problems, respectively. A single decision tree’s drawback is overfitting; however, the collection
of decision trees and the aggregated result reduce overfitting by changing high variance to low

variance. Random forest is a solution for overfitting (Ray, 2019; Molin, 2021:653).

The first step in the random forest process randomly selects a subset of features. In the
decision tree formation split, the feature selection will be from the selected subset (Breiman,
2001; Zhou, 2012:58; Mienye & Jere, 2024; Khan et al., 2024). Thereafter, different decision
trees will use the bagging method, which trains different decision trees in parallel and
aggregates the results (Molin, 2021:653). In the regression algorithm, the final prediction result
is the average of the output results of all decision trees, whereas in classification, it is
determined by the majority voting method. The random forest algorithm is given in Table 2.8
(Wei, 2023; Mienye & Jere, 2024).
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Table 2.8: Random forest algorithm (Mienye & Jere, 2024)
Step1 fori=1to Tdo

1.1 Randomly sample n instances from D with replacement
1.2 Randomly select m features from the total p features (where m<p).

1.3 Build decision tree h; based on the sampled instances and attributes.
end for
Step 2  To make predictions for a new instance x:

if a classification task, then:

f(x)= arg maxC% T I(h(x)=0)
else if regression task then

fx)= 2204 [h; (x)]

end if

Where: n = number of samples; T = the number of decision trees in the random forest model;p=
total number of features; m= randomly selected features; h; = single decision tree; ¢ = output
of class; I(.) = an indicative function; arg max. = select the class ¢ corresponding to the
highest vote; flx) = majority vote across trees (classification); fix) = average of tree

predictions (regression).

In the bagging method, the correlation between the trained decision trees for the prediction
can be high due to a strong feature selection at the node by all the trees. This will limit the
improvement of prediction accuracy. Since the decision trees are not correlated in random
forests, they can improve the prediction accuracy (Mekonnen et al., 2020). The random forest

can handle missing and noisy data, and it performs well in most problems.

2.1.8.2 eXtreme Gradient Boosting (XGBoost)

Gradient boosting is one of the boosting algorithms. This algorithm develops new base learners
or weak learners in a sequence and accumulates them into an ensemble. This method tries to
reduce the errors of the preceding models (Géron, 2019:205; Mokhtar et al., 2022; Khan et al.,
2024).

Chen and Guestrin (2016) proposed an improved gradient boosting decision tree algorithm,
which is eXtreme Gradient Boosting (XGBoost). The difference, however, is that XGBoost has
far better performance and speed due to its efficient utilisation of the CPU core of the machine
and less complexity (Ramraj et al., 2016; Parsa et al., 2020). It takes a multithreaded method
instead of a sequential one. XGBoost is a supervised machine-learning algorithm for tree
boosting, and it is also scalable and quick to execute (Chen & Guestrin, 2016; Mitchell & Frank,

2017; Desdhanty & Rustam, 2021). This makes it suitable for both regression and classification
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problems (Pan, 2018). XGBoost supports arbitrary differentiable loss functions, together with
the prevention of overfitting (Mitchell & Frank, 2017; Desdhanty & Rustam, 2021).

The XGBoost model generates a weak learner or decision tree (DT) in each iteration and
predicts the values. Each iteration uses the previous result to boost the current result. The
result is generated by accumulating weak/base learners. Assume a dataset D= {(x; ,y;)} (|D| =

n, x; € R™, y; € R) with n examples and m features (Chen & Guestrin, 2016; Li et al., 2020).

Weak learner/ decision tree representation:

F={Lf2,f3....fm} (2.4)

Where: F is a feature; f is a base learner/ weak learner/decision tree; m is the total number
of features.

A(t)

The main task of the XGBoost model is to build t trees so that the predicted value y:~ up to
the " tree (Li et al., 2020).
Predicted " tree value:
¥ = e fie ) (2.5)
Where: f;, (x;) is k™ decision tree score in " observation.
The mathematical derivation is given below:
yl@ =0 (2.6)
J= 6D =0+ A0 =5 +fi ()
V& = £ 6 +f ;0 =3 + folx)
Y = et fie @) =9+ £l
Where: 3 is the predicted value of the i iteration; y“") s the total predicted value

from the previous iteration; f;(x;) is the decision tree result of " round.

However, it is also important to consider how to split the leaf nodes, how to determine the leaf
nodes' predicted value on each decision tree, and how each decision tree connects to the

previous decision tree. All these are determined by the Objective function (Li et al., 2020).
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a. Objective function

The observation function helps to check how well the model can fit into a given sample dataset.
Fewer errors means the best fit. The main aim when creating a model is to minimise the error.
In XGBoost, the objective function has two parts: the loss function and the
penalty/regularisation term, respectively. The loss function helps to prevent the complexity of
the model and evaluates how well the model can predict based on the training data. The
regularisation term helps reduce overfitting (Chen & Guestrin, 2016; Pan, 2018; Li et al., 2020;
Li et al., 2021).

The model objective function is shown below:

0bj(8) = L(6) + 02(6) (2.7)

Where: L is a loss function; 0 is a regularisation term.

The expanded expression is given below:

n t
minL®(y,®) = min (2 L(9®)+ ). n(f@)
k=1

i=1

(2.8)

Where: 1 (yi,}?i(t)) is a loss function which measures the difference between the actual value
(v;) and the predicted value yi“); tis the number of trees; Y!_,2(f;) is the regularisation
term, which measures the complexity of the whole model.

The regularisation term is defined as:

Ty (2.9)
Qi) = vTi + 1/2 A zwl%j
=1

Where: 2= Regularisation term to evaluate the complexity of the model and to prevent being
too difficult; 2(f,) is an objective function to avoid overfitting; f; is the k" decision tree; The
parameter yT), is used to control the number of leaf nodes T, whereas 4 is used to control

the weight of the leaf node j. T} is the number of leaf nodes in the k" tree;

wy; is the result of the /" leaf node in the k™ tree.
To optimise the objective function, substitute the predicted value )?Et) of the i sample in the
t™ iteration in the objective function. The simplified objective is given below:

n . (2.10)
minL® = min <Z [gi fe (x) + > h; (%) ] + -Q(fk))

=1

Where: g; is the first derivative of the loss function; h; is the second derivative of the loss
function. 2(f}) is a regularisation term.
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b. Build the next learner
To obtain an even fixed tree structure q(x) of leaf node j, compute the weight w; of j leaf
(Chen & Guestrin, 2016).

The formula is below:

ey (2.11)
g Yier; i + X

Where: I; = {i|q (x;) = j} as the set of leaf nodes j in the decision tree; 1’ is the
regularisation parameter; g; and h; represent the first and second derivatives of the loss

function, respectively.

To evaluate the quality of the tree structure (q) use the scoring function.
2 (2.12)

1T 219
el; Ji

I® :__E I T
(@) 2 LiTier b+ A Y

Where: L®)(q) is a scoring function, which is used to measure the quality of the tree structure
q.; A is the regularisation parameter; First and second loss function derivatives are g; and h; ;

yT to control the number of leaf nodes T.
c. Best Split

The XGBoost model used a greedy algorithm to divide the leaf node into left and right nodes
and iteratively add the branches (Li et al., 2021).

The following formula is used to find the best split on any given node.

2 2
L1 Gee) | Ces) | Gwe? ] e
CPED =2 | Sier, i 4 Tieg i ¥ 4 Tieshi + 4 !

Where: I, = Left node of the sample set after the split of leaf nodel; I = Right node of the
sample set after the split of leaf node I; g; and h; are the first and second derivatives of the

loss function; y is the regularisation parameter.

The XGBoost performs well compared to other tree-boosting methods due to the regularised
loss function, which controls overfitting. It can reduce the weight of each tree using a given
constant, which scales down the impact of individual trees on the last score, and column

sampling performs the same as random forest (Pan, 2018; Desdhanty & Rustam, 2021).
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2.1.9 K-Nearest Neighbor (KNN)

KNN is a non-parametric algorithm because it does not make assumptions about the
elementary data it uses (Lantz, 2013:67; Alzubi et al., 2018; Ray, 2019; Taunk et al., 2019). It
was introduced by Fix and Hodges in 1951 (Imandoust & Bolandraftar, 2013; Taunk et al.,
2019). KNN is also known as instance learning or lazy learning because the KNN model does
not learn during training; instead, the model observes and stores the training data and
memorises the dataset. In the testing phase, compare the test observation with the training
observation (Dangeti, 2017:187; Taunk et al., 2019). KNN solves problems based on
neighbouring training examples in a given region (Taunk et al., 2019; Abdel-Fattah et al., 2021).
KNN can be applied to both regression and classification problems without making any
changes in the architecture (Alzubi et al., 2018; Joshi, 2020:38). In KNN, ‘K’ denotes the
number of neighbours that need to be considered to predict the test data point (Bhatia &
Vandana, 2010). The nearest neighbour is the point with the lowest distance between the
training and sample points (Bhatia & Vandana, 2010). To measure the distance between the
query point (target) and cases from the example sample (training data points), a metric known
as the distance metric is used. Euclidean distance is a popularly used distance metric to
calculate the nearest neighbours by measuring the similarity between two distances (Lantz,
2013:70; Imandoust & Bolandraftar, 2013; Taunk et al., 2019).

Euclidean distance dist (p,q) between two data points p and q is calculated (Lantz, 2013:70;
Taunk et al., 2019; Sudheer et al., 2022).
(2.14)

dist(p,q) =

Where: p and q are the examples to be compared, each having n features. The term p;
refers to the value of the i" feature of example p, while g; refers to the value of the it feature

of example q.

Once the value of K is selected, it can make the prediction based on KNN examples. In
classification, the prediction for a new data point is considered by its closest neighbour(s) in
the training set (Miller & Guido, 2016:24). Whereas in regression, the predicted value will be
the average of its K- nearest neighbours(Taunk et al., 2019; Imandoust & Bolandraftar, 2013).

The formula is shown below (Imandoust & Bolandraftar, 2013; Sudheer et al., 2022).
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(2.15)

k
1
y= EZ Yi
i=1

Where: y; is the i case of the example sample (nearest neighbour); y is the predicted value
for the query point, calculated as the average of the y; values of the k nearest neighbours;

k is the number of nearest neighbours considered.

Other distance functions are Manhattan distance, Chebyshev distance, Mahalanobis distance,
Bhattacharyya distance, Hamming distance, Cosine distance, Minkowski distance and so on
(Lantz, 2013:273; Joshi, 2020:134; Zhang et al., 2023). The selection of distance is based on
the problem that needs to be solved. KNN is simple, easy to implement, and builds a model
cheaply (Ray, 2019; Joshi, 2020:38).

2.1.10 Multi-Layer Perceptron (MLP)

Deep learning is a subset of machine learning. The implementation of artificial neural networks
into deep learning generates a model for supervised or unsupervised problems using
structured and unstructured datasets, respectively. Video, image, voice, etc., are examples of
an unstructured dataset (Dangeti, 2017:267; Janiesch et al., 2021). There is a significant
improvement in the performance of classifiers when deep learning is used, as opposed to more
conventional machine learning methods (LeCun et al., 2015; Mathew et al., 2021:600). Deep
learning is capable of learning from a large amount of data (Alzubaidi et al., 2021). Deep
learning techniques have achieved great strides and a lot of success in pattern recognition,
speech recognition, handwritten classification, image analysis, Natural Language Processing
(NLP), and many more (Liu et al., 2017; Alzubaidi et al., 2021).

An animal’s body has millions of neurons. Neurons are biologically specialised to send and
receive electrical signals called action potentials between other neurons through the

connections known as synapses (Awad & Khanna, 2015:129; Géron, 2019:279).

A neural network is a union of neurons (Awad & Khanna, 2015:130). Aleksander and Morton
(1990), cited in Haykin (1994:24), defined the neural network as:

A neural network is a massively parallel distributed processor made up of simple processing units,
which has a natural propensity for sorting experiential knowledge and making it available for use. It

resembles the brain in two respects:

1. Knowledge is acquired by the network from its environment through a learning process.
2. Interneuron connection strengths, known as synaptic weights, are used to store the acquired

knowledge.
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The artificial neuron model replicates biological neurons. An artificial neural network consists
of many interconnected processors called neurons (Vui et al., 2013; Janiesch et al., 2021;
Emmanuel et al., 2022). Artificial neurons are also known as nodes or units (Lipton et al., 2015;

Janiesch et al., 2021). Figure 2.6 depicts the architecture of the neural network.
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Layer Layer
Input 1
Output

Layer

Input 2

Prediction

Input 3 _‘mﬁf

L J

Figure 2.6: A neural network architecture (Nielsen, 2015:11)

An ANN consists of one input layer, one or more hidden layers and one output layer. Input layer
nodes receive input signals from the environment. The layers/s between the input layer and
output layer are known as hidden layer/s, which are neither input nor output layers. The input
layer nodes are connected to the hidden layer nodes, which are neurons. The last layer is an
output layer, which is generated by final nodes that can provide the result or prediction
(Nielsen, 2015:11; Taud & Mas, 2018:454; Zaras et al., 2022:17; Abdolrasol et al., 2021).

Artificial Neural Networks became popular after the introduction of a computational model for
neural network activity using propositional logic by neurophysiologist Warren McCulloch and
the mathematician Walter Pitts in 1943. This model explains how biological neurons/ artificial
neurons activate based on the given inputs and perform complex computations to provide an
output. Also, it is possible to build a network of artificial neurons (Walczak, 2018: 121; Géron,
2019:278-281).

In the late 1950s, Frank Rosenblatt proposed a computational model known as the perceptron
(Rosenblatt, 1962 cited in Bishop, 1995:98; Awad & Khanna, 2015:128; Nielsen, 2015:2-3;
Wang & Raj, 2017; Rosenblatt, 1958 cited in Walczak, 2018:121; Géron, 2019:281). A
perceptron is a single logic unit in an artificial neural network. A simple perceptron is identified
as an ANN (Walczak, 2018:121). A multilayer perceptron (MLP) is an ANN composed of one
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or more layers of neurons or multiple perceptrons (Obiora et al., 2023). It is also known as a

multilayer feedforward neural network (Lai et al., 2022).

The processing of information takes place through neurons. Each neuron contributes to the
operation and functioning of a neural network. In the input layer, nodes receive input signals in
the machine learning model that will be featured in. The nodes in the input layer will connect
to the neurons in the hidden layer. Each neuron performs a function that includes two activities:
Backpropagation isadded together with a bias to arrive at the sum of the net input. Secondly,
calculate the activation function using the sum of the net input result to generate the output
signal or result or prediction. The activation function takes a single number and performs a
certain fixed mathematical functional mapping on it (Dangeti, 2017:243). The current layer
function output will be the input for the next layer, and the decision of whether the neurons
need to be fired or not. It is used to learn and model complex datasets (Zhou, 2012:8; Vui et
al., 2013; Awad & Khanna, 2015:129; Dangeti, 2017:2, 268; Zaras et al., 2022:18-19).

Sigmoid function, Rectified Linear Unit (ReLU) function, Exponential Linear Unit (ELU),
SoftMax, Tanh, Hyperbolic tangent sigmoid function, and Linear are some of the activation
functions. The selection of the activation function is critical, which encompasses the generation
of other neurons for the network performance and accuracy (Haykin, 1994:36; Zhou, 2012:7;
Awad & Khanna, 2015:130; Dangeti, 2017:242-243; Géron, 2019:288; Zaras et al., 2022:19-

21). A basic artificial neuron is shown in Figure 2.7.
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Figure 2.7: Artificial neuron (Dangeti, 2017:241)
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The mathematical representation of neuron operation is:

n
Y = 9<ZWiXi+b)
i=1

(2.16)

Where: output Y = Active function (Sum of net input + bias); 8 =activation function; Xi= input

features; Wi= respective weight; b= bias.
a. Sigmoid

The sigmoid function is used in logistic regression to squash the real-valued number
between 0 and 1. The mathematical representation of the sigmoid activation function is
represented in Equation (Dangeti, 2017:243; Géron, 2019:144; Misra & Dinker, 2025).

1 (2.17)
1+e™*

Where: o(x) = sigmoid function; x = input value (feature); e = Euler's number.

o(x) =

b. Hyperbolic Tangent (Tanh)

Tanh is a type of activation function and is very similar to a sigmoid function (Rasamoelina et
al., 2020). Tanh squashes a real-valued number between -1 and 1 (Dangeti, 2017:243;
Géron, 2019:288; Joshi, 2020:45).

The function can be represented as (Géron, 2019:288; Rasamoelina et al., 2020).

tanh(x) = 20 (2x) — 1) (2.18)
Or
tanh(x) = # -1
14+e2¥

Where: tanh(x) =tanh function; o(x) =sigmoid function; x = input value (feature); e = Euler's

number.
c. Arectified linear unit (ReLU)

ReLU is a simple nonlinear activation function which is computationally efficient. It performs
well compared to Sigmoid or Tanh due to the convergence property, improves model
computational speed, and fixes the vanishing gradient problem (Dangeti, 2017:243; Habibi
Aghdam et al., 2018:74; Géron, 2019:288; Joshi, 2020:122). ReLU is linear for all positive
values and zero for all negative values. However, the output values range from 0 to infinity

(Rasamoelina et al., 2020).

The representation is given below (Habibi Aghdam et al., 2018: 74; Géron, 2019:288).
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ReLU(x) = max (0, x) (2.19)

Where: ReLU(x) = ReLU function; x = input value (feature).

ANN constituted of multiple hidden layers, is a deep neural network (DNN) (Dangeti, 2017:268;
Albawi et al., 2017; Géron, 2019:286; Zaras et al., 2022:17). DNN is also known as a deep
multilayer perceptron (Abdolrasol et al., 2021). DNNs are suitable for supervised,
unsupervised, reinforcement and hybrid learning types (Mathew et al., 2021:602). Each layer
is connected to several other layers, where each layer can extract features as it channels to
the next layers (Mathew et al., 2021:599). DNN algorithms aid in generating a model using
complex datasets. With the help of non-linear activation, the model maintains a non-linear
relationship between the input and the expected result. Each layer performs a volume of

computation (Zaras et al., 2022:19).

Deep Learning implements different architectures to solve problems within different domains.
Deep Belief Networks, Convolutional Neural Networks, Restricted Boltzmann Machine (RBM),
Recurrent Neural Networks and Long Short-Term Memory (LSTM) are examples of deep
learning architecture (Liu et al., 2017; Shrestha & Mahmood, 2019; Mathew et al., 2021:600;
Alzubaidi et al., 2021).

2.1.11 Evaluating model performance

To assess how well the predicted model values align with the actual values, it is essential to
evaluate the model's performance. If improvement is required, it can be achieved through
hyperparameter tuning (Dangeti, 2017:286; Elgeldawi et al., 2021; Sarker, 2021; Janiesch et
al., 2021).

In regression problems, several key metrics are commonly used to evaluate model
performance by comparing predicted values with actual values. The metrics explored in this
study include Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute
Error (MAE), Coefficient of Determination (R? or R-squared), and Adjusted R-squared (Chicco
et al., 2021; Kumar et al., 2023; Olafadehan & Ahaotu, 2023). These error metrics depict the
difference between the predicted and the observed values. The best algorithm is chosen
based on the combination of minimal errors (MSE, RMSE, MAE) and the highest values of R-
squared and Adjusted R-squared (Debroy & Seban, 2022b).
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a. Mean Squared Error (MSE)

Mean squared error is an important evaluation metric for the algorithm’s optimisation in
regression models, as it minimises the squared differences between predicted and actual
values. MSE is useful for detecting outliers. The best value for MAE is 0, and the worst value
is +e (Chicco et al., 2021; Kumar et al., 2023).

The MSE formula is given below (Chicco et al., 2021).

L& N (2.20)
MSE = — > (i = )
i=1

Where: n= total number of observations; y = actual value of the observation; ¥ =predicted

value of the observation.
b. Root Mean Squared Error (RMSE)

Root mean squared error is one of the most frequently used metrics to assess the accuracy of
predictions. RMSE is the square root of the Mean Squared Error, MSE. It evaluates the
standard deviation of the predictions from the actual value. The best value for RMSE is 0, and

the worst value is +~ (Chicco et al., 2021; Kumar et al., 2023).

The RMSE formula is given below (Chicco et al., 2021).

RMSE :\/Z?ﬂ(}mi - ¥)?
n

(2.21)

Where: n= total number of observations; y = actual value of the observation; ¥ =predicted

value of the observation.

c. Mean Absolute Error (MAE)

Mean absolute error is the magnitude of the difference between the predicted value and the
actual value. MAE can be used if outliers represent corrupted parts of the data. The best

value for MAE is 0, and the worst value is +~ (Chicco et al., 2021; Kumar et al., 2023).
The MAE formula is given below (Chicco et al., 2021).

VAR 1 n R (2.22)
= ; Zb’i - ¥l
=1

Where: n= total number of observations; y = actual value of the observation; § =predicted

value of the observation.
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d. Coefficient of Determination (R? or R-squared)

R-squared is the measure of the percentage of the variance explained by the model. The
best value for R-squared is +1, and the worst value is - (Dangeti, 2017:29; Chicco et al.,
2021).

The R-squared formula is given below (Chicco et al., 2021).

X — 9)? (2.23)
Xis i — ¥)?

Where: n= total number of observations; y = actual value of the observation; ¥ =predicted

R? = 1-

value of the observation.
e. Adjusted R-squared

Adjusted R-squared statistic explanation is very similar to R-squared, but it penalises the R-
squared value if more variables without a strong correlation are included in the model

(Dangeti, 2017:29). The range is less than or equal to R-squared (Sudheer et al., 2022).

The adjusted R-squared formula is given below (Dangeti, 2017:29).

