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ABSTRACT 
 

Electricity theft (ET) is a ubiquitous problem ravaging all electric utilities worldwide. Theft of 

electricity is caused by so many factors, but developing a formidable anti-theft solution is one 

of the major problems facing electric utilities globally. Like a virus, ET is slowly wreaking havoc 

on power utilities worldwide and its dreaded curves need to be flattened. Since ET cannot be 

totally eradicated in power grids, the motivation for this research is to profoundly detect and 

mitigate ET in electric networks. ET must be utterly detected and mitigated to uncover the 

power pilferers, promote healthier electricity grids, generate more income for the utilities, 

improve the reliability and sustainability of power systems, and consequently help in salvaging 

the economies of nations worldwide. Power losses occasioned by ET could be redressed by 

either generating more power to compensate for the theft-inflicted power shortfalls or by 

mitigating the theft, but mitigating the theft is more significant and more cost effective. Artificial 

intelligence-based (AI-based) machine learning (ML) methods are the state-of-the-art and 

superior approach for the detection of ET or non-technical losses (NTL) in power grids when 

compared with the conventional methods of electricity-theft detection (ETD).  

 

The experimental work in this thesis centres on the detection of ET using the real-world energy 

consumption dataset provided by the State Grid Corporation of China (SGCC), a state-owned 

SG electric system, and the largest electric utility company in the world. The case-study dataset 

which has thus been obtained from the smart meters of electricity consumers is formidable 

because it has been used extensively in the existing literature by many researchers to develop 

various ETD models. This gives room for comparison of results among several ETD models 

developed using same SGCC dataset. In the experiments, ETD is performed with the infusion 

of the features from convolutional neural network (CNN) model into random forest (RF) model 

to form a hybrid model termed CNN-RF. The hybridization of the models is done in a quest to 

achieve better NTL prediction results, as the combined strengths of CNN and RF achieves 

complete elimination of undesirable false positives in the composite model. RF is noted to be 

highly effective and efficient in resolving classification problems, hence it is a choice candidate 

for the hybrid solution. Meanwhile, before finally adopting the proposed CNN-RF model, the 

performances of CNN and RF models were individually checked. Simulations were performed 

using Python, in a Google Colaboratory (Colab) Integrated Development Environment (IDE).  

 

The performance metrics employed to evaluate the developed models are precision, recall, F1 

score, accuracy, Matthews correlation coefficient (MCC), area under the receiver operating 

characteristic curve (AUC), area under the precision-recall curve (PR-AUC), true negative rate 

(TNR), false positive rate (FPR), and false negative rate (FNR). The proposed model show 
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very interesting and reliable performance results, achieving 100.00% precision, 98.36% recall, 

99.17% F1 score, 99.20% accuracy, 98.40% MCC, 99.13% AUC, 99.55% PR-AUC, 100.00% 

TNR, 0.00% FPR, and 0.02% FNR. 

 

Overall, the proposed model outperformed other SGCC dataset-based ETD model results 

presented in previous research. The proposed model achieves unprecedented high hit ratio, 

making it more-effective and more-efficient in detecting NTL. Higher performance scores from 

ETD models are proportional to greater mitigation of NTL attainable by utility inspectors or 

technicians during onsite inspections. The feat achieved in this research by profoundly 

detecting ET in SG, with its anticipated increased onsite mitigation prospects, is a fulfilment of 

the aim and objectives of the research. Besides, the higher detection capability achieved by 

the proposed model has also simultaneously proffered answers to the research questions. The 

proposed model is therefore recommended as a suitable ETD solution for deployment by 

electric utilities of various economies of the world.  
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CHAPTER 1 
 

INTRODUCTION 
 

1.1    Background 
 

Electricity is an indispensable commodity (Hassan et al., 2022:2; Khalid et al., 2024:1), and 

the root of modernity (Breeze, 2014:1; French, 2017:123). It is an invisible commodity that 

is largely produced based on the precept of Faraday’s law of electromagnetic induction, and 

conveyed through wires (David, 2017:1-2; French, 2017:4). Electricity is the most significant 

blessing that science has bestowed on humanity (Aziz et al., 2020; Pamir, Javaid, Qasim, 

et al., 2022:56863). It is also the most versatile (Porcu et al., 2021:8), and the most useful 

and used source of energy in our everyday lives (Aslam, Javaid, et al., 2020:1). The unique 

commodity called electricity is fundamental to modern inventions and civilizations (Edris & 

D’Andrade, 2017:37). 

 

Electricity need is universal, and its usage traverses almost all occupations and endeavours 

(Hassan et al., 2022:2). Human daily activities in the modern world strongly depend on the 

availability of electrical energy (Stracqualursi et al., 2023:1; Iftikhar et al., 2024:01). The 

modern-day technology and innovations like electric vehicles (EVs), electric trains, 

computers, Internet, broadcast media, telecommunications, medical equipment, etc., would 

not have been possible without electricity (Breeze, 2014:1, 3). Electricity plays an invaluable 

role for a sound, successful, and sustainable economy (Nayak & Jaidhar, 2023:1). Apart 

from the economy, national security and the health and safety of citizens are also dependent 

on reliable electricity (USDOE, 2008; Casey et al., 2020). No country in the world could 

develop without a reliable electricity (Aliyu et al., 2013:354). 

 

However, like any other essential and valuable commodity, electricity is being stolen and its 

continuous availability threatened (Stracqualursi et al., 2023:1; Wabukala et al., 2023:3). 

One of the causes of electricity crisis is electricity losses, which especially occurs when the 

energy generated falls short of the energy consumed (Fragkioudaki et al., 2016:44; Iftikhar 

et al., 2024:01). Electricity theft (ET) is the principal contributor to electricity losses that 

threaten the steady availability of electricity supply (Saeed et al., 2020:1; Barros et al., 

2021:1). ET is the illicit act of using electricity with the primary intent of avoiding utility 

charges (Yurtseven, 2015:70). 

 

ET pervades all electric systems and no power system could be 100% protected from it 
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(Smith, 2004:2067). Consequently, it causes dire financial and technical consequences 

(Messinis & Hatziargyriou, 2018:251). ET is a wearisome social iniquity (Afridi et al., 

2021:1829) which has been officially declared a felony in Liberia (Dodoo, 2022), and has 

also been decreed a sin in Pakistan (Reuters, 2009; Depuru et al., 2011a:1012). Electricity 

is one of the most-plundered commodities globally (Appiah et al., 2023:1), such that, it is 

ranked the third most-stolen commodity in the world after credit-card details and cars 

(Ahmed et al., 2022:579). The detection of this peculiar stealing instance is one of the 

biggest challenges confronting all electric utilities worldwide (Kwarteng et al., 2023:7). 

 

Stolen electricity is the power supplied but which the electric utilities cannot account for, 

since the electricity filchers took the commodity without the awareness of the utility providers 

(Otcenasova et al., 2019:6). Such act of circumventing the utilities is illegal, a serious crime 

that is punishable under the law. Theft of electricity is malevolent, a deliberate act of 

swindling the utilities (Kambule & Nwulu, 2021:42; Hassan et al., 2022:2). 

  

1.1.1    History of electricity theft 
 

ET in the power sector is an age-long problem prevalent in all electric systems all over the 

world (Stracqualursi et al., 2023:1). It is a tricky scourge which all electric utilities have been 

grappling with for over a century. The first reported case of ET took place in New York City, 

United States, in the late nineteenth century, specifically in the year 1886 (Glauner, 2019:2; 

Xia et al., 2022:274). It was at this period that the commercialization of electricity started 

when electric utilities began to distribute electricity for public consumption (Glauner, 

2019:2). 

 

The Daily Yellowstone Journal was the official newspaper of Custer County located in Miles 

City, Montana, United States. The newspaper reported the first ET incident in one of its 

articles on page two of its publication on Saturday 27 March 1886 (Daily Yellowstone 

Journal, 1886:1-2). The article which reported the incident was titled “People Who Steal 

Edison’s Electricity”. Espionage to uncover suspected pilferage of electricity was carried out 

by the Edison power station, and an occurrence of ET was established. As a measure to 

mitigate the theft, the superintendent of the power station sent power surge into the 

distribution lines to destroy the illegally connected loads impinging on the lines (Pickering, 

2016; Megger, 2020). The exact portion of the article relating the theft of Edison’s electricity 

in 1886 (Daily Yellowstone Journal, 1886:2) is shown in Figure 1.1.  
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Figure 1.1: Newspaper report on the stealing of Edison's electricity in 1886 

 (Daily Yellowstone Journal, 1886:2) 

 

The content of the newspaper article is transcribed as follows: 

 

“Edison has encountered a novel form of theft in conducting his light business in New York. 

It was found that numerous unprincipled persons had availed themselves of the opportunity 

to steal electricity, and used it for operating motors and for induction coils. The method of 

filching the electricity was by boring through the iron pipe surrounding the insulating 

compound, and then further into one of the copper leads; a set screw fixed in the orifice 

formed one connection the earth the other. Of course, this connection was made beyond 

the electric meter. 
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“It was hardly worth while to maintain the continued espionage necessary to detect and 

punish these pilferers, but the superintendent of the station, Mr. Chamberlain, coupled in 

extra dynamos and threw as great an increase of current over the system as the safety 

catches would permit, at various times for about one second; while this current was passing, 

the incandescence lamps would give an unwonted glow, and every induction coil and motor 

surreptitiously attached to the system would receive an extra current designed to burn it. In 

this manner the system is occasionally cleared of all trespassers.” 

 

The confirmation of this maiden ET incident in 1886 by the Edison power station launched 

the era of the ET menace. Since then, the ET problem has however proven to be endemic 

in all power systems worldwide, such that, the scourge can no longer be completely 

eradicated in any electricity grid, but could only be managed by continual mitigation (Lewis, 

2015:128-129; Kocaman & Tümen, 2020:1). The Edison power station was the first electric 

utility in the world (Malik, 2013:140; Tuballa & Abundo, 2016:715). More on the Edison 

power station concerning its establishment, characteristics, and the associated tussle for 

survival and supremacy in the face of competition are further discussed under the review of 

electricity grid in Sections 2.2.1, 2.2.1.1, 2.2.1.2 and 2.2.1.3 of Chapter 2. 

  

1.1.1.1    Some other early instances associated with electricity theft 
 

In some of the earlier court judgements in Germany, ET was not considered a crime. An 

example of this was in the two rulings of the Imperial Court of Justice of Germany in 1896 

and 1899 (Glauner, 2019:2). The Court ruled that, there was no inclusion of ET in the 

German Criminal Code. The Court in its adjudications believed that electricity could not 

actually be stolen since it was not regarded as a physical object, hence the offence relating 

to pilfering of electricity could not be subsumed as theft. Subsequently, the German 

Parliament brought up a new law in 1900 to criminalize ET and made it punishable under 

the law (Schuster, 1901:120-121; Glauner, 2019:2-3). The new law stipulated a five-year 

imprisonment and a fine as punishments for electricity thieves.  

 

In another jurisdiction, the issue of ET had already been addressed in the criminal law of 

France. The Court of Cassation of France had earlier ruled that ET had been 

accommodated in the extant criminal law of the country, and that there was no need to 

enact a new law to criminalize it (Glauner, 2019:3). Like in the previous situation in 

Germany, the United Kingdom (UK) also believed that electricity could not be stolen, since 

it is not a physical or concrete substance (Dick, 1995:91). However, the Theft Act 1968 was 

eventually enacted in the UK to declare ET as an offence. 
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1.2    Technical and non-technical losses 
 

The total amounts of electricity generated from the power stations have always not been 

same as the net electricity distributed for consumption (Karimi et al., 2020; Adam et al., 

2021). The difference between the electricity generated and distributed for consumption in 

the power system is known as loss (Adam et al., 2021). Although, a few inevitable energy 

losses are peculiar to the power system but most of the energy losses in an electric system 

are artificially induced. Electrical energy losses are energy not delivered for consumption 

from the supply chain, and/or not paid for by the consumers. Technical losses (TL) and non-

technical losses (NTL) are the two types of energy losses in power systems (Khalid et al., 

2024:2; S. Zhu et al., 2024:15477). These losses take place during the generation, 

transmission, and distribution of electricity. 

 

TL are inherent natural losses in the power system, which inevitably occur due to the 

dissipation of electrical energy in the power system components like generators, 

transmission and distribution (T&D) lines, transformers, metering devices, and other 

equipment which make up the power system (Karimi et al., 2020; Poudel & Dhungana, 

2022:109). These power components are all the necessary equipment used in 

accomplishing the T&D of electricity (Viegas et al., 2017:1260). There are also TL due to 

heat dissipation by virtue of the material properties of the power system components and 

their resistances to the flow of current (Wu et al., 2018:3073). In addition, there are also TL 

by irradiation (Viegas et al., 2017:1256). 

 

TL are systemically caused by intrinsic or internal factors within the power grid (Hassan et 

al., 2022:2). TL are inevitable system losses (Aslam, Ahmed, et al., 2020:221768) which 

could be reduced by routine preventive maintenance with qualitative and advanced T&D 

technology (Smith, 2004:2068). Scheduled maintenance, while ensuring quality power 

components, also improves system efficiency. Utilities should always improve and maintain 

the efficiency of their power systems to ensure they operate at a power factor (PF) greater 

than 0.95, in order to reduce the TL in their networks (ESI Africa, 2019). PF whose values 

range between 0 and 1, is the proportion of the real or active power consumed by devices 

to that of the apparent or total power supplied to the devices, and is used as indicator to 

show the efficiency level of power distribution systems (Ramos et al., 2018:679; Saeed et 

al., 2020:5). PF values closer to 1 indicates higher efficiency and vice versa. The losses in 

the generation subsystem of the power system are technical, and could be defined and 

precisely computed (Tatte et al., 2019:175) by using the fundamental laws of electrical 

engineering (Osypova, 2020:11). 
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In contrast to TL, NTL are avoidable non-natural losses caused by deliberate human 

dishonest actions, errors and other third-party activities external to the power grid 

(Otcenasova et al., 2019:6; Poudel & Dhungana, 2022:110). Since the causes of NTL are 

multifarious in nature, hence NTL cannot be represented as a function of specified actions 

(Depuru et al., 2011a:1007). NTL take the largest portion of the cumulative electrical losses 

in the power system (Petrlik et al., 2022:420). NTL occur both in Smart Grid (SG) and 

conventional electricity grid systems. However, the SG with its embedded smart meters 

(SMs) in the advanced metering infrastructure (AMI) significantly prunes NTL to an 

appreciable degree when compared with the conventional grid, but with the introduction of 

novel security risks (Shahzadi et al., 2024:1). 

 

Meanwhile, the losses in the T&D networks of the power grid are a combination of TL and 

NTL (Lewis, 2015:122; Viegas et al., 2017:1256; Onat, 2018:165). Unlike the generation 

losses which could be technically determined, T&D losses cannot be precisely determined 

from the amount of energy supplied from the power plants to the distribution feeders (Tatte 

et al., 2019:175). This fundamental characteristic clearly confirms the involvement of NTL 

in the T&D of electricity, and to the total amount of energy losses in the power system. 

Usually, there is a need to firstly compute the value of TL before the determination of the 

approximate value of NTL in the T&D networks (Viegas et al., 2017:1256). 

 

In very efficient systems like in the US and Western Europe, T&D losses are less than 6%, 

which includes ET of around 1-2% (Smith, 2004:2070; Yurtseven, 2015:70). T&D losses in 

less efficient systems are around 9-12% and over 15% in inefficient systems (Smith, 

2004:2070). NTL proportions are up to 30% of the total electricity generated in countries 

like Bangladesh and Türkiye (Turkey) (Kambule & Nwulu, 2021:42), up to 40% of the overall 

electricity distributed in countries like India, Brazil, Lebanon and Malaysia  (Glauner et al., 

2016:254; Glauner et al., 2017:761; Kambule & Nwulu, 2021:43), and up to 50% of the 

entire electricity generated in the sub-Saharan Africa (Lepolesa et al., 2022:39638).  

 

The T&D networks of the electricity system are divided into low voltage (LV), medium 

voltage (MV) and high voltage (HV) electric networks (Althobaiti et al., 2021:159294). To 

attain these voltage levels, the T&D voltages are being transformed. Transformation is the 

use of transformers in stepping up and/or down of electrical voltages before electricity 

transportation (Jamil & Ahmad, 2019:454). The HV transmission networks are used to 

transmit power over longer distances to primary distribution substations where voltages are 

stepped down to MVs via the primary distribution transformers. MVs are transported to the 

secondary distribution substations where they are further stepped down by secondary 
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distribution transformers to LVs and supplied to end users for consumption via LV 

distribution networks. Figure 1.2 shows the different kinds of TL and NTL in the power 

system. 

 

 
 

Figure 1.2: Losses in the power system 

 (Aldegheishem et al., 2021:25038) 

 

NTL are primarily domiciled in the LV distribution networks (Adam et al., 2021) and hence 

cause serious problems for the electricity distributors. ET is exclusive to LV distribution 

networks, since the distribution grids are more prone to being affected by illegal activities. 

LV networks are more attractive to electricity thieves because voltages at this level of the 

grid may not be retransformed before being put to direct use and are also safer when 

compared with the MVs and the HVs. The MV and HV networks of the power system are 
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not so susceptible to ET because of the fatal risk of electric shock associated with voltages 

at these levels.  This is the obvious reason electricity thieves avoid venturing into theft at 

such more-dangerous voltage levels. Besides the fatal risk of electric shock involved, MVs 

and HVs still need to be transformed before being put to direct use. 

 

Aside the fact that TL are inherent to the electric system, errors in technical-loss calculations 

also contribute to NTL (Yip, Wong, et al., 2017:230; Osypova, 2020:12-13). As previously 

averred, majority of the losses in the electricity system is owing to NTL (Aslam, Ahmed, et 

al., 2020:221768; Petrlik et al., 2022:420); therefore, regardless of the contribution of TL to 

the power system losses, mitigating NTL is more significant and brings about major 

reduction in the overall power losses in the electricity grid (Fragkioudaki et al., 2016:44). 

Significant degree of NTL triggers the need to generate more power to compensate for the 

resulting power inadequacies caused, but increasing generation is not as cost-effective as 

reducing NTL in the power distribution system (Abaide et al., 2010:1). 

 

NTL are commercial losses (Poudel & Dhungana, 2022:109; Kwarteng et al., 2023:7). 

Commercial losses, as the name infers, are NTL associated with the commercialization of 

electricity (Ramos et al., 2011:181), which also cause disruptions in commercial activities 

by slowing down the production of goods and services (Osypova, 2020:11). Commercial 

losses are the electrical energy that the utilities received for distribution and eventually 

pushed to the consumers, but which was not billed for or invoiced owing to ET (Osypova, 

2020:11). The total amount of lost energies in an electricity system is determined through 

the addition of TL and NTL (Poudel & Dhungana, 2022:109), and is also calculated by 

subtracting the total electricity billed or sold to the consumers from the total electricity 

supplied or fed into the power distribution system (Pereira & Saraiva, 2021:1). NTL could 

only be estimated by finding the difference between the total energy losses and the TL 

(Poudel & Dhungana, 2022:110), but cannot be expressly calculated like TL (Depuru et al., 

2011a:1007). 

 

NTL is otherwise known as ET (Jamil & Ahmad, 2019:454). NTL is the common term used 

primarily to refer to ET and other irregularities in power distribution systems (Yakubu et al., 

2018:611). This is further established in Figure 1.2 where NTL is described as ET. NTL is 

alternatively known as ET because ET is the primary and predominant cause of NTL, and 

hence takes the largest percentage in its constitution (Appiah et al., 2023:1). To affirm the 

fact that ET is the prevailing cause of NTL, the authors in Dimf et al. (2023:1) have also 

asserted that about 80% of NTL in power systems are affiliated to ET. In other words, ET 

contributes the greatest amount of NTL in electricity systems (Appiah et al., 2023:1). It is on 
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this ground that both NTL and ET are interchangeably used in the literature (Kgaphola et 

al., 2024), and will also be used synonymously in this thesis. 

 

Apart from NTL being referred to as ET, energy theft (Mohammad et al., 2023) and power 

theft (Dimf et al., 2023) are alternative terms used for ET in the literature. Like a typical NTL, 

ET cannot be accurately calculated or measured by either using formulas or electric meters, 

but could only be estimated (Dick, 1995:90; Smith, 2004:2070; Osypova, 2020:11). 

 

1.3    Forms of electricity theft 
 

Electricity abstraction is manifested in four ways in all power systems. ET could be in the 

form of stealing, fraud, billing irregularities, and non-payment of electricity bills (Onat, 

2018:166; Jamil & Ahmad, 2019:454). All these forms or types of ET are interrelated 

because they all cause revenue losses to the utilities (Lewis, 2015:121). Electricity 

customers engage in one form of theft or the other in a bid to lower or to entirely avoid 

electricity bills (Depuru et al., 2011a:1010). Conscious dubious actions or errors which are 

external or extrinsic to the electricity grid are responsible for NTL (Poudel & Dhungana, 

2022:110). All the various forms of ET or NTL are represented in Figure 1.3. The figure is a 

schematic model showcasing all the probable sources of NTL, and meant to simplify and 

aid quick overview of the entirety of the different forms of ET available in the power system. 

 

 
 

Figure 1.3: Sources of NTL or NTL vulnerability points 

 (Viegas et al., 2017:1258) 
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Viegas et al. (2017:1258, 1260) have shown in Figure 1.3 that the unbroken line depicts the 

physical connection of electricity from the pole-mounted distribution transformer, while the 

broken or dashed lines are the channels of communication. There are eight points or 

sources of NTL labelled in the figure. Those points are the attack or vulnerability points at 

the distribution line and/or service cable before the meter, at the meter in the premises of 

the customer, and at areas which affect billing by the utilities.  

 

Point 1 in Figure 1.3 depicts the distribution line that supplies the premises of the electricity 

customer; point 2 represents the software of the customer’s meter; point 3 represents the 

physical hardware and components of the electric meter; point 4 refers to the electricity 

customer; point 5 denotes the communication link between the meter and the electric utility; 

point 6 represents the interaction or relationship between the utility employees and the 

electricity customers; point 7 is the point of communication or interaction between the utility 

and its employee; while point 8 represents the information systems of the electric utility 

(Viegas et al., 2017:1260). Electricity pilferers achieve their devious objectives by 

leveraging on these vulnerability points at various network levels of the electricity grid to 

steal the priced commodity. 

 

1.3.1    Stealing 
 

Stealing of electricity occurs when the electricity users rig wires and connect directly to the 

distribution lines; or by way of bypassing the electric meters to connect indirectly to the utility 

distribution lines through the service cables or the cut-out fuses (Mehdary et al., 2024:1). 

Stolen electricity is such that the supposed units associated with consumptions at the points 

where the electricity is being abstracted are completely unregistered, and such 

consumptions are in essence utterly unknown to the utilities (Winther, 2012:111-112). 

Stealing is attributable to physical attacks on the grid.  

 

Point 1 in Figure 1.3 is before the meter, and it is a depiction of the distribution lines which 

supplies the homes of electricity customers. A real illustration of the scenario in point 1, 

where electricity is being stolen by hooking illegal wires directly on the distribution lines is 

shown in Figure 1.4. Lewis (2015:119, 121) calls these Illegal wires “throw-ups”. Throw-ups 

are also known as “spider webs” (Smith, 2004:2069; Lewis, 2015:119). Throw-ups are 

illegal-wire connections on the grid distribution lines used to siphon electricity (Lewis, 

2015:119, 121, 129, 133). 
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Figure 1.4: Stealing electricity directly from the distribution lines via throw-ups 

 (Express Tribune, 2016) 

 

Apart from throw-ups on the distribution lines, electricity is also being stolen before the 

meter within the consumers’ premises by bypassing the electric meter as shown in Figure 

1.5. The red cables in the figure were used to bypass the meter. Bypassing the meter is the 

act of circumventing the electric meter and tapping power directly through the service cables 

coming from the distribution lines to the consumers’ premises. The electricity consumed at 

the point of bypass is not registered as the electric meter installed after this point is oblivious 

of those consumptions taken at that point. Power is rerouted to an alternate path at the point 

of bypass, and such renders the meter redundant as its primary essence of registering 

energy consumptions has thus been defeated. 

 

Another method of bypassing the meter, especially via electromechanical energy meters, is 

by unconventionally connecting the load between the phase (live wire) from the meter and 

a separate wire attached to the earth (i.e., earth wire). This earth wire is used as a return 

path instead of the neutral or return wire supplied by the utilities, which normally completes 

the electric circuit by returning the phase current from the load to the supply source, that is, 

the distribution transformer (Anas et al., 2012:178; Avancini et al., 2019:711). With this 

method of bypassing the electric meter, the electromechanical meter considers that the 

electric circuit is incomplete and assumes that the voltage between the phase and the earth 
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wire (pseudo neutral) is zero, implying that no energy has been consumed and hence, the 

meter registers no reading (Depuru et al., 2011a:1009). 

 

 
 

Figure 1.5: Bypassing the electricity meter 

 (MyBroadband, 2015) 

 

Stealing of electricity is also achieved through the swapping of the connections of the supply 

or input terminals and the load or output terminals of electromechanical meters. In this 

method, the supply or service cables are incorrectly connected to the load terminals of the 

meter, while the load cables which are supposed to provide the equipment or load of the 

customers with electricity are also inappropriately connected to the supply terminals of the 

meter in an interchanged manner. The swapping of the terminals is done in a bid to give 

lower billable readings, as this causes the rotating disc of electromechanical meters to move 

in a reverse direction (Depuru et al., 2011a:1008; Anas et al., 2012:178; Avancini et al., 

2019:711). 

 

1.3.2    Fraud 
 

Fraud covers all the sharp practices on electric meters and the utility billing systems, as 

orchestrated by electricity fraudsters, to give inaccurate meter readings or billings (Poudel 

& Dhungana, 2022:110). Fraud is committed when electricity customers intentionally 

deceive the electric utilities. Fraud is ascribable to physical, cyber and data attacks on 
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electric meters and/or billing infrastructure. A popular means of defrauding the utilities is by 

tampering with the electric meters to hinder their normal operations (Mehdary et al., 2024:1). 

This is to dishonestly reduce the actual consumption levels of the meters vis-a-vis lowering 

the electricity bills payable to the utilities (Kambule & Nwulu, 2021:43; Poudel & Dhungana, 

2022:110). By defrauding, malicious customers deliberately outwit the electric utilities, while 

the latter continue to believe that all is well with the metering devices of the customers, their 

energy billings, and the transactions between them.  

 

Electricity fraud also involves the physical and/or hacking (remote or cyber-based attacks) 

the smart electric meters and/or their communication links to the utilities, in a bid to modify 

the normal electric readings to give lower or erroneous readings (Naeem, Aslam, et al., 

2023:59496). Hacking or cyber-attack on electric meters is exclusive to SMs and its 

communication infrastructure in SG. Cyber-attack on SMs and their communication links to 

the utilities is a novel form of attack due to the advent of the SG system (Aggarwal & Kumar, 

2021:466). The primary aim of the cyber and data attacks is to commit electricity fraud by 

compromising consumers’ electricity consumption data (Yan & Wen, 2021). Several 

methods of committing fraud through electricity meters take place at points 2, 3, 5, and 8 of 

Figure 1.3. 

 

Hitting the energy meter to cause shock or damage to its inner electromagnetic coils; 

inserting an external object to stop the rotating disc; inverting the meter to cause it to run 

backwards and reversing its readings; physically obstructing the rotating disc with a foreign 

object; putting a magnet on the meter to affect its magnetic field lines in an effort to slow 

down the rotating disc of the meter or to absolutely stop the rotating disc if a strong magnet 

is placed on the meter (Bihl & Hajjar, 2017:274) are exclusive ways to fraudulently abstract 

electricity via electromechanical meters. The electromechanical meter is discussed in detail 

in Section 2.3.2.1 of Chapter 2. 

 

Putting a magnet on an electromechanical meter subverts the functionality of the current 

sensing components of the meter and alters the magnetic flux produced by it. This affects 

the normal metrology of the meter by slowing down the spinning of the rotating disc, thereby 

giving lower than expected readings. Magnets generally affect the voltage and current 

sensing mechanisms of electromechanical meters by changing its electrical characteristics 

and cause them to malfunction by lowering or stopping (in the presence of strong magnets) 

the energy measurement of the meter. Voltage and current sensing mechanisms of 

electromechanical meters are made of magnetic materials and are therefore affected by 

external magnetic field which causes the meter to falter. Making changes to the internal 
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wire connections of an electricity meter is also one of the methods of swindling the electric 

utilities (Bihl & Hajjar, 2017:274).  

 

1.3.3    Billing irregularities 
 

Irregularities in electric billings could occur for so many reasons. The most common act that 

ultimately leads to billing irregularities is the corruption collusion between the electricity 

customers and the utility employees, an act which is more popular in the developing 

countries (Lewis, 2015:121; Osypova, 2020:12; Ahmed et al., 2022:581). Some corrupt 

utility employees dishonestly register lower than the actual readings on the electric meters, 

because of the financial gratifications or bribes they expect in return from the electricity 

customers (Smith, 2004:2069; Kambule & Nwulu, 2021:43). This fraudulent association 

between the consumers and the utility employees leads to inaccurate meter readings, 

causing incomplete invoicing (Onat, 2018:166) and ultimately resulting in billing 

irregularities (Depuru et al., 2011a:1007). Billing irregularities could take place at points 3, 

6, 7 and 8 of Figure 1.3. 

 

Other forms of billing irregularities that contribute to NTL and loss of revenue to the utilities 

are energy accounting errors or billing errors, utility employees’ errors in reading the electric 

meters or errors in meter readings owing to faulty electric meters; and estimated billings for 

unmetered customers or even at times for metered customers (Glauner et al., 2017:761; 

Kambule & Nwulu, 2021:43). Cyber-attack frauds on SG billing system as mentioned in 

Section 1.3.2, and customers who fail to pay their electricity bills (as described next in 

Section 1.3.4) also cause billing irregularities (Viegas et al., 2017:1260). 

 

1.3.4    Non-payment of electricity bills 
 

Like other forms of ET, non-payment of electricity bills is also tantamount to stealing 

electricity, since it ultimately leads to shortfalls in utility revenues (Naeem, Aslam, et al., 

2023:59496). Non-payment of electric bills is a situation whereby customers do not pay the 

bills they owe to the electric utilities. This attitude among electricity customers is not only 

limited to those in developing countries, but is also a cause for concern among electricity 

customers in the developed countries (Smith, 2004:2069). In contrast to the unpaid 

electricity bills by regular customers who have been correctly charged by the utilities as 

discussed in this section, all the previously highlighted forms of ET in Sections 1.31, 1.32, 

and 1.33 all result in unbilled energy usages, as the electric utilities are completely oblivious 

of those consumptions. However, non-payment of billed electricity also contribute to NTL 
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because the benefit of unpaid electricity is equal to the units of stolen electricity (Jamil & 

Ahmad, 2019:453). Non-payment of electricity bills occurs at point 4 of Figure 1.3. 

 

1.4    Statement of the research problem 
 

Electricity losses is one of the determinants of energy crisis that undermines the power grid 

(Fragkioudaki et al., 2016:44; Iftikhar et al., 2024:01). ET causes major power losses, 

financial losses and equipment damage in the electrical power system (Depuru et al., 

2011a:1007). ET is a pervasive problem (Sharma et al., 2016:41), and no power system 

anywhere in the world is completely free from it (Smith, 2004:2067). ET hampers the 

reliability and sustainability of electricity grids and impedes national economic growths, 

causing interruptions that lead to economic downturns and job losses (Naeem, Aslam, et 

al., 2023:3; Huang et al., 2024:1).  

 

Since ET cannot be totally eradicated in the power systems (Lewis, 2015:128-129; 

Kocaman & Tümen, 2020:1), the motivation for this research project is to profoundly detect 

ET in the electricity grids so as to mitigate it to the barest minimum. ET pruning is more 

significant and more cost-effective than generating more power to compensate for the 

energy losses occasioned by NTL (Abaide et al., 2010:1; Fragkioudaki et al., 2016:44). 

 

1.5    Research aim and objectives 
 

The aim of this research is to detect and mitigate ET in SG, by using the energy 

consumption data of utility consumers to develop efficient NTLD model that would achieve 

higher detection performances to enhance better onsite mitigation of ET. The objectives of 

the research are: 

 

(a) to extensively review the existing literature on ETD or NTLD methods.  

 

(b) conduct ETD simulations. The simulations are done primarily to improve the predictive 

powers or detection performances of existing ETD models in a bid to develop cost-

effective and more-efficient ETD model with excellent detection performances. 

 
(c) to prudently shortlist ET suspects and recommend them for onsite inspections, such 

that cost-effective manual onsite inspections of the very suspicious customers are 

carried out to establish the ET culprits. After the theft culprits have been established, 

necessary fines and other correctional measures are imposed on them by the utilities 
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within the scope of the existing laws to further discourage such heinous acts from 

recurring. This measure tend to mitigate ET in power grids. 

 

1.6    Research questions 
 

This research project is about ETD and ET mitigation in the SG using consumers’ real-world 

electricity consumption data. Thus, the primary research question is: “how do we detect ET 

better in SG?” The next crucial and complementary question to the first question would then 

be: “how do we mitigate ET better in SG?” After the detection of ET, the mitigation of it is 

the next natural priority. The latter research question is premised on the former, since the 

performance success achieved by the proposed ETD model would translate directly to the 

accomplishments attainable during onsite ET mitigation efforts. The greater the efficiency 

achieved by the proposed ETD model as depicted by their higher performance results, the 

greater the mitigation successes achievable during onsite inspections by the utility 

technicians or inspectors who affirm and prosecute theft culprits in a bid to mitigate the ET 

scourge. 

 

1.7    Delineation of the research 
 

This research project centres on the detection and mitigation of ET, and has precluded 

cybersecurity of the utility infrastructure. Probable cyber and data attacks (Yan & Wen, 

2021) to the information systems of electric utilities have not been considered in this 

research. Electric utilities should endeavour to strengthen the security of their information 

systems, as SG communication systems are expected to be highly reliable and secure 

(Rastogi et al., 2016:14). This is to ensure that intruders whose ulterior motives of 

compromising, manipulating, and delivering fraudulent readings to the utilities do not gain 

remote access to the electricity consumption data of the customers via the SMs and their 

communication links in the AMI (Knapp & Samani, 2013:49-50; Viegas et al., 2017:1257). 

The twenty-first century SGs and their SMs should be resilient against cyber and physical 

attacks (Edris & D’Andrade, 2017:38; Avancini et al., 2019:712). 

 

1.8    Significance of the research 
 

The quality and the economy of the power system are the prime priorities of electricity 

providers (Rastogi et al., 2016:13). The effects of ET are highly damaging, hence, a more 

efficient and reliable anti-theft approach is needed (Mujeeb et al., 2020). This research 

project is important in that it provides the means to remarkably reduce NTL and help 

increase utility revenues and profits, protect honest electricity customers, improve the 
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reliability, sustainability, and security of power systems, and thereupon save national 

economies (Liao, Zhu, et al., 2024:5075). The traditional manual onsite NTLD scheme, 

which was the only means of mitigating ET is very expensive and unattractive with many 

social and technical limitations (Huang et al., 2024:1; Liao, Zhu, et al., 2024:5075). ET is 

the major hitch plaguing the AMI and therefore calls for the development of effectual theft-

detection techniques (Jiang et al., 2014:106). AI-based approach for NTLD has been the 

attractive choice because it renders a high hit ratio, cost-effective and efficient, and requires 

less manpower (Ghori et al., 2020:16033-16034; Poudel & Dhungana, 2022:110). 

 

1.9    Contributions of the research 
 

The primary contribution of this research project is based on the improvement of ETD 

efficiencies in SG. NTLD models with higher performance scores spur greater detection and 

subsequent reduction of NTL in the power grids. The proposed ETD model developed in 

this research project perform better and is more accurate in detecting ET when compared 

with other NTLD models presented in the previous research. The models which have been 

compared with the proposed model are those that have been developed using the same 

energy consumption dataset employed in this research in the various literature where they 

have been presented. The proposed NTLD model completely expunges false positives 

(FPs) which tend to prevent unnecessary and expensive onsite inspections (Aldegheishem 

et al., 2021:25051; Pamir, Javaid, Qasim, et al., 2022:56866, 56870). This is a significant 

improvement in what was earlier achieved in the previous research studies. Onsite 

inspection is a follow-up process to confirm the fraudulent electricity customers who have 

been pinpointed by the proposed ETD model in a quest to mitigate NTL. The greater the 

performance scores achieved by evaluation metrics, the more the resources saved by 

electric utilities on probable unnecessary onsite inspections. 

 

1.10    Outline of the thesis 
 

This section describes the arrangement of the thesis. This thesis is structured into five 

chapters. Apart from Chapter 1, which is an introduction to the research study, the remaining 

part of the thesis is structured as follows: 

 

Chapter 2 expounds review of the literature on the components relating to the research. In 

this chapter, reviews have been made on electricity grid, electricity metering, causes and 

effects of ET, and the various methods used to prevent, detect, and mitigate ET. 
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Chapter 3 focusses on the methodology used in the modelling of the ETD system developed 

in this thesis. 

 

Chapter 4 analyses the results of the NTLD experiment carried out in Chapter 3, and 

discusses the interpretations of the results obtained. 

 

Chapter 5 is the final chapter, and thus signifies the closing of the thesis. The chapter entails 

the summary of the research findings and its contributions, and also recommends future 

directions that could further enhance the research results to supplement the current ETD 

and ET mitigation efforts. 

 

1.11    Conclusion 
 

This chapter introduces the concept of ET by accentuating the role of electricity in our daily 

lives and establishing the ET problem along with its history and forms. The research 

statement and questions, aims and objectives, delineation, significance, and contributions 

of the research were also further discussed, including how the thesis has been structured. 

The next chapter is a literature review on electricity grid, electricity metering, and NTL 

solutions. The chapter also touches on the causes, effects, detection and mitigation of ET, 

and established that AI-based ML techniques are the state-of-the-art approach for ETD.    
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CHAPTER 2 
 

LITERATURE REVIEW 
 

2.1    Introduction 
 

This chapter is a review of the literature, and has been structured into three parts. The first 

part explores the electricity grid from the traditional grid to the current developmental state 

known as the Smart Grid (SG). The second part examines the evolution of electric meters 

from the first-invented Gardiner meter to the state-of-the-art smart meter (SM) used in SG 

electric systems. The last part constitutes the core of this research project, and analyses 

the existing detection and mitigation methods of non-technical losses (NTL) in the power 

grid, by surveying how electricity theft (ET) has been forestalled, determined, and curtailed. 

Meanwhile, the causes and effects of ET have also been discussed.  

 

Any NTL detection (NTLD) method which may have been proposed by researchers in the 

field of NTLD must belong to one or a combination of the categories of NTL solutions 

reviewed in this chapter. However, artificial intelligence-based (AI-based) machine learning 

(ML) approach is the state-of-the-art and the most-efficient method used in detecting ET in 

power grids (Glauner et al., 2017:761; Glauner, 2019:31, 110; Ghori et al., 2020:16033-

16034; Saeed et al., 2020:1; Guarda et al., 2023:4; Stracqualursi et al., 2023:12, 16; Coma-

Puig et al., 2024:2704), as already established in Sections 2.4.5 and 2.4.5.1. Electricity must 

be generated, transmitted and distributed before it reaches the consumers, and it must also 

be measured to determine whether it is being stolen or not. 

 

2.2    Electricity grid 
 

The grid, power grid, electricity grid, electric grid, or electrical grid is one of the engineered 

most-complex systems in the world (Khoussi & Mattas, 2017:226). The essence of 

electricity grid is to deliver power from the point of generation to load centres (Breeze, 

2014:6; Khoussi & Mattas, 2017:227). The basic quantities of electricity are the flowing 

electrons (current), and the pressure or electric potential (voltage) from the power source 

which propel the current through conductors. The electricity grid is also known as electric 

power system (Qazi, 2017:4). 

 

Electricity grid is a critical infrastructure for the generation, transmission, and distribution of 

electrical energy. The grid consists of power supply components like the power generators, 

transmission lines, transformers, and the distribution lines. Power is conveyed directly from 
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the power generation plants through the transmission lines and substations to the 

consumers at their various premises (Khoussi & Mattas, 2017:226-227; Kathiresh & 

Subahani, 2020:177). Electricity grid is the interconnection of these power supply 

components or the interconnection of power subsystems from generation where the power 

is being produced, through the transmission lines and distribution lines, to consumption or 

load centres where the power is being put to direct use, covering broad geographical area 

and forming a large electric network (Qazi, 2017:4). This large electric network is usually 

being referred to as the “largest machine” in the world owing to its immense size (Porcu et 

al., 2021:8). 

 

Electricity consumers derive all their power needs from the grid, and connect to the grid 

whenever they switch on their bulbs or plug-in their residential, commercial, or industrial 

devices (Erenoğlu et al., 2019:14). 

 

2.2.1    The pioneer electricity grid 
 

After Thomas Edison succeeded in making the first commercially viable incandescent 

electric lamp in 1879 (Sulzberger, 2003b:64; Lobenstein & Sulzberger, 2008:84), his power 

station known as the Pearl Street Station which was located in lower Manhattan, New York 

City, United States, began to generate electricity on 4 September 1882 (Lobenstein & 

Sulzberger, 2008:86; Sulzberger, 2013:78; Bîrleanu et al., 2019:609). 

 

Edison who in 1880 decided to construct a permanent power station (the Pearl Street 

Station), had purposely founded a corporation called Edison Electric Illuminating Company 

of New York in the same year, under which to carry out the proposed power station project 

(Rutgers, 1882:423; Sulzberger, 2003b:65; Lobenstein & Sulzberger, 2008:85; Sulzberger, 

2013:78). Edison’s decision to establish the Pearl Street Station was primarily to 

commercialize his invented incandescent lamps or bulbs, by generating and distributing 

electricity to power the invented bulbs for his prospective customers (Sulzberger, 2003b:64; 

Tuballa & Abundo, 2016:715). The commencement of operations by the Pearl Street power 

generating station on 4 September 1882 launched the era of commercial incandescent 

electric lighting (Hughes, 1958:143). Incandescent lamps are the predecessor light bulbs 

typical of the more-efficient and longer-lasting modern energy-saving light bulbs used today 

(Bîrleanu et al., 2019:609). 

 

The Pearl Street Station was a low-voltage (LV) direct current (DC) power utility 

(Sulzberger, 2003b:64), and the first electric power station in the world (Malik, 2013:140). 
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The Station, which cogenerated electricity and heat, was also the first commercial and 

permanent central power plant in the world (Lobenstein & Sulzberger, 2008:85-86; Lovett, 

2013:1; Sulzberger, 2013:76, 78). Figure 2.1 shows the sketch of the exterior view of the 

Pearl Street Station of the Edison electric utility. The horse-drawn cart seen in front of the 

power-station building in the figure was used to transport coal to the power plant for the 

running of the steam engines, which was used to turn the dynamos. The coal was taken 

into the power station through a sidewalk vault into the coal storing room known as cellar 

(Essig, 2009:63-64). 

  

 
 

Figure 2.1: Exterior-view sketch of the Pearl Street Station 

(Sulzberger, 2013:76) 
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Dynamos were the earliest outmoded DC generators used to produce commercial DC 

electricity before the advent of alternating current (AC) generators or alternators used to 

produce large-scale AC electricity (Owens, 2019:1). Alternators or AC generators replaced 

the dynamos owing to the advantages of AC over DC as discussed in Section 2.2.1.3. 

Electricity has been produced in the form of DC or AC and conveyed through cables for 

consumption by the end users (Erenoğlu et al., 2019:14). DC flows in one direction while 

the AC is sinusoidal and thus flows back and forth (Sulzberger, 2003b:66). 

 

Figure 2.2 shows the sketch of the dynamo room of the Pearl Street generating station of 

the Edison electric utility. Each of the six dynamos in the room had a capacity of 100 kW 

and could supply up to 1200 lamps at 110 Vdc when it began operation (Rutgers, 1882:425; 

Lobenstein & Sulzberger, 2008:85-86). As apprised in the description of Figure 2.1 above, 

coal-fired steam engines were the prime movers used to drive the DC dynamos of the 

Edison power plant (Lobenstein & Sulzberger, 2008:85; Tuballa & Abundo, 2016:715). 

 

 
 

Figure 2.2: Sketch of the dynamo room of the Pearl Street Station 

(Rutgers, 1882:425) 

 

The distribution system for Pearl Street Station was an underground distribution system as 

shown in Figure 2.3. It consisted of manhole for underground access, and conduits where 

the distribution cables of the electric utility were laid for onward delivery of electricity to the 

consumers. The Edison Pearl Street central power generating station, with its distribution 
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system formed the revolutionary first electricity grid system (Tuballa & Abundo, 2016:715). 

The Edison electric utility which initially served 85 customers with about 400 lamps on the 

day it commenced operation (Lobenstein & Sulzberger, 2008:86) was an original model, a 

foundational prototype and the evolutive forerunner of the intricate electricity grid system of 

today, comprising central power generation, distribution, and consumption (Tuballa & 

Abundo, 2016:715; Erenoğlu et al., 2019:12). 

 

 
 

Figure 2.3: The underground distribution system of the Pearl Street Station 

       (Lobenstein & Sulzberger, 2008:86) 
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Edison’s electricity was reportedly stolen in New York in 1886 as discussed in Section 1.1.1 

of Chapter 1. It was the first-ever case of ET incident that had been reported. That incident 

established that the first electric power system (Malik, 2013:140; Tuballa & Abundo, 

2016:715) did not escape the plague of ET (Glauner, 2019:2; Megger, 2020). Similarly, all 

other power systems of today have also not been spared of the endemic menace (Winther, 

2012:111; Sharma et al., 2016:40). All electric utilities worldwide are therefore battling with 

the daunting ET problem (Yip, Wong, et al., 2017:230; Yip et al., 2018:190) and devising 

ways to mitigate it, to ease its harmful effects on electric grids and national economies 

(Viegas et al., 2017:1258; Shokoya & Raji, 2019a:96). 

 

2.2.1.1    Shortcomings of the pioneer electricity grid and the ensued rivalry 
 

Edison’s DC electric system suffered a setback, in that, it started to lose voltage when an 

attempt was made to distribute the DC electricity over distances longer than a mile  

(Sulzberger, 2003b:66; Cowdrey, 2006:89). The main rival to Edison in the electricity market 

was George Westinghouse, an inventor of the railway braking system, who became 

interested in the AC electricity business and commercialized it (Hughes, 1958:153; 

Sulzberger, 2003b:66). The rivalry between them began in 1886 after Westinghouse 

founded the Westinghouse Electric Company (renamed Westinghouse Electric and 

Manufacturing Company), in Pittsburgh, Pennsylvania, United States; to promote the 

development of the AC electric system, an alternative electric system for commercial 

electricity (Hughes, 1958:143). 

 

Westinghouse purchased transformer patents (Sulzberger, 2003b:66; Cowdrey, 2006:91) 

and incandescent lamp patents that were different from Edison’s (Kommajosyula, 2017:38) 

for his AC electric lighting business. Westinghouse who wanted more than lighting, also 

purchased the complete polyphase AC system and the induction motor patents from Nikola 

Tesla who he also hired in 1888 to work in his company (Ruch, 1984:1397; Sulzberger, 

2003a:70, 72; Cowdrey, 2006:91). With the polyphase systems, and its associated 

components like the transformers and transmission lines, the maiden three-phase electric-

line network commenced operation in 1893 (Sulzberger, 2003a:72-73). The AC electric 

power system and the AC induction motor that are still being used currently all over the 

world were the original inventions of Nikola Tesla (Sulzberger, 2003b:67; King, 2013). 

Tesla’s inventions were ranked to be the most valuable after the telephone (King, 2013). 

 

Edison acknowledged the range limitation of his DC system and had earlier sought a 

remedy from Tesla who he hired in 1884 (before Westinghouse later hired him) to help solve 
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the entrenched DC short-range issue (Sulzberger, 2003b:67; Cowdrey, 2006:90; King, 

2011). Tesla had advised Edison that the solution to the short range of DC and the future 

of electricity distribution for long-range transmission was in the AC electric system; but 

Edison who knew taking Tesla’s advice would render his DC system obsolete rejected 

Tesla’s advice and grimly told him he was not interested (Sulzberger, 2003b:67; Cowdrey, 

2006:90; King, 2011). Tesla parted ways with Edison in 1885 after the latter reneged on a 

financial promise made to the former as a form of compensation after accomplishing the 

given task upon which the pledge was based (King, 2011; King, 2013). 

 

Westinghouse leveraged on the range-limited shortcoming of the DC to promote the AC, 

which could be transmitted efficiently over longer distances (Cowdrey, 2006:91) to load 

centres at a relatively cheaper cost (Coltman, 1988:92). Edison who did not want to lose his 

electricity-purveyor monopoly (Cowdrey, 2006:91) and the royalties he was getting from his 

DC patents (Lantero, 2014) felt threatened and launched fierce attacks against the 

competing AC electric system (Sulzberger, 2003b:64). 

 

2.2.1.2    War of the currents 
 

The business rivalry between Edison and Westinghouse led to the epic and shocking 

competition dubbed the “war of the currents” (King, 2011). The war of the currents or the 

battle of the currents started in 1888 (Sulzberger, 2003a:70; Sulzberger, 2003b:67). The 

ensued ‘war’ was a legal and publicity battle (Coltman, 1988:92) between the duo 

entrepreneurs, who had to vie to make a case for the commercial acceptance of either of 

their DC or AC current for the generation, transmission, and distribution of electricity 

(Hughes, 1958:143; Sulzberger, 2003b:64). Aside Edison and Westinghouse who were the 

gladiators in the electric current tussle, other proponents and/or opponents who also got 

involved in the battle of the currents were scientists, engineers and the businessmen; even 

the lawmakers and the public were also in the picture and played a remarkable role in it 

(Hughes, 1958:144). 

 

Edison persistently exhibited the disadvantages of AC, while Westinghouse rather focused 

on the technical advantages of AC (Cole & Chandler, 2019:21). Edison’s criticisms were  

that the AC high voltage was perilous to work with as it could electrocute (deadly current), 

which made it more dangerous to human lives; and hence, not a feasible option for the 

electric system (Cowdrey, 2006:90). Edison who at a point could no longer contest the 

popularity and the significant economic advantage of the AC system over his DC system, 
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went a step further to launch an offensive and vigorous smear campaign against the AC 

system (Hughes, 1958:144-145; Rapp & Mensink, 2011:142). 

 

Edison and the DC proponents were adamant about their anti-AC standpoints, as they 

wanted the AC outlawed and tried every means to associate it with death (Hughes, 

1958:145-146, 152, 154, 160). An electrician and an AC opponent, Harold Brown, referred 

to AC as “executioner’s current”, and worked surreptitiously in alliance with Edison to 

malignly prove the potency of AC in causing death (Hughes, 1958:147, 151, 154, 157; 

Sulzberger, 2003a:71). Harold Brown carried out public electrocution of animals and 

dispatched them with AC electricity (Hughes, 1958:148-149, 151; Cowdrey, 2006:91). 

Edison supported death penalty by electrocution (on an electric chair) using the 

Westinghouse’s AC and was also instrumental to its realization (Hughes, 1958:151, 160, 

164-165; Sulzberger, 2003a:70-71; Cowdrey, 2006:91; Rapp & Mensink, 2011:142). Edison 

had abhorred human capital punishment before the battle of the currents, but backed death 

by electrocution as an alternative to the conventional hanging method, in an opportunity to 

deviously defame Westinghouse’s AC (Hughes, 1958:151, 160, 164-165; Cowdrey, 

2006:91). 

 

Edison also coined and introduced the new word “Westinghoused” to the public. He formed 

the new word from the last name of his main rival in the electricity business. He used this 

word in his speeches to indicate that those criminals who had been found guilty by the 

authority and sentenced to death for committing various capital offences would be executed 

using the AC electricity (King, 2011; Rapp & Mensink, 2011:142). He also advocated for the 

official adoption of his contrived word, but “electrocuted” was endorsed instead (Rapp & 

Mensink, 2011:142). Edison’s antics against the competing AC were basically meant to get 

rid of the rivalry from Westinghouse, protect his DC electricity business, and restore the 

earlier monopoly he enjoyed in the electricity market. However, the macabre marketing 

tactics adopted and deployed by Edison and his cohorts were unorthodox and went beyond 

the bounds of conventional competition (Hughes, 1958:143, 145). 

 

2.2.1.3    The triumph of alternating current over direct current 
 

In 1892, when the war of the currents was still at its height, Westinghouse won the bid to 

illuminate the proposed 1893 Chicago World’s Fair (Cowdrey, 2006:92). The 1893 

exhibition in Chicago was an all-electric fair, and the first of its kind which had 27 million 

visitors in attendance (Sulzberger, 2003a:72; Cowdrey, 2006:92; Essig, 2009:254). 

Westinghouse was able to underbid his main rival (Edison) by less than half to win the 
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contract (Cowdrey, 2006:92; Essig, 2009:254). The underbidding was feasible owing to the 

cheaper nature of the AC system as against the DC system (Sulzberger, 2003a:72; 

Cowdrey, 2006:92). The 1893 Chicago World’s Fair otherwise known as Columbian 

Exposition, where about 130,000 incandescent lamps and 8,000 arc lamps were lit up was 

a huge success (Sulzberger, 2003a:72; Essig, 2009:254) . Those lamps were powered by 

12,750 kW two-phase 60 Hz alternators, as the buildings at the fair were luminously turned 

to “city of light”. The awesome exposition gave credence to the AC system and enhanced 

it to expeditiously eclipse the DC system (Sulzberger, 2003a:72).  

 

Leveraging on the success achieved at the Columbian Exposition, the cheaper nature of 

the AC system coupled with its ability to transmit power over longer distances, in conjunction 

with another round of underbidding, Westinghouse in 1893 also won the bid to exploit the 

immense power of the waterfalls of the Niagara River located at Niagara Falls in New York 

(Sulzberger, 2003a:73; Cowdrey, 2006:92). The Niagara Falls hydroelectric power plant 

project was also delivered and commissioned in 1895 (Cowdrey, 2006:92). Dominion of the 

AC system over its counterpart DC was further entrenched with the successful development 

of the Niagara Falls hydroelectric power station (Sulzberger, 2003a:72). The Niagara Falls 

Project became the first-ever hydroelectric power plant, its delivery consolidated the 

superiority of AC over DC, symbolized victory for the AC, and thus signalled the end of the 

battle of the currents (Sulzberger, 2003a:72; Essig, 2009:257). Henceforth, the AC system 

became the dominant and the undisputable de facto standard in the electricity industry  

(Sulzberger, 2003a:73). 

 

In the end, the negative propaganda approach employed by Edison to discredit and create 

public exasperation about the AC ultimately failed (Cowdrey, 2006:91). The war of the 

currents was won in 1895 in favour of Westinghouse’s AC after the successful execution of 

the Niagara Falls Project (Hughes, 1958:144, 165; Coltman, 1988:92; Cowdrey, 2006:92). 

 

The AC is scalable as its voltage could be increased with step-up transformers or lowered 

with step-down transformers. The fact that the AC system is cheaper and that its voltage 

could be increased (by lowering its current) with the help of a step-up transformer for 

transmission over longer distances gave the AC system the unique advantage and triumph 

over the DC system (Hughes, 1958:144-145; Sulzberger, 2003b:66; Cowdrey, 2006:91-92). 

The stepped-up voltages could later be stepped down within the vicinity of the consumers 

to lower voltages by a step-down transformer for end-use (Sulzberger, 2003b:66; Cowdrey, 

2006:91; Essig, 2009:258). The fact that the AC is transformable or scalable is the primary 

advantage for its economic transmission over lengthy distances. The stepping up and/or 
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down of voltages is done by transformers (secondary generators) during the process of 

transformation (Sulzberger, 2003b:66; Cowdrey, 2006:91; Jamil & Ahmad, 2019:454). The 

sinusoidal current (AC) has since then been accepted for universal use and adopted as the 

industry standard for the electric system. Edison eventually regretted not heeding Tesla’s 

advice (King, 2011). 

 

2.2.2 Modern electric power system 
 

The battle of the currents had a far-reaching effect. The contest was incidentally not only 

about partisan business rivalry, but also instrumental and vital to the future direction and 

development of the electricity industry all over the world (Hughes, 1958:145; Sulzberger, 

2003a:73). The modern electricity grid is mainly AC-based. The AC had taken precedence 

after its triumph over the DC as mentioned previously in Section 2.2.1.3. The AC electric 

system is still referred to as “modern” because it is still in use till today. The complete AC-

based legacy electricity grid system is known as the conventional grid. The conventional 

grid is currently being improved upon to the state-of-the-art Smart Grid electric system to 

cater for some of its inherent challenges (Khoussi & Mattas, 2017:228-229; Kularatna & 

Gunawardane, 2021:28).  

 

The conventional grid and the Smart Grid are the two main types of electricity grid system. 

The conventional grid and Smart Grid electric systems are discussed in Sections 2.2.3.1 

and 2.2.3.2 respectively. Electricity is generated, transmitted, distributed, and consumed in 

the modern electricity grid (Khoussi & Mattas, 2017:227), unlike in the pioneer DC electricity 

grid where electricity was only generated, distributed, and consumed without being 

transmitted (Tuballa & Abundo, 2016:715), owing to the DC short-range limitation issues 

stated earlier. 

 

i. Generation 
 

The centralized AC-generated power system is economical, efficient, reliable, and long-

distance enabled, as it is usually located far away from the end users (Erenoğlu et al., 

2019:14-15; Kularatna & Gunawardane, 2021:1, 27). The AC generation plants are the 

central source of power in the electricity grid, with generators that are either driven by steam 

turbines, gas turbines or hydro turbines, etc. (Kularatna & Gunawardane, 2021:1). A turbine 

is a prime mover that serves as the source of rotational mechanical energy which drives the 

generators. Turbines produce mechanical energies by converting the kinetic energies of 

steam, gas, or water, etc. into whirling energies to turn the generators. The generated power 

needs to leave the remote locations where it is being generated and get closer to the users. 
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This is literally like taking a product to the market. These remote locations where power is 

generated are mainly places where the natural energy sources (waterfalls or fuels) that drive 

the turbines are abundant and readily available (Cowdrey, 2006:91). 

 

ii. Transmission 
 

Transmission is the transportation of the generated electricity via the transmission lines. 

Transmission is accomplished by stepping up the AC voltages of the generated power at 

the transmission substations by step-up transformers, so that it would be able to travel over 

longer distances to the distribution substations nearby the electricity consumers. 

Transmission should be efficient with lower losses at low cost (Erenoğlu et al., 2019:16). 

High voltage transmission allows power to be transmitted over longer distances through 

cheaper cables of smaller diameters, thereby reducing power and heat losses (Hughes, 

1958:44; Papalexopoulos, 2013:227-229).  

 

iii. Distribution 
 

At the distribution substations where transmission lines terminate, voltage step-down takes 

place using primary distribution transformers, to reduce the AC voltage level from 

transmission voltage to primary distribution voltage for subsequent distribution to the 

secondary distribution transformers via the primary distribution lines (Khoussi & Mattas, 

2017:227). The primary distribution voltage at the secondary distribution phase of the grid 

is further stepped down to service voltage by the secondary distribution transformers, and 

taken to the premises of the consumers or service locations via the secondary distribution 

lines for consumption (Cowdrey, 2006:91; Khoussi & Mattas, 2017:227). 

 

iv. Consumption 
 

Consumption takes place at the demand-side or consumer-end of the grid. It is the final 

stage of the grid where electricity at its service voltages is delivered to customers at their 

various locations for direct utilization (Khoussi & Mattas, 2017:227). The use of electricity 

to power appliances in homes and offices, and machines in industries by the consumers 

are examples of putting electricity to direct use. Consumers of electricity are meant to use 

the product judiciously and efficiently without causing NTL. Electricity must be accessible 

to the consumers because the power that is generated but fails to get delivered to the 

intended consumers would eventually not worth its while. Consumption must be fulfilled to 

complete the value chain of electricity. 
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❖ Characteristics of alternating current 
 

In contrast to the continuous current of DC, the AC varies as it reverses several times in a 

second and undergoes electromagnetic induction or magnetic effect in the iron cores of 

transformers. This current induction from the primary coils to the secondary coils of 

transformers causes a corresponding voltage effect from the primary coils to the secondary 

coils. The number of turns of the secondary-coil windings with respect to the number of 

turns of the primary-coil windings of a transformer determines whether the transformer is a 

step-up or a step-down transformer. A step-up transformer has a greater number of turns 

of coils in the secondary windings when compared with the number of turns of coils in the 

primary windings; while a step-down has a lesser number of turns of coils in the secondary 

windings when compared with the number of turns of coils in the primary windings 

(Cowdrey, 2006:91; Essig, 2009:102; Crawford, 2019). 

 

The primary coil of the transformer is connected directly to the primary mains supply of the 

utility, while transformation takes place at the secondary coil via induction. To induce 

voltage in the secondary coil, the magnetic field produced by the flow of current in the 

primary coils needs to keep changing constantly, as it is only a changing magnetic field that 

causes voltage induction (in the secondary coil) via a process known as electromagnetic 

induction. For this reason, it is only the AC that is transformable, that is, it is only the AC 

that could be stepped up or down using a transformer. Transformers do not transform an 

unvarying DC current that flows with a constant magnetic field because the direction of the 

DC voltage and current are not changing or switching (Essig, 2009:101-102; Crawford, 

2019; Owens, 2019:14). 

 

AC electricity is produced and consumed in real time; hence, grid operators ensure that 

power is supplied in accordance with demand in a bid to stabilize and optimize the grid 

(Soliman et al., 2021:3712). Although, energy storage is possible nowadays, but it is very 

expensive (Khoussi & Mattas, 2017:228-229). Power system frequency is an indicator of 

the grid stability (Arief et al., 2020:2). The grid is stable if its frequency does not deviate or 

does deviate within an acceptable limit (OBAID et al., 2019:10; Kruse et al., 2021:1-2). 

Frequency stability means that there is a balance between the power generated and the 

power consumed (OBAID et al., 2019:10; Bevrani et al., 2021:1). With stable grid frequency, 

corresponding stable grid voltage is simultaneously maintained, ensuring good power 

quality and technical stability of the entire power system (Osypova, 2020:25). The frequency 

of the power grid measured in Hertz (Hz) is equivalent to the number of times (number of 
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alternations) in a second that alternating current and its voltage change direction or switch 

polarity to make a complete cycle (Alhelou, 2019:202). 

 

National grid frequencies of either 50/60 Hz are the mains frequencies, the reference grid 

frequencies or the nominal operating frequencies in most countries of the world (Kruse et 

al., 2021:1-2). 50 Hz AC reference frequencies mean that the directions of voltage and 

current of the alternating current constantly switch directions fifty or sixty times per second, 

making a corresponding fifty or sixty cycles during the same one-second period. Grid 

frequency increases if the demand falls below the supply, but if the grid frequency drops, it 

means the demand is higher than the supply (Soliman et al., 2021:3712). The rotor of 

standard AC generator oscillates, alternates, or turns and completes a cycle fifty or sixty 

times in a second, corresponding to the mains frequency (50/60 Hz) used in a particular 

country or region. These oscillations which correlates with the mains frequencies are 

proportional to the speed of rotation of the AC synchronous generators (Bevrani et al., 

2021:1). Countries that use 50 Hz grid frequencies tend to use single-phase LVs between 

220-240 V range, while those realms that use 60 Hz frequencies use single-phase LV range 

between 100-120 V (Brown, 2013:1-2; Zaitsu et al., 2018:352). 

 

❖ Latest trend 
 

Although, the conventional AC system still remains the pervasive and predominant 

electricity system delivering most of the needed electrical energy worldwide (Hammerstrom, 

2007:1; Kularatna & Gunawardane, 2021:27, 29), but the DC system is gradually coming 

back to prominence (Van Hertem & Delimar, 2013:144). DC renewable-energy deployments 

are also growing rapidly. The revival of DC comes in the form of high-voltage direct current 

(HVDC), whereby the DC is gradually competing again with the conventionally established 

AC system for long distance power transmission after it lost the war of the currents in 1895. 

 

2.2.2.1    Conventional grid 
 

The conventional grid, legacy grid, traditional grid, or classical grid is the existing electricity 

grid of the last century (Khoussi & Mattas, 2017:226-229; Bîrleanu et al., 2019:608). The 

conventional grid has existed for more than 100 years (Khoussi & Mattas, 2017:227), and 

was designed to meet the power requirements of that era. The legacy grid is basically a 

radial (Ma et al., 2013:36), and hierarchical (Bansal & Singh, 2016:174) network. The 

traditional grid allows power flow in one direction from the generating stations to the 

distribution substations, and to the consumers (Khoussi & Mattas, 2017:227; Kularatna & 
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Gunawardane, 2021:28); hence, can only transmit and distribute electrical energy (Tuballa 

& Abundo, 2016:712). Figure 2.4 is a depiction of a conventional grid system. 

 

 
 

Figure 2.4: Conventional grid 

 (Khoussi & Mattas, 2017:229) 

 

Apart from power flow, communication flow is also unidirectional in the conventional grid 

(Bansal & Singh, 2016:174). Information flows from the generating stations to the utilities 

and from the utilities to the customers, but not the other way round. The consumers cannot 

send information to the utilities in the traditional grid system. Power is generated centrally 

in the conventional grid system and the grid is also manually restored in case of faults (Ma 

et al., 2013:36). The conventional grid is no longer suitable for the power requirements of 

today, and needs an upgrade (Jiang et al., 2014:105). 

 

2.2.2.2    Smart Grid 
 

The conventional grid is faced with several challenges that need to be fixed in order to 

enhance its capacity and efficiency. Some of these challenges are: increase in electricity 

demand, need for diversification of the centralized power generation to cater for the 

increased energy demand, conservation of energy, reduction in carbon emissions, demand 

response, and optimal deployment of the available grid assets for efficient performance, 

etc. (Khoussi & Mattas, 2017:228-229; Kularatna & Gunawardane, 2021:28). 
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To overcome the challenges and achieve the ambitious goals highlighted in the preceding 

paragraph, we are expected to modernize, optimize, or make the existing grid smarter 

(Khoussi & Mattas, 2017:226), so that the generation, transmission and distribution 

subsystems and the end-user demand side of the power grid could be efficiently managed. 

Modernizing the conventional grid evolves an enhanced electricity grid or an intelligent 

electrical network known as Smart Grid (SG), which constitutes telecommunications, 

Internet and consumers’ electronic devices in addition to the existing power system 

components (Dlodlo et al., 2014:2, 13). The word “smart” means intuitive, responsive and 

adaptive in operation, culminating into grid intelligence from power generation to 

consumption (Tuballa & Abundo, 2016:712; Khoussi & Mattas, 2017:226; Zhou et al., 

2017:73). The SG self-heals grid-related problems swiftly, and reduces human level of 

involvement in the operation, management and planning of the grid (Bihl & Hajjar, 2017:274; 

Shokoya & Raji, 2019a:98). This allows humans to only deal exclusively with the exceptions 

which automated machine intelligence may not be able to handle. Figure 2.5 is a depiction 

of a SG system, showing enhancements or improvements to the underlying conventional 

grid system portrayed in Figure 2.4. 

 

 
 

Figure 2.5: The Smart Grid 

     (Khoussi & Mattas, 2017:233) 

 

The concept of SG came about due to the need to improve the power delivery of the legacy 

grid, to make it greener, more reliable, more secure and more efficient (Tuballa & Abundo, 
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2016:711; Edris & D’Andrade, 2017:37-38; Khoussi & Mattas, 2017:231). The SG tends to 

proffer solutions to the challenges posed by the conventional grid outside the confines of 

the legacy grid itself; such that, the revitalized electricity grid will be able to meet up with the 

energy demands of the twenty-first century (Kularatna & Gunawardane, 2021:28). The SG 

is both evolutionary and revolutionary (Khoussi & Mattas, 2017:231; Tsiatsis et al., 

2019:257; Ahmed et al., 2022:580) in terms of the transformation of the power grid. The 

transformation is about the optimization and intelligent integration of the whole power 

system (Viegas et al., 2017:1256) by informatizing and intellectualizing the existing grid 

(Sun & Liang, 2016:900). 

 

The pace for the modernization of the electric grid was set when the Energy Independence 

and Security Act (EISA) of 2007 was enacted in the United States. The EISA of 2007 

proposed the attributes of the modern electricity grid to promote energy efficiency and to 

stipulate the characteristics of the generation, transmission, distribution, and consumption 

subsystems of the electricity grid (Tuballa & Abundo, 2016:713; Kabalci & Kabalci, 2019:5-

6). The National Institute of Standards and Technology (NIST) coordinates the SG 

standards, by providing conceptual blueprints and the framework to achieve interoperability 

between devices in the SG system (Khoussi & Mattas, 2017:230). These efforts were 

geared towards achieving the ambitious goal of modernizing the grid. 