(1-RH)(n-1) :
Rédjusted=1'n_—k_nl (2 24)
Where: R? = sample R-squared; n= total number of observations; k = number of predictors

(or) variables.

2.1.12 Explainable Al

Artificial Intelligence models often have operational behaviours that are difficult to understand
and explain due to a lack of transparency; hence, these models are considered “black boxes”
(Adadi & Berrada, 2018; Machlev et al., 2022). However, while the black-box nature of Al can
produce powerful predictions (Adadi & Berrada, 2018). Enhancing the explainability of machine
learning models has become essential. This need led to the development of Explainable
Artificial Intelligence (XAl) (Machlev et al., 2022). XAl, also known as Al explaining or Al
explainability, is a technique that explains the underlying processes of Al algorithms and can
depict the reasoning behind the prediction (Rothman, 2020:3; Mohseni et al., 2021; Saranya
& Subhashini, 2023; Lee et al., 2023). The XAl process is demonstrated in Figure 2.8. The
explanations generated by XAl are presented to users through an interactive interface,

allowing them to easily understand and interpret the Al model's insights (Rothman, 2020:3).
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This improves the transparency, credibility, and accountability of Al systems, as transparency
is essential for building trust (Saranya & Subhashini, 2023; Héder, 2023).

Task

New Deep .
Input Data Learning Ex{_)llm;";ble Output — gi
Process S —
A

@ User

0e9®

Explanation 'h‘
Interface

Figure 2.8: Explainable Al process (Saranya & Subhashini, 2023)

Adadi & Berrada (2018) addressed four key reasons for explaining Al systems: explaining to
justify, explaining to control, explaining to improve, and explaining to discover. They concluded
that explainability is a powerful tool for justifying Al-based decisions, aiding in prediction

verification, model improvement, and uncovering new insights into the problem at hand.

The two main strategies to interpret (or explain) models are local and global interpretation (or
explanation). Local interpretation (or Instance explanation) focuses on explaining a specific
output of the system, while global interpretation (Model explanation) involves understanding
the model as a whole (Das & Rad, 2020; Machlev et al., 2022; Héder, 2023; Mohseni et al.,
2021). In the local explanation, map g (explanation of a model f) is generated each time for
an individual data point x € X (a single instance of input data from a population X). However,
in the global explanation is a group of data instances x and generating an explanation map g
based on the given group of inputs (Das & Rad, 2020). Locally and globally explainable

algorithms are described in Figure 2.9 and Figure 2.10, respectively.

51



—{ Blackbox Model f

| Explanation g
about instance x

Figure 2.9: Explainable algorithm (Das & Rad, 2020)
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Figure 2.10: Globally explainable algorithm (Das & Rad, 2020)

XAl system purposes vary based on user demands (Mohseni et al., 2021). Their study

identified six commonly used explanations in the design of Explainable Al (XAl) systems, as
exhibited in Table 2.9 (Mohseni et al., 2021).

Table 2.9: XAl system design and purposes

Explanation types

Purpose

How Explanations

To explain how the model works. This provides a general
overview of how the machine learning algorithm works.

Why Explanations

To explain the reason behind the prediction based on a given
input.

Why-Not Explanations

To clarify the reason for the difference between the user's
expected output and the model’s prediction.

What-If Explanations

To demonstrate how the output changes with new inputs across
different algorithms and data.

How-to Explanations

To explain what adjustments to the model or input data would be
required to get the desired result.

What-Else Explanations

To provide examples of inputs that produce similar or identical
outputs from the model.

The reasoning behind machine learning model explanations can be designed in various ways,

depending on user preferences and objectives. Visual explanations, verbal explanations, and
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analytic explanations are among the different types available (Phillips et al., 2020; Mohseni et
al., 2021).

Phillips et al. (2020) organise explanations into two main categories: self-interpretable models
and post-hoc explanations. A self-interpretable model is an algorithm that can explain its overall
structure globally and provide local explanations for individual decisions. Examples of self-
interpretable models are decision trees and regressions, which include logistic regression
models. A post-hoc explanation utilises software tools to provide insights into how an algorithm
works. Post-hoc explanations are grouped into two: local and global explanations. Commonly
used local explanation algorithms are Local Interpretable Model- Agnostic Explainer (LIME),
SHapley Additive exPlanations (SHAP), Counterfactual, Saliency Pixel Algorithm, Class
Activation Maps (CAM), Gradient-weighted Class Activation Mapping (Grad-CAM) and
Individual Conditional Expectation (ICE). Global explanation algorithms are: Partial
Dependence Plots (PDPs) and Testing with Concept Activation Vectors (TCAV). Two well-
known XAl methods are LIME and SHAP (Kalasampath et al., 2025). LIME provides local and
intuitive explanations. However, it is computationally expensive and may produce inconsistent
interpretations when the model behaves in a complex manner (Linardatos et al., 2021;
Kalasampath et al., 2025). Compared to LIME, SHAP provides both local and global
explanations. SHAP is a game theory—based method that enhances the interpretability of
individual predictions by computing the contribution or significance of each feature. It is more
natural regarding interpretation (Saranya & Subhashini, 2023). SHAP is reliable and
consistent, with mathematically grounded explanations, making it well-suited for decision-
making processes (Kalasampath et al., 2025). This study focuses on SHAP to interpret
machine learning based predictions because it is recognised as a unified measure of feature

importance (Ekanayake et al., 2022).

2.1.12.1 SHapley Additive exPlanations (SHAP)

Interpreting a model’s predicted result is crucial in machine learning models, especially to
understand which features contribute the most to making certain predictions. Explainable Al
(XAl) technology allows users to understand, interpret and analyse the features that contribute
to a model's training and its results (Linardatos et al., 2021; Lee et al., 2023). SHapley Additive
exPlanations (SHAP) is one of the Al analysis techniques. Lundberg and Lee (2017) proposed
SHAP values, recognised as a unified measure of feature importance that also enables the
user to interpret the model’s behaviour for better decision-making (Ergtin, 2023). Additionally,
variations of SHAP, such as Kernel SHAP, Deep SHAP and TreeSHAP can be used for specific
model categories (Ekanayake et al., 2022). A classic equation to compute the SHapley value
is adopted from cooperative game theory. The SHAP framework helps to understand the
contribution of each feature by assigning a value to each one for a particular prediction
(Lundberg & Lee, 2017; Liu et al., 2024). The computed Shapley value is used as a feature
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attribute. SHAP values have various properties which are valuable for model interpretation.
The properties are local accuracy, missingness and consistency (Lundberg & Lee, 2017;
Ergun, 2023).

Local accuracy: When approximating the original model f for a specific input x, local
accuracy requires the explanation model to at least match the output of f for the simplified
input x" (Lundberg & Lee, 2017).

M (2.25)
FO) =9GN =0 + ) Bix]

i=1
The explanation model g(x") matches the original model f(x) when x = h,(x").

Where f(x) = Original model; g(x") = explanation model; M= Number of simplified input
features; @, = attribute an effect; h,(x") = mapping function; @; = " SHapley value; x; = "
simplified input (Shapley, 1953; Lundberg & Lee, 2017).

Missingness: If the simplified inputs represent feature presence, then missingness requires

features missing in the original input to have no impact (Lundberg & Lee, 2017).

X/=0=0; =0 (2.26)

Where x; = " simplified input; @;= " SHapley value.
Missingness constrains features where x; = 0 to have no attributed impact.

Consistency: Consistency states that if a model changes so that some simplified input’s
contribution increases or stays the same regardless of the other inputs, the input’s attribution

should not decrease (Lundberg & Lee, 2017).

Let f,(z") = f(he(z"))and z"\ idenotes setting z; = 0. For any two models f and f’, i

fe(Z) = 2\ D 2 fo(2) = fe(Z'\ D) (2.27)

for all inputs z’ € {0,1}, then 9i(f’,x) = 0i (f,x) .

Where : z' = a vector of features

For a model f and a set of features M, the Shapley value of the feature i is defined as:
(Lundberg & Lee, 2017; Ergun, 2023):
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Where: |z'| is the number of non-zero entries in z' and z' € x’ represents all z'vectors,
where the non-zero entries are a subset of the non-zero entries in x’. M is the total number of

features.

A fundamental approach to interpreting machine learning models is to analyse input features
(attributes) to understand the training process and prediction outcomes. Feature importance
highlights each feature's contribution to the model, indicating how valuable a specific feature
is for accurate predictions. The SHAP value is used to calculate the influence of each feature
on the predicted outcome, providing a clear measure of feature importance in the model's
predictions (Lee et al., 2023).

The importance of each feature in the machine-learning model can be analysed through the
SHAP. Feature importance is calculated by averaging the absolute SHAP values for all

instances of the dataset (Lee et al., 2023).

Y (2.29)
So=g )., 19

Where: S, = mean absolute SHAP value; N= the number of instances in the dataset; @,= the

SHAP value of the feature for the it" data instance.

Different methods, namely, Kernel SHAP, Deep SHAP, and Tree SHAP, are used to calculate
the SHAP value for general machine learning models, deep learning models, and tree-based

models, respectively (Lee et al., 2023).

Kernel SHAP: Kernel SHAP is a combination of linear LIME and Shapley values. LIME
provides local interpretations of machine learning models, whereas Shapley values represent
the importance of each feature for every individual observation in the prediction. Kernel SHAP
can be applied to certain deep learning and machine learning models (Keleko et al., 2023).
The purpose of this algorithm is to perform additive feature attribution by randomly sampling
coalition vectors, masking features from the input data, and approximating the model’s
influence through kernel SHAP linearisation (Das & Rad, 2020; Keleko et al., 2023).

Deep SHAP: The Deep SHAP is applicable for deep neural network explanation (Lundberg &
Lee, 2017). Deep SHAP is considered a combination of Deep Learning Important FeaTures
(DeepLIFT) and Shapley values. DeepLIFT method is for computing importance scores in a
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neural network by comparing a neuron’s activation to its reference. Deep SHAP provides both
local and global explanations of the features (Yang, 2021; Keleko et al., 2023). DeepLIFT
leverages deep learning features to enhance computational performance and extract deep
information (Keleko et al., 2023).

Tree SHAP: Tree SHAP is one of the approaches that reduces the time and memory costs of
implementing SHAP. It is a specific implementation for the decision-tree-based ensemble
models like random forest, gradient boosted trees. However, Tree SHAP can be imprecise
locally because of the intrinsic uncertainty of the decision-tree models in Extreme Gradient
Boosting (XGBoost) (Yang, 2021; Keleko et al., 2023).

2.1.13 Intelligent Internet of Things

The general concept of the “Internet of Things” is network connectivity that can send, receive,
and analyse data. Whereas, “Intelligent Internet of Things” is the same as the loT concept,
along with the ability to take action based on analysed results (Prince & Prince, 2018:1).
According to Zhang (2021), the blend of the loT and Artificial Intelligence (Al) produces

an Intelligent Internet of Things.

Artificial Intelligence (Al) is a key to tapping into loT potential (Schatsky et al., 2017). Al
technology, especially machine learning, can extract insights from the huge amount of
collected data and help in pattern identification, prediction, and machine failure early warning.
and so on (Schatsky et al. 2017; Firouzi, et al., 2020:15).

loT is capable of exchanging data, whereas Artificial Intelligence technology provides
worthwhile information. The Intelligent Internet of Things (Intelligent 10T) can make an impact
in different disciplines. Business operations will improve in operational efficiency, decision-
making, innovation and productivity. The implementation of Al, especially machine learning, in
the Industrial Internet of Things can predict problems affecting industrial production by reducing
maintenance and downtime costs, thereby increasing production output, etc. Data collection
is much faster due to the loT, which reduces the labour force and the data collection time
needed. The Intelligent Internet of Things plays an important role in the improvement of

consumer fulfilment of a need (Zhang, 2021).

2.1.14 Expert system

Intelligence refers to the ability to compute, reason, perceive, learn and solve novel problems,
along with the ability to act like humans (Gupta & Nagpal, 2020:4, 11). An expert system (ES)
is a knowledge-based intelligent information system (Liao, 2005; Dubey et al., 2013; Nagori &

Trivedi, 2014; Rajabi et al., 2019; Zhang & Lu, 2021; Aslem & Abu-Naser, 2022; Megdad et al.,
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2022). It is a computer program that can provide information from the knowledge base to the
user without the presence of human domain experts. This insight is useful during the decision-
making process and for delivering recommendations to a user who may not be a domain expert
(Bohanec et al., 1990; Tripathi, 2011; Yelapure & Kulkarni, 2012; Dubey et al., 2013; Aslem &
Abu-Naser, 2022). Expert systems behave and judge like an experienced domain expert (
Aslem & Abu-Naser, 2022; Tan et al., 2022).

The main components of expert systems are the user interface, rules/inference engine and
knowledge base (Aslem & Abu-Naser, 2022; Megdad et al., 2022; Tan et al., 2022). A

diagrammatic representation of an expert system is shown in Figure 2.11.

” Domain Experts

v

| Knowledge base |

v

| Inference engine |

v

| User interface |

==

Expert System

==

User

Figure 2.11: Schematic representation of an expert system (Janjanam et al., 2021)

Knowledge base: Expert systems' performance is dependent on the knowledge that is stored
in the knowledge base (Janjanam et al., 2021; Aslem & Abu-Naser, 2022; Tan et al., 2022).
Two forms of knowledge are stored in the knowledge base, namely: factual or declarative and
heuristic or productive knowledge (Tripathi, 2011; Ogidan et al., 2019; Janjanam et al., 2021).
Factual knowledge is acceptable facts about a particular domain that can be from experts,
books, etc., whereas heuristic knowledge is generated based on individual judgement, good
experience, practice or tacit knowledge and so on (Tripathi, 2011; Ogidan et al., 2019;
Mohammed et al., 2019).
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Inference engine: The inference engine is considered the brain of an expert system, where
analysis and logical reasoning processes take place and find the inference for a specific
domain problem based on the knowledge that is stored in the knowledge base (Tripathi, 2011;
Ogidan et al., 2019).

User interface: To make the interaction between the user and the system (Tripathi, 2011; Joy
& Sreekumar, 2014; Ogidan et al., 2018).

The knowledge in the knowledge base can be represented in different ways, helping to
distinguish between the expert systems. Hence, the inference engine uses different
approaches to speed up the inference process in concluding. Rule-based systems (RBS),
fuzzy expert systems, frame-based expert systems, Knowledge-based systems (KBS),
Artificial Neural Network Systems, hybrid expert systems, etc., are the categories of expert
systems methodologies that are used when developing an expert system (Liao, 2005; Nagori
& Trivedi, 2014; Ogidan et al., 2019; Mohammed et al., 2019; Janjanam et al., 2021).

An expert system uses knowledge and inference procedures to solve a domain-specific
problem (Ogidan et al., 2019). The inference procedure helps to find the solution for a complex
problem using knowledge and presents it to the user based on user input (Bohanec et al.,
1990; Tripathi, 2011; Aslem & Abu-Naser, 2022).

2.1.15 Decision Support System (DSS)

A Decision Support System (DSS) is an interactive computer system that can support decision-
makers by making an operational, planned or strategic decision to solve an unstructured and
semi-structured problem using data and models (Ford, 1985; French & Turoff, 2007; Lu et al.,
2007:53; Darbi & Saleh, 2022). A DSS can ease and advance the productivity, effectiveness,
and efficiency of decision-making (Ford, 1985; Lu et al., 2007:56; Souha et al., 2024). Support
may be in the form of providing a data summary, future prediction based on the current
situation, assisting decision-makers to find insights and values, accounting for uncertainties,
etc. (French & Turoff, 2007). The concept of a DSS was first formulated by Michael S. Scott
Morton in the early 1970s (Sprague Jr, 1980; Ford, 1985; Power, 2008). Michael S. Scott
Morton published his book “Management Decision Systems: Computer-Based Support of
Decision Making” in 1971 (Power, 2007).

Keen and Scoot-Morton (1978, cited in Lu et al., 2007:54) mentioned the balance between
Decision (D), Support (S) and System (S). Decision (D) focuses on the application selection
criteria and the aspects of DSS, which are non-technical, functional and analytical concerns.
Support(S) revolves around the implementation of the system, it tries to figure out how people
operate the system, and how to provide help for the users. In summary, System (S) focuses

on technology design and development. A successful DSS implementation can support
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individuals, groups or organisations (Phillips-Wren, 2017:5; Ghandar et al., 2021; Darbi &
Saleh, 2022; Ali et al., 2023; Papazoglou et al., 2024; Senapaty et al., 2024).

According to Forgionne (2003:5), a typical DSS can be divided into three sections: input,
process and output. The problem-related data and model are stored as input. The available
data can be from internal and external sources. In the second segment, the decision-maker,
with the aid of computer technology, processes the data by organising and attaching it to the
model. Thereafter, the model is used to conduct an experiment or simulation. This helps in
finding the best solution from the available alternatives. The process segment results,
parameter requirements, experimental forecast, and recommended actions are reported. In
the later stage, the obtained feedback from the decision-makers is stored as additional input

for upcoming opportunities or other processes.

A single-user DSS provides early-stage support based on Simon's decision-making process.
It includes input, process and output for each phase. In the intelligence phase, the system
focuses on input, which involves problem definition, data collection, exploration, and
preprocessing. In the design phase, the processing section helps in generating alternative
solutions. Finally, in the choice phase, the output section assists in selecting the best solution
or action within the problem context (Forgionne, 2003:5; Phillips-Wren, 2017:5; Milutinovic et
al., 2021; Hak et al., 2022). The DSS architecture is shown in Figure 2.12, which details how

inputs, processing, and outputs interact to support decision-making.
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Figure 2.12: Decision support system architecture (Forgionne, 2003:6)

Problem-related data and models are stored as input in the DSS system. The decision maker
uses a computer or capable device to process the inputs into problem-relevant outputs.
Processing of the data involves: (a) organising the data into problem parameters, (b)
structuring the parameters into a model, (c) using the model to experiment with policies and
events, and (d) identifying the ideal solution to the problem. After completion of the processing,
status reports, forecasts and recommendations are generated as output. The processing
phase provides input feedback as additional data, knowledge, and models that could be used
as a reference for future decision-making. Output feedback helps to extend, revise or modify

the original analysis and evaluations. (Forgionne, 2003:6, 15; Phillips-Wren, 2017:5).

60



The following sections present a brief overview of the different types of DSS and the application
of DSS. This provides the foundation for identifying the kind of DSS that should be developed

to support stakeholders in the decision-making process.
2.1.15.1 Types of Decision Support Systems

A Decision Support System (DSS) can fall under any of the following categories based on
purpose, users, and delivery namely, communications-driven DSS, data-driven DSS,
document-driven DSS, knowledge-driven DSS and model-driven DSS (Power, 2008; Darbi &
Saleh, 2022; Souha et al., 2024).

a. Communications-driven Decision Support Systems

Communication-driven DSS is heavily reliant on hybrid networks and electronic communication
networks and their technologies. These technologies help connect and allow communication
between collaborating resources and decision makers. Some of the communication-driven
technologies are bulletin boards, audio and video conferences, as well as groupware (Power,
2008; Zeebaree & Agel, 2019; Darbi & Saleh, 2022).

b. Data-driven Decision Support Systems

A data-driven decision support system (DSS) focuses on data retrieval and the manipulation
of organisational internal or external data, and real-time data (Power, 2008). Once the user’s
requirements are established, this type of DSS will provide queries and management reports.
This can be taken a step further with more advanced DSS providing online analytical
processing and data mining. Thus, it can be used for analysing past data and establishing
patterns and relations (Lu et al., 2007: 58; Darbi & Saleh, 2022). In addition, data-driven DSS

often incorporate machine learning models to perform predictions (Gaftandzhieva et al., 2023).

¢. Document-driven Decision Support Systems

A document-driven DSS combines a range of storage and processing technologies to provide
extensive document retrieval and analysis. The World Wide Web and cloud computing
technologies have been hailed as platforms for the use of decision support systems (Power,
2008; Darbi & Saleh, 2022).

d. Knowledge-Driven Decision Support Systems

A knowledge-driven DSS focuses on problem-solving by recommending actions to the
decision-makers with the help of problem-solving expertise (Power, 2002:24). Knowledge-
driven DSS embraces a rule-based system to assist decision-makers in making decisions (Lu
et al., 2007:58). The expert understands the problem within the particular domain. An expert
system technology connected to relational databases using web-based user interfaces has
widened the use of knowledge-based DSS (Power, 2008; Darbi & Saleh, 2022).
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e. Model-driven Decision Support Systems

A model-driven DSS focuses on access to and manipulation, simulation and optimisation of
models. It relies more on mathematical models and optimisation than on huge amounts of data.
Computer systems make model-driven DSS easy for managers to use. Atrtificial Intelligence
applications help to overcome more complex problems (Chai & Jiang, 2011; Hiziroglu et al.,
2022). The models can be used for different purposes, such as accounting, financial, and
optimisation. Statistical and analytical tools can be used to obtain basic-level functionality
(Power, 2002:24; Zeebaree & Agel, 2019; Darbi & Saleh, 2022).

2.1.15.2 Applications of Decision Support Systems

Decision Support Systems are used in various fields, namely, engineering, organisation,

military, agriculture, health, tourism and so on (Senapaty et al., 2024; Souha et al., 2024).

Decision Support Systems assist users in enhancing their activities. For example, a
knowledge-based DSS for predicting traffic crash events, a web-based DSS is used for human
resource management for employee recruitment using Multi-Attribute Utility Theory, a web-
based DSS for remote weather radar maintenance, predicting vegetable prices using a web-
based DSS, recommending appropriate fertilisers to improve crop yield, and extracting
information from disaster-related tweets for disaster management (Abou Elassad et al., 2020;
Febriandirza et al., 2023; Papazoglou et al., 2024; Rao et al., 2024; Manju et al., 2024; Sinha
et al., 2024).

Various technologies are used when developing the DSS, including Artificial Intelligence (Al),
machine learning, Deep Learning (DL), Natural Language Processing (NLP), Docker, Flask for
Application Programming Interface (API), a visual interface design tool, Balsamiq mock-up,
and Google Translate API for real-time translation (Papazoglou et al., 2024; Febriandirza et
al., 2023; Rao et al., 2024; Sinha et al., 2024).

A DSS integrates data, analytical models, and artificial intelligence to help both expert and non-
expert users make well-informed decisions within their domain. DSS can integrate various
models. The artificial intelligence-driven DSS serves for Data-Driven DSS and Knowledge DSS

functionalities.

2.2 Related work

In this section, the existing body of scholarly work on prediction within the domain of smart
aquaponics is reviewed. In this review process, related work was analysed critically to
establish the basis which led to the proposed study.
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Amano et al. (2022) focused on designing a Bok Choy Leaf Disease identification system in
Smart Aquaponics. The dataset used for the research was a combination of the researcher's
collected data and publicly available data from Kaggle. This study performed the identification
and classification of diseases using machine-vision feature extraction. Data collection was
performed using an IP Webcam. The study used loT sensors to monitor water quality
parameters, including pH, electrical conductivity (EC), and water temperature. The machine
learning algorithms applied included Support Vector Machine (SVM), Random Forest (RF),
and K-Nearest Neighbour (KNN). Based on the evaluation metrics, Precision, Recall, False
Positive Rate (FPR), Specificity, and F1 Score KNN demonstrated superior performance
compared to the other algorithms. The study successfully explored the use of machine learning

algorithms for identifying Bok Choy leaf diseases in a smart aquaponics system.

However, the study focused only on the determination of the most effective ML algorithm and
its comparison. The study could have had more benefit if it had built a decision support system
that provided insights to the stakeholders on the detected disease and the prevention of the
detected disease. This limitation prevented stakeholders from making informed and

appropriate system management decisions.

Debroy & Seban (2022b) presented two prediction models for estimating tomato biomass
within the aquaponics system, both the Artificial Neural Network (ANN) and its hybrid with fuzzy
logic, known as Adaptive Neuro-Fuzzy Inference System (ANFIS). The ANN model utilised a
Feed-forward backpropagation network, while the ANFIS model was also implemented. These
models were developed to improve the accuracy and efficiency of tomato biomass estimation,
offering potential advancements in agricultural management within aquaponic setups. The
evaluation metrics: Mean Absolute Error(MAE), Root Mean Square Error (RMSE) and
Coefficient of Determination (R? ) indicated that the ANFIS model had achieved the best
prediction accuracy compared to the conventional ANN model. The data set included the input
data information on recirculating water temperature (°C), dissolved oxygen (mg/L), nitrate
(mg/L), and pH (ppm), while the output data represents tomato fruit biomass (g). Mathematical
models were used for data collection. The study concluded that temperature, nitrate, and pH

strongly correlated with tomato weight.

The study presented tomato biomass prediction to enhance economic management, improve
production rates, and address market supply and demand challenges. However, it lacks
effective communication of the findings to stakeholders for decision-making, particularly
regarding the degree of influence of the various parameters that affect tomato weight, which

could assist in better prioritising of those factors and management thereof.
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Owusu et al. (2024) developed an aquaponics system to predict water temperature, where
the system used heating elements operating concurrently at 5 watts, 10 watts, and 15 watts to
observe water temperature changes over time. Based on Long Short-Term Memory (LSTM)
RNN, the prediction model is particularly useful for reducing water temperature fluctuations,
especially in outdoor aquaponics setups. The performance of the system was evaluated using
the following metrics: Coefficient of determination (R2), Mean Absolute Error (MAE), Mean
Absolute Percentage Error (MAPE), and Root-Mean-Square Error (RMSE). The study
concluded that the LSTM model accurately predicted water temperature. Maintaining water
temperatures between 20°C and 30°C was identified as essential for the optimal growth and

health of bacteria, plants, and fish, ensuring a thriving aquaponics ecosystem.

The study focused its investigation only on water temperature as the predicted parameter and
could have been broadened to predict other water parameters, as well as plant parameters,
too. By integration of XAl, the study could enhance transparency and user trust, mainly for

stakeholders who require not just predictions but also explanations for actionable insights.

Liu et al. (2024) proposed a fusion deep learning model (DLDL) for long-term prediction of
dissolved oxygen (DO) concentration in aquaponics systems. Data was collected using loT
sensors, including water quality parameters such as DO, water temperature, pH, turbidity,
conductivity, and salinity, with the aerator manually controlled to observe variations in DO
levels. Before prediction, the raw time-series data were broken down using CNN-based
decomposition to enhance the predictability of the data. Sequential features were then
extracted using LSTM networks. A masked loss function was used to enable prediction at
different temporal resolutions. The proposed model was evaluated against LSTM, Temporal
Convolutional Network (TCN), CNN-LSTM, and Informer using Mean Squared Error (MSE)
and Mean Absolute Error (MAE). The minimum errors are MSE = 0.199 and MAE = 0.355.
The results indicate that the proposed DLCL model outperforms LSTM, TCN, and CNN-LSTM
in long-term prediction accuracy. Finally, the predicted DO values were used to control the
aerator automatically, ensuring sufficient oxygen concentration, promoting the health of
cultured species, and reducing energy consumption through precise aeration management.
The study demonstrated success in mitigating the challenges of traditional DO prediction
models, such as poor stability and insufficient prediction accuracy, as well as the shortcomings

of threshold-based aeration control.

In spite of the study's contributions, the study overlooked the effects of various factors that
influence DO concentration. The model’s absence of explainability restricts its integration with
DSS, reducing transparency and interpretability for effective decision-making in system

management.
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Khandakar et al. (2024 ) focused on predicting the fish’s length (cm) and weight (g) by analysing
different parameters such as pH, ammonia, and nitrate levels, temperature (-C), turbidity
(NTU), dissolved oxygen (g/mml), pH, ammonia (g/mml), nitrate (g/ml), and the population of
fish in the pond. The dataset for the study was sourced from freshwater aquaponics catfish
ponds and was derived from the study titled “An Internet of Things Labelled Dataset for
Aquaponics Fishpond Water Quality Monitoring System” by Udanor et al. (2022). The data,
collected using loT sensors, includes parameters such as temperature, pH, dissolved oxygen,
turbidity, ammonia, and nitrate levels. The collected data is uploaded to the cloud in real-time
and is publicly available on Kaggle under the Sensor-Based Aquaponics Fish Pond Datasets
available at

https://www.kaggle.com/datasets/e81da8b7666dc7af41cdc3aa5ef96c5547e4f412598a030f40d4445

50965e34f (Udanor et al., 2022). The study used several machine learning models for
prediction, including Linear Regression, Lasso Regression, Ridge Regression, XGBoost,
CatBoost, and LightGBM, which were evaluated using metrics such as R?, Mean Squared Error
(MSE), and Mean Absolute Error (MAE). Among these, the LightGBM model performed well
in predicting fish length and weight. The incorporation of Explainable Al (XAl) Local
Interpretable Model-Agnostic Explanations (LIME) for model interpretation represents a
significant breakthrough, enhancing transparency and building confidence in machine learning
predictions. This method enables stakeholders and domain experts to comprehend the model's
results and leverage insights effectively, facilitating more informed and actionable decision-

making.

Explainable Al (XAl) bridges the gap between high performance and interpretability. However,
whilst insights are provided by the model, there has been oversight in communicating these
insights to stakeholders effectively using a decision support tool. Incorporating plant growth
prediction alongside fish growth could provide a more comprehensive view of the aquaponics

system, leading to more efficient production and management.

Liu & Jiang (2024) implemented machine learning in their research to identify the most
significant factors contributing to lettuce plant growth and their optimal levels. The study
applied and evaluated several machine learning algorithms, including Linear Regression,
Bagging Regressor, Decision Tree, Random Forest, XGBoost, and Atrtificial Neural Networks.
The models were assessed using key performance metrics such as Accuracy, Mean Squared
Error (MSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE).
XGBoost outperformed other models with 91.6% accuracy and the lowest MAE, followed by
Random Forest with 90.9% accuracy and Bagging Regressor with 88.5%. A feature importance
analysis of the best-performing XGBoost model revealed that Nitrogen had the most significant

impact on plant growth, followed by nitrate, nitrite, light, and phosphorus. The dataset used for
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the study consisted of data collected from their previous research using loT sensors. The
parameters included air temperature, humidity, pH, light intensity, nitrogen, phosphorus,
potassium levels, and Total Dissolved Solids (TDS). Additionally, camera module sensors were
used to automatically capture and monitor plant growth, providing valuable insights into the

system's effectiveness and optimisation (Jiang & Liu, 2024).

The study used feature importance to calculate ranking scores, identifying the parameters that
most strongly influence plant growth. However, an XAl-based explainability approach can
provide greater transparency on how and why a parameter influenced the prediction to the
stakeholders for an informed decision-making process. This study’s implementation had the

potential to include a tool that enhances stakeholder support and decision-making.

Ghandar et al. (2021) designed a distributed, data-driven decision support system (DSS) for
urban farming, designed to operate at two distinct scales. Firstly, on a large scale, the DSS
supports urban agriculture planning by defining system structures, policies, and updates, while
also enabling coordination among multiple stakeholders or users. It synchronises production
with consumer demand in a data-driven way to minimise waste. Secondly, at the unit scale, a
cyber-physical aquaponics prototype was developed to optimise production processes. A
digital twin of the aquaponic system was implemented, providing a virtual model continuously
updated with sensor data and real-time simulations. The proposed planning DSS was
evaluated with the prototype on the collected data. The study compares the predictive
performance of the digital twin with machine learning methods for predicting fish growth in

aquaponics.

The study incorporated different machine learning algorithms to predict daily fish growth in
grams and weekly plant growth rate in inches as a subsection of their study. They chose
Regression (LR), Support Vector Regression (SVR), Decision Tree and ensemble method, and
the eXtreme Gradient Boosting (XGBoost) decision tree. The parameters used were water
temperature, room temperature, water pH, total dissolved salt (TDS), fish feed, fish weight,
and plant length. The sensors used in the grow bed and fish tank to monitor the parameters
were humidity, room temperature, pH level, and fish feeding. This data was collected over 3
months. The plant was the white tuberose bulbs, and the fish was the Nile tilapia. To evaluate
the predictive model's performance, they used 10-fold cross-validation. After performance
evaluation, the authors found that the best plant growth rate prediction model was simple linear
regression, and the daily fish growth rate prediction was the decision tree or support vector
regression. The model predicted the daily fish growth in inches and the weekly plant growth in
inches. The study results showed that consumer satisfaction was highest when urban farms

and retail locations were evenly distributed across the urban region in the planning of urban
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agriculture food production. Furthermore, the developed simulation model accurately predicted

fish growth, particularly when it was frequently recalibrated with new sensor data.

The study demonstrated the necessity of a decision support system for planning in agriculture,
with a focus on predicting fish growth using a simulation model. However, the system is limited
in its ability to predict plant growth and lacks model explainability as well. Incorporating the
most influential parameters for both fish and plant growth would enhance predictive accuracy
and enable stakeholders to use the DSS more effectively for integrated urban agriculture

planning and optimising aquaponics production.

This current study performed plant growth and water quality prediction using regression
models that can predict numerical values. In similar plant growth prediction studies, the results
showed that linear regression and XGBoost performed well (Ghandar et al., 2021; Liu & Jiang,
2024). Hence, this study used linear regression, XGBoost, along with random forest, K-
Nearest Neighbors (KNN), and a multilayer perceptron (MLP) for prediction. Thereafter,
evaluate the models using the commonly used metrics in various studies, namely Mean
Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE),
Coefficient of Determination (R? or R-squared), and Adjusted R-squared (Debroy & Seban,
2022; Owusu et al., 2024; Khandakar et al., 2024). The machine learning model that had the
best performance formed the basis for developing a decision support system for aquaponics

prediction. The summary of related work is presented in Table 2.10.
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Table 2.10: Summary of related work

Reference Prediction ML- models Evaluation metrics Best Model Decision
performance | Explainability support
system
(Amano et al., Bok Choy Leaf Support Vector Machine Precision, Recall, False KNN No No
2022) Disease (SVM), Random Forest Positive Rate (FPR),
(RF), and K-Nearest Specificity, and F1 Score
Neighbor (KNN)
(Debroy & Tomato biomass Artificial Neural Network Mean Absolute ANFIS No No
Seban, 2022) (ANN) and its hybrid with Error(MAE), Root Mean
fuzzy logic, known as Square Error (RMSE) and
Adaptive Neuro-Fuzzy Coefficient of
Inference System (ANFIS) | Determination (R?)
(Owusu et al., Water temperature Long-Short-Term Memory | Coefficient of - No No
2024) (LSTM) Determination (R2), Mean
Absolute Error (MAE),
Mean Absolute
Percentage Error
(MAPE), and Root-Mean-
Square Error (RMSE)
(Liu et al., Dissolved oxygen LTSM, TCN, LTSF- Linear, | Mean Square Error DLCL No No
2024) CNN-LSTM, Informer and (MSE) and Mean
DLCL Absolute Error (MAE).
(Khandakar et Fish’s length (cm) and | Linear Regression, Lasso R2?, Mean Squared Error LightGBM Yes No
al., 2024) weight (g) Regression, Ridge (MSE), and Mean
Regression, XGBoost, Absolute Error (MAE)
CatBoost, and LightGBM
(Liu & Jiang, Plant growth Linear Regression, Accuracy, Mean Squared | XGBoost No No
2024) Bagging Regressor, Error (MSE), Mean

Decision Tree, Random
Forest, XGBoost, and
Artificial Neural Networks

Absolute Error (MAE),
and Mean Absolute
Percentage Error (MAPE)
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(Ghandar et al., | Fish growth & Plant Regression (LR), MAE Plant growth- No Yes
2021) growth Support Vector Regression Linear
(SVR), regression
Decision trees and Fish growth —
eXtreme Gradient Boosting Support
(XGBoost) decision tree Vector
Regression
and Decision
Tree
This study Plant growth and water | linear regression, random Mean Squared Error Plant Yes Yes
quality forest and eXtreme (MSE), Root Mean diameter
Gradient Boosting Squared Error (RMSE), prediction -
(XGBoost), K-Nearest Mean Absolute Error Random
Neighbors (KNN), and a (MAE), Coefficient of Forest and
multilayer perceptron Determination (R? or R- XGBoost
(MLP) squared), and Adjusted
R-squared Plant height -
Random
Forest

pH prediction
— XGBoost

TDS
prediction -
Linear
regression
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2.3. Research gap

In the examination of the body of the related work and literature, it is evident that most
prediction studies in smart aquaponics have primarily focused on individual parameters,
especially water quality, while giving limited attention to integrated or multi-parameter
prediction. Although some studies explored plant growth prediction using image-based
methods or measurement of plant height, other important growth indicators, such as plant
diameter, remain underexplored. Furthermore, none of the previous studies have emphasised
the need for model explainability and decision support for aquaponics stakeholders (see Table
2.10). Previous efforts have focused on developing predictive models to generate outputs, but
have overlooked translating these insights into actionable knowledge for stakeholders in the
decision-making process. To address these gaps, this study incorporates an explainable Al
(XAI) model (SHAP) to improve model transparency, uses multiple evaluation metrics for
robust assessment, and develops a decision support system that identifies key parameters
influencing plant growth and water quality. By leveraging machine learning and empirical data
from the South African context, this research enhances predictive capabilities, facilitates better

decision-making, and contributes to the advancement of smart aquaponics management.

2.4 Chapter summary
The chapter covered essential components of this study, such as hydroponics, aquaculture,

aquaponics, the Internet of Things, machine learning, XAl, Intelligent Internet of Things, expert
systems and decision support systems, along with related work on prediction in the smart
aquaponics domain. Finally, the review of related work reveals the research gaps in smart

aquaponics that motivated this study.
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CHAPTER THREE
RESEARCH METHODOLOGY

This chapter presents the methodology adopted for this study. The research onion framework,
developed by Saunders et al. (2019:110), is used to describe the methodological choices
made for this study. The research onion illustrates the various steps to create a research
design. It contains different layers, starting from the outermost layer: philosophies,
approaches, strategies, choices, time horizons, techniques and procedures (Saunders et al.,
2019:110).

The researcher first selected the research philosophy's ontological and epistemological
stance, which were then linked to the methodological approaches, including research design

and data collection (Ugwu et al., 2021).

3.1 Research philosophy

Research philosophy embodies a critical assumption from the perspective of how the
researcher sees the world (Ugwu et al., 2021). This influenced and affected the way the
research was conducted. This relative view of the world meant the knowledge gained was
influenced by the perception of the researcher (Khatri, 2020). Research philosophy is a belief
or a set of beliefs about the ways data needs to be collected, analysed and used. The
researcher had to be conscious and aware while forming beliefs and assumptions. According
to Saunders et al. (2019:113), there are three major aspects: ontology, epistemology and
axiology. Each of these aspects carries substantial differences, influencing the critical thinking
and research procedure adopted. The research philosophy that was selected for the study is

positivism.

3.1.1 Ontological stance

Ontology is a branch of metaphysics that stems from philosophy (Smith, 2012:47). Ontology
is derived from two Greek words, “onto” and “logos”. “Onto” means “being” or “that which is
everything that exists”, whereas “logos” means “knowledge” or “study” (Ni'mah et al., 2024).
Put together, it can be referred to as the “Study of being” (Crotty, 2003:10). Ontology deals
with “the nature of reality” or “nature of existence” (Saunders et al., 2019:133; Ugwu et al.,
2021). It factors into the research assumptions the nature of the world and reality. Ontology is

a core concept that guides data collection, analysis, and interpretation (Ugwu et al., 2021).

Objectivism was selected as the ontological stance of this study. Objectivism “ believes that
there is only one true social reality experienced by all social actors” (Saunders et al.,

2019:135). Objectivism was selected because the study intends to seek the nature of
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existence based on building the reality of whether a decision support system can be developed

for aquaponics prediction, which would be independent of human thought or consciousness.

3.1.2 Epistemology of the study

Epistemology is one of the three aspects of philosophy. “Epistemology” is derived from two

LI T LT

Greek words, “episteme” and “logos”. “Episteme” means “knowledge”, “understanding”, or
“acquaintance”, whereas “logos” means “account’, “argument”, or “reason” (Ni'mah et al.,
2024). Epistemology is “the theory of knowledge” (Ni'mah et al., 2024). The primary source of
knowledge for this research was the literature review, while new knowledge was gained from
analysing the data, the findings, and conclusions from the experiments. The study focused on
a single reality that can be measured; hence, the epistemological stance of this study was

positivism. The study made predictions based on quantifiable data.

The knowledge gained thus far within the aquaponics environment has been primarily through
experimentation as well as surveys from previous studies. The experimental result is presented
in different ways. It is believed that the proposed decision support system will assist
aquaponics farmers in making decisions. To find the truth, experiments were conducted to
predict the aquaponics output using different parameters, namely: pH, TDS, EC, water
temperature and plant details such as plant height, number of leaves, plant diameter, ambient
temperature, and humidity. Thereafter, the insights gained from the experiment were presented
to the aquaponics stakeholders, including farmers, researchers and aquaponics practitioners
in a meaningful and understandable way. The stakeholders provided feedback on the study
to improve the prediction model. This feedback also determined whether the proposed decision
support system was indeed helpful in making effective decisions for aquaponics farming, and

thus, the study justified the belief. The source of knowledge was empirical knowledge.

3.2 Research approach

The research approach is a plan and roadmap for conducting research. The research
approach guided how to collect, analyse, and interpret the collected data (Cresswell, 2014:3).
The selected research approach for this study was deductive, as the literature helped to
identify relevant theories and ideas that were subsequently tested with collected data
(Saunders et al., 2019:78). The central research question explored in this study was whether
a decision support system for aquaponics prediction could be developed to aid stakeholders
in making better decisions and taking corrective actions. An experiment was carried out, and

the results were analysed. The test outcomes provided insights into the research question.
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3.3 Methodological choice

This study adopted a quantitative methodology because it required experiments with empirical,
quantifiable data to develop a decision support system that can predict key aquaponics
parameters. The parameter values for the experiment were collected from the field using
measuring tools and IoT devices. The collected data was recorded numerically and analysed
statistically (Creswell, 2014:4). Thereafter, the research sought to investigate the knock-on,
ripple effects of the variable changes on one another. It was important to establish the
interdependence of variables as the entire aquaponics system had to be in equilibrium;

otherwise, it could affect the yield output adversely (Yildiz et al., 2017).

3.4 Research strategy

Saunders et al. (2019:173) defined research strategy as a “general plan of how the research
questions of the study will be answered”. The proposed research aimed to determine various
parameter values that could support decision-making. A fundamental relationship existed
between these parameters and the prediction process. To accomplish this objective, the
research adopted an experimental research strategy and used machine learning techniques
for experimentation (Saunders et al., 2019:178, 190). The collected data was pre-processed
through data cleaning and feature engineering. For the experiment, supervised machine
learning algorithms such as Linear regression, random forest, K-nearest neighbour, eXtreme
Gradient Boosting, and multi-layer perceptron were adopted. Data were trained using built-in
algorithms, and then an optimal model was generated (Takami et al., 2016). The
experimentation process used the Jupyter Notebook on a web-based computing platform,
incorporating various built-in libraries such as pandas, numpy, sklearn, matplotlib, etc (Fenner,
2019:20; Géron, 2019: 48).