 

SG is the next-generation electricity grid meant to replace the existing conventional grid 

(Bîrleanu et al., 2019:607; Kularatna & Gunawardane, 2021:28). The SG forms a 

convergence between the conventional grid and information and communications 

technology (ICT) (Porcu et al., 2021:8). Sometimes, the SG is called a modernized grid, 

since it is an improvement or upgrade on the ancestral conventional grid (Khoussi & Mattas, 

2017:231) and addresses its peculiar deficiencies (Kularatna & Gunawardane, 2021:28). 

SG is the modernization of the conventional grid (Mashima & Cárdenas, 2012:210; Knapp 

& Samani, 2013:17) to a digitally-enabled (El Bassam et al., 2013:202), networked (Bansal 

& Singh, 2016:174), and self-sufficient electricity-grid system. This modernization involves 

the upgrade of the generation, transmission, distribution, and the metering system of the 

conventional grid (Knapp & Samani, 2013:17). 

 

Upgrading the conventional grid to SG involves a conglomeration of embedded 

technologies that enhances the generation, transmission, distribution, and consumption 

subsystems of the electricity network with better efficiency and reliability (Aggarwal & 

Kumar, 2021:456). These technologies include communication, controls, automation, 

management tools, information technology and other new technologies, to deliver a robust, 
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optimized, efficient, secure, reliable, intelligent, and automated power grid (Khoussi & 

Mattas, 2017:231; Viegas et al., 2017:1256; Shokoya & Raji, 2019a:98), while creating 

greater transparency and providing choices that are beneficial to the electricity customers 

(Mashima & Cárdenas, 2012:210). 

 

The SG also intends to solve the inherent ET problem, and eradicate other inadequacies 

associated with the antiquated conventional grid (Faria et al., 2016:362; Yip, Wong, et al., 

2017:230). A very important feature of the SG system is the replacement of the traditional 

electromechanical meters with SMs (Jiang et al., 2014:105; Yip, Wong, et al., 2017:230). 

SG and its innate SMs allow a significant reduction in NTL and guard against amateur 

physical tampering (Ahmed et al., 2022:580). Although, novel security risks and pilferage 

strategies have also emerged owing to the emergence of SG (Yip, Wong, et al., 2017:230; 

Ahmed et al., 2022:580; Xia et al., 2022:273). 

 

Existing method of electricity-theft detection (ETD) is centred solely on the availability of 

specific metering hardware devices which forms the fulcrum of the theft and its detection, 

but electricity could also be stolen remotely via the advanced metering infrastructure (AMI) 

of the SG system without physical contacts with the metering hardware. The AMI network 

is a key component of the SG that facilitates bidirectional communication between the 

electric utilities and the meters of their customers (Mujeeb et al., 2020; Aggarwal & Kumar, 

2021:463). The constituents of AMI and the SM are discussed in detail in Section 2.3.2.2. 

The availability of vast consumption data of customers with increased granularities has 

increased tremendously owing to SG roll-out. These datasets of customers could then be 

used for ET predictions by detecting anomalies in energy consumptions using AI-based ML 

methods (Jiang et al., 2014:109; Glauner et al., 2017:761; Yip, Wong, et al., 2017:231; 

Guarda et al., 2023:1-2), as discussed in Sections 2.4.5 and 2.4.5.1. 

 

In addition to the customary central power generation plants, SG also allows for the stable 

integration of smaller power generation units known as distributed energy resources (DER) 

like residential batteries, electric vehicles (EVs), microgrids and renewable energies into the 

underlying conventional grid (Khoussi & Mattas, 2017:233; Kathiresh & Subahani, 

2020:177). This energy diversification is to decentralize generation, enhance capacity for 

sustainability to meet growing consumers’ demand. Apart from distributed energy addition 

to the grid, SG also allows for the efficient transmission of energy (Viegas et al., 2017:1256), 

bidirectional energy flow with a two-way digital communication and control capabilities that 

enable the customers to participate and contribute to the sustainability of the electricity grid 

(Khoussi & Mattas, 2017:231; Viegas et al., 2017:1256). 
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The two-way communication flows in SG allow customers to make informed economic 

decisions on their energy usage when they react to the demand-response prompt 

information they receive from the utilities via their SMs; while the two-way energy flows also 

allow customers to contribute to grid generation capacities by selling their excess DER back 

to the utilities (Viegas et al., 2017:1256; Shokoya & Raji, 2019a:96). The connection 

between the smart energy meters of the customers and the utility information systems is to 

deliver real-time energy information to the utilities and vice versa in a two-way 

communication mode via the AMI; while the bidirectional energy flows including the trade 

flows between the utilities and their customers form the Energy Internet (Sun & Liang, 

2016:900). With SG, power systems are being transformed into data-driven systems with 

increased communications and digital controls (Xia et al., 2022:273; Kim et al., 2024:1). 

 

❖ Demand response 
 

Demand response is a powerful tool and one of the main strategies peculiar to the SG 

concept, whereby power demand by electricity consumers is being managed in response 

to the supply (Ekanayake et al., 2012:100; Osypova, 2020:26). Demand response is a load-

shifting or load-curve flattening strategy that brings about consumers’ load reduction, by 

transferring loads from a period of high demand to a period of low demand. It is the inclusion 

of the demand-side management mechanism into the grid operations for the overall efficient 

management of the SG system. This improves the interaction between the utilities and their 

customers to assuage supply-demand mismatch, for the regulation and sustainability of the 

electricity grid. Demand response is mainly facilitated by applying variable tariffs or rates by 

electric utilities to units of electricity consumed during the peak and/or off-peak periods, as 

a control measure to match supply to demand (Dlodlo et al., 2014:2-3, 6-7, 9, 12). The 

matching of supply to demand is done by controlling, adapting, or synchronizing demand in 

accordance with the available supply. 

 

Electricity tariffs are relatively higher during peak periods when demand is higher and lower 

during the off-peak periods when there is less energy demand. This enhances electricity 

customers to make smart or informed decisions about their energy usage. The customers 

tend to react to real-time increase in electricity tariffs when grid load increases especially 

during the peak periods; or react to the load reduction alert prompted by the electric utilities 

via their SMs to prevent supply shortage during peak periods (Dlodlo et al., 2014:5-6; 

Shokoya & Raji, 2019a:99). The utilities may take the prerogative of disconnecting 

consumers remotely if the load-reduction notifications they sent through the customers’ SMs 

were not being adhered to, or reconnecting them when the grid is more stable (Gupta et al., 
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2022:12). These remote disconnections or reconnections are owing to the ability of the SMs 

to execute remote commands in addition to its execution of local commands (Depuru et al., 

2011b:2736). 

 

The essence of demand response is to encourage reduction in energy usage, to control 

and reduce the total energy demand and lessen the grid burden. With demand response, 

no power outage is experienced but the electricity customers receive rate increase alerts 

and/or energy reduction prompts which they are obliged to react to (Ma et al., 2013:36-37). 

Demand response allows consumers to have more control of their energy bills and helps 

prevent blackouts during peak hours (Dlodlo et al., 2014:12). Demand response in SG 

ensures balance between energy generation and consumption, so that power is produced 

and used at the capacity constraints of the grid (Shokoya & Raji, 2019a:99). This is to lower 

the production cost and to ensure successful demand-side management and security of the 

grid. Maintaining a balance between generation and consumption is achieved by the utilities 

using the precise information of the load they need to cater for in real time. The load 

information is seamlessly available in real time owing to the peculiar two-way 

communication between the consumer and the utility, as provided for by the AMI in a SG 

system, for the efficient management of the grid (Mujeeb et al., 2020; Aggarwal & Kumar, 

2021:463). Information on the consumers’ load allows the utilities to match power supply to 

demand and thus generate electricity in accordance with demand. This prevents the burning 

of more fossil fuels, thereby saving the environments and the economies of realms 

worldwide (Ramchurn et al., 2012:86-89). Demand response functionality is not available 

with the conventional grid and its meters. 

 

❖ Smart Grid: the overview 
 

In summary, the cyber-physical system called SG improves the efficiency, reliability, and 

sustainability of the traditional power grid by drastically reducing system losses (Shahzadi 

et al., 2024:1). Elements of reliability improvement in the SG are self-healing, addition of 

alternative energies to the grid for capacity increment, promoting the economical use of 

electricity, and providing cyber and physical security to the grid information systems. The 

SG is efficient because power generation, transmission and distribution within the grid are 

cost-effective with reductions in generation and distribution losses. Demand response at 

the demand side of the grid introduces more flexibility to electricity tariffs and consumptions 

by allowing the engagement of customers in the management of the grid, ensuring that the 

SG is sustainable while also creating a level-playing field, promoting a mutually beneficial 

scenario, and a fostering harmonious relationship between the electric utilities and their 
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customers. The following six essential features distinguish SG from the conventional grid: 

addition of renewable energies to bolster the grid capacities and to reduce carbon 

emissions, reliable two-way communication from generation to consumption endpoints, 

advanced metering infrastructure, reliable energy storage abilities, management and 

processing of data, and lastly cyber-physical security (Aggarwal & Kumar, 2021:461-467). 

 

Deployment of AI techniques have been proposed and adapted to SGs for optimizing 

demand-side management, dynamic load profiling, automatic resolution of grid-related 

issues and for several other application areas that are crucial to the resilience and reliability 

of SGs. The unique cognitive characteristics of the SG responsible for its astute edge over 

the legacy grid is not without the powerful technical support provided by AI (Stracqualursi 

et al., 2023:3). In fact, AI is the driver behind the intelligence of SGs (SAP, 2021). 

Deployment of SG in Africa will reduce power crises on the continent owing to the ability of 

SGs in allowing the incorporation of renewable energies, including its better energy-

management prowess (Shokoya & Raji, 2019b:467, 470). Reliable electricity may snowball 

Africa into a production hub rather than her current perpetual consumption state. 

 

2.3    Electricity meters 
 

An electricity meter, electric meter, energy meter or kilowatt-hour meter is a device used by 

electric utilities to measure the consumptions of electrical energy for billing and monitoring 

purposes (Babuta et al., 2021:1; Bajpai & Reddy, 2021:65), and to reduce the effect of NTL 

(Depuru et al., 2011a:1011). Electricity meters are cash registers which serve as direct 

revenue interfaces between the utilities and their customers (Ajenikoko & Adelusi, 2015:99). 

Electricity meter is installed at the premises of consumers, either in the residential or 

industrial buildings, to measure the energy consumed by all the electrical loads situated in 

the buildings, or at times to measure the consumption of a particular standalone device 

(Sowmya et al., 2016:4368). Metering is fundamental and crucial to the commercial 

management of electricity (Hashmi & Priolkar, 2015:1424). There must be a reliable means 

of measurement to evaluate the power transfer by the utilities and the consumers’ energy 

consumptions to determine whether electricity is being stolen or not (Babuta et al., 2021:1). 

When utility revenues fall noticeably short of what they anticipated, then ET is suspected. 

 

2.3.1    Historic electricity meters 
 

To deeply understand the essence of electric meters in the power system, there is need to 

go down memory lane to perceive how important electric meters had been and why the 

early inventors made them priorities. Quantity measurement is critical to businesses to 
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promote transparency and to instill transactional trusts among customers. Even though 

electricity is an invisible commodity, the quantity of its consumption still need to be 

measured and doing so incontrovertibly to generate revenues. That was the original 

motivation behind the production of electricity meters. So many efforts had been put into 

the art of electricity metering in the past. Historic electric meters were the earliest meters 

deployed to determine the amount of electricity consumed when the production of electricity 

started, before the advent of the modern electromechanical meters and the later 

introduction of the more-accurate and more-efficient electronic meters (Ekanayake et al., 

2012:84, 87; Weranga et al., 2014:18, 26). 

 

2.3.1.1    Edison chemical meter 
 

Thomas Edison was the first to set up an electric utility as discussed in Section 2.2.1. He 

was also the first to start the commercial electric metering in 1881 (Ricks, 1896:61; Dyer, 

2001:875), when he developed and made available DC electric meters that were deployed 

to measure the level of consumption of his then forthcoming commercial product (DC 

electricity) in an effort to generate revenue (AIEE, 1941:421). Edison had already invented 

and produced the chemical meters before his Pearl Street DC power station began 

commercial electricity generation on 4 September 1882. That was a smart business move 

by Edison who ensured that the then proposed power station started to generate income 

immediately after it commenced operations. Edison meter was technically an electrolytic-

deposit meter in which the weight of its deposited mass would later be measured to 

determine the current consumed (AIEE, 1941:421). 

 

The Edison meter was industrially known as Edison chemical meter, and was used to 

measure electricity consumption using the concept of electrolysis, by taking advantage of 

the chemical effects of electrical current (AIEE, 1941:421; SEI, 2006).The Edison meter 

was a coulomb meter which was used with direct currents only, to determine the amounts 

of direct currents consumed (Ricks, 1896:61). A small amount of current was made to pass 

through the electrolytic cells of the meter by shunting the meter with the main circuit to 

prevent the whole circuit current from flowing through the meter. If not for this, the meter 

would had required huge meter resistance to cater for the large main-circuit current (Ricks, 

1896:62; Jones, 1982:30). The Edison chemical-based electric meter system was 

independent of electrical voltage (AIEE, 1941:421). The meter consisted of a copper 

sulphate electrolyte (Ricks, 1896:62) in a jar with two copper electrodes and was used to 

determine the ampere-hour of electricity consumed (Ricks, 1896:62; AIEE, 1941:421). The 

electrolytic process began after the passage of current through the electrolyte via the 
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electrodes. There were two versions of the Edison chemical meter. The original version of 

the meter was made up of a balanced beam, with copper plates suspended in copper 

sulphate solution at both arms of the meter beam as shown in Figure 2.6. 

 

 
 

Figure 2.6: Original version of the Edison chemical meter 

     (Ricks, 1896:62) 

 

The copper plates as seen in Figure 2.6 were the electrodes. As the electrolytic process 

continued, copper was transferred from the heavier anode to the lighter cathode, until the 

cathode was heavy enough to turn over the beam. When this happened, a unit would be 

registered on the counting mechanism of the meter and the direction of current would be 

reversed. The reversal of the direction of the current changed the polarity of the electrodes 

and the electrolytic process would continue unabatedly. The beam turnover allowed 

continual making and breaking of electrical contacts and the eventual reversal of the 

direction of the current through the meter. Also, the more the current flowed in the main 

circuit, the more the temperature of the main circuit increased and went higher than the 

temperature of the copper sulphate electrolyte of the meter. That translated to an increase 

in the resistance of the main circuit and a relative decrease in the resistance of the 

electrolyte, which allowed more current flow through the electrolyte of the meter. The 
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temperature variations of the electrolyte affected the accuracy of the meter (Ricks, 1896:61-

62; AIEE, 1941:421). The original Edison chemical meter was refurbished to cater for these 

shortcomings. The refurbished or the improved version of the Edison chemical meter is 

shown in Figure 2.7.  

 

 
 

Figure 2.7: Improved version of the Edison chemical meter 

(Ricks, 1896:63) 

 

In the improved version of the Edison chemical meter, the amount of electricity consumed 

was determined by weighing the measurement of the cathode at the start, and at the end 

of the billing period (Dyer, 2001:875). The anode was heavier while the cathode was lighter. 

The weight of the anode metal transferred to the cathode during the electrolytic process 

was equivalent to the amount of electricity (in ampere-hours) that had passed through the 

meter for that billing period. The difference between the original weight of the cathode and 

its weight after the electrolytic process determined the exact weight of the copper 

transferred from the anode to the cathode and also determined the actual amount of 
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electricity consumed. The cathode weight was proportional to the power utilized for a given 

billing period (Ricks, 1896:63; AIEE, 1941:421; SEI, 2006). 

 

In the previous Edison meter, the current that flowed through the meter increased owing to 

the increase in the temperature of the main circuit, while the current flow through the meter 

also reversed intermittently due to the making and breaking of electrical contacts. To correct 

these shortcomings of the previous version of the Edison meter, the mechanical switching 

(making and breaking of electrical contact) in the original meter was absent in the updated 

version, as the current in the improved version of the meter then flowed in one direction 

only. Also, a copper resistance or German silver was placed in series with the electrolyte, 

such that the increase in the copper resistance due to increase in the circuit temperature 

was equivalent to the supposed decrease in the resistance of the electrolyte. The copper 

resistance or German silver placed in series with the electrolyte was to cater for the 

temperature coefficient of resistance of the electrolyte and cancel out the effect that the 

temperature of the main circuit would have had on the electrolyte of the meter. That helped 

to remove the variation of the flow of current through the meter. Alternatively, amalgamated 

zinc plates could also be used as electrodes and immersed in zinc sulphate electrolyte, 

instead of copper electrodes and copper sulphate electrolytes as described earlier (Ricks, 

1896:62-63; AIEE, 1941:421). 

 

One of the disadvantages of the refurbished version of the Edison chemical meter was that 

the customers could not determine their electricity consumptions by direct reading from the 

meter (Ricks, 1896:63). The customers could not read their meters themselves directly from 

the device, but the cathode weight measurement was done in their presence to promote 

transparency and customer goodwill. Removing and weighing of the electrodes was a 

tedious task for the meter reader who was otherwise known as ‘calculator’ in those days 

(Ricks, 1896:63-64; AIEE, 1941:421-422). Previously used electrodes were replaced with 

fresh ones when they wore out. Also, Incandescent lamp was located within each meter, 

which was left burning to prevent the freezing of the copper sulphate or zinc sulphate 

electrolytes (Ricks, 1896:62; Jones, 1982:30). 

 

2.3.1.2    Gardiner DC lamp-hour meter 
 

The first known electricity meter was the DC lamp-hour electromagnetic meter produced 

and patented in 1872 by Samuel Gardiner (Bîrleanu et al., 2019:609; Coelho et al., 2019:98; 

Ezhilarasi & Ramesh, 2019; Martins et al., 2019:90). Unlike the Edison chemical meter 

discussed earlier, the Gardiner lamp-hour meter was not deployed commercially. The 
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Gardiner lamp-hour meter was produced when the need to monitor electricity usage arose, 

because lighting which was the first mass application of electricity needed to be monitored 

and billed (SEI, 2006). The Gardiner DC lamp-hour meter was the first-ever electric meter 

produced and preceded the Edison chemical meter, but the Edison chemical meter was 

more popular in practice because it was deployed for commercial use. The Gardiner DC 

lamp-hour meter is shown in Figure 2.8. 

 

 
 

Figure 2.8: Gardiner DC lamp-hour meter 

       (Smithsonian, 2019) 

 

The Gardiner DC lamp-hour meter used a simple electromagnet to control the start and stop 

of the timer or clock mechanism revealed in Figure 2.8 when current passed through it 

(Malik, 2013:140; Bîrleanu et al., 2019:609; Coelho et al., 2019:98). The meter was used to 

measure the electricity consumed by the earliest DC arc lamps (Primicanta, 2013:10). The 

arc lamps were centrally controlled by a switch and the current drawn by the lamps were 

constant (SEI, 2006; Primicanta, 2013:10). The cost of the electricity consumed was 

determined by the number of arc lamps powered per hour, as read from the current-flow 

duration registered on the Gardiner meter (SEI, 2006; Primicanta, 2013:10; Bîrleanu et al., 

2019:609). The DC arc lamps went obsolete with the introduction of Edison incandescent 

lamps (SEI, 2006). Unlike the arc lamps that consumed more power and produced high 
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intensity of light appropriate for outdoor lighting, Edison incandescent lamps consumed low 

power, provided less illumination suitable for indoor use and made possible the replacement 

of an arc lamp with several incandescent lamps, by technically subdividing the supposed 

intense radiance expected of a single arc lamp into several incandescent lighting units 

(Smithsonian, 2001; Sulzberger, 2003b:64-65; SEI, 2006). 

 

2.3.1.3    Shallenberger meters 

 

Oliver Shallenberger was the chief electrician at the Westinghouse Electric Company 

(renamed Westinghouse Electric and Manufacturing Company), Pittsburgh, Pennsylvania, 

United States (Guarnieri, 2013:52). In 1888, he invented the self-indicating and direct-

reading induction ampere-hour meter (a coulomb meter) shown in Figure 2.9 (Ricks, 

1896:67-68; AIEE, 1941:423; Sulzberger, 2003a:70).  

 

 
 

Figure 2.9: Shallenberger ampere-hour meter 

 (AIEE, 1941:424) 
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This Shallenberger ampere-hour meter was the first commercial and successful AC electric 

meter, which was used to measure the amount of AC current consumed by electricity users 

by leveraging on the rotary effect of magnetic field (AIEE, 1941:423). The meter was put 

into commercial production by the Westinghouse Electric Company. Shallenberger’s 

ampere-hour meter then became the cash register of the electricity industry (Ruch, 

1984:1397) used for accurately billing of customers. The Shallenberger ampere-hour meter 

eventually solved the lingered metering and billing issues associated with AC electricity 

(Coltman, 1988:92).  The greatest discovery of the electric metering art took place in 1894 

when Shallenberger developed the induction watt-hour meter (AIEE, 1941:423-424). 

Shallenberger used the basic principles of his ampere-hour meter to produce the 

subsequent Shallenberger AC watt-hour meter (Sowmya et al., 2016:4369). The discovery 

made it possible for Shallenberger’s earlier ampere-hour meter which registered readings 

only in ampere-hours to be upgraded to measure readings in watt-hours or energy (AIEE, 

1941:424). Figure 2.10 shows the Shallenberger watt-hour meter. 

 

 
 

Figure 2.10: Shallenberger watt-hour meter 

 (AIEE, 1941:426) 
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Although, Ottó Bláthy in 1889 made the first specimen of the AC induction watt-hour energy 

meter based on the principle of the Shallenberger ampere-hour meter (Ricks, 1896:422; 

AIEE, 1941:422), and later in the same year, Elihu Thomson also developed the 

commutator-type watt-hour meter, which could be used with either DC or AC electricity to 

measure energy consumptions (Ricks, 1896:66-67; AIEE, 1941:422-424; Sowmya et al., 

2016:4369). However, despite Bláthy’s and Thomson’s works on watt-hour meters for the 

registration of AC electricity consumptions, Shallenberger’s AC induction watt-hour meter 

developed in 1894 remained the only forerunner meter typical of the modern 

electromechanical meters, providing the cutting edge and setting new standard in the art of 

electric metering (Primicanta, 2013:11; Sowmya et al., 2016:4369). 

 

2.3.2    Modern electricity meters 

 

The modern electricity meters are conventional energy meters that have been recently 

deployed by electric utilities for use by the electricity consumers. The mode of operation of 

the modern electricity meter is that it continually measures the instantaneous current and 

voltage of the load circuit and calculates the product of the two to determine the power 

consumed; while the consumed power is later integrated with respect to time to determine 

the energy consumed (Bajpai & Reddy, 2021:65; Ghosal et al., 2022:160). This principle of 

operation took after the working principle of the Shallenberger watt-hour induction energy 

meter. 

 

Analogue and digital or electronic meters are the two basic categories of the modern 

electricity meter (Kathiresh & Subahani, 2020:177; Xia et al., 2022:279). Analogue meters 

are electromagnetic, while digital meters are electronic. The analogue electric-meter 

readings are displayed by a pointer-type or dial-type register mechanism, while the readings 

on digital meters are displayed on a liquid crystal display (LCD) or on a light-emitting diode 

(LED) screen (Ekanayake et al., 2012:95; Gopinath et al., 2013:429; Kathiresh & Subahani, 

2020:178). The prominent example of analogue meter is the electromechanical meter, while 

that of digital meter is the SM (Rastogi et al., 2016:13). 

 

Since the electromechanical meter could only measure the consumed electrical energy, 

there was the need for an electronic meter which could not only measure the amount of 

instantaneous energy used, but also able to measure and communicate other electrical load 

and supply parameters like the frequency, phase currents, phase voltages, reactive power, 

active power, apparent power, power quality measurement, maximum demand and power 

factor (PF) to the utilities, to allow them have more control over efficiency and capacity 
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(Ekanayake et al., 2012:87; Weranga et al., 2014:17-18; Avancini et al., 2019:705; 

Kathiresh & Subahani, 2020:178). 

 

Unlike the electromechanical meters, the working of electronic meters is not affected by 

external magnets or the orientation or positioning of the meters (Weranga et al., 2014:26). 

Electronic meter is more flexible, reliable, stable, provides higher accuracy in measurement, 

updates and gives measured data timeously (Ekanayake et al., 2012:87; Weranga et al., 

2014:26). A standard electronic meter consists of a microcontroller, an LCD and its digital 

counter-type display, communications ports, a power supply, and a real time clock (RTC) 

(Weranga et al., 2014:25) with no moving parts. Prepaid or prepayment meter is a kind of 

electronic meters which allows customers to pay their electricity bills in advance before 

power usage, to reduce revenue losses and the risks of unpaid electricity bills (Ajenikoko & 

Adelusi, 2015:100). Customers then lose access to electricity after they have exhausted 

their pre-purchased electricity units. 

 

Electronic meter communication was one way before the advent of SMs. The one-way 

communication capability was added when electronic meter in a conventional grid was 

automatized with automatic meter reading (AMR) to relate consumers’ basic status 

information and consumption records to the utilities. This was before the emergence of AMI 

with SMs in SG that allows for a two-way power flow and a two-way communication flow 

between the electric utilities and the consumers (Xia et al., 2022:280). Before the 

introduction of AMR and its one-way communication capability (Ekanayake et al., 2012:84-

85; Xia et al., 2022:274, 280), early electronic meters even though had display units like 

LCDs were read manually onsite for billing purposes (Ekanayake et al., 2012:87). 

 

A SM is  an advanced electronic meter and the state of the art in electricity metering, which 

has evolved owing to improvements on the previous electronic meters (Weranga et al., 

2014:27; Oloruntoba & Komolafe, 2018:15). Aside the mentioned two-way communication 

capability for SMs in AMI, power-outage detection and notification, load profiling, tamper 

detection, remote disconnection and reconnection of power supply by the utilities, ability to 

display information on multi-tariffing and on the current source of power supply (renewable 

or conventional), including other energy usage information, etc., are other features peculiar 

to SMs (Mashima & Cárdenas, 2012:210; Weranga et al., 2014:23; Gupta et al., 2022:12). 

Electromechanical meters are more susceptible to ET when compared with electronic 

meters (Weranga et al., 2014:23). 
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❖ Units and costs of electricity 
 

The electric meter captures the units of electricity consumed by the customers to determine 

the amount of bills payable to the utilities. The unit of the active electrical energy consumed 

is measured in kilowatt-hour (kWh) (Oladokun & Asemota, 2015:37). The kWh is the most 

common commercial standard unit of the electric meter for measuring the amount of 

electrical energy consumed by the consumers for billing purposes (Ghosal et al., 2022:160). 

The kWh of energy consumption in modern meters is measured by the integral of the real 

power consumed via the load circuit with respect to time (Bajpai & Reddy, 2021:65; Ghosal 

et al., 2022:160). 

 

One unit of electricity (1 kWh) is the electrical energy consumed when 1000 watts or 1 kW 

of electrical power is consumed and maintained for a period of one hour (Oladokun & 

Asemota, 2015:37; Abdul-Aziz et al., 2023:250), or when 1 watt of electrical power is 

consumed over a period of 1000 hours. Multiplying the power rating (in watts) of a device 

or an appliance by the duration of time (in hours) during which the device is turned on 

divided by 1000, indicates the energy consumption of the device in kWh (Abdul-Aziz et al., 

2023:249). For example, a 60-watt rated bulb turned on for a one-hour period would 

consume 60 watt-hour (0.06 kWh) of electrical energy, that is, 0.06 unit of electricity has 

been consumed in one hour. Ten bulbs of the same power rating turned on for ten hours 

would consume 6000 watt-hour (6 kWh) of electrical energy, that is, 6 units of electricity 

have been consumed in ten hours. The cost of the electricity consumed is based on the 

total energy usage measured in kWh multiplied by the tariff per unit of the used electricity. 

 

Electricity tariff or rate is a regulated price charged per unit of electricity consumed. The bills 

payable to the utilities by their customers are based on the units of electricity they have 

consumed with respect to the rate charged per unit of it by the respective utilities. The 

amounts charged per unit of electricity consumed by every utility are determined by the 

stipulated tariffs implemented by electric utilities in different countries, as approved by their 

various electricity regulatory authorities. Electricity tariffs are expected to be realistic as to 

allow for utility revenues that will enable gradual recovery of initial-investment costs on 

electricity infrastructures, and also viable to cater for the running costs of grid operations 

and maintenances (Oladokun & Asemota, 2015:37), while ensuring sufficient profits. 

 

2.3.2.1    Electromechanical meter 
 

Electromechanical meter or watt-hour meter is an analogue energy meter and the most 

common type of electricity meter used for registering energy consumptions (Ahmad et al., 
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2016:90; Avancini et al., 2019:705). The meter is the oldest type of modern meter which 

has been in use for over a century (Weranga et al., 2014:18; Ahmad et al., 2016:90). The 

modern electromechanical energy meter works on the principle of electromagnetic induction 

(Bajpai & Reddy, 2021:65), and is very identical to the AC induction watt-hour meter 

developed by Shallenberger in 1894, as discussed earlier in Section 2.3.1.3. The 

Shallenberger watt-hour meter was the forebearer of the current electromechanical meters 

as they work on the same principle (Primicanta, 2013:11; Sowmya et al., 2016:4369). Figure 

2.11 shows a sample of a single-phase electromechanical energy meter. 

 

 
 

Figure 2.11: Single-phase electromechanical meter 

(Gopinath et al., 2013:429) 

 

The meter readings on the electromechanical meters are manually read onsite by the utility 

employees, usually once in a month and manually entered to the utility databases (Gopinath 

et al., 2013:428; Weranga et al., 2014:23; Rastogi et al., 2016:13) in a process known as 

static load profiling. Manual onsite meter readings are inevitable in analogue metering 

because the conventional electricity meters lack advanced communication capacities 

(Knapp & Samani, 2013:47). Manual meter readings require the deployment of large human 

resources, and it is time consuming (Kathiresh & Subahani, 2020:178). The readings on the 

analogue counter-type dials of electromechanical meters are used to prepare the monthly 

electricity bills for the customers. Subtracting the current meter readings from the previous 

meter readings gives the current billable readings. Electromechanical meters have five 
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analogue counter dials (four black dials and one red dial). Only the digits on the black dials 

are read and used for billing purposes by the electric utilities. The digit on the red dial after 

the decimal point is neither read nor used for billing purposes, but measures the number of 

rotations of the central aluminium disc. The rotational speed of the aluminium disc at the 

centre of the meter is correlative to the instantaneous active power being consumed through 

the load circuit at any point in time (Masnicki & Mindykowski, 2018:0183; Avancini et al., 

2019:705; Kathiresh & Subahani, 2020:177-178).  

 

The electromechanical meter is basically a special kind of an induction electric motor 

(Ahmad et al., 2016:90; Bajpai & Reddy, 2021:65), consisting of electromagnets (stator) 

and rotating aluminium disc (rotor) that spins within the air gap between the electromagnets. 

The aluminium disc at the centre of the meter is supported by a shaft or a vertical spindle, 

which turns gear arrangements or gear trains connected to the register mechanism on the 

front of the electric meter (Kathiresh & Subahani, 2020:178; Bajpai & Reddy, 2021:67). The 

current coil and the load circuit are connected in series with, while the voltage coil is 

connected across the supply (Weranga et al., 2014:19).  

 

An induction coil (known as current coil or series coil) which is excited by the load current 

is wound around the series magnet; while another induction coil (known as voltage coil, 

pressure coil, shunt coil or potential coil) with higher number of turns (more inductive than 

the current coil) is excited by the current of the supply voltage and is wound around the 

central limb of the shunt magnet (Weranga et al., 2014:19; Bajpai & Reddy, 2021:66-67; 

Dimkpa et al., 2023:2639). The series and shunt magnets are laminated electromagnets 

(Bajpai & Reddy, 2021:66) with their magnetic fields induced by the voltage and current 

coils (Ekanayake et al., 2012:86). A single-phase electromechanical meter uses a single 

voltage and current induction coils, while a three-phase electromechanical meter uses more 

than one voltage and current induction coils (Gopinath et al., 2013:428; Kathiresh & 

Subahani, 2020:178).  

 

Power is fed into the meter through the induction coils (electromagnets), which eventually 

produce current-coil magnetic flux and voltage-coil magnetic flux. The magnetic flux 

generated by the current coil is proportional and also in phase with the load current, while 

the current and its produced magnetic flux in the voltage coil lags the supply voltage by 90o, 

giving rise to eddy currents in the aluminium disc (Weranga et al., 2014:19; Ahmad et al., 

2016:90; Kathiresh & Subahani, 2020:177; Bajpai & Reddy, 2021:66; Dimkpa et al., 

2023:2639). It is the interaction between the changing magnetic fields of the electromagnets 

(current and voltage coils) with the conductive aluminium disc that gives rise to eddy 



 

51 
 

currents being induced in the aluminium disc. Eddy currents are induced in conductors 

placed in changing or alternating magnetic fields. The internal components of the single-

phase electromechanical meter shown in Figure 2.11 are depicted in Figure 2.12. 

 

 
 

Figure 2.12: Internal components of the single-phase electromechanical meter 

  (Weranga et al., 2014:19) 

 

The 90o current and magnetic flux phase lags or phase delays in the voltage coil (owing to 

its highly inductive nature) can be calibrated using a lag coil (with its series connected lag-

adjusting resistor located between the voltage coil and the disc, but not shown in Figure 

2.12) and an adjustable copper rings (lag plate) on the central limb of the shunt magnet in 

a bid to maintain unity PF within the meter, so as to enhance accurate measurements 

(Kathiresh & Subahani, 2020:177; Bajpai & Reddy, 2021:66; Dimkpa et al., 2023:2639). The 
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90o phase lags mentioned in the preceding paragraph is maintained using a lag coil or using 

the adjustable copper rings (adjusted in such a way that the magnetic flux produced by the 

voltage coil lags the supply voltage by a displacement angle of 90o (Weranga et al., 2014:19; 

Kathiresh & Subahani, 2020:177; Bajpai & Reddy, 2021:66-67; Dimkpa et al., 2023:2639). 

Although, a few electromechanical meters use the lag coil with its lag-adjusting resistor to 

maintain the 90o phase lags in the voltage coil (Weranga et al., 2014:19); but most 

electromechanical meters use the adjustable copper rings instead, an instance when the 

adjustable resistor of the lag coil will be undisturbed. The lag coil with its lag-adjusting 

resistor and the adjustable copper rings are also known as PF compensators (Bajpai & 

Reddy, 2021:67). The meter works at unity PF (after being calibrated by the lag coil or the 

copper rings), but still maintains the 90o current and magnetic-flux phase lags with the 

supply voltage to ensure that the meter functions properly. 

 

The interaction between the magnetic flux generated by the current coil and that produced 

by the voltage coil with the induced eddy currents in the aluminium disc causes a driving 

torque that spins or rotates the aluminium disc (Ahmad et al., 2016:90; Avancini et al., 

2019:705; Bajpai & Reddy, 2021:67-68). The torque or force exerted on the meter disc is 

proportional to the product of the instantaneous voltage and current (instantaneous true 

power) consumed via the load circuit (Ekanayake et al., 2012:86; Kathiresh & Subahani, 

2020:178; Bajpai & Reddy, 2021:67), as well as proportional to the number of rotations 

made by the aluminium disc (Ahmad et al., 2016:90; Bajpai & Reddy, 2021:67), while 

compensating for friction. A rotation in this regard means a complete spin of the aluminium 

disc of the meter from one point to another, which is also referred to as a revolution. When 

the aluminium disc rotates, it turns series of gears via the disc shaft, which resultantly move 

the register dials and record energy consumption in kilowatt-hours (Bajpai & Reddy, 

2021:67). This is done by integrating the speed of rotation of the meter disc over time 

through the count of the number of disc revolutions (Weranga et al., 2014:19; Dimkpa et al., 

2023:2639). 

 

The rotation speed of the aluminium disc is controlled by the brake magnet (an adjustable 

permanent magnet positioned at the edge of the disc), with the help of the eddy currents 

induced in the disc by the magnetic fluxes produced by the electromagnets. The aluminium 

disc also spins between the gaps of the brake magnet as it does between the 

electromagnets. Eddy currents react with the magnetic flux of the brake magnet to provide 

the required opposing torque equal to the rotational speed of the aluminium disc. The 

opposing torque stalls the spinning of the disc when no power is being drawn by the load 

circuit. These two opposing equilibrium forces from the aluminium disc and the permanent 
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or brake magnet allow the disc to rotate in accordance with the amount of the power being 

consumed through the load circuit (Kathiresh & Subahani, 2020:178; Bajpai & Reddy, 

2021:67; Dimkpa et al., 2023:2639). 

 

The meter constant, which is the number of revolutions per kWh of energy consumption 

(Bajpai & Reddy, 2021:70) of the meter is 600, as conspicuously written as 600 r/kWh on 

the nameplate of our sample electromechanical meter shown in Figure 2.11. This means 

that the meter disc makes 600 revolutions to register one unit (1 kWh) of energy consumed. 

We can approximately rewrite the meter constant as 1.7 watt-hour per revolution of the 

meter disc. The electromechanical meter constant is usually denoted by the symbol “Kh” 

(Dimkpa et al., 2023:2639). The more the active loads on the load circuit, the less time it 

takes the meter disc to make a revolution. The meter constant varies from meter to meter 

(Apogee, 2001), as the amount of energy consumed per revolution of the meter disc 

depends on vendor-design specifications (Primicanta, 2013:11). If for example an electrical 

appliance rated at 100 watts is connected to our sample electromechanical meter as load, 

it would take 60 seconds for the meter disc to make a revolution and register approximately 

1.7 watt-hour of energy. The time per revolution of any electromechanical meter disc can 

be calculated using Equation 2.1 (Dimkpa et al., 2023:2639). 

 

𝑃 =
3600×𝐾ℎ

𝑇
                     (2.1) 

 

The time ( 𝑇 in seconds) per revolution of the meter disc can be calculated from Equation 

2.1 by making 𝑇 the subject of formula, and then substituting for the values of the meter 

constant 𝐾ℎ and that of the power (𝑃 in watts) consumed by the load circuit into the 

rearranged equation. It should be noted again that the meter constant 𝐾ℎ of 

electromechanical meters is vendor-specific and varies for meters with different 

manufacturers. Electromechanical meters are still very common in the developing countries, 

but the developed countries are phasing them out in favour of the more-accurate and more-

efficient electronic meters (Ahmad et al., 2016:90; Avancini et al., 2019:705). 

 

2.3.2.2    Advanced metering infrastructure 
 

Unlike the electromechanical meter in conventional grids which is a standalone metering 

device, metering in SG constitute a system (Anas et al., 2012:178) called the advanced 

metering infrastructure (AMI). The AMI is an integral component of the SG, which is an 

integrated hierarchical network system (Jiang et al., 2014:106-107; Yip et al., 2018:191), 
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and comprises of SMs, communication networks, data collectors or concentrators, AMI 

server, and Meter Data Management System (MDMS) in its architecture, for intelligent 

control, better grid load management, and data management in the SG system (Yip et al., 

2018:191; Yan & Wen, 2021; Nayak & Jaidhar, 2023:1). The AMI brings about an end-to-

end electric metering between the consumers and the utilities (Althobaiti et al., 

2021:159295), as shown in Figure 2.13. 

 

 
 

Figure 2.13: Architecture of the AMI 

        (Jiang et al., 2014:106) 

 

The idea of the AMI to improve the demand-side management and promote energy 

efficiency started the SG concept (Fang et al., 2012:945). AMI is the modernization of the 

conventional electricity metering system by replacing the old electromechanical meters with 

SMs (Mashima & Cárdenas, 2012:210; Jiang et al., 2014:105; Yip, Wong, et al., 2017:230; 

Micheli et al., 2019:330), and allowing two-way reliable communication between electricity 

customers and the utilities (Aggarwal & Kumar, 2021:463). 

 

AMI is an integrated and computerized metering system, a key technology and a core part 

of SG, with SMs, data management systems and bidirectional communication network links 

to the utilities (Jokar et al., 2016:216; Aggarwal & Kumar, 2021:463). The AMI system 

monitors electricity consumption, serves as a tool used for energy management and for 

billing purposes. The advent of AMI has opened the door for novel vulnerabilities in the 
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electricity system because of the embedded communication layer (Aggarwal & Kumar, 

2021:466; Xia et al., 2022:273-274). The AMI two-way communication allows the SMs to 

be read remotely and to implement and execute other grid management controls (Depuru 

et al., 2011b:2736; Jiang et al., 2014:105-106). The SG AMIs and their SMs has made the 

gathering of data used for ETD easier (Liao, Zhu, et al., 2024:5075). Data-driven ETD is 

less expensive and more efficient (Mujeeb et al., 2020; Kim et al., 2024:7). 

 

Although, SMs with advanced networking and software tools are difficult to hack and tamper 

with (Depuru et al., 2011b:2741), but they are not totally immune to physical tampering, 

bypassing, and other conventional means of stealing electricity, despite the fact that SMs 

more robust and provide the cutting edge when compared with their conventional-meter 

counterparts (Shokoya & Raji, 2019a:98-99). This fact has still invariably makes ET a big 

issue in SG (Jiang et al., 2014:105; Aldegheishem et al., 2021:25036). Electromechanical 

meters could only be physically tampered with locally, attacks on SMs could be done locally 

and remotely (Jokar et al., 2016:216). 

 

Attacks in AMI could be accomplished before the meter by preventing the meter from 

registering the energy consumed, at the meter by tampering with the stored data in the SM, 

and modifying the network by intercepting it and injecting false data into the communication 

link between the SM and the utility (Jiang et al., 2014:109; Jokar et al., 2016:216; Avancini 

et al., 2019:711). The attackers could also hack into the SG, disconnect the consumers 

remotely and compromise system operations of the utilities (Jiang et al., 2014:106; Viegas 

et al., 2017:1257). These attacks lead to disruption of normal readings, resulting to 

erroneous readings and causing NTL. Cyber-attacks on smart electric meters could 

compromise the software of the meter and cause it to start to send erroneous or fraudulent 

readings to the utilities (Viegas et al., 2017:1257; Yan & Wen, 2021). 

 

❖ AMI communication networks and technologies 
 

As could be seen from Figure 2.13, the AMI constitute different communication networks 

such as the Home Area Network (HAN), the Neighbourhood Area Network (NAN) and the 

Wide Area Network (WAN), making the SG a network of networks (Saponara & Bacchillone, 

2012:1, 3; Bîrleanu et al., 2019:612; Micheli et al., 2019:330). The communication between 

these networks are Internet Protocol-based (IP-based) (Bîrleanu et al., 2019:612), and are 

used for data collection in the SG system (Jiang et al., 2014:106-107; Rastogi et al., 

2016:15). IP-based networks and communications are more secure and efficient (Bîrleanu 
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et al., 2019:612). Figure 2.14 takes a closer look at NAN architecture with its electrical and 

communication network flows in the AMI. 

 

 

 
Figure 2.14: The NAN architecture of the AMI 

        (Yip et al., 2018:191) 

 

HAN is somewhat a Local Area Network (LAN) having the SM as its core (Jiang et al., 

2014:107), with other home appliances and devices like smart sockets, smart appliances, 

in-home display, HVAC (heating, ventilation, and air conditioning) systems, EVs, 

microgenerators, etc., forming an integrated system (Ekanayake et al., 2012:95-96; Micheli 

et al., 2019:330). The NAN is a LAN network (Bîrleanu et al., 2019:612) of several 

neighbouring HANs or group of HANs with NAN data collector, a local access point, and 

metering data aggregation unit for the data of the neighbouring interconnected SMs of 

different homes (Jiang et al., 2014:107; Micheli et al., 2019:330). The NAN collector 

aggregates the cumulative SM data of several HANs in the same zone or service area and 

send it to headends at utility operation centres via WAN (Yip et al., 2018:191). The utility 

operation centres consists of headends and control centres. The WAN is however the 

network which connects all the NAN data collectors to utility headends (Yip et al., 2018:191; 

Micheli et al., 2019:330).  
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For the SMs to communicate with each other and the utility servers in the AMI, different 

available media or communication technologies are employed. Wired communication 

technologies that could be used are digital subscriber line (DSL), coaxial cables, optical 

fibre, Power Line Carrier (PLC) or Distribution Line Carrier (DLC), Ethernet, cable modems, 

Public Switched Telephone Network (PSTN), and an advanced form of PLC called 

Broadband over Power Lines (BPL); while the wireless communication technologies 

employed are IEEE 802.11s, ZigBee, Wavenis, Z-Wave, Bluetooth, Insteon, infrared, peer-

to-peer (P2P), World Interoperability for Microwave Access (WiMAX), radio-frequency 

mesh, satellite communication, and network technologies affiliated to mobile 

communications like, Global System for Mobile Communications (GSM), Code Division 

Multiple Access (CDMA), General Packet Radio Service (GPRS), and 3G/4G technologies  

(Ekanayake et al., 2012:96; Saponara & Bacchillone, 2012:3-4; Rastogi et al., 2016:14-15; 

Porcu et al., 2021:8-9). 3G is the third-generation technology in cellular communications, 

while 4G is the fourth-generation technology in cellular communications. Internet is also 

used as a communication medium in the AMI, and may be used to connect a SM directly to 

the utility headend (Rastogi et al., 2016:14). 

 

Low power short-distance wireless radio-frequency communication technologies like Wi-Fi, 

Bluetooth, ZigBee, Wavenis, Z-Wave and Insteon are HAN network solutions used to 

connect the appliances in the home with the SM (Saponara & Bacchillone, 2012:3-4; 

Rastogi et al., 2016:15), and allows appliance monitoring and control for better economic 

usage (Jiang et al., 2014:107). ZigBee is the most reliable and cost-efficient of all the HAN 

network solutions (Weranga et al., 2014:36). The communication technology deployed in 

NAN depends on the size of data being transferred (Ekanayake et al., 2012:98). Wi-Fi 

wireless radio technology has been suggested for NAN to send SM data to the collectors, 

but cellular or WiMAX technologies could also be employed (Jiang et al., 2014:107). For the 

WAN transmission of data to the utility headend, optical fibre Is proposed, but cellular and 

WiMAX technologies are also used as options (Jiang et al., 2014:107; Weranga et al., 

2014:36). According to Rastogi et al. (2016:14), PLC is the best communication technology 

for establishing connection between the SMs of different households in NAN, because it 

does not require a separate communication medium, but the usage of the existing power 

lines. PLC could also be employed to send SM data from HAN to the collection points at the 

distribution stations (Weranga et al., 2014:36).  

 

As previously established in Section 2.2.2.2, the electrical network and the communication 

network in the AMI are overlaid, and their flows are in a two-way fashion (Fang et al., 

2012:944; Yip, Wong, et al., 2017:231). The electrical network of NAN allows power flow, 



 

58 
 

while its communication network allows information flow which constitutes data and control 

signals (Depuru et al., 2011b:2737-2738; Yip, Wong, et al., 2017:238). The NAN comprises 

of the household SMs and their communication and electrical networks, the collector located 

at the distribution substation (secondary distribution substation) as shown in Figure 2.14. 

The utility control centres monitor the electrical and communication networks of the 

distribution system. 

 

Usually, the SMs of various households in a NAN and the collector at the secondary 

distribution substation communicates wirelessly, while the collector at the secondary 

distribution substation, the primary distribution substation, and the headends at the 

operation centre communicate via a wired medium (Yip, Wong, et al., 2017:232). The utility 

distributes electricity from the primary distribution substation to the secondary distribution 

substation located in the neighbourhood of the electricity consumers. The secondary 

distribution substation provides electricity to all the consumers in the locality, and its 

endowed collector or master SMs aggregate all the household consumption profiles in the 

neighbourhood (Yip, Wong, et al., 2017:232; Yip et al., 2018:191). Interfaces on SMs which 

make connections using various communication technologies are available by default on 

the meter via its embedded radio adapters for wireless communications, and connection 

ports for wired communications (Knapp & Samani, 2013:48) as depicted in Figure 2.16. 

 

❖ Smart meter 
 

SM is a digital meter, an advanced and intelligent electronic meter used for energy 

measurement and communication (Khan et al., 2024:9). It is an improvement on the 

conventional electric meters (Kabalci & Kabalci, 2019:49), a next-generation electric meter 

(Ahmad et al., 2016:90), and the latest device in the art of electricity metering (Oloruntoba 

& Komolafe, 2018:15). The SM is like a computer in the interconnection of a vast SG 

network. Unlike the electromechanical meters which are manually read by the utility 

employees, the SM readings are automatically read and sent to the utility information 

systems in real time, giving accurate details on the use of energy (Rastogi et al., 2016:13-

14; Micheli et al., 2019:330). 

 

A digital electronic meter is genuinely “smart” if it is part of the AMI network, allowing the 

electric companies to read and monitor the customers’ electricity consumptions remotely 

and allowing the SMs of the customers to receive information from the utilities via a two-

way communication channel in real time (Micheli et al., 2019:330). If an electronic meter is 

not part of the AMI, it is not being referred to as a SM (BSE, 2021; DeBoer, 2021). The SM 
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is an entity in AMI (Anas et al., 2012:178) and one of the many applications of Internet of 

Things (IoT) (Rastogi et al., 2016:13). While the SM is the regarded as the heart of the AMI 

and the cornerstone of the modernized grid (Reinhardt & Pereira, 2021:1), the AMI is also 

considered as the heart of the entire SG system (Bîrleanu et al., 2019:611). The two-way 

communication between SMs and utilities via the AMI makes the SMs stand out from other 

forms of electronic meters. SMs are installed at the premises of electricity customers to 

record real-time electricity consumption and transmit the data to the utilities through a two-

way communication channel. Like the electromechanical meters, SMs also exist as single 

or three-phase meters (Weranga et al., 2014:26). SMs optimize the use of electricity by 

assisting consumers to manage their loads to conserve energy and to consequently reduce 

their electricity bills. The intelligent smart energy meter is depicted in Figure 2.15. 

 

 
 

Figure 2.15: Smart meter 

(Kabalci, 2016:309) 

 

The key elements of a SM are the solid-state device itself, a microprocessor, and a 

communication network (Knapp & Samani, 2013:48). The microprocessor and local 

memory are for storing and transmitting the digital-meter measurements to the utilities via 

the communication network. Since we now have the more-robust and powerful 

microcontrollers at low cost, most SM processors are currently made of microcontrollers 

(Aurilio et al., 2014:1459). 
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Traditional electromechanical meters could only be compromised by physical tampering, 

while the introduction of AMI with its inherent SMs and the addition of a cyber layer in SG 

has opened new vulnerabilities for the electricity thieves to explore (Yip, Wong, et al., 

2017:230; Aggarwal & Kumar, 2021:466; Xia et al., 2022:273-274). Physical tampering on 

SMs is easily detected by the utilities (Rastogi et al., 2016:13). Any zero reading on the 

meter is also being detected as the energy pilferers are effortlessly being identified by the 

utilities, since the utilities would be informed of such null reading through the AMI (Anas et 

al., 2012:178; Avancini et al., 2019:711; Shokoya & Raji, 2019a:100). The installation of 

SMs are expected to increase after the year 2020 (Ekanayake et al., 2012:84). 

 

The SM is a hardware used for the periodical acquisition of the real-time energy 

consumption data (load or consumption profiles) that are being delivered to the utilities 

(Micheli et al., 2019:330). SMs record the energy consumed at stipulated time intervals per 

day (depending on the specific AMI deployments) and deliver them to the utilities (Mashima 

& Cárdenas, 2012:215). The utilities manage the timestamped SM load profiles using a 

software known as MDMS (Bîrleanu et al., 2019:611; Rendroyoko et al., 2021:405). 

 

The MDMS, which is the data repository of the AMI, receives the SM data or the SM 

readings through the AMI server via the AMI communication medium, and then validate, 

adjust, and store them (Rendroyoko et al., 2021:403) in a real-time process known as 

dynamic load profiling. The stored SM data are then used for billing, ETD (by identifying 

potential fraudulent electricity consumers from among the SM readings or consumption 

profiles of consumers), outage control, demand response management to prevent system 

overloads, fault detection, and to determine which consumer are eligible to be connected 

and/or needed to be disconnected remotely, etc. (Jiang et al., 2014:106; Rendroyoko et al., 

2021:405). The massive volume of data provided by SMs through AMI in SG have enhanced 

the opportunity of developing ETD technology driven by data (Liao, Zhu, et al., 2024:5075). 

 

• Hardware components of a smart meter and their functions 
 

The hardware components of a typical SM are power supply unit, voltage and current 

sensing unit, energy measurement unit (i.e., energy metering integrated circuit or energy 

metering IC), microcontroller unit (MCU), RTC, and communicating unit (Weranga et al., 

2014:28), as shown in Figure 2.16. Basically, the SM works by continuously acquiring 

current and voltage signals from the utility supply, conditions the signals and convert them 

from analogue to digital via the analogue-to-digital converter (ADC), computes and 
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communicates the output signals to the utilities or perhaps receive control signals or 

commands from the utilities (Ekanayake et al., 2012:87-99; Weranga et al., 2014:27-28). 

 

 
 

 
Figure 2.16: Internal hardware components of a smart meter 

 (Weranga et al., 2014:28) 

 

The power supply unit powers the SM by driving its hardware components. The battery-

switchover circuitry is used to switch over to the meter rechargeable backup-battery, to 

power the SM in case there is mains power failure from the utilities. The backup battery is 

being charged and controlled by the filtered system power output from the power supply 

unit. The voltage sensing unit is a voltage sensor, while the current sensing unit is a current 

sensor, employed to capture the voltage and current input signals from the utility supply. 

Typically, low-cost SMs use shunt resistors as current sensors, and simple resistor dividers 

as voltage sensors. Other available current sensors used in SMs are hall effect-based linear 
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current sensors, current transformers (CTs), and Rogowski coils. Signal conditioning, 

analogue-to-digital conversion by the ADC and computation or energy calculations take 

place in the energy measurement unit or the energy metering IC (Ekanayake et al., 2012:87-

89; Weranga et al., 2014:28-31, 33-34). 

 

Signal conditioning is the preparation of analogue input signals for digital conversion. Signal 

conditioning is done by the digital signal processor (DSP) embedded in the energy metering 

IC. Computation involves performing arithmetic operations (energy calculations) on the 

voltage and current input signals, timestamping or time-referencing the energy consumption 

data and preparing them for communication to the output peripherals, etc. The energy 

consumption calculation is done by multiplying the digital values of the voltage and current 

it collects from the voltage sensor and the current sensor of the meter. This metrological 

procedure is done at steady intervals to determine the energy used or consumed. Before 

computation takes place, the voltage and current values from the voltage and current sensor 

circuits are converted from analogue to digital by the ADC of the energy metering IC. The 

energy metering IC also provides information on active, reactive, and apparent power, etc. 

Energy metering IC in a SM could be a single-phase or a three-phase chip. Single-phase 

SMs use single-phase energy metering ICs while three-phase SMs use three-phase energy 

metering ICs. For SMs that do not have a separate energy metering IC, the MCU would be 

built to perform its functions (Ekanayake et al., 2012:89-95; Weranga et al., 201434-35). 

 

The MCU is referred to as the core of the SM where all the meter functions take place. The 

functions of other hardware components of the SM are controlled by the MCU. The MCU 

controls power management, tamper detection, reading of the smart card for the available 

units of electricity, and the display of electrical parameters like the time-of-use or time-of-

day tariff, electricity cost, and power outages on the LCD of the meter and on an in-home 

display. The in-home display is a separate handy display unit placed at any convenient 

place within the home to make the SM data easily accessible to the customers. The MCU 

does data calculations depending on the data received and then manages the data with 

electrically erasable programmable read-only memory (EEPROM). It also communicates 

with the energy metering IC and other communication devices associated with the meter. 

The RTC of the SM (equipped with a dedicated clock battery meant strictly for providing 

continuous power during maintenance or power failure) provides information about alarm 

signals, time of the day, and the current date. Timestamping of energy consumption data is 

done by RTC during their computations (Ekanayake et al., 2012:95; Weranga et al., 

2014:35-36). 
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SMs are also equipped with breaker, anti-tampering circuitry and reset/update circuitry 

(Weranga et al., 2014:28). Breaker or the SM circuit breaker trips off the power when 

consumers consume more than their subscriptions or beyond the energy capacity allocated 

to them by the power companies, or when the breaker responds to remote command from 

the utilities to connect/disconnect power into the building. For those customers who may 

want to fiddle with their SMs in a bid to steal electricity, the meter is equipped with anti-

tampering sensors. Anti-tampering is a tamper detection security feature for forestalling 

tampering and protecting the device (Ngamchuen & Pirak, 2013). When the customer 

tampers with the meter, the SM anti-tampering sensor detects it, and the anti-tampering 

circuitry sends signals to the utilities through the communication unit via the MCU, informing 

them of the illicit act. The reset/update circuitry allows the meter to be reset to factory 

settings and/or to update the SM software. 

 

2.4    Electricity theft: causes, effects, detection and mitigation techniques 
 

There is a need to discuss the causes, effects, detection and mitigation of electricity theft 

or NTL before delving fully into its various curtailing methods and solutions that are 

mentioned in the literature. 

 

2.4.1    Causes of electricity theft 
 

Several factors drive consumers to indulge in illegal electricity consumption. Some of these 

factors are controllable, while some are almost uncontrollable because of unpredictable 

human behaviours (Jiang et al., 2014:109; Gao et al., 2023:4565). The motivation behind 

ET is the bait to completely evade payment, manipulate energy meters to read less than 

the actual consumption and/or partly hide some stolen energy (to convey less overall 

consumption) in a bid to reduce the entirety of bills payable to the utilities (Depuru et al., 

2011a:1010; Appiah et al., 2023:1). Some consumers use electricity legally for minor 

household loads, and tap it illegally to operate hefty loads (Ahmad et al., 2018:2917). This 

is commonly done at night times when the possibility of utility-employee inspection is 

relatively low (Depuru et al., 2011c:2). 

 

The utility companies do not have the knowledge of how the energy deficits caused by theft 

are taken out of the grid. The cause of NTL is unexplainable within the ambience of the 

electricity grid system, until superficially detected and confirmed. This further establishes 

the fact that those factors that cause ET are external to the electric grid system. Utilities 

cannot account for such losses, which would consequently resort to unbilled electric units. 

The only losses the utilities are aware of are the unpaid bills. When customers fail to pay 
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their bills, the utility suffers revenue losses; and such revenue paucity ultimately counts 

towards NTL (Jamil & Ahmad, 2019:453). 

 

The parameters that cause ET are multifarious and complex in nature (Depuru et al., 

2011a:1007). Some of these parameters are social, some are economical, some are 

managerial, some are political, while some are caused by the criminal and corruption 

tendencies on the part of the electricity consumers and the utility employees, etc. 

 

The main cause of ET in the developing countries is related to poverty (Yurtseven, 2015:70). 

High unemployment rate, a causal effect of most of the severe economic conditions faced 

by electricity customers, is a huge factor responsible for most ETs (Depuru et al., 

2011a:1009; Shokoya & Raji, 2019a:97; Shokoya & Raji, 2019b:469). Poor or low income 

is another financial-limiting factor which causes ET (Mirza & Hashmi, 2015:602). Weak 

financial situation of electricity consumers is one of the causes of ET and is mainly 

responsible for non-payment or non-remittance of electricity bills by the customers (Depuru 

et al., 2011a:1007). Some consumers who had been genuine and used to paying their 

electricity bills regularly could as well turn to start stealing electricity owing to their prevailing 

unfavourable financial conditions. 

 

Non-payment of electricity bills is not only restricted to poor communities or indigent 

citizens, but also to rich and influential citizens who know their power connections would 

not be interrupted whether they pay their bills or not (Smith, 2004:2069; Yakubu et al., 

2018:611). Some government agencies also default in paying their electricity bills (Depuru 

et al., 2011a:1010-1011). Non-payment of electricity bills itself is a form of NTL as discussed 

in Section 1.3.4 of Chapter 1, no matter the reasons or excuses behind the consumers’ 

inability to pay (Lewis, 2015:118, 121; Bihl & Hajjar, 2017:272-273). Non-payment of 

electricity bills is an indirect way of engaging in theft, since the benefit of unsettled bills is 

equivalent to the units of stolen electricity (Jamil & Ahmad, 2019:453). Also, poor power 

infrastructure and inconsistencies in distribution systems and metering cause ET in the 

developing countries (Jiang et al., 2014:108). 

 

In South Africa, vandalizing utility equipment, stealing of electric cables, scooping oil from 

transformers at substations, and selling of illegal prepaid vouchers (ghost vending) also 

contribute to NTL (Shokoya & Raji, 2019a:97; Kambule & Nwulu, 2021:43). 

 

In the developed countries like the United States and Canada, some citizens who unlawfully 

grow marijuana steal electricity to conceal their huge overall electricity usage, as a means 
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to avoid suspicion and subsequent inspection and prosecution by the law enforcement 

agents (Depuru et al., 2011a:1010; Jiang et al., 2014:108). Electricity is also popularly 

stolen by Bitcoin miners to operate their Bitcoin-mining machines. Bitcoin miners engage in 

stealing electricity due to the high electricity consumption required by Bitcoin-mining 

computers during Bitcoin production, and in the production of cryptocurrencies in general 

(Dindar & Gül, 2021). 

 

While some unscrupulous electricity customers tend to try to bribe their way out after being 

caught to have stolen electricity either by meter tampering, meter bypassing, or direct 

hooking of wires on the distribution lines etc. (Smith, 2004:2069), some corrupt utility 

employees also tend to subscribe to these crooked gestures and collude with them to 

arrange and negotiate settlements. At times, some unprincipled utility employees initiate the 

corruption process themselves by offering to help the customers tamper their meters to 

lower their billable readings. This is in a bid to influence the customers to offer them bribes 

in return, instead of being forthright and carrying out their duties appropriately according to 

their work ethics. This customer-employee corruption connivance spurs ET, as the action 

reduces the tendencies of the defaulting customers being detected, fined, or prosecuted. 

This infamous mutual corruption does not only embolden the dishonest electricity customers 

to continue to indulge in the despicable acts of stealing electricity, but also generate 

unofficial incomes for the vicious employees (Jamil & Ahmad, 2019:452, 458; Ghori et al., 

2020:16033). This employee-customer collusion causes a form of NTL called billing 

irregularities (Depuru et al., 2011a:1007). 

 

Billing irregularities are caused when the utility employees intentionally record lower 

readings as against the actual readings on the energy meter to fulfil their part of the 

corruption deal. This is different from the billing irregularities occasioned by errors in meter 

readings (Sharma et al., 2016:43) and accounting errors made during the preparation of 

customers’ billing invoices (Bihl & Hajjar, 2018:271), which are entirely due to human errors 

(Glauner et al., 2017:761). Some corrupt politicians also cause billing irregularities by aiding 

and abetting ET (Depuru et al., 2011a:1009-1010; Gaur & Gupta, 2016:129). ET and 

corruption are intertwined. High rates of ET are evidences of corruption within the electric 

utility companies. ET thrives where corruption thrives (Smith, 2004:2072). The concept of 

billing irregularities as one of the forms of ET has been discussed in Section 1.3.3 of Chapter 

1. 

 

The erroneous belief that stealing from neighbours, family, or friends is criminal, while 

stealing from the state or publicly owned utility companies is acceptable, also contributes to 
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ET (Depuru et al., 2011a:1009; Shokoya & Raji, 2019a:97). Some dishonest customers 

derive their motivation for engaging in power theft from this fictitious notion. Such a notion 

is most common amongst the citizens of developing countries. They believe anything that 

comes from the state or publicly-owned sectors should be given free of charge. Some of 

these citizens particularly presume that electricity should be regarded as a social service 

(Onat, 2018:166; Ojoye, 2019; Shokoya & Raji, 2019b:469) or be given by entitlement 

(Robinson, 2014). This belief system is malicious and criminal, as electricity is not free 

anywhere in the world or given deliberately on an entitlement or right basis. Electric utilities 

and other public utilities are not charities, but business institutions that need to make 

sufficient profits to maintain and sustain them. 

 

Unmetered supply which gives rise to estimated billings (Gaur & Gupta, 2016:130; Shokoya 

& Raji, 2019b:469; Soyemi et al., 2021:1); and defective or faulty meters (Hashmi & Priolkar, 

2015:1424) which generate erroneous or false readings are also some of the causes of 

NTL. 

 

Some places are a no-go area for the utility employees because they are dangerous 

territories. Going to inspect or claim electricity bills in these areas could be a perilous 

mission. However, the utilities have already supplied those areas with electricity. Most 

residences in these areas are informal, while most residents there are poor and connect to 

the grid through illegal connections. Unmanageable areas with high crime rates such as 

favelas in Brazil, and slums in other countries have such characteristics. Inhabitants of such 

areas are potentially hostile to the utility employees who come around with the motive of 

removing their illegal connections, fining them, compelling them to pay their bills or entirely 

disconnecting them from the grid if they are not able to pay. Utility employees fear physical 

attacks in such areas and avoid going there for inspections, let alone attempting any 

disconnection. The utilities generate very low income or at most times, are unable to 

generate any income from those uncontrollable areas. Cases like this cause loss of 

revenues to the utilities and eventually contribute to NTL (Antmann, 2009:26, 33; Glauner, 

2019:6). 

 

Other factors that cause ET are higher energy tariffs. Higher electricity prices discourage 

some electricity customers from wanting to pay their bills (Smith, 2004:2069-2070) 

irrespective of whether they are customers of developed countries or not. Illiteracy amongst 

electricity consumers about the fact that that there are established laws that criminalize ET 

and make them prosecutable if found culpable (Depuru et al., 2011a:1009; Shokoya & Raji, 

2019a:97; Shokoya & Raji, 2019b:469) is also a contributory factor. Epileptic supply 
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(Shokoya & Raji, 2019b:467-469) or outright lack of electricity supply (Depuru et al., 

2011a:1010) in some locations are also reasons some fellows indulge in stealing electricity. 

 

Finally, weak enforcement of the law against ET culprits encourages them to carry on 

(Yakubu et al., 2018:611-612, 614, 616). Countries that do not strictly enforce the law to 

punish electricity offenders create enabling environment for the menace to thrive and such 

countries record high proportions of ET (Depuru et al., 2011a:1009). 

 

2.4.2    Effects of electricity theft 
 

The effects of ET focus on the impacts of stealing electricity. ET is costly (Lewis, 2015:119, 

121), as it comes with critical consequences and also very challenging to detect and curtail 

(Fei et al., 2022:1; Stracqualursi et al., 2023:1). The difficulty in curtailing ET is due to the 

various tricky means by which it is pilfered, and also owing to the fact that stealing of 

electricity could be carried out intermittently and may not always be done continuously (Gao 

et al., 2023:4565; Wang et al., 2023:1, 20). 

 

2.4.2.1    Economic effects 
 

The electricity sector is very crucial to the economic development of every nation 

(Stracqualursi et al., 2023:2). According to surveys, ET has caused economic losses to 

countries around the world (S. Zhu et al., 2024:15478). The direct adverse effect of power 

theft is that it causes losses of huge revenues to the utilities (Arango et al., 2017:570; Zheng 

et al., 2018:1606). Revenue losses to the utilities is the most-significant negative effect of 

ET mentioned in the literature (Smith, 2004:2072; Messinis & Hatziargyriou, 2018:251). 

Since ET is a global phenomenon (Stracqualursi et al., 2023:1), electric utilities of all 

countries of the world lose a lot of revenue annually, and thus contributing to national 

financial losses.  Apart from the direct financial losses to electric utilities worldwide, the 

effect of poor electricity supply owing to ET undermines economic activities of countries, 

leading to corresponding reduction in national revenues as evaluated through losses in 

gross domestic products (GDPs) in various realms. GDP losses also immensely contribute 

to the annual cumulative financial losses of nations globally (Ahmed et al., 2022:579; 

Wabukala et al., 2023:2). 

 

The total annual financial losses incurred globally by all electric utilities due to ET is 

estimated to be around US$100 billion (Coma-Puig et al., 2024:2705; Kim et al., 2024:2; 

Shahzadi et al., 2024:2; L. Zhu et al., 2024:256). Out of this whopping US$100 billion in 

losses, the developing countries are responsible for losses of up to around US$64.7 billion, 
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while the rest of the world account for about US$31.3 billion in financial losses (Energy 

Central, 2019; Khan et al., 2023:537). 

 

To establish how prevalent the ET scourge is biting around the world, some approximate 

country-specific annual financial losses across the developed and the developing countries 

will be mentioned. These revenue losses to the utilities create a setback in financial and 

economic prosperities of the different countries (Petrlik et al., 2022:420; Naeem, Javaid, et 

al., 2023:3). The huge national financial losses inflicted by ET as discussed in the 

succeeding paragraphs are estimated values, based on the fact that it is not possible to 

precisely measure ET or NTL  (Fragkioudaki et al., 2016:44; Viegas et al., 2017:1260). 