3.5 Research design

The research design serves as a comprehensive blueprint, outlining how to approach the
research questions (Saunders et al., 2019:173). Research design provides the structure to
choose the correct research methods and techniques proposed for collecting and analysing
the data (Saunders et al., 2019:173). A good research design helps to find accurate answers
to the problem using collected data during the research. The purpose of the research was to
develop a decision support system for aquaponics prediction to aid farmers in making

decisions to achieve maximum productivity.

The study investigated the research objectives, identified the causes and effects, and observed
how changes in one variable could affect one or more variables. The research questions were
used to evaluate the accuracy of the developed prediction models. Thus, the researcher

employed an experimental research design. The experimental research design of this study
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influenced the data collection, experimentation, presentation of results, evaluation, and

interpretation of the findings of this study.

The insights derived from the study were used as a guide for decision-making and actions,

resulting in gained insights and wisdom. The overview of the adopted research design is shown

in Figure 3.1.
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The literature review assisted with the basis for identifying the research problem. This helped
in the formulation of the research aim. From the aim, specific objectives were derived that
guided the study. The research questions were then developed to align with these objectives.

The following sections explain the research design in detail.

3.5.1 Data collection

Primary data for this study are critical and were collected for plant growth and water quality
parameters (Saunders et al., 2019:338). For the field experiment, a coupled grow-bed-based
aquaponics unit was set up within a tunnel. A DHT22 |oT sensor was also installed alongside
the unit (Ghandar et al., 2021; Sunardi et al., 2021).

During this study, the plant growth dataset comprised the plant height, number of leaves, and
plant diameter to form the key indicators in assessing the plant growth (Frasetya et al., 2021;
Mokhtar et al., 2022; Villanueva et al., 2022). The ambient humidity and temperature were
also included as key parameters influencing plant growth (Dutta et al., 2018; Abdullah &
Mazalan, 2022). Plant details were recorded once every week, and on the first day of the week
(Villanueva et al., 2022). Plant details, height and diameter were measured using a ruler, and
the number of leaves was physically counted and recorded in an Excel sheet (Mahkeswaran
& Ng, 2020; Subakti et al., 2022; Udanor et al., 2022; Villanueva et al., 2022). The ambient
humidity and ambient temperature data were stored in an SD card via Raspberry Pi 4 (Pappu
et al.,, 2017; Varkey et al., 2021; Alselek et al., 2022). The humidity and temperature
measurements were recorded within two-minute intervals. Various studies have used different
time intervals to record the collected data, for example, one-minute or five-minute intervals.
(Defa et al., 2019; Kjellby et al., 2019).

Water temperature and pH play a crucial role in determining water quality. The pH level reflects
the acidity of the water. Temperature changes can influence various components of the aquatic
environment, including the pH as well (Maulini et al., 2022). Temperature and the pH of the
water also play a role in the nitrification process of breaking down the fish waste and other
microorganisms (Channa et al., 2024). Fish growth parameters, such as height and weight,
have also been reported to be significantly influenced by pH and water temperature
(Khandakar et al., 2024). Dewangan et al. (2023), highlighted the importance of monitoring
water temperature in water quality management due to the significant relationship between
temperature and EC/TDS. Since water quality and fish growth performance are directly
influenced by pH, temperature, TDS, and EC, these parameters are the selected water quality
parameters for this study. A water quality measuring device was used for collecting all four
water quality parameters (Yanes et al., 2020; Subakti et al., 2022; Liu et al., 2024). Water
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quality parameters were collected at four intervals on a daily basis and were recorded into an

Excel sheet.

After the field experiment, a dataset of 709 plant detail records and another dataset of 526
records for the water quality were compiled. Data collection began on 2023-07-28 and
concluded on 2024-07-08, spanning approximately 4 months and 13 days (133 days), with 4
cycles conducted during this period. The data collection cycle is shown in Table 3.1. In the next

step, the collected data had to be cleaned for further analysis.

Table 3.1: Data collection cycle

Cycle | Starting date Ending date
1 2023-07-28 2023-08-28
2 2023-10-24 2023-11-13
3 2024-02-27 2024-03-26
4 2024-05-13 2024-07-08

3.5.2 Data pre-processing
In this study, data preprocessing was performed using the Python programming language,

which is a prime language for data science and machine learning applications (Oscar et al.,
2023). The preprocessing code was executed within the code cells of Jupyter Notebook
(Géron, 2019: 48). Duplicate records were identified and discarded (Dabool et al., 2024). Since
manual recording was adopted, this has prevented the detection of missing data in the plant
and water quality dataset. Furthermore, outliers were detected using boxplots and afterwards
handled by replacing them with the mean value, which is a central measure of the data
distribution (Molin, 2021:13; Wilson et al., 2021). The independent and dependent variables
were identified from the collected datasets to predict plant diameter, plant height, water pH,
and water TDS. Thereafter, the dataset was split into training and test sets using an 80:20
ratio, respectively (Wilson et al., 2021; Kumar et al., 2023; Daniel et al., 2025). Through the
feature engineering process, the features were scaled to a uniform range to improve model
performance, since the dataset contained features with fluctuating scales (Keerthana et al.,
2021; Abdelaziz et al., 2025). Hence, MinMaxScaler normalisation was used in this study to
ensure that all feature values were scaled to fall within the range of 0 to 1(Molin, 2021: 562;
Seegobin et al., 2024). After data pre-processing, the datasets were ready to be input into

various supervised algorithms to perform the prediction.

3.5.3 Model Selection
In this study, plant diameter and plant height are considered as dependent (output) variables

for plant growth prediction, whereas pH and TDS are considered dependent variables for water
quality prediction. Thus, the independent (input) variables for plant growth predictions are plant

height, plant diameter, number of leaves, ambient temperature and ambient humidity.
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Whereas, in water quality prediction, pH, temperature, EC and TDS are independent (input)

variables. The following supervised machine learning models were selected for the prediction.

Linear regression: It was selected because it is computationally simple and easy to
implement (Kadam et al., 2025). Alinear regression model aims to identify a general important
pattern that connects independent variables and dependent variables. Furthermore, linear
regression strives to establish a relationship between these variables, extending towards
predicting dependent variables for specified input values (Kim et al., 2022). It is typically used

as a baseline model to obtain preliminary insights into the data (Kadam et al., 2025).

Random Forest (RF): It is an ensemble of decision trees that combines the outputs of
individual trees to produce the final prediction (Wie, 2023). Due to the manual, physical
collection of data, as well as exposure to varied climatic conditions, noise, or errors are present
in the collected data. RF was chosen as it reduces overfitting and handles missing or noisy
data (Molin, 2021:653; Kadam et al., 2025). RF is used in many prediction studies due to its
high accuracy and robustness (Wie, 2023).

K-nearest neighbour (KNN): In this study, the KNN model was selected for the prediction
process because it is a simple, non-parametric and instance-based machine learning algorithm
that does not require a specific training phase (Ozaga et al., 2024). The dataset used in this
study is relatively small. KNN is tailored for this type of collected data because it does not make
prior assumptions about the input variables. It also provides good accuracy on a small data

size (Seyghaly et al., 2024).

eXtreme Gradient Boosting (XGBoost): XGBoost is a decision tree-based ensemble ML
algorithm (Desdhanty & Rustam, 2021). It is selected in this study because of its ability to
handle missing data, high accuracy, control overfitting, computational efficiency and high
scalability (Mahajan et al., 2023; Wen et al., 2024). It uses various techniques to improve model
performance and efficiency. Techniques, namely, parallelisation, optimising objective functions
and regularisation. Additionally, it is apt for finding the key features in the given dataset, which
is useful for feature selection and understanding the relationships within the data (Khan et al.,
2024).

Multilayer Perceptron (MLP): It is a deep artificial neural network that consists of several
interconnected perceptrons. MLP is used in the study to predict plant growth and water quality.
During the training process, a series of input-output pairings assists with learning to represent
the dependencies between the input features and the expected output. MLP also has a good
nonlinear fitting ability whilst being suitable for complex datasets, and it minimises training
errors (Zaras et al., 2022:19; Taud & Mas, 2018: 454; Obiora et al., 2023).
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The criteria for selecting the specific machine learning models for prediction are summarised
in Table 3.2.

Table 3.2: Overview of the attributes of the selected ML Algorithms

Algorithm |[SI Acc HO HMA |NLR [CLD |References
Linear High Medium |Prone to Poor [No No (Lantz, 2013:161,169;
Regression overfitting if not Rashidi et al., 2019;
regularised Joshi, 2020: 36; Kim et
al., 2022; Kadam et al.,
2025)
Random |Medium |High Robust to Good [Yes Yes |(Kadam et al., 2025; Wei,
Forest (RF) overfitting 2023)
KNN High Medium to |Prone to Poor |Yes No (Sudheer et al., 2022;
High overfitting if K is Zhang et al., 2023; Ozaga
not chosen et al., 2024; Seyghaly et
correctly al., 2024)
XGBoost |Medium |High Robust to Good |Yes Yes |(Friedman, 2001; Chen &
to Low overfitting with Guestrin, 2016 ; Mahajan
regularisation et al., 2023; Khan et al.,
2024; Daramola et al.,
2025)
Multilayer |Low High Prone to Poor |Yes Yes |(Taud & Mas, 2018: 454;
Perceptron overfitting if not Obiora et al., 2023)
(MLP) regularised
Sl: Simplicity of implementation
Acc: Accuracy
HO: Handling overfitting
HMD: Handling of missing data
NLR: Non-linear relationships
CLD: Efficiency with complex and large datasets

3.5.4 Model training
The preprocessed data was used to train the selected machine learning algorithms to identify

trends in the dataset and finally make predictions (Panigrahi et al., 2023). After training, the
algorithm represents the data in the form of a model (Lantz, 2015:16). The model was applied
to the test dataset to evaluate how well it could generate accurate predictions. Thereafter,

model performance was assessed using appropriate evaluation metrics
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3.5.5 Model evaluation
The performance of the selected supervised machine learning models was evaluated using

standard regression metrics, namely Mean Squared Error (MSE), Root Mean Squared Error
(RMSE), Mean Absolute Error (MAE), R-squared (R?), and Adjusted R-squared (Adjusted R?).
These are the most frequently used regression metrics in the literature (Sudheer et al., 2022;
Debroy & Seban, 2022; Owusu et al., 2024; Khandakar et al., 2024). Finally, the metrics results
were compared by checking the minimal error in MSE, MAE and RMSE and the highest score
in R? and Adjusted R? (Sudheer et al., 2022; Khandakar et al., 2024).

3.5.6 Hyperparameter tuning
Hyperparameter techniques help to enhance the model's performance. Hyperparameter tuning

techniques, GridSearch and RandomSearch, were used in this study for a comparative
analysis (Elgeldawi et al., 2021). To split the data into several combinations, both 5-fold and
10-fold cross-validation methods were used (Lauguico et al., 2020; Khandakar et al., 2024).
Then, the best hyperparameters were selected to train the selected supervised algorithms to
predict the output. Two options of 5-fold and 10-fold were used to create a basis to

experimentally determine the cross-validation option that would produce the best performance.

3.5.7 Model Deployment
A data-driven Decision Support System (DSS) using machine learning was developed in order

to deploy the best-performing models. It was developed as a Python web application using the
Flask framework, deployed on PythonAnywhere (Mufid et al., 2019). The developed DSS was
made to be accessible to the various participants from anywhere (Gao et al., 2021).
Participants could provide input data via the website. The system provided the participant with
the predicted output, together with insights of the most significant factors contributing to the

predicted value.

3.5.8 User feedback and communication

The usability of the developed DSS was evaluated using the System Usability Scale (SUS),
which is a standardised self-completed questionnaire (Setemen et al., 2019; Saunders et al.,
2019:505, 506). The SUS questionnaire was created using Google Forms and integrated into
the DSS website. Participants were invited to explore and evaluate the developed DSS
(Setemen et al., 2019; Saunders et al., 2019: 505). The targeted population consists of
aquaponics practitioners, researchers and aquaponics community members (Saunders et al.,
2019:295). Invitations to participate in the survey were distributed through various
communication channels, including email, WhatsApp, and Facebook. Once the respondent
completes the questionnaire, their responses are saved automatically (Brooke, 1996;
Saunders et al., 2019: 544). A convenient sampling technique was used, where each
participant volunteered to participate in the evaluation (Saunders et al., 2019: 324). Due to the
voluntary nature of participation and online questionnaires, the survey experienced a relatively
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low response rate; hence in the study used a less representative sample (Chelghoum, 2024).
Out of 127 individuals invited, only 16 responded, and 14 of those completed the SUS
questionnaire in full. The collected data were analysed quantitatively, and insights were

communicated using graphs and tables.

3.6 Ethical considerations

The ethical approval for this study was obtained from the Faculty of Informatics and Design
Research Ethics Committee of the Cape Peninsula University of Technology (CPUT). Since
the study involved human participants, all participants of this study were informed of their rights

before participation(Saunders et al., 2019:55).

3.6.1 Protection of people

The aquaponics unit is situated at the University of Johannesburg (UJ) in Johannesburg, South
Africa. Officials at the aquaponics site were not subjected to any harmful chemicals or products

that could adversely affect their health.

3.6.2 Protection of the environment

Aquaponics units are environmentally safe and made from food-grade plastic so as not to
release toxins into the environment. The aquaponics unit also encompasses three living
organisms: plants, bacteria and fish. This aquaponics system maintained a good ethical
relationship and provided value to the natural environment. The study did not use any
pesticides in the aquaponics unit that would harm the living organisms. The research ensured
that the data collection did not cause any harm to the aquaponics unit's living organisms and

the environment.

3.6.3 Data storage

The data were stored electronically on common digital storage devices and were kept at CPUT.
The data did not contain sensitive information. It primarily included the collected data and
feedback from the aquaponic farmers. Private information of aquaponics farmers was not

stored.

3.6.4. Informed consent

The participants in the evaluation survey gave their informed consent, and participation was

voluntary.
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3.7 Chapter summary

In this chapter, a summary of how the researcher designed the study is provided, along with
the justification for the choice. The chosen research aspects applied in the study were ontology
and epistemology. The ontological stance of the study was objectivism, whereas positivism
was adopted for epistemology. The research approach was deductive and used the
quantitative methodological choice to conduct an experiment, which was selected as the
research strategy. Towards the end of this chapter, the ethical considerations applied in this

study were explained.
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CHAPTER FOUR
DATA COLLECTION

A vital step in the research process is gathering data, which forms the basis for insightful
analyses and conclusions. This chapter explains how data was collected from the field and

recorded to conduct the experiment.

4.1 Data collection

Experimentation is one of the data collection methods (Taherdoost, 2021; Ganesha & Aithal,
2022). For this study, the primary data were collected from the field experiment. Aquaponics
was set up in a real-world setting; thus, the field experiment provided a high external and
ecological validity. Ecological validity indicates how much the outcome of the study can be
generalised to real-life conditions (Taherdoost, 2021; Ganesha & Aithal, 2022). Continuous

quantitative data were collected and recorded from the field (Ganesha & Aithal, 2022).

Data collection commenced on the 28" of July 2023 and concluded on the 8" of July 2024.
This amounts to a period of 11 months (346 days). Data was collected in 4 cycles during this
period. Table 4.1 presents the data collection cycle. The following sections explain how data

were collected for this study.

Table 4.1: Data collection cycle

Cycle | Starting date Ending date
1 2023-07-28 2023-08-28
2 2023-10-24 2023-11-13
3 2024-02-27 2024-03-26
4 2024-05-13 2024-07-08

4.1.1 Aquaponics setup

In this study, a media grow-bed-type coupled aquaponics system was set up within a tunnel in
Johannesburg, South Africa, for data collection. Three 102 cm x 108 cm media grow bed units
with one 1000 litre tank holding 27 Mozambique Tilapia fish were used. In each grow bed,
nine leafy lettuces were planted within a 12 cm distance of one another, and numbers were

assigned to the plants. The plant numbering is shown in Figure 4.1.
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Grow bed - 2 Gro bed -3

Figure 4.1: Plant numbering in grow beds

The aquaponics setup and fish used for this study are displayed in Figure 4.2 and Figure 4.3.

Figure 4.2: Aquaponics setup
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Figure 4.3: Mozambique Tilapia Fish

4.1.2. Data recording

Manual measuring instruments were used to determine the plant details and water quality
details (Saunders et al., 2019:403). Humidity and ambient temperature measurements were

done using an loT device.

4.1.2.1 Plant details

The plant diameter and plant height were measured using a measuring scale and recorded in
centimetres, and the leaves were counted manually. A sample of measuring the plant height
and diameter is shown in Figures 4.4 and 4.5. The plant growth was visually inspected, taking
into account of the plant height, number of leaves, and leaf area (diameter) (Pandey et al.,
2017; Frasetya et al., 2021; Qadeer et al., 2020). Plant details were measured once a week.
Plant height was measured from the grow bed level to the longest leaf of the plant (Valiente et
al., 2018; Villanueva et al., 2022). Plant diameter/area was measured from one leaf end to

another leaf end.
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Figure 4.4: Plant height measuring

Figure 4.5: Plant diameter measuring
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4.1.2.2 Water parameter

The selected water quality parameters for this study were pH, water temperature, TDS and
EC. The Nf-7 in 1 water quality tester pen was used to measure the water quality. Water quality
measurement was conducted using a test pen, is depicted in Figure 4.6. The units that were
used in this study to measure the water quality are microsiemens per centimetre (uS/cm) for
EC, parts per million (ppm) for TDS and Celsius (°C) for water temperature (Eneh et al., 2023;
Abidin et al., 2024; Dewangan & Shrivastava, 2024). The water quality was measured daily,
four times a day, between 9:00 AM to 12:00 PM. The results were recorded in an Excel sheet.
More accuracy was ensured by calibrating the water quality tester each time before use. This
procedure was followed as per the guidelines in the instrument manual located in the
packaging (Mandap et al., 2018; Wibowo et al., 2019).

Figure 4.6: Water quality measurement

4.1.2.3 Ambient temperature and humidity

The sensor DHT22, Node-RED, a visual programming tool and Raspberry Pi were used in
this study for ambient humidity and temperature data collection and visualisation (Leki¢ &
GardasSevi¢, 2018; Ekanayake et al., 2022; Arigela et al., 2024).
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DHT22 Sensor: It is a low-cost, reliable, and effective sensor for measuring ambient
temperature and humidity. It is important to collect the ambient temperature where plant growth
is directly dependent (Ghandar et al., 2021).

Node-RED: This is a flow-based JavaScript development tool built on the Node.js platform
and is used for visual programming (Leki¢ & GardaSevi¢, 2018; Arigela et al., 2024). It is used
for connecting hardware devices, APIl, and online services whilst providing a user-
management interface (Leki¢ & Gardasevic¢, 2018; Arigela et al., 2024). This development tool
allows users to add or remove nodes and connect them for communication without writing
code (Leki¢ & Gardasevi¢, 2018; Garbev, 2022).

Raspberry Pi: It is an inexpensive, high-speed open-source computer device that consumes
minimal power whilst being portable, making it ideal for loT applications (Pappu et al., 2017;
Dutta et al., 2018; Hosny et al., 2023). In this study, the Raspberry Pi 4 model B with 4GB of
RAM and a 16 GB SD card was used (Hosny et al., 2023).

DHT22 was set up to collect the ambient temperature and humidity, which is shown in Figure
4.7. The collected data was recorded into an SD card in the Raspberry Pi unit. The data was

recorded every two minutes and saved in a Comma-separated values file format.

Figure 4.7: DHT22 used to collect ambient temperature and humidity data

Installed Node-RED on the Raspberry Pi for visualising real-time data. When the user
connected over the WIFI, ‘aqua_2’, they were able to access the Node-RED dashboard locally.

It allowed the user to monitor the ambient humidity and ambient temperature data (Garbey,
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2022). Figure 4.8 depicts the block diagram of the Node-RED, DHT22 and Raspberry Pi

integration that was used in this study.

Raspberry Pi 4

DHTT22- Sensor

Ambient
temperature
and humidity

sensor

SSID: aqua_2

User Interface

LS

Figure 4.8: Architecture of loT-based data collection and visualisation

A sample dashboard, which visualises ambient temperature and humidity at 10-minute

intervals for 2023-11-16, is shown in Figure 4.9.
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Figure 4.9: Node-RED dashboard display with ambient temperature and humidity
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Data collection for this study was conducted over four cycles from the years, 2023 to 2024. To
assist with prediction, the weekly average values of ambient temperature and humidity
parameters were calculated and recorded to link with plant growth details. During the data
collection, no missing data were identified for both plant and water quality parameters, due to
data being recorded manually. However, anomalies were detected during the water quality
data capturing, where the pH meter provided a strange reading in one instance. A UPS unit
was installed to provide backup power for sensor data collection, mitigating the impact of load
shedding. This was immediately replaced with a functioning unit and calibrated accordingly.
The study ensured the precise and systematic documentation of all parameters. All recorded

parameters were cross-checked by a senior field engineer onsite as well.

4.2 Chapter summary
This chapter describes the aquaponics setup used for the field study and explains how plant

data, environmental data, and water quality data were all collected and recorded. Plant details,
including height, diameter, and the number of leaves, were all manually measured using the
appropriate tools. Ambient temperature and humidity, were measured and recorded using loT
devices. Water quality parameters such as, water temperature, TDS, EC, and pH, were

manually collected using a water quality test pen and recorded accordingly.
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CHAPTER FIVE
MACHINE LEARNING EXPERIMENTATION

This chapter describes how the experiment was conducted using selected machine learning
models. Initially, the hardware and software specifications used in the study to conduct the
experiments are explained. This is followed by the data preparation processes, model
development, model training and finally the model evaluation. The chapter then presents and
discusses the results obtained from the various experiments. The study finally explores the
application of SHapley additive explanations (SHAP) which assisted to identify the most

influential features and interpreting the models.