 

In the developed countries, the United States loses about US$6 billion (Khan et al., 2024:1), 

United Kingdom loses around £173 million (Ullah et al., 2022:18681), Australia loses an 

estimate of A$15 million (Robinson, 2014), while Germany, Spain, and Italy lose around 

€504 million, €426 million, and €408 million respectively (Kwarteng et al., 2023:7) to ET 

every year. 

 

Still in the developed terrain, the yearly financial losses brought about by ET in Canada 

have been reported on provincial basis. Most of the ETs in Canada occur majorly due to 

marijuana-grow operations (Tweed, 2013). ET costs the Ontario province of Canada around 

C$500 million yearly (Kelly-Detwiler, 2013). BC Hydro, an electric utility in the British 

Columbia province of Canada reportedly loses approximately C$100 million to ET annually 

(Kambule & Nwulu, 2021:42); while Hydro-Québec, an electric utility in the Québec province 

of the North American country could lose up to C$75 million per annum on account of ET 

(Jones, 2021). The sum of the reported financial losses caused by ET per annum from the 

already mentioned three provinces of Canada (out of the total ten provinces and three 

territories that make up the entirety of Canada) is obviously above C$500 million. This is in 

consonance with the Canadian Government’s estimate that the country loses over C$500 

million in annual utility losses due to ET, as reportedly remarked by Zach Pollock in Tweed 

(2013). 

 

In the developing countries, larger sums (with respect to the size of the economies of the 

different nations) are lost to ET every year. South Africa loses at least R20 billion (Mujuzi, 

2020:79) every year to ET. Mozambique loses US$100 million (Kambule & Nwulu, 

2021:43), while Zimbabwe loses around Z$237 billion (Kambule & Nwulu, 2021:43). In 

Nigeria, the eleven electricity distribution companies in the country lose about ₦33 billion 

monthly to ET, which cumulatively translates to around ₦396 billion in energy-theft losses 
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per year (Okwumbu-Imafidon, 2020). Ghana loses over US$1 billion (Otchere-Appiah et al., 

2021:3), Kenya loses about KSh18 billion (Amadala, 2021), Rwanda loses FRw1.9 billion 

(Iribagiza, 2020), Liberia loses around US$48 million (Boayue, 2022), Tunisia loses 

US$106.8 million (North Africa Post, 2021), Morocco loses MAD 1.2 billion which is 

equivalent to US$131.4 million (Mebtoul, 2020), Russia loses about US$5.1 billion 

(Lepolesa et al., 2022:39638), while Türkiye loses approximately US$1 billion (Yurtseven, 

2015:71) every year to ET. 

 

Further on the financial losses to ET in the developing countries, Malaysia’s losses were up 

to RM500 million (Abdullateef et al., 2012:250) annually, Pakistan loses over Rs53 billion 

(Aziz et al., 2020) which is an equivalent of US$0.89 billion (Javaid, 2021:162936) yearly to 

ET. Taiwan loses around NT$1 billion (Su et al., 2016:493), China as a whole loses US$560 

million every year (Yao et al., 2023:11162), while Fujian, a province in the Southeastern 

coast of China, loses more than CN¥100 million (Pamir et al., 2023:3576) per year on 

account of ET. Jamaica loses approximately US$46 million (Lewis, 2015:128), Honduras 

loses approximately US$13 million (Naeem, Aslam, et al., 2023:59496), Puerto Rico loses 

US$400 million (Anwar et al., 2020:2138), Ecuador loses around US$200 million (TBY, 

2014), Mexico loses Mex$25.7 billion (Serrano, 2019), Peru loses S/103 million (Petrlik et 

al., 2022:420), and Brazil loses around US$10.5 billion (Ali et al., 2023:2) to ET every year. 

Meanwhile, India, the country with the highest financial losses to ET (Xia et al., 2022:274), 

loses at least US$16.2 billion (Ali et al., 2023:2) annually to the ET menace. 

 

The ET-inflicted financial losses of some countries as stated in the preceding paragraphs 

tend to spur GDP losses in those realms (Ahmed et al., 2022:579; Wabukala et al., 2023:2). 

ET has compounded the economic misfortunes of Nigeria and the power crisis in the West 

African country has also demystified its supposed economic mightiness amongst fellow 

African nations (Shokoya & Raji, 2019b:467, 469). Financial losses due to ET contribute 

immensely to the economic woes of any country of the world (Aslam, Javaid, et al., 2020:2) 

and also result in lack of investments in the power sectors (Fragkioudaki et al., 2016:44; 

Jamil & Ahmad, 2019:452). 

 

As already intimated, theft of electricity and its resulting economic impasse impacts 

negatively on national GDPs of countries (Wabukala et al., 2023:2). The ET menace caused 

about 1.5% reduction in the GDP of India (Otchere-Appiah et al., 2021:2), and could 

averagely cause losses greater than 0.5% of GDP in the sub-Saharan Africa, and as much 

as 1.2% of GDP losses in some other countries within the sub-Saharan African terrain 

(Antmann, 2009:9). The GDP losses in India owing to ET have recently been reported to be 
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up to 2.5% from the initial 1.5%, translating to about US$14.8 billion in India’s financial 

losses (Ahmed et al., 2022:579). Generally, power interruption causes approximate GDP 

losses in the range of 1% to 5% in the sub-Saharan African countries (Trace, 2020). These 

economic losses also contribute to a decline in the human development index (HDI) of every 

country. High level of NTL exists in the developing countries, while the developed countries 

record low NTL cases (Viegas et al., 2017:1256; Stracqualursi et al., 2023:1). NTL 

variations among countries are broadly dependent on their level of developments as 

revealed by their respective HDIs and GDPs (Glauner, 2019:7; Osypova, 2020:14). 

Renowned metrics such as HDI and GDP are typical indicators published periodically by 

the United Nations to determine the development statuses of countries (Conceição & 

UNDP, 2019; Glauner, 2019:7; Osypova, 2020:14). 

 

The growth and sustainability of any industry is hinged on capacity building. The economic 

effect of ET is huge, as it hinders the electric utility companies from investing in system 

rehabilitation and capacity improvement (Jamil & Ahmad, 2019:452; Hassan et al., 2022:2). 

Capacity addition to the electricity supply infrastructure is very important to shrink the 

cleavage between the demand and supply of electricity, and to promote sustainability. 

Capacity addition takes care of the events when there are excessive demands for electricity. 

Private sectors which are expected to invest in the electricity sector to increase capacity are 

unwilling to do so because of ET (Jamil & Ahmad, 2019:458).  

 

ET makes the electricity sector an unattractive venture to potential investors. The horrible 

effects of ET discourage electricity stakeholders from wanting to invest their hard-earned 

monies in the power sector, and such investment dearth would eventually lead to supply 

shortfall (Jamil & Ahmad, 2019:458). The potential private investors’ fear of ET is notable 

and understandable because no one wants to get involved in any business that may be 

dead on arrival owing to the persistent ET scourge right from inception. Theft of electricity 

also hinders human development. The utilities may not be able to improve the existing 

members of staff by sending them on trainings that would improve their quality of services, 

and may also be unable to employ more members of staff because of the financial paucity 

brought about by ET (Lewis, 2015:121). 

 

2.4.2.2    Technical effects 
 

Apart from the immense revenue losses (Zheng et al., 2018:1606) which come as a huge 

drawback to the sustainability of the electric supply companies, ET also undermines the 

efficiency and security of the electricity grid (Fragkioudaki et al., 2016:44). Stealing of 
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electricity overloads the utility generating units  and could ultimately trip or shut generators 

down abruptly (Depuru et al., 2011a:1008; Shokoya & Raji, 2019a:97). Overload is a form 

of TL caused by commercial losses (Abaide et al., 2010:2; Poudel & Dhungana, 2022), 

because the unanticipated or emergency increase in grid load causes corresponding 

increase in TL beyond the expected levels (Karimi et al., 2020). Overvoltage and/or 

congestion stress and overstretch the network equipment. Overloading the generating units 

is the potential cause of overvoltage and performance drop (Depuru et al., 2011a:1008; 

Fragkioudaki et al., 2016:44). All these lead to irregularities in power supplies, damage to 

the grid infrastructure and thus cause system failures (Yip, Wong, et al., 2017:230; Shokoya 

& Raji, 2019b:469). 

 

System overloads as triggered by erratic load increase occasioned by ET cause supply 

shortfalls, power interruptions or disruptions, system failures, instabilities and decrease in 

grid frequencies (Anas et al., 2012:180; Lewis, 2015:121; Kocaman & Tümen, 2020:1). The 

more the ET-inflicted damage caused by overloading the generating units and stressing the 

grid equipment, the more the maintenance costs increase. Since the utilities are insolvent 

in meeting up with their financial obligations towards the maintenance and upgrade of the 

electricity grid owing to the liquidity crunch caused by ET, the unexpected and unpredictable 

additional loads brought about by theft consequently lead to electricity interruptions which 

cause reliability issues. As hinted earlier, these Interruptions come in the form of a drop in 

the quality of power supply known as brownout, or a complete power outage otherwise 

known as blackout (Depuru et al., 2011a:1008; Lewis, 2015:119, 121; Fragkioudaki et al., 

2016:44; Kruse et al., 2021:1; Petrlik et al., 2022:420). Electrical surge caused by load 

imbalance (overload) was one of the causes of the blackout that occurred in North America 

in August 2003 (Casey et al., 2020:1, 3). 

 

Persistent overloading of the electric power system may eventually lead to power rationing 

known as load shedding (Anas et al., 2012:180) or rolling blackouts (Nduhuura et al., 

2020:2; Nduhuura et al., 2021:7). ET causes load shedding after wreaking energy shortfall 

(Anas et al., 2012:180; Mujuzi, 2020:78). Load shedding is a power management measure 

which helps to distribute power demand and prevent countrywide blackouts. With load-

shedding scheme, power supply is mandatorily rationed, and supply to some designated 

locations is temporarily shut down when the power system is constrained, that is, when 

supply is insufficient to cater for demand. Load shedding could be used to compensate for 

power shortage and to ascertain security of supply. Load shedding is an emergency event 

implemented to salvage the power generating units of utilities from imminent breakdown, 

prevent a nationwide power outage (total blackout), and protect electricity grids (Eskom, 
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2013). Power shutdowns owing to load shedding are scheduled and controlled to prevent 

complete power system collapse (Trace, 2020). Load shedding is temporarily discomforting 

to the electricity customers, but the endurance would just be for a short while, serving as a 

provision for preventing longer hideous power outage situations. Load shedding scheme 

could also be used to manage peak-period demand pressure, to ascertain energy balance 

in the power system (Depuru et al., 2011a:1008). 

 

Load shedding, which started in recent years in South Africa (Grootes, 2019), is now a 

popular occurrence in the Southern African country. Load shedding occurs mainly because 

of the undue pressure caused by power system overload (Trace, 2020). ET is one of the 

stimulators of power-system overload which causes electricity shortage that eventually 

leads to incessant load shedding in South Africa  (Shokoya & Raji, 2019a:96-97; Mujuzi, 

2020:78-79). To cater for the persistent power generation deficits (worsened with the spate 

of ET) bedevilling Nigeria, load shedding is inevitably and perpetually implemented in the 

country (Shokoya & Raji, 2019b:467-468). Load shedding is also being implemented across 

many other developing countries, owing to limited generation capacities (Oluwasuji et al., 

2018;1590; Oluwasuji et al., 2020:1-2), and because of the added grid-strains caused by 

ET (Nduhuura et al., 2020:2). 

 

Generally, overloading the grid hampers electricity quality, reliability and sustainability 

(Depuru et al., 2011a:1008; Yip, Wong, et al., 2017:230; Guarda et al., 2023:1). Aside the 

mentioned detrimental ET effects of overloading the grid, overloading may also cause 

damage to the appliances of honest legitimate customers (Depuru et al., 2011a:1008; 

Fragkioudaki et al., 2016:44), or even cause instigation of power surges that could damage 

electric wirings and cause fire outbreaks (Zheng et al., 2018:1606; Petrlik et al., 2022:420). 

 

2.4.2.3    Environmental effects 
 

ET is detrimental to public safety (Zheng et al., 2018:1606; Khan et al., 2024:2), as electricity 

thieves ignore this important factor when carrying out their illicit acts. Electricity thieves do 

not care, notwithstanding they put the lives of others in danger just to accomplish their 

malevolent objectives. Cables are carelessly laid when they steal electricity, and hence they 

imminently put the lives of others in danger. Electric shock hazards and/or fatalities to 

innocent persons may occur due to carelessly laid cables, and at most times, the power 

filchers themselves put their lives in jeopardy by risking great injuries or death (Hall, 2015; 

Petrlik et al., 2022:420; Stracqualursi et al., 2023:1). Apart from these, the electric utility 
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employees too also stand a great risk of these hazards during maintenance and inspection 

activities (Meuse, 2016). 

 

More carbon emission occurs  while burning more coal, gas, or other limited natural 

resources (Ma et al., 2013:36; Kocaman & Tümen, 2020:1) during the generation of more 

electricity to stabilize the grid and to make up for the power deficits caused by ET 

(Fragkioudaki et al., 2016:44). This causes more atmospheric pollution (Glauner et al., 

2017:761), and also make the Earth vulnerable to climate change (Osmanski, 2020). 

 

2.4.3    Electricity-theft sufferers 
 

Worthy of separate mention are those that are at the receiving end of the ET menace. ET 

causes financial losses to the utilities and inflict technical damages to the grid infrastructure. 

Moreover, the electricity crises caused by power theft affect economic activities causing 

drops in national GDPs. This is in addition to the risk of poor-quality supply that could 

damage the appliances of honest customers, outright supply outages, or even at times fire 

outbreaks. These adverse effects of electricity pilferage have been discussed in Sections 

2.4.2, 2.4.2.1, 2.4.2.2, and 2.4.2.3. Those who get the direct backlashes of ET have also 

been somewhat mentioned in those sections during discussions. The burden of ET is 

shared amongst electricity supply companies, honest legitimate consumers or customers, 

and nations at large (Antmann, 2009:7; Viegas et al., 2017:1256). 

 

To retrieve part of the financial losses caused to the utilities by electricity thieves, the utilities 

also tend to apportion part of the huge theft-driven revenue losses by passing them to the 

legal paying customers (Kocaman & Tümen, 2020:2; Guarda et al., 2023:1). Passing part 

of the revenue shortfalls caused by ET to honest customers is done by increasing the 

electricity tariff or rate (Depuru et al., 2011a:1008-1009; Anas et al., 2012:180; Guarda et 

al., 2023:1), and/or sharing part of the huge pecuniary losses amongst benign legitimate 

customers to shrink the financial-loss gaps (Yurtseven, 2015:71; Yakubu et al., 2018:611; 

Kocaman & Tümen, 2020:1-2). Each honest electricity customer in the UK has been 

reported to be paying extra £30 on their yearly electricity bills owing to ET (Xia et al., 

2022:274). Unfortunately, this is the sad reality of ET, an unavoidable ripple or domino effect 

of it. The loss sharing is harsh and unfair on the honest consumers, but the utilities are 

handicapped in this situation, since they cannot bear all the theft-inflicted economic 

encumbrances alone (Kocaman & Tümen, 2020:2; Xia et al., 2022:274). 
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To buttress the fact that honest consumers also shoulder part of the burdens of the adverse 

effects of ET, Jay McCoskey, the Chief Executive Officer of Port Harcourt Electricity 

Distribution Company (PHED), in an interview said that ET is the problem of everyone, 

because if our neighbours steal electricity, they indirectly steal from us (Spark Media, 2016). 

If one neighbour steals electricity, it means they are stealing obliquely from all their other 

benign neighbours, because the unfavourable effects of the theft would ultimately reach 

those neighbours who do not steal (Kelly-Detwiler, 2013). Honest customers should know 

that they indirectly foot the bills for the thefts of electricity, since the nefarious acts practically 

take money off their wallets (Kelly-Detwiler, 2013), and they in essence subsidize those who 

steal electricity (Antmann, 2009:6). 

 

Therefore, legitimate customers should see themselves as stakeholders in the campaign 

against ET. They should endeavour to offer helping hands voluntarily and report known 

cases of theft in their neighbourhoods to the utility companies. This is to express their 

disapproval of the illicit acts, and to assist in combating the scourge collaboratively (Jamil 

& Ahmad, 2019:457-458). Electricity customers should help the utilities to help themselves. 

As the legitimate electricity customers do their bits by giving credible information on known 

ET, the utilities should also be proactive in always keeping NTL under control in the overall 

best interest of all the parties involved. In summary, the adverse effects of ET reach 

everyone directly or indirectly. 

 

2.4.4    Detection and mitigation of electricity theft 
 

ET is a major impediment to electricity reliability and sustainability (Winther, 2012:111; 

Sharma et al., 2016:40), and hence needs to be detected and significantly mitigated, so as 

to conserve it and to enhance its effective use (Nayak & Jaidhar, 2023:1). ET could be 

mitigated by preventing it from taking place; detecting and halting it if it has already taken 

place; recovering some of the associated revenue losses owing to the theft, and debarring 

such horrid incident from reoccurring (Dick, 1995:92). Researchers have made tremendous 

efforts in finding lasting solutions to this plaguing problem of ET. NTL detection (NTLD) 

techniques and approaches have been researched and presented in a lot of literature. 

Existing ET prevention, detection and mitigation methods have been profoundly reviewed 

in Section 2.5. 

 

The ET imbroglio could be assuaged by many methods. These methods are either 

technical, non-technical, or a combination of both, to achieve better results (Glauner, 

2019:3-4). The non-technical methods are implemented by addressing some of the 
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underlying socio-economic factors  (Stracqualursi et al., 2023:1) which influence some 

consumers who indulge in stealing electricity, and those factors that led some utility 

employees into collecting bribes from defaulting customers. Other methods of controlling 

ET are manual onsite inspections, imposing fines on defaulters, government giving 

electricity subsidies to deserving indigent citizens of developing countries to encourage 

them to become legal consumers, enforcing other elements of the existing laws to prosecute 

offenders; while technical methods involve deploying electric meters, applying artificial 

intelligence-based (AI-based) machine learning (ML) methods, including methods from 

other fields of knowledge like cybersecurity/intrusion detection, distribution network analysis 

and anomaly/outlier detection, etc. (Messinis & Hatziargyriou, 2018:251-252; Shokoya & 

Raji, 2019a:98; Kgaphola et al., 2024:336-337). To limit NTL owing to unpaid bills as 

discussed in Section 1.3.4 of Chapter 1, utilities may cut off electricity supply to the non-

paying customers, or reach realistic payment-solution agreements with them on the 

modalities of their debt payments (Glauner, 2019:111). 

 

In addition to the electricity-theft detection (ETD) and ET mitigation methods mentioned 

above, naming and shaming of theft culprits by publishing their names and other particulars 

in the media is also one of the veritable regulatory strategies of curbing ET (Antmann, 

2009:24). Leading Nigerian electricity distribution companies have also launched this 

peculiar approach to restrict ET within their distribution networks. They have introduced the 

naming and shaming of those customers who are involved in stealing electricity, including 

the utility employees who may engage in any corrupt activities in collaboration with the 

customers, by publishing their names and addresses in all the available public media (Bolaji, 

2020). This strategy is supplementary to the arrests and the prosecution of ET culprits. Also, 

confidential whistleblowing platforms have been launched, which assures payment of 

incentives to those who are committed and courageous enough to report those who engage 

in ET (Vanguard, 2021). Utilities in Jamaica (Observer, 2017), Ghana (GhanaWeb, 2018), 

Liberia (Sainworla, 2021), Pakistan (Dawn, 2009), and India (Upadhyay, 2018), etc. have 

also embraced this method. All the rules guiding this NTL cutback approach have been 

injected within the purview of the power-sector laws and regulations of every realm. This 

theft-prohibitive measure is highly commendable and should be sustained as one of the 

potent methods that could be employed to assuage the hydra-headed ET problem. 

 

To reduce NTL in the high-crime or unmanageable areas mentioned in Section 2.4.1, 

medium-voltage distribution (MVD) has been implemented by a Brazilian electric distribution 

company in such areas, whereby shielded networks are installed to connect customers to 

electricity supply, while each customer’s connection and the MV/LV distribution transformer 
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that supply a group of customers are provided with dedicated meters in a shielded panel 

located close to the transformer, and the consumers’ meter readings could be read via 

repeating displays at their premises and remotely by the utility through the AMI (Antmann, 

2009:26, 32-33). With the MVD concept, the shielded networks which are supplied directly 

by the pole-mounted MV/LV transformers prevents illegal connections, the shielded panel 

prevents meter tampering, while the LV distribution network is completely excluded. 

Identifying unmanageable areas with high NTL is of no essence if no corrective measure 

could be taken to stem the losses. 

 

2.4.4.1    Characteristics of electricity-theft mitigation 
 

Mitigation or minimization of NTL in the power grids is the only panacea to the obstinate ET 

problem (Lewis, 2015:128-129; Kocaman & Tümen, 2020:1). Mitigating ET is the most 

important and the cost-effective means of curtailing power losses (Abaide et al., 2010:1; 

Fragkioudaki et al., 2016:44). Apart from maintaining stable and healthy electricity grid and 

assuring financial prosperities to the electric utilities, another benefit of mitigating ET is the 

reduction in atmospheric pollution caused by carbon emissions (Depuru et al., 2011a:1007; 

Fragkioudaki et al., 2016:44). The more the success achieved in deterring and mitigating 

ET, the more the reduction in carbon emissions into the atmosphere (Fragkioudaki et al., 

2016:44). This in turn tend to lower the risks of greenhouse effects that later cause global 

warming and climate change (Osmanski, 2020). Mitigating ET creates a low-carbon and 

energy-efficient environment and also promotes energy security (Depuru et al., 2011a:1007; 

Fragkioudaki et al., 2016:44; Khan et al., 2024:7). 

 

It is pertinent to reiterate that in reality, it is impossible to completely eradicate ET or NTL in 

the power systems, but it is possible to reduce it to an acceptable and tolerable level (Lewis, 

2015:128-129; Kocaman & Tümen, 2020:1). The unpredictable human nature involved, and 

the financial considerations that surrounds ET compounds its intractability (Jiang et al., 

2014:109). So, ET is difficult to control in its entirety even with the most advanced 

equipment; but could be cut down to a reasonable level by deploying variety of solutions 

(Jiang et al., 2014:109; Jamil & Ahmad, 2019:458). Mitigation of ET is crucial and becomes 

the only inevitable option to save various power utilities and national economies (Poudel & 

Dhungana, 2022:109-110, 117) . ET mitigation helps the utilities to overcome major revenue 

losses and increase electricity reliability by reducing dubious demands owing to pilfered 

electricity and thus make more power available to boost economic activities. 
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Sizeable reduction of ET will unburden the electricity grid and enhance its healthiness and 

efficiency, thereby improving power quality and reliability, and ensuring financial profits to 

the utility companies (Abaide et al., 2010:2; Shokoya & Raji, 2019a:100). Additionally, ET 

mitigation also guards the honest consumers against paying for what they did not consume. 

This prevents electric utilities from distributing part of the ET-inflicted financial deficits 

amongst the legal honest customers (Depuru et al., 2011a:1008-1009; Anas et al., 

2012:180) or imposing higher electricity tariffs on them (Yurtseven, 2015:71; Yakubu et al., 

2018:611; Kocaman & Tümen, 2020:1-2; Guarda et al., 2023:1). The ET albatross must be 

significantly reduced, if not, it will subdue the electric utilities and inflict unthinkable harm on 

national economies (Guarda et al., 2023:1; Khan et al., 2024:8) and the environment 

(Depuru et al., 2011a:1007; Fragkioudaki et al., 2016:44; Khan et al., 2024:8). 

 

2.4.5    Electricity-theft detection: the state of the art 
 

Conventional or traditional methods like the exclusive onsite inspections (Messinis & 

Hatziargyriou, 2018:251), T&D loss analysis (Smith, 2004:2070-2074), or finding the 

difference between the consumed and billed electricity within a community by using a 

central observer meter (Ghori et al., 2020:16034) have been used to detect ET. These 

conventional methods have several drawbacks in terms of social and technical limitations 

(Messinis & Hatziargyriou, 2018:251; Savian et al., 2021:1-2). Exclusive onsite-inspection 

method, which involves the onsite inspection of all available electricity customers on the 

grid is less efficient, requires a significant amount of time to execute, and prohibitively very 

expensive (Yip, Wong, et al., 2017:230; Zheng et al., 2018:1606; Liao, Zhu, et al., 

2024:5075). 

 

The huge running cost involved in the large-scale deployment of human resources for 

exclusive onsite inspections makes the conventional approach for detecting ET very 

expensive and less attractive (Yip, Wong, et al., 2017:230; Messinis & Hatziargyriou, 

2018:251; Zheng et al., 2018:1606; Liao, Zhu, et al., 2024:5075). Some T&D data 

calculations are inconsistent and inaccurate (Smith, 2004:2070), while the use of an 

observer meter could only help to determine the area where ET is taking place, but not the 

actual theft culprits (Ghori et al., 2020:16034). The pilfering methods of electricity that spur 

eventual onsite inspections have been mentioned in Sections 1.3, 13.1, 13.2, 1.3.3, and 

1.3.4 of Chapter 1. With the obvious inadequacies of the conventional methods, there is a 

need to explore other methods that will further assist in stemming the ET menace and its 

horrendous effects. 
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AI techniques are the state-of-the-art methods employed for the detection of ET (Glauner 

et al., 2017:761; Glauner, 2019:31, 110; Ghori et al., 2020:16033-16034; Saeed et al., 

2020:1; Guarda et al., 2023:4; Stracqualursi et al., 2023:12, 16; Coma-Puig et al., 

2024:2704). This approach is proficient and predominant when compared with other 

methods used for NTLD. Machine learning (ML), an AI-based method, is deployed in the 

data-oriented NTLD methods (Messinis & Hatziargyriou, 2018:259; Saeed et al., 2020:9) 

discussed under Section 2.5.3.2, and have also been exhibited in the experimental part of 

the thesis. The AI-based methods for NTLD perform better than the traditional methods 

(Saeed et al., 2020:1). AI-based NTL models identify irregular electricity or energy 

consumptions in real time and such anomalous consumption patterns are indications of ET 

(Jiang et al., 2014:108; Glauner et al., 2017:761; Yip, Wong, et al., 2017:231; Poudel & 

Dhungana, 2022:110; Guarda et al., 2023:1-2). ETD or NTLD is technically a binary 

classification problem because it involves the determination of theft and non-theft cases 

(Chen et al., 2022:5).  

 

2.4.5.1    Artificial intelligence 
 

The term artificial intelligence (AI) was first coined by John McCarthy in 1956 to describe a 

new field of knowledge associated with “thinking machines”, during a six-week Summer 

Research Project Conference at Dartmouth College in Hanover, New Hampshire, United 

States (Nilsson, 2013:77-78; Glauner, 2019:16). The 1956 Dartmouth Conference which 

was organized by John McCarthy birthed AI and initiated it as a new discipline (Nilsson, 

2013:77; Cao, 2022:3). Other notable scientists who attended the conference and also 

assisted in its organization logistics were Claude Shannon, Marvin Minsky and Nathaniel 

Rochester (Glauner, 2019:16). 

 

AI has kept evolving ever since it was birthed in 1956 (Cao, 2022:4-8). It has continued to 

experience exponential growth and has found applications in almost every discipline. 

According to John McCarthy: “AI is the science and engineering of making intelligent 

machines” (Hamet & Tremblay, 2017:S36-S37; Amisha et al., 2019:2328). AI refers to the 

usage of digital computers and machines to simulate human intelligence (Raschka et al., 

2020:1). The objective of AI is to create intelligent machines that act effectually in novel 

conditions (Russel & Norvig, 2021:19). 

 

AI involves the incorporation of humanlike-intuition technology into machines by building 

intelligent systems or models that allow machines to perform tasks that are normally 

associated with humans (Choi et al., 2020:1). The operation of such models are automated 
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and require little or no human involvements (Hamet & Tremblay, 2017:S36). Humanlike-

intuition technology constitutes algorithms that allow machines to imitate humans by 

replicating their mental prowess to solve problems (Janiesch et al., 2021:686). Initially, 

building an intelligent analytical AI model would require explicit programming using 

algorithms to produce a model or computer program with cognitive capabilities. After the 

intelligent model must have been developed, it can then reason critically to discover 

meanings, learn from previous experience, generalize and make predictions, 

recommendations, or generate answers, rules, etc. (Janiesch et al., 2021:686, 688; Russel 

& Norvig, 2021). Application of AI solutions by implementing various branches of AI cut 

across different fields of knowledge and are used to solve many discipline-specific problems 

(Hamet & Tremblay, 2017; Amisha et al., 2019). But the application of AI in this research 

project is restricted to ETD or NTLD in the power distribution systems. 

 

Recent advancement in knowledge in the field of AI has brought about a more efficient and 

superior approach to detecting NTL when compared with the conventional NTLD methods 

(Saeed et al., 2020:1; Poudel & Dhungana, 2022:110). AI-based methods for ETD are the 

most popular (Fragkioudaki et al., 2016:51), and the growing trend of AI-based research 

articles on NTLD is a pointer to this fact (Saeed et al., 2020:1; Poudel & Dhungana, 

2022:110). There is a need to monitor electricity consumption to be able to control ET. ET 

can lead to unusual patterns in electricity consumption profiles. We can use AI-based ML 

methods to discover abnormal patterns in electricity consumption data to uncover electricity 

thieves (Jiang et al., 2014:109; Glauner et al., 2017:761; Yip, Wong, et al., 2017:231; 

Guarda et al., 2023:1-2). Consumption profiling can also be used to improvise methods to 

regulate electricity loads, so as to maintain and sustain the existing generation capacities 

(Ahmad et al., 2018:2916-2917). 

 

AI methods for ETD allows us to scrutinize and analyse the meter-reading records, the 

consumption records, the consumption history, or consumption profiles of the electricity 

consumers taken over a period and use them to determine irregular consumption 

behaviours embedded in the consumption records in a bid to detect ET (Jiang et al., 

2014:109; Glauner et al., 2017:761; Yip, Wong, et al., 2017:231; Guarda et al., 2023:1-2). 

This would assist us to detect customers with abnormal tendencies in their consumption, 

which would eventually trigger probable inspections. To mitigate the theft, the utility 

technicians would then carry out onsite inspections to fish out customers who may have 

tampered with their power infrastructure in a bid to steal electricity. In the developing 

countries, it may not be realistic enough to determine the theft of electricity from the 

perspective of energy balance calculations used in electrical engineering. This is owing to 
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changes in network topology and the irregularities associated with grid infrastructure, as 

well as the probable inconsistent measurements derived from several grid elements. Hence, 

there is a need for exploiting the AI techniques, a more-proficient approach, for the detection 

of ET (Glauner et al., 2017:761). 

 

Many NTLD solutions have been mentioned in the literature, but ETD by employing AI 

methods are the predominant and advanced anti-theft approach used in latest research to 

detect customers who may be stealing electricity (Glauner et al., 2017:761; Glauner, 

2019:12, 31, 110; Poudel & Dhungana, 2022:110). This latest and the most-advanced ETD 

approach uses the consumption data of the electricity customers to reveal irregular power 

consumptions, and to uncover the very suspicious customers who are liable for onsite 

inspections (Glauner, 2019:31, 110; Guarda et al., 2023:1-2). Deployment of AI methods 

for NTLDs prevent unnecessary and expensive onsite inspections (Barros et al., 2021:1-2). 

The conventional means of ETD adopt an indiscriminate and unilateral onsite inspection 

approach which condones a lot of unnecessary, expensive, and time-wasting inspections 

(Yip, Wong, et al., 2017:230; Messinis & Hatziargyriou, 2018:251; Zheng et al., 2018:1606; 

Liao, Zhu, et al., 2024:5075). 

 

AI-based NTLD methods are classified into ML and deep learning (DL) algorithms or models 

(Arif et al., 2021:2). Meanwhile, DL is a subset or a type of ML (Janiesch et al., 2021:686), 

while ML itself is a subfield (branch) of AI or a technique to achieving AI (Brown, 2021; 

Janiesch et al., 2021:686-687). NTLD using ML (Yip, Wong, et al., 2017:231; Guarda et al., 

2023:5) is the implementation and application of one of the branches of AI to solve the 

perennial ET problem. However, the large volume of data generated by SMs via the AMI in 

SG have made it possible for the application of technologies which are data-driven, 

including the implementation of AI techniques for ETD (Liao, Zhu, et al., 2024:5075; S. Zhu 

et al., 2024:15477). 

 

❖ Machine learning 
 

ML is a branch or a subdiscipline in AI which forms an intersection between computer 

science and statistics (Jordan & Mitchell, 2015:255-256; El Bouchefry & de Souza, 

2020:225). ML is used to decipher patterns in datasets using algorithms and also used to 

make new predictions without any explicit task-specific manual programming (Jordan & 

Mitchell, 2015:255-256; Guarda et al., 2023:5). With ML, algorithms or computer programs 

are able to perform cognitive tasks and learn from experience through problem-specific data 

samples (Jordan & Mitchell, 2015:255; Glauner, 2019:12, 16; El Bouchefry & de Souza, 
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2020:226; Janiesch et al., 2021:686). ML is an inductive process because it allows rules to 

be derived from examples (Glauner, 2019:20). Questions on how computers that learn from 

several input data are built, in a bid to anticipate outputs by learning from the input 

experience and improving performance over time are addressed by ML (Jordan & Mitchell, 

2015:255). ML allows humans to build more efficient and intelligent systems by formalizing 

their knowledge into forms accessible to machines. 

 

Instead of writing static programs to individually input knowledge into computers to solve a 

particular problem, ML models rather train computers to dynamically learn relationships and 

patterns from samples and cleverly perform predictions or decisions on new similar samples 

based on the knowledge acquired through experience without explicitly programming or 

exclusively codifying the computer to learn the new samples (Jordan & Mitchell, 2015:255; 

El Bouchefry & de Souza, 2020:225; Janiesch et al., 2021:685). These learned patterns 

from the sample data are recognized by machines, and predictions are made based on 

them when new input sample data are fed into the ML algorithms or models (Jordan & 

Mitchell, 2015:255).  

 

While humans struggle to elucidate all their knowledge and available solutions to complex 

problems, ML overcomes this limitation by learning through training and improving from 

experience through increased performances (Jordan & Mitchell, 2015:255; Janiesch et al., 

2021:685-686). ML uses algorithms to automatically learn hidden insights and intricate 

patterns in any data that is subjected to scrutiny (Janiesch et al., 2021:686). This learning 

allows ML models in computers to automatically reprogram themselves in accordance with 

the experience they have garnered. A typical example of learning the hidden or latent 

patterns in a data is shown in Figure 2.17.  

 

The Figure 2.17 is an example of the consumption pattern of a particular customer who 

engages in stealing electricity (Glauner, 2019:2). The energy consumption pattern is 

generated from the monthly time-series consumption profile of the customer, and shows a 

typical example of how ET could be detected and later mitigated using the patterns hidden 

in the electricity consumption data of the consumer (Glauner et al., 2016:253-254). Using 

automated statistical methods to learn latent irregularities or fraudulent patterns from 

datasets containing features of electricity consumptions, with the ulterior motive of gaining 

insights from the data is achieved using ML (Glauner, 2019:16, 31, 36; Poudel & Dhungana, 

2022:110). 
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Figure 2.17: Consumption pattern indicating malicious usage of electricity 

 (Glauner, Meira, et al., 2016:254) 

 

There was a sharp drop in the electricity consumption of the customer at the end of 2011 

from the case-study consumption pattern shown in Figure 2.17. The drop was about a fifth 

of the previous consumption. This signified that the electric meter of the customer may have 

been manipulated. This drop persisted over time, and the customer was suspected of 

pilfering electricity. The utility inspection team carried out an onsite inspection at the 

premises of the customer at the beginning of 2013, and an instance of ET was detected. 

After the theft detection, the electricity-infrastructure manipulation was reverted, and the 

electricity consumption pattern of the customer went back to normal. In 2014, a year after 

the previous inspection was carried out, another drastic drop in electricity consumption 

occurred again, this time to about a third of the previous consumption. This drop brought 
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about another inspection a few months later (Glauner et al., 2016:253-254; Glauner, 

2019:4). 

 

Sharp drops or anomalies in electricity usage are peculiar to those customers committing 

ET (Jiang et al., 2014:109; Glauner et al., 2017:761; Yip, Wong, et al., 2017:231; Guarda 

et al., 2023:1-2); but in some special cases those drastic drops in consumptions might be 

because a building is currently uninhabited, the occupier of a building went on holiday, 

travelled, moved out, or due to change in weather conditions, tariff, or that a factory reduced 

its production level, etc. (Glauner, 2019:2; Coma-Puig & Carmona, 2022:488; Poudel & 

Dhungana, 2022:110, 115-116; Guarda et al., 2023:20). This is the reason a physical onsite 

inspections by utility technicians is very essential and imminent to get site feedbacks for 

customers with irregular electricity consumption patterns, in a bid to confirm or establish 

whether those customers with suspicious patterns of consumptions are actually fraudulent 

or not (Messinis & Hatziargyriou, 2018:259; Liao, Bak-Jensen, et al., 2024). 

 

After establishing the electricity thieves, the stealing customers are tagged as fraudulent 

while the rest are identified as honest. The honest customers who do not steal electricity or 

cause NTL are labelled or annotated as “0”, while the fraudulent customers who steal 

electricity or cause NTL are labelled as “1” after the onsite inspections (Glauner, 2019:48; 

Munawar, Javaid, et al., 2022:12; Ali et al., 2023:6, 9; Nayak & Jaidhar, 2023:4). Supervised 

ML models then capitalize on these individual customer labels (Appiah et al., 2023:2) in 

conjunction with their corresponding energy consumption data to make predictions about 

new customers who may likely be stealing electricity. Using ML models for NTLDs reveal 

the suspicious customers liable for onsite inspections, prevent unnecessary inspections and 

drastically reduce the huge costs associated with indiscriminate onsite inspections 

(Messinis & Hatziargyriou, 2018:259, 264; Barros et al., 2021:1-2). 

 

Analytical model building tasks are automated using ML algorithms to achieve object 

detection within the data without any explicit or manual programming. By extracting features 

from huge databases and learning from earlier computations, ML algorithms assures 

replicable and dependable decisions from the data (Janiesch et al., 2021:686). ML methods 

are also known as data mining methods (Ahmad et al., 2018:2916-2917; Glauner, 2019:31, 

45). ML methods are a superior approach for the detection of ET because they are more 

efficient, more accurate, saves time and requires less labour (Ghori et al., 2020:16033; 

Saeed et al., 2020:1). Different ML algorithms have been developed to adapt to various 

datasets from different sources to solve different problem types (Jordan & Mitchell, 

2015:255; Guarda et al., 2023:5). 
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The four types of ML are supervised, unsupervised, semi-supervised, and reinforcement 

learnings (Yang, 2019:139-140; Choi et al., 2020:2; El Bouchefry & de Souza, 2020:227-

228; Janiesch et al., 2021:686-687). Examples of supervised ML models are support vector 

machines (SVM), optimum path forest (OPF), decision tree (DT), k-nearest neighbours 

(KNN), Bayesian classifiers and rule induction methods, etc., while examples of 

unsupervised ML methods are clustering algorithms, outlier detection methods, and 

statistical methods, etc. (Saeed et al., 2020:9, 12; Guarda et al., 2023:5-6, 11-12). The 

semi-supervised learning method forms a borderline between supervised and unsupervised 

learnings (Choi et al., 2020:3). Supervised, unsupervised, and semi-supervised methods of 

learning are further discussed under Section 2.5.3.2. Supervised and unsupervised 

learnings are applied in anomaly or fraud detections like in ETDs or NTLDs. Applications of 

reinforcement learning are found in games (Silver et al., 2018), robotics (Singh et al., 2022), 

and broker systems (Peters et al., 2013). 

 

• Deep learning 
 

DL is a subset of ML which learns from the multilayered form of basic hierarchical human 

brain-like network (or artificial human brain) known as neural network (Islam et al., 2019:9; 

Montesinos López et al., 2022:379, 384). Neural network was brought about owing to 

advancement in the field of ML, enabling superior learning algorithms with more proficient 

preprocessing techniques (Janiesch et al., 2021:686). Artificial neural network (ANN) is a 

basic neural network which forms the backbone of DL models (Montesinos López et al., 

2022:383). The idea of neutral network was motivated by the functions and structure of the 

biological neurons in the brains of humans, and has thus been modelled after it to make 

predictions (Glauner, 2019:17; Islam et al., 2019:7; Montesinos López et al., 2022:379-381). 

 

Neural network is modelled after the human brain because the brain is a superior 

information processing system which computes complex operations (Islam et al., 2019:7; 

Montesinos López et al., 2022:379). The brain is a component of the human nervous system 

which is made up of the processing units called neurons where the term “neural” network 

(network of neurons) derived its name. The neuron or node is the fundamental component 

of a neural network, representing a simplified model of the neuron in human brains 

(Lepolesa et al., 2022:39641). Neural network layers are trained to recognize the different 

features of the input data and consequently produce an output based on the patterns learnt 

through the hidden layers (Lepolesa et al., 2022:39641; Ali et al., 2023:12). A basic neural 

network or ANN structure consists of input, hidden, and output layers (Xia et al., 2022:290). 
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DL models contain multiple hidden layers and dynamically discovers the needed 

representation commensurate to a specific learning task  (Yang, 2019:151; Janiesch et al., 

2021:687-688; Montesinos López et al., 2022:383). DL is an improved neural network that 

is otherwise known as deep neural network (DNN), with depth of layers of multiple neurons, 

in a deeply nested architecture, which enables it to process more complex data, produce 

more-accurate predictions and outperform other conventional ML models (Lepolesa et al., 

2022:39641; Montesinos López et al., 2022:383). This is achieved because DNN is able to 

detect patterns or trends which are difficult for other traditional ML models to detect 

(Lepolesa et al., 2022:39641). Learning via training a DNN is called DL. ANN consists of 

one or two hidden layers (Mostafa et al., 2020:107), while a neural network that consists of 

three or more hidden layers is referred to as a DNN (Mostafa et al., 2020:107). Hidden 

layers share similar information (Montesinos López et al., 2022:386), and are located 

centrally in a neural network between the input layer and the output layer (Islam et al., 

2019:9; Ali et al., 2023:12). The neural network framework comprises of layers of 

interconnected nodes (artificial or synthetic neurons) or processors, where the output of a 

node serves as the input source of the next available node (Islam et al., 2019:9) as could 

be seen in the DNN architecture shown in Figure 2.18. 

 

 

 
Figure 2.18: Architecture of deep neural network 

 (Zhu et al., 2022:3) 

 

Signals are transmitted between connected nodes in a neural network. The connection or 

linkage between a node to another carries a real number value which corresponds to the 

weight or strength of the transmitted signal (Islam et al., 2019:7, 9; Montesinos López et al., 
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2022:394). Neural networks learn by updating the weights (Islam et al., 2019:7). Just like 

the neurons in neural networks imitate the biological neurons in human brains, the unique 

connection weights between neurons in neural networks also imitate the connections 

between neurons in human brains (Lepolesa et al., 2022:39641). The input data in a neural 

network is sent through the input layer to the hidden layer. The hidden layer receives the 

input data, extracts features or information from it and use the extricated information to 

update the network weights, while the final model predictions or results are done and 

produced at the output layer (Islam et al., 2019:7; Ali et al., 2023:12). The number of 

features in the input data determine the number of neurons at the input layer,  while the 

nature of the task being performed by the neural network (i.e., the number of parameters 

being predicted) dictates the number of nodes at the output layer (Ali et al., 2023:12). In 

addition to being able to predict as a model, DL models automatically learn features from 

datasets and also perform well with the processing of big, unstructured, imbalanced and 

noisy datasets (Arif et al., 2021:2; Janiesch et al., 2021:688-689; Guarda et al., 2023:23). 

Examples of DL algorithms are convolutional neural network (CNN), recurrent neural 

network (RNN), generative adversarial neural network (GAN), distributed representation, 

and autoencoder, etc. (Janiesch et al., 2021:689-690). 

 

2.5    NTL methods and solutions 
 

NTL could be deterred, determined, and pruned by various techniques and approaches. A 

typology of NTLD solutions has been proposed based on the overview of various techniques 

and approaches present in the literature. The typology of these anti-theft techniques and 

approaches are categorized under theoretical studies, hardware solutions and non-

hardware solutions (Viegas et al., 2017:1260; Saeed et al., 2020:7; Appiah et al., 2023:2) 

as shown in Figure 2.19.  

 

 
 

Figure 2.19: Typology of NTL detection methods 

Adapted from (Viegas et al., 2017:1260; Saeed et al., 2020:7; Appiah et al., 2023:2) 
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NTL cutback approaches and techniques could be implemented in both conventional and 

SGs (Yip, Wong, et al., 2017:231). SM is an intelligent metering device used in SG for the 

acquisition of energy consumption data and other grid parameters for NTLD using AI 

techniques. NTLD methods for optimal NTL mitigations are better and are accurately 

implemented using the energy consumption data obtained from SMs, owing to the readily 

available fine-grained or high-resolution data it generates in conjunction with other detailed 

grid information. Data-based NTLD methods are the state of the art, and are further 

discussed under Section 2.5.3.2. 

 

2.5.1    Theoretical studies 
 

In this NTL solution approach, variable factors that influence the existence of NTL amongst 

the populace in a geographical area are analysed (Viegas et al., 2017:1260-1261). 

Theoretical studies-based NTL solutions provide the non-technical means of controlling ET 

by gathering and analysing information on social, economic, demographic, and market 

variables that help the electric utilities to understand the root cause of NTL. After the 

analyses, the variables that drive the illegal behaviours of consumers who cause NTL within 

a particular topographical population are determined. Statistical techniques are mainly used 

in leading studies to analyse these variables and to determine the relationships between 

them (Viegas et al., 2017:1260-1261; Saeed et al., 2020:7-8). Theoretical studies proffer 

alternative solutions to ET as against the conventional technical or engineering solutions 

(Yurtseven, 2015:74). 

 

The primary advantage of the theoretical solutions to NTL is that it helps to inspire policy 

and decision makers in forming and making effective plans and resolutions that would have 

great effects on ET reduction, and ultimately promote greater efficiency in the electric 

system. But the major disadvantage of this approach is its limited scope, in that, it typically 

focusses on case-study country or region at a point in time (Viegas et al., 2017:1261; Saeed 

et al., 2020:8). The method is therefore insufficient to identify the precise point of theft 

incident or points of other irregularities in metering or billing. The next subsections under 

this section examine some theoretical methods which have been used to curb the effects 

of NTL, as presented in the literature, and also the types of data used for the theoretical 

analyses.  

 

2.5.1.1    Empirical survey: customer-utility relational approach 
 

Winther (2012) focused on bottom-up approach in combating corruption in the electrical 

system, by using surveys and ethnographic fieldwork information. The author highlights 
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customer-utility relationship as a means of understanding and curtailing the problem of ET. 

According to Winther (2012), proactively improving utility reputation amongst the customers 

tends to prevent the occurrence of ET. The approach of the author was based the on the 

empirical findings of two different socio-cultural settings of rural Zanzibar in Tanzania, and 

the Sunderban Islands in West Bangal, India. The two developing geographical references 

have different provisional systems. The grid supply system in rural Zanzibar is centralized, 

while that of Sunderban is decentralized. Insights have been obtained through the 

ethnographic fieldwork in rural Zanzibar, and the fieldwork in Sunderban with customer-staff 

house survey. 

 

The author argued that relational and people-centred approaches are impactful in the quest 

to reduce ET. The people-centred approach is about the formation of groups of local users 

and their participation in helping to enhance the performance of the electricity providers. 

The participation of these local-user groups gives the customers and the communities a 

sense of belonging and motivation to trust the process. For example, these groups are 

consulted when the utilities want to make changes to their tariff, etc. Consequently, these 

groups feel obligated to report illegal use of electricity within their localities to the utilities. In 

this study, the way the customers relate with their electricity providers is crucial, and any 

changes made to such relationship would fundamentally reshape the electricity system in 

terms of customers’ compliance and electricity sustainability. 

 

According to the author’s findings on Zanzibar and Sunderban, trust relationship between 

the customers and the utilities is an antidote to stealing electricity or causing NTL. If trust is 

promoted between the parties, the customers will have faith in the process, and they would 

be obliged to pay for what they consume and subsequently adhere to the utility regulations. 

The device (technical mediator) between the customers and the utilities which enhances 

trust between them is the electricity meter. Customers’ confidence in the proper functioning 

of the electricity meters and the transparency in the utility accounting system translate to 

customers being charged only for what they consume (social accountability). This fosters 

the customer-utility trust relationship. To avoid suspicion on the part of the customers, the 

utility should endeavour to determine, repair and/or change any dysfunctional meters. This 

is done in order to always maintain the confidence between them and their customers. The 

utilities should also educate their customers on billing, accounting, and metering, to 

increase the customers’ awareness of how they get billed. It is always easier for humans to 

comply with any process they trust, and thereby encourage others to do same. Equal and 

fair treatment of customers are also particularly very important in the process.  
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The utilities should also ensure satisfactory power availability because such promotes the 

trust relationship. Utilities in alliance with the local customer-group members should not 

condone non-payment of bills because if some customers do not pay their bills and could 

get away with it, other customers would tend to follow suit. The electricity behaviour of peer 

groups affects the compliance norms of others. The utilities in collaboration with the user 

groups would encourage sanctions for defaulting customers. The utilities should reciprocate 

the customers’ trust in them by reinvesting the profits they make into the system to improve 

service quality and increase capacity. If these are done, the customers would have no cause 

to have any iota of distrust in the utilities. The utilities should also not violate the trust the 

customers have in them, as that would encourage the customers to always fulfil their part 

in the customer-utility relationship or get sanctioned if they do otherwise. 

 

The stakeholder mentality of the consumers ensures the smooth running of the electricity 

system. These collaborative efforts help curtail activities that may lead to ET, as the 

electricity customers would not want to destroy or desecrate the arrangement which they 

are actively part of. The ingredients to ultimately analyse the customer-utility relationship 

are via the grounded and socio-technical approaches. The grounded approach tries to 

understand why consumers make illegal connections or refuse to pay their bills. The socio-

technical approach is about the electric meters and the customers’ confidence in them. The 

electricity meter was referred to earlier as the technical mediator between the customers 

and the utilities. The relational-approach analysis of either trust or otherwise is premised on 

the inferences from the grounded and socio-technical approaches, and the utilities taking 

other measures as stated previously. The whole process is to make the customers behave 

in a way that suits the electricity suppliers and the political institutions that govern them. 

This is in a bid to bring sanity into the electricity system, stem ET and promote sustainable 

energy utilization and production. In summary, customer-utility relationship is a key factor 

to maintaining sustainable electricity systems. 

 

While Winther’s (2012) research is valuable for its sociological perspective, its applicability 

to modern SGs, urban-theft contexts, and the integration of ML models with social data 

analysis is limited. 

 

2.5.1.2   Econometric analysis 
 

In a bid to reduce the effect of ET in the power grid, Yurtseven (2015) presents econometric 

analysis that examine the socio-economic basis for illegal electricity consumption using 

Türkiye (Turkey) as a case study. Prevention of ET is the priority of this study. This is 
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achieved by estimating an ET equation by applying different econometric methods. 

According to the author, if we understand the socio-economic drives behind the stealing of 

electricity, including the political and natural variables surrounding it, we could prevent it 

from taking place. To compute the ET estimation equation, the author used the socio-

economic data of provinces in the South-Eastern Anatolia Region of Türkiye from 2002 to 

2010. According to the 2011 TEDAŞ (Turkish Electricity Distribution Company) report cited 

by the author, tackling ET in Türkiye has been of paramount importance since an estimate 

of about 16 billion units (16 billion kilowatt-hours) of electricity is stolen every year in the 

country. These illegal energy consumptions represent around 15% of the total electricity 

delivered for consumption, and approximately translate to around US$1 billion in financial 

losses yearly. The empirical constant-elasticity model equation for ET as developed by 

Yurtseven (2015) is illustrated in Equation 2.2. The ET model estimates the ratio of illegal 

electricity consumption. 

 

Ln 𝑟𝑖,𝑡 = ∝ +βln 𝑃𝑡 + 𝛾 ln 𝐼𝑖,𝑡 + ∑ 𝜃ℎ
ℎ ln 𝑍𝑖,𝑡

ℎ + 𝜀𝑖,𝑡                         (2.2) 

 

Where 𝑟𝑖,𝑡 is the proportion of the electricity consumed illegally in province 𝑖 at time 𝑡; 𝑃𝑡 is 

the national tariff or price of a unit of electricity at time 𝑡; 𝐼𝑖,𝑡 is the income per capita of 

province 𝑖 at time 𝑡; 𝑍𝑖,𝑡
ℎ  is the city socio-economic and natural characteristics of type ℎ by 

province 𝑖 at time 𝑡; 𝜀𝑖,𝑡 is the error term of the model; while ∝ is a constant term. To 

determine the underlying socio-economic reasons behind ET, the ET model is estimated 

using instrumental variable generalized method of moments (IV-GMM) estimation method, 

to test the correlation of the model variables and to increase its efficiency. After this, three-

stage least squares (3SLS) estimation technique was later used to further confirm the 

efficacy of the IV-GMM approach.  

 

From the estimations, the author concluded that income, social capital, education, 

temperature index, agricultural production rate, and rural population rate are the most 

significant variables that drive ET in the provinces of South-Eastern Anatolia Region of 

Türkiye. These variables tend to influence the ET ratio to go either higher or lower. However, 

offering of social tariffs to indigents and low-income earners, increase in general education, 

and social capital (which ensures that “illegal usage share” are recommended for provinces 

with high ET ratio to increase social control) have been suggested to reduce illegal 

consumption of electricity in a bid to lower the ET ratio. 
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This study presented by Yurtseven (2015) is valuable for identifying socio-economic drivers, 

and needs to be complemented by consumer-level data, real-time ML detection 

technologies, and longitudinal approaches which track theft trends over time for a 

comprehensive NTLD framework. The author should look beyond Türkiye and carry out 

comparative studies across other countries. 

2.5.2    Hardware solutions 
 

Hardware-driven NTLD solutions focus on the description, characterization, design, 

development, and deployment of metering equipment and/or sensing hardware that assist 

in the identification, estimation, detection, and mitigation of NTL (Viegas et al., 2017:1261; 

Saeed et al., 2020:8; Javaid, Jan, et al., 2021:45; Lepolesa et al., 2022:39639; Guarda et 

al., 2023:2). In addition to the hardware-based electric meters, software is required for the 

operation of some advanced electronic meters. The software of such electronic meters is 

used for processing the data produced by the meters. This category of NTL solution can be 

classified into three types according to the techniques used in presenting the solutions. The 

classification types of the hardware-based methods deployed for NTL prevention, detection, 

and/or mitigation are metering hardware, metering infrastructure, and signal generation and 

processing (Viegas et al., 2017:1261) as shown in Figure 2.20. 

 

 
 

Figure 2.20: Classification of NTL hardware solutions 

Adapted from (Viegas et al., 2017:1260-1261) 

 

2.5.2.1    Metering hardware 

 

Metering hardware as a technique for NTLD specifies metering equipment details and their 

specifications. This NTLD method presents diverse ways of designing new metering 

hardware or modifying the existing ones to enhance the detection of ET. The advantage of 
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this hardware-based NTL solution is that it can totally detect some kinds of NTL, for 

example, reversing the meter and the disconnection taking place within the meter zone. The 

shortcoming of this solution is that it could not detect NTL before and beyond the meter, 

except for the NTL that emanates within the meter. Metering equipment are expensive and 

also attract significant costs to install them in customers’ premises (Viegas et al., 

2017:1259, 1261). 

 

The authors in Ngamchuen and Pirak (2013) proposed metering systems that are based on 

using specific processors and anti-tampering algorithms to protect the meters from any form 

of tampering through detection and  communication of intrusion activities. Ngamchuen and 

Pirak (2013) implemented anti-tampering algorithms on an ADE7953 chip, while 

Dineshkumar et al. (2015) implemented same on an ARM-Cortex M3 processor. The 

ADE7953 chip was able to detect overcurrent, overvoltage, dropping voltage, no-load 

situation or outage, and other irregularities, and then sent a disruption signal to the MCU to 

report the tampering event. In the case of meter cover and terminal tampering, alarm signals 

are sent immediately to the MCU through the tampering switches connected to the input 

and output (IO) ports of the MCU. The electric meter designed by Dineshkumar et al. (2015) 

has a GSM module which automatically sends a Short Message Service (SMS) or text 

message to the utility server whenever any form of ET (like bypassing the entire electric 

meter, bypassing of the phase-line wire, tampering the meter, or isolating the neutral wire) 

is detected.  

 

Ngamchuen and Pirak (2013) and Dineshkumar et al. (2015) contribute to tampering 

detection and hardware-based solutions, but they lack data-driven anomaly detection 

approaches and focus primarily on tampering and hardware alerts. Future NTLD models 

should integrate hardware tampering detection with consumption pattern analysis using ML 

techniques. 

 

Dike et al. (2015) designed a prepaid electric meter which utilized GSM module, a 

microcontroller, and an EEPROM, etc. The microcontroller of the electric meter is encrypted 

with the unique identification (e.g., phone number) of each customer. Simulation results 

showed that the GSM module of the meter sends SMS alert to the utility whenever an illegal 

load is connected to the meter after tampering or bypassing it. Bin Yousuf et al. (2016) used 

a PIC18F452 microcontroller in the design of an ET detector and also simulated it using 

Proteus software. ET is detected if there was a mismatch between the forward current from 

the phase line and the reverse current through the neutral line. If ET is detected, the 
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microcontroller sends an alarm command and the alarm system of the device would sound 

at the instance of ETD.  

The authors in Dike et al. (2015) and Bin Yousuf et al. (2016) propose hardware-based anti-

theft solutions, they lack ML approaches that leverage SM data to detect consumption 

anomalies. Future NTLD research should integrate hardware-based tampering detection 

with data-driven consumption analysis for a comprehensive solution. 

Astronomo et al. (2020) designed, fabricated, and tested an Arduino-based ET detector. 

The circuitry of the ET detector consists of an Arduino Uno, LCD, two current sensors, and 

GSM module. One of the current sensors is located on the drop wires from the electric 

poles, and the other on the service cap where the drop wires enter the premises of the 

customer. Whenever the difference between the current measurements from the two 

current sensors reaches a threshold, ET is detected. After the theft is detected, 

microcontroller would instruct the electric meter to alarm, while an SMS notification would 

then be sent to the utility. Proteus 8 software was used to simulate the theft detector.  

 

While the authors Astronomo et al. (2020) introduce a practical hardware-based tampering 

detection system with GSM alerts, the approach is limited to physical tampering detection. 

Combining hardware solutions with ML techniques can enhance detection capability by 

identifying non-intrusive consumption anomalies. Additionally, addressing scalability, 

communication resilience, and long-term operational stability will strengthen its applicability 

to large-scale power systems. 

 

Khoo and Cheng (2011) have proposed the use of radio frequency identification (RFID) 

systems to protect the ammeter inventory management of an electricity supply company, 

by using RFID tags on the ammeters to prevent ET. Unique data about the ammeter are 

captured by the RFID tags to track and manage the ammeters in real time. ET is suspected 

if the RFID tags on ammeters onsite are not intact, that is, if the tags are either broken or 

removed. 

 

This study by Khoo and Cheng (2011) provides valuable insights into the cost-benefit 

analysis of RFID for asset protection in utilities, but it does not address consumption-based 

ETD, which remains the most prevalent concern for utilities. Combining RFID systems with 

data-driven approaches and real-time monitoring would offer a more comprehensive NTLD 

solution. Also, the authors could also evaluate large-scale RFID deployment across multiple 
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utility networks and investigate the robustness of RFID against tampering, spoofing, and 

signal attacks. 

A metering architecture which consists of two reading points has been proposed and tested 

by Henriques et al. (2014), to enable easier detection of ET. The metering architecture at 

the LV distribution grid consists of ammeters at the point of supply (local unit) and at another 

point after the consumer electric meters (remote unit). The measured currents at the local 

and remote units are transmitted via radio frequency to a receiver unit. Difference between 

the measured currents at the local and remote units is an indication of ET.  

Henriques et al. (2014) introduce a practical hardware tool for detecting physical tampering 

and bypassing, but their approach is limited to manual inspections and physical 

discrepancies. Combining ammeter-based tampering detection with smart metering, real-

time monitoring, and ML techniques would provide a more comprehensive and scalable 

NTLD solution. Also, the authors could evaluate hybrid hardware-data systems across large 

and diverse utility networks should and integrate field inspection devices with AMI systems 

for real-time tampering alerts. 

 

2.5.2.2    Metering infrastructure 

 
This method of NTLD focuses on metering assets or infrastructure and their characteristics 

like installation procedures, and the number of equipment that are needed to be deployed 

based on the specific requirements of a particular geographical location (Viegas et al., 

2017:1261). Leading literature on metering infrastructure-based NTL solution focus on 

placing different data-collection devices at various locations (e.g., premises of the 

customers, distribution transformers and substations) of the grid, to detect sources of NTL 

and to estimate the amount of NTL in the electric network (Viegas et al., 2017:1261; 

Lepolesa et al., 2022:39639). The advantage of this type of NTL solution is that it detects 

all kinds of NTL before the meter and within the meter zone. The drawbacks of this anti-

theft approach are the high costs needed to procure and install the needed equipment 

(Viegas et al., 2017:1259, 1261). 

 

The authors, Grochocki et al. (2012), presented a comprehensive analysis of various AMI 

attacks in SG. The primary purpose of these attacks is to steal electricity. In this study, 

system architecture to counter probable attacks in the AMI has been proposed. The authors 

surveyed various probable AMI attacks and their techniques, gathered the information 

needed to effectively detect these attacks which led to producing an extensive attack tree. 

Hybrid sensing infrastructure which involves the utilization of intrusion detection system 
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(IDS) and embedded SM sensors has been suggested by the authors to give the widest 

coverage in monitoring to detect all probable AMI attacks. 

 

It could be seen that the authors Grochocki et al. (2012) have contributed significantly to 

AMI cybersecurity by defining IDS requirements and deployment strategies, but the study 

lacks practical validation and integration with ML techniques for anomaly detection. 

Combining IDS with data-driven NTLD models and physical tampering detection would 

enhance the robustness of theft detection systems, particularly in developing regions. This 

study did not also investigate distributed IDS frameworks for large-scale AMI deployments, 

and did not combine cyber-IDS with physical theft detection methods. 

 

The authors in Paruchuri and Dubey (2012) proposed functional and diagnostic systems in 

a conventional grid for NTLDs. The functional system consists of SMs installed at the 

distribution transformers, relays, and consumers’ premises. The SMs have in-built GSM 

modules and use half-duplex communication protocols. The diagnostic system uses 

software and algorithms to determine the exact location where NTL or ET took place. A 

unique-code signal is sent from the GSM base to consumers’ SMs at regular intervals. This 

signal could be sent either through power line or wireless communications. The consumers’ 

SMs accept the signal and update themselves. Once the SMs respond to the signal, an LV 

carrier signal is injected into the grid before the SMs, and the infused signal then travels 

through the grid. If a new code is sent from the GSM base after a while, the working SMs 

will nullify the carrier signal and authenticate themselves. In the case of a consumer with 

malfunctioning meter and/or committing theft, the SM of such customer will not update the 

new signal or nullify the carrier signal, and there will be a voltage drop in the carrier signal 

at the point where the theft is taking place. The software used in driving the diagnostic 

system determines the location of the theft (but not the exact consumer who committed the 

theft) and sends a notification. 

 

While Paruchuri and Dubey (2012) provide a practical, feeder-level approach to estimating 

NTL, their method lacks individual consumer-level analysis, smart metering integration, and 

real-time data analytics. Combining feeder-level estimation with SMs and ML would 

enhance ETD accuracy and efficiency, especially in developing regions. 

 

2.5.2.3    Signal generation and processing 
 

Signal generation and processing-based NTL solution presents a pragmatic way of 

detecting and controlling ET directly from their sources. In leading studies, harmonic signals 
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are introduced to distribution lines to clear out illegal consumers on the line. The signals 

sent to the lines are generated and processed to only execute the goals intended by the 

sender. The signals are meant to destroy the electric devices or equipment illegally 

connected to the distribution lines by the electricity thieves. To protect the equipment of 

honest customers against the power surge sent to the distribution lines by the harmonic 

signal generator, the utility agents disconnect the meters of all the benign customers before 

sending the harmonic signals to the lines. This signal negatively affects the illegal 

equipment connected to the distribution lines. This method has the advantage that it could 

uncover all kinds of NTL in the electricity grid. The only shortcoming of this method currently 

is its dependence on smart metering systems (Viegas et al., 2017:1259, 1261). 

 

The authors in Pasdar and Mirzakuchaki (2007) proposed sending high-frequency test 

signal using the principle of power line carrier communication (PLC) to LV distribution 

network, in a bid to discover if illegal equipment is connected to the distribution grid or not, 

after disconnecting the loads of legal electricity consumers on the grid through control 

signals to their SMs. Characteristics of line impedance that connects the observer SM at 

the distribution transformer and the SMs of the consumers are calculated using a software 

which monitors the grid and also discovers the location of illegal electricity usage by 

calculating the difference between supplied and consumed electricity. Other authors like 

Christopher et al. (2014) also proposed an ETD technique using the principle of PLC. In this 

method, a narrow-band PLC signal is injected into the LV distribution line. According to 

Christopher et al. (2014), a differential change in the amplitude of the narrow-band carrier 

signal after injecting it to the distribution line is an indication of ET. Variation in the high-

frequency carrier signal can be detected effectively even if a high-frequency rejection circuit 

is connected between the point of electricity abstraction and the load. 

 

While both Pasdar and Mirzakuchaki (2007) and Christopher et al. (2014) introduce remote 

monitoring solutions using smart metering and line monitoring respectively, neither of the 

two papers incorporates advanced ML-based theft detection or consumer-level 

consumption analysis. Combining smart metering, real-time line monitoring, and ML models 

would offer a more comprehensive NTLD solution capable of detecting both physical 

tampering and consumption anomalies. 

 

The authors in Depuru et al. (2011a) proposed the use of harmonic signal generator to 

introduce harmonic or unwanted signals to the LV distribution grid in an attempt to clear out 

or destroy the connected equipment of illegal consumers contributing additional loads to the 

grid. The genuine or legal consumers are isolated from the harmonic signals after 
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disconnecting their loads or appliances from the grid via control signals to their SMs, in a 

bid to mitigate ET and improve distribution efficiency. 

 

While this method by Depuru et al. (2011a) aims to penalize illegal consumers, it is crucial 

to recognize the ethical and legal implications of intentionally introducing harmful harmonics 

into the power supply. Such actions could inadvertently affect legitimate consumers and 

compromise the overall integrity of the electric grid. Although, the authors also provide a 

valuable foundational discussion on SMs and policy interventions for ET prevention, the 

study lacks implementation, ML integration, and contextual considerations for developing 

regions. Combining SMs with data-driven ML models would enhance theft detection 

capabilities, especially in regions with partial SG coverage. 

 

2.5.3    Non-hardware solutions 
 

Non-hardware NTL solutions or non-hardware NTLD methods involve the use and 

manipulation of the data generated by measuring devices on the electric grid for ETD 

(Viegas et al., 2017:1261; Guarda et al., 2023:22). The non-hardware NTLD methods allow 

electric utilities to use their existing infrastructure for the gathering of consumers’ 

consumption information for the determination of ET, and do not require the procurements 

of new hardware or equipment (Viegas et al., 2017:1259. 1261; Saeed et al., 2020:8; 

Guarda et al., 2023:4). Grid observability is increased tremendously with SGs and SMs, 

and provide increased availability for huge energy consumption data from various 

consumers, in conjunction with other network data  (Guarda et al., 2023:1). The authors in 

Glauner et al. (2017:761), Glauner (2019:31, 110), Saeed et al. (2020:1), and Coma-Puig 

et al. (2024:2704)  have already established that the use of non-hardware AI methods is the 

state-of-the-art or the most-advanced technique used for ETD, while the authors in Ghori et 

al. (2020:16033-16034), Guarda et al. (2023:4), Stracqualursi et al. (2023:12, 16), and 

Coma-Puig et al. (2024:2704) have also attested to that fact by affirming that ML methods 

are more efficient and more effective in detecting NTL than several other available methods. 

The classification of the non-hardware NTLD methods is presented in Figure 2.21. 

 

This category of NTL solution has been latched upon based on the advancement in data 

processing and in the capacities of modern communications. The energy consumption data 

or load profiles of electricity customers are analysed and pilferage of electricity is predicted 

or inferred based on deviations of consumers’ consumption patterns from the norm. Other 

grid data like network topology or network measurements from the distribution grid may also 

be used for analysis to determine the irregularities between the billed electricity and the 
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actual electricity distributed for consumption. Existing hardware equipment with specified 

functions are required at various points of the grid to acquire data for analysis (Viegas et 

al., 2017:1261-1262; Messinis & Hatziargyriou, 2018:251; Saeed et al., 2020:8). Points of 

irregular patterns which are probable sources of NTL in the consumption data are trends of 

energy losses and an indication of the presence of NTL in the electrical system. The 

customers with high irregularities in consumptions  show high probability of theft and are 

therefore inspected (Depuru et al., 2011a:1011; Poudel & Dhungana, 2022:110) and 

prosecuted if found culpable of stealing electricity (Jiang et al., 2014:111). 

 

 
 

Figure 2.21: Categorization of non-hardware NTL detection methods 

Adapted from (Viegas et al., 2017:1260-1263; Messinis & Hatziargyriou, 2018:252; Ghori et 

al., 2020:16035; Saeed et al., 2020:7-8; Guarda et al., 2023:4-5; Kim et al., 2024:6-7)  

 

2.5.3.1    Tools used for the implementation and evaluation of non-hardware solutions 
 

The classification of the various non-hardware methods for NTLDs has been shown in 

Figure 2.21. Before reviewing each category of the non-hardware NTL solutions later in 

Section 2.5.3.2, the tools or parameters (i.e., dataset and their features) required for the 

implementation of the non-hardware NTLD methods, and evaluations (i.e., performance 

metrics) of the aftermath NTLD models are discussed in this section. 
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❖ Dataset 
 

Datasets are like raw materials for the NTLD system, used as inputs into models to produce 

outputs. The raw dataset used for NTLD can be categorized as Consumer level and Area 

level datasets according to the location where they are physically sourced (Messinis & 

Hatziargyriou, 2018:253, 258). Consumer level dataset are sourced from individual 

electricity consumers, while the Area level dataset relate to the area where the data is taken. 

Example of consumer level data is active energy consumption, while that of Area level data 

is network topology. Either of the categories of data could be time series data or static data. 

The different types of data used in NTLD are shown in Figure 2.22. In SG system, the AMI 

collects energy consumption readings from SMs and send them to utility companies at 

different time intervals per day. The time between when readings are dynamically registered 

(time resolution) are different from one AMI deployment to another, as there is no stipulated 

timing standard attached to the time resolutions when energy consumptions are registered  

by SMs (Mashima & Cárdenas, 2012:215). However, some timestamped resolutions or 

granularities of datasets have been classified whereby consumer level time series data 

could be high-resolution, medium-resolution, low-resolution active/reactive energy data and 

SM network data as shown in Figure 2.22. 

 

 

 
 

Figure 2.22: Categorization of the data types used for NTL detections 

(Messinis & Hatziargyriou, 2018:258) 
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Resolutions or granularities are the sampling times or time intervals between when 

consumption data are registered from the different SMs in the AMI before they are being 

stored in the database of the utilities. High-resolution energy data are data taken within a 

period that is less or equal to ten minutes, medium-resolution energy data are taken 

between fifteen minutes and one hour, while low-resolution energy data are taken within the 

period of a month or further. SM network data is a non-energy consumption data which 

correlates with alarms, voltage, line resistance or current obtained from SMs. Consumer 

level static data comprise of consumer non-technical data and consumer technical data. 

Consumer non-technical data describe the behaviours of the electricity consumers as it 

regards their economic activities, perceptions on inspections, etc. Consumer technical data 

is the technical information that has to do with the power infrastructure of the electricity 

consumers, for example, power installed and power demand in kW, rating of power 

transformer in kVA, number of line phases, number of the available appliances used, 

remote-controlled space heating system, etc. (Messinis & Hatziargyriou, 2018:253, 258). 

The consumer level time-series data is referred to as consumption profile, while the 

consumer level static data is referred to as additional data (Viegas et al., 2017:1263; Ghori 

et al., 2020:16035, 16037). 

 

Area level time-series data is further divided into observer meter data, feeder remote 

terminal unit (FRTU) or simply remote terminal unit (RTU) data, average area consumption 

data and environmental data. The installed observer meter at the LV side of the secondary 

transformer of the electricity distribution network measures the voltage, current, and power 

consumption. The FRTU data are voltage, current, and power measurements obtained from 

the RTUs installed at the LV or medium-voltage (MV) end of the electricity distribution 

network. Average area consumption is the average energy consumption of a particular area 

in question, while the environmental data is basically a measure of temperature, although it 

may also comprise other factors. Area level static data consists of network structure, area 

technical and the area non-technical data. The data representing the network structure 

represent the network topology of the MV and LV network, for example, the percentage of 

TL or the transformer to which an electricity consumer is connected to. Area technical data 

are data that reveals the technical characteristics of an area, for example, numbers of 

transformers being used in an area, the percentage of customers with irregular power 

consumption, the percentage of irregular consumers using a particular transformer, etc. 

Area non-technical data are the non-technical data that represents the social and/or 

economic information of electricity customers, for example, average income, campaign 

efforts against ET, average number of residents in a particular area, percentage of residents 
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who have access to water, and literacy percentage, etc.  (Messinis & Hatziargyriou, 

2018:258). 

 

The size of the dataset used for NTLD is dependent on the numbers of consumers involved 

or the numbers of consumers’ consumption data collected and used in NTLD simulations. 

Datasets from 1000 customers upwards are considered as large or big data. Customer data 

between 100 customers up to or less than 1000 customers are regarded as medium data, 

while dataset that is not up to 100 customers are referred to as small data (Messinis & 

Hatziargyriou, 2018:252). The size of datasets also provides information on the scalability 

of NTLD algorithms. 

 

• Features 
 

Features are the most important components of any ML methods or techniques (Osypova, 

2020:35). Features are extracted from raw datasets as input data into ML models to provide 

suitable representation of the raw datasets in order to make predictions or decisions 

(Messinis & Hatziargyriou, 2018:252; Janiesch et al., 2021:688). Features are mostly used 

by researchers in the field of electrical engineering and other related fields for NTLD.  A 

feature is a separate computable characteristic of a system under consideration 

(Chandrashekar & Sahin, 2014:16). Feature selection involves the methods of finding the 

most important variables in a dataset for the detection of NTL. These features or variables 

are selected by domain experts or by using feature selection algorithms (Messinis & 

Hatziargyriou, 2018:252).  

 

Selecting relevant and optimal set of features reduces data dimension, removes 

redundancies, and improves prediction performances (Khalid et al., 2014:372; Miao & Niu, 

2016:919). Features for NTLD are commonly used with data-oriented methods or 

sometimes hybrid methods, for the detection of NTL (Messinis & Hatziargyriou, 2018:258). 

Energy/kWh consumption profiles with varying resolutions are the main features used for 

NTLD (Ramos et al., 2018:680). Listed and defined below are other common features 

computed from kWh consumption profiles which are also used for NTLD, as reported in the 

literature (Messinis & Hatziargyriou, 2018:252; Saeed et al., 2020:5): 

 

(a) Standard deviation, max/min, average: Statistical measures calculated over a 

specified period of electricity consumption.  

(b) Load factor: It is an index that shows the ratio of the average energy consumed in kWh 

over a period to the peak or maximum energy consumed in kWh over the same period.  
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(c) Streaks: It is the number of times in which energy consumption curves move up or go 

down the mean axis. It is also known as the moving mean of the energy consumption 

curve. 

(d) Wavelet coefficients: Wavelet coefficients refer to the difference or gap between the 

consumption curves (or load curves) that are currently being considered for 

classification, and the wavelet coefficients of the consumption curves of the previous 

year. 

(e) Estimated readings: The approximated readings used by the electric utilities to bill 

electricity customers because the utilities could not obtain the actual readings. 

(f) Predicted kWh: It is the difference between the expected active-kWh energy 

consumptions and the observed active-kWh energy consumptions 

(g) Reduction in the consumption of energy: The reduction in the energy consumed at 

a particular current period as compared the energy consumed in the past over the same 

time period. 

(h) Seasonal consumption rates: The comparison of the total energy consumption in a 

particular season to the total energy consumption in a different season. 

(i) Euclidean distance to mean customer: It refers to the Euclidean distance between 

the overall energy consumption curve and the active energy consumption curve within 

a dataset, which is a measure of the average consumption of all customers in the 

dataset. 

(j) Power factor: Power factor (PF) which has values between 0 and 1 and used to 

express energy efficiency, is the ratio of the real power consumed in kilowatt (kW) to 

the apparent power in kilovolt-ampere (kVA). 

(k) Energy factor: The energy factor, which is also an expression of energy efficiency of 

appliances and equipment, is the ratio of the reactive energy consumed in kilovolt-

ampere reactive hour (kVArh) to the consumed active energy in kWh during the same 

period of time. 

(l) PCA components: They are those components or variables derived from the active 

energy consumption curves as calculated by using Principal Component Analysis (PCA) 

or Kernel Principal Component Analysis (KPCA). 

(m)  Pearson coefficient: This coefficient shows the correlation between the real energy 

consumed over a given period of time as measured by a linear equation. 

(n) Skewness: Is the measure of distortion or asymmetry in a typical dataset that is 

normally distributed. 

(o) Fractional order dynamic errors: These are features that shows distinction between 

a profiled energy consumption data and a time series energy consumption data obtained 

in real time. 
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(p) Mismatch ratio: It is the difference between the energy consumed as measured at the 

medium voltage to low voltage (MV/LV) secondary distribution transformer and the sum 

of energy consumptions registered by the consumers’ electric meters including the 

estimated energy losses due to technical losses (TL), divided by the rated output power 

released from the primary distribution substation. 

(q) Kurtosis: Is a measure of the number of outliers available in a normal-distribution data. 

(r) Fourier coefficients: It is the difference between the calculated Fourier coefficients 

from the consumption curve that currently is to be classified and the Fourier coefficients 

derived from the consumption curves of the previous years. 

(s) Decrease in consumption as compared to a previous period: This is the reduction 

in energy consumption when compared with the energy consumption of an earlier period 

of the same length of time. 

(t) Slope of consumption curve: This is the slope of the line of best fit of time-series 

active energy consumption curve derived from the linear equation of the line. 

(u) Coefficients of Discrete Cosine Transform: These coefficients are the first or initial 

coefficients (i.e., k coefficients) of discrete cosine transform. 

(v) Coefficients of polynomial fit: It is the difference between the coefficients of the 

polynomial that fits best the consumption curve to be classified and the coefficients of 

the polynomial that fits best the consumption curve of the previous years. 

(w)  Demand billed: This is the active power demanded to be consumed and billed. It is 

measured in kilowatt (kW). 

 

❖ Performance metrics 
 

Performance metrics are evaluation metrics used for the assessment of ETD or NTLD 

models to determine their prediction efficacies and efficiencies (Messinis & Hatziargyriou, 

2018:252; Poudel & Dhungana, 2022:115). These metrics are used to rate or compare the 

performances of various ETD models (Messinis & Hatziargyriou, 2018:252, 259). The 

evaluation metrics validate how well NTLD models have been able to execute the given 

prediction tasks. All the available performance evaluation metrics encountered in the 

reviewed ETD or NTLD literature have been discussed in this section. 

 

To calculate the performance metrics of NTLD models, the conventional table known as 

confusion matrix is first calculated (Messinis & Hatziargyriou, 2018:259). Since ETD is a 

binary classification problem (Chen et al., 2022:5), the traditional 2x2 confusion matrix, 

which is the classification summary for binary classification models, are being produced 

through NTLD models to evaluate the potency of  their detection capacities (Farid et al., 
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2023:84; Xia et al., 2023:6). Prediction results from confusion matrix are regarded as “True 

(T)” when they are rightly classified, and “False (F)” when they are wrongly classified (Saeed 

et al., 2020:6; Poudel & Dhungana, 2022:115).  

 

The basic 2x2 confusion matrix which contains the summary of the classification results or 

performance breakdown of ETD or NTLD models is shown in Table 2.1 (S. Zhu et al., 

2024:15487). 

 

 Table 2.1: Confusion matrix 

 

Actual class 

                              Predicted class 

Positive (1) Negative (0) 

Positive (1) True positive (TP) False negative (FN) 

Negative (0) False positive (FP) True negative (TN) 

 

As could be seen in the confusion matrix presented in Table 2.1, true positive is represented 

as TP, true negative as TN, false positive as FP, and the false negative is represented as 

FN (Huang et al., 2024:11; Mehdary et al., 2024:19).  

 

TP refers to the fraudulent electricity consumers who have been correctly predicted as 

dishonest, TN indicates honest consumers that have been correctly predicted as non-

fraudulent, FP relates to honest consumers who have been wrongly predicted fraudulent, 

while FN denotes dishonest consumers that have been incorrectly predicted honest 

(Gunduz & Das, 2024:13; Mehdary et al., 2024:18). In the Table 2.1, honest and fraudulent 

electricity customers are regarded as ‘negative’ and ‘positive’ customers, which are also be 

depicted with “0” and “1” labels respectively (Glauner, 2019:48; Munawar, Javaid, et al., 

2022:12). Predicted class represents the honest and fraudulent customers being classified 

by ML models, while actual class represents the customers’ labels given to them by the 

utility technicians after confirming their NTL statuses during onsite inspections (Lu et al., 

2019:5; Khattak et al., 2022:5). FPs are undesirable since they spur unnecessary onsite 

inspections and contribute to high operational costs to the electric utilities (Messinis & 

Hatziargyriou, 2018:259, 264; Saeed et al., 2020:6; Aldegheishem et al., 2021:25051; 

Pamir, Javaid, Qasim, et al., 2022:56866, 56870). 

 

The imbalanced nature of electricity consumption dataset with unequal distribution of labels 

or classes is characteristic of real-world datasets obtained from electric utilities (Ghori et al., 

2020:16034, 16036). This is owing to the fact that electric utilities have more honest 

customers on their grids than fraudulent customers (Guarda et al., 2023:21).  In the class 
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distribution of real datasets, it is natural to discover that honest customers who do not steal 

electricity are far more than the few unscrupulous customers who steal electricity from the 

grid. For this reason, most real datasets are found naturally to be imbalanced and biased 

since they convey more representations of the honest customers. Hence, all real-world 

datasets that are used to train and validate NTLD models are naturally imbalanced in terms 

of labels or classes, except if the minority classes in the dataset have been synthetically 

resampled and balanced during data preprocessing using various class-balancing 

techniques. Imbalanced datasets negatively affect the consistency of ETD or NTLD models 

(Khattak et al., 2022:1, 18), and hence affect their performance results. For synthesized, 

simulated, or fabricated datasets, the class of those customers who steal electricity and 

those customers who do not steal electricity contain equal distributions (Ghori et al., 

2020:16034, 16036, 16040). 

 

Accuracy is the most popular performance metric used in evaluating ML classifier models 

(Ghori et al., 2023:15336). Accuracy indicates the number of the correctly predicted 

samples out of all the available validation or test-set samples (Khan et al., 2020:15; Mehdary 

et al., 2024:19). Equation 2.3 (Gunduz & Das, 2024:14; Huang et al., 2024:11) shows the 

mathematical expression of the accuracy metric.  

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                           (2.3) 

 

TP, TN, FP, and FN in Equation 2.3 indicate the proportions of true positive, true negative, 

false positive, and false negative respectively as predicted by the classifier model. Normally, 

increased accuracy shows that the NTLD model or system where the accuracy result is 

obtained classifies or predicts the negative and positive samples satisfactorily. However, 

higher accuracy performance may be unreliable or misleading if the datasets used in 

developing the NTLD model is imbalanced causing overfitting of the majority class (Ghori 

et al., 2023:15336). Imbalanced dataset means that the samples of those consumers who 

did not steal electricity (negative samples or negative class) are overly more than those 

consumers who steal electricity (positive samples or positive class) (Messinis & 

Hatziargyriou, 2018:259; Ghori et al., 2020:16034). Besides the misleading tendency of the 

accuracy metric as mentioned, accuracy may also be high with high FPs as shown in the 

table presented in Poudel and Dhungana (2022:116). 

 

Precision and recall are computed using Equations 2.4 and 2.5 (Huang et al., 2024:12; 

Iftikhar et al., 2024:10). Precision, assertiveness, confidence or positive predictive value 
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(PPV) refers to the proportion of the correctly predicted number of consumers who cause 

NTL (positive samples or positive class) out of the total predicted consumers causing NTL 

(Messinis & Hatziargyriou, 2018:259; Saeed et al., 2020:6; Lepolesa et al., 2022:39647; 

Ghori et al., 2023:15336; Mehdary et al., 2024:19), giving a perception into the actual 

number of predicted electricity thieves in a given dataset (Ghori et al., 2020:16041) as 

predicted by the NTLD system. The recall metric refers to the success achieved in detecting 

NTL (Messinis & Hatziargyriou, 2018:259). It is the proportion of the correctly predicted 

positive samples (fraudulent or malignant customers) out of all the available positive 

samples, giving an insight into the actual number of electricity thieves in a given dataset 

(Ghori et al., 2020:16041; Khan et al., 2020:15; Khan et al., 2023:544; Mehdary et al., 

2024:19). 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                            (2.4) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                             (2.5) 

 

Recall is also known as detection rate (DR), sensitivity, true positive rate (TPR) or hit rate 

(Messinis & Hatziargyriou, 2018:259; Pamir, Javaid, Qasim, et al., 2022:56870). If precision 

increases, it means that most of the correctly predicted positive samples or the actual 

number of electricity thieves out of the total predicted positive samples by the NTLD model 

have been classified correctly. Greater values of recall convey that the success attained 

when predicting fraudulent customers or positive samples (out of all the available positive 

samples) is high, implying that the NTLD system is performing commendably well. 

 

Precision and recall are disproportional metrics, meaning that when one increases, the 

other one decreases (Messinis & Hatziargyriou, 2018:259; Saeed et al., 2020:6). Therefore, 

the balance between the two metrics could be found by combining them. Performance 

metrics like arithmetic mean, F-measure or F1 score, and 𝐹𝛽 as expressed in Equations 

2.6, 2.7, 2.8, and 2.9 combine the results of precision and recall (Ghori et al., 2023:15336-

15337; Gao et al., 2024:15; Gunduz & Das, 2024:14; Huang et al., 2024:12). F-measure or 

F1 score is also referred to as F-score. Other evaluation metrics like average precision (AP), 

mean average precision (MAP), and area under precision-recall curve (PR-AUC) are also 

obtained by combining precision and recall scores, but they are specifically associated with 

the precision-recall curve. AP, MAP, and PR-AUC are later discussed in the subsequent 

paragraphs. 
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𝐴𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 𝑚𝑒𝑎𝑛 =
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙

2
                         (2.6) 

 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2×(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑅𝑒𝑐𝑎𝑙𝑙)
                                      (2.7) 

 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
                                   (2.8) 

 

𝐹𝛽 =
(1+𝛽2)×(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)

𝛽2×(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑅𝑒𝑐𝑎𝑙𝑙)
                                               (2.9) 

 

The arithmetic mean in Equation 2.6 represents the average of precision and recall scores. 

F-measure or F1 score expressed in Equations 2.7 and 2.8 gives an insight on precision 

and recall metrics by maximizing them, and is better suited for assessing imbalanced 

datasets (Messinis & Hatziargyriou, 2018:259; Ghori et al., 2020:16041; Khan et al., 

2020:15; Saeed et al., 2020:6). High F1 score is an indication that the NTLD system detects 

so many NTL or frauds in the power system  (Messinis & Hatziargyriou, 2018:259; Saeed 

et al., 2020:6). F-measure is an alternative term to F1 score, as either term stands for the 

weighted average or the harmonic mean of both precision and recall, and gives reliable 

performance evaluations with imbalanced datasets (Messinis & Hatziargyriou, 2018:259; 

Khan et al., 2020:15; Bohani et al., 2021:5; Ghori et al., 2023:15337; Xia et al., 2023:6; 

Mehdary et al., 2024:19). Hence, it should be noted that Equations 2.7 and 2.8 are equal, 

as Equation 2.8 is derived from Equation 2.7 by substituting for the precision and recall of 

Equations 2.4 and 2.5 into Equation 2.7 (Ghori et al., 2020:16041; Saeed et al., 2020:7). 

 

Another form of F1 score, F-measure or F-score metric is denoted as 𝐹𝛽 in Equation 2.9 

(Ghori et al., 2023:15336; Gao et al., 2024:15). In the Equation 2.9, 𝛽 is a coefficient that is 

used to adjust the weight or priority of precision with respect to recall. When 𝛽 = 1, it means 

that both precision and recall have equal relative importance or equal priority, but if 𝛽 > 1, 

it means that recall is given more priority than precision, while if 𝛽 < 1, precision is given 

more priority than recall. However, the coefficient value 𝛽 = 1 is mostly used when dealing 

with imbalanced datasets (Ghori et al., 2023:15336). The arithmetic mean in Equation 2.6 

is rarely used as it gives no insight into both precision and recall metrics; hence, the F-

measure or F1 score (harmonic mean) in either Equation 2.7 or Equation 2.8 is preferred 

(Ghori et al., 2023:15336-15337). It should be noted that Equations 2.7 and 2.9 will be 

similar if the value of 𝛽 in Equation 2.9 is equal to 1 (𝑖. 𝑒. , 𝛽 = 1) (Messinis & Hatziargyriou, 
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2018:259), conveying that precision and recall are given equal priority (Ghori et al., 

2023:15336). At 𝛽 = 1, the 𝐹𝛽 in Equation 2.9 will be written as 𝐹1, which is where the term 

F1 score was derived. 

 

Precision-recall curve is a graph of precision against recall at various classification 

thresholds, showing the trade-off between the two metrics at varying thresholds (Calvo et 

al., 2020:7). The performance metrics which are based on the precision-recall curve and 

used for evaluating ETD models are average precision (AP), mean average precision 

(MAP), and area under the precision-recall curve (PR-AUC) (Xia et al., 2023:6; Khan et al., 

2024:12). Equation 2.10 expresses the average precision (AP) metric, where 𝑅𝑛 in the 

equation represents the recall score at the current or 𝑛th threshold,  𝑅𝑛−1 illustrates the 

recall score at the previous threshold, the weight (𝑅𝑛 − 𝑅𝑛−1) represents the increase in 

recall between the current and the previous threshold, while 𝑃𝑛 depicts the precision score 

at the 𝑛th threshold (Calvo et al., 2020:7-8; Salman Saeed et al., 2020:12). AP is computed 

from the precision-recall curve as the average of the precision score at each recall level for 

every threshold (Calvo et al., 2020:7). 

 

𝐴𝑃 = ∑ (𝑅𝑛 − 𝑅𝑛−1)𝑃𝑛𝑛                                 (2.10) 

 

MAP is a way of summarizing the whole precision-recall curve into a single value which 

represents the average or mean of all the precision scores available at different recall levels 

within the curve when a particular threshold is being considered (Liao, Bak-Jensen, et al., 

2024). 𝑀𝐴𝑃@𝑁 (MAP at top N labels) can be calculated using the mathematical expression 

in Equation 2.11; but before that, the variable 𝑃@𝑘𝑖 (precision at location 𝑘𝑖) in Equation 

2.11 is calculated first by applying Equation 2.12 (Bai et al., 2023:14; Q. Zhang et al., 

2023:4; Liao, Zhu, et al., 2024:5080). 𝑘𝑖 is the position or location of the fraudulent or 

positive individual 𝑖th sample among the fraudulent samples where ET is taking place, 

where (𝑖 = 1, … , 𝑟); while 𝑟 is the number indicating how many electricity thieves are among 

the top 𝑁 users (top 𝑁 samples) who are being mostly suspected of stealing electricity 

(Zheng et al., 2018:1612; Bai et al., 2023:14; Xia et al., 2023:6; Liao, Bak-Jensen, et al., 

2024). 𝑀𝐴𝑃@𝑁 is the mean of all the retrieved 𝑃@𝑘𝑖 instances in the precision-recall curve 

from 𝑘 = 1 to 𝑘 = 𝑁  (Zheng et al., 2018:1612; Liao, Bak-Jensen, et al., 2024; Liao, Zhu, 

et al., 2024:5080). Bai et al. (2023:14) used 𝑀𝐴𝑃@𝐴𝐿𝐿 to represent 𝑀𝐴𝑃 for all the given 

samples. 
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𝑀𝐴𝑃@𝑁 =
∑ 𝑃@𝑘𝑖

𝑟
𝑖=1

𝑟
                                                      (2.11) 

 

𝑃@𝑘𝑖 =
𝑌𝑘𝑖

𝑘𝑖
                                                       (2.12) 

 

Before calculating the MAP metric, the samples or electricity users in the test set are sorted 

first in accordance with their prediction scores (Zheng et al., 2018:1611). After that, top 𝑁 

samples are selected to determine the performance of the model. Test set is the collection 

of data used in confirming the efficacy of the model after it must have initially been trained 

using the train sets. 𝑌𝑘𝑖
 refers to the number of electricity thieves with the greatest suspicion 

who have been predicted correctly among the 𝑘𝑖 users (Xia et al., 2023:6). The MAP is a 

location- or position-sensitive evaluation metric, and its values go higher if the fraudulent 

electricity consumers are ranked higher than the honest consumers (Bai et al., 2023:14). 

The position-sensitive MAP metric indicate the ability of ETD models to rank fraudulent 

samples higher than non-fraudulent samples (Bai et al., 2023:14; Liao, Bak-Jensen, et al., 

2024). 

 

PR-AUC is the area under the precision-recall curve of a binary classifier. The PR-AUC 

metric is appropriate for evaluating ML models developed with imbalanced datasets (Khan 

et al., 2020:15; Gao et al., 2024:16). Increased values of PR-AUC imply that both precision 

and recall simultaneously achieve high values, indicating a better trade-off between the 

precision and recall metrics (Gao et al., 2024:16). Such models with higher PR-AUC values 

have better predictive powers with lower prediction errors (Kulkarni et al., 2021:534). The 

equivalent mathematical equation for the calculation of PR-AUC is expressed in Equation 

2.13 (Gao et al., 2024:16), where 𝑚 in the equation represents the number of thresholds 

within the precision-recall curve,  𝑅𝑒𝑐𝑎𝑙𝑙𝑖 and 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 are the precision and recall 

values at 𝑚th threshold, while 𝑅𝑒𝑐𝑎𝑙𝑙𝑖−1 is the recall value of the previous threshold. 

 

𝑃𝑅 − 𝐴𝑈𝐶 = ∑ (𝑅𝑒𝑐𝑎𝑙𝑙𝑖 − 𝑅𝑒𝑐𝑎𝑙𝑙𝑖−1) × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖
𝑚
𝐼=1                     (2.13) 

 

Some other performance metrics (Saeed et al., 2020:7; Elreedy et al., 2024:4917; Khalid et 

al., 2024:11; X. Wang et al., 2024:2186) used in the literature for the evaluation of NTLD 

models are: 

 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                           (2.14) 
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𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
                                           (2.15) 

 

𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                                   (2.16)            

           

𝐹𝑁𝑅 =
𝐹𝑁

𝐹𝑁+𝑇𝑃
                                                  (2.17) 

 

𝑁𝑃𝑉 =
𝑇𝑁

𝑇𝑁+𝐹𝑁
                                                  (2.18) 

 

𝐺 − 𝑚𝑒𝑎𝑛 = √𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑇𝑁𝑅                              (2.19) 

 

𝐷𝑜𝑚𝑖𝑛𝑎𝑛𝑐𝑒 = 𝑇𝑃𝑅 − 𝑇𝑁𝑅                               (2.20) 

 

𝑅𝑒𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 = 1 − 0.5 (
𝐹𝑃

𝑁
+

𝐹𝑁

𝑃
)                                      (2.21) 

 

𝐵𝐷𝑅 =
𝑃(𝐼) × 𝐷𝑅

𝑃(𝐼)×𝐷𝑅+𝑃(−𝐼)×𝐹𝑃𝑅
                         (2.22) 

 

𝑀𝐶𝐶 =
𝑇𝑃×𝑇𝑁−𝐹𝑃×𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
                              (2.23) 

 

It should be noted that TPR of Equation 2.14 and the recall or sensitivity of Equation 2.5 are 

same (Iftikhar et al., 2024:10). FPR in Equation 2.15 is the false positive rate. FPR is the 

number of honest customers (negative samples) that have been wrongly classified or 

predicted as fraudulent (positive samples) divided by the total number of honest customers 

(negative samples), or FPR is the ratio of false positives to that of total instance of actual 

negative samples (i.e., the proportion of incorrectly predicted negative samples) (Ghori et 

al., 2023:15336; Khan et al., 2023:544). TNR in Equation 2.16 is true negative rate, while 

FNR in Equation 2.17 is false negative rate. TNR or specificity is the proportion of honest 

consumers (negative samples) who have been correctly identified as honest or benign out 

of all the available negative samples, while FNR is the proportion of fraudulent consumers 

(positive samples) who have been wrongly classified as honest consumers (negative 

samples) out of all the available positive samples (Ghori et al., 2023:15336). TPR can also 

be determined from (TPR = 1 – FNR), while TNR can as well be calculated from (TNR = 1 

– FPR). 



 

111 
 

Precision, recall or TPR, accuracy, FPR, TNR, FNR and F1 score are common metrics 

calculated from the confusion matrix and are often used to evaluate NTL classification 

models (Messinis & Hatziargyriou, 2018:259; Saeed et al., 2020:6). The negative predictive 

value (NPV) in Equation 2.18 is the proportion of the correctly predicted negative samples 

out of all the samples predicted as negatives (Ghori et al., 2023:15336). The geometric 

mean (G-mean) in Equation 2.19 measures how good a classifier has performed for both 

recall and TNR (Ghori et al., 2023:15337).  

 

The dominance metric in Equation 2.20, which was first proposed by García et al. (2008), 

measures the influence or dominance between the positive and negative classes. The 

values of dominance ranges between -1 and +1 (Ghori et al., 2023:15337). Dominance 

value equals to 1 denotes that the minority class is perfectly predicted, but the majority-

class cases are being missed; and vice versa for when dominance value equals to -1. A 

good prediction accuracy for the positive class is indicated if the dominance value is close 

to 1, while a good prediction accuracy of the negative class is depicted if the dominance 

value is close to -1 (Ghori et al., 2023:15337). Recognition rate in Equation 2.21 is also 

referred to as accuracy rate and measures the percentage of correct predictions in a dataset 

under consideration (Ramos et al., 2018:682). Recognition rate depicts how well an NTLD 

system is able to correctly predict the target positive or negative samples in a given dataset. 

𝑃 in the equation refers to the number of the entire real positive samples in a given dataset 

which is equivalent to (TP+FN), while 𝑁 in the same equation denotes the overall number 

of real negative samples in a given dataset which is equal to (TN+FP) (Messinis & 

Hatziargyriou, 2018:259).  

 

Bayesian detection rate (BDR) is the probability of ET taking place under ETD or NTLD 

conditions, or BDR is the proportion of NTL detected by NTLD models or intrusions/network 

attacks in intrusion detection systems (Gu et al., 2022:4571). BDR is not a commonly used 

metric in NTLD literature (Messinis & Hatziargyriou, 2018:259; Saeed et al., 2020:6). For 

the 𝐵𝐷𝑅 metric in Equation 2.22, 𝑃(𝐼) is the probability that a consumer commits electricity 

theft or the probability of intrusion occurrence; 𝑃(−𝐼) is the complement of 𝑃(𝐼) meaning 

probability of no electricity theft and is equivalent to (1 − 𝑃(𝐼)), but the value of 𝑃(𝐼) should 

be high, while a very low 𝐹𝑃𝑅 is also required to achieve an acceptable high 𝐵𝐷𝑅 value, in 

order to reduce false alarms (Jokar et al., 2016:221; Gu et al., 2022:4571). 

 

The Matthews correlation coefficient (MCC) metric as shown in Equation 2.23 (Appiah et 

al., 2023:4; X. Wang et al., 2024:2186) is the most reliable evaluation metric for evaluating 
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models constructed with imbalanced datasets (Kulkarni et al., 2021:534). MCC gives a high 

score only on a condition that all the four values of TP, TN, FP and FN in a confusion matrix 

produce good prediction results (Khan et al., 2020:15; Aldegheishem et al., 2021:25051; 

Kulkarni et al., 2021:534). The prediction scores of MCC is in the range of -1 to 1, with 1 

indicating an incorrect prediction, 0 showing no prediction, close to 1 values showing good 

prediction, while 1 shows perfect prediction (Khalid et al., 2024:11; X. Wang et al., 

2024:2186). 

 

Cohen’s kappa coefficient or simply “kappa” as expressed in Equation 2.24 is a metric used 

for the assessment of the extent of alignment between the expected and observed 

accuracies, in a bid to determine the strength of classification models (Hussain et al., 

2022:1268). The symbol 𝜌𝑜 in Equation 2.24 represents the observed accuracy, observed 

agreement, or the general accuracy of the model; while 𝜌𝑒 depicts the expected accuracy, 

expected agreement, likelihood of accurate prediction, chance agreement, random chance, 

or random accuracy of the model (Ghaedi et al., 2022:68). The equivalents of 𝜌𝑜 and 𝜌𝑒 

based on the conventional 2x2 confusion matrix for a binary classifier are respectively 

shown in Equations 2.25 and 2.26 (Chicco et al., 2021:78371; Ghaedi et al., 2022:69). The 

Cohen’s kappa coefficient metric is based on the customary 2x2 confusion matrix and is 

usually employed for evaluating two-class or binary classifiers (Chicco et al., 2021:78371). 

 

𝑘𝑎𝑝𝑝𝑎 =
𝜌𝑜−𝜌𝑒

1−𝜌𝑒
                                 (2.24) 

 

𝜌𝑜 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                (2.25) 

 

𝜌𝑒 = (
𝑇𝑃+𝐹𝑃

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
×

𝑇𝑃+𝐹𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
) + (

𝑇𝑁+𝐹𝑃

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
×

𝑇𝑁+𝐹𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
)          (2.26) 

 

The observed accuracy (𝜌
𝑜
) in Equation 2.25 is the proportion of correct predictions (𝑇𝑃 +

𝑇𝑁) divided by the outright number of samples (𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁), which is equal to the 

accuracy metric expressed in Equation 2.3. Equation 2.26 can be explained by considering 

that the columns of the confusion matrix of a binary classifier represent the predicted class 

while the rows represent the actual class with fraudulent predictions first before the benign 

predictions at the columns and rows of the confusion matrix like in Table 2.1, then the 

expected accuracy (𝜌
𝑒
) as shown in Equation 2.26 is the sum of the fraudulent predictions 

of the predicted class in the first column (𝑇𝑃 + 𝐹𝑃) divided by the total number of samples 
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(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁), multiplied by the fraudulent predictions of the actual class in the first 

row (𝑇𝑃 + 𝐹𝑁) divided by the total number of samples (𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁); plus the benign 

predictions of the actual class in the second row (𝑇𝑁 + 𝐹𝑃) divided by the total number of 

samples (𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁), multiplied by the benign predictions of the predicted class in 

the second column (𝑇𝑁 + 𝐹𝑁) divided by the total number of samples (𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁) 

in the confusion matrix. Unlike the overall accuracy metric of Equation 2.3 which is biased 

towards the majority class and hence gives misleading results with imbalanced datasets, 

kappa gives reliable results with imbalanced datasets (Alkhresheh et al., 2022:808-809; 

Saxena, 2023). By substituting for 𝜌𝑜  and 𝜌𝑒 from Equations 2.25 and 2.26 into Equation 

2.24, Equation 2.27 is obtained (Chicco et al., 2021:78371; Gao et al., 2022).  

 

𝑘𝑎𝑝𝑝𝑎 =
2×(𝑇𝑃×𝑇𝑁−𝐹𝑃×𝐹𝑁)

(𝑇𝑃+𝐹𝑃)×(𝐹𝑃+𝑇𝑁)+(𝑇𝑃+𝐹𝑁)×(𝐹𝑁+𝑇𝑁)
             (2.27) 

 

Like the MCC, the Cohen’s kappa coefficient ranges between -1 to 1, indicating the degree 

of classification agreement or accuracy (Chicco et al., 2021:78371; Ghaedi et al., 2022:69). 

The higher the value of the kappa coefficient, the better the predictive model, showing 

greater accuracy or agreement and vice versa (Ghaedi et al., 2022:69). A kappa coefficient 

value of -1 indicates that the classification is perfectly wrong, a coefficient value of 0 

indicates no agreement, while a coefficient of 1 shows perfect agreement (Chicco et al., 

2021:78371). 

 

Area under the curve (AUC) is another performance metric used for the evaluation of ETD 

or NTLD models (Aslam, Javaid, et al., 2020:13; Khan et al., 2020:15; Asif et al., 

2022:27469). AUC is specifically the area under the receiver operating characteristic curve 

(ROC) to determine the overall quality of models (Ali et al., 2023:13; Bai et al., 2023:14; Xia 

et al., 2023:6; Liao, Bak-Jensen, et al., 2024). The ROC curve is the plot of TPR against 

FPR over different classification thresholds (Ali et al., 2023:14; Xia et al., 2023:6; Iftikhar et 

al., 2024:10; Liao, Bak-Jensen, et al., 2024). However, AUC can be computed using the 

formula provided in Equation 2.28 (Huang et al., 2024:12; Liao, Bak-Jensen, et al., 2024; 

Liao, Zhu, et al., 2024:5080). Equation 2.28 is based on the probability that a positive 

sample chosen at random will rank higher than a negative sample that has also been 

chosen in the same randomly manner (Zheng et al., 2018:1611; Liao, Bak-Jensen, et al., 

2024). The AUC metric indicate the ability of ETD models to rank fraudulent (positive) 

samples higher than non-fraudulent (negative) samples (W. Liao et al., 2022:3521; Liao, 

Bak-Jensen, et al., 2024). 
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𝐴𝑈𝐶 =
∑ 𝑅𝑎𝑛𝑘𝑖𝑖∈𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝐶𝑙𝑎𝑠𝑠 −

𝑀(1+𝑀)

2

𝑀×𝑁
                                              (2.28) 

 

Where 𝑖 ∈ 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝐶𝑙𝑎𝑠𝑠 in Equation 2.28 depicts that the sample 𝑖 being considered is a 

positive sample and belongs to the positive class; 𝑅𝑎𝑛𝑘𝑖 represents the number of samples 

from the 𝑛 samples which the prediction value of sample 𝑖 exceeds when 𝑛 samples are 

being arranged in ascending order, in accordance with the prediction scores of the positive 

samples (Khan et al., 2020:15). However, 𝑀 is the number of positive samples in the 

positive class, while 𝑁 is the number of negative samples in the positive class (Bai et al., 

2023:14; Khan et al., 2023:544). 

 

The performance evaluation metrics which have so far been discussed are based on the 

values in the categories of TP, TN, FP, and FN from confusion matrices. TP and TN are 

correctly predicted, while FP or false alarm and FN are errors made by the NTLD system, 

as a result of wrongly predicting the given input data samples (Messinis & Hatziargyriou, 

2018:259; Saeed et al., 2020:6; Mehdary et al., 2024:19). The performance scores of ETD 

or NTLD models normally range between 0 and 1, except for those mentioned otherwise. 

The higher the values of the performance metrics obtained from ETD models, the more 

reliable and efficient the NTLD models that produced them, except for FPR and FNR that 

were discussed earlier, and logarithm loss (log loss), and regression loss functions (which 

will be discussed in the subsequent paragraphs) are vice versa. The discussed regression 

loss functions are mean squared error (MSE), root mean squared error (RMSE), absolute 

error (AE), mean absolute error (MAE), absolute percentage error (APE), and mean 

absolute percentage error (MAPE). The lower the values of FPR, FNR, log loss, and the 

regression loss functions, the fewer the errors produced by the ETD or NTLD models that 

produced such scores, and hence the better and more-efficient the models. Reduced FPR 

scores result in lower onsite inspection costs (Messinis & Hatziargyriou, 2018:259, 264; 

Aldegheishem et al., 2021:25051; Pamir, Javaid, Qasim, et al., 2022:56866, 56870; Xia et 

al., 2023:10). 

 

The logarithmic loss (log loss), loss function, or cross entropy performance metric is 

expressed in Equation 2.29 (Wang et al., 2023:12; Liao, Zhu, et al., 2024:5080). The log 

loss metric is also referred to as binary cross entropy because it is basically used for binary 

classification problems (Liao, Zhu, et al., 2024:5080). 

 

𝐿𝑜𝑔 𝑙𝑜𝑠𝑠 = −
1

𝑁
∑ 𝑦𝑖 × log(𝑃(𝑦𝑖)) + (1 − 𝑦𝑖) × log(1 − 𝑃(𝑦𝑖))𝑁

𝑖=1                   (2.29) 
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In Equation 2.29, 𝑦𝑖  represents the actual-class or ground-truth label of either 0 value for 

honest customer 𝑖 or a 1 value for fraudulent customer 𝑖, 𝑃(𝑦𝑖) is the probability or 

likelihood that customer 𝑖 committed ET (i.e., have a label value of 1) as predicted by the 

model, while 𝑁 is the total samples of electricity customers in a given dataset (Wang et al., 

2023:12; Liao, Zhu, et al., 2024:5080). The log loss or loss function is a metric used to 

evaluate the difference between the observed or predicted and the actual or expected 

values, to determine the extent of classification wrongness or correctness (i.e., classification 

error) (Coma-Puig, 2022:14; Khan et al., 2024:13). The log-loss values range between 0 

and ∞ (Banga et al., 2022:9590). The greater the difference or deviation between the 

observed and actual values, the greater the log-loss metric values (Coma-Puig, 2022:14; 

Gao et al., 2022). The closer the log-loss values to 0, that is, the lower the values of log 

loss, the higher the accuracy of the ETD or NTLD model, and hence the better the 

performance of the model and vice versa (Banga et al., 2022:9590). 

 

The following Equations 2.30 to 2.35 found in the literature are known as regression loss 

functions, and are also used for the purpose of evaluating ETD or NTLD models  (Bian et 

al., 2021:47259; Ribeiro et al., 2021; Coma-Puig & Carmona, 2022:14-15; Irfan et al., 

2022:2154; Velasco Rodríguez, 2022:26-27). 

 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

𝑖=1                                 (2.30) 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

𝑖=1                                 (2.31) 

 

 𝐴𝐸 = |𝑦𝑖 − 𝑦̂𝑖|                 (2.32) 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑦̂𝑖|𝑛

𝑖=1                          (2.33) 

 

𝐴𝑃𝐸 = |
𝑦𝑖−𝑦̂𝑖

𝑦𝑖
| × 100                                        (2.34) 

 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑦𝑖−𝑦̂𝑖

𝑦𝑖
| × 100𝑛

𝑖=1                         (2.35) 

 

Regression loss functions are commonly used for evaluating regression models. The mean 

squared error (MSE), root mean squared error (RMSE), absolute error (AE), mean absolute 
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error (MAE), absolute percentage error (APE), and mean absolute percentage error (MAPE) 

expressed in Equations 2.30, 2.31, 2.32, 2.33, 2.34, and 2.35 respectively, are used for 

evaluating ETD or NTLD models to determine classification errors (Badawi et al., 2022:10). 

In the equations, 𝑦𝑖 represents the expected or actual value of energy consumption (using 

train data), 𝑦̂𝑖 is the predicted value of energy consumption (using validation or test data), 𝑖 

is the identification number for the particular electricity consumption sample being 

considered, while 𝑛 is the number of the total energy consumption samples (Bian et al., 

2021:47259-47260; Ribeiro et al., 2021; Irfan et al., 2022:154). If the calculated errors using 

the regression loss functions go beyond certain set thresholds, then ET or NTL is suspected 

(Ford et al., 2014; Tehrani et al., 2022:2). Generally, the lower the metric values of the 

regression loss functions, the more reliable the models that produced them, indicating better 

model performances (Kawoosa et al., 2023:4807).  

 

Another performance metric called coefficient of determination, which is otherwise referred 

to as R-squared and denoted as 𝑅2 (Ribeiro et al., 2021; Farhan & Nafi, 2022; Velasco 

Rodríguez, 2022:26) is expressed in Equation 2.36. The R-squared metric describes how 

the variation of a variable affects the variation of another variable (Ribeiro et al., 2021). 

 

𝑅2 = 1 −
∑ (𝑦𝑖−𝑦̂𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−𝑦̅𝑖)2𝑛
𝑖=1

                (2.36) 

 

The variable 𝑦𝑖 in Equation 2.36 represents each actual value or feature, 𝑦̂𝑖 represents each 

predicted value through the regression line of best fit or through the dependent variable, 

while 𝑦̅ represents the average or mean of all the actual or original values (Ribeiro et al., 

2021; Farhan & Nafi, 2022). In a regression model, the coefficient of determination (𝑅2) 

refers to how well the predictor or independent variables of the model can predict the 

outcome or dependent variable (Ribeiro et al., 2021; Farhan & Nafi, 2022; Velasco 

Rodríguez, 2022:26). In the fractional part of Equation 2.36, the numerator is the sum of the 

squared errors between each feature and the regression line of best fit, while the 

denominator represents the sum of the squared errors between every feature or actual 

value and the mean of all the features. The regression line of best fit is drawn based on the 

values of the dependent and independent variables. The values of 𝑅2 range between 0 and 

1 (Farhan & Nafi, 2022). The higher the value of 𝑅2, the more reliable the regression model 

is, and hence the better the explainability of the outcome variable by the predictor variables, 

showing the strength of the association between the dependent and the independent 

variables (Ribeiro et al., 2021; Farhan & Nafi, 2022). 
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Finally, the remaining performance metrics mentioned in the literature are support, 

classification time, training time, energy balance mismatch, cost of an undetected attack, 

inspection cost or normalized labour cost, average bill increase, anomaly coverage index, 

minimum detected variation, decrease in stolen electricity, and the RTU cost metrics. These 

performance metrics (Messinis & Hatziargyriou, 2018:253; Saeed et al., 2020:7) are 

described below: 

 

(a) Support: In a rule-based system, support is illustrated as the sample counts upon which 

a rule has been applied when compared with the total number of representative data 

samples. It is the number of instances that are currently being considered out of the 

total available instances. 

(b) Classification time: Is the time it takes an NTLD model to categorize or classify the 

given input data samples. 

(c) Training time: It is the time taken to groom an NTL model before it is able to learn. 

(d) Energy balance mismatch: Energy balance mismatch is the difference between the 

supplied by the energy distribution companies and the energy consumed by electricity 

customers. 

(e) Cost associated with undetected attack: It is the cost connected with the impact of 

the worst-possible attack on the utility infrastructure. 

(f) Inspection cost or normalized labour cost: It is the amount incurred during the 

inspection of electricity consumers that have been classified or predicted as fraudulent 

by the NTLD system. 

(g) Average bill increase: Average bill increase is referred to as the general increase in 

the electricity bill of every customer due to the revenue deficits incurred by the electric 

utilities owing to ET. 

(h) Anomaly coverage index: It is the ratio of the electricity thieves detected by RTUs to 

the total number of consumers stealing electricity. 

(i) Minimum detected variation: Is the least possible deviation detected from a specific 

load profile. 

(j)  Decrease in stolen electricity: It is the drop in the electricity siphoned from the grid 

after the application of a particular NTLD model. 

(k) RTU cost: This is the amount spent or incurred on acquiring and installing RTUs. 

 

All the performance metrics mentioned should not be confused with ‘response time’, which 

is not an evaluation metric, but the time it takes an NTLD system to determine if an electricity 

customer commits theft. Response time is the time taken by the utilities to obtain the input 

data, which serves as input to NTLD models during ML simulations, and not the time taken 
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for NTL algorithms to produce prediction results based on the input data (Messinis & 

Hatziargyriou, 2018:252, 254-257, 264-265). 

 

2.5.3.2    Classification of non-hardware solutions 
 

Non-hardware NTLD solutions make use of algorithms in detecting NTL. Algorithms are 

procedures or step-by-step methods used for NTLD in the power system (Messinis & 

Hatziargyriou, 2018:252, 259). NTLD algorithms form the core of the methods used for non-

hardware NTLDs. Different algorithms that make up NTL models use grid data in different 

ways to detect NTL in the power system. To further analyse the non-hardware-based 

solution approach, the method is classified into three types namely: data oriented, network 

oriented, and the hybrid methods (Messinis & Hatziargyriou, 2018:251-252, 259; Saeed et 

al., 2020:8-9; Guarda et al., 2023:4-5) as shown in Figure 2.21. 

 

❖ Data-oriented methods 
 

Data-oriented, data-based, or data-driven methods for NTLD are basically the application 

of ML methods and data analytics (Messinis & Hatziargyriou, 2018:259; Saeed et al., 

2020:9; Nayak & Jaidhar, 2023:2) on electricity consumption profiles or readings and 

sometimes additional data (Viegas et al., 2017:1263; Ghori et al., 2020:16035, 16037), to 

detect ET and eventually shortlist ET suspects for manual onsite inspections (Glauner et 

al., 2017:761; Messinis & Hatziargyriou, 2018:259). The advent of SG has greatly enhanced 

the application of data-oriented methods for ETD, owing to the huge amounts of data 

produced through the AMI of the intelligent grid, by employing AI-based machine learning 

(ML) and deep learning (DL) techniques (Gu et al., 2022:4568; Liao, Zhu, et al., 2024:5075; 

S. Zhu et al., 2024:15477). Data-based NTL solutions are more comprehensive, resilient, 

and efficient (Bai et al., 2023:2). 

 

Some examples of additional data are temperature, environmental or geographical data, 

and customer information like type of house, contract type, etc., which are at times 

combined with the consumption data to improve NTL predictions (Viegas et al., 2017:1263; 

Ghori et al., 2020:16035, 16037). Some seventy-one different types of features that include 

consumption and additional data with their priorities and importance as determined based 

on F-measure are mentioned and listed in Ghori et al. (2020:16041-16041, 16045), while a 

couple of some other features are also mentioned in Poudel and Dhungana (2022:112) and 

Guarda et al. (2023:19). However, majority of data-based NTL models only make use of the 

energy consumption data or load data as the input data in NTL models for ETDs (Viegas et 

al., 2017:1263). Also, most data-oriented methods employ supervised-learning methods 
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owing to their superior performances in terms of ETD or NTLD (Messinis & Hatziargyriou, 

2018:262; Saeed et al., 2020:16; Fei et al., 2022:1, 7; Guarda et al., 2023:21; Liao, Zhu, et 

al., 2024:5075). 

 

AI-based methods for the detection of ET is commonly referred to as the classification of 

the load data/profile or consumption profile of electricity consumers by training NTL models 

with the annotated data of benign or honest and malignant or fraudulent customers obtained 

during onsite inspections, to determine irregular consumption patterns in the load profile 

(Fragkioudaki et al., 2016:51). The consumption profile contains the consumption records 

or meter readings of the electricity customers taken hourly, daily, or monthly (Ghori et al., 

2020:16035). Data-oriented methods particularly employs the use of consumer level time-

series data and consumer level static data for NTLD as shown in Figure 2.22 (Messinis & 

Hatziargyriou, 2018:253, 258).  These data are usually smart metering data of large 

volumes and less variety, with either medium or low resolutions for making generalized 

predictions (Messinis & Hatziargyriou, 2018:264). With data-oriented methods, existing 

infrastructure of utilities is made use of, as data-driven techniques do not require the 

purchase of additional equipment for the periodic gathering of voluminous data and/or 

labelling of the data (Messinis & Hatziargyriou, 2018:264; Osypova, 2020:45). 

 

The various types of data-driven algorithms used for the detection of NTL by employing 

customers’ consumption profiles fall under supervised learning, unsupervised learning, 

hybrid learning and semi-supervised learning (Ghori et al., 2020:16035), using AI-based ML 

methods (Bai et al., 2023:2). These learnings under the data-oriented method are premised 

on AI methods (Messinis & Hatziargyriou, 2018:259-260). The use of customers’ electricity 

consumption data and applying the AI-based ML approach is the state-of-the-art and the 

most-effective approach in ETD (Glauner et al., 2017:761; Glauner, 2019:31, 110; Ghori et 

al., 2020:16033-16034; Saeed et al., 2020:1; Guarda et al., 2023:4; Stracqualursi et al., 

2023:12, 16; Coma-Puig et al., 2024:2704). The common ML procedures used for 

supervised and unsupervised learnings (Messinis & Hatziargyriou, 2018:259) while 

deploying the consumption data of electricity customers are depicted in the flowchart shown 

in Figure 2.23. 
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Figure 2.23: Procedures for supervised and unsupervised learnings 

(Messinis & Hatziargyriou, 2018:260) 

 

For the supervised and unsupervised learning procedures shown in Figure 2.23, the raw 

data is first processed, and a model for data analytics and prediction is selected. The data 

is processed by cleaning it and extracting the features in it. The selected model is then used 

for NTL prediction. During the modelling, supervised learning is used if the data is labelled, 

while unsupervised learning or method is used if the data is unlabelled. The quality and 

variety of the data employed would determine the type of algorithms or models to be used 

to analyse the data. For supervised methods, the input dataset is divided into training and 

test sets. Training sets from input data are used to tutor the model, so that the model could 

be able to infer meaningful patterns from the data. To verify the operation of the model and 

its performance, a new set of data (test set) from the samples in the dataset are used, and 

a suspect list is generated for customers who have the probability or propensity of engaging 

in ET (Messinis & Hatziargyriou, 2018:259). 



 

121 
 

• Supervised learning 
 

Supervised learning is the most common and one of the widely used types of ML owing to 

its impressive performance (LeCun et al., 2015:436; El Bouchefry & de Souza, 2020:227; 

Muhammad et al., 2020:2; Hanif et al., 2021:14). Supervised learning methods for ETD or 

NTLD make use of positive and negative labels from the consumption profiles of consumers 

to train ML classifiers, such that different patterns are learnt from given historical datasets 

of energy consumptions (Saeed et al., 2020:9; Guarda et al., 2023:5, 21; Liao, Zhu, et al., 

2024:5075). The samples that are labelled as positives are the energy consumptions of 

those malignant customers who steal electricity, while the negative samples represent the 

benign customers who do not steal electricity (Messinis & Hatziargyriou, 2018:251). In 

supervised learning, the labels on the datasets are the correct answers or the expected 

outcomes which are used for training ETD or NTLD models to accustom them to what is 

already being anticipated from them, and to determine the efficiency of the models in 

predicting ET after testing with new or test data samples (Osypova, 2020:41; Saeed et al., 

2020:9). 

 

The main demerits connected to supervised learning is the imbalanced nature of real-world 

datasets and the issue of data labelling or annotation which limits its usage if the expected 

labels are not available (Saeed et al., 2020:9; Liao, Bak-Jensen, et al., 2024). Examples of 

supervised learning methods are support vector machine (SVM), optimum path forest OPF), 

decision tree (DT), Bayesian classifiers, artificial neural network (ANN), k-nearest 

neighbours (KNN), rule induction methods, and generalized additive model (GAM) 

(Messinis & Hatziargyriou, 2018:260-261; Saeed et al., 2020::9-11; Guarda et al., 2023:5-

11). 

 

i. Support vector machine 

 

SVM models have been frequently used as binary classifiers in NTLD problems owing to 

their resilience and immunity to imbalance datasets (Messinis & Hatziargyriou, 2018:260; 

Saeed et al., 2020:9; Guarda et al., 2023:6). SVM models use hyperplane in a high 

multidimensional space to maximally classify classes by drawing a wide boundary between 

support vectors (Pamir, Javaid, Qasim, et al., 2022:56871). SVM models have been 

deemed to be trusted in detecting NTL in a lot of literature, but may as well be time 

consuming and difficult to tune (Messinis & Hatziargyriou, 2018:260). SVM methodologies 

like one-class SVM (OC-SVM) and cost-sensitive SVM (CS-SVM) have been used in 

various SVM implementations. OC-SVM model is used for anomaly or outlier detections in 

an unsupervised manner because sample dataset used for its implementation is single-
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class (usually negative class or honest customers who do not steal electricity) labelled 

dataset (Messinis & Hatziargyriou, 2018:260; Saeed et al., 2020:9). 

 

With CS-SVM, different weight values like high cost are added to classes owing to 

misclassifications or classification errors of different types caused mainly by minority 

classes to improve performance (Messinis & Hatziargyriou, 2018:260; Guarda et al., 

2023:6). An example of this is the assignment of high cost to the misclassifications of 

minority classes in datasets to yield higher performances (Messinis & Hatziargyriou, 

2018:260). Other types of SVM are linear kernel SVM (LK-SVM) and radial basis function 

kernel SVM (RBFK-SVM) (Messinis & Hatziargyriou, 2018:260; Saeed et al., 2020:10; 

Guarda et al., 2023:6). Between LK-SVM and RBFK-SVM, RBFK-SVM is more commonly 

used (Messinis & Hatziargyriou, 2018:260). Cost and gamma parameters are tuned for 

RBFK-SVM, while only cost parameter is tuned for LK-SVM. SVM could be combined with 

fuzzy interference system (FIS), DT, neural networks and other models to improve its 

performance (Messinis & Hatziargyriou, 2018:260; Saeed et al., 2020:10; Guarda et al., 

2023:6). 

 

Nagi et al. (2010) develops SVM model for ETD. Energy consumption data of customers 

and additional data are used to identify the irregular patterns in the electricity consumptions 

of the customers. These irregular patterns are highly correlated with NTL in the power grids. 

The energy consumption data employed was taken from three cities in Malaysia. The 

historical energy consumption profile of 265, 870 customers taken over 25 months were 

considered for the NTL simulations. The SVM model classifies the consumption data by 

separating the normal customers and the fraudulent customers. The model uses binary 

classification to try to determine sudden changes in the energy consumption data by using 

data mining and statistical analysis. Classification is done by finding the optimal decision 

function f(x) using the SVM classifier model in Equation 2.37. Equation 2.37 classifies test 

data into two classes and minimizes classification error as much as possible. The term g (x) 

is the decision boundary or hyperplane between the two classes of normal and fraudulent 

customers. The term f(x) minimizes classification error and improve model generalization 

by following the principle of structural risk minimization (SRM), as expressed in Equation 

2.38 (Nagi et al., 2010:1163; Jiang et al., 2014:110; Ghori et al., 2023:15335). 

 

f(x) = sgn(𝑔(𝑥))                 (2.37) 

 



 

123 
 

𝑅 <
𝑡

𝑛
+ √

ℎ(ln(
2𝑛

ℎ
)+1)−ln(

𝜂

4
)

𝑛
                  (2.38) 

                

In Equation 2.38, 𝑅 is the expected error, classification-error expectation, or test-sample 

prediction error, 𝑡 illustrates the number of training errors or errors from the training 

samples, 𝑛 is the number of training samples, ℎ is the dimension of the SVM set of 

hyperplanes, while 𝜂 is a confidence measure (Nagi et al., 2010:1163; Jiang et al., 

2014:110; Ghori et al., 2023:15335). The features used for the NTLD by Nagi et al. (2010) 

are the energy consumption data of each customer which corresponds to 24-hour daily 

average values of their energy consumptions, and the additional data known as the credit 

worthiness rating (CWR) which is automatically produced by the utility billing system for 

every customer who falter in paying their bills. The data were preprocessed and then later 

used to train and validate the SVM model. The SVM model achieved a tremendous hit rate 

increase from 3% to 60%. The SVM model The hit-rate increase of 57% was achieved when 

compared with the previous hit rate accomplished by the Tenaga Nasional Berhad electric 

distribution company in Peninsular Malaysia during onsite inspections. 

 

The work of Nagi et al. (2010) reviewed above was extended and enhanced by Nagi et al. 

(2011), as the previous hit rate of 60% was increased to 72% by the improved model. This 

feat was achieved by introducing the IF-THEN rules form of FIS that involves the inclusion 

of human expert knowledge into the former SVM model that achieved a hit rate of 60%. The 

FIS produce an output that ranges from 0 and 1 for each customer. Those customers who 

have 0.5 outputs or higher are deemed to have higher propensity of being fraudulent. 

 

While Nagi et al. (2010) and Nagi et al. (2011) contribute valuable insights into NTLD using 

SVMs and fuzzy logic, they have several limitations. The lack of comparative benchmarking, 

inadequate evaluation metrics, scalability concerns, and failure to address cost-sensitive 

learning reduce the practicality of their proposed methods. 

 

ii. Optimum path forest 

 

OPF conquers the challenge that AI methods require high computational overhead while 

training ETD models (Guarda et al., 2023:9). OPF algorithm is an algorithm that is based 

on graphs, and may be used for clustering or classification, but it is commonly used for 

classification (Messinis & Hatziargyriou, 2018:260; Saeed et al., 2020:10; Poudel & 

Dhungana, 2022:113). Unlike SVM and other models that uses hyperplane to distinguish 
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two classes, the OPF algorithm does not separate two classes by finding an optimal 

hyperplane, but each annotated sample in a training set is regarded as a graph node that 

has its coordinates as its feature values (Messinis & Hatziargyriou, 2018:260). 

 

The target of OPF is such that the graph is partitioned into two or more optimal-path trees, 

whereby each tree represents a class (Messinis & Hatziargyriou, 2018:260; Saeed et al., 

2020:10). Each tree is attached to its prototype where it is rooted (Messinis & Hatziargyriou, 

2018:260). Prototype is the root of the optimum-path trees, whereby the classification of 

each node is dependent on the node-prototype connection strength, resulting in optimal 

feature-space partitioning (Messinis & Hatziargyriou, 2018:260; Saeed et al., 2020:10; 

Guarda et al., 2023:9). The grouping of these trees which are connected to their various 

prototypes is referred to as the OPF classifier (Messinis & Hatziargyriou, 2018:260; Saeed 

et al., 2020:10). 

 

Classification with OPF is interpreted as the combination of the computations of optimal-

path trees or nodes based on prototypes (Guarda et al., 2023:9). During model validation, 

new samples being tested are assigned the labels of the prototype where they are 

eventually rooted, in accordance with a cost function (Messinis & Hatziargyriou, 2018:260; 

Saeed et al., 2020:10).  OPF classifies are parameter-free and take a lower time in its 

training phase to train the model with train samples even with overlapped classes; hence it 

is well appropriate for online training of ETD system (Messinis & Hatziargyriou, 2018:260; 

Saeed et al., 2020:10; Guarda et al., 2023:9). OPF algorithm employs path-cost function to 

optimally group samples with similar characteristics (Guarda et al., 2023:9).  

 

The authors in Ramos et al. (2011) were interested in the regions that exist between classes 

(overlapped regions), and addressed the path-cost function (𝑓𝑚𝑎𝑥) for the region using 

Equation 2.39. 

 

𝑓𝑚𝑎𝑥(〈𝑠〉) = {
0, 𝑖𝑓 𝑠 ∈ 𝑆

+∞, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                         (2.39)

   
𝑓𝑚𝑎𝑥(𝜋〈𝑠, 𝑡〉) = max{𝑓𝑚𝑎𝑥(𝜋), 𝑑(𝑠, 𝑡)}  

 

Considering the neighbouring samples in 𝜋 when the path of 𝜋 is not trivial, the function of 

the path cost 𝑓𝑚𝑎𝑥(𝜋) in Equation 2.39 calculates the greatest distance between the 

adjoining samples. Whereas 𝑑(𝑠, 𝑡) represents the distance between 𝑠 and 𝑡 along path 𝜋. 

One optimum path 𝑃∗(𝑠) is assigned by the OPF algorithm from 𝑆 to each sample 𝑠 ∈ 𝑍1, 
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to form an optimum path forest 𝑃. The optimum path forest 𝑃 is a function with no cycles 

which assigns a marker nil or its predecessor 𝑃(𝑠) in 𝑃∗(𝑠) to every 𝑠 ∈ 𝑍1\𝑆 when 𝑠 ∈ 𝑆. 

It should be noted that the train, validation, and test sets are represented as 𝑍1, 𝑍2, and 𝑍3. 

Classification is done by evaluating the optimum cost function 𝐶(𝑡) shown in Equation 2.40. 

 

𝐶(𝑡)  = min{max{𝐶(𝑠), 𝑑(𝑠, 𝑡)}} , ∀𝑠 ∈ 𝑍1                 (2.40) 

 

The authors in Ramos et al. (2011) introduce an innovative application of the OPF classifier 

for NTLD. However, the lack of comparative benchmarking, insufficient feature analysis, 

imbalanced data handling, and real-world scalability concerns limit the practical impact of 

their findings. 

 

iii. Decision tree 

 

The OPF algorithm mentioned previously classifies in graph-like manner, while DT 

algorithm classifies its set of rules in a flowchart-like or tree-like manner when predicting 

new samples (Saeed et al., 2020:11; Guarda et al., 2023:9). The sets of rules of DT, which 

are determined by the input-output attributes relationships in data, allow for better 

understanding of NTL characteristics, where the algorithm split dataset into several tree-

like branches according to the rules of decision (Messinis & Hatziargyriou, 2018:261; 

Guarda et al., 2023:9). The rules of DT algorithm has been combined with experts’ rules 

and other classifiers to form ensemble methods (Messinis & Hatziargyriou, 2018:261). DT 

is able to handle non-linearity in data better than linear models, but it is sensitive to the 

problem of class imbalance in datasets (Messinis & Hatziargyriou, 2018:261; Saeed et al., 

2020:11; Guarda et al., 2023:9). 

 

DT is used for classification and regression problems (Saeed et al., 2020:11). DT types like 

C4.5, C5.0, CART, QUEST, EBT, ID3, and QUEST have been used in the literature to solve 

NTL-related problems (Messinis & Hatziargyriou, 2018:261; Saeed et al., 2020:11; Guarda 

et al., 2023:10). Divide-and-conquer methods are used to construct DT tree-based models 

to uncover the optimal points where the tree splits (B. Gupta et al., 2017:15; Dinov, 

2018:157). 

 

Recently a DT type known as M5P has been used by Cody et al. (2015). The M5P algorithm 

is a reconstruction of the M5 algorithm used in Quinlan (1992). M5P is a combination of DT 

and linear regression where the regression algorithm predicts future variables based on the 
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already learned variables from data. The M5P algorithm learns the pattern of consumptions 

from the energy consumed by each consumer, and these learned patterns are then used to 

predict future patterns of energy consumptions (Guarda et al., 2023:10).  

 

Both Quinlan (1992) and Cody et al. (2015) contribute to DT-based learning, however, 

Quinlan’s (1992) study lacks modern evaluation metrics and comparisons with other 

regression models, while the work of Cody et al. (2015) did not explore alternative models, 

imbalanced data handling, or real-world deployment challenges. 

 

iv. Bayesian classifiers 

 

Bayesian classifiers are used to detect ET, NTL or intrusions in a network (Gu et al., 

2022:4571). Classification using Naïve Bayes classifiers are probabilistic and require the 

knowledge of NTL probability which may have been previously acquired from huge national 

statistical energy information repository, to predict events to come (Messinis & 

Hatziargyriou, 2018:261; Saeed et al., 2020:11). The principle upon which this classifier 

operates is such that, the different features of a class could be estimated using the non-

intrusive load monitoring (NILM) technique if the class of such sample is already known or 

determined (Guarda et al., 2023:11).  

 

With NILM, the probability of each of the appliances used per consumer in a building and 

their respective probable energy consumptions learnt through the consumption pattern of 

every load device used by the electricity consumer are predicted in a bid to determine NTL 

(Saeed et al., 2020:11; Guarda et al., 2023:11). The NILM calculates the possibility of ET 

using NTL probability from the previously acquired information when a new device or 

sample is introduced (Messinis & Hatziargyriou, 2018:261; Saeed et al., 2020:11). Bayesian 

probability (i.e., joint probability) is a probability which conveys some set of variables 

graphically. The Bayesian probability is a kind of Bayesian classifier which is also known as 

Bayesian network  (Messinis & Hatziargyriou, 2018:261). 