5.1 Hardware and software specifications

The hardware and software specifications required for the machine learning experiment are

explained in the following sections.

5.1.1 Hardware

The hardware specification used in this study is given in Table 5.1.

Table 5.1: Hardware specification used for this study

Operating System Windows 10 Home Single Language
Version 22H2

CPU Intel(R) Core(TM) i7-1165G7 @ 2.80GHz

System Type x64

RAM 8,00 GB

5.1.2 Software

Python programming language was used for machine learning as it supports a wide range of
libraries focussing on data science and machine learning, including NumPy, matplotlib,
pandas, sklearn, and others. It is also well-suited for web application development (Molin,
2021:3; Castro et al., 2023). Jupyter Notebook was the platform used to develop the machine
learning model which is an open-source, browser-based tool. This tool serves as a virtual lab
notebook for coding, results execution, documentation, and visualisations (Prathanrat &
Polprasert, 2018; Wang et al., 2021). The Python code was typed into the Jupyter Notebook’s
code cell (Géron, 2019:48).
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The main libraries used for ML model development are as follows:

NumPy: Library that performs mathematical operations on arrays, including shape

manipulation, mathematical primitives, and sorting (Molin, 2021:40; Castro et al., 2023).

Pandas: This library is built on top of the NumPYy library and is primarily used for data analysis
and manipulation (Molin, 2021:40; Castro et al., 2023). Pandas provide two primary data
structures, namely DataFrame and Series which assists in working with data (Molin, 2021:49;
Castro et al., 2023). A frequently used data structure is the Data Frame (Castro et al., 2023).
The Data Frame is a two-dimensional data structure that comprises rows and columns (Molin,
2021:56; Castro et al., 2023). The Series class provides a data structure for single-type arrays
(Molin, 2021:53).

Scikit-learn/ sklearn: is a popular machine learning library that assists to build a model
through implementing various learning algorithms and evaluating their performance (Fenner,
2019:20; Joshi, 2020:222; Castro et al., 2023; Molin, 2021:538). It has the ability to create
pipelines that streamlines the preprocessing process and ensures that both the training and

testing sets are treated consistently (Molin, 2021:570).

Matplotlib: This library is used to create a wide range of plots and visualisations for data

analysis (Castro et al., 2023).

Table 5.2 lists the libraries and versions used to develop the machine learning models.

Table 5.2: Libraries used for the experiment

Libraries Version
Python 3.9.0
sklearn 1.3.0
shap 0.46.0
Pandas 2.2.3
xGboost 1.7.4
matplotlib 3.5.1
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5.2 Dataset

Two datasets were used in this study for predictions. One focused on plant-related predictions,

and the other was used for water quality-related predictions.

I. Plant dataset
The collected data were stored in an Excel sheet which contains 709 records. Details
such as the number of leaves, plant diameter, plant height, ambient temperature, and
ambient humidity were recorded.

Il. Water dataset
The collected data were stored in an Excel sheet into 526 records. These include

details such as the pH, TDS, EC, and water temperature.

5.3 Data preparation

Data analysis helps to explore the hidden patterns, relations between variables and trends
(Dangeti, 2017:11; Humayun et al., 2023). Data pre-processing prepares the raw data for
analysis by addressing missing values, noisy data, and inconsistent formatting (Abdelaziz et
al., 2025). Data preparation (wrangling) is part of data analysis (Molin, 2021:6). Data cleaning
and data transformation are two tasks undertaken in this study as data preparation (Molin,
2021:119). During the data cleaning phase, redundant records were removed, and outliers
were replaced with the median. After this process, the plant dataset contained 691 records,

while the water dataset had 524 records.

The feature selection process is important in data preprocessing (Abdelaziz et al., 2025). The
dependent and independent variables were identified from both datasets to predict plant
diameter, plant height, water pH, and water TDS. Thereafter, the dataset was split into a
standard percentage ratio of 80:20 as a training and test set, respectively (Géron, 2019:31;
Kumar et al., 2023; Daniel et al., 2025).

The features in the dataset had different ranges, which can result in increased complexity and
confusion. To improve model performance, it is necessary to scale all features to the same
range through the feature engineering process (Molin, 2021:633; Keerthana et al., 2021;
Abdelaziz et al., 2025). Hence, MinMaxScaler normalisation was applied separately to the
feature and target variables in both the training and testing sets. This ensures that the values
are scaled to fall within the range of 0 to 1 (Géron, 2019:72; Molin, 2021:562; Seegobin et al.,
2024). After data cleaning, splitting, and scaling, the dataset was ready for model training
(Obiora et al., 2023).
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5.4 Model development

The supervised ML models Linear Regression (LR), Random Forest (RF), Deep Multilayer
Perceptron (DML), eXtreme Gradient Boosting (XGBoost) and k-nearest neighbour (KNN)
were selected for the prediction experiment. The plant and water quality datasets were used
in the experiment (Islam et al., 2018; Keerthana et al., 2021; Ghandar et al., 2021; Kumar et
al., 2023; Khandakar et al., 2024; Liu & Jiang, 2024). Hyperparameters were selected to
structure the models, and this helps to enhance the model's performance (Elgeldawi et al.,
2021). Hyperparameter tuning directly impacts the accuracy and generalisation capabilities of
machine learning models (Dabool et al.,, 2024). Widely used hyperparameter tuning
techniques, such as Gridsearch and Randomsearch were used to optimise the model's
performance (Bischl et al., 2023; Dabool et al., 2024). Gridsearch performs an exhaustive
search over a predefined set of hyperparameters, whereas Randomsearch performs a
randomised search over hyperparameters to find optimal combinations for improving model
performance (Yu & Zhu, 2020; Dabool et al., 2024). Randomsearch may perform better
compared to Gridsearch, particularly when some hyperparameters are not uniformly
distributed. Table 5.3 shows the various hyperparameters selected for the respective ML
models. The best hyperparameter values were thus selected using this process (Dangeti,
2017,117; Molin, 2021,625; Ubayasena et al., 2023; Khandakar et al., 2024).

The GridSearchCV and RandomSearchCV classes from Scikit-learn were used in this study
for hyperparameter tuning (Molin, 2021:627; Khandakar et al., 2024; Abdelaziz et al., 2025).
To split the data into multiple combinations, 5-fold and 10-fold cross-validation were used in
hyperparameter tuning, which are commonly used and recommended (Fenner, 2019: 129). 5-
fold allows each model to be trained and tested, which reduces the chances of overfitting and
provides a more accurate model performance assessment (Ozaga et al., 2024). 10-fold
provides robust estimation because it uses 90% of the data for testing, whereas 10 % of the
data is used for testing (Lantz, 2013;319, 322). The random splitting of data ensured a
reduction in the chances of coincidental features getting more importance (Muller & Guido,
2016:252, 254; Joshi, 2020:166). Scikit-learn’s k-fold cross-validation was used for cross-
validation (CV) (Molin, 2021:628).
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Table 5.3: Hyperparameters selected for ML models

Models Hyperparameters | Description Reference
Random n_estimators The number of trees in the random (Molin, 2021:206;
Forest forest Olafadehan & Ahaotu:
2023)
max_features The maximum number of features (Molin, 2021:185;
that are evaluated for splitting at Olafadehan & Ahaotu:
each node 2023)
max_depth The maximum depth of the tree. (Molin, 2021:180;
The Decision Tree stops right there. | Olafadehan &
Ahaotu:2023)
min_samples_split | The minimum number of samples a | (Molin, 2021:185;
node must have before it can be Olafadehan &
split. Ahaotu:2023)
min_samples_leaf | The minimum number of samples a | (Molin, 2021:185;
leaf node must have Olafadehan & Ahaotu:
2023)
forest__ bootstrap Whether bootstrap samples are (Molin, 2021:196)
used or not
KNN n_neighbors Number of neighbours (Molin, 2021:663)
weights Each neighbour’s impact on the (Fenner, 2019:363)
prediction
Algorithm The algorithm used to compute the | (Giuseppe, 2018:289;
nearest neighbours Fenner, 2019:363)
leaf size Leaf size of the tree-based (Giuseppe, 2018:289;
algorithm Fenner, 2019:363)
XGBoost learning_rate determines the contribution each (Molin, 2021:655)
tree will make to the final estimator
n_estimators Number of trees to control the (Géron, 2019:206)
ensemble training
max_depth Maximum depth of the tree (Géron, 2019:182)
Subsample The fraction of training instances to | (Géron, 2019:209)
be used for training each tree.
MLP hidden_layer_size Number of neurons in the hidden (Dangeti, 2017:344)
layer
max_iter Maximum number of iterations (Dangeti, 2017:39)
Activation Activation function (Dangeti, 2017:262)
Solver Optimiser for the reduction of errors | (Dangeti, 2017:262)
Alpha Regularisation strength to avoid (Dangeti, 2017:262;
overfitting Molin, 2021:669;
Fenner, 2019:300)
learning_rate Used to control the rate of (Dangeti, 2017:287)
convergence of the algorithm
batch_size Number of observations considered | (Géron, 2019:321;
at each iteration Dangeti, 2017:39)
early_stopping Stop training as soon as the (Géron, 2019:142)
validation error reaches a minimum
learning_rate_init Initial learning rate (Géron, 2019:355)
Linear fit_intercept Exploration into models with (Dangeti, 2017:38;
Regression different biases Fenner, 2019:340;
Olafadehan & Ahaotu,
2023; Khandakar et
al., 2024)
copy_Xx Copy all variables in the dataset. (Fenner, 2019:382;
Khiem et al., 2022;

94




Olafadehan & Ahaotu,
2023)

5.5 Model training

The selected supervised ML algorithms were used to train and predict the target variables. To

optimise the model performance, the hyperparameters were fine-tuned using Gridsearch and

Randomsearch (Ubayasena et al., 2023; Khandakar et al., 2024). Hyperparameter fine-tuning

was done for the different prediction cases (plant diameter, plant height, water pH, and water

TDS). The optimal hyperparameters that produced the best model performance for plant

diameter, plant height, water pH, and water TDS predictions are presented in Tables 5.4 — 5.7.

Table 5.4: Hyperparameters used in Gridsearch with 10-fold CV for plant diameter prediction

ML models

Hyperparameters

Linear Regression

fit_intercept: [True, False]

copy_x: [True, False]

Random Forest

n_estimators: [50, 112, 175, 237, 300]
max_features: ['sqrt', 'log2', 0.5]
max_depth: [10, 20, 30, None]
min_samples_split: [2, 5, 10]
min_samples_leaf: [1, 2, 4]

bootstrap: [True, False]

KNN

n_neighbors: np.arange(1, 10)
weights: ['uniform’, 'distance']
algorithm: ['auto’, 'ball_tree', 'kd_tree', 'brute’]

leaf_size: np.arange(20, 40, 5)

XGBoost

learning_rate: [0.01, 0.1, 0.2]
n_estimators: [100, 200],
max_depth: [3, 4, 5],
subsample: [0.8, 0.9, 1.0],

MLP

hidden_layer_sizes: [(200, 150, 100, 50),(150, 100, 50), (120,
80, 40), (100, 50, 30), (50, 30)]

max_iter: [10000, 50000]

activation: ['relu],

solver: ['adam’],

alpha: [0.0001, 0.001, 0.01]

learning_rate: ['constant’, 'adaptive']

batch_size: ['auto’, 32, 64, 100,128]

early_stopping': [True, False]

learning_rate_init : [0.001, 0.01, 0.1]
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Table 5.5: Hyperparameters used in Gridsearch with 5-fold CV for plant height prediction

ML models

Hyperparameters

Linear Regression

fit_intercept: [True, False]

copy_x: [True, False]

Random Forest

n_estimators: [10, 50, 112, 175, 237, 300]
max_features: [1.0]

max_depth: [10, 20, 30, None]
min_samples_split: [2, 5, 10]
min_samples_leaf: [1, 2, 4]

bootstrap: [True, False]

KNN

n_neighbors: np.arange(1, 5)
weights: ['uniform’, 'distance']
algorithm: ['auto’, 'ball_tree', 'kd_tree', 'brute’]

leaf_size: np.arange(10, 30, 60)

XGBoost

learning_rate: [0.01, 0.05, 0.1]
n_estimators: [50, 100, 200]
max_depth: [2, 3, 4]
subsample: [0.8, 0.9, 1.0]

MLP

hidden_layer_sizes: [(200, 150, 100, 50), (150,
100, 50), (120, 80, 40), (100, 50, 30), (50, 30)]
max_iter: [10000, 20000, 500001,

activation: ['relu’, 'tanh']

solver: ['adam’],

alpha: [0.0001, 0.001, 0.01]

learning_rate: ['constant’, 'adaptive']
batch_size: ['auto’, 32, 64, 100,128]
early_stopping": [True, False]
learning_rate_init : [0.001, 0.005, 0.01]

Table 5.6: Hyperparameters used in Gridsearch with 10-fold CV for water pH prediction

ML models

Hyperparameters

Linear Regression

fit_intercept: [True, False]

copy_x: [True, False]

Random Forest

n_estimators: [50, 112, 175, 237, 300]
max_features: ['sqrt', 'log2', 0.5]
max_depth: [10, 20, 30, None]
min_samples_split: [2, 5, 10]
min_samples_leaf: [1, 2, 4]

bootstrap: [True, False]

KNN

n_neighbors: np.arange(1, 5)
weights: ['uniform’, 'distance’]

algorithm: ['auto’, 'ball_tree', 'kd_tree', 'brute']
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leaf_size: np.arange(25, 30, 5)

XGBoost learning_rate: [0.01, 0.1, 0.2]
n_estimators: [100, 200]
max_depth: [3, 4,5]
subsample: [0.8, 0.9, 1.0]
MLP hidden_layer_sizes: [(200, 150, 100, 50),(150, 100, 50), (120, 80,

40), (100, 50, 30), (50, 30)]
max_iter: [10000, 50000],
activation: ['relu’]

solver: ['adam’],

alpha: [0.0001, 0.001, 0.01]
learning_rate: ['constant’, 'adaptive']
batch_size: ['auto’, 32, 64, 100,128]
early_stopping': [True, False]
learning_rate_init : [0.001, 0.01, 0.1]

Table 5.7: Hyperparameters used in Gridsearch with 10-fold CV for water TDS prediction

ML models

Hyperparameters

Linear Regression

fit_intercept: [True, False]

copy_x: [True, False]

Random Forest

n_estimators: [50, 112, 175, 237, 300]
max_features: ['sqrt', 'log2', 0.5]
max_depth: [10, 20, 30, None]
min_samples_split: [2, 5, 10]
min_samples_leaf: [1, 2, 4]

bootstrap: [True, False]

KNN

n_neighbors: np.arange(1, 10)
weights: ['uniform’, 'distance']
algorithm: ['auto’, 'ball_tree', 'kd_tree', 'brute']

leaf_size: np.arange(20, 40, 5)

XGBoost

learning_rate: [0.01, 0.1, 0.2]
n_estimators: [100, 200]
max_depth: [3, 4,5]
subsample: [0.8, 0.9, 1.0]

MLP

hidden_layer_sizes: [(200, 150, 100, 50),(150,
100, 50), (120, 80, 40), (100, 50, 30), (50, 30)]
max_iter: [10000, 50000]

activation: ['relu']

solver: ['adam’],

alpha: [0.0001, 0.001, 0.01]

learning_rate: ['constant’, 'adaptive']
batch_size: ['auto’, 32, 64, 100,128]
early_stopping": [True, False]
learning_rate_init : [0.001, 0.01, 0.1]
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Linear Regression

fit_intercept: [True, False]

copy_x: [True, False]

5.6 Model performance evaluation

The ML models were evaluated on the test dataset using the metrics Mean Squared Error
(MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), R-squared (R?), and
Adjusted R-squared (Adjusted R?) to assess their performance (Dangeti, 2017:29; Chicco et

al., 2021). The evaluation metrics, purpose, and the best and worst value range are presented

in Table 5.8.

Table 5.8: Evaluation metrics, purpose and value range

Evaluation metrics

Purpose

Value range

Reference

Mean Squared Error
(MSE)

Squares of the difference
between the predicted and
actual value

best value = 0 and
worst value = +«

(Chicco et al., 2021;
Kumar et al., 2023;
Priya, 2021;

Sudheer et al., 2022)

Root Mean Squared
Error (RMSE)

The square root of the
Mean Squared error

best value = 0 and
worst value = +«

(Chicco et al., 2021;
Priya, 2021;
Kumar et al., 2023)

Mean Absolute Error
(MAE)

Difference between the
predicted value and the
actual value

best value = 0 and
worst value = +«

(Chicco et al., 2021;
Priya, 2021; Kumar et
al., 2023)

R-squared (R?)

Difference in variance with
dependent variables

best value = +1
worst value = —«

(Dangeti, 2017:29;
Chicco et al., 2021;
Priya, 2021;
Sudheer et al., 2022)

Adjusted R-squared
(Adjusted R?)

R-squared is adjusted for
the number of independent
variables in the model.

Less than or equal
to R?

(Sudheer et al., 2022)

The evaluation metrics and the corresponding scores of the best-performing models for

different predictions, namely plant diameter, plant height, water pH, and water TDS, are

presented in the subsequent sections. Both Gridsearch and Randomsearch were used for

hyperparameter tuning with 5-fold and 10-fold cross-validation. The results of the best models

are discussed here, while the remaining scores are provided in Appendix C for simplicity.

98




5.6.1 Plant diameter prediction

Table 5.9 presents the evaluation scores for plant diameter prediction experiments when Gridsearch

10-fold cross-validation was used.

Table 5.9: Plant diameter prediction using Gridsearch with 10-fold CV

ML models Mean Root Mean Mean Absolute | R- Adjusted- R-
Squared Squared Error Error (MAE) squared squared
Error (RMSE)
(MSE)

Linear Regression | 0.02 0.15 0.1 0.54 0.53

Random Forest 0.00 0.05 0.03 0.94 0.94

KNN 0.01 0.09 0.06 0.82 0.82

XGBoost 0.00 0.05 0.03 0.94 0.94

MLP 0.00 0.07 0.04 0.86 0.86

Based on the evaluation metrics scores (Table 5.9) random forest (RF), and XGBoost
produced the best performance for plant diameter prediction. This was followed by MLP, KNN,
and Linear Regression. Both random forest (RF) and XGBoost achieved minimal error metrics,
with MSE, RMSE, and MAE values of 0.00, 0.05, and 0.03, respectively. These models also
demonstrated high predictive accuracy, as reflected in their R-squared and Adjusted R-

squared scores of 0.94 (94%).

5.6.2 Plant height prediction
Table 5.10 depicts the performance evaluation scores for plant height prediction using

Gridsearch with 5-fold cross-validation.

Table 5.10: Plant height prediction using Gridsearch with 5-fold CV

ML models Mean Squared Root Mean Mean R- Adjusted-
Error (MSE) Squared Absolute squared R-
Error Error (MAE) squared
(RMSE)
Linear 0.01 0.09 0.06 0.80 0.80
Regression
Random Forest | 0.00 0.06 0.05 0.93 0.92
KNN 0.00 0.06 0.04 0.91 0.91
XGBoost 0.00 0.06 0.05 0.92 0.92
MLP 0.00 0.06 0.04 0.92 0.92

Gridsearch with 5-fold cross-validation provided the best overall performance. The Random Forest (RF)
model, when tuned using Gridsearch with 5-fold cross-validation, achieved the highest performance
(see Table 5.10). This was followed by MLP, XGBoost, KNN, and Linear Regression. RF achieved
minimal MSE, RMSE, and MAE values of 0.00, 0.06, and 0.05, respectively, along with high R-squared
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and Adjusted R-squared scores of 93% and 92%. 5-fold cross-validation with Gridsearch for RF

produced the most suitable models for plant height prediction, followed by MLP, XGBoost, KNN, and

Linear Regression

5.6.3 Water pH prediction

The best-performed evaluation scores for water pH prediction are shown in Table 5.11.

Table 5.11: Water pH prediction using Gridsearch with 10-fold CV

ML models Mean Root Mean | Mean R-squared Adjusted- R-
Squared Squared Absolute squared
Error Error Error (MAE)
(MSE) (RMSE)

Linear Regression 0.03 0.19 0.15 0.55 0.54

Random Forest 0.02 0.13 0.09 0.78 0.77

KNN 0.02 0.13 0.09 0.78 0.77

XGBoost 0.02 0.13 0.09 0.79 0.79

MLP 0.03 0.18 0.15 0.60 0.59

In the water pH prediction experiment, 10-fold cross-validation using Gridsearch achieved the

best overall performance (Table 5.11). XGBoost performed the best among all models in the

10-fold cross-validation using Gridsearch for water pH prediction. This was followed by RF,
KNN, MLP, and Linear Regression. The XGBoost model achieved minimal MSE, RMSE, and
MAE error values of 0.02, 0.13 and 0.09, along with high R-squared and Adjusted R-squared

scores of 79%.

5.6.4 Water TDS prediction

The water TDS prediction performance evaluation, scored using Gridsearch 10-fold cross-

validation experiment, is shown in Table 5.12.

Table 5.12: Water TDS prediction using Gridsearch with 10-fold CV

ML models Mean Root Mean Absolute R- Adjusted- R-
Squared | Mean Error (MAE) squared | squared
Error Squared
(MSE) Error
(RMSE)
Linear Regression 0.00 0.01 0.01 1.00 1.00
Random Forest 0.00 0.03 0.01 0.97 0.97
KNN 0.00 0.02 0.01 0.99 0.99
XGBoost 0.00 0.03 0.01 0.98 0.98
MLP 0.00 0.02 0.01 0.99 0.99

In the water TDS prediction experiments, Gridsearch with 10-fold cross-validation delivered

the best overall performance (Table 5.12). The Linear Regression model particularly achieved
minimal error values of 0.00 for MSE, 0.01 for RMSE, and 0.01 for MAE, along with R-squared
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and Adjusted R-squared scores of 100%. This was followed by KNN, MLP, XGBoost, and
Linear Regression. Experiments on plant diameter, plant height, water pH, and water TDS
prediction using Linear Regression, Random Forest, XGBoost, KNN, and MLP were conducted
with Gridsearch and Randomsearch using 5-fold and 10-fold cross-validation. Overall,

Gridsearch delivered better performance scores compared to Randomsearch.

5.7 Model explainability

Explainable Al aims to clarify and interpret machine learning models. In this study, SHapley
Additive Explanations (SHAP) was used to present the mean absolute SHAP values through
a bar graph and provide a global explanation of the selected models' predictions using a
summary plot (Linardatos et al., 2021; Ekanayake et al., 2022). A deeper understanding of the
features or parameters in an aquaponics system provides insight into their interdependencies

and their combined impact on achieving optimal plant and fish production within the system.

Bar graph: The visualisation demonstrates how each feature influences the prediction. The
bars are coloured red and blue. Red bars denote features that positively influence the
prediction, while blue bars denote features that negatively influence it. The length/size of each
bar signifies the strength of the feature’s effect on the model's prediction, with longer bars
indicating a stronger influence. The order of the bars in the graph reflects the importance of
each feature in influencing the model's prediction, from the most influential feature to the least

influential feature.

Summary plot: Visualises how each feature contributes to the model's predictions throughout
the entire dataset. The red dot indicates high feature values, whereas the blue dot indicates
low feature values. Points that are further from zero on the X-axis denote features with a higher

or lower contribution to the prediction.

5.7.1 Plant diameter

The feature height has the greatest influence in predicting plant diameter, as shown in Figure
5.1, with a mean absolute SHAP value of +0.09, indicating that as plant height increases, the
predicted diameter also increases, positively impacting the prediction. The second most
influential feature is leaves, with a mean absolute SHAP value of +0.04, which also contributes
positively to the diameter prediction. In comparison, humidity and temperature have relatively

smaller positive effects, with mean absolute SHAP values of +0.03 and +0.02, respectively.
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mean(|SHAP value|)

Figure 5.1: Mean absolute SHAP values of the random forest model for plant diameter prediction

The SHAP analysis for plant diameter prediction showed that plant height is the most influential
factor, with the number of leaves, ambient humidity, and ambient temperature following in
order of importance. Plants' morphological characters, such as plant height and number of
leaves, served as key indicators in this study (Alshammari et al., 2024). Ambient humidity and
temperature directly influence plant growth and plant development, as they are essential for
transpiration and the photosynthetic processes (Chia & Lim, 2022). High humidity during
transpiration can reduce air circulation, causing plants to halt transpiration and nutrient uptake
from the growing medium. Long periods of such humidity saturation may lead to gradual rotting
of the plants. Higher temperatures contribute to speeding up physiological processes with
positive and negative effects. The increased temperatures promote faster growth and higher
yield however, it also on the other hand removes the functional components from leaves due
to high transpiration rates (Chowdhury et al., 2021). Fluctuations in ambient temperature affect
atmospheric moisture levels, thereby causing changes in ambient humidity. Hence, it is

essential to monitor and maintain ambient humidity and temperature for optimal plant growth.

According to Figure 5.2, higher values of plant height led to an increase in the predicted plant
diameter, while a lower number of leaves resulted in a slight decrease in the prediction. Low
humidity levels are associated with an increase in the predicted plant diameter, whereas high
humidity levels have a slight decreasing effect. However, the temperature values are more
evenly distributed, with both positive and negative impacts on the predicted diameter. High
temperatures can either positively or negatively affect the prediction, depending on the specific

data point.
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Figure 5.2: SHAP global explanation of the random forest model for plant diameter prediction

5.7.2 Plant height

The diameter feature exhibits the highest mean absolute SHAP value of +0.1 as shown in
Figure 5.3, making it the most influential factor in the model's prediction of plant height. This
indicates that as the diameter increases, the model predicts a higher plant height. The second
most influential feature is leaves, with a mean absolute SHAP value of +0.06, which also
positively contributes to the prediction. Among the environmental factors, temperature and
humidity play a less significant role, with temperature showing a mean absolute SHAP value
of +0.04 and humidity having the least positive contribution with a mean absolute SHAP value
of +0.01.

Diameter

Leaves

Temp

Humidity

0.00 0.02 0.04 0.06 0.08 0.10
mean(|SHAP value|)

Figure 5.3: Mean absolute SHAP values of the random forest model for plant height prediction

In plant height prediction, SHAP analysis revealed that plant diameter had the most significant

influence, followed by the number of leaves, ambient temperature and ambient humidity. Plant
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growth was determined by the width of the leaves and the number of leaves. Ambient
temperature influences the speed of energy processing in plants. Furthermore, humidity has a
direct bearing on the photosynthesis process and thus influences the growth and development
of plants (Chia & Lim, 2022).

According to Figure 5.4, high values for the features' diameter, leaves, and temperature
contribute to an increase in the predicted plant height. In contrast, humidity is more evenly
distributed between positive and negative contributions. However, high humidity slightly

increases the predicted plant height, while low humidity slightly decreases it.
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Figure 5.4: SHAP global explanation of the random forest model for plant height prediction

5.7.3 Water pH

The TDS feature demonstrated the highest mean absolute SHAP value of +0.19 as seen in
Figure 5.5, making it the most influential factor in the pH model's prediction. This indicates that
as the TDS increases, the model predicts a higher pH value. The second most influential
feature is temperature, with a mean absolute SHAP value of +0.06, which also positively
contributed to the prediction. EC has the least positive contribution with a mean absolute SHAP

value of +0.03.
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Figure 5.5: Mean absolute SHAP values of XGBoost for water pH prediction

In the pH prediction SHAP analysis, TDS indicated the most influential feature, followed by
water temperature and EC. The pH level indicates the acidity or alkalinity of the water. This
has a direct effect on how well the fish and other organisms survive in the water. There is a
strong correlation between EC and TDS in the water. The relationship between EC and TDS
was influenced by the temperature and pH of the water (Dewangan & Shrivastava, 2024).
When the water temperature and pH increase, more toxic ammonia is produced (Maulini et al.,
2022). Excess acid or alkali in the water can be toxic for many organisms as well, and thus, it

is critical to monitor and maintain the pH level as much as possible (Kok et al., 2024)

According to Figure 5.6, low TDS values are associated with an increase in the predicted pH
value. Also, it is noted that low-temperature values contributed to both increases and
decreases in the predicted pH value. Additionally, low EC values slightly increase the predicted

pH value, whereas high EC value decreases the predicted pH value.
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Figure 5.6: SHAP global explanation of the XGBoost model for water pH prediction
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5.7.4 Water TDS

The EC feature exhibits the highest mean absolute SHAP value of +0.18, making it the most
influential factor in the TDS model's prediction, as shown in Figure 5.7. This indicates that as
EC increases, the model predicts a higher TDS value. The second most influential feature is
pH, with a mean absolute SHAP value of +0.01, which also contributes positively to the
prediction. However, the feature temperature, with a mean absolute SHAP value of +0, does

not significantly contribute to the TDS prediction.

+0.18

0000 0025 0050 0075 0100 0125 0150 0175
mean(|SHAP value|)

Figure 5.7: Mean absolute SHAP values of linear regression for water TDS prediction

Based on the SHAP analysis for TDS prediction, EC appeared as a strong influencing feature
due to its high correlation with TDS. TDS reflects the amount of total nutrients, concentration
of dissolved ions, salt and organic matter present in the water, whereas EC measures the
ability of water to conduct electricity. Dissolved solids in water consist of ions, which are
responsible for its ability to conduct electricity. This creates a strong correlation between EC
and TDS, as an increase in the concentration of dissolved ions leads to higher EC values.
Therefore, EC can be used as an indicator of TDS in water. However, the relationship between
these two parameters is not always linear, as their behaviour can be influenced by various
factors such as pH, water temperature, and the types of dissolved solids present in the water
(Dewangan & Shrivastava, 2024). Temperature can affect both EC and TDS. Higher
temperatures increase the electrical conductivity of water by enhancing ion mobility and also
raise the solubility of salts and certain minerals, resulting in higher TDS levels. Therefore, it is
important to measure water temperature along with EC and TDS (Dewangan et al., 2023).
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According to Figure 5.8, high EC values increase the predicted TDS value, while low EC values
decrease it. Similarly, low pH values slightly increase the prediction, whereas high pH values
slightly decrease it. In addition, high-temperature values slightly increase the prediction, while

low-temperature values slightly decrease it.
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Figure 5.8: SHAP global explanation of the linear regression model for water TDS prediction

5.8 Chapter summary

In this chapter, the hardware and software specifications used to perform the machine learning
experiment are described in detail. The experiment involved applying various models to make
predictions, followed by an evaluation of their performance using regression metrics. Finally,
the chapter explored feature importance, using SHAP (SHapley Additive Explanations) to

understand the contribution of each feature to the model's predictions.
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CHAPTER SIX
DECISION SUPPORT SYSTEM DEVELOPMENT AND EVALUATION

This chapter outlines the development and evaluation of the decision support system for
aquaponics plant growth and water quality predictions. The system was developed using the
Flask framework and deployed on PythonAnywhere. The System Usability Scale (SUS) was
used to evaluate the usability of the developed system. The SUS is a reliable, free-of-cost
instrument used for worldwide assessments of system usability applications (Brooke, 1996;
Kortum & Bangor, 2013).

6.1 Requirements of the decision support system for aquaponics prediction

Aquaponics is a complex system that combines various disciplines. Various aquaponic and
environmental parameters are thus crucial to the monitoring and control. However, deciding
which parameters to be monitored and controlled can be tricky and challenging, as
requirements vary. Additionally, changes in one parameter can influence others within the

system.

The requirements of the aquaponics decision support system were identified based on
research gaps in the literature and the key features of a DSS (Ghandar et al., 2021; Pechlivani
et al., 2025). These include support for semi-structured or unstructured decision-making,
provision of accurate predictions and actionable insights, and an interactive user interface
(Darbi & Saleh, 2022; Pechlivani et al., 2025). Previous studies have primarily concentrated
on developing predictive models and have not addressed the model explainability or the
translation of model outputs to support decision-making (Ghandar et al., 2021; Amano et al.,
2022; Debroy & Seban, 2022; Owusu et al., 2024; Liu et al., 2024; Khandakar et al., 2024; Liu
& Jiang, 2024). To address these overlooked areas, the researcher defined requirements that
would enable the DSS to predict key aquaponics parameters, such as plant growth, water
quality, and to also rank the influencing factors in priority order. These functionalities will
provide stakeholders with a clear direction on which parameters should be considered for
aquaponics monitoring and control. This will improve both system performance and decision-

making effectiveness.
The requirements of the proposed decision support system are the following:

i. It must be able to assist stakeholders in recognising the key parameters that require
monitoring and controlling.

ii.  The system must predict plant height, plant diameter, water pH, and water TDS based
on user inputs.

iii.  The system ranks the influencing parameters from highest to lowest.
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iv.  This system’s ranking must provide guidance on which parameters need to be
prioritised for monitoring and control to ensure optimal system performance.

v.  The stakeholders must be able to provide feedback on the usability of the system.

vi.  The system must be accessible from mobile devices and computers on any browser

over the internet.

6.2 System design of the decision support system

This study aimed to develop a decision support system that assists stakeholders in the
decision-making process. To achieve this, a data-driven decision support system was designed
based on machine learning (ML). The purpose of the ML prediction was to identify the best
algorithm for predicting plant diameter, plant height, water pH and water TDS (see Section
5.6). Thereafter, the best-performing algorithms were used to design a DSS using the Flask
framework. The design allowed the stakeholders to provide input and receive predictions,
accompanied by relevant explanations as a response from the DSS system. The system used
ML-specific models to predict plant growth or water quality parameters. In addition, it presented
the most influential parameters that contributed to the prediction, ranked from highest to
lowest. Later, the system enabled users to evaluate its usability from their own perspective.
The insights enabled stakeholders to monitor system performance more effectively and take
corrective action on parameters according to their prioritisation, if necessary. The system has
front-end and back-end components. The front-end handles the user interface, while the back-
end is responsible for the business logic. The web-based architecture of the data-driven DSS

system is shown in Figure 6.1.

Request Reduest Request

.

-
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(3G Load ML model
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Interface semer models

Figure 6.1: The web-based architecture of the data-driven DSS
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Through the user interface (Ul), users can access the system and send requests. These
requests may involve loading web pages or making predictions. The request passes through
the web server and the Web Server Gateway Interface (WSGI) to the Flask framework
application. Based on the request, the system processes the data and sends a response back
to the user.

The proposed DSS had a user interface that enabled users to interact effectively with the
system. A user could navigate through the system, select the type of prediction to be
performed, and then provide the required input data. After, the system will process the
information provided and generate a prediction for the user. The process workflow of the

decision support system is shown in Figure 6.2.
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Figure 6.2: Process flow of the decision support system
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The system loads at the home page, where a user is presented with a brief overview of the
project’s purpose. From there, a user can navigate through the system using the main menu
options such as Aquaponics, Prediction, and Feedback. When a user selects the Aquaponics
option, the user is provided with a brief introduction about aquaponics. Choosing the Prediction
option allows a user to select one of the prediction options that are available, such as plant
height, plant diameter, water pH, or water TDS. After making a choice by clicking a radio button,
the user is prompted to input the relevant data into text fields and then required to click the
Submit button to generate a prediction. The system first validates the input format. If the data
entered is incorrect or incomplete, the user is prompted to re-enter the information. Once valid
inputs are provided, the system processes the data in the backend and generates the
prediction results along with a ranked list of the most influential parameters from the highest
to lowest. If the user wishes to evaluate the usability of the system, it can be done by selecting
the Feedback option, which allows the user to rate the usability of DSS based on the user’s

experience of the system.

6.3 Decision support system development

This section explains Python web application development using the Flask framework. It also
expands on the web page layout and the deployment of the developed application on

PythonAnywhere.

6.3.1 Flask framework

Flask is a lightweight micro framework for Python web development created by Armin
Ronacher (Copperwaite & Leifer, 2015:1; Grinberg, 2018:3; Mufid et al., 2019). Flask has
three main dependencies: routing, debugging and Web Server Gateway Interface (WSGI)
subsystems, which come from Wekzeug; the template engine from the Jinja2 package; and
command line integration from the Click package (Grinberg, 2018:3; Mufid et al., 2019). It
provides developers with the libraries for handling web development tasks and allows them to

integrate the extension based on the project requirements.

The development process utilised Flask version 3.0.3, Pandas version 2.2.3, Python version
3.9.13, and Bootstrap version 5.1.3. Cascading Style Sheets (CSS) were used to style HTML
pages. The developed prototype is named AquaGrowfForecast. The website’s main menu

(Navigation bar) and its objectives are summarised in Table 6.1.
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Table 6.1: Website's main menu

Website Menu Objective

Home Page Explanation about the project.

Aquaponics Introduction to aquaponics.

Prediction Allows users to select options and make predictions, navigating to respective
pages based on their choices.

Feedback Enables users to provide feedback by completing a survey.

6.3.2 Layout of webpages

Webpage layout design is shown in figures 6.3 — 6.9.

a. A brief introduction about the project is given on the homepage. The layout is shown
in Figure 6.3.

AquaGrowForecast

About the project

 AquaGrowForecast, a small-scale project contributing to the aquaponics community. It offers an online platform for predicting plant

growth and water quality. This initiative aims to serve individuals within the aquaponics community seeking insights into these critical
aspects of their systems. Plant growth is determined by parameters such as plant height or diameter, while water quality is assessed
through measurements of water TDS or pH levels.

Figure 6.3: The home page layout

b. The aquaponics webpage provides a brief description of aquaponics to the user. The

web page layout is shown in Figure 6.4.

AquaGrowForecast

|

The word “"Aquaponics” is a combination of “Aqua” and “Ponics”. “Aqua” refers to water or aquaculture which is the raising of fish.
"Ponics” stems from Hydroponics and refers to growing plants in water without soil. Aquaponics is a combined system of a
Recirculating Aquaculture System (RAS) and a horticulture system. In the aquaponics system, fish and plants can be cultivated
simultaneously. Fish consumes the fish feed and excretes the waste in the form of ammonia through their gills.

The nitrogen cycle plays a major role in the aquaponics system because it converts fish waste into nutrients that are beneficial for
plants resulting in better production. Thus nitrogen is the main source of nutrients for fish, plants and micro-organisms. In this
integrated system, water is reused multiple times. This frequent water reuse causes the generation and collection of nutrients and
organic matter which will be useful for plants. This nutrient and organic matter contribute to the efficient and optimal growth of plant
crops. The Nitrosomonas and Nitrospira bacteria convert ammonia to nitrite and then to nitrate respectively.

Figure 6.4: Aquaponics web page layout
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c. Inthe prediction page, the user can select an option to proceed with the desired

prediction. The page layout is shown in Figure 6.5.

AquaGrowForecast

@ Here, you can select an option to make predictions about plants and water. Once you've
made your selection, click "Submit" to proceed to the prediction page. Let's start
selecting!

@ Plant diameter prediction
2 Plant height prediction

O Water pH prediction

© Water TDS prediction

Submit

Figure 6.5: The prediction page layout

d. When a user selects the "Plant diameter prediction" option, the system navigates the
user to the appropriate page where the user can input the required details for the

output. The diameter prediction page layout is shown in Figure 6.6.

Welcome to diameter prediction

4 Please input the relevant values and click the 'Submit' button to proceed with the plant diameter prediction

Number of leaves/ Leaves Plant height (cm)/ Height

Ambient temperature (C)/ Temp Ambient Humidity (%)/ Humidity

Predicted Diameter In em:

Figure 6.6: The diameter prediction page layout
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e. When a user selects the "Plant height prediction" option, the system navigates the user
to the height prediction page, where the user can input the required details for the

output. The height prediction page layout is shown in Figure 6.7.

Welcome to height prediction

§ Please input the relevant values and click the ‘Submit’ button to proceed with the plant height prediction.

Number of leaves/ Leaves Plant diameter (cm)/ Diameter

Ambient temperature ('C)/ Temp. Ambient Humidity (%)/ Humidity

Predicted Height in cm:

Figure 6.7: The height prediction page layout

f.  When a user selects the "Water pH" option, the system will navigate to the pH prediction
page, where the user can input the required details to generate the output. The water

pH prediction page layout is shown in Figure 6.8.

W Please input the relevant vakues and click the 'Submit' button to proceed with the water pH prediction

Total Dissolved Solids (TDS) (ppm) Electric Conductivity (€C) (us/em)

Water temperature (‘C)/ Temp.

Figure 6.8: The water pH prediction page layout
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g. When a user selects the "Water TDS prediction” option, the system navigates the user
to the TDS prediction page, where the user can input the required details for the output.

The TDS prediction page layout is shown in Figure 6.9.

Welcome to TDS prediction

4 Please input the relevant values and click the ‘Submit’ button to proceed with the water TDS prediction.

P Eloctric Conductivity (EC) (uS/em)

Wister temperaturs ('C)/ Temp.

Predicted TDS in pmm:

Figure 6.9: The TDS prediction page layout

The participants were presented with the opportunity to use the system, after which they

provided feedback on its usability.

The feedback page consists of three sections:

1. Informed Consent — This section provides participants with the purpose of the
feedback process and seeks their voluntary agreement to participate. Figure 6.10

below provides a structure of informed consent.
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AgquaGrowForecast - Survey

Infermed consent

Thank you for considering participation in this study. This form is intended to ensure that you
fully understand the purpose of this study, how your information will be used, and your rights
as a participant.

+ Voluntary Participation: ¥our participation is completely voluntany. You may choose not
to participate or withdraw at any time without any consequences.

« Confidentiality: Your responses will remain confidential, and all information will be used
solely for research purposes.

« Purpose of the study: AquaGrowForecast, a small-scale project contributing to the
aquaponics community, offers an online platform for predicting plant growth and water
quality. Through this survey, the researcher seeks to gather feedback from users to
enhance the platform's effectiveness and usability.

« Duration and Procedura: Your participation in this study will involve completing a short
online survey, which should take approximately 10 minutes.

elraanila2004@gmail.com Switch ac count @
E3 Motshared

1. My participation in this survey is voluntary.

D Wes, | am participating voluntarily

Mext Clear form

Mewer submit passwords through Google Forms.

This content is neither created nor endorsed by Google. - Terms of Senvice - Privacy Folicy

Coes this form lock suspicicus? Report

Google Forms

Figure 6.10: Section 1- informed consent form

2. Aquaponics Background — This page was used to obtain information on the
background, role and aquaponics experience level of the participant. The options are
shown in Figure 6.11.
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AquaGrowForecast - Survey

elzaani la2004@gmail.com Switch account [
E& Mot shared

Background information

This section focuses on your background in aquaponics.