 

The authors in  Massaferro et al. (2020) proposed a Bayesian risk framework to detect NTL, 

in order to increase the income and profits of the Uruguayan electric utility, to restore its 

economic stability. The framework which is about obtaining the optimal subset 𝑋̂𝑚, such 

that 𝑋̂𝑚 = {𝑥𝑖1, … , 𝑥𝑖𝑚}, is represented by Equation 2.41, while the cost-sensitive 

classification loss of the framework is shown in Equation 2.42. 
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𝑋̂𝑚 = 𝑎𝑟𝑔 𝑚𝑎𝑥𝑋̂𝑚
{∑ 𝑎𝑖𝑘𝑃(𝑦𝑖𝑘 = 1|𝑥𝑖𝑘)𝑚

𝑘=1 − ∑ 𝑐𝑖𝑘
𝑚
𝑘=1 }              (2.41) 

 

𝐿(𝑥, 𝑞) = ∑ 𝑃(𝑦 = 𝑘|𝑥)𝜇𝑞𝑘𝑘                  (2.42) 

 

The framework to optimize the revenues of the Uruguayan electric utility as proposed by 

Massaferro et al. (2020) is expressed in Equation 2.41; where 𝑚 represents the number of 

inspections that the utility needs to perform, while 𝑋𝑚   𝑋 represents the random subset 

of 𝑚 samples of 𝑋. The term 𝑃(𝑦𝑖 = 1|𝑥𝑖) in the equation represents the probability that 

the given sample 𝑥𝑖 is causing NTL. The monetary amount which an 𝑖th electricity customer 

could be siphoning from the utility owing to theft is represented by 𝑎𝑖, while the amount it 

costs the utility to inspect the 𝑖th customer is denoted by 𝑐𝑖. The 𝜇𝑞𝑘 in Equation 2.42 is the 

cost associated with the misclassification or misprediction of a member of class 𝑘 as that of 

class 𝑞. Experimental results have shown that the proposed NTLD method is proficient in 

returning the economic status quo of the electric utility. 

 

Massaferro et al. (2020) contribute to cost-aware fraud detection but have several 

limitations. The study lacks generalizability, does not benchmark against other cost-

sensitive methods, and overlooks key issues like model adaptability and real-world 

deployment challenges. 

 

v. Artificial neural network 

 

ANN or simply ‘neural network’ is a branch or a subcategory of ML which basically consists 

of three layers called input, hidden, and output layers, for the recognition or classification of 

patterns (Guarda et al., 2023:7). ANN can be used for forecasting energy consumptions in 

time series, and also for binary classifications (Saeed et al., 2020:10; Guarda et al., 2023:7). 

The difference or deviation between the forecasted or predicted energy consumptions and 

the actual or measured values of energy consumptions can be used for detecting frauds or 

NTL in the power grids (Messinis & Hatziargyriou, 2018:260; Saeed et al., 2020:10; Guarda 

et al., 2023:7). Backpropagation (BP) trained Multilayer perceptron (MLP) which is jointly 

termed BP-MLP is the most common type of ANN used as binary classifier for detecting 

NTL in distribution grids (Messinis & Hatziargyriou, 2018:260; Saeed et al., 2020:10). The 

cross validation process is used in ANN to ensure that the trained model generalizes well 

after using trial and error method to determine the optimal network structure of the model 

(Messinis & Hatziargyriou, 2018:260; Poudel & Dhungana, 2022:113). 
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Zheng et al. (2018) used wide and deep convolutional neural network (WDCNN) for ETD. 

The wide component of the model captures the global features of one-dimensional energy 

consumption data, while the deep component of the model captures the periodicity of 

normal electricity consumption, and also captures accurately the non-periodicity energy 

consumptions attributable to ET based on two-dimensional energy consumption data. Most 

of the previous works on ETDs were based on one-dimensional energy consumption data. 

The missing values in the energy consumption data used in the work are replaced by the 

linear interpolation method shown in Equation 2.43. 

 

𝑓(𝑥) = {

𝑥𝑖−1+𝑥𝑖+1

2
, 𝑥𝑖 ∈ 𝑁𝐴𝑁, 𝑥𝑖−1 𝑜𝑟 𝑥𝑖+1 ∉ 𝑁𝑎𝑁 

0, 𝑥𝑖 ∉ 𝑁𝐴𝑁, 𝑥𝑖−1 𝑜𝑟 𝑥𝑖+1 ∈ 𝑁𝑎𝑁 
𝑥𝑖 , 𝑥𝑖 ∉ 𝑁𝑎𝑁 

                      (2.43) 

 

Where 𝑥𝑖 is the unit of the energy consumed over a period of time and it is represented as 

NaN when it is null, undefined, or missing. NaN stands for “Not a Number”. After the missing 

values have been replaced, the energy-consumption dataset is then normalized  by setting 

the range of the features to values between 0 and 1 using the min-max scaling method as 

expressed in Equation 2.44. 

 

𝑓(𝑥𝑖) =
𝑥𝑖−min(𝑥)

max(𝑥)−min(𝑥)
                   (2.44) 

 

Where min(𝑥) is the minimum value of the energy consumptions in 𝑥, and max(𝑥) is the 

maximum value of the energy consumptions in 𝑥. Each neuron or node of the fully-

connected convolutional neural network (CNN) layers calculates its own score as shown by 

Equation 2.45 using the one-dimensional energy consumption data.  

 

𝑦𝑗 ≔ ∑ 𝑤𝑖,𝑗𝑥𝑖 + 𝑏1
𝑛
𝑖=1                     (2.45) 

 

From Equation 2.45, 𝑦𝑗 is the output of the 𝑗th neuron in the fully connected layer, 𝑛 is the 

length of the input data 𝑥 which is a one-dimensional data, 𝑤𝑖,𝑗 is the weight of the neuron 

between the input value 𝑖th and the 𝑗th neuron, while 𝑏1 is the bias term of the neuron. After 

the calculation in Equation 2.45, the neuron will send the calculated value to the connected 

nodes in the higher layer of the network after applying Rectified Linear Unit (ReLU) 

activation shown in Equation 2.46, to determine how much the previous node contributed 

to the prediction of the next step in the network. 
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𝑢𝑗 ≔ 𝑓(𝑦𝑗) = max(0, 𝑦𝑗)                          (2.46) 

 

The output after calculating activation function is denoted by 𝑢𝑗. After the activation-function 

calculations, the Deep CNN processes the one-dimensional energy consumption data into 

a two-dimensional format according to weeks, to improve the performance of the traditional 

ANN. One-dimensional data could also be converted to two-dimensional format according 

to convinient number of days, but transforming it to two-dimensional data according to 

weeks has produced the best performance. 

 

The work of Buzau et al. (2020) is an improvement on the work of Zheng et al. (2018) and 

other deep learning models and prominent classifiers in terms of performances. Buzau et 

al. (2020) have used the combination of long short-term memory (LSTM) with MLP to 

enhance the performance of ANN. The LSTM analyzes the consumption history of the raw 

data while MLP integrates the non-sequential data. LSTM uses sigmoid and hyperbolic 

tangent (tanh) for non-linear activations, as expressed in Equations 2.47 to 2.51. 

 

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖)                (2.47) 

 

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓)                (2.48) 

 

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑖 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜)                 (2.49) 

 

𝐶𝑡 = 𝑓(𝑡) ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ tanh(𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡−1 + 𝑏𝑐)                      (2.50) 

 

ℎ𝑡 = 𝑜𝑡 ⊙ tanh(𝐶𝑡)                           (2.51) 

 

Where 𝑖𝑡 represents the input gate activation, 𝑓𝑡 represents the forget gate activation, 𝑜𝑡 

represents the output gate activation, 𝐶𝑡 represents the cell state activation, ℎ𝑡 illustrates 

the hidden-state activation at time-step 𝑡,  while ℎ𝑡−1 denotes the hidden-state activation 

at the previous time-step 𝑡. 𝑊𝑖, 𝑊𝑓, 𝑊𝑜, and 𝑊𝑐 depict the weights of the input layer. 𝑈𝑖, 

𝑈𝑓, 𝑈𝑜, and 𝑈𝑐 denote the recurrent weights of LSTM, while 𝑏𝑖, 𝑏𝑓, 𝑏𝑜, 𝑏𝑐 are the biases 

of the LSTM neural network. The 𝑥𝑡 vector represents the input feature the time-step 𝑡. 
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𝑧𝑛 = 𝑊𝑛ℎ𝑛−1 + 𝑏𝑛                    (2.52) 

 

In the MLP network, 𝑁 which is chosen based on the validation dataset is the number of 

hidden layers, while every hidden layer goes through an affine transformation as expressed 

in Equation 2.52. The choice of 𝑁 is based on the validation dataset. 𝑊𝑛 represents weights 

of the 𝑛𝑡ℎ  layer of the MLP network, ℎ𝑛−1 depicts the hidden state of the preceding layer, 

while 𝑏𝑛 denotes the bias of the layer 𝑛 of the network. For the model evaluation, the 

logarithmic loss function or the binary cross entropy function shown in Equation 2.53 is used 

to evaluate the performance of the model. 

 

𝐿 = −
1

𝑀
∑ −(𝑦𝑖 log(𝑃𝑁𝑇𝐿

𝑖 ) + (1 − 𝑦𝑖) log(1 − 𝑃𝑁𝑇𝐿
𝑖 ))𝑀

𝑖=1                       (2.53) 

 

The term 𝑀 in Equation 2.53 represents the available number of customer samples, 𝑦𝑖 

represents the ground-truth or actual-class label. The computed NTL probability for the 

sample 𝑖 of the customer using the hybrid LSTM-MLP model is represented by 𝑃𝑁𝑇𝐿
𝑖 . 

 

Although, Zheng et al. (2018) and Buzau et al. (2020) demonstrate the effectiveness of DL 

models (CNN, LSTM) for ETD, their approaches face computational complexity, 

interpretability, real-time deployment considerations, and generalizability challenges. 

 

vi. K-nearest neighbours 

 

KNN algorithm is one of the simplest supervised ML models which uses proximity of nearest 

neigbours for classification and regression to detect NTL (Messinis & Hatziargyriou, 

2018:261; Saeed et al., 2020:11). KNN algorithm calculates the lowest Euclidean distance 

between all the k-training features or new features (test data) to determine the k-training 

features or k-nearest neighbours and then select the class that has the highest k-nearest 

neighbours (majority vote) as the correct class for the test data  (Messinis & Hatziargyriou, 

2018:261; Ghori et al., 2020:16039). The mean values of the k-nearest neighbours is the 

predicted value for the test data when regression is being considered.  

 

Pedramnia and Shojaei (2020) proposed a method that detects the injection of false data 

into phasor measurement units (PMUs) in SG, using a variant of the traditional KNN called 

decomposed k-nearest neighbours (DKNN) algorithm. These attacks on PMUs are called 

false data injection (FDI) attacks, which is a very critical attack in SGs. Datasets from 

multiple PMUs are saved in the phasor data concentrator (PDC) at the utility control centres. 



 

131 
 

DKNN is an improvement on the conventional KNN algorithm which decomposes datasets 

into smaller subspaces, in a bid to enhance scalability, accuracy, and efficiency. The 

proposed DKNN method is used by the authors on PMU measurements and tested on IEEE 

14-bus system. The authors used complex optimization method in the DKNN algorithm to 

extract and categorize PMU data features, reduce the distances between intraclass and 

interclass neighbours, enhance computational efficiency by helping to reduce the time 

complexity associated with feature extraction and classification, and minimize errors in 

classification. The DKNN algorithm classifies the PMU dataset based on KNN-centroid 

distances after considering k-nearest neighbours from each class. The results obtained are 

satisfactory as the DKNN algorithm outperforms other ML algorithms used for the detection 

of false data injected into PMUs at utility control centres. 

 

The authors in Pedramnia and Shojaei (2020) have made a valuable contribution to FDI 

detection in SGs, however, their approach is limited to cyber anomalies and overlooks 

physical tampering and consumption-based theft detection. A hybrid approach combining 

cyber anomaly detection, ML-based consumption pattern analysis, and physical tampering 

detection would offer a more robust NTLD solution, especially in regions where electricity 

thieves apply diverse theft techniques. Also, the lack of generalizability, imbalanced-data 

handling, scalability concerns, and absence of comparative benchmarking limit the practical 

applicability of this approach. 

 

Aziz et al. (2020) also applied KNN algorithm to detect ET in electricity consumption dataset 

collected from AMI in SG. The authors used interpolation method to restore the missing 

values in the dataset, empirical mode decomposition (EMD) to break down the extracted 

features into intrinsic mode functions (IMFs), and adaptive synthetic (ADASYN) sampling 

algorithm to balance the two unequal classes in the dataset. After extracting features from 

the dataset, thirteen best features which give maximum classification accuracy have been 

chosen by the authors for the ETD experiment. The authors deployed traditional KNN 

variants like Fine KNN, Medium KNN, Coarse KNN, and Cosine KNN, including other ML 

algorithms like Fine Tree, Medium Tree, Coarse Tree, logistic regression and linear 

discriminant to classify the honest and fraudulent electricity customers in the employed 

dataset. Of all the algorithms used in the experiment, Fine KNN produced the best prediction 

results with classification accuracy of 91.0%. 

 

While Aziz et al. (2020) introduce an innovative EMD-based feature extraction approach for 

ETD, the reliance of this method on KNN and offline processing limits its scalability and 

real-time applicability. The authors can investigate online version of EMD, and also test the 
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method using large, diverse real-world SM datasets. The authors could evaluate alternative 

feature extraction methods like CNN-based methods for improved efficiency. 

 

vii. Rule induction methods 

 

Rule induction methods use algorithms to automatically extract set of rules in the form of 

“IF-THEN-ELSE” statements hidden in training data, to classify or predict the class of a new 

given sample or test data, in a bid to detect NTL or fraud (Nettleton, 2014:99; Messinis & 

Hatziargyriou, 2018:261; Saeed et al., 2020:10). This method is usually used with labelled 

datasets (Saeed et al., 2020:10). In the field of AI, rule induction methods are closely related 

to expert systems, in that, rule induction methods could be used as a tool to automatically 

refine or generate rules within the framework of expert systems, but in actual fact, both 

methods serve different purposes. Rule induction methods belong to the category of 

supervised learning, while expert systems belong to the category of unsupervised learning. 

Rule induction methods are driven by data, and involves the extraction of rules and patterns 

from labelled data; while expert systems are driven by human knowledge based on 

expertise (Saeed et al., 2020:10; Messinis & Hatziargyriou, 2018:261). 

 

     viii. Generalized additive model 

 

The inspiration for the use of GAM model for NTL reductions came from the field of 

epidemiology in medicine (Messinis & Hatziargyriou, 2018:261). GAM has been used in the 

field of NTL to model the spatial distribution of NTL, because it is presumed that NTL the in 

a domain spread epidemiologically in accordance with technical and social characteristics 

(Messinis & Hatziargyriou, 2018:261; Saeed et al., 2020:8). The probability of NTL in an 

area is estimated with GAM, based on the influence of the social and technical 

characteristics, using Markov chain to model how the NTL may spread in the future within 

a given area (Faria et al., 2016:362, 364; Messinis & Hatziargyriou, 2018:261). Although, 

GAM algorithm does not detect NTL or fraud, but evaluates the probability or likelihood of 

NTL by spatial distribution (Messinis & Hatziargyriou, 2018:261). 

 

• Unsupervised learning 
 

Unsupervised learning models do not make use of labels at all in the data profiles provided 

to train classifiers for NTLDs or predictions (Messinis & Hatziargyriou, 2018:251; Osypova, 

2020:37; Saeed et al., 2020:11; Guarda et al., 2023:11). With unsupervised learning, the 

relationships and patterns in a dataset are learned without any prior knowledge about the 

dataset or with the datasets that are being partially labelled. Unsupervised learning can also 



 

133 
 

be used with methods that uses a single label, or when the labelled samples of those 

customers that steal electricity are very small when compared with the large numbers of 

labelled representative samples of those customers who did not steal electricity (Messinis 

& Hatziargyriou, 2018:251-252, 260, 262). The detection accuracies of supervised learning 

models are better than those of unsupervised learning models because supervised learning 

models already have deep knowledge of the datasets via their labels prior to modelling 

(Messinis & Hatziargyriou, 2018:262; Saeed et al., 2020:16; Liao, Zhu, et al., 2024:5075). 

Examples of unsupervised learning methods are self-organizing map (SOM), outlier 

detection methods, regression models, expert systems, clustering algorithms, statistical 

methods, game-theoretic methods (Messinis & Hatziargyriou, 2018:261-262; Saeed et al., 

2020:12-13; Guarda et al., 2023:11-15). 

 

i. Self-organizing map 

 

SOM is an exclusive kind of neural network which works on training and mapping modes in 

an unsupervised manner (Messinis & Hatziargyriou, 2018:261; Poudel & Dhungana, 

2022:114). In the training mode, the map is built using datasets while in the mapping mode, 

new data samples are classified automatically (Poudel & Dhungana, 2022:114). The SOM 

algorithm does dimensionality reduction to produce a low-dimensional equivalence of a 

high-dimensional data in order to convey the network distribution in a graphical map and 

detect features using unsupervised learning, while the topology of the original data (high-

dimensional data) is still being retained (Sacco et al., 2017:68; Messinis & Hatziargyriou, 

2018:261; Misra et al., 2020:146). Similar samples are mapped together using SOM (Sacco 

et al., 2017:68) to produce an output that depict whether NTL have occurred or not (Messinis 

& Hatziargyriou, 2018:261).  

 

In Cabral et al. (2008), the authors applied SOM to detect ET among high-voltage (HV) 

consumers by comparing the historical energy consumption data with the present data 

obtained from an electric distribution company in Brazil. The energy consumption data is 

aggregated into weekly consumptions. Out of the 156 customers selected for ETD 

simulation, 30% of the customers were suspected of causing NTL by the SOM-based ETD 

system. Guerrero et al.  (2018) developed a framework of two modules to increase the 

success rate of onsite inspections in the premises of electricity customers. The first module 

was based on text mining and ANN to filter electric customers, while the second module 

involved a data mining process that contained classification and regression tree (C&R), and 

SOM neural network. 
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The work of Cabral et al. (2008) lacks generalization to LV consumers and real-time fraud 

detection, while that of Guerrero et al. (2018) over-relies on inspection-based detection. 

However, both studies lack real-time ML-based detection, scalability considerations, and 

fully automated fraud prediction techniques. 

 

ii. Outlier detection methods 

 

Outliers are features that differs significantly from regular features. The concept of outlier 

detection methods applied for ETD involve the identification of the unusual features that 

behave differently in a given dataset for the purpose of detecting NTL (Messinis & 

Hatziargyriou, 2018:262; Guarda et al., 2023:12).  

 

Linear programming is being employed by Yip et al. (2018) to detect NTL using the concept 

of outlier detection. The method is able to identify NTL and locate defective SMs in SG, in 

an effort to reduce revenue losses. In this method, cumulative meter readings from 

consumers are compared with the total readings from the distribution transformers to 

shortlist areas that have high probability of ET. The quantity of the electricity stolen at the 

point of a SM is modelled as anomaly coefficient, where a non-zero value of the anomaly 

coefficient indicates ET or defect in metering equipment. The NTL method also detects 

intermittence in the theft of electricity or in the working of faulty metering equipment. 

 

While the authors in Yip et al. (2018) introduce an anomaly detection framework for ET and 

defective meters, their reliance on unsupervised learning, historical data, and lack of 

interpretability limits its practical usage in large-scale SGs. 

 

Fenza et al. (2019) have been able to address the issue of context and time awareness 

associated with anomaly detection, the concept of drift, as well as the issue of FPR that 

occurs based on the changes in energy consumption habits of electricity users. To fill the 

gaps mentioned by the authors, the authors have employed the Long short-time memory 

(LSTM) model to address stated issues. The LSTM model profiled and predicted the 

behaviour of consumers drawing from their energy consumptions in the recent past, and 

was able to detect outliers at a time instance close to real time. 

 

Inasmuch as Fenza et al. (2019) introduce a valuable drift-aware anomaly detection model, 

its reliance on traditional feature extraction, lack of real-time processing, and absence of 

explainability mechanisms limit its practical deployment in large-scale SGs. 
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iii. Regression models 

 

To predict NTL using time series data, regression models such as auto-regressive moving 

average (ARMA) and auto-regressive integrated moving average (ARIMA) have been 

utilized (Messinis & Hatziargyriou, 2018:262; Saeed et al., 2020:13). If regression method 

is trained with energy consumption data and the distinction between the measured energy 

consumed and the expected or estimated energy consumption is high, then a potential 

likelihood of NTL or fraud is suspected (Messinis & Hatziargyriou, 2018:262; Saeed et al., 

2020:13; Guarda et al., 2023:13). However, ARIMA models have proven to perform better 

than ARMA (Messinis & Hatziargyriou, 2018:262; Saeed et al., 2020:13). 

 

The authors in Yip, Tan, et al. (2017) used the Linear Regression-based Scheme for 

Detection of Energy Theft and Defective Smart Meters (LR-ETDM) model previously 

developed by Yip, Wong, et al. (2017), in conjunction with a new scheme in a SG 

environment. For a service area that is assumed to have 𝑁 consumers, the readings of the 

SMs in the area are registered at the time stamp of  𝑇 = 𝑡1,, 𝑡2, … , 𝑡48. The proposed model 

is represented by Equation 2.54 where 𝑝𝑡𝑖,𝑛
 in the model is energy consumption by 

consumer 𝑛 at the time interval 𝑡𝑖 ∈ 𝑇 in near real-time. 𝑎𝑛 denotes the anomaly coefficient 

of every consumer 𝑛, while 𝑦𝑡𝑖
 is the disparity in the readings of the meter at the time interval 

of  𝑡𝑖 ∈ 𝑇. Equation 2.54 is formulated if there is over/under-reporting by SMs and the 

objective of the equation is to find the values of all 𝑎𝑛, where the values of 𝑛 = 1,2, … , 𝑁; 

to evaluate the reliability of the consumers’ SMs or the abnormal behaviours of the 

consumers. 

 

𝑎1𝑝𝑡𝑖,1
+ 𝑎2𝑝𝑡𝑖,2

+ ⋯ + 𝑎𝑁𝑝𝑡𝑖,𝑁
= 𝑦𝑡𝑖

, ∀𝑡𝑖 ∈ 𝑇                (2.54) 

 

The sum of all the customers' energy consumptions must be in accord with the total load 

consumptions measured by the collector during the time interval 𝑡𝑖. Yip, Tan, et al. (2017) 

later developed the Categorical Variable-Enhanced Linear Regression-based scheme for 

Detection of Energy Theft and Defective Smart Meters (CVLR-ETDM) model because the 

LR-ETDM algorithm designed by Yip, Wong, et al. (2017) may not be able to detect all 

frauds, especially when consumers only commit theft during a specific period in a day. The 

CVLR-ETDM algorithm uses dummy coding which introduces categorical variables 𝑥𝑛 into 

the linear regression to fix time-varying or dynamic ET problem. Equation 2.55 conveys the 

CVLR-ETDM scheme. 
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𝑎1𝑝𝑡𝑖,1
+ ⋯ + 𝑎𝑁𝑝𝑡𝑖,𝑁

+ 𝛽1𝑝𝑡𝑖,1 
𝑥1 + ⋯ + 𝛽𝑁𝑝𝑡𝑖,𝑁 

𝑥𝑁 = 𝑦𝑡𝑖
, ∀𝑡𝑖 ∈ 𝑇            (2.55) 

 

Considering 𝑁 consumers in a service area as in Equation 2.55, and each consumer 𝑛 

commits ET independently, then 𝛽𝑛 and 𝑥𝑛 parameters are defined where 𝑛 = 1,2, … , 𝑁. 

𝛽𝑛 is the detection coefficient of consumer 𝑛 during the on-peak hours, while 𝑥𝑛 is the 

categorical variables depicting whether the period of ET is during on-peak or off-peak hours 

as shown in Equation 2.56. 

 

 𝑥𝑛 = {
 0, 𝑜𝑓𝑓 − 𝑝𝑒𝑎𝑘 ℎ𝑜𝑢𝑟𝑠
1, 𝑜𝑛 − 𝑝𝑒𝑎𝑘 ℎ𝑜𝑢𝑟𝑠

                          (2.56) 

 

The period of ET and the period of metering defect can be determined from Equation 2.55 

by solving for the values of 𝑎𝑛 and  𝛽𝑛, to discover any anomalous behaviour from the 

consumers and/or their faulty meters at any time of the day. The values of 𝑎𝑛 and that of 

(𝑎𝑛 + 𝛽𝑛) from Equation 2.55 represent the coefficient of anomaly for consumer 𝑛 during 

the low-demand (off-peak) and the high-demand (on-peak) periods respectively. Results 

from the proposed CVLR-ETDM model shows that it is capable of detecting power pilferers 

as well as locating their faulty meters regardless of their mode or period of stealing. 

 

While Yip, Tan, et al. (2017) and Yip, Wong, et al. (2017) contribute valuable insights into 

ET and defective meter detection using linear regression, their reliance on basic statistical 

models, lack of feature engineering, and absence of real-time processing limit their 

effectiveness in large-scale SGs. 

 

iv. Expert systems 

 

The decision making abilities of human experts are enhanced by expert systems (Poudel & 

Dhungana, 2022:114). Expert systems refers to the rules that are defined by professionals 

like utility-domain experts or utility technicians in a bid to detect NTL (Messinis & 

Hatziargyriou, 2018:261; Saeed et al., 2020:12; Poudel & Dhungana, 2022:114). This 

method, which although does not require learning is considered unsupervised and allows 

domain experts to apply their professional experience or expertise into the process of 

detecting NTL by introducing rules that enhance the detection of frauds in the power grids 

(Messinis & Hatziargyriou, 2018:261; Guarda et al., 2023:12). Expert systems may also be 

applied in supervised learning approaches because various models or methods can 

accommodate professional expertise or expert knowledge (Saeed et al., 2020:12; Guarda 

et al., 2023:12). 
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In the field of AI, expert systems are closely related to rule induction methods because 

expert systems accommodate rule induction algorithms as a tool to automatically refine or 

generate rules within their frameworks, but in actual fact, both methods serve different 

purposes. Expert systems belong to the category of unsupervised learning, but rule 

induction methods belong to the category of supervised learning. Expert systems are driven 

by human knowledge and are processed by inference engine, to make decision and/or 

proffer solutions to problems; while rule induction methods, which are driven by data, 

involves the extraction of rules and patterns from labelled data (Saeed et al., 2020:10; 

Messinis & Hatziargyriou, 2018:261). 

 

Integrated expert system (IES) has been used by León et al. (2011) to analyse all the 

information of electric customers using the dataset obtained from Spain’s Endesa electric 

utility in a bid to detect electricity fraud. The IES includes modules like data mining, text 

mining, and rule-based expert system. Guerrero et al. (2014) implemented an expert-

system rule where a consumer is recommended for ET inspection if the reactive energy 

consumed is greater than or equal to the active energy consumed.  

 

The authors in León et al. (2011) and Guerrero et al. (2014) have introduced expert system-

based NTLD methods, but their reliance on static rule-based models, lack of real-time 

detection, interpretability, and absence of scalable ML solutions limit their effectiveness in 

large SGs. 

 

v. Clustering algorithms 

 

Clustering algorithms are used to group unlabelled energy consumption data of different 

consumers with similar consumption patterns together in an unsupervised manner, to 

assemble consumers that behave identically for the purpose of NTLD (Messinis & 

Hatziargyriou, 2018:261; Poudel & Dhungana, 2022:114). Baseline power profiles can also 

be calculated using clustering algorithms, such that fraud is suspected if new sample 

significantly differs from the baseline samples (Messinis & Hatziargyriou, 2018:261; Saeed 

et al., 2020:12). Meanwhile, fraud may also be suspected by the distance between the new 

sample (Messinis & Hatziargyriou, 2018:261). 

 

Angelos et al. (2011) has employed fuzzy c-means algorithm or fuzzy clustering where 

every new sample is associated with fraud, and then the most probable theft case is chosen 

by tuning the system according to the peculiar parameters of requirements. The clustering 

algorithm called Density-Based Spatial Clustering of Applications with Noise (DBSCAN) 
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with the combination of PCA have also been proposed by Krishna et al. (2015). PCA has 

been applied on the high-dimensional energy consumption data obtained from SMs, where 

each consumer is visualized in a two-dimensional space. After this, the DBSCAN is then 

able to cluster samples efficiently by distinguishing normal consumers from anomalous 

consumers. 

 

While Angelos et al. (2011) and Krishna et al. (2015) contribute valuable statistical and 

PCA-based approaches for ETD, but their reliance on traditional methods, lack of real-time 

processing, and limited scalability reduce their effectiveness in modern SGs. 

 

Babu et al. (2013) used fuzzy c-means cluustering algorithm to cluster or categorize 

consumers into classes based on their patterns of electricity usage. The clustering algorithm 

achieved 80% hit rate when tested with 57 customers in a particular neigbourhood in India. 

Determination of customers who committed theft is dependent on the application of fuzzy 

membership function and cluster-centre distances. The cluster-centre distances are the 

Euclidean distances from the centre of clusters, which are standardized and arranged using 

unitary index score. The fraudulent customers are those customers that have the highest 

unitary-index score greater than a predefined threshold of 0.7. The fuzzy c-means algorithm 

used the following attributes to create a general pattern of consumption for each customer 

over a period of 6 months: average units of energy consumption per consumer, maximum 

units of energy consumption per consumer, standard deviation of energy consumption of 

each consumer, average energy consumption in a neighbourhood or residential area, and 

6-month inspection remarks. 

 

Although, Babu et al. (2013) provide a useful rule-based method for detecting ET, their 

reliance on static statistical techniques, lack of feature extraction, adaptability, and absence 

of real-time detection limit the effectiveness of their approach in large-scale SGs. 

 

Sharma et al. (2017) applied DBSCAN clustering to separate unusual patterns in energy 

consumption datasets with local outlier factor (LOF) algorithm which is used to rank the 

unusual energy consumptions based on the densities of the neighbours. If LOF value is 

higher, it shows there a significant difference between the densities of the feature under 

consideration and its neighbours, hence revealing such point as being suspicious. 

Silhouette coefficient and Davies Bouldin index have been used to validate the method. 

LOF is the ratio of the density of a feature in a cluster to that of the density of its KNNs 

(Ghori et al., 2020:16035). 
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While the authors in Sharma et al. (2017) provide a useful statistical framework for detecting 

irregular electricity consumption, their reliance on traditional methods, lack of DL integration, 

and the absence of real-time detection limit the effectiveness of their approach in modern 

SGs. The authors did not evaluate the scalability and generalizability of the model. 

 

vi. Statistical methods 

 

Control charts from time-series data can be used for monitoring the energy consumption of 

individual consumers and for defining anomalous regions in the graphs after which rules 

are formed to indicate which consumptions violate the rules. The customers whose 

consumptions violate the set rules are regarded as being fraudulent, and such suspicious 

customers will need to be inspected (Messinis & Hatziargyriou, 2018:262; Saeed et al., 

2020:12; Guarda et al., 2023:14).  

 

The XMR control chart in Spirić et al.  (2015) monitors the X chart which represents a chart 

of actual individual energy consumption values and their corresponding MR chart which 

illustrates the chart of moving range values, to determine variations in consumptions that 

may be regarded as frauds based on certain set rules. Other statistical charts are the 

Exponentially-Weighted Moving Average (EWMA) and non-parametric cumulative sum 

(CUSUM) charts used by Mashima and Cárdenas (2012)  to visualize data for the purpose 

of detecting NTL. 

 

In the papers presented by Spirić et al.  (2015) and Mashima and Cárdenas (2012), they 

provide valuable insights into ETD through statistical and ML approaches. However, their 

over-reliance on conventional methods, lack of deep learning integration, and absence of 

real-time detection reduce their effectiveness in large-scale SGs. The authors Mashima and 

Cárdenas (2012) primarily focus on data integrity attacks but do not account for other 

cybersecurity vulnerabilities in ETD. 

 

Liu et al. (2015) proposed Bollinger bands which is commonly used in stock trading for 

NTLD. To determine NTL using the Bollinger bands, lower and upper bands are determined 

based on N periods of moving average and standard deviation of the time-series data, such 

that if the energy consumed at a specific time goes beyond the limit set for that period, then 

an anomaly, fraud or NTL is being suspected. However, the main disadvantage of this 

approach is that fraud cannot be detected if the incident had taken place of the monitoring 

period, since the method is basically used for detecting changes in energy consumptions. 
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While Liu et al. (2015) introduce a cybersecurity-based approach to ETD, their reliance on 

rule-based threat analysis, lack of real-time fraud monitoring, adversarial robustness, 

comparative evaluations, and limited scalability reduce the effectiveness of the framework 

in large-scale SG environments. 

 

vii. Game-theoretic methods 

 

Game-theoretic methods or game theory for NTLD are used to model NTL solution as a 

kind of game between the electricity swindlers and the electric utilities, where electricity 

thieves are modelled as attacker systems while the NTL solutions provided by the electric 

utilities are modelled as defender systems (Cardenas et al., 2012:1830; Messinis & 

Hatziargyriou, 2018:262; Gul et al., 2020:2). The game-theoretic approach for NTLD has 

been recently proposed and is still evolving as one of the major constituent of NTLD 

methods (Jiang et al., 2014:114-115; Messinis & Hatziargyriou, 2018:262). 

 

ETD problem is conceived and modelled as a game between the stealing customer 

(attacker) and the electric utility (defender) by Cardenas et al. (2012). The electricity thief 

intended to steal a predefined amount of electricity and try as much as possible to avoid 

being detected. The attacker avoided being detected by changing the probability density 

function of their electric consumptions during the measurement period of the AMI. According 

to the authors, a probability density function called Nash equilibrium have been identified 

as the attacker and defender which the electric utility must select before delivering their AMI 

measurements, to optimize the possibility of theft detection in the game. 

 

Cardenas et al. (2012) introduce a novel game-theoretic approach to ETD, their reliance on 

theoretical models, lack of real-time fraud monitoring, deficiency of explainable 

mechanisms, and absence of ML integration reduce the effectiveness of the framework in 

large-scale SG environments. 

 

The authors in Lin et al. (2014) initiated the idea of non-cooperative game model for 

abnormality or NTL screening by compounding SMs with functional order self-

synchronization error formulation, in a bid to distinguish between profiled consumptions and 

NTL-causing illegal consumptions. The authors in Amin et al. (2015) have proposed an 

extensive game-theoretic algorithms to model and analyse the functioning capacities of 

various techniques of classical statistics by using the data collected from smart meters for 

the purpose of ETD. This framework is motivated owing to cyber-attacks on electricity 

consumptions. In this work, firm preconceptions about how the fraud are being carried out 
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are made, while estimates on precise detection capacity of the developed model under the 

made assumptions are provided. 

 

The authors in Lin et al. (2014) and Amin et al. (2015) introduce innovative game-theoretic 

frameworks for ETD, however, their reliance on mathematical models, lack of real-time 

fraud monitoring, lack of cost-benefit analysis, and absence of ML integration reduce the 

effectiveness of the framework in large-scale SG environments. 

 

• Hybrid learning 
 

Hybrid learning is the composite or combination of supervised and unsupervised learnings 

(Ghori et al., 2020:16036) as depicted in Figure 2.21, and different from hybrid methods or 

techniques, which is the combination of both  data-driven methods and network-driven 

methods (Messinis & Hatziargyriou, 2018:252, 263; Ghori et al., 2020:16035-16036). 

 

In a bid to detect NTL using hybrid learning, Peng et al. (2016) used the daily energy 

consumption dataset of Chinese Southeast coastal city. During the initial phase of the 

hybrid-learning process, clusters of different consumers are being formed based on their 

patterns of consumptions using the k-means clustering algorithm. In the next phase of the 

learning process, reclassification is done by applying DT, random forest (RF), SVM and 

KNN to the consumers filtered initially. The classification done in the following phase using 

the ensemble classifiers surmounts the weakness of the clustering done in the initial phase. 

The authors employed the grouping of electricity consumers into classes in accordance with 

the patterns of their energy consumptions to assist in detecting any anomalous behaviours 

via their consumption patterns. 

 

While Peng et al. (2016) present a useful two-stage pattern recognition approach for SG 

customer classification, their model does not explicitly address ET, lacks DL-based feature 

extraction, and does not support real-time fraud detection, making it less effective in 

practical fraud prevention scenarios. 

 

The NTL approach proposed by Terciyanli et al. (2017) is a hybrid of fuzzy c-means 

clustering and fuzzy classification. In this work, clusters of consumers that have similar 

consumption patterns using fuzzy c-means clustering are first formed. After this, fuzzy 

classification with membership matrices is then performed next, which further classifies the 

electricity consumers. Furthermore, the deviation between the expected or target energy 

consumption values and the observed or predicted energy consumption values of each 
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customer is calculated. If the deviation between the expected energy consumption values 

and that of the observed energy consumption values surpass a specified threshold, a 

potential fraud is suspected, and such customers whose energy difference passes the set 

threshold are shortlisted. 

 

The authors in Terciyanli et al. (2017) introduce a rule-based score-driven approach for 

fraud detection, but its reliance on static scoring rules, lack of DL integration, and absence 

of real-time monitoring make it less effective for large-scale ETD. 

 

• Semi-supervised learning 
 

In the case of semi-supervised NTLD methods, the labelled samples (positive and negative 

samples) in the given dataset are too small or few with respect to the unlabelled samples, 

forming a borderline between supervised and unsupervised learnings (Messinis & 

Hatziargyriou, 2018:252; Lu et al., 2019:4; Yang, 2019:140; Osypova, 2020:40). In other 

words, semi-supervised learning methos make use of labelled and unlabelled samples with 

the proportion of the labelled-data samples being very small when compared with the 

unlabelled samples in the datasets (Messinis & Hatziargyriou, 2018:252; Yang, 2019:140). 

The primary objective of employing semi-supervised learning is to take advantage of the 

learning capabilities of both supervised and unsupervised learnings to produce a more-

efficient ETD model (Kim et al., 2024:7). 

 

The authors, Júnior et al. (2016), have used two techniques or paradigms of semi-

supervised and unsupervised learnings for NTLD. The semi-supervised learning is used for 

anomaly detection with the dataset which has the information of only one class, while the 

OPF classifier is used for the unsupervised learning. The two techniques are used with 

datasets which contains commercial and industrial energy consumptions from Brazilian 

electrical power company. The metric performances of both techniques are compared with 

SVM, Gaussian mixture model (GMM), OC-SVM, k-means, balanced iterative reducing and 

clustering using hierarchies (BIRCH), and affinity propagation (AP). The authors submitted 

that the two techniques or paradigms of OPF and anomaly detection outperformed the other 

techniques compared with them, while the results of the OPF classifier is the most accurate. 

 

Júnior et al. (2016) introduce an OPF clustering technique for fraud detection, nonetheless, 

the reliance of the method on unsupervised learning, lack of real-time processing, 

explainability issues, and absence of deep feature extraction reduce the effectiveness of 

the model in large-scale SG environments. 
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❖ Network-oriented methods 
 

Network-oriented or network-based methods employ the analysis of power system networks 

for the purpose of NTLD (Guarda et al., 2023:22). This method uses data from the sensors 

on the distribution grid placed on smart meters and transformers, network-related data such 

as the topology of the grid, loading of the distribution transformer, current flow and voltage 

profile data, and phase connectivity data, etc. for NTLD (Messinis & Hatziargyriou, 

2018:262-263; Guarda et al., 2023:15; Liao, Bak-Jensen, et al., 2024; Liao, Zhu, et al., 

2024:5075). Network-oriented methods keenly depend on the understanding of the LV and 

MV network topology, including the measurements obtained from devices like RTUs and 

observer meters. Network-based methods make use of network measurements for its NTLD 

by employing physical rules and network analysis like estimation, load flow and sensor 

network (Viegas et al., 2017:1262; Messinis & Hatziargyriou, 2018:252, 262; Guarda et al., 

2023:4-5) as shown earlier in Figure 2.21. 

 

Unlike the data-based method, network-based NTLD method requires extra electric meters 

and devices like RTUs, RFIDs, wireless sensors, and software tools to enhance the 

monitorability of the distribution grid (Jiang et al., 2014:112; Osypova, 2020:45; Ali et al., 

2023:2; Nayak & Jaidhar, 2023:2; Liao, Bak-Jensen, et al., 2024; Liao, Zhu, et al., 

2024:5075). These ancillary devices are in addition to the existing grid equipment used in 

data-oriented methods for gathering consumer-related data. The costs involved in procuring 

the supplementary equipment make the network-oriented methods more expensive when 

compared with the data-based methods; although, the method provides better accuracy in 

terms of measurements and performances (Messinis & Hatziargyriou, 2018:264; Osypova, 

2020:45; Gu et al., 2022:4568; Nayak & Jaidhar, 2023:2; Khan et al., 2024:2). The 

procurement of extra equipment or devices in conjunction with the existing grid equipment 

for additional measurements do not change the non-hardware-method status of the 

network-oriented method, because it is only the data generated by the added devices that 

are being worked upon for the purpose of ETD, and not that the hardware devices 

themselves are used to detect NTL (Guarda et al., 2023:22). Unlike data-based methods, 

network-based methods require less-voluminous datasets, but necessitates the use of 

higher-resolution datasets with more variety of features (Messinis & Hatziargyriou, 

2018:263; Osypova, 2020:45; Guarda et al., 2023:18, 23). 

 

• Estimation 
 

This technique of NTLD provides considerable approximation of the NTL in an area or the 

NTL of a particular customer under investigation. The methods to estimate NTL in the 
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electric distribution network is subdivided into state estimation and technical loss modelling 

(Viegas et al., 2017:1262) as depicted in Figure 2.21. The state estimation method 

determines the extent of irregularities associated with the energy consumptions of the 

customers by checking the deviations between their billed and actual consumptions; while 

technical loss modelling evaluates the TL in the distribution network to assist in the direct 

calculation of the approximate value of NTL present in the network (Anas et al., 2012:177; 

Viegas et al., 2017:1262-1263). 

 

o State estimation 
 

State estimation method is premised on finding the coherence between the grid data 

measured from the consumers’ end and that measured from the electric network 

(Fragkioudaki et al., 2016:45). It is used mainly in the MV networks at substations for 

observing the distribution grid to detect NTL in the MV/LV transformers using central 

observer meters, to check if the total energy distributed matches the sum of individually 

consumed electrical energies by the customers at the LV networks (Messinis & 

Hatziargyriou, 2018:263; Saeed et al., 2020:14). State estimation checks the errors and 

irregularities like or bad data attacks or FDI in the energy demand of consumers (Viegas et 

al., 2017:1262; Messinis & Hatziargyriou, 2018:263; Saeed et al., 2020:14). FDIs and/or 

bad data attacks are indications of the presence of NTL in the consumption data (Messinis 

& Hatziargyriou, 2018:263; Saeed et al., 2020:14). 

 

Bandim et al. (2003) proposed the methodology for the detection of deviations in energy 

balance of a group of consumers in a secondary distribution network owing to metering 

problems by using a central observer meter. This method is used to observe the meters of 

many consumers and pinpointing those meters that show the likelihood of causing NTL in 

a less costly and effective manner, while preventing the possibilities of inspecting 

individually all the electric meters under investigation. Defective meters that cause NTL are 

those that have been tampered with thereby registering incorrect readings, or those meters 

that have been completely bypassed. To determine those customers who have problems 

with their respective meters, deterministic and statistics techniques are employed. At any 

given time, the total energy recorded by the central observer meter and those recorded by 

the electric meter of each customer is represented by Equation 2.57. 

 

𝐸𝑡𝑜𝑡𝑎𝑙 = 𝑘1𝐸1 + 𝑘2𝐸2 + ⋯ 𝑘𝑖𝐸𝑖 + ⋯ + 𝑘𝑁𝐸𝑁                (2.57) 

 

Where 𝐸𝑡𝑜𝑡𝑎𝑙 is the total energy recorded by the central observer meter, which constitutes 
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the sum of each energy consumed by the meter of consumer 𝑖 out of the total 𝑁 meters 

being considered. 𝑘𝑖 of the meter of consumer 𝑖 is a constant that is dependent on the 

accuracy class of the particular meter, while 𝐸𝑖  is the energy recorded by the electric meter 

of consumer 𝑖. In case the energy of each of the 𝑁 meters of all the 𝑖 consumers with the 

central observer meter are computed separately for every 𝑖 consumer, matrix inversion or 

weighted-least squares (WLS) state estimation algorithm could be used to solve the 

resulting system of linearly independent 𝑁 equations shown in Bandim et al. (2003:164). 

 

Bandim et al. (2003) introduce an innovative mathematical framework for fraud detection 

using central observer meters. The authors only focuses on a specific type of ET (tampered 

meters), assumes that the central observer meter is tamper-proof, which may not always 

be the case, uses simulated data to test the proposed mathematical approach, but does not 

validate the results using real-world data. The authors did not address potential security 

and privacy concerns related to the use of central observer meters. 

 

The authors in Chen et al. (2011), Lo et al. (2012), and Luan et al. (2015) have also used 

WLS state estimation method for the load estimation of MV/LV transformers by using the 

real-time three-phase measurements of current, voltage, active and reactive power 

measurements obtained from the MV/LV transformers as the input data to the WLS 

algorithm. NTL is suggested in the distribution network if the estimation done using the WLS 

state estimator exceeds a predefined threshold. 

 

While Chen et al. (2011), Lo et al. (2012), and Luan et al. (2015) have introduced state 

estimation-based frameworks for fraud detection, but none of the authors discuss the 

potential security and privacy concerns related to the use of advanced measurement data, 

and SG technologies for ETD. The authors’ reliance on mathematical models, lack of real-

time detection, and absence of ML integration reduce their effectiveness.  

 

A statistical model known as analysis of variance (ANOVA) has been used alongside state 

estimation method by the authors in Huang et al. (2013) and Lu et al. (2013) to form a two-

stage NTLD approach. The first stage is the state estimation of the MV level of the grid to 

estimate the load on the MV/LV transformer in order to identify the feeders with defective 

or tampered meters. The second stage involves using ANOVA to identify suspicious 

customers with metering issues. 
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Huang et al. (2013) and Lu et al. (2013) introduce state estimation and ANOVA-based 

techniques for NTL detection. However, their reliance on predefined statistical models, lack 

of real-time processing, and absence of ML integration reduce their effectiveness in large-

scale SG environments. Also, the authors did not discuss practical implementation issues, 

such as the cost and feasibility of installing new measurement devices or their potential 

impact on the existing electric grid. 

Salinas and Li (2016) proposed a centralized state-estimation algorithm known as Kalman 

filter, which utilizes the real-time energy consumptions from consumers’ SMs to detect NTL 

in a microgrid. However, a privacy-preserving algorithm decomposes Kalman filter to 

estimate line currents and biases in the energy consumptions to reveal the ET culprits. The 

privacy-preserving algorithm protects the privacy of electricity users by hiding information 

on their energy consumptions from system operators and eavesdroppers. Customers 

whose energy biases are higher than a predetermined threshold are considered to have 

committed ET. 

 

Although, Salinas & Li (2016) introduce an innovative privacy-preserving framework for 

fraud detection in microgrids, their reliance on predefined state estimation models, lack of 

real-time monitoring, and non-consideration of other theft methods reduce their 

effectiveness for large-scale implementations.  

 

o Technical loss modelling 
 

In this method, the technical loss of the electricity distribution network is modelled to enable 

the direct calculation of NTL in the network (Viegas et al., 2017:1262-1263). Most utilities 

already have the technical loss data of their power networks, which gives an added 

advantage using the direct-calculation method. A higher NTL value beyond a tolerable 

benchmark is an indication of probable fraud. The authors in de Oliveira et al. (2006) and 

de Oliveira et al. (2008) proposed statistical methods to find accurate relationships between 

load factors and loss factors in order to improve the calculation of TL, which are 

consequently used to calculate NTL. NTL could then be evaluated by direct calculation after 

the determination of TL in electric systems. 

 

• Load flow 
 

One of the ways to detect NTL activities in an electric distribution grid is the calculation of 

energy flow in that network (Saeed et al., 2020:14). Load flow analysis entails the use of an 

observer meter which monitors the total energy consumed from the LV terminal of the 
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distribution transformer and compares it with the total sum of consumptions as measured 

from the individual meters of the electricity customers (Messinis & Hatziargyriou, 2018:262; 

Saeed et al., 2020:14; Guarda et al., 2023:15). If the difference between the reading on the 

observer meter located at the distribution transformer and those readings collated from the 

electric meters of individual customers is great (considering the percentage of TL), then the 

probability of NTL occurring in the distribution network is higher (Messinis & Hatziargyriou, 

2018:262-263; Yan & Wen, 2022; Guarda et al., 2023:15). This approach used for the 

determination of NTL is otherwise called the energy balance method, and happens to be 

the most popular approach of the network-based methods used by researchers in the 

literature (Guarda et al., 2023:15). 

 

Kadurek et al. (2010) have proposed smart substation method which examines the energy 

disparities between the smart meters of electricity consumers and the utility observer 

meters. If an appreciable mismatch occurs in the energy balance, this method then attempts 

to locate the consumer location where the fraud or NTL is actually taking place. Probabilistic 

power-flow approach has been used by Neto and Coelho (2013) to determine TL so as to 

estimate and detect NTL in a large electric distribution system in the presence of load 

variations. The total energy consumed by the customers as measured from the feeder using 

observer meter is compared with the consumers’ billed energy. With the addition of the 

obtained TL to the billed energy, the NTL are therefore estimated using energy balance 

method. In this work, the feeder is divided into subnetworks with individual observer meters, 

such that the estimated NTL of a particular circuit is determined with greater accuracy. 

However, the literature authored by Nikovski et al. (2013) and Tariq and Poor (2016) have 

proposed methods for the identification of network parameters and calculating TL in the 

distribution networks for better estimation of NTL. 

 

While Kadurek et al. (2010) and Neto and Coelho (2013) introduce valuable discussions on 

smart metering practices and probabilistic NTL estimation, however, their reliance on 

predefined models, lack of real-time processing, and absence of ML integration reduce their 

effectiveness in addressing scalability and practical implementation challenges in utility 

settings. 

 

The authors, Ferreira et al. (2020), modelled load buses as QV buses to identify the illegally 

connected loads to the distribution system. The method also requires the measurements of 

active (real) and reactive (imaginary) powers and the magnitude of voltage obtained from 

SMs. QV buses are busses in which their reactive voltage and power are specified. Buses 

showing a discrepancy between calculated and measured active powers suggest potential 
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locations of non-technical losses (NTL). The core concept of this approach is to model load 

buses as QV buses to address a load flow problem. The basic idea of this work is to model 

load buses as QV buses in a bid to solve a load flow problem. The calculated active power 

(𝑃𝑐𝑎𝑙𝑐) for each QV bus are determined using the load flow method. These active-power 

values from the QVs are then contrasted with the measured values of the active powers 

(𝑃𝑚𝑒𝑎𝑠) obtained from SMs. If the difference between these powers for each QV bus and 

SM for a particular customer goes beyond the proposed threshold value which is also 

referred to as minimum detectable power (MDP), then such customer is suspected of 

causing NTL. The MDP is calculated for each bus using the submatrices 𝐽𝑃𝜃, 𝐽𝑃𝑉, 𝐽𝑄𝜃, and 

𝐽𝑄𝑉 from the Jacobian matrix shown in Equation 2.58. 
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] [

∆𝜃
∆𝑉

]               (2.58)

  

Deviations in active powers are caused by the maximum voltage measurement errors 

(∆𝑉𝑚𝑎𝑥
𝑚𝑒𝑎𝑠), which correlate to the MDP index. The deviation can be determined by applying 

a Kron reduction which leads to Equation 2.59. The impact of voltage measurement errors 

on the computed active power is estimated using Equation 2.59. 

 

𝑀𝐷𝑃 = (𝐽𝑃𝑉 − 𝐽𝑃𝜃 . 𝐽𝑄𝜃
−1. 𝐽𝑄𝑉). ∆𝑉𝑚𝑎𝑥 

𝑚𝑒𝑎𝑠 = 𝐽𝑅𝑃𝐶 . ∆𝑉𝑚𝑎𝑥
𝑚𝑒𝑎𝑠     (2.59) 

 

∆𝑊ℎ𝑖 = ∑ ∆𝑃𝑖,𝑗 . ∆𝑡𝑗𝑗∈𝜆                  (2.60) 

 

Equation 2.60 denotes the energy deviation index (∆𝑊ℎ𝑖) at bus 𝑖, where those customers 

that have higher values of ∆𝑊ℎ𝑖 are regarded as being suspicious of causing NTL. The 

term  is the amount of time the measurement set is accessible, whereas ∆𝑃𝑖,𝑗 is the 

difference between the measured and calculated active power at the bus 𝑖 at time interval 

𝑗 (∆𝑡𝑗). The unauthorized loads that are not permanently connected to the system but 

injected at any time are identified using the index , which also helps in decreasing the 

effect of errors owing to measurements. 
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Although, Ferreira et al. (2020) introduce an innovative load flow-based fraud detection 

method, but the reliance of their method on deterministic calculations, lack of real-time 

processing, and absence of consumer behavioral analysis limit its effectiveness in large-

scale ETD. 

 

• Sensor network 
 

The sensor network approach aspect of the network-oriented methods for NTLD involves 

the use of sensors which are installed at designated points in the electric distribution 

network (Messinis & Hatziargyriou, 2018:263). These sensors are used to localize NTL by 

optimally positioning them and deploying them at lower-infrastructure cost, in order to 

increase the probability of NTLDs, so that they can be detected more efficiently (Messinis 

& Hatziargyriou, 2018:263; Saeed et al., 2020:15; Guarda et al., 2023:17). The sensor 

network approach requires an in-depth knowledge of the topology of the distribution grid 

(Messinis & Hatziargyriou, 2018:263). The implementation of this approach is closely 

related to the state estimation method, since the sensors increase the observability of the 

electric network, and also for the fact that the installed sensors alone cannot ascertain if 

NTL has been detected in the electric network or not (Messinis & Hatziargyriou, 2018:263; 

Saeed et al., 2020:15; Guarda et al., 2023:17). 

 

The placement of redundant SMs for the purpose of detecting NTL has been proposed by 

Xiao et al. (2013). In this framework, an observer meter and an inspector box which contains 

a specified number of inspector SMs which are mounted at the secondary distribution 

substation before the SMs of the electricity consumers. The inspector meters engage in 

data exchanges between them and the SMs of the consumers to compare the energy 

consumptions measured by the inspector meters and those measured by the consumers’ 

SMs. Differences in these measurements are possible indications of NTL. 

 

Xiao et al. (2013) introduce an important security framework for identifying malicious meter 

inspections, but the study overlooks broader fraud detection techniques, lacks real-time 

monitoring capabilities, and does not empirically validate its proposed methods. 

 

McLaughlin et al. (2013) present an AMI intrusion detection system (AMIDS) for ETD. The 

method uses attack graph-based information fusion technique to combine three types of 

information specific to the AMI which include information obtained from: anti-tampering 

sensors on the SMs, the cyber network and host intrusion detection systems, and 

anomalous power consumptions learnt via NILM. AMIDS learns the frequency of the daily 
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usage of each appliance using the data of the appliances that the NILM provides. NILM 

technique leverages on the database of appliances to learn their patterns of usage over 

time. The anomaly or irregularity in the time series power consumption data is analysed, 

and the edges in the consumptions that corresponds to on/off events are logged. NILM 

functions by solving the binary integer programming problem shown in Equation 2.61. 

 

min       𝐵𝑇 𝑥  

𝑠. 𝑡.        𝑄𝑥 ≤ 𝑒𝑡𝑖 + 𝛿                            (2.61) 

          −𝑄𝑥 ≤ −𝑒𝑡𝑖 + 𝛿  

  𝑥 ≥ 0  

 

Where 𝐵 = [1,1, … ,1]2.|𝐴|×1; 𝑄 = [𝑄𝑃; −𝑄𝑃], and 𝑄𝑃 is an |𝐴|-dimensional vector of the 

power consumption profile of the electric appliances. The motive for solving the linear 

programming problem is to obtain 2 ∙ |𝐴|-dimensional binary vector 𝑥, where a vector 

element represents whether or not the appliance it depicts contributed to the edge 𝑒𝑡𝑖. The 

small threshold value of 𝛿 accounts for the measured noise. 

 

McLaughlin et al. (2013) offer a promising multi-sensor framework for ETD by leveraging 

diverse data sources within AMI. The approach is limited by its lack of real-time processing, 

challenges in scaling to large networks, and issues related to sensor data integration, cost, 

and privacy. 

 

❖ Hybrid methods 
 

Hybrid techniques have been initiated as part of the efforts to improve ETD methods, in an 

attempt to further increase the accuracy of NTLDs in electric grids (Messinis & 

Hatziargyriou, 2018:263; Guarda et al., 2023:17). The hybrid methods use a merger of the 

data-based and network-oriented methods (Guarda et al., 2023:4, 17, 22) as shown in 

Figure 2.21, in conjunction with the data types shown in Figure 2.22, for NTLDs. To achieve 

the hybridized NTLD solutions, energy consumption data have been combined with network 

data (Ghori et al., 2020:16037). This method is more efficient and reassuring (Guarda et 

al., 2023:4). The hybrid method involves the use of network data in order to firstly detect 

NTL in parts of the distribution grid, after which statistical or ML method can then be 

employed to further detect NTL among the electricity customers by using their energy 

consumption data. An example of hybrid method is the use of state estimation method at 

the MV level to detect NTL at the MV/LV transformer level of the grid in a bid to discover 

the particular section of the distribution network harbouring NTL. After this, ML classification 



 

151 
 

algorithms using supervised methods could then be employed in conjunction with the 

energy consumption data of electricity customers to detect NTL at the consumer level 

(Messinis & Hatziargyriou, 2018:252). 

 

In Guo et al. (2014), the authors used RTU measurements and consumers’ SM 

measurements to determine the sections in the distribution network that causes NTL. 

Initially, subnetworks in the distribution network is created according to the number of 

available RTUs. TL in the network are estimated by applying distribution power flow method. 

If the difference or mismatch between the RTUs and SM measurements exceed a certain 

threshold then the presence of NTL in the distribution network is assumed. fuzzy c-means 

and SVM algorithms are applied to determine whether individual customers cause NTL or 

not. The analysis of losses has been proposed by Spirić et al. (2014) to estimate the number 

of consumers committing ET in the distribution network after which rough set theory is then 

used to calculate the boundary region of suspected electricity fraud. 

 

Although, Guo et al. (2014) and Spirić et al. (2014) introduce innovative rule-based fraud 

detection techniques, however, their reliance on static models, lack of real-time fraud 

detection, and limited scalability assessment reduce their effectiveness for large-scale ETD.  

Guo et al. (2014) focuses on online data validation for distribution operations against cyber-

tampering, but did not consider other types of cyber threats or attacks. Spirić et al. (2014) 

assumes that fraudsters will exhibit specific patterns of behaviour that can be detected using 

rough set theory, but did not consider that fraudsters may change their behaviour. 

 

The authors in Jokar et al. (2016) deployed consumption pattern-based energy theft 

detector (CPBETD) algorithm to detect NTL using observer meters at the distribution 

transformers, in conjunction with SVM classifier. The output of the SVM classifier is being 

compared with the observer meters used to evaluate the active energy balance of the 

distribution network under consideration. The CPBETD algorithm is used to estimate the TL 

in the network and to measure the energy-balance mismatch. If the mismatch goes beyond 

a predetermined threshold and the SVM classifier produces a positive output or sets of 

positive outputs after classifying the daily energy consumptions, then the consumers under 

NTL investigation are classified as fraudulent and are then recommended for onsite 

inspections. This concept was also applied earlier by Jindal et al. (2016), but in this case, 

the combination of DT and SVM was proposed in addition to grid balancing at the 

transmission and distribution levels. 
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While Jokar et al. (2016) and Jindal et al. (2016) introduce innovative ETD methods using 

consumption patterns and ML, their lack of real-time capabilities, scalability assessment, 

and integration of DL techniques limit their effectiveness for large-scale SG applications. 

Jokar et al. (2016) and Jindal et al. (2016) assume that customers' consumption patterns 

are consistent and can be used to detect ET, but did not consider the potential impact of 

changes in customers’ behaviour or lifestyle on the proposed approach. 

 

2.6    Conclusion 
 

Electricity must be generated before it can be transmitted and distributed to the consumers. 

It must also be measured to determine whether it is being stolen or not. In this chapter, the 

review of electricity grid led us to SG, the latest development in the electricity grid system. 

Similarly, the review of electricity metering led us to SM, the latest version of the electric 

meter. Both the SG and the SM are important components of this research project, as we 

will be using the smart metering data from SG for our ETD experiments. The electricity 

system, including its metering and its associated NTL prevention, detection, and mitigation 

techniques have been thoroughly reviewed in this chapter. Also, inquests have also been 

made into the causes and effects of ET. The next chapter is the experimental part of the 

thesis which discusses the methods employed in modelling the proposed NTLD model.  
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CHAPTER 3 
 

METHODOLOGY 
 

3.1    Introduction 
 

Detection of electricity theft (ET) in power grids primarily requires the development of 

formidable and reliable models. This is the core and the most significant aspect of detecting 

and mitigating ET. Building effective electricity-theft detection (ETD) models requires 

developing intelligent systems to detect non-technical losses (NTL) in electric grids. 

Developing ETD models are inevitable as NTL cannot be determined by strictly applying 

the fundamental laws of electrical engineering like in the case of technical losses (TL) 

(Osypova, 2020:11). NTL detection (NTLD) models are constructed from algorithms that 

run on a given dataset through simulations to produce intelligent NTLD models or systems 

capable of detecting fraud in electric distribution systems. ETD models serve as the basis 

upon which electric utilities tackle the ET menace. The aim of this research is to build 

intelligent and efficient ETD model that profoundly detect ET, leading to corresponding 

effective mitigation of theft or fraud in the power grids.  

 

It has earlier been asserted in Section 2.4.5 of Chapter 2 that employing artificial intelligence 

(AI) by implementing machine learning (ML), a subfield of AI, is the state-of-the-art method 

used in building efficient and cost-effective NTLD models (Glauner et al., 2017:761; 

Glauner, 2019:31, 110; Ghori et al., 2020:16033-16034; Saeed et al., 2020:1; Guarda et al., 

2023:4; Stracqualursi et al., 2023:12, 16; Coma-Puig et al., 2024:2704). Hence, the 

proposed NTLD model developed in this chapter is based on ML methods. A very efficient 

ETD model has been built and the procedures leading to its development have also been 

explicitly analysed. The developed model, which is also being referred to as the proposed 

model, is an integration of deep convolutional neural network (CNN) and an ensemble 

random forest (RF) models, to form an hybrid model termed CNN-RF model. The developed 

NTLD system has been modelled with the intent of fulfilling the aim and objectives of the 

research and also to concurrently proffer answers to the research questions. The Python 

codes used in implementing the proposed model can be found in the Appendix. This chapter 

analyses the methods involved in modelling the proposed CNN-RF hybrid model. 

 

3.2   System model 
 

Since NTL cannot be completely eliminated in the power systems (Lewis, 2015:128-129; 

Kocaman & Tümen, 2020:1), the motivation behind this research project is to develop a 
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reliable ETD model that will enhance the reduction of NTL considerably in power grids. The 

methodology adopted to develop the proposed ETD model in this research is the AI-based 

ML methods, as this approach is the latest and the most-efficient method used in developing 

the most-effective models for NTLDs (Glauner et al., 2017:761; Glauner, 2019:31, 110; 

Ghori et al., 2020:16033-16034; Saeed et al., 2020:1; Guarda et al., 2023:4; Stracqualursi 

et al., 2023:12, 16; Coma-Puig et al., 2024:2704). So many ML models have been 

experimented with the employed SGCC dataset described in Section 3.2.2, to identify the 

model that would give better performance results. The model development process was a 

rigorous and painstaking exercise with so many trials and errors before arriving at the model 

which produces the best results with respect to other tested models. The search for the best 

suited model has to be done inevitably since there is no accurate method, hard-and-fast 

rule, or universal best practice for finding the best model to solve any problem (Bramer, 

2020:185). In the end, the NTLD model with suitable results that fulfil the aim and objectives 

of the research project and which also proffer answers to the research questions has been 

discovered and adopted as the proposed model (Poudel & Dhungana, 2022:117), while 

those models that did not produce satisfactory results were dropped. 

 

The proposed ETD model is developed through the combination of convolutional neural 

network (CNN) model with random forest (RF) model to form a new hybrid model termed 

CNN-RF model. The new model involves the infusion of the features from the convolutional 

layer of the CNN model into RF model to increase prediction capacity. RF combines 

different decision trees (DTs) as against a single DT in a DT model to enhance robustness 

and also to prevent overfitting (Javaid, Jan, et al., 2021:50; Khan et al., 2024:14). The 

proposed model is a supervised NTL classification model. The model is a “supervised” 

model in the sense that the SGCC dataset used in training it is labelled (Appiah et al., 

2023:2), in this case for honest (non-theft) and fraudulent (theft) customers. 

 

3.2.1    Simulation tool 
 

Python is the most popular and most pervasive simulation software and programming 

language used in ML and data science (Voskoglou, 2017).  Python is an open-source 

package which is preferred over other simulation tools and programming languages like 

MATLAB, R, Julia, Scala, Java, Octave, SAS, JavaScript, C/C++, Ruby, etc., owing to its 

simplicity, flexibility, robustness, proficiency, and efficiency. Python is reinforced with 

comprehensive libraries, as it is an all-encompassing simulation tool deployed in carrying 

out any ML-related tasks. Hence, the ML simulations in this research project for the 

detection of suspicious customers who may have committed ET have been carried out using 
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Python, in a Google Colaboratory (Colab) integrated development environment (IDE). 

Google Colab is preferred over other conventional IDEs like Jupyter Notebook, PyCharm, 

Thonny, Spyder, PyScripter, Visual Studio Code, Eclipse, PyDev, and Rodeo, etc., due to 

its numerous advantages. Google Colab is increasingly used for executing ML projects 

particularly in academic settings, due to its seamless integration with GitHub by simply 

allowing direct import and export of notebooks.  

 

Other justifications for choosing Google Colab IDE over other conventional IDEs are that it 

fully offers free and unrestricted cloud-based service, which implies that no Python 

installation software or setup is required on local computers, as all processing are done 

directly on Google servers. This thereby saves the memories and storages of personal 

computers. While other IDEs such as Jupyter Notebook, Visual Studio Code, and PyCharm 

also support version control, cloud-based execution and collaborative learning among AI 

enthusiasts, Google Colab combines all these functions in one platform. Google Colab 

connects with Google Drive for automated backups, gives free access to specialized 

computing resources such as hardware runtime accelerators like graphics processing units 

(GPUs) and tensor processing units (TPUs), to enhance computationally intensive ML 

simulations. Unlike other IDEs, Google Colab has higher random-access memory (RAM) 

runtime option and is already fortified with standard built-in libraries like NumPy, Pandas, 

Matplotlib, Scikit-learn, TensorFlow, OpenCV, Keras, and PyTorch, etc., which have been 

exclusively preinstalled for AI-based simulations. Google Colab is more powerful, more 

flexible, and swifter in command executions. 

 

Simulations to implement the proposed ETD model is carried out using Python in Google 

Colab IDE, where the model is constructed by applying it to the SGCC dataset described in 

Section 3.2.2. All the Python implementation codes used for simulating the proposed model 

can be found in the Appendix. The local computer used in running the simulations has 

processor: Intel Core i5-10210U CPU @ 1.60GHz – 2.10GHz, RAM: 8GB, system type: 64-

bit operating system, x64-based processor as specifications. Running the proposed NTLD 

model on Google Colab reduces computational overhead on the local computer because of 

some of the advantages of Google Colab mentioned in the previous paragraphs. The 

training time expended for developing the proposed model is around fifteen minutes using 

Google Colab. This could have taken up to two hours if the model had been run directly on 

the local computer. Memory usage during the ML simulations is about 3GB using Google 

Colab. This could have been up to 7GB using the local computer. The inference speed 

(expected prediction time) is about fifteen milliseconds using Google Colab, which could 

have been up to 600 milliseconds using the local computer. 
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3.2.2    Dataset acquisition and description 
 

The dataset used in this work for ML simulations in developing the proposed model, to 

detect NTL in power grids, is an open-source real-world large time-series electricity 

consumption dataset. The employed dataset which is provided by State Grid Corporation 

of China (SGCC) is available online and could be found in Dai (2018). SGCC is a state-

owned Smart Grid (SG) electric system, and the largest electric utility company in the world 

(Wang et al., 2016:379; Zhou et al., 2017:73), with the domain name: 

(http://www.sgcc.com.cn). The dataset is widely-used and formidable, and is the most 

popular and one of the most-dependable datasets available for carrying out ETD 

experiments (Badawi et al., 2022:9; Bai et al., 2023:19; Khan et al., 2024:6; Kim et al., 

2024:8; Liao, Bak-Jensen, et al., 2024). The SG dataset contains unbalanced daily 

electricity consumption records, or load profiles of 42,372 electricity customers in kilowatt-

hour (kWh) taken for two years and ten months over 1034 days between Wednesday 01 

January 2014 and Monday 31 October 2016. The daily energy consumption of every 

electricity consumer in the SGCC dataset represents the total units (in kWh) of electricity 

consumed per day by each electricity customer.  

 

The SGCC dataset is well-known, and has been employed extensively by many prominent 

researchers in the field of ETD or NTLD in making their contributions to the corpus of 

knowledge. This is owing to its being comprehensive, standard, reliable, and effective for 

developing ETD or NTLD models as against other available datasets (Khan et al., 2024:6). 

The far-and-wide usage peculiarity of the SGCC dataset provides a good and fair ground 

for comparing the performance scores obtained through the ETD model developed in this 

work and the performance results achieved by the ETD models constructed by other 

researchers in the previously published research. The major contribution to knowledge of 

this research project is based on benchmarking the results of the proposed model with other 

recently developed NTL models in the existing literature. The NTL models in the benchmark 

literature (previous works) have also been developed using the same SGCC dataset 

employed in this thesis to build the proposed model. 

 

As a typical non-synthesized real data, the consumption profile of the SGCC dataset is 

imbalanced (Ghori et al., 2020:16034, 16036). The dataset is in Microsoft Excel file in 

comma-separated values (CSV) format. Table 3.1 depicts the first ten rows of the employed 

SGCC dataset which is used as a prototype in describing the structure of the dataset. The 

figure is obtained from Google Colab IDE by invoking the Python codes in Section A.1.2.4 

of the Appendix. This was done during the exploratory data analysis (EDA) stage of the ML 

http://www.sgcc.com.cn/
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simulations to reveal the characteristics of the dataset, after importing the SGCC dataset 

into Google Colab. Other vital information about the SGCC dataset could also be reaffirmed 

during the simulations. The first column in the data frame is the CONS_NO column denoting 

the consumer identity numbers, the second column is the FLAG column with labels 

depicting the NTL statuses of every consumer, while the remaining 1,034 columns which 

represent each day of the 34-month period of the load profiling consist of the daily energy 

consumption units per the 42,372 electricity consumers contained in the dataset.  

 

Table 3.1: The first ten rows of the SGCC dataset 

 

 

The labels in the FLAG column are binary indicators, which are also known as unique values 

or target variables in the dataset, to depict whether a particular consumer steals electricity 

or not. The consumers labelled or annotated “0” are the honest or benign customers who 

do not steal electricity or cause NTL, while the consumers labelled “1” are the fraudulent or 

malignant consumers who steal electricity and thus cause NTL in the electric grid (Glauner, 

2019:48; Munawar, Javaid, et al., 2022:12; Ali et al., 2023:6, 9; Nayak & Jaidhar, 2023:4). 

The “0” label or annotation attributed to honest consumers is also referred to as a negative 

label, while the “1” label ascribed to fraudulent consumers is otherwise known as a positive 

label. Although, the “0” labels are not shown in the limited data distribution of the SGCC 

dataset shown in Table 3.1, but they are definitely in the subsequent rows of the data frame. 

Both the “0” and “1” labels represents the classes in the dataset.  

 

The labels or target variables is critical for supervised learning, as it helps models to learn 

what constitutes typical usage (periodic usage with label “0”) and abnormal usage (non-

periodic usage with label “1”). Periodicity or consistency in energy consumptions typically 
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points to non-theft situations, while non-periodicity or inconsistency in energy consumptions 

potentially portends fraudulent situations, which may point to theft or illegal electricity usage 

(Zheng et al., 2018:1608-1609; Bai et al., 2023:13; Wang et al., 2023:5, 9, 19-20; S. Zhu et 

al., 2024:15477). Features like electricity consumption values, temporal attributes, and 

labels in the dataset help to detect anomalies in consumptions. The customer information 

provided helps to determine which customer is honest or fraudulent. These features 

enhance the training of models to allow them learn complex patterns.  These patterns help 

to distinguish between honest and fraudulent consumptions, enables revenue recovery, 

reduces costly manual onsite inspections, and enhance better management of the grid. 

 
From the dataset, 3,615 consumers committed ET, which is equivalent to about 8.5% of the 

total consumers, while 38,757 are consumers who did not commit ET, which constitute 

around 91.5% of the whole consumers. The fraudulent electricity consumers constitute the 

minority class, while the honest consumers comprise the majority class. The labels on the 

energy consumption dataset for each electricity consumer have been assigned manually by 

the SGCC utility stakeholders after onsite inspections were conducted by their utility 

technicians or inspectors to determine the honest and fraudulent consumers (Lu et al., 

2019:5; Khattak et al., 2022:5). As could be seen from the data frame in Table 3.1, some 

spaces which are normally supposed to contain units of daily energy consumptions are 

rather filled with missing values or undefined values called Not a Number (NaN) (Bohani et 

al., 2021:3). Missing values in raw energy consumption datasets used for ETD are common 

issues which cause performance impairments of NTLD models (Liao, Bak-Jensen, et al., 

2024). Table 3.1 shows the distribution summary of the employed SGCC dataset. 

 

Table 3.2: Description summary of the SGCC dataset 

Description Values 

Period of data collection 01 January 2014 – 31 October 2016 

Number of days of data collection 1,034 

Total number of electricity consumers 42,372 

Total number of fraudulent consumers 3,615 

Percentage of fraudulent consumers 8.5% 

Total number of honest consumers 38,757 

Percentage of honest consumers 91.5% 

 

NaNs could occur as a result of faulty smart meters (SMs) or SM failures due to 

malfunctioning of device components and/or memory loss, errors from utility members of 
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staff, tampering of SMs, data storage issues at the utility end, unplanned system 

maintenance, cyberattacks, lag or delay in data registration, corruption of data, unstable or 

unreliable data transmissions or fluctuations of SM network, congestion or blockage of 

communication, failure or malfunction of sensors and collectors, distribution-line faults, etc. 

(Khan et al., 2024:6; Nirmal et al., 2024:3; L. Zhu et al., 2024:259). In essence, all the cases 

leading to missing values in electricity consumption datasets as mentioned above are 

basically owing to faults that occur during data collections (Mujeeb et al., 2021:128524; 

Wang et al., 2023:5). Missing values during the collection of electricity consumption dataset 

is unavoidable in reality (W. Liao et al., 2022:3525). Figure 3.1 shows the proportion of 

honest and fraudulent consumers in a bar chart, while Figure 3.2 depicts the pie chart of 

the distribution of the honest and fraudulent electricity consumers in the SGCC dataset. The 

bar chart shows size of the unique values for honest and fraudulent customers, while the 

pie chart shows the percentage proportions of the honest and fraudulent electricity 

customers in the SGCC dataset. 

 

 

 

Figure 3.1: Count proportion of the unique values in the dataset 
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As mentioned earlier, the unique values in the SGCC dataset are the binary labels “0” and 

“1”, which corresponds to the labels attributed to honest electricity customers and those 

customers who engage in stealing electricity. The Python implementation codes used to 

obtain the bar chart and the pie-chart of the unique values in the dataset as shown in Figures 

3.1 and 3.2 can be found in Section A.1.2.3.2 of the Appendix. In both figures, the unique 

values “1” and “0” respectively correspond to customers who steal electricity (flagged) and 

the customers who did not steal electricity (unflagged).  

 

 

 
Figure 3.2: Percentage proportions of unique values in the dataset 

 

The comparison of the results of the proposed model developed in this thesis and those of 

other SGCC dataset-based models in the existing literature is shown in Table 4.2 in Section 

4.5.1.1 of Chapter 4. Benchmarking of the results was done with a view to validate the 

efficacy of the proposed model in detecting ET with respect to the previously developed 

NTLD models in the literature. The proposed model is superior and more potent in detecting 

NTLD owing to its higher performance results when compared with the performance results 

obtained in the previous research. 
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❖ Justification for the choice of the employed SGCC dataset 
 

The selection of the SGCC dataset for the ETD experiments in this study, rather than 

datasets from Africa and some other developing countries, is primarily due to the fact that 

SG is still in the developmental phase in these regions, unlike in more developed areas 

such as Europe, North America, Australia, and certain parts of Asia. The SGCC dataset 

originates from China, a developing country, making it relevant to the context of Africa and 

other developing nations. Moreover, there is a general scarcity of standard and labelled 

datasets for NTLD in Africa and other developing regions. Despite regional differences in 

electricity consumptions, the patterns of ET are universally consistent across geographies. 

The SGCC dataset, therefore, reflects the typical patterns of ET that are common globally.  

 

Although absolute consumption levels, such as peak load values, may vary between the 

SGCC dataset and those typical in Africa and other developing countries, the underlying ET 

patterns are comparable and transferrable. This allows the proposed model (developed 

using the SGCC dataset) to be adaptable and applicable for use by utilities in Africa and 

other developing regions. Additionally, the SGCC dataset is a widely recognized and 

accepted dataset within the NTLD research community, which is frequently used by 

prominent scholars. As such, models developed using this dataset can be easily 

benchmarked and validated, ensuring the reliability and robustness of the proposed model. 

Furthermore, the SGCC dataset is the most popular and one of the most-reliable datasets 

for developing NTLD models (Khan et al., 2024:6; Kim et al., 2024:8). 

 

3.2.2.2    Mathematical representation of the dataset 

 

Each feature in the SGCC time series dataset represents the amount of energy used at 

certain times by electricity customers, and can be represented as a sequence or a matrix 

of readings. The input dataset which is used to develop the proposed ML model for ETD 

consists of a sequence of energy consumption values or feature vectors in kWh at a 

specified time for every electricity customer represented in the SGCC dataset, as shown in 

Equation 3.1. 

 

 𝑋𝑖 = [𝑥𝑖,1 , 𝑥𝑖,2 , 𝑥𝑖,3 , … , 𝑥𝑖,𝐿]                  (3.1) 

 

Where 𝑋𝑖  is the feature vector of the daily energy consumptions of an arbitrary electricity 

customer 𝑖, spanning through the entire time window of the dataset. Considering that 𝐿 is 

the sequence length (i.e., the number of features, time points or time steps in the sequence) 
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of each feature vector of an arbitrary electricity customer 𝑖 in any row of the dataset, then  

𝑥𝑖,𝑗 is the  𝑗 − 𝑡ℎ feature or meter reading of a customer 𝑖 at a particular time (daily in this 

case) in the customer’s feature vector as shown in Equation 3.1. The first measured daily 

energy consumption feature in the feature vector of an arbitrary customer 𝑖 recorded on 01 

January 2014 is depicted as (𝑥𝑖,1); while the last feature in the feature vector of length 𝐿 

corresponds to 1,034th day in the dataset, which was registered on 31 October 2016 is 

represented as (𝑥𝑖,𝐿) as shown in Equation 3.1. For example, [𝑥1,1, 𝑥1,2 , 𝑥1,3, … , 𝑥1,1034] in 

the dataset represents the feature vector of the first electricity customer in the dataset, while 

[𝑥2,1, 𝑥2,2, 𝑥2,3, … , 𝑥2,1034] denotes the feature vector of the second electricity customer in 

the dataset, etc. The 𝑋𝑖 in Equation 3.1 is such that:  

 

𝑋𝑖 ∈ ℝ𝐿              (3.2) 

 

Where 𝑋𝑖 is a feature vector with 𝐿 components of real numbers as depicted in Equation 

3.1. For the binary labels attributed to the feature vectors of the energy consumptions of 

every electricity customer in each row of the dataset, Equation 3.3 represent the 

mathematical denotation of the binary labels. 

 

𝑦𝑖 ∈ {0,1}              (3.3) 

 

Where 𝑦𝑖  represents the corresponding binary label or the expected output of the energy 

consumptions or feature vector of an arbitrary electricity customer 𝑖 in any row of the SGCC 

dataset. The 𝑦𝑖 label represents the class of each feature vector belonging of an arbitrary 

customer 𝑖, where customer 𝑖 with 0 label (i.e., 𝑦𝑖 = 0) belongs to the negative class, while 

another customer 𝑖 with 1 label (i.e., 𝑦𝑖 = 1) belongs to the positive class. The customers 

with 0 label represents the honest customers who do not engage in stealing electricity or 

causing NTL, while the customers with 1 label denotes the customers who engage in ET. 

The customer 𝑖 in Equations 3.1, 3.2, and 3.3 respectively has the possible values 𝑖 =

1,2,3, … , 𝑁; connoting the number of every sample which also corresponds to the numbers 

ascribed to every electricity customer 𝑖 contained in the SGCC dataset. 

 

Therefore, the equation representing the entire SGCC dataset, which consists of the 𝑋𝑖 

feature vectors of the energy consumed by electricity customers, and their corresponding 
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𝑦𝑖 binary labels for each feature vector of customer 𝑖 in a particular row of the dataset is 

illustrated in Equation 3.4 (Li et al., 2019:7; Yan & Wen, 2021; Kawoosa et al., 2023:4805). 

 

𝐷 = {(𝑋𝑖 , 𝑦𝑖), (𝑋𝑖+1, 𝑦
𝑖+1

), … , (𝑋𝑁 , 𝑦𝑁)| 𝑖 = 1,2,3, … , 𝑁}       (3.4) 

 

Where 𝐷 represents the entire dataset, 𝑋𝑖 illustrates the feature vector or the meter 

readings of a particular customer 𝑖 for the entire duration of the daily energy registrations of 

the customer in the dataset, 𝑦𝑖 denotes the binary label of the particular customer 𝑖 with 

feature vector 𝑋𝑖. The value of 𝑦𝑖  indicates the class (theft or no theft) in which the particular 

customer 𝑖 belongs, while 𝑖 = 1,2,3, … , 𝑁 indicates the number of every sample in the SGCC 

dataset which also corresponds to the numbers attributed to each electricity customer 𝑖 

contained in the dataset. The total number of samples represented as 𝑁 corresponds to the 

total number of customers in the dataset, which is equal to 42,372, according to the total 

number of customers represented in the employed SGCC dataset. From Equation 3.4, the 

input-output pair (𝑋1, 𝑦1) represents a sample or data point of electricity customer 1 with 

its feature vector 𝑋1 and its corresponding label 𝑦1, while (𝑋2, 𝑦2) represents a sample or 

data point of electricity customer 2 with its feature vector 𝑋2 and its corresponding label 𝑦2, 

etc. A sample or a data point in the dataset represents the feature vector of a customer 𝑖 

with its associated label. 

 

3.3   Development of the proposed CNN-RF model 
 

The proposed CNN-RF model indicates that both convolutional neural network (CNN) and 

random forest (RF) models are dynamically integrated to form the resulting hybrid model. 

CNN model is hybridized with RF model because the combined model achieves better 

prediction results which tends to enhance detection efficiencies and ensure more profits to 

electric utilities. For every developed model being simulated, their classification results or 

test performances are generated alongside, an aspect which will be discussed explicitly in 

Chapter 4. The flowchart of the proposed CNN-RF model is depicted in Figure 3.3, while 

the block diagram of the prescribed NTLD model is illustrated in Figure 3.4. 

 

The flowchart and the block diagram show the processes involved in the implementation of 

the recommended model. Combining the strengths of directly linked CNN and RF models 

in an hybrid layout is more advantageous because CNN models are effective in feature 

extraction (Ullah et al., 2020:1599; W. Liao et al., 2022:3520; Khan et al., 2024:16; Nirmal 
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et al., 2024:1), while ensemble RF classifier model is endowed with outstanding 

classification accuracy as well as high efficiency and robustness (Xu et al., 2019:1, 4; Wang, 

2023:505).  

 

 

 

Figure 3.3: Flowchart of the proposed CNN-RF model 
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Figure 3.4: Block diagram of the proposed CNN-RF model 

 

To prepare the employed SGCC load profile for AI modelling and simulation, the dataset is 

first explored and then systematically preprocessed. The dataset is explored by launching 

an inquiry to seek further details about it and to verify whether it has missing values in it or 

not. The dataset is later preprocessed by replacing its missing values, scaling or normalizing 

its features, and balancing its classes. 

 

3.3.1    Exploratory data analysis and data preprocessing  
 

EDA is the foundation of any data analytics. Datasets must be cleaned before deploying 

them for ML predictions. EDA prepares the dataset for preprocessing. EDA and data 

preprocessing are the processes involved in cleaning up a dataset before applying any ML 

model to such dataset. Data cleansing is done to improve the quality of the dataset and to 

improve the accuracy of model predictions when an ML model is being applied to the 

dataset. Datasets are explored first during EDA to gain insights and uncover patterns so as 

to determine their characteristics. Later the explored datasets are preprocessed to enhance 

the training of the model applied to the datasets (Ali et al., 2023:1).  
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EDA is all about launching inquiry or digging deep into a dataset to reveal its true nature, 

gather general information about it, and then identify its characteristics that may need to be 

addressed during data preprocessing. EDA involves checking the shape of the dataset, 

checking for missing values in the dataset, and identifying relationships between variables 

found in the dataset, etc., to obtain valuable information or gain perception into the given 

dataset. EDA leads to data preprocessing after investigating what needs to be fixed in the 

dataset being explored. 

 

The more the information gathered about a dataset, or how well a dataset is known during 

EDA determines how useful such dataset will be during analytics. Part of EDA also involves 

reformatting the dates in our SGCC dataset from the original DD/MM/YYYY date format to 

the new YYYY/MM/DD date format. This is in a bid for the date in the SGCC dataset to 

conform with the default date format of Google Colab, as implemented in Sections A.1.2.7 

to A.1.2.11 of the Appendix. Other implementation processes which may not have been 

referred to in this chapter are all contained in the Appendix. Data preprocessing is done to 

refine the features in a raw dataset, in a bid to improve the quality of the dataset and also 

to enhance the performance  and reliability of the ML models that are being applied to the 

dataset  (Khan et al., 2024:6; Shahzadi et al., 2024:5-6; J. Wang et al., 2024:4; S. Zhu et 

al., 2024:15479).  

 

Preprocessing of the SGCC dataset takes place before applying the model to the dataset. 

Although, the SGCC dataset has been examined during EDA to discover if there are missing 

values in it; however, the mathematical expressions which denote the process of checking 

and estimating the number of the missing values in the SGCC dataset is expressed in 

Section 3.3.1.1. The dataset is preprocessed by replacing its missing values and 

normalizing the features in the dataset  (Arif et al., 2022:4; Mehdary et al., 2024:16; Nirmal 

et al., 2024:3; L. Zhu et al., 2024:259). The replacement of missing values, scaling or 

normalization, and resampling methods discussed in Sections 3.3.1.3, 3.3.1.4, and 3.3.1.5 

respectively are all processes involved in data preprocessing for cleaning or purifying the 

employed dataset to remove the flaws in it (Khan et al., 2024:7). 

 

3.3.1.1    Inspecting the dataset for missing values 
 

The process of checking for missing features or values in the SGCC dataset can be 

represented mathematically below: 

 

Let 𝑋 represent the dataset features with 𝑚 × 𝑛 dimension as shown in Equation 3.3. 
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𝑋 = [
𝑋11 ⋯ 𝑋1𝑛

⋮ ⋱ ⋮
𝑋𝑚1 ⋯ 𝑋𝑚𝑛

]             (3.3)

      

Where 𝑚 = number of rows (samples), while 𝑛 = number of columns (features).  

 

Let the feature or element in the 𝑖 − 𝑡ℎ row and 𝑗 − 𝑡ℎ column of the dataset be denoted 

as 𝑋𝑖,𝑗 . To check for the missing features in the dataset, an indicator function 𝐼(𝑋𝑖,𝑗) for 

each feature is defined in Equation 3.4. Indicator functions are used to check whether 

individual features or values are missing or not. 

 

 𝐼(𝑋𝑖,𝑗) = {
1,  𝑖𝑓 𝑋𝑖,𝑗  𝑖𝑠 𝑎 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑣𝑎𝑙𝑢𝑒 𝑜𝑟 𝑁𝑎𝑁

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
       (3.4) 

 

Missing values or features in a specific row 𝑖 and column 𝑗 in the matrix of Equation 3.3 can 

be checked using Equations 3.5 and 3.6 respectively. 

 

Missing values in row 𝑖 = ∑ 𝐼(𝑋𝑖,𝑗)𝑚
𝑖=1          (3.5) 

 

Missing values in column 𝑗 = ∑ 𝐼(𝑋𝑖,𝑗)𝑛
𝑖=1           (3.6) 

 

Where 𝑚 and 𝑛 are the total number of features in the 𝑖 − 𝑡ℎ row and 𝑗 − 𝑡ℎ column 

respectively. Equation 3.5 checks how many values are missing in row 𝑖, while Equation 

3.6 checks for the number of missing values in the column 𝑗 of the feature matrix of the 

SGCC electricity consumption dataset described in Equation 3.3. The total number of 

missing values or features in the entire dataset can be determined using Equation 3.7. 

 

Total missing values = ∑ ∑ 𝐼(𝑋𝑖,𝑗)𝑛
𝑗=1

𝑚
𝑖=1           (3.7) 

 

The total missing values in the entire dataset can be found by summing up the results of 

the indicator function over all elements in the feature matrix of Equation 3.3, by checking 

each cell individually across the rows and columns of the features, to produce a complete 

count of all the missing features in the entire dataset. Finding the missing features across 
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the rows and columns separately provides the opportunity of iterating over each element or 

feature in the feature matrix of Equation 3.3 individually. 

 

3.3.1.2    Interpolation method for replacing missing and undefined values 
 

After establishing that there are missing features or values in the dataset as confirmed in 

Section 3.3.1.1, the next thing is to replace the missing values. Missing values in datasets 

lead to impairments in ML models, leading to wrong predictions (Munawar, Khan, et al., 

2022:04; Appiah et al., 2023:1; Khan et al., 2024:7). To enhance the accuracy of the 

proposed CNN-RF model, it is essential to address the missing values. In the SGCC 

dataset, these missing values are replaced using linear interpolation, which assumes a 

linear relationship among the features in the dataset. Linear interpolation is a technique 

widely used in ETD literature for replacing missing values. It is a method used for 

determining values between two features in forward and backward directions, and enabling 

the connection of dots in a one-dimensional set of features (Huang, 2021:2). When a point 

falls between two others, linear interpolation helps estimate its value based on the 

surrounding points in the sequence. It is a way of smoothly filling in missing gaps in a 

dataset. In essence, linear interpolation fills in the missing values by utilizing the values of 

adjacent features. The linear interpolation function is represented by Equation 3.8 (Noor et 

al., 2014:279; Aldegheishem et al., 2021:25042). The linear interpolation function of 

Equation 3.9 is otherwise known as forward interpolation. 

 

𝑓 (𝑥) =  𝑓(𝑥0) +
𝑓(𝑥1)−𝑓(𝑥0)

𝑥1−𝑥0
(𝑥 − 𝑥0)          (3.8) 

 

Where (𝑓(𝑥0), 𝑥0) are the first coordinate features, while (𝑓(𝑥1) , 𝑥1) are the second 

coordinate features. 𝑥 is the point at which interpolation is to be performed, while 𝑓 (𝑥) is 

the value obtained after interpolation. Generally, 𝑥 is the independent variable, while 𝑥0 

and 𝑥1 are the known values of the independent variables. 𝑓 (𝑥) is the dependent variable 

which depends on independent variable 𝑥, while  𝑓(𝑥0) and 𝑓(𝑥1) are known values of the 

dependent variables. The interpolation technique expressed in Equation 3.8 involves 

forward and backward directions. This means that: 

 

For forward interpolation, the condition 𝑥0 ≤ 𝑥 ≤ 𝑥1 applies, and the estimated 𝑓 (𝑥) at 

the 𝑥 position within the range (𝑥0, 𝑥1) based on the linear relationship between them is 

derived from the known values using Equation 3.8. 
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For backward interpolation, the condition 𝑥1 ≤ 𝑥 ≤ 𝑥0 applies, and the estimated 𝑓(𝑥) at 

the 𝑥 position within the range (𝑥0, 𝑥1) based on the linear relationship between them is 

determined using Equation 3.9. 

 

𝑓 (𝑥) =  𝑓(𝑥1) +
𝑓(𝑥0)−𝑓(𝑥1)

𝑥0−𝑥1
(𝑥 − 𝑥1)        (3.9) 

 

The conditions for forward and backward interpolations determine which method of the 

interpolations is to be used depending on the position of 𝑥 relative to the known values. 

Forward interpolation is done using the values before the missing feature and works well 

when the missing values are closer to the starting point of the data series; while backward 

interpolation is done using the values after the missing feature and works well when the 

missing values are nearer to the end of the sample data series. Replacing missing values 

or features using backward or forward interpolation helps to improve the continuity and 

quality of the dataset. The linear interpolation approach has been considered to be easy 

and highly computationally efficient. Generally, the method outperforms non-linear 

interpolation techniques for predicting missing values with constant rates (Lepot et al., 

2017:3). Essentially, the robustness and lower computational demand of linear interpolation 

method, owing to the regularly spaced features informed the choice of the technique. 

 

3.3.1.3    Normalization of features 
 

After passing through the interpolation stage to fill up the missing values, data normalization 

is required next to recalibrate the inconsistent independent-feature values in the dataset 

(Khan et al., 2024:9). Normalization is the process of scaling the independent features in 

the data frame to a suitable span of values to increase the rate of convergence and time of 

execution of ML models (Huang et al., 2024:11; Khan et al., 2024:8). With normalization, 

features in datasets are pegged to the same scale for numerical uniformity, such that each 

of the feature in the data frame is as important as another, thereby removing the weights 

on variables with large range, thus reducing feature dominance and ascertaining fair 

contributions from features, so as to alleviate the effect of outliers, and produce a 

restructured dataset which ML models can process more easily without any bias (Pamir, 

Javaid, Qasim, et al., 2022:56867; Khan et al., 2024:7). Like a typical deep learning model, 

CNN model is sensitive to unscaled diverse data (Pamir, Javaid, Qasim, et al., 2022:56867). 

Normalization of features is generally important and is required by many ML models to 

enhance convergence speed, to stabilize training process, and to improve performance 

(Liao, Zhu, et al., 2024:5077).  
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Minimum-maximum normalization technique also known as MinMaxScaler, which is used 

to transform features typically to values between 0 and 1 has been used to scale the 

features in the SGCC data frame (Badawi et al., 2022:5; Lepolesa et al., 2022:39647). After 

normalization, the independent features in the dataset are kept to a minimum and maximum 

threshold of 0 and 1 respectively. MinMaxScaler has been adopted for this research project 

as against other scaling methods like StandardScaler, RobustScaler, MaxAbsScaler, and 

QuantileTransformer, because it produced the best model performance when used with the 

employed dataset. However, MinMaxScaler is most proficient when dealing with scale-

sensitive models like neural networks and algorithms which are based on gradient descent 

(Cheng et al., 2021:7; Guizeni, 2024).  

 

The MinMaxScaler method for normalizing features in the data frame is expressed in 

Equation 3.10 (Huang et al., 2024:11; Liao, Zhu, et al., 2024:5077; Mehdary et al., 2024:16; 

Nirmal et al., 2024:3). 

 

𝑁(𝑋) =
𝑋𝑃−min(𝑋)

max(𝑋)−min(𝑋)
         (3.10) 

 

Where 𝑁(𝑋) is the min-max scaling function that scales each feature in every column 𝑋 of 

the SGCC data frame where the original input feature 𝑋𝑃 to be scaled is located, min(𝑋) is 

the original minimum value in each column 𝑋, while {max(𝑋)} is the original maximum value 

in the particular column 𝑋. The MinMaxScaler technique substracts the original minimum 

value {min(𝑋)} from the original value of each feature 𝑋𝑃 to be scaled in column 𝑋, and then 

divides it by the range {max(𝑋) − min(𝑋)}, to give scaled evaluation value that lies between 

0 and 1, providing linear transformation and keeping relationship among original data range 

in every column 𝑋 being normalized (Patro & Sahu, 2015:20), while also preserving the 

shape of the original dataset (Singh & Singh, 2022:1). Range is the difference between the 

original maximum and the original minimum values of the features in each feature column 

𝑋 of the data frame for every feature 𝑋𝑃 in a particular column that is to be scaled or 

normalized. All the features in all the the 𝑋 columns (a total of 1,034 feature columns) of the 

SGCC data frame are hereby scaled accordingly using the MinMaxScaler technique, such 

that every input feature or independent variable in the data frame are normalized to values 

that range between a minimum of 0 and a maximum of 1. 
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3.3.1.4    Balancing the classes in the dataset 
 

Imbalanced datasets contain uneven distribution of class labels (L’Heureux et al., 

2017:7779). Without balancing the classes in the employed real dataset from SGCC, 

models trained using the dataset will tend to overfit and thus leading to a bias towards the 

majority class (Yang et al., 2023:3; S. Zhu et al., 2024:15483). Overfitting occurs when a 

model fails to generalize to unseen or test data, but rather learn patterns that are too specific 

to the training data, thus having high training accuracy but poor test accuracy. The two 

classes in the SGCC dataset are the theft or positive and non-theft or negative classes 

containing daily electricity consumption features. It is obvious from Section 3.2.2 during the 

description of the employed dataset that the numbers of customers who did not steal 

electricity (majority class) are overly more than those customers who stole electricity 

(minority class), giving rise to an imbalanced dataset that needs to be resampled in order 

to balance it. 

 

For ML models to effectively classify labelled datasets, a more-effectual method is to 

oversample the under-represented samples in the dataset by generating artificial samples 

to supplement the minority samples to equal the size of the majority samples in order to 

balance the class distribution within the dataset (Ghori et al., 2021:98931). A class 

balancing method known as the synthetic minority oversampling technique (SMOTE) has 

been utilized to oversample the minority theft samples, thereby addressing the class 

imbalance issue in the SGCC dataset. SMOTE is a very reliable, powerful, and the most 

prominent oversampling technique which has been utilized by many researchers to handle 

imbalanced-dataset problems (Elreedy et al., 2024:4903-4904). SMOTE generates artificial 

samples of the minority class by interpolating the minority samples and the nearest 

neighbours of the minority samples in an effort to balance the distribution of classes in the 

dataset (Pereira & Saraiva, 2021:3). 

 

Another means of balancing the classes in the highly imbalanced SGCC dataset is to 

undersample the majority class to match the size of the minority class. However, 

oversampling of the minority class has been considered in this research since 

undersampling the majority class may be counterproductive owing to the lower proportion 

of the available theft samples when compared with the non-theft samples (Javaid, Jan, et 

al., 2021:49). Since the employed dataset is severely imbalanced, reduction in the 

magnitude of the majority non-theft instances using undersampling technique will be 

sizeable, which will severely truncate more of the representations of the customer samples 

under the non-theft class, leading to loss of vital information (Ghori et al., 2021:98931). This 
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will thereby reduce the quality of the employed SGCC dataset and thus increase the risk of 

overfitting by the model developed with such dataset which has been diminished through 

undersampling. Data-quality reduction will undermine the learning and performance efficacy 

of the ML model that would later be trained with the undersampled dataset (Javaid, Jan, et 

al., 2021:49).  

 

However, ML models typically perform better when trained with big datasets (Ramezan et 

al., 2021:19; Ghosh, 2023), so a reduction in dataset size by undersampling may hamper 

the performance of the proposed model. Consequently, the employed SGCC dataset has 

therefore been appropriately oversampled using SMOTE to balance the dataset. In general, 

imbalanced datasets severely affect the performance and reliability of ML models (Pamir et 

al., 2023:3580; Liao, Bak-Jensen, et al., 2024). 

 

❖ Oversampling using the SMOTE algorithm 
 

To demonstrate the processes involved using the SMOTE algorithm, let 𝐷 be the employed 

dataset with samples and labels, where 𝐷 =  {(𝑋𝑖 , 𝑦𝑖), (𝑋𝑖+1, 𝑦
𝑖+1

), … , (𝑋𝑁 , 𝑦𝑁)} as 

illustrated in Equation 3.4, and 𝑦𝑖  is the class label of the 𝑖 − 𝑡ℎ customer sample 𝑋𝑖 in the 

dataset. The SMOTE oversampling technique for generating synthetic samples in an 

imbalanced dataset is applied to the minority class and involves identifying the minority 

class, selecting the minority class, finding the k-nearest neighbour of the chosen sample 

within the minority class, generating the synthetic samples of the minority class by 

oversampling a subset of the minority samples, and adding the generated synthetic samples 

to the dataset based on the steps described in Farid et al. (2023:83) and Elreedy et al. 

(2024:4907), as illustrated in the subsequent paragraphs. 

 

The SMOTE oversampling process starts with identifying the minority class in the dataset 

by finding the class with the minimum or fewest number of samples. This is achieved using 

Equation 3.11. 

 

𝐶𝑚𝑖𝑛 = 𝑎𝑟𝑔 minc ∣ {𝑖: 𝑦𝑖 = 𝑐} ∣        (3.11) 

 

Where 𝐶𝑚𝑖𝑛 is the class that has the minimum number of samples in the dataset (minority 

class), 𝑎𝑟𝑔 minc is a notation which indicates that the argument or value of a specific class 

(minority class) 𝑐 that minimizes the given expression ∣ {𝑖: 𝑦𝑖 = 𝑐} ∣, while the expression 
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∣ {𝑖: 𝑦𝑖 = 𝑐} ∣ itself represents the absolute value of the minority-class samples (𝑐) in the 

dataset for which the class label 𝑦𝑖  is equal to 𝑐. 

 

After determining the minority class samples using Equation 3.11 above, then a subset of 

the minority class samples which will be used to generate the synthetic data samples is 

chosen at random. After this, a sample instance 𝑋𝑖 from the subset of the selected minority 

samples is chosen, where 𝑦𝑖 = 𝐶𝑚𝑖𝑛. 

 

The k-nearest neighbours for each sample 𝑋𝑖 from the randomly selected subset of the 

minority class are determined next using Euclidean distance between the minority class 

samples. The Euclidean distance equation expressed in Equation 3.12 is used to determine 

the k-nearest neighbours between the minority sample 𝑋𝑖 and another sample 𝑋𝑗 from the 

feature space of the minority class. 

 

 𝑑(𝑋𝑖 , 𝑋𝑗) = √∑ (𝑋𝑖,𝑚 − 𝑋𝑗,𝑚)2𝑛
𝑚=1          (3.12) 

 

Where 𝑑(𝑋𝑖 , 𝑋𝑗) is the Euclidean distance between the two samples 𝑋𝑖 and another 

sample 𝑋𝑗 in the feature space of the minority class, 𝑚 is the feature index, while 𝑛 is the 

total number of features in the feature space of the minority class. The value of k determines 

the numbers of nearest neighbours that will be considered for interpolation. For the purpose 

of interpolation to generate synthetic samples, one of the k-nearest neighbours is chosen 

at random. The k-nearest neighbours of sample 𝑋𝑖 are being determined from the set {𝑋𝑗

: 𝑦𝑗 = 𝐶𝑚𝑖𝑛 , 𝑗 ≠ 𝑖}. This set consists of all samples or feature vectors 𝑋𝑗 that belong to the 

minority class (𝑦𝑖 = 𝐶𝑚𝑖𝑛) except the 𝑋𝑖 sample which is critical for selecting the nearest 

neighbours. The set is used to obtain the k-nearest neighbours of the feature vector 𝑋𝑖 

within the minority class, with the goal of generating synthetic samples by interpolating 

between 𝑋𝑖 and its neighbouring data points within the set. 

 

Next is the generation of the synthetic samples. For each nearest neighbor 𝑋𝑗, synthetic 

samples are being generated along the line connecting the minority class sample 𝑋𝑖 and 

one of its randomly chosen nearest neighbour 𝑋𝑗. This is done to keep the newly generated 

synthetic sample within the region of the minority class samples. The synthesized sample 
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is generated by selecting a neighbour 𝑋𝑗 from the previously mentioned set {𝑋𝑗: 𝑦𝑗 = 𝐶𝑚𝑖𝑛

, 𝑗 ≠ 𝑖}. Therefore, the newly generated synthetic sample is represented in Equation 3.13. 

 

𝑋𝑛𝑒𝑤 = 𝑋𝑖 + 𝜆 ⋅ (𝑋𝑗 − 𝑋𝑖)         (3.13) 

 

Where 𝑋𝑛𝑒𝑤 is the newly generated synthetic sample between a minority class sample 𝑋𝑖 

and one of its nearest neighbours 𝑋𝑗, while 𝜆 is a unique random number that ranges 

between 0 and 1 (i.e., 0 ≤ 𝜆 ≤ 1), which is a parameter that determines the position of the 

newly synthesized data point between 𝑋𝑖 and 𝑋𝑗. If  ∆ = 𝑋𝑗 − 𝑋𝑖 , then Equation 3.13 

becomes: 

 

𝑋𝑛𝑒𝑤 = 𝑋𝑖 + 𝜆∆        (3.14) 

 

Finally, all the newly generated synthetic samples are being appended or added into the 

default dataset. It should be noted that if 𝜆∗ ≥ 1, SMOTE will allow for extrapolation beyond 

the standard interpolation range of the minority class samples on the line connecting the 

sample 𝑋𝑖 and its randomly selected neighbour 𝑋𝑗. With 𝜆∗ ≥ 1, SMOTE will generate 

more diverse minority samples outside the original range or feature space (i.e., 0 ≤ 𝜆 ≤ 1) 

of the minority class samples, with greater risk of generating noisy and unrealistic samples. 

 

3.3.2    Development of the Conv1D CNN model 
 

After the data preprocessing stage discussed in the previous sections, the next stage of the 

ETD modelling is feature engineering, which involves feature selection and feature 

extraction (Khan et al., 2024:6). For effective ETD, selection of appropriate features is 

required to develop a formidable model (Khan et al., 2024:9). There are three types of CNN 

model namely one-dimensional CNN (Conv1D or 1D-CNN), two-dimensional CNN (Conv2D 

or 2D-CNN), and three-dimensional CNN (Conv3D or 3D-CNN) (Verma, 2019).   

 

Basically, the most common type of the CNN model is Conv2D which is primarily used for 

the classification of images (Verma, 2019; Brownlee, 2020). Conv2D requires two-

dimensional input data and a corresponding two-dimensional kernel or filter. Conv3D 

requires three-dimensional input data, for example, a three-dimensional image or video and 

a corresponding three-dimensional kernel or filter. Conv1D requires one-dimensional input 
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data (e.g. text or time series) and a corresponding one-dimensional kernel or filter. Conv1D 

is primarily used with one-dimensional data like the employed SGCC time-series dataset 

used in developing the proposed ETD model. The Conv1D network defines the CNN 

architecture used to train the employed one-dimensional (1D) SGCC time-series dataset 

for binary classification. Conv1D model is chosen as against Conv2D or Conv3D CNN 

models because the electricity consumption dataset used in constructing the ETD or NTLD 

model is a one-dimensional dataset (Cheng et al., 2021:5; Chung & Jang, 2022:9). 

 

The Conv1D model architecture is built and configured such that the model can accept input 

features and also suitable for binary classification to distinguish between the honest and 

fraudulent electricity customers. Using the Sequential API in a neural network framework 

like TensorFlow and Keras involves a series of steps. This ETD model demonstrates an 

example of a 1D-CNN model using Sequential API in Keras. Figure 3.5 represents the 

architecture of the Conv1D model. The architecture of the CNN model includes a 

convolutional layer (Conv1D layer), pooling layer (MaxPooling1D layer), flatten layer, fully 

connected (FC) layer or dense layer, dropout layer, and an output layer. The model training 

is monitored for accuracy and loss over epochs.  

 

 

 

Figure 3.5: Architecture of the Conv1D CNN model 

 

The choice of 32 neurons with kernel size of 3 for the Conv1D model is a common starting 

point for Conv1D layers, especially in the early layers of CNN. Size-3 kernels are noted for 

their high polarization exponents and have the lowest decoding complexity among larger 

kernels (Ardakani et al., 2021:919). These choices are often used as defaults in many 
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architectures and have been found to work well across various tasks, and they strike a 

balance between computational efficiency and model complexity for capturing patterns in a 

sequential data. Kernel size specifies the dimension of the array of weights in the kernel. 

The specified array of weights determines the length of the kernel. A filter is a collection of 

kernels (Panchal, 2021). Other hyperparameters of the Conv1D model are 50 epochs, and 

30 batch size of training samples. The input layer of 1D-CNN is denoted by the application 

of a Conv1D operation on the 1D input data. In this model setup, the CNN learns from the 

one-dimensional SGCC time-series electricity consumption data by extracting and training 

features from the dataset. 

 

A kernel is a matrix of numbers or weights that convolves or slides over the input tensor to 

extract features and produce a feature map (Ganesh, 2019; Wen et al., 2021:1641; 

Panchal, 2021). During convolution to extract features, the array of input features or a local 

receptive field covered by the kernel window are multiplied by the kernel weights, in an 

elementwise manner and then later summed up to produce a feature map. A feature map 

is the result or output of a convolution operation by a kernel or filter over an entire dataset. 

A kernel size of proper length is preferred to obtain a high-quality representation to capture 

the salient features in a time series data. For time series classification task using 1D-CNN, 

the selection of kernel size is critically important to ensure the model can capture the right-

scale salient features from a long time series input data. Most of the existing work on 1D-

CNN treats the kernel size as a hyperparameter and tries to find the proper kernel size 

through a grid search which is time consuming and inefficient.  

 

For 1D-CNN models, the selection of kernel size is essential to capture the required salient 

features properly. Since the employed SGCC dataset has only one feature at each time 

point or time step, thus each filter in the Conv1D model will also consist of one kernel. 

However, the 32 neurons mentioned in the previous paragraph directly relates to the 

number of filters in the Conv1D network. Therefore, the convolutional layer of the Conv1D 

model applies 32 1D convolutional filters, each of size 3 at the same time to the input data 

during convolution. One-dimensional kernel is typically used to process one-dimensional 

input data. Hence, the one-dimensional kernel size 3 or filter size 3 (3-element kernel) used 

in the Conv1D model is an array of weights of length size 3, capturing three consecutive 

adjacent features at a time from the input data, and extracting features by processing these 

captured sequential input data features which a kernel or filter would convolve or slide over. 

 

Forward propagation and backward propagation or backpropagation are the two essential 

steps a neural network goes through during training. The first stage of training a neural 
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network is the forward propagation phase before the later backward propagation stage 

(Medium, 2023). In the forward propagation phase, the input data is supplied into the 

network, and the output is thereby calculated by traversing the input across several layers. 

The observed or predicted output is then compared with the target output. The difference 

between the target and the observed output is used to calculate the error in the Conv1D 

network. In backward propagation, the calculated error at the output layer is propagated 

back through the network, and the neuron weights are updated iteratively to minimize the 

computed error (Jaokar, 2019). The architecture and backpropagation of a neural network 

during training is guided based on the nature of the classification task (Ali et al., 2023:12). 

 

3.3.2.1    Forward propagation 
 

Forward propagation in CNN is the process of passing the input feature vectors through the 

CNN network layer by layer, whereby the input features are being transformed before being 

passed from one layer to the next to produce an output at the final layer (Jaokar, 2019). 

Figure 3.6 depicts a simple representation of one complete-forward propagation cycle 

through the Conv1D architecture shown in Figure 3.5. Figure 3.6 consists of the input, 

hidden, and output layers made of neurons or nodes. The total losses or errors in the 

Conv1D network are computed during the forward pass. The input layer involves feeding 

the input data into the network, the hidden layer processes the input data, such that each 

layer in the hidden layer applies activation functions to a set of weights and biases, while 

the output layer produces the final predictions also known as processed data. 

 

 

 
Figure 3.6: Forward propagation in the Conv1D network 

 

The term 𝑊ℎ in Figure 3.6 describes the weights of all the neurons in the hidden layer, 

while 𝑊𝑜 represents the weights of all the neurons in the output layer. Apart from the input 

layer which constitutes the customer feature vectors from the employed one-dimensional 

(1D) time-series electricity consumption data with their target labels, and the output layer 

that displays the final prediction of the binary classification, the hidden layer of a CNN model 

is composed of convolutional, pooling, flatten, dropout, and the FC or dense layers. At the 
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input layer before convolution, the 1D input data which had only sequence length as its 

dimension is eventually transformed into a three-dimensional (3D) tensor with the shape 

(batch size, sequence length, and number of features or time steps), before it is being fed 

into the Conv1D network (MathWorks, 2021). The batch size is the number of samples or 

data points that will be fed into the Conv1D network at once, the sequence length is the 

number of features contained in each feature vector sample, while the number of features 

in this case correspond to the count of the type of features contained in a time step. The 

employed SGCC dataset contains one kind of feature (i.e., energy consumptions in kWh) 

per time step. Since the input data is a univariate time series data containing one kind of 

feature, therefore the number of features at time steps in the employed dataset is one. 

Conceptually, the input data is still a 1D data but which has been structured into a 3D tensor 

that the Conv1D network can process. This is to allow the model to process data samples 

in batches with multiple features at the same time. 

 

❖ Convolutional layer 
 

The convolutional layer is depicted as Conv1D in the Conv1D model shown in Figure 3.5. 

The function of the convolutional layer is to extract local features from the input data and 

convolve them into feature maps using kernels or filters (Yang, 2019:151-152). Convolution 

operation takes place in the convolutional layer of the Conv1D network using the one-

dimensional electricity consumption input data and kernel weights. The convolution is 

carried out with the neuron of each kernel which processes the score of the convolution 

operation as described in Equation 3.15 (Zheng et al., 2018:1609; Bohani et al., 2021:3; 

Cheng et al., 2021:5; Saripuddin et al., 2021:153; Nawaz et al., 2023:5). 

 

𝑧𝑗(𝑐) = ∑ 𝑤𝑖(𝑖),𝑗(𝑐) ⋇ 𝑥𝑖(𝑖) + 𝑏𝑗(𝑐)
𝑛
𝑖=1         (3.15) 

 

Where: 

 

𝑧𝑗(𝑐) = Weighted sum processed by the 𝑗 − 𝑡ℎ neuron of the kernel or filter at the 

convolutional layer, 

𝑤𝑖(𝑖),𝑗(𝑐) = The weight of the 𝑗 − 𝑡ℎ kernel at the convolutional layer applied to the 𝑖 − 𝑡ℎ  

input feature 𝑥𝑖(𝑖) at the input layer, 

𝑥𝑖(𝑖) = The 𝑖 − 𝑡ℎ input feature from the input layer to the 𝑗 − 𝑡ℎ neuron of the kernel in the 

convolutional layer, 

𝑏𝑗(𝑐) = Bias term of the 𝑗 − 𝑡ℎ neuron at the convolutional layer, 
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𝑛 = The total number of 𝑖 − 𝑡ℎ  input features connected to the 𝑗 − 𝑡ℎ  neuron.  

 

The 𝑤𝐼(𝑖),𝑗(𝑐) and 𝑏𝑗(𝑐) are learnable parameters and also the stored information in the 

network (Ullah et al., 2021:6; Lepolesa et al., 2022:39641), while the product between 

𝑤𝑖(𝑖),𝑗(𝑐) and 𝑥𝑖(𝑖) (i.e., 𝑤𝑖(𝑖),𝑗(𝑐) ⋇ 𝑥𝑖(𝑖)) is the convolution operation that took place in 

the convolutional layer of the Conv1D network between the input features and the kernel 

weights (Ullah et al., 2021:6). The sum of the convolutions as processed or computed by 

the 𝑗 − 𝑡ℎ neuron of each kernel in the convolutional layer, with the addition of the bias term 

of the kernel produces the weighted sum. The weighted sum is also known as linear 

combination of inputs. A single weighted sum as processed by the 𝑗 − 𝑡ℎ neuron of a kernel 

in the Conv1D network during convolution produces a single value in the eventual feature 

map that the kernel will generate across the whole dataset. Typically, a convolutional layer 

contains multiple kernels where each kernel matrix produces its own feature map by sliding 

or convolving through the entire input data.  

 

Unlike weights which are transmitted between neurons, biases or bias terms are not 

transmitted. Bias terms are additional constant parameters or values which are specific to 

every neuron and are being added after applying the weights to the input data during 

convolution, to compute the weighted sum. This is done to shift or offset the output of the 

neuron, to enable the neuron learn patterns, and also enhance the model to fit to the input 

data  (Ganesh, 2020; Turing, 2022). The convolution operation produces a 3D feature map 

(Dertat, 2017) having the shape (batch size, output length, and number of filters or depth). 

The batch size is the number of samples or data points fed into the Conv1D network at 

once, the output length or the new sequence length is the number of features in each feature 

vector of every input sample after the convolution operation, while number of filters which 

corresponds to the number of channels or number of neurons refers to the total number of 

convolutional filters used in the Conv1D network. 

 

Besides convolution, another procedure that is very crucial to the convolutional layer is the 

activation of the weighted sums using activation functions, as both the convolution and 

activation processes forms a combined functionality. Activation functions decide which 

features are passed on to the next layer of the Conv1D network and which ones are dropped 

(Iftikhar et al., 2024:07). The weighted sum of each feature from the input data as processed 

by each 𝑗 − 𝑡ℎ neuron of the 32 neurons at the convolutional layer in the Conv1D network 

are activated using activation functions.  Offsetting the convolved input by adding the bias 

term allows the shifting of the input to the activation function, to help in determining whether 
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a neuron activates or not even when the input is zero. The bias term combines with the 

activation function to enhance nonlinearity, so that neurons can be more flexible to learn 

complex patterns, and thereby improve model performances (Ganesh, 2020; Turing, 2022). 

Equation 3.16 (Ullah et al., 2021:6; Lepolesa et al., 2022:39641; Ullah et al., 2022:18685) 

is the output of the 𝑗 − 𝑡ℎ neuron out of  the 32 filter neurons after applying activation 

function to the weighted sum 𝑧𝑗(𝑐) of Equation 3.15: 

 

𝑢𝑗(𝑐) = 𝑅(𝑧𝑗(𝑐))        (3.16) 

 

Where: 

 

𝑢𝑗(𝑐) = output of the 𝑗 − 𝑡ℎ neuron at the convolutional layer after the activation calculation, 

𝑅 = Rectified Linear Unit (ReLU) activation function. 

 

Activation functions are transformation functions that are used to squeeze or manipulate 

the weighted inputs in neurons to generate outputs, by deciding whether the neurons should 

be fired (activated) or not (Iftikhar et al., 2024:07). The activation process is like inspecting 

and determining whether the provided input information into the neuron is relevant in the 

prediction process or should be ignored. The ReLU activation function like other nonlinear 

activation functions like softmax, maxout, Swish, hyperbolic tangent (tanh), sigmoid or 

logistic activation functions, and ReLU variants like Leaky ReLU (LReLU), Exponential 

Linear Unit (ELU), and Parametric ReLU (PReLU) activation functions introduce nonlinearity 

in the Conv1D model (Pamir et al., 2023:3581; Khan et al., 2024:10). 

 

ReLU activation function is the state-of-the art activation function (Montesinos López et al., 

2022:389), and it is chosen among other nonlinear activation functions because it allows 

models to learn faster (i.e., faster model training and computation), performs better than 

other activation functions, increases nonlinearity, favours backpropagation, and is devoid 

of the issues of exploding and vanishing gradients attributable to sigmoid and tanh 

activation functions (Saripuddin et al., 2021:153; Gao et al., 2022; Ullah et al., 2022:18686; 

Khan et al., 2024:10). Nonlinear activation functions are required by deep learning models 

to convert linear inputs to nonlinear outputs  in a bid for the model to learn complex tasks 

and transform the input to perform better (Kiliçarslan & Celik, 2021:1). Essentially, for the 

given weighted input 𝑧𝑗(𝑐) from the feature map, the ReLU activation function to activate 

the 𝑗 − 𝑡ℎ neuron at the convolutional layer using the weighted sum calculated by the 𝑗 −

𝑡ℎ neuron in Equation 3.15 is described in Equation 3.17 (Ullah et al., 2022:18686; Nirmal 
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et al., 2024:3), or otherwise expressed using the equivalent piecewise function given in 

Equation 3.18 (Lepolesa et al., 2022:39643; Huang et al., 2024:8). 

 

𝑅(𝑧𝑗(𝑐)) = max (0, 𝑧𝑗(𝑐))        (3.17) 

 

𝑅(𝑧𝑗(𝑐)) = {
0, 𝑧𝑗(𝑐) ≤ 0

𝑧𝑗(𝑐), 𝑧𝑗(𝑐) > 0
        (3.18) 

 

Where the 𝑧𝑗(𝑐) (the weighted sum processed by the 𝑗 − 𝑡ℎ kernel neuron) in the ReLU 

activation function of Equation 3.17 or Equation 3.18 is determined using Equation 3.15 

(Cheng et al., 2021:5), before applying the ReLU activation function to it as demonstrated 

in Equations 3.16, 3.17, or 3.18. The ReLU activation function maps the weighted sums that 

are equal or less than zero to zero and retains the weighted sums which are greater than 

zero. 

 

❖ Pooling layer 
 

The pooling layer is a subsampling layer in CNN used to minimize redundant features in the 

network (Xia et al., 2022:291). After applying activation function to the feature maps, the 

resulting features of the Conv1D network can further be downsampled by pooling (Ullah et 

al., 2021:6). Pooling is done to further transform (downsample) the kernel outputs (feature 

maps) after the application of activation function to the feature maps. The pooling layer is 

used to obtain dominant features from the local convolved features by condensing the 

numeric arrays generated by the kernels, and thereby reducing the dimensionality of feature 

maps while retaining the most important features (Kumar, 2023; Khan et al., 2024:9). 

Pooling reduces the dimensionality of feature maps in space, thereby reducing the number 

of parameters that the Conv1D model needs to learn (Kumar, 2023). This thereby controls 

overfitting and shortens the training time of the model (Kumar, 2023). Maximum pooling 

(max pooling) and average pooling are the two available types of pooling methods, but max 

pooling performs better than average pooling (Ullah et al., 2021:6; Ullah et al., 2022:18686). 

Max pooling returns the maximum values of the activations in the small windows of a feature 

map, while average pooling returns the average activation values in the small windows (Li 

et al., 2019:6; Ullah et al., 2021:6). 

 

Max pooling is the most common type of pooling used in reducing the dimensionality of 

feature maps to reduce computational complexity and increase execution time (Ullah et al., 
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2021:6). MaxPooling1D has been adopted in the Conv1D network for pooling the features 

in the feature map. MaxPooling1D is used in this work for pooling because the input data is 

a 1D dataset. Unlike average pooling that returns average values from each pooling 

window, max pooling decreases feature-map dimensions by extracting or returning the 

maximum values or the most dominant features of the features in each pooling window of 

the feature map. The small window mentioned in the previous paragraph is actually a 

pooling window. The pooling window used for Conv1D model has a size of 2 with a stride 

length of 2. The size-2 pooling window considers two elements or features at a time in the 

feature map and selects the maximum of the two. Stride is the step size or units of the 

movement of the pooling window at a time across the adjacent elements in the feature 

vector (Kumar, 2023). Since the stride length of the pooling window is 2, it means that the 

pooling window moves two steps at a time across the elements in the feature vector during 

the pooling without overlapping. Using the employed input 1D time series data, the pooling 

equation after applying MaxPooling1D layer to the Conv1D network is described in Equation 

3.19 (Li et al., 2019:6; Liao et al., 2022:3519-3520; Gunduz & Das, 2024:10; Liao, Zhu, et 

al., 2024:5080). 

 

𝑌𝑙 = max
𝑘∈𝑊𝑙

𝑀𝐾        (3.19) 

 

Where: 

 

𝑌𝑙 = Output of the max-pooling operation at position 𝑙 in the feature map, 

𝑊𝑙 = The pooling window for the set of input features or activations around position 𝑙, 

max = Max-pooling operation that takes the maximum value from the pooling window 𝑊𝑙, 

k = Set of features in the pooling window 𝑊𝑙, 

𝑀𝑘 = The values of 𝑘 input features from the feature map 𝑀 within the window 𝑊𝑙. 

 

Applying MaxPooling1D, the maximum value in a specified window of the feature map is 

selected and taken to the next layer of the Conv1D network, while the other is dropped. The 

pooling operation only downsampled the size of the feature map after the convolution 

operation, but the pooled feature map retains its 3D shape. 

 

❖ Flatten layer 
 

The output of the classification process is expected to be in one-dimensional (1D) binary 

format. Meanwhile, the shape of the pooled feature map is in a three-dimensional (3D) 
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tensor as mentioned earlier, but the next layer after the flatten layer known as the fully 

connected layer requires the feature map to be in a 1D feature vector (Dertat, 2017; Yang, 

2019:152), so that the FC layer can interpret the feature map correctly before the output 

layer finally makes the classification. Therefore, the flatten layer reshapes or rearranges the 

multidimensional 3D feature-map array into a 1D high-dimensional vector appropriate for 

the fully connected layer (Yang, 2019:155-156; Ullah et al., 2022:18686; L. Zhu et al., 

2024:260). Flattening of the feature-map matrix for each filter can be done by stacking each 

matrix of the 3D tensor in a sequential order to form a 1D tensor (Yang, 2019:156). The 

flatten layer is non-parametric, that is, it does not learn any parameter but only modify 

tensors. The flattening of the 3D feature map from the max pooling layer into a 1D feature 

vector can be represented in Equation 3.20. 

 

𝐹𝑓𝑙 = flatten (𝑌𝑙)        (3.20) 

 

Where: 

 

𝐹𝑓𝑙 = Flattened feature vector, 

𝑌𝑙 = The pooled 3D feature map from the MaxPooling1D layer, 

flatten = Operation that flattens the pooled 3D feature map into 1D feature vector. 

 

It should be noted that what the flatten layer only does is structural rearrangement or 

reshaping of the input tensor (i.e., flattening is simply about dimension rearrangements) 

without any information or feature change, as the information in the feature map is retained 

in the transformed 1D feature map used as input to the fully connected layer in the Conv1D 

network. 

 

❖ Fully connected layer 
 

The FC layer is also known as the dense layer (Pamir, Javaid, Javaid, et al., 2022:11). This 

layer outputs the latent features extracted by the convolutional layer before the output layer 

makes the eventual classification (W. Liao et al., 2022:3520). The flattened 1D feature map 

from the flatten layer, which is the appropriate tensor for the final classification at the output 

layer, is fed into the FC layer (Yang, 2019:156). The FC layer contains the aggregate result 

of all the features across the entire inputs of the Conv1D network, providing a global 

representation of the input features and interpreting these features for the sake of final 

classification at the output layer (Ullah et al., 2022:18687). Each neuron in the FC layer is 

connected to every other neuron in the previous layer (flatten layer), that is the reason the 
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FC layer is referred to as being “fully connected” (Liu & Zhao, 2023:13854). In short, the FC 

layer combines all the features learnt in the previous layers and maps them to the output 

space for final classification. Equation 3.21 represents the weighted sum of a  𝑗 − 𝑡ℎ neuron 

at the FC layer (Ullah et al., 2021:6; Ullah et al., 2022:18687).  

 

𝑧𝑗(𝑓𝑐) = ∑ 𝑤𝑖(𝑓𝑙),𝑗(𝑓𝑐) ∙ 𝑧𝑖(𝑓𝑙) + 𝑏𝑗(𝑓𝑐)
𝑛
𝑖=1        (3.21) 

 

Where: 

 

𝑧𝑗(𝑓𝑐) = Weighted sum of a 𝑗 − 𝑡ℎ neuron at the fully connected layer, 

𝑤𝑖(𝑓𝑙),𝑗(𝑓𝑐) = Weight between the activated 𝑖 − 𝑡ℎ  neuron at the flatten layer and the 𝑗 −

𝑡ℎ neuron at the fully connected layer, 

𝑧𝑖(𝑓𝑙) = The activated 𝑖 − 𝑡ℎ input from the flatten layer, 

𝑏𝑗(𝑓𝑐) = Bias term of the 𝑗 − 𝑡ℎ neuron at the fully connected layer, 

𝑛 = The total number of flattened activated 𝑧𝑖(𝑓𝑙) inputs from the flatten layer to 𝑗 neurons 

at the fully connected layer,  

 

The activation of the 𝑗 − 𝑡ℎ the neuron at the fully connected layer is represented in Equation 

3.22. 

 

𝑢𝑗(𝑓𝑐) = 𝑅(𝑧𝑗(𝑓𝑐))        (3.22) 

 

Where: 

 

 𝑢𝑗(𝑓𝑐) = Output of the 𝑗 − 𝑡ℎ neuron at the fully connected layer after applying the 

activation function, 

𝑅 = ReLU activation function. 

 

The ReLU activation function to activate the 𝑗 − 𝑡ℎ neuron at the fully connected layer using 

the calculated weighted sum by the 𝑗 − 𝑡ℎ neuron as described in Equation 3.21 is 

expressed in Equation 3.23. 

 

𝑅(𝑧𝑗(𝑓𝑐)) = max(0, 𝑧𝑗(𝑓𝑐)) = {
0, 𝑧𝑗(𝑓𝑐) ≤ 0

𝑧𝑗(𝑓𝑐), 𝑧𝑗(𝑓𝑐) > 0
      (3.23) 
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❖ Dropout layer 
 

The dropout layer can be implemented to nodes or neurons at the input layer or nodes 

located anywhere within the hidden layer, except to the nodes at output layer (Dertat, 2017; 

Yadav, 2022; Pansambal & Nandgaokar, 2023:716, 718). However, dropout layer is usually 

implemented between the FC layer and the output layer, to drop or retain the activated 

nodes at the FC layer (Park & Kwak, 2017:189-190). The dropout layer performs better 

when it is positioned between the fully connected and the output layer. Dropout operation 

occurs at the dropout layer but it affects the neurons at the preceding FC layer. Of all the 

techniques used for regularizing neural networks, dropout is the most common because it 

performs better than other regularization techniques and it is easier to implement (Dertat, 

2017; Park & Kwak, 2017:189-190). The dropout layer regularizes the model by randomly 

deactivating or dropping some neurons from the previous layer during training by turning off 

their activations to prevent overfitting (Iftikhar et al., 2024:07; Khan et al., 2024:9, 13). This 

layer also tends to improve the generalization of neural network models by increasing their 

accuracies (Dertat, 2017). The dropout equations for the Conv1D network which has been 

deduced from the principles described in Srivastava et al. (2014:1930-1934) and 

Goodfellow et al. (2016:258-262) is depicted in Equations 3.24 and 3.25. Dropout is done 

by retaining or dropping some of the activated neurons at the fully connected layer during 

the forward pass, at a particular training epoch. 

 

𝑢𝑗(𝑑𝑟)[𝑠𝑐𝑎𝑙𝑒𝑑]
=

1

1−𝑃
 (𝑢𝑖(𝑓𝑐) ⊙ 𝑎𝑖(𝑑𝑟))        (3.24) 

 

Where: 

 

𝑢𝑗(𝑑𝑟)[𝑠𝑐𝑎𝑙𝑒𝑑]
= Scaled output at the dropout layer after performing dropout operation on 

the 𝑖 − 𝑡ℎ input activation 𝑢𝑖(𝑓𝑐) from the FC layer, 

𝑢𝑖(𝑓𝑐) = The 𝑖 − 𝑡ℎ input activation to the dropout layer from the FC layer before applying 

the binary mask to drop or retain the activation,  

𝑎𝑖(𝑑𝑟) = The dropout mask at the dropout layer applied to the 𝑖 − 𝑡ℎ input activation 𝑢𝑖(𝑓𝑐) 

from the FC layer to either drop or retain the activation, 

𝑃 = Dropout probability or dropout rate. 

 

The element-wise multiplication between 𝑢𝑖(𝑓𝑐) and 𝑎𝑖(𝑑𝑟) (𝑢𝑖(𝑓𝑐) ⊙ 𝑎𝑖(𝑑𝑟)) as shown 

in Equation 3.24 is the dropout operation that took place at the dropout layer which accounts 
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for the application of a random binary mask 𝑎𝑖(𝑑𝑟) (where 𝑎𝑖(𝑑𝑟) ∈ {0,1}) to the 

activations from the FC layer during training, to determine which activation from the FC layer 

should be dropped or retained. The term (
1

1−𝑃
)  in Equation 3.24 is the scaling factor that 

normalizes the output activations when the dropout mask is being applied to the activations 

from the FC layer during training. This is to compensate for the dropped activations, to 

ensure that the expected value of the output from the FC layer does not change during 

testing when the binary mask must have been deactivated. The binary mask 𝑎𝑖(𝑑𝑟), which 

is applied to the activation 𝑢𝑖(𝑑𝑟) at the dropout layer (from the FC layer), is generated at 

the dropout layer, to determine the eventual output of the activations from neurons at the 

FC layer. The mask keeps the activations from the neurons of the FC layer when its value 

is 1 and disable or drop them when its value is 0. The mask 𝑎𝑖(𝑑𝑟) has the same shape as 

𝑢𝑖(𝑓𝑐), and it is generated randomly and multiplied elementwise with 𝑢𝑖(𝑓𝑐). In another 

convention, the term (
1
𝑃

) could be used as the scaling factor. In this case, 𝑃 will be called 

keep probability (i.e., probability of keeping an activation from a neuron active) instead of 

the dropout probability (or probability of dropping an activation) used in Equation 3.24. In 

general, scaling factor ensures that the expected values of activations remain the same 

during training (when the binary mask is deployed) and during testing (when the binary 

mask is deactivated). 

 

The dropout rate or dropout probability of neurons at the dropout layer in the CNN model is 

set at 0.4, which is equivalent to a dropout rate of 40%. This signifies that 40% of the 

activations from the FC layer are being disabled during the forward pass to prevent 

overfitting, while only the remaining 60% contribute to the output. The dropout is done 

randomly at every epoch or iteration during training to prevent model overreliance on a few 

numbers of activations from the neurons at the fully connected layer (Dertat, 2017; Yadav, 

2022). This in a bid to compel each node in the network to operate independently and 

unrestrictedly, to allow all neurons in the network contribute in generating the output, to 

improve the performance of the model (Dertat, 2017). Dropout is only activated during 

training and disabled during testing. The 1 or 0 value of the dropout mask or binary mask is 

determined if the random number generated by a random number generator (which uses a 

Bernoulli distribution) for the 𝑖 − 𝑡ℎ activation from a neuron at the FC layer during training 

is greater or lower than the dropout rate  (Yadav, 2022; Pansambal & Nandgaokar, 

2023:718). The value of the binary mask becomes 1 if the generated random number is 

greater than the dropout rate and becomes 0 if otherwise. 
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❖ Output layer 
 

The last layer of the Conv1D model is the output layer, which is meant to predict theft and 

non-theft cases (Shahzadi et al., 2024:11). For the Conv1D model, ReLU activation function 

is applied to all other layers within the hidden layer of the CNN network, except the output 

layer where sigmoid activation function is used (Iftikhar et al., 2024:07). The prediction 

expected of the CNN model is a probability score that ranges between 0 and 1, indicating 

a no-theft or theft instance, which falls perfectly under the binary classification task. For the 

binary classification at the output layer, the sigmoid activation function is employed because 

it is the only activation function that is capable of mapping any input to values between 0 

and 1, and is well-suited for tasks involving binary classifications, as against the softmax 

activation function which is used for multiclass classifications (Montesinos López et al., 

2022:391; Ali et al., 2023:13). The weighted sum of each neuron at the output layer is 

represented in Equation 3.25. 

 

𝑧𝑗(𝑜) = ∑ 𝑤𝑖(𝑓𝑐),𝑗(𝑜) ∙ 𝑢𝑖(𝑓𝑐) + 𝑏𝑗(𝑜)
𝑛
𝑖=1           (3.25) 

 

Where: 

 

𝑧𝑗(𝑜) = The output or weighted sum of the 𝑗 − 𝑡ℎ neuron at the output layer, 

𝑤𝑖(𝑓𝑐),𝑗(𝑜) = Weight between the 𝑖 − 𝑡ℎ input neuron at the FC layer and the 𝑗 − 𝑡ℎ neuron 

at the output layer, 

𝑢𝑖(𝑓𝑐) = Input activation from 𝑖 − 𝑡ℎ neuron at the FC layer to the 𝑗 − 𝑡ℎ neuron at the 

output layer, which is equivalent to the output of the 𝑢𝑗(𝑓𝑐) neuron from the FC layer after 

the dropout operation during training or without dropout during testing, 

𝑏𝑗(𝑜) = Bias term of the 𝑗 − 𝑡ℎ neuron at the output layer, 

𝑛 = The total number of activated 𝑖 − 𝑡ℎ inputs from the fully connected layer to the 𝑗 − 𝑡ℎ 

neuron at the output layer. 

 

The classification output 𝑦𝑗  (or the predicted probability 𝑦̂𝑖   of the 𝑖 − 𝑡ℎ  sample from the 

input layer) processed by the 𝑗 − 𝑡ℎ neuron at the output layer of the Conv1D model is 

described in Equation 3.26. 

 

𝑦𝑗 = 𝑦̂𝑖 = 𝑆(𝑧𝑗(𝑜))        (3.26) 
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Where the sigmoid function 𝑆 with respect to 𝑧𝑗(𝑜) (i.e., 𝑆(𝑧𝑗(𝑜)), is defined in Equation 

3.27 (Ali et al., 2023:12; Nawaz et al., 2023:5). 

 

𝑆(𝑧𝑗(𝑜)) = 𝑦̂𝑖 =
1

1+𝑒
−𝑍𝑗(𝑜)

        (3.27) 

 

After determining the output of the classification, the loss calculation of the CNN network is 

computed next. Loss calculation measures the difference between the classified output and 

the expected output. This calculation is crucial for training the Conv1D neural network. 