1. What is your role(s) in the field of aquaponics?
Flease select the options that best describes your involvement:

Farmer
Investor
Entrepreneur
Researcher
Student

Hobbyist

Doooogoo

COther:

2. How many years of experience do you have in the field of aguaponics?
Flease select the option that best applies to you:

() Lessthan 1 year

(:) 1-3 years
() 46years
(:) J-10 years

() Merethan 10 years

3. Pleasa specify country of your residence

Chooee -

Back MNext Clear form

Figure 6.11: Section 2 - Aquaponics background form

118



6.3.3 Deploying Flask Apps: PythonAnywhere

PythonAnywhere is a cloud-based online Integrated Development Environment (IDE)
(https://www.pythonanywhere.com/) based on the Python programming language (Visvizi et
al., 2020; Suryawanshi, 2021; Sarala et al., 2021). PythonAnywhere was founded by Giles

Thomas and Robert Smithson in 2012 (Suryawanshi, 2021). It provides web hosting services,

which fall under the platform as a service (PaaS) model (Suryawanshi, 2021). PaaS is a service
that enables web developers to host their websites on a platform that is managed and
controlled by a third party (Stouffer, 2015:248). In the PythonAnywhere environment, users
can deploy the Flask framework or Django framework applications, and it also allows users to
write, edit and run the code directly (Visvizi et al., 2020; Suryawanshi, 2021). The developed
Flask application is deployed using PythonAnywhere.

The PythonAnywhere link for predicting plant height, plant diameter, water pH and water

TDS is available on annijiby.pythonanywhere.com. The link to the feedback survey is:

AquaGrowForecast - Survey. Figures 6.12 and 6.13 shows typical instances (screenshots) of

the system under use.

: Welcome to diameter prediction

N Please input the relevant values and click the 'Submit' button to proceed with the plant diameter prediction.

Number of leaves/ Leaves Plant height (cm)/ Helght

Ambient temperature ('C)/ Temp Ambient Humidity (%)/ Humidity

1581 54

Predicted Diameterin cm: 1241

Figure 6.12: Screenshot of plant diameter prediction
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https://docs.google.com/forms/d/e/1FAIpQLSf0xjJ3pZ2b509GDvp5LiJ4iGKFKIVorS3NPaYtJXQkgF1fNQ/viewform

AquaGrowForecast

Welcome to pH prediction

Please input the relevant values and click the 'Submit' button to proceed with the water pH prediction.

Total Dissolved Solids (TDS) (ppm) Electric Conductivity (EC) (uS/em)

300

-

Predicted pH: 68

Figure 6.13: Screenshot of pH prediction

6.4 Usability evaluation using SUS

This section describes the procedure that was used to assess the usability of the developed
DSS by using the System Usability Scale (SUS) questionnaire. The SUS is a survey instrument
to measure the usability of the variability of products and services, including websites, which
was developed by Brooke in 1986 (Kortum & Bangor, 2013; Setemen et al., 2019). The SUS
is a five-point Likert scale consisting of 10 questions or survey items that users of the website
will respond to (Setemen et al., 2019; Kortum & Bangor, 2013). The usability measurement
assesses how well users can interact with the developed system. According to ISO 9241-11,

usability measures should cover effectiveness, efficiency and satisfaction (Brooke, 1996).

i.  Effectiveness measures the ability of users to complete tasks using the system and the
quality of the output of the performed tasks (Brooke, 1996; Kortum & Bangor, 2013).
ii.  Efficiency measures the resources consumed by the user to perform the tasks (Brooke,
1996; Kortum & Bangor, 2013).
iii.  Satisfaction measures a user’s assessment based on how well the developed system
met his or her needs (Brooke, 1996; Kortum & Bangor, 2013).

It has been a trusted and reliable tool for assessing system usability, due to the speed and
cost-effectiveness of implementation. A SUS template already exists, which is a tried and
tested template. A basic tweaking of the SUS template would ensure that it is effective in the

context of a particular study.
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The participants rated each question on a scale from 1 to 5, with 1 indicating strong

disagreement and 5 indicating strong agreement with the statement (Brooke, 1996).

The basic approach adopted is to let the users experience and work on the website. Later,

they were requested to complete the survey.

The updated SUS questions/ items are presented below in Table 6.2.

Table 6.2: Updated SUS questions/items

No. | SUS items Strongly Strongly
disagree agree
1. | think that | would like to use
AquaGrowForecast system frequently. | | | | | |
1 2 3 4 5
2. | found AquaGrowfForecast system
unnecessarily complex. | | | | | |
1 2 3 4 5
3. | thought AquaGrowfForecast system was
easy to use. | | | | | |
1 2 3 4 5
4, | think that | would need the support of a
technical person to be able to use | | | | | |
AquaGrowForecast system. 1 2 3 4 5
5. | found the various functions in
AquaGrowForecast system were well | | | | | |
integrated. 1 2 3 4 5
6. | thought there was too much inconsistency
in AquaGrowForecast system. | | | | | |
1 2 3 4 5
7. | would imagine that most people would
learn to use AquaGrowForecast system | | | | | |
very quickly. 1 2 3 4 5
8. | found AquaGrowForecast system very
cumbersome to use. | | | | | |
1 2 3 4 5
9. | felt very confident
using AquaGrowForecast system. | | | | | |
1 2 3 4 5
10. | I needed to learn a lot of things before |
could get going | | | | | |
with AquaGrowfForecast system. 1 2 3 4 5
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6.5 Criteria for selecting participants to evaluate the developed system

Aquaponics practitioners, including researchers and members of the aquaponics community,
were selected to evaluate the developed system through a survey that involved answering
SUS (System Usability Scale) questions/ items. Requests were sent via email, WhatsApp, and
Facebook. In total, 127 requests were sent. Table 6.3 shows the number of requests sent

through each platform.

Table 6.3: Request-sent platforms and population

Request-sent platforms Population
Email 90
Facebook 22
WhatsApp 15

Total 127

A total of 16 responses were received. However, one participant did not score an item, and
another did not specify their role in the aquaponics field. Hence, these two responses were
eliminated and the remaining 14 respondents who answered all three sections were used for

the evaluation.

6.6 Evaluation results
This segment provides a summary of the surveyed information based on the 3 sections

addressed in the feedback page.

Section 1:

All 14 respondents had voluntarily participated in the feedback survey.
Section 2:

This section provides a background summary of the participants in the aquaponics field.
Table 6.4 depicts the participants’ aquaponics background summary based on their roles,

years of experience, and country of residence.
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Table 6.4: Aquaponics background summary

Questions Aquaponics background with the number of participants in
parentheses)

What is your role(s) in the field | Researcher (7), Hobbyist (4), Student (2) and Farmer &

of aquaponics? researcher (1)

How many years of experience | 1-3 years (7), Less than 1 year (5), 7-10 years (1) and 4-6 (1)
do you have in the field of

aquaponics?

Country of residence South Africa (5), India (4), United Kingdom (1), Germany (1),
Zimbabwe (1), Australia (1) and Philippines (1)

Section 3:

This part summarises each item based on the scale provided by the participants. The
participants answered the SUS items using a scale ranging from 1 (Strongly Disagree) to 5
(Strongly Agree), exhibiting their level of agreement or disagreement with each statement. This
scale helps to assess the usability of the developed system based on participants’ views. The
odd-numbered items have positive meanings, while the even-numbered items have negative

meanings.

Item 1: | think that | would like to use the AquaGrowForecast system frequently.

This is to establish the practical assistance that this developed system would render to the

participant.

Summary: The majority, 12 out of 14 (scale 4 and 5), participants provided positive ratings,
where they would use the developed system frequently. Question 1 summary is depicted in
Figure 6.14.

Number of responses

Item 1
12

10

m Total

Scale items -

Figure 6.14: SUS item 1 responses
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Item 2: | found the AquaGrowForecast system unnecessarily complex.

This question is to determine if the AquaGrowfForecast system is unnecessarily complicated

to use.

Summary: The majority of participants, 11 out of 14 (scale 1 and 2), confirmed that they don’t

find the system unnecessarily complex. Item 2 summary is depicted in Figure 6.15.

Number of responses

Item 2

-
6
5
4
3 u Total
2
| a
. []
1 2 4

3

Scale items -

Figure 6.15: SUS item 2 responses

Item 3: | thought the AquaGrowForecast system was easy to use.

This question is to ensure consistency with the above question and validate if the system

was easy to use.

Summary: A total of 11 out of 14 participants (scale 4 and 5) reported back that the system

was easy to use. Iltem 3 summary is depicted in Figure 6.16.
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Number of responses

Item 3

m Total

O =2 N W b O3 N @

4 5 3

Scale items -

Figure 6.16: SUS item 3 responses

Item 4: | think that | would need the support of a technical person to be able to use the

AquaGrowForecast system.

This tries to ascertain if the system is straightforward and does not require any technical

knowledge, etc., to use the system.
Summary: With 8 out of 14 (scale 1 and 2), there is a balanced overview of the participants

expressing the need for a technical person to assist with the developed system. Item 4

summary is depicted in Figure 6.17.

Number of responses

Item 4

7
6
5
4
3 m Total
2
| B
0

2 4 3 1
Scale items -

Figure 6.17: SUS item 4 responses

Item 5: | found the various functions in the AquaGrowForecast system were well

integrated. This ensures that the participant finds the system seamless and continuous.
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Summary: 11 out of 14 feedback points (scale 4 and 5) expressed confidence that the

system is well integrated. Iltem 5 summary is depicted in Figure 6.18.

Number of responses

Item 5
8
7
6
5
4 m Total
3
2
1 .
. N
5 4 3 2
Scale items -

Figure 6.18: SUS item 5 responses

Item 6: | thought there was too much inconsistency in the AquaGrowForecast system.

This is a follow-up question to the previous question to ensure validation of the above answers

and establish more certainty in the feedback.

Summary: 10 out of 14 responses (scale 1 and 2) show that the participants did not feel there

was an inconsistency in the system. The ltem 6 summary is depicted in Figure 6.19.

Number of responses

Item 6

m Total

1 -
0
1 2 3 4

Scale items -

Figure 6.19: SUS item 6 responses
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Item 7: | would imagine that most people would learn to use the AquaGrowForecast

system very quickly.

This is to establish if the participant sees it as a potentially easy system to use for the

general public and other users.

Summary: 11 out of 14 responses (scale 4 and 5) showed confidence in people being able

to learn to use the system easily. Iltem 7 summary is depicted in Figure 6.20.

Number of responses

Item 7

m Total

o = N W kA O N Q@

4 5 3

Score items -

Figure 6.20: SUS item 7 responses

Item 8: | found the AquaGrowForecast system very cumbersome to use.

This is to validate the above questions as well as get feedback on whether the system had any

unnecessary complications. A need to streamline the system more, if required, is established.

Summary: 10 out of 14 responses (scale 1 and 2) showed that they don’t believe the system

to be cumbersome to use. The item 8 summary is depicted in Figure 6.21.
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Number of responses

Item 8
7
6
5
4
3 m Total
2
1
. ]
2 1 3 4
Score items -

Figure 6.21: SUS item 8 responses

Item 9: | felt very confident using the AquaGrowForecast system. This is to get an idea of
whether the participant was comfortable and reassured of the system’s operation and their use
of it.

Summary: With 12 out of 14 responses (scale 4 and 5), it is clear that the majority of the
respondents are confident in using the AquaGrowForecast system. The item 9 summary is

depicted in Figure 6.22.

Number of responses

ltem 9

8
7
6
5
4 m Total
3
2
| =
0

4 5 3
Score items -

Figure 6.22: SUS item 9 responses

Item 10: | needed to learn a lot of things before | could get going with the

AquaGrowForecast system.
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This is to establish if the participant needed a lot of preparation or background knowledge

before using the developed system.

Summary: 5 out of 14 participants (scale 4 and 5) need to learn a lot of things before using
the developed AquaGrowForecast system. However, half (7) of the participants (item points 1
and 2) suggested they don’t need to learn a lot of things to get going with the

AquaGrowForecast system. ltem 10 summary is depicted in Figure 6.23.

Number of responses

Item 10

4
I I I m Total
4 2 1 3 5

Score items -

w

[a%]

-

Figure 6.23: SUS item 10 responses

The received individual scores are meaningless in isolation. Hence, an SUS Score needs to
be calculated to measure the overall usability of the system. The individual scores are shown
in Table 6.5.

Table 6.5: Individual scores

Participants | |1 2 |13 |14 5 |16 (17 |18 19 110
1. 4 3 3 4 3 3 5 2 4 4
2. 4 4 |4 3 4 2 3 2 3 4
3. 2 2 3 3 5 |2 4 3 4 3
4. 4 4 |4 4 4 |4 5 |4 4 5
5. 4 1 5 4 5 |2 4 2 4 4
6. 1 1 3 1 2 3 4 3 4 1
7. 4 2 |4 2 4 2 4 2 3 2
8. 4 2 |4 2 3 1 4 1 4 3
9. 4 1 4 2 5 1 3 1 5 1
10. 4 2 |4 2 5 |2 4 2 5 4
11. 5 1 5 1 5 1 5 1 5 1
12. 4 2 5 2 4 1 4 |2 4 2
13. 4 1 4 2 5 3 4 3 5 2
14. 5 1 5 3 5 1 3 1 5 2
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6.6.1 Calculating average system usability scores
The following method was applied to calculate the SUS score. The item score contributions

from each question. Each item's/question's score contribution range is from 0 to 4. For odd-
number items 1, 3, 5, 7, and 9, the score contribution is the scale position minus 1 (x-1). For
even-number items 2, 4, 6, 8, and 10, the contribution is subtracting the scale position from 5
(5-x). To obtain the System Usability score, multiply the sum of the item scores by 2.5. This

ranges from 0 (extremely poor usability) to 100 (excellent usability) (Brooke, 1996).

Total score = Sum of ((Score of each odd-numbered item — 1) + (5 — Score of each even-

numbered item))
The calculated System Usability score is shown in Table 6.6.

Table 6.6: System Usability score

Participants | I1 2 |13 |14 5 |16 [I7 |18 19 110 Total | *2.5
score | (System
Usability
score )
1. 4 3 3 4 3 3 5 |2 4 4 23 57.5
2. 4 4 |4 3 4 |2 3 |2 3 4 23 57.5
3. 2 2 3 3 5 |2 4 |3 4 3 25 62.5
4. 4 4 |4 4 4 |4 5 |4 4 5 20 50
5. 4 1 5 4 5 |2 4 |2 4 4 29 72.5
6. 1 1 3 1 2 3 4 |3 4 1 25 62.5
7. 4 2 |4 2 4 |2 4 |2 3 2 29 72.5
8. 4 2 |4 2 3 1 4 1 4 3 30 75
9. 4 1 4 2 5 1 3 1 5 1 35 87.5
10. 4 2 |4 2 5 |2 4 |2 5 4 30 75
11. 5 1 5 1 5 1 5 1 5 1 40 100
12. 4 2 5 2 4 1 4 |2 4 2 32 80
13. 4 1 4 2 5 |3 4 |3 5 2 31 77.5
14. 5 1 5 3 5 1 3 1 5 2 35 87.5

The system Usability score, along with each participant's background, is shown in Table 6.7.
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Table 6.7: Individual’s System Usability score

Participants | Role Years of Country SU score
experience
1. Hobbyist Less than 1 year South Africa 57.5
2. Farmer; Researcher 1-3 years South Africa 57.5
3. Researcher Less than 1 year India 62.5
4, Researcher Less than 1 year Philippines 50
5. Researcher 1-3 years South Africa 72.5
6. Researcher 7-10 years Australia 62.5
7. Researcher 1-3 years South Africa 72.5
8. Hobbyist Less than 1 year South Africa 75
9. Researcher 1-3 years India 87.5
10. Student 1-3 years India 75
11. Hobbyist 4-6 years United Kingdom | 100
12. Student 1-3 years Germany 80
13. Hobbyist 1-3 years India 77.5
14, Researcher Less than 1 year Zimbabwe 87.5

In this survey, individual participants' SUS scores ranged from 50 to 100, where 50 represented

marginally acceptable usability and 100 indicated excellent usability. The highest score of 100

was achieved by a hobbyist with 4—-6 years of experience, while the lowest score of 50 was

reported by a researcher with less than 1 year of experience. When analysing the data based

on each role:

Researchers: The usability scores varied widely, ranging from 50 to 87.5. This
group demonstrated the broadest experience levels, spanning from less than 1 year
to over 10 years in the aquaponics field. The variation in scores suggests that
researchers' perception of usability may be influenced by their extensive and
diverse expertise in the domain.

Hobbyists: This group exhibited scores ranging from 57.5 to 100, with experience
levels between less than 1 year and 6 years. The highest score of 100 was recorded
in this category, indicating that hobbyists with moderate experience may find the
system particularly intuitive and user-friendly.

Students: Scores for students were relatively consistent, falling between 75 and
80. All participants in this group had 1-3 years of experience, suggesting a more
uniform perception of system usability compared to the other groups.

Farmer and researcher: With 1-3 years of experience, a score of 57.5 was
recorded, classified as moderately acceptable. This suggests that the system's
usability meets a basic standard but may require enhancements to better align with

the needs and expectations of users in this category.

Finally, the converted mean score of the SUS is placed into the following categories:

acceptance level, grading scale, and adjective rating. Bangor et al. (2009) developed the

categories for the SUS scores. The Acceptability range is categorised into three sections: “Not
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Acceptable”, “Marginal’, and “Acceptable”. The letter grade scale is classified as ‘A’, ‘B’, ‘C’,
‘D’, and ‘F’. This is an alternate way to understand the absolute meaning of an SUS score.
The adjective ratings are split into seven: “Worst Imaginable”, “Poor”, “OK”, “Good”, “Excellent”
and “Best Imaginable”. These provide a subjective label for an individual study’s mean SUS
score (Bangor et al., 2009; Setemen et al., 2019). A System Usability Scale is shown in Figure
6.24.

NOT ACCEPTABLE MARGINAL ACCEPTABLE
ACCEPTABILITY oo T T
GRADE
SCALE [ F [ DT €T B [T A ]
ADJECTIVE WORST BEST
RATINGS IMAGINABLE ~ POOR OK GOOD  EXCELLENT  |\1aGINABLE

(P AR N N BUN{ DR £ ATENN NI O O R
O 10 20 30 40 50 60 70 80 90 100

Figure 6.24: System Usability Scale (Bangor et al., 2009)

The analysis emphasises system usability perceptions, influenced by the roles and experience
levels of participants within the aquaponics field. The mean SUS score of the developed
system after evaluation was 72.68, indicating that the system is acceptable in terms of the
system usability scale shown in Figure 6.22. As per the Grade Scale, it falls under a rating of
‘C’ category, and the adjective rating is “Good”. The implication is that the system has good

usability. This also gives the assurance that users find the system easy to use.

6.7 Chapter summary

This chapter explained how the decision support system was developed and evaluated. The
results section presents the participants' responses and feedback, along with an overview of
their basic background. The insights from the results highlight the usability of the developed

system as acceptable.
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CHAPTER SEVEN
CONCLUSION AND RECOMMENDATIONS

This chapter provides a summary of this study’s research objectives. It also discusses the
contributions of the study, the study’s limitations, and concludes with recommendations and

suggestions for future research.

7.1 Research summary

The study aimed to develop a decision support system capable of predicting plant growth,
specifically in terms of plant diameter and height for the hydroponics component, as well as
predicting the water quality for the aquaculture component of aquaponics. To achieve this, four
research objectives were formulated as stated in Section 1.4.2. The thesis chapters were

structured to address these research objectives.

Chapter One introduces the study’s motivation, background, aim, objectives, and research
questions, highlighting its significance and scope. This chapter is concluded with an overview

of the thesis structure.

Chapter Two provides a theoretical overview, covering key concepts such as hydroponics,
aquaculture, aquaponics, machine learning, decision-making, decision support systems, the
Internet of Things (loT), intelligent IoT, expert systems, and explainable Al. Additionally, the
chapter identifies the gaps in existing studies and highlights areas that require further research

exploration.

Chapter Three discusses the research philosophy, approach, methodological choices, and
strategy. Experimental research design was outlined, as illustrated in Figure 3.1. The chapter
also describes the data collection and analysis methods. Finally, the ethical considerations that

guided the study were explained.

Chapter Four explains how aquaponics was set up for plant, water, and environment data
collection and how data was collected using various methods, such as manual and loT
technologies. Thereafter, how the collected data was stored for experimentation is further

explained.

Chapter Five presents the machine learning experimentation for aquaponics and the
evaluation process. Experiments were performed using selected supervised machine learning
algorithms, and the models' performances were evaluated using regression metrics. Finally,
the most influential features for the aquaponics predictions were identified using SHAP —

SHapley Additive exPlanations.
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Chapter Six presents the development, deployment, and evaluation of the decision support
system for aquaponics prediction. The usability and effectiveness of the developed system

were assessed by using the System Usability Scale (SUS).

Chapter Seven provides a summary of the research objectives, contributions, and

recommendations for future research.

The following explains how the related activities were carried out and how they contributed to

achieving the study's objectives.

Objective 1: To identify the key parameters used to measure plant growth and the

monitored water quality parameters in aquaponics systems.

A detailed review of the existing literature was conducted to identify the parameters commonly
considered for assessing plant growth and water quality in aquaponics systems. The review
found the parameters used to estimate plant growth to be ambient temperature, light intensity,
plant height, stem diameter, and leaf area. The determination of water quality in aquaculture
was not restricted to one parameter. The review showed that several parameters, such as pH,
temperature, total dissolved solids (TDS), electrical conductivity (EC), ammonia, and dissolved
oxygen, are used to assess the water quality. However, most studies emphasise pH and water
temperature due to the significant impact they have on the maintenance of water quality and

supporting fish growth in aquaponics systems.

Based on these findings, this study selected the following parameters, plant height, leaf count,
plant diameter, ambient temperature and ambient humidity to determine the plant growth. For

water quality analysis, pH, water temperature, TDS, and EC parameters were selected.

Objective 2: To develop a prediction model that can be used to determine the optimal level

of aquaponics systems by using machine learning (ML).