 

❖ Loss calculation 
 

The loss or error at the output layer of the Conv1D network is being evaluated using the 

binary cross entropy loss function expressed in Equation 3.28 (Wang et al., 2023:12; Liao, 

Zhu, et al., 2024:5080). The binary cross entropy loss function is generally used for tasks 

involving binary classifications, to determine the losses between the observed output and 

the expected output (Yang, 2019:148). The primary objective of calculating loss in neural 

networks is to try to minimize it as much as possible, in a bid to produce a model that 

generalizes better. Loss is calculated based on what the model has predicted as input and 

what the actual input is. 

 

𝐿𝑜𝑠𝑠(𝐿) = −
1

𝑁
∑ 𝑦𝑖 × log(𝑦̂𝑖) + (1 − 𝑦𝑖) × log (1 − 𝑦̂𝑖)𝑁

𝑖=1                     (3.28) 

 

Where: 

 

𝑦𝑖 = True label or target output for the 𝑖 − 𝑡ℎ input sample, 

𝑦̂𝑖 = Predicted probability for the 𝑖 − 𝑡ℎ  sample at the output layer of the Conv1D model, 

log = Natural logarithm, 

𝑁 = Total number of samples or data points. 

 

The loss is computed for each sample independently using the predicted or observed output 

obtained during the forward propagation and the actual output or true label for each sample. 

Each sample or data point in the employed dataset consists of a feature vector and its 

associated binary label. After calculating the loss or error by applying the binary cross 

entropy, the next phase of the prediction training process is to backpropagate the errors 
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into the CNN layers to update the weights and biases, in a bid to minimize the errors in the 

network. 

 

3.3.2.2    Backward propagation 
 

Backward propagation or backpropagation commences immediately when the forward pass 

is completed. Backward propagation is the process of distributing the total error computed 

during forward propagation back into the CNN network from the output layer through to the 

input layer. This is to determine how changes in network parameters (weights or biases) 

will affect model accuracy, and then these network parameters are later updated in a bid to 

minimize the loss function in the network to improve model performance. In other words, 

the total error in the CNN model are distributed back into the network during the backward 

pass, and the network weights and biases are adjusted and updated accordingly to 

minimize losses or errors in the model (Jaokar, 2019). Backpropagation is very crucial to 

the training and optimization of the Conv1D CNN model. Losses or errors are the disparities 

between the actual targets or labels and the classified outputs. 

 

When training neural networks, gradients are used to minimize loss functions. Figure 3.7 

depicts a simple representation of one complete backpropagation cycle through the Conv1D 

CNN architecture shown in Figure 3.5. 

 

 

 

Figure 3.7: Backward propagation in the Conv1D network 

 

Gradient points are in the direction of the steepest ascent, but since our target is to minimize 

losses in the network, we then have to go in the reverse direction of the gradient to ensure 
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that the update of each model parameter reduces error in the network (Crypto, 2024). 

Hence, this process is referred to as backpropagation. Backpropagation involves back-

passing of gradients from the output layer through to the input layer. To implement 

backpropagation, the derivative of the loss function with respect to the predicted output is 

calculated first and propagated backward through the CNN layers, followed by calculating 

the loss gradients for each layer of the CNN network with respect to every weight and bias 

in the network, using the chain rule of calculus. Once the gradients have been calculated, 

weights and biases are then updated accordingly using an optimizer.  

 

The weights and biases updates are repeated for multiple epochs until the loss converges 

and a desired output performance is achieved by the model. The gradient of the loss 

function indicates how a small change in either weight or bias will affect a change in the 

loss function. 

 

❖ Backpropagation through the CNN layers 
 

The purpose of backpropagation is to compute gradients that can help update the 

parameters of the CNN network in a way that minimizes the loss function 𝐿 of Equation 

3.28. Equations 3.29 to 3.40 in this section and Equations 3.41 to 3.47 in the next section 

convey the processes involved in backpropagation through the CNN layers (Nielsen, 

2015:39-118; Goodfellow et al., 2016:300-350; A. Zhang et al., 2021:225-296; Aggarwal, 

2023:305-360). The backward-pass equations are written in accordance with the 

parameters in their forward-pass equations. Before calculating the gradient of each layer of 

the CNN model, the derivative of the loss function expressed in Equation 3.29 is calculated 

with respect to the predicted output 𝑦̂𝑖 first, as depicted in Equation 3.29. 

 

 
𝜕𝐿

𝜕𝑦̂𝑖
=

𝑦̂𝑖−𝑦𝑖

𝑦̂𝑖(1−𝑦̂𝑖)
        (3.29) 

 

Where: 

 
𝜕𝐿

𝜕𝑦̂𝑖
= Gradient of the loss function 𝐿 with respect to the predicted output 𝑦̂𝑖, 

𝑦̂𝑖 = Predicted or observed output,  

𝑦𝑖 = Target or actual output. 
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To reduce prediction errors through backpropagation, the gradient of the loss function of 

each weight and bias in the CNN network is calculated (Medium, 2023). Gradients are 

calculated for each layer of the Conv1D model during backpropagation to update the 

weights and biases in the network in order to minimize the loss function. To backpropagate 

through the output layer, the gradient of the loss function with respect to the weighted sum 

𝑧𝑗(𝑜)  at the output layer, which represent the input to the output layer from the FC layer 

before activation (as described in Equation 3.26) is expressed in Equation 3.30.  

 

𝜕𝐿

𝜕𝑧𝑗(𝑜)
=

𝜕𝐿

𝜕𝑦̂𝑖
∙

𝜕𝑦̂𝑖

𝜕𝑧𝑗(𝑜)
=

𝑦̂𝑖−𝑦𝑖

𝑦̂𝑖(1−𝑦̂𝑖)
∙ 𝑦̂𝑖(1 − 𝑦̂𝑖) = 𝑦̂𝑖 − 𝑦𝑖     (3.30) 

 

Where: 

 
𝜕𝐿

𝜕𝑧𝑗(𝑜)
= Gradient of the loss function 𝐿 with respect to the weighted sum at the output layer 

before applying the activation function, 

𝜕𝐿

𝜕𝑦̂𝑖
= Gradient of the loss function 𝐿 with respect to the predicted output 𝑦̂𝑖, 

𝑦̂𝑖 = Predicted or observed output,  

𝑦𝑖 = Target or actual output. 

 

Equation 3.30 conveys the error or loss between the predicted output label and the actual 

input label. The calculated loss gradient is then backpropagated from the output layer into 

the dropout layer. Calculated gradients are passed backward through the CNN network to 

compute the gradients with respect to weights and biases at each layer, and thereafter the 

weights and biases are updated using the computed gradients (Kiliçarslan & Celik, 2021:1). 

The backpropagation process tend to reduce prediction errors in the CNN model. A network 

can be backpropagated by adjusting each weight and bias in the network according to how 

much they contributed to the overall error (Jaokar, 2019). The loss gradient of Equation 

3.30 calculated at the output layer is backpropagated into the dropout layer as depicted in 

Equation 3.31. 

 

𝜕𝐿

𝜕𝑢𝑖(𝑓𝑐)
=

𝜕𝐿

𝜕𝑢𝑗(𝑑𝑟)
⊙ 𝑎𝑖(𝑑𝑟)        (3.31) 
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Where: 

 
𝜕𝐿

𝜕𝑢𝑖(𝑓𝑐)
= Gradient of the loss function 𝐿 with respect to the input activation to the dropout 

layer from the FC layer, 

𝜕𝐿

𝜕𝑢𝑗(𝑑𝑟)
= Gradient of the loss function 𝐿 with respect to the output of the dropout layer,  

𝑎𝑖(𝑑𝑟) = The dropout mask. 

 

It should be noted that the dropout mask 𝑎𝑖(𝑑𝑟) is applied to ensure that only the activations 

that were not dropped during the forward pass have their gradients backpropagated into the 

dropout layer. After the dropout layer, the gradients are further backpropagated into the fully 

connected layer. For the backpropagation to the FC layer, the gradients with respect to 

weights, biases and input activations from the dropout layer are propagated back to the FC 

layer. Equations 3.32, 3.33, and 3.34 respectively represent the gradient equations with 

respect to weight, bias and input activation, which were backpropagated into the FC layer 

from the dropout layer. 

 

𝜕𝐿

𝜕𝑤𝑖(𝑓𝑐),𝑗(𝑓𝑙)
=

𝜕𝐿

𝜕𝑧𝑗(𝑓𝑐)
⋅ 𝑢𝑖(𝑓𝑙)          (3.32) 

 

𝜕𝐿

𝜕𝑏𝑗(𝑓𝑐)
=

𝜕𝐿

𝜕𝑧𝑗(𝑓𝑐)
⋅ 𝑧𝑖(𝑓𝑙)          (3.33) 

 

𝜕𝐿

𝜕𝑢𝑖(𝑓𝑙)
=

𝜕𝐿

𝜕𝑧𝑗(𝑓𝑐)
⋅ 𝑤𝑖(𝑓𝑐),𝑗(𝑓𝑙)         (3.34) 

 

Where: 

 
𝜕𝐿

𝜕𝑤𝑖(𝑓𝑙),𝑗(𝑓𝑐)
= Gradient of the loss function 𝐿 with respect to the weight between 𝑖 − 𝑡ℎ  

neuron at the flatten layer and 𝑗 − 𝑡ℎ  neuron at the fully connected layer, 

𝜕𝐿

𝜕𝑧𝑗(𝑓𝑐)
= Gradient of the loss function 𝐿 with respect to the pre-activation output of the fully 

connected layer,  

𝜕𝐿

𝜕𝑏𝑗(𝑓𝑐)
= Gradient of the loss function 𝐿 with respect to the bias of the  𝑗 − 𝑡ℎ  neuron at 

the fully connected layer, 
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𝜕𝐿

𝜕𝑢𝑖(𝑓𝑙)
= Gradient of the loss function 𝐿 with respect to the Input activation from the flatten 

layer to the fully connected layer, 

𝑧𝑗(𝑓𝑐) = Pre-activation output of the fully connected layer, 

𝑢𝑖(𝑓𝑙) = Input activation from the flatten layer to the fully connected layer, 

𝑤𝑖(𝑓𝑙),𝑗(𝑓𝑐) = Weight between 𝑖 − 𝑡ℎ  neuron  at the flatten layer and 𝑗 − 𝑡ℎ  neuron at the 

fully connected layer. 

 

The gradients at the FC layer have been computed using Equations 3.32, 3.33, and 3.34. 

However, the gradient of the loss function 𝐿 with respect to the Input activation from the 

flatten layer to the fully connected layer of Equation 3.34 is backpropagated to the flatten 

layer, providing the necessary information to adjust network parameters. Equation 3.34 

helps us understand how changes in the input to the fully connected layer (𝑢𝑖(𝑓𝑙)) would 

impact the overall loss 𝐿, enabling updates that would optimize the performance of the 

network. At the flatten layer, feature vectors are reshaped back to 3D vectors from the 

flattened 1D vectors as shown in Equation 3.35. 

 

𝜕𝐿

𝜕𝑌𝑙
= 𝑟𝑒𝑠ℎ𝑎𝑝𝑒 (

𝜕𝐿

𝜕𝐹𝑓𝑙
)           (3.35) 

 

Where: 

 
𝜕𝐿

𝜕𝑌𝑙
= Gradient of the loss function 𝐿 with respect to the activations 𝑌𝑙  from the pooling 

layer, 

𝜕𝐿

𝜕𝐹𝑓𝑙
= Gradient of the loss function 𝐿 with respect to the flattened activations,  

𝑟𝑒𝑠ℎ𝑎𝑝𝑒 = The reshape operation changes the shape of the gradient 
𝜕𝐿

𝜕𝑌𝑙
 to match the 

original shape before it was flattened. 

 

Flatten layer is non-parametric and it simply just reshapes the incoming gradient from the 

FC layer back into the original shape that matches the initial output of the MaxPooling1D 

layer (before flattening) during the forward propagation.  
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Backpropagation to the MaxPooling1D layer from the flatten layer is described in Equations 

3.36 and 3.37. In this process, gradients are passed back through the positions that held 

the maximum values during the forward pass. 

 

𝜕𝐿

𝜕𝑢𝑗(𝑐)
=

𝜕𝐿

𝜕𝑌𝑙
             (3.36) 

 

𝜕𝐿

𝜕𝑌𝑙
= {

𝜕𝐿

𝜕𝑢𝑗(𝑐)
,  𝑖𝑓 𝑌𝑙  𝑤𝑎𝑠 𝑎 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑜𝑜𝑙𝑖𝑛𝑔 𝑤𝑖𝑛𝑑𝑜𝑤

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
    (3.37) 

 

Where: 

 
𝜕𝐿

𝜕𝑢𝑗(𝑐)
= Gradient of the loss function 𝐿 with respect to the output activation of  𝑗 − 𝑡ℎ neuron 

from Conv1D layer, which serves as input to the MaxPooling1D layer and corresponds to 

maximum value in the pooling window, 

𝜕𝐿

𝜕𝑌𝑙
= Gradient of the loss function 𝐿 with respect to the output of the pooling operation at 

position 𝑙.  

 

The gradients that belong to the non-maximum elements in the pooling window do not 

receive any gradient and are thereby set to zero as described in Equation 3.37. This is 

because those non-maximum elements or features did not contribute to the output of the 

pooling layer during the forward pass. Equations 3.38, 3.39, and 3.40 represent the 

backpropagation process to the convolutional (Conv1D) layer. 

 

𝜕𝐿

𝜕𝑤𝑖(𝑖),𝑗(𝑐)
= ∑

𝜕𝐿

𝜕𝑧𝑗(𝑐)
𝑙 ⋅ 𝑥𝑖(𝑐)          (3.38) 

 

𝜕𝐿

𝜕𝑏𝑗(𝑐)
= ∑

𝜕𝐿

𝜕𝑧𝑗(𝑐)
𝑙             (3.39) 

 

𝜕𝐿

𝜕𝑥𝑖(𝑐)
=

𝜕𝐿

𝜕𝑧𝑗(𝑐)
∗ 𝑤𝑖(𝑖),𝑗(𝑐)          (3.40) 
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Where: 

 
𝜕𝐿

𝜕𝑤𝑖(𝑖),𝑗(𝑐)
= Gradient of the loss function 𝐿 with respect to each weight 𝑤𝑖(𝑖),𝑗(𝑐) between 

the input sequence (or feature vector) and the kernel or filter, 

𝜕𝐿

𝜕𝑧𝑗(𝑐)
= Gradient of the loss function 𝐿 with respect to the 𝑗 − 𝑡ℎ  weighted-sum output 𝑧𝑗(𝑐) 

of the convolutional layer, 

𝜕𝐿

𝜕𝑏𝑗(𝑐)
= Gradient of the loss function 𝐿 with respect to the bias 𝑏𝑗(𝑐) of every 𝑗 − 𝑡ℎ  kernel 

or filter in the convolutional layer, 

𝜕𝐿

𝜕𝑥𝑖(𝑐)
= Gradient of the loss function 𝐿 with respect to the input sequence to the 

convolutional layer, 

𝑥𝑖(𝑐) = Input sequence from the input layer which serves as input to the convolutional 

layer, 

𝑤𝑖(𝑖),𝑗(𝑐) = Weight between the input sequence from the input layer and the kernel or filter 

at the convolutional layer.  

 

In the convolutional layer, the gradients of the loss function 𝐿 with respect to the input 

sequences, and with respect to the weights and bias of each kernel or filter are calculated. 

The gradients calculated in Equation 3.38 are summed over all the 𝑙 − 𝑡ℎ positions in the 

feature map where the convolutional kernel or filters are applied across the input sequence. 

The gradients calculated in Equation 3.39 are also summed across all the 𝑙 − 𝑡ℎ positions. 

The gradients of the loss with respect to the input sequences in Equation 3.40 are passed 

back to the input layer. The calculated gradients are then used to update corresponding 

model parameters to minimize loss 𝐿. 

 

Finally, backpropagation to the input layer completes the backward-pass process. Although 

input layer does not have parameters to update, it does receive gradients from the 

convolutional layer, which are meant for gradient-flow purposes in the network. 

 

❖ Optimization approach for adjusting the parameters of the model 
 

Updating or adjusting the weights and biases of the CNN network can be done using three 

popular optimization algorithms like Adaptive Moment Estimation (Adam), Stochastic 

Gradient Descent (SGD) or Root Mean Square propagation (RMSprop) to optimize the 
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network (Javaid, Gul, et al., 2021:98694; C. Zhang et al., 2023:1497). However, Adam 

optimizer has been used to update the weights and biases of the CNN network because it 

is deemed as the best optimization algorithm for neural networks (Javaid, Gul, et al., 

2021:98685). Adam is more robust and preferred than other optimization algorithms 

because it is computationally less expensive and easier to implement, can adjust the 

learning rate of the model adaptively by reducing the time it takes to train the model with 

higher convergence speed, more reliable for noisy, large, and sparse datasets, can handle 

sparse gradient issue on noisy data, prevents local-optima trapping, reduces losses, quickly 

achieves optimal results with minimal memory requirements, and has the highest accuracy 

in terms of performance (Shehzad et al., 2021:128672; Pamir, Javaid, Qasim, et al., 

2022:26864; Bai et al., 2023:12; Naeem, Javaid, et al., 2023:7; Huang et al., 2024:12). For 

the stated reasons, Adam optimizer is used in this work to update parameters in the CNN 

network. 

 

Unlike gradient descent optimizers that use fixed learning rates, Adam combines both 

momentum (using the first moment estimate) and RMSprop (using the second moment 

estimate) to create an adaptive learning rate for each parameter (Kingma & Ba, 2015:1, 7; 

Goodfellow et al., 2016:294, 308). Adam uses the first and second moments of the gradient 

to modify the learning rate for each parameter of the model, allowing it to handle sparse 

gradients and noisy data more efficiently. Equations 3.41 to 3.47 illustrate the processes 

involved when deploying Adam optimization algorithm to update the weights and biases of 

the CNN network (Liu et al., 2023:6; Reyad et al., 2023:17100). 

 

  𝑔𝑡 =
𝜕𝐿

𝜕𝑊𝑡
       (3.41) 

 

  𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡       (3.42) 

 

 𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2       (3.43) 

 

 𝑚̂𝑡 =
𝑚𝑡

1−𝛽1
𝑡       (3.44) 

 𝑣̂𝑡 =
𝑣𝑡

1−𝛽2
𝑡       (3.45) 
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Where: 

 

𝑔𝑡 = Gradient of the loss function 𝐿 with respect to weights at the current timestep 𝑡, 

𝑚𝑡 = The first moment estimate at timestep 𝑡,  

𝑚𝑡−1 = The previous moment estimate at timestep 𝑡 − 1, 

𝑣𝑡 = The second moment estimate at timestep 𝑡, 

𝑣𝑡−1 = The previous moment estimate at timestep 𝑡 − 1, 

𝑚̂𝑡 = The bias-corrected first moment estimate at timestep 𝑡, 

𝑣̂𝑡 = The bias-corrected second moment estimate at timestep 𝑡, 

𝛽1 = The decay rate for the first moment, 

𝛽2 = The decay rate for the second moment, 

𝑡 = Current timestep which increases with every epoch or iteration. 

 

The gradient 𝑔𝑡 in Equation 3.41 gives the direction and rate of change of 𝐿 with respect 

to each element of 𝑊𝑡. During the backpropagation process, the gradient 𝑔𝑡 is used to 

adjust 𝑊𝑡 in the direction that effectively reduces 𝐿, in order to effectively train the model. 

This is a fundamental part of the optimization process where gradients are used to update 

weights in every epoch. The 𝛽1 in Equation 3.42 is the exponential decay rate for the first 

estimate which determines how much of the past gradients to consider, while 𝛽2 represents 

the exponential decay rate of the second estimate which controls how much of the past 

squared gradients 𝑔𝑡
2 contribute to the current estimate. The default value of 𝛽1 is 0.9, while 

that of 𝛽2 is 0.999 (Kingma & Ba, 2015:2, 9; Goodfellow et al., 2016:311; Reyad et al., 

2023:17100). The term (1 − 𝛽1) in Equation 3.42 controls how much the current gradient 

𝑔𝑡 influences 𝑚𝑡, while the term (1 − 𝛽2) in Equation 3.43 determines how much weight 

the current squared gradient 𝑔𝑡
2

 contributes to 𝑣𝑡. 

 

The first moment estimate 𝑚𝑡 (mean of gradients or moving average of gradients) and the 

second moment estimate 𝑣𝑡 (squared mean of gradients or moving average of the squared 

gradients) in the Adam optimizer are initialized to zero at the beginning of training. This can 

underestimate actual average gradient and the actual average squared gradient early in the 

training, which then cause them to be biased towards zero, especially when only a few 
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gradients have been observed. Without correction, this initial zero bias could cause 

instability or slow convergence in the early stages. Adam optimizer corrects the zero initial 

bias present in 𝑚𝑡 and 𝑣𝑡 by applying a bias correction to 𝑚𝑡 and 𝑣𝑡 of Equations 3.42 

and 3.43 by adjusting the initial bias in order to obtain the bias-corrected values denoted as 

𝑚̂𝑡 and 𝑣̂𝑡 in Equations 3.44 and 3.45 respectively (Reyad et al., 2023:17100). 

 

The initial-zero bias correction ensures that 𝑚̂𝑡 and 𝑣̂𝑡 accurately represent the true mean 

and the variance of the gradients throughout training. The bias-corrected first moment 

estimate 𝑚̂𝑡 is essentially the momentum term which is an exponentially decaying average 

of past gradients. The bias-corrected second moment estimate 𝑣̂𝑡 controls the adaptive 

scaling, and it is calculated from the average of the squares of past gradients, to adjust the 

learning rate for each parameter. The bias corrections are done by dividing 𝑚𝑡 by (1 − 𝛽1
𝑡 ) 

and dividing  𝑣𝑡 by (1 − 𝛽2
𝑡 ) as described in Equations 3.44 and 3.45, to adjust the initial 

zero bias. The bias correction terms (1 − 𝛽1
𝑡 ) and (1 − 𝛽2

𝑡 ) do the adjustments to correct 

the initial zero bias in a bid to stabilize the optimization process. 𝛽1
𝑡 represents decay rate 

𝛽1 raised to the power of timestep 𝑡, while 𝛽2
𝑡 represents decay rate 𝛽2 raised to the power 

of timestep 𝑡. They adjust for the exponential weightings introduced by 𝛽1 and 𝛽2 over 

multiple timesteps. Equations 3.46 and 3.47 represent the weight and bias updates using 

Adam optimizer. 

 

𝑊𝑡+1 = 𝑤𝑡 − 𝜂
𝑚̂𝑡

√𝑣̂𝑡+∈
       (3.46) 

𝑏𝑡+1 = 𝑏𝑡 − 𝜂
𝑚̂𝑡

√𝑣̂𝑡+∈
       (3.47) 

 

Where: 

 

𝑊𝑡+1 = The updated weight at timestep 𝑡 + 1, 

𝑊𝑡 = The current weight at timestep 𝑡, 

𝑏𝑡+1 = The updated bias at timestep 𝑡 + 1, 

𝑏𝑡 =  The current bias at timestep 𝑡 

𝜂 = Learning rate, 

𝑚̂𝑡 = The bias-corrected first moment estimate at timestep 𝑡, 
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𝑣̂𝑡 = The bias-corrected second moment estimate at timestep 𝑡, 

∈= An added small constant to avoid division by zero and ensure numerical stability, 

𝑡 = Current timestep which increases with every epoch. 

 

The update of the bias term in Equation 3.47 follows the same process as the weight update 

in Equation 3.46. The updates are done by combining moment and adaptive learning rate 

components. Each weight 𝑤 and bias 𝑏 are updated using both first moment 𝑚̂𝑡 and 

second moment 𝑣̂𝑡 to achieve adaptive learning rate for each parameter. Dividing by √𝑣𝑡+∈ 

scales the learning rate 𝜂 of each parameter based on the magnitude of recent gradients 

and helps the algorithm to converge quickly. The constant ∈ has a default value of 10−8, 

while the learning rate 𝜂 has a default value of 0.001 (Kingma & Ba, 2015:2; Goodfellow et 

al., 2016:311). 

 

After the weights and biases have been updated through the backward pass, the next 

forward pass would utilize the updated weights and biases to reduce the total error in the 

network, and the process would be repeated iteratively until the error is reduced to a minima 

(Jaokar, 2019). Eventually, a set of weights and biases that yield accurate predictions can 

be obtained once the error of each weight and bias in the network are minimized by 

decreasing them repeatedly over time. After successfully developing the Conv1D CNN 

model, attempt was also made to further improve the model. In doing this, features from 

CNN layers were used to train and test random forest (RF) model in a standalone and hybrid 

arrangements. 

 

3.3.3    Random forest 
 

Random forest (RF) is an ensemble learning model, which is developed from a large 

number of randomly-constructed decision trees (DTs) called forest, and is trained on 

different subsets of training data to make predictions (Xu et al., 2019:4; Wang, 2023:507). 

RF is a typical supervised learning algorithm which predicts by collective learning, and is 

known for high efficiency, robustness, and outstanding classification accuracy (Wang, 

2023:505). Random forests are quick and simple to implement, deliver highly accurate 

predictions, and can manage a large number of input variables without the risk of overfitting 

(Fawagreh et al., 2014:605). 
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RF model uses a bagging (bootstrap aggregating) technique by training multiple DTs on 

different random subsets of the training data, creating a wide array of decorrelated trees, in 

a bid to reduce variance in the model and increase robustness and accuracy (Breiman, 

2001:5). The random feature selection at each split within a tree adds an additional layer of 

randomness, making RF even more diverse and less likely to overfit when compared with 

simple bagging methods.  

 

RF model will randomly sample subsets of the training data to build each of the fifty DTs (as 

used in this project) in the forest. Once all the trees in the model have been trained, RF 

combines the predictions from each of these trees to make the final prediction. For 

classification tasks, the final prediction of the RF model is determined by selecting the most 

common class out of the predicted class among the DTs in a process called majority voting; 

while for regression tasks, the final output of RF model is determined by the prediction 

average from of all the DTs in the model (Fawagreh et al., 2014:604; Wang, 2023:507). The 

equation of the RF model for classification is depicted in Equation 3.48, while the equation 

of the RF model for regression is expressed in Equation 3.49 (Wang, 2023:507). 

 

𝑦̂𝑖 = 𝑚𝑜𝑑𝑒(𝑇1(𝑋𝑖), 𝑇2(𝑋𝑖), … , 𝑇𝐾(𝑋𝑖))   (3.48) 

 

 𝑦̂𝑖 =
1

𝐾
∑ 𝑇𝐾

𝐾
𝐾=1 (𝑋𝑖)   (3.49) 

 

Where: 

 

𝑦̂𝑖 = The final predicted class, 

𝐾 = The total number of decision trees in the random forest, 

𝑇𝑘(𝑋𝑖) =  The prediction made by the 𝑘 − 𝑡ℎ decision tree for the input feature vector 𝑋𝑖, 

𝑚𝑜𝑑𝑒 = The most common class label predicted by the 𝐾 trees. 

 

While the trees in the RF grows to its full depth, the total number of 𝐾 trees in the forest of 

the RF model is set at 50, while the random state which indirectly controls randomness in 

the model to ensure reproducibility is set at 42. It is important to mention that aside the 

thorough and excellent data preprocessing carried out on the employed SGCC dataset used 

in developing the proposed model, the train-validation-test split of the large dataset, 

applying dropout regularization to the CNN model, and the deployment of ensemble RF as 

final classifier are enough to mitigate any potential overfitting issues that may arise within 



 

201 
 

the proposed model. The hyperparameters of the CNN and RF models are summarized in 

Table 3.3. 

 

Table 3.3: Hyperparameters for the CNN and RF models 

CNN RF 

Kernel or filter size = 3 

Stride of kernel or filter = 1 

Batch size = 30 

Number of kernels or filters = 32 

Padding = 0 

Size of pooling window = 2 

Stride of pooling window = 2 

Optimizer = Adam 

Activation functions = ReLU, Sigmoid 

Dropout rate = 0.4 

Learning rate = 0.001 

Number of epochs = 50 

Number of trees = 50 

Maximum depth = default 

Minimum samples split = 2 

Maximum terminal nodes = default 

Minimum samples leaf = 1 

Maximum samples: default 

Maximum features = default 

 

 

3.3.4    Leveraging the combined strengths of CNN and RF models 
 

When the strengths of deep CNN and ensemble RF models are being combined, the deep 

feature extraction capability of CNN and the robust classification ability of RF are being 

leveraged. The resulting composite CNN-RF model which is derived from infusing features 

from CNN layers to train RF classifier model operates in two stages. In the first stage, the 

CNN performs feature extraction, while the RF makes the final classification in the second 

stage based on the extracted features. CNNs are effective for feature extraction (Ullah et 

al., 2020:1599; W. Liao et al., 2022:3520; Khan et al., 2024:16; Nirmal et al., 2024:1), while 

RF is excellent in classification (Xu et al., 2019:1, 4; Wang, 2023:505) and avoids the 

overfitting problem peculiar to imbalanced datasets (Ghori et al., 2023:15335). Hence, this 

research project explores the individual strength of each model to improve ETD. In real-

world scenarios, datasets can be noisy and contain outliers. RF is robust to noisy data, and 

is also known for its ability to handle missing values, outliers, and still provide accurate 

predictions (Fawagreh et al., 2014:602; Xu et al., 2019:1, 4). The stated characteristics of 

the RF classifier make it a good fit for ETD in classifying honest and fraudulent electricity 

customers. A blend of CNN and RF synergize efficiently and effectively in producing a 

composite ETD model, which is more robust than individual CNN and/or RF models. 
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The convolutional (Conv1D) layer of the CNN network performs convolution operation on 

the input data to extract structured convolved features from it. The extracted features (high-

dimensional feature maps) from the convolutional layer then serves as input into the RF 

classifier. RF models work better with more structured convolved features like the Conv1D 

layer-extracted features instead of raw input data. To ensure compatibility with RF format, 

the extracted three-dimensional (3D) feature maps from the Conv1D layer are reshaped 

into two-dimensional (2D) feature maps for RF training and testing, as implemented in 

Section A.1.4.4 of the Appendix. In this work, three instances of model developments were 

carried out. In the first instance, Conv1D model was trained as tested separately as 

previously discussed in Sections 3.3.2, 3.3.2.1, and 3.3.2.2. In the second instance, RF 

model was trained and tested as a standalone model with static pre-extracted features from 

the Conv1D layer of the separately pretrained CNN model. In the third instance, features 

were extracted dynamically from the Conv1D layer of the CNN model into an RF model, in 

an adaptive joint arrangement as shown in Figure 3.8, to form the hybrid CNN-RF model. 

The three instances of model developments were carried out to check which of the models 

would performs best. Eventually, the integrated model proves to be more efficient than the 

standalone CNN and RF models in terms of its performance results.  

 

 

 

Figure 3.8: Architecture of the proposed CNN-RF model 

 

In the eventual architecture of the proposed hybrid model shown in Figure 3.8, CNN and 

RF are trained together as a single model by combining the strengths of CNN and RF. 

Instead of using FC layer for classification in a conventional CNN architecture shown in 
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Figure 3.5, RF is used instead, in a hybrid CNN-RF network displayed in Figure 3.8. In the 

CNN-RF hybrid model, CNN adjusts and dynamically updates and adapts the extracted 

features used to train the RF (based on the feedback from RF), in a bid to improve RF 

classification. Empirical studies have shown that connecting the RF model to the Conv1D 

layer (Layer 1 of the CNN network in this case) is often optimal and preferable for producing 

superior results (Munawar, Khan, et al., 2022; Gunduz & Das, 2024). This is because the 

convolved features retain rich spatial patterns in a compact form while reducing noise and 

dimensionality in the data to enhance classifier performance. Features extracted from 

Conv1D layer also preserves low-level and mid-level representations before excessive 

transformation. These characteristics make the Conv1D layer-extracted features more 

suitable for a traditional ML classifier like the RF ensemble model. 

 

The CNN features imputed into the RF classifier from the Conv1D layer is expressed in 

Equation 3.16, while the RF model which ultimately does the classification to predict the 

honest and fraudulent electricity customers is described in Equation 3.48. Extraction of 

features from the Conv1D layer to train RF model can be implemented by running the codes 

in Section A.1.4.2 of the Appendix. The combination of CNN and RF leverages the strengths 

of the deep learning (CNN) model for feature extraction, and the ensemble (RF) model 

reduces overfitting and improves generalization. The results of the CNN-RF model shows 

that the performance of the proposed model is comparatively better than the individual 

performances of either the CNN or RF model, and also better than the results of all the 

previous SGCC dataset-based ETD models developed in the existing literature, as 

explained in Sections 4.2.1 and 4.2.3 of Chapter 4, and as also shown in Table 4.2 of the 

same chapter.  

 

In a bid to check whether the efficiency of the proposed model could further be improved or 

not, concatenation of the Conv1D and MaxPooling1D layers of the CNN network is done as 

shown in Figure 3.9, to better enrich the features used to train and test the RF model. To 

achieve this, a variant of the proposed CNN-RF model termed CNN-RF (concatenation) 

model is developed, to explore whether or not the enriched features may further improve 

the efficiency of the proposed CNN-RF model. Concatenating features from multiple pairs 

of convolutional and max pooling layers before feeding them into RF model can enrich and 

improve the feature set for RF training (Yu et al., 2022). 

 

The CNN-RF (concatenation) model is built when the output features of the concatenation 

of three pairs of Conv1D and MaxPooling1D layers are fed from the last MaxPooling1D 

layer (Layer 6 of the CNN network in this case) into the RF model to train and test it. The 
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Python codes which show the implementations of the proposed CNN-RF model are 

presented in Sections A.1.1 to A.1.8 of the Appendix, while the codes used to implement 

the variant CNN-RF (concatenation) model can be found in Section A.1.9 of the Appendix. 

The performance scores of the proposed model are marginally greater than the 

performance scores of the variant model, as revealed in Table 4.1 in Chapter 4. Since the 

proposed CNN-RF model proves to be a bit more efficient than the CNN-RF (concatenation) 

model, the proposed CNN-RF model is thus preferred. 

 

 

 
Figure 3.9: Architecture of CNN-RF model with concatenation of layers 

The proposed CNN-RF hybrid model is a promising solution for ETD, especially in 

developing regions. However, its real-world effectiveness depends on overcoming data 

limitations, computational constraints, and the need for periodic model updates. Obtaining 

standard and labelled dataset especially in Africa and other developing countries can be 

very challenging. The constituent CNN model of the hybrid model introduces computational 

overhead when using local computers with limited computational resources especially 

during training. The proposed model requires continuous monitoring and periodic retraining 

to maintain detection accuracy. 

3.4    Performance metrics used in evaluating the developed models 
 

It is necessary to choose the performance metrics that suits the goal of this research project 

in a bid to determine the efficiency and reliability of the obtained results (Poudel & 

Dhungana, 2022:117). The aim of the research project is to reliably detect electricity thieves 

by profoundly reducing false positives (FPs), and to lessen the high operational cost 

incurred by the electric utilities with respect to FPs (Messinis & Hatziargyriou, 2018:259, 

264; Saeed et al., 2020:6). While high FPs accrue huge cost to the utilities in terms of onsite-

inspection costs during NTL mitigation efforts (Aldegheishem et al., 2021:25051; Pamir, 

Javaid, Qasim, et al., 2022:56866, 56870), reduction of false negatives also translates to 



 

205 
 

corresponding increase in NTL detection (true positives), which allows for the apprehension 

of more electricity thieves. Apprehension and prosecution of electricity thieves reduce NTL, 

and assist in generating more revenues for the utilities. Selecting appropriate performance 

evaluation metrics for ETD models is crucial for assessing the effectiveness of the 

developed model. The choice of performance metrics for the evaluation of the developed 

ETD models is based on those metrics that can give reliable results even with imbalanced 

datasets, and are also able to better predict those customers who steal electricity. Reliable 

performance results prevent unnecessary and costly onsite inspections which spike huge 

revenue losses to the utilities (Ghori et al., 2020:16034:16041). Traditional NTL method 

involves general inspections of all electricity consumers; a measure which is very expensive 

and inefficient (Zheng et al., 2018:1606; Liao, Zhu, et al., 2024:5075). 

 

When dealing with class-imbalanced datasets, It is imperative to use different types of 

metrics to ascertain reliable results (Messinis & Hatziargyriou, 2018:259; Saeed et al., 

2020:6; Poudel & Dhungana, 2022:115). However, the use of different performance metrics 

ascertains the reliability of classifiers  (Ali et al., 2023:14). Therefore, the performance 

metrics used for the evaluation of the developed ETD models are precision, recall, and F1 

score, accuracy, Matthews correlation coefficient (MCC), area under receiver operating 

characteristic curve (AUC), and area under precision-recall curve (PR-AUC). Other metrics 

also being considered are true negative rate (TNR), false positive rate (FPR), and false 

negative rate (FNR). The prediction values of all the other performance assessment metrics 

range between 0 and 1, except for MCC which ranges between -1 and 1. In general, the 

closer the prediction values of an ETD model to 1, the better the performance of such model, 

indicating that the model is good and generalizing well, except for FPR and FNR which is 

vice versa. The closer the values of FPR and FNR to zero, the better the performance of 

such ETD model. 

 

However, It is very vital to note that the choice of evaluation metrics should align with the 

specific goals and constraints of the ETD problem, as their applications may vary from one 

use case to another. Therefore, it is crucial to understand the trade-offs and choose the 

metrics that corroborate best to the business objectives and priorities of the electricity 

providers. Ultimately, detection of ET done in a bid to considerably purge the grid of NTL is 

the main priority of all electric utilities. The evaluation measures used for the assessment 

of the developed ETD models have been carefully chosen to align with this objective. 
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3.4.1    Confusion matrix 
 

Confusion matrix is a performance indicator table that contains the result summary or the 

performance breakdown of a binary classifier using machine learning (ML) (Xia et al., 

2023:6; Mehdary et al., 2024:19). It is used primarily for evaluating the performances of 

classifier models (Hussain et al., 2022:1269; Farid et al., 2023:84). Performance metrics of 

ETD models are being determined from the confusion matrix (Gul et al., 2020:13; Khan et 

al., 2020:15; Kawoosa et al., 2023:4807).  

 

Confusion matrix contains the actual class and the predicted class from the test samples as 

predicted by ML models. ML models produce four possible prediction results in a confusion 

matrix that include true positive (TP), true negative (TN), false positive (FP), and false 

negative (FN) (Pamir et al., 2023:3586; Khan et al., 2024:12). A typical 2x2 confusion matrix 

which gives the summary of ETD or NTLD binary classification results is shown in Table 3.4 

(S. Zhu et al., 2024:15487). 

 

Table 3.4: Confusion matrix 

 

Predicted class 

                                    Actual class 

Negative (0) Positive (1) 

Negative (0) True negative (TN) False negative (FN) 

Positive (1) False positive (FP) True positive (TP) 

 

In Table 3.4, honest or benign electricity customers are referred to as ‘negative’ and can 

also be depicted by “0” label, while electricity thieves or fraudulent customers are denoted 

as ‘positive’ and can also be labelled as “1” (Ali et al., 2023:6, 9; Nayak & Jaidhar, 2023:4). 

The TN, FN, and FP, TP in the columns under the predicted class represent the outcome 

of ML predictors, while the TN, FP, and FP, TP in the columns of the actual class show the 

NTL statuses of electricity customers given by utility technicians after onsite inspections  (Lu 

et al., 2019:5; Khattak et al., 2022:5). TPs are the actual values of positive samples 

(electricity thieves) which the NTLD classifier has correctly predicted as positives, TNs are 

the actual values of the negative samples (honest electricity consumers) which the ETD 

model has correctly predicted as negatives, FP is a type of classification error made by ML 

classifiers where actual negative values have been misclassified or mispredicted as positive 

values, FN is another type of classification error made by ML classifiers in which actual 

positive values have been misclassified as negative values (Khan et al., 2024:12; Mehdary 

et al., 2024:19).  
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In summary, TPs are actual electricity thieves or fraudulent consumers who cause NTL, 

while TNs are honest electricity consumers who neither engage in theft nor cause NTL. FPs 

and FNs are errors made while classifying into TPs and TNs (Messinis & Hatziargyriou, 

2018:259; Saeed et al., 2020:6; Mehdary et al., 2024:19). 

 

3.4.1.1    Precision 
 

The precision metric or positive predictive value (PPV) measures the proportion of correctly 

predicted positive or theft cases among all the instances the NTLD model has predicted as 

positives (Lepolesa et al., 2022:29647; Ghori et al., 2023:15336). In the context of ET, 

precision is important to minimize false alarms or FPs, and reduce the effect of unnecessary 

inspections in order to lessen the consequences of high operational costs attributable to 

FPs (Aldegheishem et al., 2021:25051; Pamir, Javaid, Qasim, et al., 2022:56866, 56870). 

High precision ensures that positively flagged cases are more likely to be actual thefts 

indicating low FPs (Ali et al., 2023:14). In simpler terms, precision is a measure of how 

accurately the ETD model predicts the positive samples. The precision evaluation metric is 

the ratio of the predicted TPs to that of the total number of predicted positives (TP + FP) as 

expressed in Equation 3.50 (Huang et al., 2024:12; Iftikhar et al., 2024:10). 

 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                   (3.50) 

 

In a binary classification problem, the precision evaluation metric is useful when the focus 

of the prediction is to minimize FPs. Higher precision values indicates that the models that 

produce such performance results have low FPs (Ali et al., 2023:14), signifying that positive 

samples are accurately identified. Precision is the ability of a model to avoid or ignore 

irrelevant data, that is, the ability of the model to minimize the incorrect classification of 

negatives as positives. 

 

3.4.1.2    Recall 
 

Recall or true positive rate (TPR) or sensitivity is the measure of the proportion of the actual 

positive samples (or actual number of electricity thieves or fraudulent consumers) that have 

been correctly identified or predicted by the model as positives out all the available actual 

positive samples (Khan et al., 2023:544). Higher recall values depict low false negatives 

(FNs) (Ali et al., 2023:14), indicating that the model is good at identifying large proportion 

of positive or fraudulent cases. The recall metric is shown in Equation 3.51 (Khan et al., 

2023:544; Iftikhar et al., 2024:10). 
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𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                   (3.51) 

 

Recall is the ability of a model to identify the relevant data, that is, the ability of the model 

to minimize the incorrect classification of positives as negatives. 

 

3.4.1.3    F1 score 
 

The performance metric called the F1 score or F-measure aggregates recall and precision 

into a single value called harmonic mean or weighted average, to maximize precision and 

recall, and provide a balance between them (Bohani et al., 2021:5; Xia et al., 2023:6). This 

metric is particularly important when a balance between precision and recall is intended, 

especially when evaluating models with imbalanced datasets or datasets with uneven 

distribution of class (Khan et al., 2020:15; Saripuddin et al., 2021:154; Mehdary et al., 

2024:19). Higher F1 score values indicate that there is a strong balance between precision 

and recall suggesting that the model is reliable and performing well. F1 score can be 

evaluated using Equation 3.52 (Fei et al., 2022:4). 

 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
                  (3.52) 

 

Precision, recall, and F1 score are commonly used evaluation metrics in the ML community. 

Using these metrics makes it easier to compare the performances of models being 

considered with other similar models or benchmarks. 

 

3.4.1.4    Accuracy 
 

Although, accuracy is the most popular and most-frequently used performance assessment 

metrics used in the world of ML, but it is very susceptible to class imbalance, cause 

overfitting of the majority class, and hence convey misleading or unreliable results (Khattak 

et al., 2022:11; Ghori et al., 2023:15336). Based on class imbalance or imbalanced dataset 

problem, a model may have a higher accuracy, but the model may still not be viable or 

useful owing to unequal label distribution in the dataset. The accuracy metric is eventually 

considered for the evaluation of the NTLD models in this research project because the 

SGCC dataset used in developing the models has been oversampled and balanced. 

Equation 3.53 depicts the mathematical expression of the accuracy metric (Fei et al., 

2023:5; Iftikhar et al., 2024:10). 
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 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                   (3.53) 

 

Accuracy, as defined in Equation 3.53, represents the proportion of correct predictions out 

of the total number of predictions. In general, higher accuracy indicates a better-performing 

model, except in cases of imbalanced data. Accuracy is a good metric in evaluating 

classification models when the datasets used in developing the models are balanced.  

Real-world datasets used for ETDs or NTLDs often suffer from class imbalance, where the 

number of non-theft instances significantly outweighs the theft instances (Ghori et al., 

2020:16034, 16036). In such cases, adopting accuracy as a performance metric could be 

misleading. In ETD experiments, imbalanced datasets are capable of causing overfitting if 

the dataset is not well balanced using appropriate class-balancing techniques. Therefore, 

a model predicting all instances of non-theft with an imbalanced dataset could still achieve 

a high accuracy because the accuracy metric is naturally biased towards the majority class 

(Aslam, Javaid, et al., 2020:4; Khan et al., 2020:9). 

 

3.4.1.5    True negative rate 
 

TNR or specificity is the measure of the proportion of actual negative samples (or actual 

number of honest electricity consumers) which have been correctly predicted as negatives 

out of all the available negative samples (Khan et al., 2020:15; Ghori et al., 2023:15336). 

Equation 3.54 shows the mathematical expression of TNR (Gunduz & Das, 2024:14). 

 

 𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                    (3.54) 

 

The greater the value of TNR, the better the ETD or NTLD model that produced such score. 

 

3.4.1.6    False positive rate 
 

The FPR metric is the measure of the true negative samples that have been misclassified 

or predicted wrongly as positive by the ML model out of all the available instances of 

negative samples (Ghori et al., 2023:15336; Khan et al., 2023:544). FPR can be calculated 

using Equation 3.55 (Huang et al., 2024:11). 

 

 𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
                    (3.55) 

 



 

210 
 

FPR needs to very low to ensure an efficiently working ETD model and to enhance lower 

onsite inspection costs (Pamir, Javaid, Qasim, et al., 2022:56870; Xia et al., 2023:10). 

 

3.4.1.7    False negative rate 
 

The FNR metric is the measure or ratio of actual positives samples which have been 

misclassified or mispredicted as negatives by the classifier out of all the available instances 

of positive samples (Hussain et al., 2021:4431; Ghori et al., 2023:15336). FNR is expressed 

in Equation 3.56. 

 

 𝐹𝑁𝑅 =
𝐹𝑁

𝐹𝑁+𝑇𝑃
                    (3.56) 

 

The lower the value of FNR becomes, the better and more reliable the ETD or NTLD models 

producing such desired scores. 

 

3.4.1.8    Matthews correlation coefficient 
 

The Matthews correlation coefficient (MCC) is the most reliable metric used to determine 

the performance of models developed with datasets of imbalanced classes (Kulkarni et al., 

2021:534), as the metric is insensitive to class imbalance (Glauner, 2019:90), and is very 

reliable to check quality of predictions. MCC can be evaluated using Equation 3.57 (Khalid 

et al., 2024:11; X. Wang et al., 2024;2186). 

 

 𝑀𝐶𝐶 =
𝑇𝑃×𝑇𝑁−𝐹𝑃×𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
                (3.57) 

 

The prediction values of MCC ranges between -1 to 1 (Ghaedi et al., 2022:68; Khalid et al., 

2024:11). MCC value or score of -1 indicates incorrect prediction, MCC value of 0 indicates 

no prediction, MCC score close to 1 is a good prediction indicating that the model producing 

such prediction is working well and that all the categories of the confusion matrix (TP, TN, 

FP, and FN) produce good prediction results, while MCC value equals to 1 indicates a 

perfect model producing a perfect prediction, which is rare and unrealistic (Ghaedi et al., 

2022:68; Khalid et al., 2024:12). 

  

3.4.1.9    Area under receiver operating characteristic curve 
 

Area under the curve (AUC) is the area covered by the receiver operating characteristic 

curve (ROC) (Ali et al., 2023:13; Xia et al., 2023:6; Liao, Bak-Jensen, et al., 2024). The 
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ROC curve is a graph generated by plotting the TPR against the FPR (Ali et al., 2023:14; 

Xia et al., 2023:6; Iftikhar et al., 2024:10; Liao, Bak-Jensen, et al., 2024). It is a useful metric 

to assess the overall discriminative power or performance of a model (Pamir, Javaid, 

Qasim, et al., 2022:56873). AUC evaluates the capacity of a model to discriminate between 

theft (positive) and non-theft (negative) instances. AUC is a summary of the trade-off 

between precision and recall values of a model (Khan et al., 2020:15), and gives a reliable 

model assessment when dealing with highly imbalanced datasets (Khan et al., 2023:544; 

Iftikhar et al., 2024:10). A higher AUC closer to 1 indicates a better ability in ranking 

randomly-chosen fraudulent or positive samples higher than negative samples, therefore 

indicating better ETD performance (W. Liao et al., 2022:3521; Liao, Bak-Jensen, et al., 

2024). 

 

Several confusion matrices are created under varying classification thresholds. Separate 

values of TPR and FPR are also calculated and obtained through the several confusion 

matrices. The ROC curve can be generated by plotting the different values of TPRs against 

the varying values of FPRs obtained under different classification thresholds that range 

between 0 and 1, showing trade-off between TPR and FPR (Xia et al., 2023:6; Liao, Bak-

Jensen, et al., 2024). The implementation of AUC in Python for the individual CNN, RF, and 

the combine CNN-RF models are depicted respectively in Sections A.1.3.6, A.1.5.6, and 

A.1.6.4 of the Appendix. The AUC result of the NTLD models obtained through simulation 

has been presented as the AUC value. 

 

The AUC performance score is realised in Python by implementing Equation 3.58 (Huang 

et al., 2024:12; Liao, Zhu, et al., 2024:5080). The AUC performance metric demonstrate 

that positive samples are rated higher than negative samples (W. Liao et al., 2022:3521; 

Liao, Bak-Jensen, et al., 2024) 

 

𝐴𝑈𝐶 =
∑ 𝑅𝑎𝑛𝑘𝑖𝑖∈𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝐶𝑙𝑎𝑠𝑠 −

𝑀(1+𝑀)

2

𝑀×𝑁
                                                 (3.58) 

 

The term 𝑖 ∈ 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝐶𝑙𝑎𝑠𝑠 as shown in Equation 3.58 represents that sample 𝑖 is a positive 

sample and therefore belongs to the positive class; 𝑅𝑎𝑛𝑘𝑖 is the number of samples which 

the prediction value of sample 𝑖 exceeds when the samples are being arranged in 

ascending order according to the prediction scores of the positive samples (Zheng et al., 

2018:1611; Khan et al., 2020:15). The terms 𝑀 and 𝑁 are the number of positive and 

negative samples found in the positive class (Bai et al., 2023:14; Khan et al., 2023:544). 
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3.4.1.10    Area under precision-recall curve 
 

The area under the precision-recall curve (PR-AUC) is the area under the plot of precision 

against recall at varying thresholds (Kulkarni et al., 2021:533; Ali et al., 2023:14; Khan et 

al., 2024:12). PR-AUC is more reliable and appropriate when evaluating models with 

imbalanced datasets (Khan et al., 2020:15; Gao et al., 2024:16). Several confusion matrices 

are created under varying classification thresholds. Separate values of precision and recall 

are also obtained through the several confusion matrices.  

 

The precision-recall curve is a plot that shows the trade-off between precision and recall, 

and is drawn by plotting the varying values of precisions against the different values of 

recalls obtained under varying classification thresholds (Calvo et al., 2020:7; Khan et al., 

2024:12). The classification thresholds range between 0 and 1 (Sun et al., 2023:15; Khan 

et al., 2024:12). The area under the precision-recall curve is known as PR-AUC. The 

implementations of the values of PR-AUC in Python for CNN, RF, and CNN-RF models are 

depicted respectively in Sections A.1.3.6, A.1.5.6, and A.1.6.4 of the Appendix. The PR-

AUC results of the developed models obtained through simulation has been presented as 

the PR-AUC value. The Python program executed the PR-AUC scores using Equation 3.59 

(Gao et al., 2024:16). 

 

𝑃𝑅 − 𝐴𝑈𝐶 = ∑ (𝑅𝑒𝑐𝑎𝑙𝑙𝑖 − 𝑅𝑒𝑐𝑎𝑙𝑙𝑖−1) × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖
𝑚
𝐼=1                      (3.59) 

 

Where 𝑚 depicts the total number of thresholds contained within the precision-recall curve,  

𝑅𝑒𝑐𝑎𝑙𝑙𝑖 and 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 are the precision and recall scores at 𝑖 − 𝑡ℎ threshold, while 

𝑅𝑒𝑐𝑎𝑙𝑙𝑖−1 is the recall score of the previous threshold. 

 
z 

3.5    Conclusion  
 

The proposed NTLD model developed in this thesis is a hybrid model termed CNN-RF 

model. The methods employed in developing the proposed ETD model have been explicitly 

discussed in this chapter. After rigorous trial of several ML models in a bid to achieve better 

NTLD results, the proposed model has been discovered to give the best performance 

results when compared with several other ETD models which have earlier been developed 

in the existing literature using same SGCC dataset employed in constructing the proposed 

model, as extensively explored in Section 4.5.1.1 of the next chapter (Chapter 4). Therefore, 

the proposed model becomes the choice model for this research project. The performance 

metrics used in evaluating the proposed model, to determine its efficiencies and efficacies, 
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have also been explicitly explored in this chapter. The next chapter is an extension of this 

chapter, as it discusses the performance results of the developed models, to validate the 

essence of the research.  
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CHAPTER 4 
 

RESULTS AND DISCUSSION 
  

4.1    Introduction 
 

This chapter gives insights into the electricity-theft detection (ETD) model developed in this 

thesis. The modelling approach leading to the ETD model has been presented in Chapter 

3, while the implementation codes for the developed models are also presented in the 

Appendix. The proposed model is a hybrid of convolutional neural network (CNN) and 

random forest (RF) models which is otherwise referred to as CNN-RF. The dataset issued 

by the State Grid Corporation of China (SGCC), as discussed in Section 3.2.1 of Chapter 

3, has been used as the input data to train, validate and test the developed ETD models. 

After the analysis of the methods used in arriving at the detection models for electricity theft 

(ET) or non-technical losses (NTL) in Chapter 3, this chapter analyses the results obtained 

through the modelled NTL detection (NTLD) systems and also discusses the interpretation 

of the attained results.  

 

The results of the developed models are determined through the performance assessment 

metrics. These results show the efficacy or the predictive power of the built model. Just as 

the model is developed using Python in a Google Colaboratory (Colab) Integrated 

Development Environment (IDE), the simulation results can also be assessed within the 

confines of the IDE. The proposed CNN-RF model has been developed such that the results 

obtained through it are able to accomplish the aim and objectives of the research, while at 

the same time proffering answers to the research questions. 

 

4.2    Results analysis of the CNN, RF, and CNN-RF models 
 

The analysis of the results of the convolutional neural network (CNN), random forest (RF), 

and the hybrid CNN-RF models will be done separately in the subsequent sections under 

this section. Precision, recall, F1 score, accuracy, true negative rate (TNR), false positive 

rate (FPR), false negative rate (FNR), Matthews correlation coefficient (MCC), area under 

receiver operating characteristic curve (AUC), and area under the precision-recall curve 

(PR-AUC) have been used to check how the CNN, RF, and CNN-RF models have fared. 

These performance assessment metrics used to evaluate the models in Sections 4.2.1, 

4.2.2, and 4.2.3 have been sufficiently described in Chapter 3 from Sections 3.4.1.1 to 

3.4.1.10. The accuracy metric has however been eventually considered for evaluation since 



 

215 
 

the dataset employed has been balanced using appropriate data balancing technique 

during the ETD simulations. 

 

4.2.1    Results analysis of the CNN model 
 

After training, validating and testing the CNN model as implemented in Sections A.1.3.1 

and A.1.3.2 of the Appendix, the classification results depicted by the confusion matrix in 

Figure 4.1 is obtained. The confusion matrix is obtained by implementing the code in Section 

A.1.3.3 of the Appendix. 

 

From the confusion matrix in Figure 4.1, True positive (TP) = 1.1e+04 = 1.1×10
4 = 11000, 

True negative (TN) = 1.2e+04 = 1.2×10
4 = 12000, False positive (FP) = 5, 

False negative (FN) = 1.7e+02 = 1.7×10
2 = 170. 

 

 

 
Figure 4.1: Confusion matrix of the CNN model 

 

Based on the confusion matrix presented in Figure 4.1, the performance scores of the CNN 

model are thus calculated through the following evaluation metrics: 
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Precision=
TP

TP+FP
=

11000

11000+5
 = 0.9995 = 99.95%  

 

 

 Recall = 
TP

TP+FN
 = 

11000

11000+170
 = 0.9848 = 98.48% 

 

 F1 score = 
2TP

2TP+FP+FN
 = 

2×11000

(2×11000)+5+170
 = 0.9921 = 99.21% 

 

 Accuracy = 
TP+TN

TP+TN+FP+FN
 = 

11000+12000

11000+12000+5+170
 = 0.9925 = 99.25% 

  

 TNR = 
TN

TN+FP
 = 

12000

12000+5
 = 0.9996 = 99.96% 

 

MCC=
TP×TN-FP×FN

√(TP+FP)(TP+FN)(TN+FP)(TN+FN)
  

 

∴ MCC =
(11000×12000)-(5×170)

√(11000+5)×(11000+170)×(12000+5)×(12000+170)
 = 0.9850 = 98.50%  

 
 

 FPR = 
FP

FP+TN
 = 

5

5+12000
 = 0.0004 = 0.04% 

 

 FNR = 
FN

FN+TP
 = 

170

170+11000
 = 0.0152 = 1.52% 

 

For the CNN model, AUC score of 0.9994 (99.94%) and the PR-AUC value of 0.9995 

(99.95%) at 0.5 detection threshold were obtained by implementing the codes in Section 

A.1.3.6 of the Appendix. The performance scores from precision, recall, F1 score, accuracy, 

TNR, and the MCC metrics show that the CNN model performs well in terms of the 

classification or prediction of the honest and fraudulent electricity customers, while the FPR 

and FNR scores show that little errors were made in the classification process. 

 

The precision-recall curve shown in Figure 4.2 is obtained by implementing the code in 

Section A.1.3.4 of the Appendix. The precision-recall curve, which is a plot of the precision 

values against the recall values at different exploratory thresholds between 0 and 1, is a 

useful visualization tool to illustrate the performance of ML models. Figure 4.2 depicts that 

the CNN model is performing well since the PR-AUC score (0.9995) of the curve which 

summarizes the performance of the CNN classifier is closer to 1, indicating that the model 

is distinguishing between honest and fraudulent electricity customers very satisfactorily. 
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From the precision-recall curve, the values of the precision and recall scores are also closer 

to 1, showing that the model achieves high precision and high recall values. If precision 

decreases significantly as recall increases, it means that the model is struggling to maintain 

accuracy while trying to capture more positive instances. Lowering the threshold for the 

precision-recall curve increases recall and decreases precision, and vice versa. 

 

 

 

Figure 4.2: The precision-recall curve of the CNN model 

 

The high precision and high recall values achieved by the CNN model indicates that the 

model predicts very few false positives and successfully identifies most true positives. The 

curve being closer to the top-right corner of the plot also indicates a better performing CNN 

model. Figure 4.3 shows the ROC curve of the CNN model, which is a plot of the TPR 

values against the FPR values at different exploratory thesholds. Infact, precision-recall 

curves summarize the trade-off between precision and recall, while ROC curves summarize 

the trade-off between TPR and FPR at different exploratory thresholds (Brownlee, 2023). 

The ROC curve has a broken red diagonal line that indicates a fixed final decision threshold 

or final classification threshold of 0.5. The threshold for making the final classification is a 

standard decision point for random guessing of the prediction class, and a common choice 
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for interpreting binary probabilities. The final prediction threshold of 0.5 assumes balanced 

classes and equal costs for false positives and false negatives. The final classification 

threshold is applied to performance score and is compared to it to determine the prediction 

class of the model. With a final decision threshold of 0.5, it means that if the performance 

score of the model is greater than or equal to 0.5, the predicted electricity customer is 

fraudulent, and also indicates that the predicted electricity customer is honest if the 

performance score of the model is less than 0.5.  

 

 

 

 

Figure 4.3: The ROC curve of the CNN model 

 

The AUC score (0.9994) of the ROC curve of the CNN model is closer to 1, showing higher 

generalization ability by the model in terms of distinguishing between honest and fraudulent 

electricity customers. Also, the fact that the curve is closer to the top-left corner of the plot 
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indicates that the CNN model is showing a better model performance. The ROC curve 

demonstrates the predictive proficiency of the CNN model as its exploratory threshold is 

being varied. Varying the threshold affects the trade-off between TPR and FPR. Lowering 

the threshold increases TPR and also increases FPR, and vice versa. Both precision-recall 

and ROC curves are generated by varying the exploratory thresholds of the model and 

recalculating the performances (true positives, true negatives, false positives and false 

negatives) of the model at each threshold. As the threshold changes, it affects both the 

precision and recall values of the precision-recall curve, and the TPR and FPR values of 

the ROC curve. Figure 4.4 shows the accuracy of the CNN model on training and validation 

data. It is implemented in Python using the codes in Section A.1.3.8 of the Appendix. 

 

 

 
 

Figure 4.4: Accuracy of the training and validation data of the CNN model 

 

Visualizing the accuracy of the training and validation data shown in Figure 4.4 is meant to 

test whether the CNN model is overfitting or not. This is to determine the accuracy of the 
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CNN model from the start of the training and validation processes till the end. From Figure 

4.4, the training-data curve (blue curve) depicts the accuracy of the training data while the 

validation-data curve (orange curve) shows the accuracy of the validation data at different 

epochs. Looking at the training-data curve, it can be seen that around 1 epoch when we 

started training the CNN model that the accuracy of the model is close to around 0.9775 

(97.75%), and kept on increasing to about 0.9925 (99.25%) at around 50 epochs or 

iterations. It is obvious from the validation-data curve that the accuracy of the validation 

data is greater than that of the training data. The accuracy of the validation data started 

around greater than 0.9875 (98.75%) at about 1 epoch to close to about 0.9950 (99.50%) 

at around 50 epochs, showing that the validation data performs better than the training data. 

The pattern of the curves shows that accuracy increases with increase in epoch for the 

training and validation data (Nirmal et al., 2024:5). Since the performance of the model 

using the validation data is better than that of training data, it clearly shows that the model 

is generalizing well and not overfitting (Aldegheishem et al., 2021:25052). 

 

 

 
Figure 4.5: Training and validation data losses of the CNN model 
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Figure 4.5 shows the losses experienced during training and validation processes using the 

CNN model. The figure is the output of the Python codes implemented in Section A.1.3.9 of 

the Appendix. The Figure 4.5 show the level of losses when the CNN model was tested with 

the validation data. The validation-data curve (orange curve) shows more reduction in loss 

in the validation data when compared with the training data as conveyed through the 

training-data curve (blue curve). According to the training-data curve, the loss in the training 

data started with about 0.10 (10%) at around 1 epoch and continued to decrease gradually 

up to around 0.025 (2.5%) at around 50 epochs. The loss in the validation data as shown 

by the validation-data curve started with around 0.05 (5%) at about 1 epoch to about 0.02 

(2%) at around 50 epochs. The pattern of the curves indicates that loss decreases with 

increase in epoch. The loss graph as shown in Figure 4.5 indicates the changes that occurs 

in the loss function during training and validation processes, showing differences or 

disagreements between the output predictions of the CNN model and the target values 

(Khan et al., 2024:13-14). The decreasing trend in losses as shown in the loss graph is a 

pointer to the fact that the CNN model is learning and predicting well (Aldegheishem et al., 

2021:25052; Khan et al., 2024:13; Nirmal et al., 2024:5). 

 

A likely question that might arise owing to the performance results obtained through the 

CNN model is that: since the CNN model has performed considerably well in terms of 

prediction results, would there then be any need to further extend the ETD process by 

building the RF model and subsequently the CNN-RF model? The answer to this probable 

question is that we are trying to get the best possible prediction results by reducing false 

positives (FPs) to the lowest minimum as much as possible in the proposed CNN-RF model 

because of the higher costs associated with FPs. The justification for the RF model as 

shown from its prediction results in Section 4.2.2 is that it perfectly predicts positive samples 

without any error (i.e. without any FP) in its positive-sample predictions as against the CNN 

model.  

 

FP is very crucial to electric utilities because of the high cost associated with it. Predicting 

zero FP by RF and CNN-RF as shown in their confusion matrices, and revealed in their 

performance scores for the precision metric (100.00%) and the FPR metric (0.00%), as 

described in subsequent Sections 4.2.2 and 4.2.3, indicate that the utilities would not have 

to border to waste their scarce resources to inspect customers who do not engage in 

stealing electricity during the process of electricity mitigation (Messinis & Hatziargyriou, 

2018:259, 264; Saeed et al., 2020:6; Aldegheishem et al., 2021:25051; Pamir, Javaid, 

Qasim, et al., 2022:56870). High values of FPR lead to increase in onsite inspection costs 

of electric customers (Messinis & Hatziargyriou, 2018:259, 264; Aldegheishem et al., 
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2021:25051; Pamir, Javaid, Qasim, et al., 2022:56866, 56870; Xia et al., 2023:10). Electric 

utilities have limited resources to execute onsite inspections, hence they cannot condone 

high FPRs (Khattak et al., 2022:7).  

 

Precision score is specifically very significant when considering the consequence of FP in 

ML predictions (Mehdary et al., 2024:19), because high precision scores indicate low values 

of FPs (Ali et al., 2023:14). High values of precision indicate that the ML models or 

classifiers that produces such performance scores have correctly predicted majority of the 

customers who steal electricity as fraudulent customers (Messinis & Hatziargyriou, 

2018:259; Saeed et al., 2020:6). Lower values of FPs prevent unnecessary and expensive 

onsite inspections during mitigation of ET and also ensure more profits to the electric utilities 

(Messinis & Hatziargyriou, 2018:259, 264; Aldegheishem et al., 2021:25051; Pamir, Javaid, 

Qasim, et al., 2022:56866, 56870; Xia et al., 2023:10). The RF and CNN-RF models 

produced results that show that FPs are totally eliminated in the performance results of the 

models. However, aside from the perfect precision score of 100.00%, the CNN-RF model 

improved better in other performance metric scores than the RF model. The proposed CNN-

RF model is better than each of the standalone CNN and RF models in terms of comparative 

advantage. 

 

4.2.2    Results analysis of the RF model 
 

The RF model is trained and tested with the output features from the convolutional (Conv1D) 

layer of the CNN network in a standalone layout, as implemented in Sections A.1.5 and 

A.1.5.1 of the Appendix. The confusion matrix provided in Figure 4.6 displays the 

predictions of the standalone RF model. The confusion matrix is obtained by implementing 

the code in Section A.1.5.2 of the Appendix.  

 

From the confusion matrix in Figure 4.6, True positive (TP) = 7.2e+02 = 7.2×10
2 = 720, 

True negative (TN) = 7.6e+02 = 7.6×10
2 = 760, False positive (FP) = 0, 

False negative (FN) = 13. 

 

Based on the confusion matrix in Figure 4.6, the following performance metrics are used to 

calculate the evaluation scores of the RF model: 

 

Precision = 
TP

TP+FP
 = 

720

720+0
 = 1.0000 = 100.00%  
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Figure 4.6: Confusion matrix of the RF model 

 

 Recall = 
TP

TP+FN
 = 

720

720+13
 = 0.9823 = 98.23% 

 

  F1 score = 
2TP

2TP+FP+FN
 = 

2×720

2×720+0+13
 = 0.9911 = 99.11% 

 

 Accuracy = 
TP+TN

TP+TN+FP+FN
 = 

720+760

720+760+0+13
 = 0.9913 = 99.13% 

 

TNR = 
TN

TN+FP
 = 

760

760+0
 = 1.0000 = 100.00%  

 

 MCC = 
TP×TN-FP×FN

√(TP+FP)(TP+FN)(TN+FP)(TN+FN)
  

 

  ∴ MCC = 
(720×760)-(0×13)

√(720+0)×(720+13)×(760+0)×(760+13)
 = 0.9827 = 98.27%   
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  FPR = 
FP

FP+TN
 = 

0

0+760
 = 0.0000 = 0.00% 

 

  FNR = 
FN

FN+TP
 = 

13

13+720
 = 0.0177 = 1.77% 

 

For the RF model, AUC score of 0.9912 (99.12%) and the PR-AUC value of 0.9955 

(99.55%) at 0.5 decision threshold were obtained by implementing the codes in Section 

A.1.5.6 of the Appendix. Figure 4.7 shows the precision-recall curve of the RF model. 