This study explored four possibilities to predict plant growth and water quality in a tunnel-based
media aquaponics system. By either estimating plant height or plant diameter, plant growth
was established whereas water quality was determined by estimating either pH or TDS. For
plant height estimation in plant growth, the following features, plant diameter, number of
leaves, ambient temperature, and ambient humidity were considered. Features such as plant
height, number of leaves, ambient temperature, and ambient humidity were considered for
plant diameter estimation. For water quality pH estimation, the considered parameters were
TDS, water temperature, and EC. Meanwhile, for water TDS estimation in water quality, the
following features, pH, water temperature, and EC, were considered. Thereafter, five
supervised machine learning algorithms, namely, Linear Regression (LR), Random Forest
(RF), Multilayer Perceptron (MLP), eXtreme Gradient Boosting (XGBoost), and k-Nearest
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Neighbor (KNN), were developed to realise aquaponics prediction covering the aspects of

plant growth and water quality.

Objective 3: To determine the performance of the different ML algorithms based on regression
metrics such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean
Absolute Error (MAE), R-squared and Adjusted R-Squared.

The developed ML models were evaluated and compared using various regression metrics:
Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE),
R-squared, and Adjusted R-squared. When evaluation was done, the conclusion derived was
that the Random Forest algorithm outperformed others in predicting plant height and plant
diameter. In the prediction of pH, eXtreme Gradient Boosting (XGBoost) performed the best.
Linear Regression was found to be the most effective for predicting TDS. These results were
based on the criteria to minimise errors and produce the most precise predictions for each

parameter.

Objective 4. To design and develop an ML-based decision support system for aquaponics to

support decision-making.

Post evaluation, the models with the best performance were selected to design and develop
the decision support system (DSS) for aquaponics prediction using the Flask framework. After
the user selects the various prediction options, the developed DSS could predict plant growth
or water quality. The system then provided insights to users by ranking parameters based on
their influence in the selected prediction, from high to low, using SHapley Additive exPlanations
(SHAP) values.

Objective 5. To assess the usability of a decision support system for aquaponics prediction

from the perspective of aquaponics stakeholders.

To evaluate the effectiveness of the developed DSS, a usability feedback survey was
conducted by using the System Usability Scale (SUS). After the evaluation, the developed DSS
obtained an overall score of 72.68%. This indicated the favourable acceptance of the system
and highlighted the system’s usability and potential value for aquaponics stakeholders and

practitioners.

7.2 Contributions of the study
This study has made theoretical, methodological and practical contributions, which are
discussed below.

7.2.1 Theoretical contribution

This study offers a theoretical contribution by providing a better understanding of how machine

learning models can be applied to predict plant growth and water quality in the context of an
135



aquaponics system. Another theoretical contribution is the implementation of explainable Al
(XAl) in aquaponics farming to identify the parameters which have the highest influence on
plant growth, and also to predict water quality based on data collected under South African
weather conditions. Furthermore, the study advances theoretical knowledge in decision
support systems by illustrating how machine learning predictions can enhance decision-
making processes and improve operational outcomes in aquaponics. The incorporation of the
System Usability Scale (SUS) evaluation method further contributes to the understanding of

users’ system acceptance.

7.2.2 Methodological contribution

This study investigated the application of intelligent Internet of Things, which includes the
integration of IoT, machine learning, and Al (decision support system) for aquaponics
prediction. Most aquaponics studies have applied machine learning for various aquaponics
predictions, or loT for data collection, or both. However, the integration of the Intelligent Internet
of Things that combines ML, |oT, and Al has not been extensively explored. Also, this study
addressed the problem of the lack of explainability of aquaponics solutions through the

application of explainable Al.

7.2.3 Practical contribution

The practical contribution of this study lies in developing a decision support system (DSS) for
aquaponics. The developed DSS will assist practitioners in making data-driven decisions,
improving efficiency, and ensuring sustainability in aquaponics operations. The system will
provide valuable insight based on the sizable data previously captured and processed by the
trained ML models. Inexperienced newcomers and aquaponics hobbyists can be guided on
the plant growth and water quality parameters expected at various intervals of the aquaponics
cycle. Users of relatively bigger aquaponics setups can be assisted in validating their collected
data against the values presented by this DSS for aquaponics prediction. The Aquaponics web
application is easy to use, as per the SUS Survey conducted, and thus, data is presented in a
readable and concise manner to the stakeholders. The most crucial parameters are provided
so that the user can be aware of the parameters that have the most impact on overall plant

growth and water quality.

7.3 Limitations of the study

The limitations that were observed during and after the study are outlined below:

i. Limited parameters: A limited number of parameters for prediction, which may not fully
capture the complexity of aquaponics systems. The investigation did not incorporate
elements such as extended ambient environmental conditions and more detailed water

and nitrogen quality cycle parameters. Incorporating an extensive set of parameters would
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Vi.

increase the scale of the study tremendously, thus, the most critical and impactful

parameters were selected and used.

Different aquaponics settings: The results could not be applied to different system
configurations because the aquaponics environment was set in a grow-bed system. Other
aquaponics setup options, such as floating raft systems, Nutrient Film Technique (NFT) or

Deep Water Culture (DWC), were not used in this study.

Study duration: Due to the short time frame during which the data was gathered, it might
not accurately represent seasonal or long-term trends. An extended period of observation
would provide more insights into the system's performance over time and enable a more

accurate depiction of seasonal changes.

Restricted number of loT devices: The study's reliance on a small number of 0T devices
might have limited the extent of system monitoring and data collection. Better system
performance monitoring and analysis may be possible with more complete data from a

larger range of loT devices.

Deployment: XGBoost was initially selected for water pH prediction because it had the
best performance. However, it could not be deployed on the PythonAnywhere platform due
to library incompatibility. Therefore, random forest, which had a comparatively good

performance and was compatible with the PythonAnywhere platform, was deployed.

Low farmer engagement: Furthermore, the study observed a lower number of farmers’
participation in the DSS evaluation, which might have restricted the amount of feedback
gathered. It needs to be considered that aquaponics is still growing, hence, there are not
many aquaponics farmers and practitioners in South Africa yet. Time constraints and

insufficient use of technology for existing farmers are possibly other reasons.

7.4 Recommendations

Given the severe poverty and unemployment situation in South Africa, farming solutions such

as aquaponics can be further investigated and possibly supported by the national or local

government.

Aquaponics has the advantage of using the least amount of land or area while providing

maximum fish and crop yield, which is highly beneficial twofold. Urban areas have limited

space/land availability, whereas rural areas struggle with very limited water resources. Both

these constraints are addressed by aquaponics through minimal land and water usage
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requirements. The government can look at training, providing funding and market accessibility
for these potential users/stakeholders. Workshops and training sessions can help upskill

inexperienced stakeholders.

Aquaponics setups can be scaled up by farmers as per the needs of their customers or the
clients they sell their crops to. Local shops and restaurants can be provided with cost-effective,
organic, fresh food produce from nearby areas instead of complicated logistics and expensive

transportation.

The adoption of the developed decision support system for aquaponics can guide the users
and the aquaponics workforce. The government can provide a platform for work seekers and
aspirants who would like to get into the aquaponics field. Many fields connected within
aquaponics have many opportunities for learning and specialising in its various fields and
gaining valuable experience in the process. The government can even look at setting up
potential organic food hubs and markets for communities and residents to benefit from such

food production methods.

The infrastructure, small enterprise development initiatives, and funding must have a proper
framework and must be implemented consistently. This will encourage interest from investor
communities. This, in turn, will also encourage and broaden the usage of cutting-edge
technologies such as artificial intelligence (Al), machine learning, and the Internet of Things
(IoT) in aquaponics. The most cost-effective and reliable systems will easily gain adoption,

leading to optimal aquaponics farming production.

7.5 Future work

Further research opportunities in aquaponics are outlined below:

i. Expanding plant selection, fish selection and system architecture in aquaponics:
This study used leafy lettuce in hydroponics and Mozambique Tilapia in aquaculture. The
scope of the study can be expanded to a wider variety of plants and fish, including
various hydroponics system setups in aquaponics (Hao et al., 2020; Naputol et al., 2024;
Liu & Jiang, 2024; Channa et al., 2024). Larger modular or scalable aquaponics unit
setups can be investigated and further explored. The advantage of a scalable model is
that it can be initially offered in a cost-effective, small setup for local communities. The
local community can derive economic benefit with just a small investment, subscription
or rent-to-own model. Moreover, and importantly, since unemployment is a dire situation
in South Africa, local jobs in the community can be created after initial training is provided

on the aquaponics units' setup process and maintenance. When the demand for fresh,
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organic produce increases, the units can easily be scaled up to a larger unit that

produces more output.

Long-term, seasonal and climate-inclusive aquaponic research: Access to publicly
available aquaponics data remains limited and challenging (Channa et al., 2024). The
creation and use of an efficient dataset within the aquaponic environment is one of the
primary requirements for the aquaponic study (Taji et al., 2023). Studies thus far have
focused on a much shorter data collection timeline. More detailed and long-term data
collections, incorporating seasonal and various climatic conditions, can be done (Liu &
Jiang, 2024; Anila & Daramola, 2024).

Explainable Al methods in aquaponics: Despite the increasing use of loT and
machine learning technologies in aquaponics, research has not been able to incorporate
ML interpretability techniques adequately enough to explain how predictions are made.
ML interpretation will support the aquaponics community in advanced decision-making
( Ekanayake et al., 2022). An explainable Al (XAl) method, namely SHAP, was utilised in
this study to identify the most influential features. Expanding with more XAl methods
could provide a comprehensive comparison with other explainability techniques (Das &
Rad, 2020; Ekanayake et al., 2022; Anila & Daramola, 2024).

Prediction model: Five prediction models were used in the study, which allowed for the
investigation of the most successful of these prediction models. Finding additional
machine learning and deep learning algorithms, particularly for complex systems, could
be advantageous and yield better results (Liu & Jiang, 2024). Particular attention should
be given to predictive analytics using deep learning in aquaponics, along with
comparative evaluation against other machine learning models (Lauguico et al., 2020;
Taji et al., 2023; Liu & Jiang, 2024).

Smart aquaponics system for monitoring and control: In the field of aquaponics
research, the majority of lIoT technologies are focused on monitoring. However, control
mechanisms are becoming more essential to minimise human interaction and increase
management effectiveness in maximising yield (Anila & Daramola, 2024). This can lead

to an intelligent and self-regulating aquaponics system (Mahmoud et al., 2023).
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Vi.

Vii.

viii.

Blockchain in aquaponics: Blockchain technology makes aquaponics supply networks
more transparent and traceable (Manju et al., 2024). It can be used to track every step
of the aquaponics supply chain from seed to the actual final produce sold to the
consumer. This will allow for complete visibility of the entire process to the customer. A
comprehensive understanding of the aquaponics harvesting process among
stakeholders and customers will contribute significantly to the holistic development of

aguaponics systems.

Technology integration in aquaponics: Smart aquaponics represents a growing field
of investigation, where existing studies often integrate IoT, machine learning, or a
combination of both technologies. Smart technology integration, including expert
systems, blockchain, explainable Al (XAl), loT, and machine learning, needs to be
investigated (Anila & Daramola, 2024). Smart technology integration in aquaponics will
lead to benefits such as lower labour demands, improved product quality, and more
sustainability (Wang et al., 2020; Mahmoud et al., 2023).

Aquaponics predictions: Real-time monitoring of the aquaponics system is aided by
basic sensors, which are sourced cost-effectively. However, sensors for ammonia, nitrite,
and nitrate are costly and difficult to obtain. Machine learning can be used to bridge the
gap of having to purchase these expensive sensors by predicting the values needed
(Channa et al., 2024). A growing world population requires food security for survival.
Mounting concerns over food security have placed great emphasis on developing
methods to accurately forecast anticipated crop yields (Muruganantham et al., 2022).
This crop yield prediction requirement can be addressed by using relevant sensors and
machine learning technologies, which enable better alignment between supply quantities

and market demand.

Decision support system for smart aquaponics: Future studies could incorporate a
wider range of larger data sets thus enhancing the decision support system (DSS) by
predicting crop and fish yields more accurately. Real-time data monitoring and collection
from sensors or l0T devices could be integrated to continuously update predictions and
make automatic adjustments based on constantly changing conditions. This can support
an end-to-end smart aquaponics solution, which will provide the entire range of
prediction, monitoring, controlling and decision support in aquaponics (Ramirez, 2024;
Sridevi et al., 2024; Anila & Daramola, 2024). A future study could focus on building a
fully automated aquaponics system that adjusts itself without any outside intervention.
This system can regulate itself based on the external weather patterns predicted for that

geographical area. This can ensure optimal adaptation to the outside weather and
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climatic conditions that have an effect on the productivity of the aquaponics system. The
web or app interface can provide feedback, recommendations, and suggestions in
response to queries from aquaponics practitioners (Ubayasena et al., 2023; Senapaty et
al., 2024).

Enhancing aquaponics evaluation through stakeholder participation: Increasing
stakeholder participation in future evaluation studies will help improve the breadth and
relevance of the findings. As indicated by Anila and Daramola (2024), very few studies
have thoroughly examined the validation of the suggested aquaponics systems, which
does not permit effective evaluation of the proposed solution. A mobile application can
be developed, thus enabling broader accessibility and increased adoption among
stakeholders (Eneh et al., 2023).

Emerging evaluation methods and metrics in aquaponics for new technologies:
Comparison, observation, and expert feedback were used to evaluate the prototype,
whereas performance evaluation metrics were used to assess the machine learning
model (Anila & Daramola, 2024). As indicated by Anila and Daramola (2024), further
evaluation methods need to be explored as technologies such as IoT, machine learning,
explainable Al (XAl), and blockchain are increasingly integrated. The business and

organisational requirements and objectives also need to be considered.
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Appendix B: Individual consent for research participation
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Individual Consent for Research Participation

Title of the study: A Decision Support System for vield prediction and monitoring of
aguaponics based on the Intelligent Internet of Things

Name of researcher:  Anila Mundackal
Contact details: 0713794662 email: 220635323 (@noycput.ac.za phone:

Name of supervisor: Prof. Justine O Daramola
Contact details: email: DARAMOLATG cput.ac.za phone: 021 460 3134

Purpose of the Study: The research amms to develop a decision support system for aquaponics
vield prediction and monitoring to aid farmers in making decisions to achieve maximum
productivity.

Participation: My participation will consist essentially of feedback from aquaponics farmers.

Confidentiality: I have recetved assurance from the researcher that the information I will share
will remain strictly confidential unless noted below. I understand that the contents will be used
only for thesis, jownal articles and that my confidentiality will be protected by the participant's
anomymity will be always maintained throughout. All data received from participants will be
treated as confidential.

Anonymity will be protected n the following manner aveid disclosing information of
personal/identity details.

Conservation of data: The data collected will be kept in a secure mamner the data from the
srvey will strictly be kept on the Belgmum Campus server securely. Any other survey data will be
kept on the domain laptop device that is password protected. This data will be kept for 2-3 years.

Voluntary Participation: I am wnder no obligation to participate and if I choose to participate, I
can withdraw from the study at any time and/or refiise to answer any questions, without suffering
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Additional consent: [ make the following stipulations (please tick as appropriate):
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Appendix C: Experimental data

Table C.1: Plant diameter prediction using Gridsearch with 5-fold CV

ML models Mean Root Mean Mean Absolute | R- Adjusted- R-
Squared Squared Error Error (MAE) squared squared
Error (RMSE)
(MSE)

Linear Regression | 0.02 0.15 0.11 0.54 0.53

Random Forest 0.00 0.05 0.03 0.93 0.93

KNN 0.01 0.09 0.06 0.84 0.83

XGBoost 0.00 0.05 0.03 0.93 0.93

MLP 0.01 0.08 0.06 0.82 0.81

Table C.2: Plant diameter prediction using Randomsearch with 5-fold CV

ML models Mean Root Mean Mean R- Adjusted- R-
Squared | Squared Error Absolute squared squared
Error (RMSE) Error (MAE)
(MSE)

Linear Regression | 0.02 0.15 0.11 0.54 0.53

Random Forest 0.00 0.05 0.03 0.93 0.93

KNN 0.01 0.09 0.06 0.82 0.82

XGBoost 0.00 0.05 0.03 0.94 0.94

MLP 0.01 0.07 0.05 0.85 0.86

Table C.3: Plant diameter prediction using Randomsearch with 10-fold CV

ML models Mean Root Mean Mean Absolute | R-squared | Adjusted- R-
Squared | Squared Error Error (MAE) squared
Error (RMSE)
(MSE)

Linear 0.02 0.15 0.11 0.54 0.53

Regression

Random Forest 0.00 0.05 0.03 0.94 0.93

KNN 0.01 0.09 0.06 0.82 0.82

XGBoost 0.00 0.05 0.03 0.94 0.94

MLP 0.01 0.07 0.05 0.85 0.86
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Table C.4: Plant height prediction using Gridsearch with 10-fold CV

ML models Mean Root Mean Mean R- Adjusted-
Squared | Squared Absolute squared R-
Error Error Error (MAE) squared
(MSE) (RMSE)
Linear Regression 0.01 0.09 0.06 0.80 0.80
Random Forest 0.00 0.06 0.05 0.92 0.92
KNN 0.00 0.07 0.05 0.91 0.91
XGBoost 0.00 0.06 0.05 0.92 0.92
MLP 0.00 0.06 0.05 0.92 0.92
Table C.5: Plant height prediction using Randomsearch with 5-fold CV
ML models Mean Root Mean Mean R- Adjusted-
Squared Squared Absolute squared R-
Error (MSE) | Error Error (MAE) squared
(RMSE)
Linear Regression 0.01 0.09 0.06 0.80 0.80
Random Forest 0.00 0.06 0.05 0.92 0.92
KNN 0.00 0.07 0.05 0.91 0.91
XGBoost 0.00 0.06 0.05 0.92 0.92
MLP 0.00 0.06 0.05 0.92 0.91
Table C.6: Plant height prediction using Randomsearch with 10-fold CV
ML models Mean Root Mean Mean R-squared Adjusted-
Squared Squared Absolute R-
Error (MSE) Error Error squared
(RMSE) (MAE)
Linear Regression 0.01 0.09 0.06 0.80 0.80
Random Forest 0.00 0.06 0.05 0.92 0.92
KNN 0.00 0.07 0.05 0.91 0.91
XGBoost 0.00 0.06 0.05 0.92 0.92
MLP 0.00 0.06 0.05 0.92 0.91
Table C.7: Water pH prediction using Gridsearch with 5-fold CV
ML models Mean Squared | Root Mean | Mean R-squared Adjusted- R-
Error (MSE) Squared Absolute squared
Error Error (MAE)
(RMSE)
Linear Regression | 0.03 0.19 0.15 0.55 0.54
Random Forest 0.02 0.14 0.10 0.77 0.76
KNN 0.02 0.13 0.09 0.79 0.78
XGBoost 0.02 0.13 0.09 0.79 0.79
MLP 0.03 0.17 0.14 0.65 0.64
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Table C.8: Water pH prediction using Randomsearch with 5-fold CV

ML models Mean Root Mean | Mean R-squared | Adjusted- R-
Squared Squared Absolute squared
Error (MSE) | Error Error (MAE)
(RMSE)
Linear Regression 0.03 0.19 0.15 0.55 0.54
Random Forest 0.02 0.14 0.10 0.77 0.76
KNN 0.02 0.13 0.09 0.78 0.77
XGBoost 0.02 0.15 0.12 0.71 0.71
MLP 0.03 0.18 0.14 0.59 0.59
Table C:9 Water pH prediction using Randomsearch with 10-fold CV
ML models Mean Root Mean | Mean R-squared Adjusted- R-
Squared Squared Absolute squared
Error (MSE) | Error Error (MAE)
(RMSE)
Linear Regression 0.03 0.19 0.15 0.55 0.54
Random Forest 0.02 0.13 0.09 0.77 0.77
KNN 0.02 0.13 0.09 0.78 0.77
XGBoost 0.02 0.15 0.12 0.71 0.71
MLP 0.03 0.18 0.14 0.59 0.59
Table C.10: Water TDS prediction using Gridsearch with 5-fold CV
ML models Mean Root Mean Mean Absolute | R-squared | Adjusted- R-
Squared | Squared Error (MAE) squared
Error Error
(MSE) (RMSE)
Linear Regression 0.00 0.01 0.01 0.99 0.99
Random Forest 0.00 0.02 0.01 0.99 0.99
KNN 0.00 0.02 0.01 0.99 0.99
XGBoost 0.00 0.02 0.01 0.98 0.98
MLP 0.00 0.03 0.02 0.98 0.98
Table C.11: Water TDS prediction using Randomsearch with 5-fold CV
ML models Mean Root Mean Absolute | R-squared Adjusted-
Squared Mean Error (MAE) R-squared
Error (MSE) Squared
Error
(RMSE)
Linear Regression | 0.00 0.01 0.01 0.99 0.99
Random Forest 0.00 0.03 0.01 0.98 0.98
KNN 0.00 0.02 0.01 0.99 0.99
XGBoost 0.00 0.03 0.01 0.98 0.98
MLP 0.00 0.02 0.02 0.99 0.99
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Table C.12: Water TDS prediction using Randomsearch with 10-fold CV

ML models Mean Root Mean Absolute | R-squared Adjusted- R-
Squared Mean Error (MAE) squared
Error (MSE) | Squared
Error
(RMSE)
Linear Regression | 0.00 0.01 0.01 1.00 1.00
Random Forest 0.00 0.03 0.01 0.98 0.97
KNN 0.00 0.02 0.01 0.99 0.99
XGBoost 0.00 0.03 0.01 0.98 0.98
MLP 0.00 0.02 0.02 0.99 0.99
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