 

 
 

Figure 4.7: Precision-recall curve of the RF model 

 

Much has been explained previously about the precision-recall curve and the ROC curve in 

Section 4.2.1. The explanations for the precision-recall and the ROC curves of the RF model 

and the subsequent CNN-RF hybrid model also follow the same principle. Figure 4.7 shows 

that the RF model achieves high precision and high recall values, with its PR-AUC score 

(0.9955) closer to 1, showing that the classification ability of the RF model is higher. 
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However, the AUC score (0.9912) of the RF model is also closer to 1, showing greater 

classification ability by the model in distinguishing between the benign and malignant 

electricity customers. The precision-recall curve is also closer to the top-right corner of the 

plot, indicating a better performing model. Figure 4.8 shows the ROC curve of the RF model. 

The ROC curve is plotted using TPR and FPR values at different exploratory thresholds 

ranging between 0 and 1. 

 

 
 

Figure 4.8: The ROC curve of the RF model 

 

The decision threshold for final classification is set to 0.5 as depicted by the broken red line 

in the ROC curve. The decision threshold of 0.5 means that If the prediction score is equal 

to or greater than 0.5, the electricity customer is regarded as fraudulent, and the electricity 

customer is considered as honest or benign if the prediction score is less than 0.5. Varying 

exploratory thresholds when plotting the ROC curve shows the trade-off between TPR and 

FPR. Lowering the exploratory threshold leads to increase in TPR and FPR, and vice versa. 
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That the ROC curve is closer to the top-left corner of the plot indicates that the model is 

satisfactory with better classification performance. 

 

4.2.3    Results analysis of the proposed CNN-RF model 
 

The infusion of features from the convolutional (Conv1D) layer (Layer 1) of the CNN network 

into the RF model for final classification in a hybrid layout produce the proposed CNN-RF 

model. This is implemented using the codes in Section A.1.6 of the Appendix. The final 

classification of the Conv1D layer features by the RF model produced the confusion matrix 

shown in Figure 4.9. The confusion matrix is obtained by implementing the code in Section 

A.1.6.1 of the Appendix. 

 

From the confusion matrix in Figure 4.9, True positive (TP) = 7.2e+02 =7.2×10
2 = 720, 

True negative (TN) = 7.6e+02 = 7.6×10
2 = 760, False positive (FP) = 0, 

False negative (FN) = 12. 

 

 
 

Figure 4.9: Confusion matrix of the proposed CNN-RF model 
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Based on the confusion matrix in Figure 4.9 above, the following performance metrics are 

calculated: 

 

Precision = 
TP

TP+FP
 = 

720

720+0
 = 1.0000 = 100.00%  

 

 Recall = 
TP

TP+FN
 = 

720

720+12
 = 0.9836 = 98.36% 

 

 F1 score = 
2TP

2TP+FP+FN
 = 

2×720

(2×720)+0+12
 = 0.9917 = 99.17% 

 

 Accuracy = 
TP+TN

TP+TN+FP+FN
 = 

720+760

720+760+0+12
 = 0.9920 = 99.20% 

 

  TNR = 
TN

TN+FP
 = 

760

760+0
 = 1.0000 = 100.00% 

 

 MCC = 
TP×TN-FP×FN

√(TP+FP)(TP+FN)(TN+FP)(TN+FN)
 

 

 ∴ MCC = 
(720×760)-(0×12)

√(720+0)×(720+13)×(760+0)×(760+12)
 = 0.9840 = 98.40% 

 

  FPR = 
FP

FP+TN
 = 

0

0+760
 = 0.0000 = 0.00% 

 

  FNR = 
FN

FN+TP
 = 

12

12+720
 = 0.0164 = 1.64% 

 

For the CNN-RF model, AUC score of 0.9913 (99.13%) and the PR-AUC value of 0.9955 

(99.55%) at 0.5 decision threshold were obtained by implementing the Python codes in 

Section A.1.6.4 of the Appendix. 

 

So far, the CNN-RF model has produced the best results because apart from achieving a 

precision score of 100.00% and FPR score of 0.00% like the RF model, indicating that the 

model is devoid of FPs, the CNN-RF model also achieved better prediction scores with 

other evaluation metrics than the RF model. Since mitigation of ET is the primary aim of 

detecting it, the results of the hybrid CNN-RF model will enhance the mitigation of ET better 

because it will afford the utilities more economic strength as they will not bother to waste 

resources inspecting customers who do not engage in stealing electricity (Khattak et al., 

2022:7). Reducing FPs to the lowest minimum, or eliminating them completely is a critical 
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issue to be considered when developing models for the detection and later mitigation of ET, 

and is one of the main targets in this research project. 

 

Another question that may easily come to mind after checking out the performance scores 

of the CNN-RF model is that: why did we go further to implement the CNN-RF model since 

RF model has already afforded us a perfect precision score of 100.00% and an FPR score 

of 0.00%, which indicated that the model is already devoid of any FP? The answer to this 

probable question is that it could be observed that after outrightly eliminating FPs by the RF 

and CNN-RF models, the performance scores of other evaluation metrics like recall, F1 

score, accuracy, MCC, FNR, and AUC obtained from CNN-RF model have shown better 

prediction scores than the RF model, spurring better detection of ET. In essence, the CNN-

RF model achieved better results than the RF model, while also completely eliminating FPs 

in the model like the RF model. The precision-recall curve of the proposed CNN-RF hybrid 

model is shown in Figure 4.10. 

 

 
 

Figure 4.10: The precision-recall curve of the CNN-RF model 
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The Figure 4.10 shows that the CNN-RF model achieves high precision and high recall 

values, with its PR-AUC score (0.9955) closer to 1, showing that the classification ability of 

the CNN-RF model is higher. However, the AUC score (0.9913) of the CNN-RF model is 

also closer to 1, showing greater classification ability by the proposed model in 

distinguishing honest and fraudulent electricity customers. The precision-recall curve is also 

closer to the top-right corner of the plot, depicting a better performing model. Figure 4.11 

shows the ROC curve of the RF model. The ROC curve is plotted using TPR and FPR 

values at different exploratory thresholds ranging between 0 and 1. 

 

 
 

Figure 4.11: The ROC curve of the CNN-RF model 

 

As was done for CNN and RF models, the decision threshold for final classification for the 

proposed CNN-RF model is set to 0.5 as depicted by the broken red line in the ROC curve 

of Figure 4.11. With the 0.5 decision threshold, the CNN-RF model will predict an electricity 
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customer as fraudulent if the prediction score of the proposed model is greater than or equal 

to 0.5, and will predict an electricity customer as honest if the prediction score is less than 

0.5. Exploratory thresholds are varied when plotting the ROC curve showing the trade-off 

between TPR and FPR. Lowering the exploratory threshold leads to increase in TPR and 

FPR, and vice versa. The fact that the ROC curve is closer to the top-left corner of the plot 

indicates that the model demonstrates greater classification performance. In summary, the 

proposed CNN-RF model provides a more cost-effective, versatile and robust approach to 

ETD, which is comparatively better than the individual CNN and RF models and will be 

preferred by utility stakeholders in the task of ETD.  

 

However, an inquiry was carried out to check whether the results of the proposed CNN-RF 

model could further be improved. This was done by taking features from the last 

MaxPooling1D layer (layer 6) of a three-pair of concatenated Conv1D and MaxPooling1D 

layers as depicted in Figure 3.9 of Chapter 3. This new variant of the proposed CNN-RF 

model is referred to as CNN-RF (concatenation) model as implemented in Section A.1.9 of 

the Appendix. In general terms, any undistinguished CNN-RF model mentioned in this 

thesis refers to the proposed CNN-RF model.  

 

From the confusion matrix in Figure 4.12, True positive (TP) = 7.2e+02 = 7.2×10
2 = 720, 

True negative (TN) = 7.6e+02 = 7.6×10
2 = 760, False positive (FP) = 0.0e+00 = 0, 

False negative (FN) = 1.3e+01 = 1.3×10
1 = 13. 

 

Based on the confusion matrix presented in Figure 4.12, the performance scores of the 

CNN-RF (concatenation) model are thus calculated through the following evaluation 

metrics: 

 

Precision=
TP

TP+FP
=

720

720+5
 = 1.0000 = 100.00%  

 

 

 Recall = 
TP

TP+FN
 = 

720

720+13
 = 0.9823 = 98.23% 

 

 F1 score = 
2TP

2TP+FP+FN
 = 

2×720

(2×720)+0+13
 = 0.9911 = 99.11% 

 

 Accuracy = 
TP+TN

TP+TN+FP+FN
 = 

720+760

720+760+0+13
 = 0.9913 = 99.13% 
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Figure 4.12: Confusion matrix of the CNN-RF (concatenation) model 

 

 TNR = 
TN

TN+FP
 = 

760

760+0
 = 1.0000 = 100.00% 

 

MCC=
TP×TN-FP×FN

√(TP+FP)(TP+FN)(TN+FP)(TN+FN)
  

 

∴ MCC =
(720×760)-(0×13)

√(720+0)×(720+13)×(760+0)×(760+13)
 = 0.9827 = 98.27%  

 
 

 FPR = 
FP

FP+TN
 = 

0

0+760
 = 0.0000 = 0.00% 

 

 FNR = 
FN

FN+TP
 = 

13

13+720
 = 0.0177 = 1.77% 

 

For the CNN-RF (concatenation) model, AUC score of 0.9912 (99.12%) and the PR-AUC 

value of 0.9955 (99.55%) at 0.5 decision threshold were obtained from the IDE. The 

summary of results for the CNN, RF, and CNN-RF (concatenation), and the proposed CNN-

RF models are shown in Table 4.1. 
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Table 4.1: Summary of the performance scores 

Model Precision Recall F1 
score 

Accuracy TNR FPR FNR MCC AUC PR-
AUC 

CNN 0.9995 0.9848 0.9921 0.9925 0.9996 0.0004 0.0152 0.9850 0.9994 0.9995 

RF 1.0000 0.9823 0.9911 0.9913 1.0000 0.0000 0.0177 0.9827 0.9912 0.9955 

 CNN-RF 
(Concatenation) 

1.0000 0.9823 0.9911 0.9913 1.0000 0.0000 0.0177 0.9827 0.9912 0.9955 

Proposed  
CNN-RF 

1.0000 0.9836 0.9917 0.9920 1.0000 0.0000 0.0164 0.9840 0.9913 0.9955 

 

Results have shown that there is really no significant difference between the performance 

results of the proposed CNN-RF model and that of the CNN-RF (concatenation) model. 

Hence, the proposed CNN-RF model constructed by simply taking features from the 

Conv1D layer (Layer 1) of the CNN network to train the RF model, as shown in Figure 3.8 

of Chapter 3, is preferred. In fact, the proposed CNN-RF model fared a bit better than the 

CNN-RF (concatenation) model in terms of performance results, as evident in Table 4.1. 

The proposed CNN-RF model is hereby adopted, while the CNN-RF (concatenation) model 

is thus dropped. Figure 4.13 shows the comparison of all the developed ETD models in a 

bar chart. 

 

 

 

     Figure 4.13: Bar chart showing comparison of performance results 
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The bar chart in Figure 4.13 shows the result comparisons of the models using precision, 

recall, F1 score, and accuracy metrics. Only four metrics vis-à-vis their performance scores 

are used in evaluating the developed models as shown on the bar chart. This is owing to 

economy of space, so that the bar chart could be more visible. Other scores of the 

performance metrics used in assessing the developed models are presented in Table 4.1. 

It is clear from the table and the bar chart that the proposed CNN-RF model performs best. 

 

4.3    Pilot operation 
 

Pilot operation in NTLD systems refers to the generation of customers’ suspect list, and the 

manual field-operation exercise which serves as a follow-up process during NTL mitigation 

efforts (Messinis & Hatziargyriou, 2018:259). After the NTLD simulations, suspected 

electricity consumers are shortlisted. The suspect list contains those customers who may 

be engaging in ET after the theft suspects have been identified through the developed NTLD 

model. After collating the suspect list, a manual onsite inspection by the utility technicians 

or inspectors is next, to affirm or establish the ET culprits (Glauner et al., 2017:761; Messinis 

& Hatziargyriou, 2018:259). The proposed ETD model developed in this thesis provide utility 

domain experts with definitive and dependable identification of the suspected electricity 

thieves for reliable onsite inspections (Pamir, Javaid, Qasim, et al., 2022:56865).  

 

The final verification of the suspect list is paramount, since the electric utilities cannot afford 

to inspect all their customers; as such adventure is very expensive, unaffordable, and 

practically infeasible (Yip, Wong, et al., 2017:230; Zheng et al., 2018:1606; Liao, Zhu, et al., 

2024:5075). Suspect list is a list of electricity thieves as classified by the proposed ETD 

model. The suspect list for the CNN, RF, and the proposed CNN-RF models can be 

generated by implementing the Python codes in Section A.1.7 of the Appendix. 

 

4.4    Implications of the model results 
 

The relevance of this research extends to Africa, other developing nations, and the global 

electricity sector. The enhanced performance achieved through the proposed CNN-RF 

hybrid model has direct and far-reaching implications for improving ETD, optimizing grid 

operational efficiency, and promoting customer satisfaction. These improvements 

collectively result in significant cost savings for electric utilities, enhanced operational 

performance, and protection of consumer interests. 

The cost-saving potential of the proposed model is particularly notable, as it reduces the 

need for frequent onsite inspections and minimizes the associated labour costs. By 
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effectively identifying ET, the model also aids in revenue recovery by mitigating the financial 

losses traditionally incurred by electric utilities due to NTL. This recovered revenue 

contributes to the stabilization and growth of national economies, particularly in regions 

severely impacted by ET. 

Furthermore, the proposed hybrid model enhances operational efficiency through its 

automated, real-time detection capabilities. This allows utility providers to swiftly address 

theft incidents, reducing response times and improving overall grid management. The 

robust performance of the proposed model which completely eliminates FPs, also reduces 

the likelihood of errors associated with manual inspections. Consequently, utility operators 

can leverage the insights generated by the CNN-RF hybrid model to better regulate 

electricity demand and supply, thereby facilitating more effective load management and 

ensuring stable service delivery. 

In addition, the ability of the proposed model to detect irregular electricity consumption 

patterns fosters fair billing practices, which is crucial in protecting customers from being 

charged for electricity they did not consume. This, in turn, strengthens customer trust and 

confidence in utility providers. By promoting accurate billing and reducing theft-induced 

power disruptions, the proposed model supports the minimization of supply interruptions 

and contributes to overall power reliability. Ultimately, the proposed CNN-RF hybrid model 

serves as a vital tool for enhancing grid performance, improving financial stability within the 

electricity sector, and fostering sustainable electricity management, particularly in 

developing regions. 

4.5    Comparison of results 
 

To determine the efficiency of the proposed ETD model, there is a need to compare the 

performance or prediction results of the proposed model with the performance results of 

other scholars. This is done by comparing the results obtained through the proposed model 

and the results previously obtained in the existing literature by other researchers who have 

also built their various ETD models using the same SGCC dataset employed in developing 

the proposed model. The benchmarking is based on same dataset to ensure fair 

comparison of results. The SGCC dataset is a standardized popular electricity consumption 

dataset which is available online (Dai, 2018), and has been used by many prominent 

researchers in recent high-profile ETD literature for NTLDs. Hence, the comparison is done 

to determine the model that have fared much better (Janiesch et al., 2021:690). The 

employed SGCC dataset has been described in detail in Section 3.2.2 of Chapter 3.  
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The performance evaluation metrics such as precision, recall, F1 score, accuracy, MCC, 

AUC, and PR-AUC obtained through the proposed model have been compared with 

matching metrics presented in previous research. It should be noted that accuracy as a 

performance metric is not a reliable metric because it is always biased by default towards 

the majority class when using imbalanced datasets (Khan et al., 2020:15), unless the 

datasets are properly balanced using appropriate class-balancing techniques. However, 

since the SGCC dataset used in this research, as well as by other researchers in the 

selected literature have been balanced appropriately using various resampling techniques, 

the accuracy metric has however been considered for comparison. 

 

4.5.1    Selected literature for comparison 
 

Performance or prediction results in fifty-four (54) highly-rated journal articles published in 

IEEE, IET, MDPI, Elsevier, Springer, etc., between the years 2020 and 2024 have been 

selected as benchmarks for comparison with the prediction results of the proposed model. 

This is to establish the superiority, veracity, and potency of the proposed model in detecting 

NTL. To allow for unprejudiced comparison, the proposed model developed in this thesis 

and the ETD or NTLD benchmark models built in the selected literature have been 

developed using same dataset, as mentioned earlier in Section 4.5. The results of the 

performance assessment metrics like precision, recall, F1 score, accuracy, MCC, AUC, and 

PR-AUC of the proposed model and those of the ETD models in the selected literature are 

being compared.  

 

Performance results are the predictions derived from ETD models using test sets from the 

given dataset. The various ETD models used in arriving at the performance results, the 

different data resampling techniques used in balancing the dataset, and other parameters 

used to enhance the predictions of the ETD models in the existing literature have also been 

mentioned in the SGCC dataset-based literature synopses in Section 4.5.1.1. Also, if the 

model performance scores in the literature have been presented originally in decimal, they 

are being converted to their percentage equivalents (to two decimal places) for comparison 

as shown in Table 4.2. 

 

Performance metric results for precision, recall, F1 score, accuracy, MCC, AUC and PR-

AUC metrics obtained from the proposed model has been used for comparison with the 

performance results from ETD models from the selected literature shown in Table 4.2. Any 

metric space in Table 4.2 which is filled with dash (–) shows that the value of such metric is 

not given in the referenced journal article. All the parameters attributable to the proposed 
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model in Table 4.2 have been written in bold texts, while not applicable (N/A) appears in the 

reference space of the proposed model in the table. This is because the supposed reference 

of the proposed model with their performance results is this thesis. For authors who have 

developed more than one ETD model in the selected literature, only the results of the best 

performing models appear for comparisons in Table 4.2. 

 

4.5.1.1    Synopses on the literature selected for comparison 
 

This section gives the overview of each of the 54-selected journal articles in which the 

performance results of the ETD model in each article are being compared with the 

performance results of the proposed ETD model developed in this thesis. The performance 

results attained by the various benchmark ETD models in the selected literature and that of 

the proposed model have been realized using same SGCC dataset. The prediction results 

in the selected literature and that of the proposed model have been summarized in Table 

4.2. Each of the following paragraphs is a rundown of every piece of literature selected for 

comparison. 

 

Relational denoising autoencoder attention guided triple generative adversarial network 

(RDAE-AG-TripleGAN) model has been proposed by the authors in Aslam, Ahmed, et al. 

(2020) for ETD. The authors replaced the missing values in the SGCC dataset using linear 

interpolation, and also used the generator and classifier submodels of AG-TripleGAN to 

solve the class imbalance issue associated with the dataset. The missing values in the 

SGCC dataset are represented as not a number (NaN) and zero (0). The model results of 

98.70% precision, 95.60% recall, 96.70% F1 score, 94.30% MCC, 95.20% AUC, and 

95.80% PR-AUC have been obtained using the proposed ETD model. 

 

The authors in Aslam, Javaid, et al. (2020) used a combination of long short-term memory 

(LSTM), UNet, and adaptive boosting (Adaboost) termed LSTM-UNet-Adaboost as ETD 

model. Interquartile minority oversampling technique (IQMOT) was used by the authors as 

class-balancing technique, and linear interpolation method to replace the missing values in 

the SGCC dataset. The model acheived prediction scores of 99.80% precision, 92.90% 

recall, 95.40% F1 score, 97.20% accuracy, 90.20% MCC, 94.80% AUC, and 95.80% PR-

AUC. 

 

Adaptive synthetic (ADASYN) sampling algorithm has been used by Khan et al. (2020) to 

address the class imbalanced problem and also deployed linear interpolation method to 

replace the missing values in the SGCC dataset. The balanced dataset is then fed into 
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Visual Geometry Group with 16 deep layers (VGG-16) module to detect anomalous patterns 

and to extract relevant features from the electricity consumption dataset. Firefly algorithm-

based extreme gradient boosting (FA-XGBoost) is then used as the classifier or ETD model. 

The model achieved performances of 93.00% precision, 97.00% recall, 93.70% F1 score, 

95.00% accuracy, 85.60% MCC, and 95.90% AUC. 

 

Aldegheishem et al. (2021) presented two models for ETD. The first model has been termed 

SMOTEENN-AlexNet-LGB (SALM) model, while the second model is called generative 

adversarial network GoogLeNet adaptive boosting (GAN-NETBoost). The SMOTEENN in 

the first model is known as synthetic minority oversampling technique and edited nearest 

neighbour (ENN), while LGB is light gradient boosting. In the first model, SMOTEENN 

algorithm was employed to balance the dataset, Alexnet for feature extraction and 

dimensionality reduction, while LGB was used for the classification of benign and malignant 

customers. In the second model, conditional Wasserstein generative adversarial network 

gradient penalty (CWGAN-GP) was used for dataset balancing, GoogLeNet used for feature 

extraction and dimensionality reduction, while adaptive boosting (AdaBoost) was used for 

the classification of honest and fraudulent electricity consumers. The authors used linear 

interpolation method to replace the missing values in the SGCC dataset. The SALM model 

achieves 95.5% precision, 91.80% recall, 93.90% F1 score, Matthews correlation coefficient 

(MCC) of 87.60%, AUC of 90.60%, and accuracy of 91.00%; while the GAN-NETBoost 

achieves precision of 96.80%, recall of 94.00%, F1 score of 95.00%, MCC of 91.00%, AUC 

of 96.00%, and accuracy of 95.00%. Performance results have shown that the second 

model (GAN-NETBoost) performs better than the first model (SALM). 

 

Arif et al. (2021) have suggested the use of three tree-based classifiers to predict ET using 

the SGCC dataset after using residual network (ResNet) to extract the hidden features in 

the dataset. The deployed tree-based classifiers for ETD are decision tree (DT), random 

forest (RF), and AdaBoost. The hybrid of synthetic minority oversampling technique with 

near miss (SMOTE-NM) has been used as the data balancing technique, linear interpolation 

method used to fill in the missing values, while Bayesian optimizer method has been 

deployed for hyperparameter tuning to facilitate the model optimization process. The results 

of the three tree-based classifiers with support vector machine (SVM) and linear regression 

(LR) are compared with or without feature extraction and resampling techniques, and 

hyperparameter tunings. From the results of all the mentioned ML models, RF produced the 

best prediction results of 99.17% precision, 94.92% recall, 96.93% F1 score, 99.10% 

accuracy, and 99.68% AUC after applying data balancing, ResNet, and hyperparameter 

tuning. 
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The deep artificial neural network (DANN) model proposed by Bohani et al. (2021) achieves 

the best performance results when the train and test data were split into 60:40 ratio. The 

authors ran the ETD simulations without balancing the SGCC dataset, and then used the 

mean of each customer’s energy consumption on a particular row of the dataset to fill in the 

missing energy values of that particular customer. The proposed DANN model at the said 

60:40 split ratio achieves precision of 48.24%, recall of 61.03%, F1 score of 53.89%, 

accuracy of 91.29%, and area under receiver operating characteristic curve (AUC) of 

77.54% as the best performance sores when compared with other classifiers. 

 

The hybrid model of day, week, and month convolutional neural network and random forest 

(DWMCNN-RF) has been used as a classifier by Cheng et al. (2021) for ETD. 

Dimensionality reduction of the dataset and increase in computation speed have been 

achieved by K-means clustering. To deal with the missing values in the dataset, the authors 

removed the missing values and also removed the zero values in the dataset. From the 

confusion matrix derived through the predictions of the DWMCNN-RF model, 97.70% of 

precision, 87.47% of recall, 92.30% of F1 score, 99.00% of AUC, and 90.65% of accuracy 

have been achieved by the ETD classifier. 

 

Hussain et al. (2021) uses categorical boosting (CatBoost)  algorithm as ETD model to 

predict consumers who steal electricity and the honest consumers who do not engage in 

electricity theft.  K-nearest neighours (KNN) technique using the mean of selected nearest 

neighbours has been used to replace the missing values of the dataset used in developing 

the ETD model. Synthetic minority oversampling technique-and Tomek link (SMOTE-

Tomek) algorithm has been used as resampling technique to balance the dataset, feature 

extraction and scalable hypothesis (FRESH) algorithm has been used as feature extraction, 

while tree-SHapley Additive exPlanation (tree-SHAP) algorithm has been used to interpret 

the decision of the ETD model. The model achieved an average precision, recall, F1 score, 

and accuracy metrics of 95.08%, 92.37%, 93.71%, and 93.38% respectively. 

 

Javaid (2021) developed AlexNet and peephole long short-term memory echo state neural 

network (APLSTM-ESNN) model for ETD. SMOTE-Tomek or ST-Links was used by the 

authors for data balancing, APLSTM used as feature extractor from the dataset, grey wolf 

optimization (GWO) technique used for hyperparameter tuning to improve the performance 

of the model, ESNN as the classifier, and a paired t-test has been applied on the 

classification results of the model to ensure reliable assessment. The author used data 

interpolation method to handle the missing values in the SGCC dataset. The ETD model 
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precision of 90.00%, recall of 92.10%, F1 score of 92.00%, accuracy of 96.30%, MCC of 

84.00%, AUC of 96.40%, and PR-AUC of 97.30% as performance results. 

 

The authors in Javaid, Gul, et al. (2021) proposed two ETD solutions. The authors proposed 

GANCNN model in the first ETD solution. GANCNN is the combination of self-attention 

generative adversarial network (SAGAN) and wide and deep convolutional neural network 

(WDCNN). The first ETD solution involved using adaptive synthetic edited nearest 

neighbour (ADASYNENN) as class balancing technique and locally linear embedding (LLE) 

technique for feature extraction. The authors also proposed ERNET model as the second 

ETD solution. ERNET is the hybrid of EfficientNet, ResNet, and gated recurrent unit (GRU). 

The second ETD model involved using sparse auto encoder (SAE) for feature extraction 

and a robust optimizer known as root mean square propagation (RMSProp) was used to 

improve the rate of learning of the model and SMOTEENN as class balancing technique. 

Imputation method has been used to replace the missing values in the SGCC dataset when 

applying GANCNN model, while linear interpolation method has been used to replace the 

missing values in the SGCC dataset when applying ERNET model to the dataset. Both 

GANCNN and ERNET were used for the classification of honest and fraudulent electricity 

consumers. The GANCNN model achieved the precision of 95.00%, recall of 99.00%, F1 

score of 90.00%, accuracy of 95.00%, AUC of 98.50%, and FPR of 5.00% as performance 

values, while ERNET model achieved 94.00% precision, 93.00% recall, 89.00% F1 score, 

98.00% accuracy, 98.80% AUC, and 2.00% FPR as prediction results. From the results, the 

GANCNN model has superior scores in terms of precision, recall, and F1 score metrics and 

hence adjudged to perform better than the ERNET model. 

 

In Javaid, Jan, et al. (2021), the authors proposed an integrated deep siamese network 

(DSN) model for ETD. The DSN is a hybrid of CNN and LSTM. The authors also used 

ADASYN as class balancing technique. In the DSN, CNN actually performed feature 

extraction, while LSTM performed the classification of benign and malignant electricity 

customers.  The authors replaced the missing values in the SGCC dataset using linear 

interpolation method. The effectiveness of the proposed model has been conveyed through 

the 91.20% precision, 92.30% recall, 92.80% F1 score, 95.30% accuracy, 93.40% AUC, 

and 90.00% MAP scores achieved as the best performance results at 80% training ratio. 

 

The authors in Mujeeb et al. (2021) proposed differential evolution random undersampling 

boosting (DE-RUSBoost) as first classifier and Jaya random undersampling boosting (Jaya-

RUSBoost) as second classifier for ETD. Also, the authors used reconstruction independent 

component analysis-based sparse autoencoder (RICASAE) feature extractor to extract 
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relevant features from the given datasets. The authors used linear interpolation method to 

fill in the missing values in the dataset. Using the SGCC dataset, DE-RUSBoost classifier 

achieved precision of 90.20%, recall of 73.50%, accuracy of 95.60%, AUC of 89.60%, and 

specificity or TNR of 99.60%, while the Jaya-RUSBoost classifier achieved precision of 

57.20%, recall of 100.00%, accuracy of 96.40%, AUC of 95.70%, and specificity (TNR) of 

96.20% as performance evaluation scores. The Jaya-RUSBoost model obviously achieved 

better prediction results. 

 

Pereira and Saraiva (2021) submitted that data balancing is most critical to achieving better 

prediction outcomes in terms of ETD, and hence used data-balancing techniques to improve 

NTLD. The authors used CNN as the ETD model and experimented with cost-sensitive 

learning (weighting), random undersampling (RUS), random oversampling (ROS), k-

medoids based undersampling, synthetic minority oversampling technique (SMOTE), and 

cluster-based oversampling (CBOS) as class-balancing techniques to handle the 

imbalanced SGCC dataset used in constructing the ETD model. The authors also used 

linear interpolation method to fill in the missing values in the dataset. At the end of the ETD 

experiment, CBOS data-balancing technique achieved the overall-best prediction results of 

68.33% accuracy and 80.84% AUC with the CNN model. 

 

The authors, Shehzad et al. (2021), achieved AUC of 96.00% and PR-AUC of 97.00% as 

performance results using hybrid GoogLeNet and GRU as ETD model at 80% training ratio 

proportion. Time least square generative adversarial network (TLSGAN) has been used by 

the authors to solve the class imbalance problem, while also using linear interpolation 

method to replace the missing values in the SGCC dataset. 

 

Arif et al. (2022) employed temporal convolutional network with enhanced multilayer 

perceptron (TCN-EMLP) as ETD model to classify honest and fraudulent electricity 

customers. The authors also applied Tomek link borderline synthetic minority oversampling 

technique with support vector machine (TBSSVM) as resampling technique to equalize the 

imbalanced dataset in order to achieve the most-reliable prediction results, while also 

deploying linear interpolation method to replace the missing values in the SGCC dataset. 

The proposed TCN-EMLP classifier model achieved the greatest AUC of 84.00% as 

performance measure using the SGCC dataset. 

 

The NTLD model developed by Asif et al. (2022) involves combining two-dimensional 

convolutional neural network (2D-CNN) and bidirectional long short-term memory (Bi-

LSTM) network. The authors employed bidirectional Wassertein generative adversarial 
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network (Bi-WGAN) as data balancing technique, and linear interpolation method to fill in 

the missing values in the SGCC dataset. The proposed model achieved precision of 

97.00%, recall of 92.00%, F1 score of 94.00%, accuracy of 95.00%, MCC of 93.00%, AUC 

of 97.00%, and PR-AUC of 98.00% as performance results. 

 

Badawi et al. (2022) have proposed a two-stage ETD processes. The first stage involved 

the extraction of new features from the SGCC dataset. Extraction of new features from the 

default SGCC electricity consumption dataset involved sudden-change detection method 

which detected sudden jump or unusual change in electricity consumptions. The newly 

extracted features from the sudden-jump (fraudulent) patterns in energy consumptions were 

moving average measures like auto-regressive integrated moving average (ARIMA), Holt-

Winters, seasonality, etc. The new features included smart meter features and other 

mentioned statistical features, and were used in conjunction with electricity consumption 

data. In the second stage, distributed random forest (DRF) was used as ETD classifier and 

also handled the missing values in the SGCC dataset. DRF used the features in stage one 

for the classification of honest and fradulent consumers. In this ETD experiment, the authors 

took 7,000 samples (520 fraudulent, 6,480 honest) from the dataset out of the total available 

42,372 samples (3,615 fraudulent, 39,757 honest). The ETD model achieved precision of 

99.00%, recall of 98.00%, F1 score of 98.00%, accuracy of 98.00%, MCC of 97.00%, AUC 

of 98.33%, specificity (TNR) of 99.00%, mean squared error (MSE) of 0.14%, root mean 

squared error (RMSE) of 2.00%, log loss or cross entropy of 3.13%, and  R-squared (R2) 

or coefficient of determination of 99.46% as performance measures. 

 

The authors in Fei et al. (2022) proposed a self-supervised method for ETD to cater for 

situations where fully labelled data may not always be available. The authors implemented 

this method by using NTL detection contrastive prediction coding (ND-CP) model. The ND-

CP model was used to extract long-term consumption patterns from the SGCC dataset to 

detect NTL, but not short-term features which was determined using Pruned Exact Linear 

Time (PELT) method. PELT was able to detect sudden or unexpected consumption 

changes in the dataset and provided evidences for using long-term consumption patterns 

in detecting NTL better than short-term consumption patterns. ND-CP involved using 1D-

CNN to encode a sequence of the SGCC dataset into a matrix, and then employing GRU 

compact to summarize the matrix and make it compact . The authors removed customer 

samples with up to 100 missing values and systematically splited the aftermath data into 

unlabelled pretrain, and labelled train and test sets to balance and handle the missing 

values in the dataset. The proposed method leveraged on the unlabelled data to improve 

ETD rates. Although, the SGCC dataset is already labelled from source, but the larger part 
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of the labelled samples were ignored by the authors to satisfy the proposed method, in an 

attempt to accomplish better ETD than most supervised models. To achieve the self-

supervised method, the authors pretrained the ND-CP model with large unlabelled samples 

from the dataset to extract long-term consumption-pattern features, and then trained a 

single-layer neural network with the extracted long-term features and tested it using the 

remaining fewer labelled data samples to classify or predict the honest and faudulent 

customers. The proposed ETD model achieved F1 score of 78.90%, accuracy of 77.00%, 

and AUC of 83.20% as evaluation scores. 

 

Gao et al. (2022a) used hybrid convolutional long short-term memory (ConvLSTM) classifier 

which supports default or raw format of the SGCC consumption dataset as input into NTLD 

model with a batch normalization meant to improve training and testing efficiencies. 

Borderline-synthetic minority oversampling technique (borderline-SMOTE) was employed 

for class balancing, and KNN technique to handle the missing values in the dataset. The 

NTLD model with tenfold cross validation achieves the better performance results of 98.40% 

precision, 94.80% recall, 96.60% F1 score, 96.60% accuracy, 97.70% AUC, and 98.00% 

PR-AUC. 

 

A combined Kernel and Tree Boosting (KTBoost) classifier, an ensemble-based classifier, 

which used Jaya algorithm to optimize its hyperparameters (Jaya-optimized combined 

KTBoost) has been deployed by Hussain et al. (2022) for NTLD. The classifier used Robust-

SMOTE as class balancing technique and also used the intelligence of extreme gradient 

boosting (XGBoost) algorithm to estimate and fix the missing values in the SGCC dataset. 

This ETD method achieved the precision of 95.08%, recall of 93.18%, F1 score of 93.71%, 

accuracy of 93.38%, and MCC of 90.77% as performance results. 

 

Khan et al. (2022) developed a multi-model that is based on combination of ML and deep 

learning (DL) algorithms called data preparations, first and second-order classification 

(PFSC) to detect abnormality in electricity consumption patterns. The first-order classifier is 

based on SVM, RF and gradient boosting decision tree (GBDT) machine learning (ML) 

methods, while the second-order classifier uses a temporal convolutional network (TCN). 

The data preparation aspect of PFSC involves interpolation, outlier detections, 

normalization, and balancing (IONB). The authors used linear interpolation method to 

replace the missing values in the SGCC dataset. The highest performance results achieved 

by the multi-model (PFSC) at 80% train proportion are 96.40%, 95.40%, 95.90%, 98.50% 

for precision, recall, F1 score, and AUC respectively. The proposed PFSC framework 

performed better than the benchmarked individual ML and DL models. 
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Khattak et al. (2022) proposed a hybrid of GRU and CNN models termed HGC for ETD. 

GRU was used to extract temporal patterns, while CNN was used to extract hidden or latent 

patterns from the SGCC dataset. ADASYN and Tomek links were used to resample and 

balance the dataset, while linear interpolation method was used to handle the missing 

values in the dataset. The better performance results of the HGC model achieved at 60% 

training data are 92.10% recall, 94.8% F1 score, 94.70% accuracy, 98.70% AUC, and 

98.50% PR-AUC. 

 

In the journal article written by Lepolesa et al. (2022), a fully connected feed-forward deep 

neural network (DNN) classifier was deployed as the ETD model, principal component 

analysis (PCA) was used to reduce the feature size, Bayesian classifier was utilized to 

optimize hyperparameter tuning, while minimum redundancy maximum relevance (mRMR) 

has also been used to validate the most essential features for ETD. The features used for 

the classification were time and frequency domains which have been manually extracted 

from the raw time-series SGCC dataset. The classification done with the frequency-domain 

features outperforms that done with time-domain features, and also outperforms that done 

when both domains are combined. The mRMR scheme was also used to ratify and 

consolidate the significance of frequency-domain features for ETD over the features in their 

time domains. The authors used Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) 

technique to replace the missing values in the SGCC dataset. The prediction results of the 

proposed classifier achieve accuracy of 91.80% and AUC of 97.00% as performance 

measures. 

 

The authors in Liao et al. (2022) achieved highest performance scores of 78.70% AUC, and 

98.10% MAP@100, and 95.40% MAP@200 at 70% training ratio using the proposed GCN-

CNN hybrid model. GCN is graph convolutional neural network which perform graph 

convolutional procedures by depicting temporal correlation or time dependency and 

periodicity of consumer load curve from the perspective of graph, as captured through the 

adjacency matrix. Meanwhile, CNN captured the latent features in the load curve using 

Euclidean convolutional processes. Latent features were modelled from load curves at 

different fraudulent ratios. The proposed model performed better than the benchmark 

models at various training and fraudulent ratios or data imbalances. The higher metrics 

(AUC and MAP) obtained at different fraudulent ratios indicated that the proposed model is 

more robust and adaptable to model latent features from the load curves. The effect of class 

imbalance was being suppressed by randomly selecting samples from the raw dataset to 

form new dataset and then varying the fraudulent ratios of the train and test sets. Linear 

interpolation method was deployed to fill in the missing values in the SGCC dataset. 
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Munawar, Javaid, et al. (2022) used the hybrid of Bi-GRU and Bi-LSTM as a classifier to 

predict benign and malignant electricity consumers. The authors also deployed Tomek links 

to address the issue of misclassification of defused data, abstract features were extracted 

using stochastic feature engineering to enhance classification, K-means SMOTE technique 

was used to balance the SGCC dataset, while mean-based was deployed to replace the 

missing values in the dataset. The hybrid ETD model achieved performance scores of 

80.60% precision, 80.90% recall, 80.70% F1 score, 95.00% accuracy, and 95.00% AUC. 

The performance of the classifier was eventually verified using an attack vector. 

 

Munawar, Khan, et al. (2022) deployed an effective hybrid classification architecture which 

consists of attention layers, LSTM, and inception modules termed AttenLSTMInception as 

the proposed model to detect ET using the SGCC dataset. In this approach, the authors 

only considered six months of data of 1500 honest customers from the SGCC dataset owing 

to their limited computing resources. In these selected 1500 honest customers, the authors 

used six false data injections (FDIs) to manipulate each honest customer sample, such that, 

six new variants of fraudulent samples are synthesized for a single honest sample. This 

then disrupts the class balancing in the dataset creating more fraudulent samples. The 

novel FDI techniques were compared with the six theft attack cases used in Pamir, Javaid, 

Javaid, et al. (2022). The complexity and variance introduced into the data distribution by 

the FDI techniques and the six theft cases were determined via kurtosis and skewness 

analysis. The complexity and skewness introduced into the data by the FDI techniques are 

minimal when compared with that of the six theft attacks. Simple imputer method was 

employed to replace missing values and remove outliers in the data. Data inconsistency 

after the data synthesis was eventually tackled by balancing the dataset using a novel 

resampling technique called Proximity Weighted Synthetic Oversampling (ProWsyn). The 

proposed model achieved precision of 97.00%, recall of 94.00%, F1 score of 96.00%, 

accuracy of 95.00%, and AUC of 98.00% as performance measures. 

 

The authors in Pamir, Javaid, Javaid, et al. (2022) explored the combination of LSTM and 

GRU to form an ETD model called theft attacks-based LSTM and GRU (TLGRU). This work 

is an extension of the work in Pamir et al. (2021). Technically, the LSTM performed feature 

extraction, while GRU did the classification. Simple imputer technique was used to replace 

the missing values in the SGCC dataset, while artificial theft attacks that produced synthetic 

theft samples were used to balance the dataset. The TLGRU model achieved 97.96%, 

86.59%, 91.92%, 91.56%, 91.68%, and 1.00% for precision, recall, F1 score, accuracy, 

AUC, and FPR respectively as prediction results. 

 



 

245 
 

Meanwhile, the authors in Pamir, Javaid, Qasim, et al. (2022) used autoencoder and 

bidirectional gated recurrent unit (AE-BiGRU) model for ETD. Six artificial theft attacks that 

generated synthetic theft samples were used to balance the imbalanced SGCC dataset, 

while simple imputer method was used to replace the missing values in the dataset. The 

bidirectional gated recurrent unit (BiGRU) was used for identifying patterns in the 

consumption data. The results obtained from the AE-BiGRU ETD classifier are 91.30% 

precision, 88.60% recall, 89.90% F1 score, 90.10% accuracy, 90.10% AUC, and 10.20% 

FPR. 

 

In the ETD experiments performed by Ullah et al. (2022), AdaBoost model has been used 

as the classifier, AlexNet used to handle dimensionality reduction, near miss used as the 

class-balancing technique for the imbalanced SGCC dataset, while linear interpolation 

method was used to fill in the missing values in the given dataset. The hyperparameters of 

Adaboost and AlexNet have also been tuned using bee colony optimization algorithm, 

otherwise known as artificial bee colony (ABC). The following performance results were 

obtained owing to the ETD experiments are: 86.00% precision, 84.00% recall, 85.00% F1 

score, 88.00% accuracy, 78.00% MCC, and 91.00% AUC.  

 

The authors in Ali et al. (2023) proposed a stacking model for ETD. The stacking model 

involved the combination of the prediction outputs of LGB, extra trees, XGBoost, and RF 

ensemble models with an MLP deep learning model which served as a meta-classifier. The 

combined prediction outputs of the ensemble models served as input features to the MLP 

model. The MLP model was used to improve the predictions of the ensemble models. The 

predictions of the MLP model or meta-classifier served as the final predictions of the 

stacking model. The authors also used PCA technique for feature extraction and data 

reduction, while SVM-SMOTE was being used as the class-balancing technique. To 

balance the dataset, SVM was first used to separate the theft and honest samples, while 

SMOTE was later used to oversample the theft samples to balance the SGCC dataset. The 

authors deployed simple imputer technique to reinstate the missing values in the SGCC 

dataset. The stacking model achieved F1 score of 97.66%, accuracy of 97.69%, AUC of 

97.69%, PR-AUC of 96.55%, FPR of 0.72%, and FNR of 2.05% as performance results at 

80% training and 20% testing ratios. 

 

Appiah et al. (2023) applied SMOTE-Tomek to balance the imbalanced SGCC dataset, 

extremely randomized trees classifier as the proposed model to detect ET, and grid search 

optimization technique to optimize the proposed model. The authors also deployed linear 

interpolation technique to fill in the missing values in the dataset. The proposed model 
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produced precision of 97.00%, detection rate (recall) of 98.00%, F1 score of 98.00%, 

accuracy of 98.00%, MCC of 95.06%, and AUC of 99.65% as ETD performance scores. 

 

In the journal article written by Bai et al. (2023), the authors deployed a CNN model which 

constitutes a dual-scale and a dual-branch (DSDB) structure with periodic intra and inter 

convolutional blocks, and a transformer network called Gaussian weighting (GWT) network, 

to form a novel hybrid neural network termed DSDBGWT. The novel hybrid ETD model was 

able to effectively discover anomalies in the electricity consumption dataset. The CNN-

based DSDB structure enabled comprehensive feature extraction from the SGCC dataset 

during the process of shallow feature extraction, decreased parameter usage, and 

increased efficiency. The transformer network-based GWT module was able to augment 

the feature-extracting ability of DSDB by extracting characteristic features from extended-

distance sequences or dependences of longer duration in a more logical manner, allowing 

the attention mechanism to further be rationally allocated. The authors addressed the 

missing values in the dataset using zero replacement and binary mask approach. The 

hybrid DSDBGWT model has proven to be more efficient in extracting anomalies in 

electricity consumption dataset with increased F1 score, AUC, and MAP@ALL metric 

values of 62.90%, 92.30%, and 82.30% respectively as performance evaluation scores. 

 

Kawoosa et al. (2023) used XGBoost ensemble algorithm as ETD model, trained and tested 

the model using energy consumption data from the SGCC dataset, in conjunction with 

additional features like location, seasonality, weekends, weekdays, regional festivals, and 

high-demand power curtailments taken from auxiliary databases as input data to train and 

test the XGBoost classifier. According to the authors, the additional data improved the 

capacity of the model in detecting NTL by reducing false positives. Six artificial theft attacks 

which generated synthetic fraudulent samples have been used to balance the dataset, while 

the dimension of the dataset was reduced using PCA. The missing values in the given 

dataset have been replaced using the forward filling method. The performance results 

obtained were 98.00% precision, 98.00% recall, 97.00% F1 score, and 3.00% FPR. 

 

The authors in Khan et al. (2023) used sequential preprocessing, resampling, and 

classification (SPRC) as ETD framework. The sequential preprocessing aspect of the 

framework involves interpolation, outliers handling, and standardization (IOS), hybrid data 

resampler (HDR) was used for resampling to balance the dataset, and classification was 

done with improved artificial neural network (iANN). Linear interpolation method was 

deployed to inpute the missing values in the SGCC dataset. The authors achieved the best 

results through iANN using parallel sequential topology at 80% training ratio. The SPRC 
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framework achieves 99.60% precision, 98.70% recall, 99.10% F1 score, 99.70% accuracy, 

and 98.70% AUC. 

 

The ETD model termed DenseNet-GRU-LightGBM has been used in Naeem, Aslam, et al. 

(2023). DenseNet-GRU-LightGBM model is a hybrid of densenet-fully convolutional 

network (DenseNet-FCN) and gated recurrent unit (GRU) with a light gradient boosting 

machine (LightGBM). Random oversampling using both classes (ROBC) sampling 

technique has been used by the authors to balance the imbalance real-world SGCC dataset 

used in developing the proposed model. The authors also used linear interpolation method 

to fill in the missing values in the SGCC dataset. The proposed ETD model achieved 

precision of 92.00%, recall of 96.00%, AUC of 92.00%, and PR-AUC of 87.00%. 

 

In Naeem, Javaid, et al. (2023), the authors proposed the application of seasonal and trend 

decomposition using loess (STL), fractal network (FractalNet), and LightGBM as ETD 

model. STL was used to transform the pattern of electricity consumption in the SGCC 

dataset into seasonality and trend, FractalNet was used to learn the seasonality and trend 

of benign and malignant customers, while LightGBM was employed to improve on the 

learning capacity of FractalNet and to classify both the benign and malignant customers in 

the dataset. A novel hybrid oversampling and undersampling using both classes (HOUBC) 

was used as the class balancing technique by performing undersampling from the majority 

class first, before oversampling both from the majority and minority classes. The two classes 

mentioned in HOUBC are the honest and fraudulent labels or classes in the electricity 

consumption dataset. However, linear interpolation method was utilized to handle the 

missing values in the SGCC dataset. LightGBM model was used for the classification of 

honest and fraudulent customers, and hence achieved the following performance results: 

94.20% precision, 96.10% recall, 93.30% F1 score, 96.20% accuracy, 94.20% MCC, 

92.10% AUC, and 90.40% PR-AUC. 

 

The precision, recall, F1 score, accuracy, and AUC values of 92.00%, 54.00%, 15.00%, 

92.00%, and 54.00% respectively have been obtained by Nawaz et al. (2023) in their SGCC 

dataset-based ETD experiments. The mentioned performance metrics have been realized 

through the proposed hybrid convolutional neural network and extreme gradient boosting 

(CNN-XGB) ETD model developed by the authors. The proposed CNN-XGB model also 

achieved a PR-AUC value close to 1. The authors used linear interpolation method to 

replace the missing values in the given dataset. 
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In the journal publication authored by Nayak and Jaidhar (2023), the authors intended to 

achieve higher ETD prediction results by using fewer features from the SGCC dataset. To 

address the class imbalance issue of the SGCC dataset, the number of benign samples 

were made equal to the number of fraudulent samples by random selection. Each missing 

value (NaN or 0) in the given dataset were imputed separately with random values that lie 

between the minimum and maximum values of the features in the missing-value column. 

Experiments were carried out using mutual information, low variance filtering, and PCA as 

feature selection and extraction techniques to optimize the classification processes. RF, 

SVM, KNN, Naïve Bayes, and DT were used as ETD classifiers to determine which model 

would perform best after the various feature selections and extractions from the dataset. 

Experimental results revealed that RF classifier with 30 PCA components or features (PCA-

30) performed best and achieved 98.60%, 93.80%, 95.82%, and 98.90% as precision, 

recall, accuracy, and AUC scores respectively. 

 

Pamir et al. (2023) presented the combination of SSA, GCAE, and CSLSTM termed SSA-

GCAE-CSLSTM as ETD model. SSA is salp swarm algorithm, GCAE is a combination of 

GRU and convolutional encoder known as gate convolutional autoencoder, while CSLSTM 

is a combination of cost-sensitive learning and LSTM. The authors handled the missing 

values in the SGCC dataset using linear interpolation method. The presented ETD model 

achieved precision of 99.45%, recall of 92.66%, F1 score of 95.93%, accuracy of 92.25%, 

and AUC of 71.13% as performance results.  

 

The authors in Wang et al. (2023) proposed an NTLD model that is based on convolution-

non-convolution parallel deep network (CNCP). In this method, the output of two fused deep 

heterogenous neural networks have been used for ETD. The CNCP-based two deep neural 

networks captured the features in the load time-series of the SGCC dataset at different time 

scales before fusing their outputs to produce the NTLD results. However, the load time 

series data of the benign electricity customers have obvious periodicity in different time 

frames when compared with the load time series data of the customers who stole electricity. 

To cater for the missing values in the SGCC dataset, the load profile of a customer is 

discarded if the missing-value ratio of the customer to the whole dataset is greater than 

30%. After that, weighted interpolation is then used to correct the remaining missing values. 

The CNCP-based method achieved precision of 95.08%, recall of 98.70%, and F1 score of 

96.85% at 80% training sets of the dataset. 

 

The improved hybrid WDCNN model developed by Xia et al. (2023) achieved F1 score 

value of 53.72%, AUC of 83.61%, and mean average precision (MAP@100) of 97.08% as 
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highest performance assessment scores at 70% train ratio. MAP@100 means MAP among 

top 100 electricity users. The authors used focal loss to solve the data imbalance problem 

and also used Lagrange interpolation method to replace the missing values in the employed 

SGCC dataset. 

 

The authors in Yang et al. (2023) made use of broad learning system-based (BLS-based) 

multi-view rotation model to improve ETD performances. The proposed ETD method is 

termed rotation_dwbls and involved the design of rotational subspaces which maps the raw 

samples in the SGCC dataset into distinct sub-views to remove the negative impacts of 

redundant features in the dataset, and mitigate the effect of the characteristic class-

imbalance distribution nature of the dataset using a weighting mechanism and a weighted 

broad learning system (BLS). Transformation of dual space or rotation of features was 

meant to generate more accurate and robust ensemble classifier, weighting strategy was 

based on regional distribution of the data and took into cognizance the distribution of the 

data and class imbalance, and thirdly the selection of progressive ensemble model after 

BLS-based models have been trained from various views are the cores of the 

rotation_dwbls approach. The proposed ETD model achieved AUC of 83.41% and 

geometric mean (G-mean) of 83.90% as prediction results, achieving the best performance 

when the authors compared it with existing ML models. 

 

The authors, Yao et al. (2023), deployed an ETD scheme called multiscale convolutional 

neural network-bidirectional gate recurrent unit (MCNN-BiGRU) to classify the honest and 

fraudulent electricity consumers. The authors used convolutional transformer-Wasserstein 

generative adversarial network (CT-WGAN) as the class balancing technique to augment 

and equalize the SGCC dataset. To handle the missing values in the given dataset, the 

authors applied linear interpolation method for consecutive missing values less than three 

days, and assigned zero if otherwise. The ETD scheme achieved precision of 95.67%, recall 

of 91.48%, F1 score of 93.53%, accuracy of 91.10%, and AUC of 93.00% as the best 

performance results at different training ratios using the SGCC dataset. 

 

Huang et al. (2024) leveraged on the weekly periodic consumption and weekly anomalous 

consumption patterns attributable to normal and fraudulent customers in the SGCC dataset 

to enhance ETD. The features of these weekly-scale electricity consumption features were 

integrated with the default daily-scale consumption features of the dataset to form dual-time 

features. The hybrid of TCN with LSTM multi-level feature extraction module termed LSTM-

TCN, and deep convolutional neural network (DCNN) were used to extract the dual-time 

features from the SGCC dataset. Meanwhile, SMOTE-Tomek links was used as class 
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balancing technique to equalize the imbalanced dataset. Linear interpolation method was 

used to replace the missing values in the given dataset. The novel strategy proposed by the 

authors to enhance ETD was based on the use of LSTM-TCN and DCNN in extracting dual-

time features from the dataset. The extracted features were then fused into a fully connected 

layer as input features for classification to validate the novel NTLD framework. ETD 

classification as processed by the fully connected layer achieved 93.20% precision, 96.40% 

recall, 94.80% F1 score, 94.70% accuracy, and 98.60% AUC as performance measures. 

 

In another quest to improve the accuracy and efficiency of ETD models using the SGCC 

dataset, Iftikhar et al. (2024) proposed a hybrid ETD model of MLP and GRU (MLP-GRU), 

and used k-means SMOTE as a class-equalizing technique to balance the dataset. The 

authors used simple imputer method to replace the missing values in the given dataset. The 

hybrid MLP-GRU model achieved precision of 97.50%, recall of 95.00%, F1 score of 

94.00%, accuracy of 93.33%, MCC of 85.00%, AUC of 100%, PR-AUC of 95.00%, and test 

loss of 20.00% as metric performances at 90% and 10% train and test ratios respectively. 

Khan et al. (2024) used RUS technique to balance the imbalanced SGCC dataset during 

data preprocessing, and then also applied AlexNet for reducing the dimension of the SGCC 

dataset and for feature extraction to enhance ETD. After these, a CNN model was deployed 

for ETD. The authors used data interpolation technique to replace the missing values in the 

given dataset. The CNN model achieved precision of 89.00%, recall of 86.00%, F1 score of 

84.00%, and accuracy of 86.00% as ETD results. The authors also experimented with 

unpreprocessed SGCC dataset using fully connected neural network as the ETD model, 

but the preprocessed dataset expectedly achieved better ETD results. 

 

The authors in Liao, Bak-Jensen, et al. (2024) explored optimal sample selection of dataset 

features as a proposed strategy to reduce dataset annotation efforts within a limited budget 

in a bid to maximize ETD prediction performances. Although the employed SGCC dataset 

is already annotated or labelled by default but the comprised annotations were not 

considered by the authors. This approach tends to improve ETD from the perspective of 

data by selecting the most useful samples instead of the conventional approach of 

improving model performances through enhancing the structure of the ETD model. The 

authors proposed uncertainty-based sample (UBS) annotation, fraud class-based sample 

(FBS) annotation, and distance-based sample (DBS) annotation as the three innovative 

strategies for the selection of the optimal samples for annotation in the SGCC dataset for 

ETD. Linear interpolation was employed to impute the missing values in the given dataset, 

while part of the functions of the FBS strategy was to handle the class-imbalance problem. 

The SGCC dataset was divided into three different sizes of datasets (dataset 1, dataset 2, 
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and dataset 3) before applying the novel strategies. Dataset 1 was referred to as small 

dataset, dataset 2 as medium dataset, and dataset 3 as large dataset in accordance with 

the sizes of their training samples. Simulations were carried out separately on each of the 

three datasets with sample annotations of 500, 1500, 3000, and 4500 on each of the three 

datasets at different fraudulent ratios and different ETD classifiers. The results of baseline 

or traditional strategies like random sampling (RS), clustering-based sampling (CS), and 

density estimation-based sampling (DES), including when the datasets were without any 

annotation have also been compared with the novel strategies. Simulation results showed 

that the results of the novel strategies were better than the baseline strategies. MLP, CNN, 

RF, XGBoost, and LightGBM were used as ETD classifiers.  Overall, the FBS strategy 

produced the best results of 90.20% F1 score, 77.80% AUC, 95.90% MAP@100, and 

93.00% MAP@200, at 1500 sample annotations using dataset 2 and XGBoost as classifier. 

The proposed novel strategies are capable of improving ETD better across range of ML 

classifiers when compared with the traditional ML strategies. 

 

Also, the authors in Liao, Zhu, et al. (2024) have proposed DetectGAT model for ETD. 

DetectGAT is a modified graph attention network (GAT), a new neural network model which 

captures the periodicity and latent features of electricity consumption data through dynamic 

graphs, for the purpose of ETD. DetectGAT refers to using GAT in dynamic-graph domain 

for ETD after initially converting the electricity consumption data into a graph. This is done 

by migrating GAT from conventional static graph inferences to ETD-based dynamic graph 

inferences. Dynamic graphs allow necessary structural adjustments in order to capture 

periodicity and latent features from the SGCC dataset. The authors used linear interpolation 

method to replace the missing values in the given dataset. The DetectGAT model achieved 

AUC of 78.90%, MAP@100 of 98.10%, and MAP@200 of 95.60% as the best performance 

results during group 3 experiment when the ETD model proposed by the authors 

(DetectGAT) was applied to the SGCC dataset. 

 

Mehdary et al. (2024) employed XGBoost model for ETD and a metaheuristic algorithm 

called genetic algorithm (GA) to enhance the performance of the model. The GA was used 

to finetune the hyperparameters of XGBoost model to optimize the ETD metric 

performances. The authors utilized linear interpolation method to replace the missing data 

in the SGCC dataset, and also used SMOTE and ensemble methods to balance the dataset. 

The performance metrics like precision, recall, accuracy, and the AUC of the ETD model 

improved significantly after tuning hyperparameters using GA to optimize the XGBoost 

model. After hyperparameter tunings, the performance metric value of precision increased 
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from 75.00% to 92.00%, recall increased from 68.00% to 89.00%, accuracy increased from 

82.00% to 97.80%, while AUC also increased from 78.00% to 96.00%. 

 

The authors in Nirmal et al. (2024) proposed the hybrid of CNN and AdaBoost as ETD 

model. The CNN extracts important features from the preprocessed SGCC dataset, while 

AdaBoost classifies the benign and fraudulent electricity customers. Meanwhile the authors 

used SMOTE as the class balancing technique to equalize the benign and fraudulent 

consumer samples in the SGCC dataset. Also, linear interpolation method was used to fill 

in the missing values in the dataset. The proposed model eventually achieved 94.07% 

precision, 95.73% recall, 95.60% F1 score, 96.35% accuracy, 57.00% AUC, 28.80% RMSE, 

and 8.29% mean absolute error (MAE) as evaluation scores to determine the model 

performances. 

 

In another attempt to develop an efficient NTLD model using the SGCC dataset, Shahzadi 

et al. (2024) proposed Time Series Lag Embedded Network (TLENET) as ETD model to 

classify honest and fraudulent electricity customers. The authors used Wavelet Transform, 

Fastfood Transform, and Nyström Transform as dimensionality reduction methods. They 

also used Localized Random Affine Shadowsampling (LoRAS) as a class-balancing 

technique, and a game theory-based SHapley Additive exPlanation (SHAP) method to 

interpret the output of the proposed DNN model. Aside LoRAS, other class-balancing 

techniques like Adaptive Oversampling Minority Samples (ADOMS), Synthetic Minority 

Oversampling Borderline-Data (SMOBD), Minority Cloning Technique (MCT), Random 

Oversampling Examples (ROSE), and Proximity Weighted Synthetic Oversampling 

(ProWSyn) were also experimented, but LoRAS proved to be a better technique in terms 

solving overfitting problem, and producing low variance with respect to the classifier output. 

The authors deployed simple imputation method to fill in the missing values in the SGCC 

dataset. The TLENET model achieved 92.00% F1 score, 94.00% accuracy, 93.00% AUC, 

and 87.00% MCC as performance scores using LoRAS class-balancing technique, and 

Wavelet Transform for dimensionality reduction. The Wavelet Transform produced better 

prediction scores with the TLENET classifier and LoRAS class-balancing technique than 

other experimented dimensionality reduction methods. 

 

Wang et al. (2024) deployed multi-step model based on LSTM to fill in the missing data in 

the SGCC dataset, and hybrid federated learning-based stacking ensemble gate recurrent 

unit (FL-SE-GRU) algorithm which utilized the optimal features from the dataset as the ETD 

model. The authors introduced artificial theft attacks from nine cyberattack models which 

produced nine different types of data attacks on the SGCC dataset in order to balance the 
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dataset. The model achieved 96.6% precision, 93.8% sensitivity or recall, 95.1% F1 score, 

and 95.0% accuracy as ETD performance results. 

 

The authors in L. Zhu et al. (2024) proposed a model that significantly reduced the inherent 

high costs associated with the manual labelling of electricity consumption datasets used in 

developing ETD or NTLD models. This is in addition to the authors’ fundamental objective 

of achieving desirable performance scores to ensuring significant ET or NTL reduction in 

electric grids. These objectives were accomplished by developing an intelligent and cost-

effective ETD model which is an incorporation of deep learning (DL) and active learning 

(AL) termed deep active learning (DAL). DAL involved splitting the default annotated dataset 

into labelled and unlabelled sets. The DAL scheme constitute the combination of CNN with 

Bayesian AL or Bayesian active query that is based on Monte Carlo dropout. The CNN 

algorithm dealt with the ETD aspect, while the Bayesian AL tackled the data annotation 

aspect of the scheme. The Bayesian AL assisted in deriving a discriminative CNN model 

that require minimum data annotations without compromising the detection reliability of the 

proposed DAL model. Class-balancing of the SGCC dataset was not considered by the 

authors, but forward interpolation method was used to replace the missing values in the 

dataset. The proposed model achieved 93.02% accuracy, 81.91% AUC, 91.67% 

MAP@100, and 87.89% MAP@200. The DAL model enhanced cost-effective data 

annotation with reliable performance scores. The DAL scheme culminates in about 66.7% 

reduction in manual data annotation costs. 

 

Finally, S. Zhu et al. (2024) presented a combination of Omni-Scale CNN (OS-CNN) and 

AutoXGB models termed OS-CNN-AutoXGB as the proposed model for ETD. The OS-CNN 

was used for feature extraction, while AutoXGB was utilized for hyperparameter 

optimization and classification of benign and malignant electricity consumers. The authors 

deployed SMOTEENN as the class-balancing technique, and Piecewise Cubic Hermite 

Interpolating Polynomial (PCHIP) method to replace the missing values in the SGCC 

dataset. The OS-CNN-AutoXGB model achieved 97.50% precision, 94.10% recall, 95.50% 

F1 score, 99.20% accuracy, and 98.40% AUC as experimental assessment results showing 

the predictive powers of the model. 
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Table 4.2: Performance comparison of the proposed ETD model and other SGCC dataset-based 

models presented in the literature 

S/No. Model Precision 

(%) 

Recall 

(%) 

F1 

Score 

(%) 

Accuracy 

(%) 

MCC 

(%) 

 

AUC 

(%) 

 

PR-

AUC 

(%) 

Reference 

1. RDAE-AG-TripleGAN 
 

98.70 95.60 96.70                – 94.30 95.20 95.80 (Aslam, 
Ahmed, et al., 
2020) 

2. LSTM-Unet-Adaboost 
 

99.80 92.90 95.40 97.20 90.20 94.80 95.80 (Aslam, 

Javaid, et al., 

2020) 

3. (FA-XGBoost) 
 

93.00 97.00 93.70 95.00 85.60 95.90 – (Khan et al., 

2020) 

4. GAN-NETBoost 
 

96.80 94.00 95.00 95.00 91.00 96.00 – (Aldegheishem 

et al., 2021) 

5. ResNet+RF 99.17 94.92 96.93 99.10 – 99.68 – (Arif et al., 

2021) 

6. DANN 
 

48.24 61.03 53.89 91.29 – 77.54  (Bohani et al., 

2021) 

7. K-means+DWMCNN-RF 
 

97.70 87.47 92.30 90.65 – 99.00 – (Cheng et al., 

2021) 

8. FRESH+treeSHAP+CatBoost 95.08 92.37 93.71 93.38 – – – (Hussain et al., 

2021) 

9. AlexNet+APLSTM-ESNN 90.00 92.10 92.00 96.30 84.00 96.40 97.30 (Javaid, 2021) 

10. LLE+GANCNN 95.00 99.00 90.00 95.00 – 98.5 – (Javaid, Gul, 
et al., 2021) 
 

11. DSN 91.20 92.30 92.80 95.30 – 93.40 – (Javaid, Jan, 
et al., 2021) 
 

12. RICASAE+Jaya-RUSBoost 57.20 100.00 – 96.40 – 95.70 – (Mujeeb et al., 
2021) 

13. CBOS+CNN – – – 68.33 – 80.84 – (Pereira & 

Saraiva, 2021) 

14. GoogLeNet+GRU – – – – – 96.00 97.00 (Shehzad et 

al., 2021) 

15. TCN-EMLP – – – – – 84.00 – (Arif et al., 

2022) 

16. 2D-CNN+Bi-LSTM 97.00 92.00 94.00 95.00 93.00 97.00 98.00 (Asif et al., 

2022) 

17. Default and generated 

statistical features+DRF 

99.00 98.00 98.00 98.00 97.00 98.33 – (Badawi et al., 

2022) 
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18. ND-CP+single-layer neural 

network 

– – 78.90 77.00 – 83.20 – (Fei et al., 

2022) 

19. ConvLSTM 98.40 94.80 96.60 96.60 – 97.70 98.00 (Gao et al., 

2022) 

20. Jaya algorithm+KTBoost 95.08 93.18 93.71 93.38 90.77 – – (Hussain et al., 

2022) 

21. PFSC 96.40 95.40 95.90 – – 98.50 – (Khan et al., 

2022) 

22. HGC – 92.10 94.80 94.70 – 98.70 98.50 (Khattak et al., 

2022) 

23. PCA+Bayesian 

classifier+Mrmr+DNN 

– – – 91.80 – 97.00 – (Lepolesa et 

al., 2022) 

24. GCN-CNN – – – – – 78.70 – (Liao et al., 
2022) 

25. Tomek links+BiGRU-

BiLSTM) 

80.60 80.90 80.70 95.00 – 95.00 – (Munawar, 

Javaid, et al., 

2022) 

26. AttenLSTMInception 97.00 94.00 96.00 95.00 – 98.00 – (Munawar, 
Khan, et al., 
2022) 

27. TLGRU 97.96 86.59 91.92 91.56 – 91.68 – (Pamir, Javaid, 
Javaid, et al., 
2022) 

28. AE-BiGRU 91.30 88.60 89.90 90.10 – 90.10 – (Pamir, Javaid, 

Qasim, et al., 

2022) 

29. ABC+AlexNet+AdaBoost 86.00 84.00 85.00 88.00 78.00 91.00 – (Ullah et al., 

2022) 

30. PCA+stacking model – – 97.66 97.69 – 97.69 96.55 (Ali et al., 

2023) 

31. Grid search optimization 

technique+extremely 

randomized trees 

97.00 98.00 98.00 98.00 95.06 99.65 – (Appiah et al., 

2023) 

32. DSDBGWT 
 

– – 62.90 – – 92.30 – (Bai et al., 

2023) 

33. PCA+XGBoost 98.00 98.00 97.00 – – – – (Kawoosa et 

al., 2023) 

34. SPRC 99.60 98.70 99.10 99.70 – 98.70 – (Khan et al., 
2023) 
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35. DenseNet-GRU-LightGBM 
 

92.00 96.00 – – – 92.00 87.00 (Naeem, 

Aslam, et al., 

2023) 

36. STL-FractalNet-LightGBM 94.20 96.10 93.30 96.20 94.20 92.10 90.40 (Naeem, 

Javaid, et al., 

2023) 

37. CNN-XGB 92.00 54.00 15.00 92.00 – 54.00 – (Nawaz et al., 

2023) 

38. PCA+RF 98.60 93.80 – 95.82 – 98.90 – (Nayak & 
Jaidhar, 2023) 

39. SSA-GCAE-CSLSTM 99.45 92.66 95.93 92.25 – 71.13 – (Pamir et al., 

2023) 

40. CNCP 95.08 98.70 96.85 – – – – (Wang et al., 
2023) 

41. WDCNN – – 53.72 – – 83.61 – (Xia et al., 

2023) 

42. rotation_dwbls 
 

– – – – – 83.41 – (Yang et al., 

2023) 

43. MCNN-BiGRU 95.67 91.48 93.53 91.10 – 93.00 – (Yao et al., 

2023) 

44. LSTM-TCN+DCNN 93.20 96.40 94.80 94.70 – 98.60 – (Huang et al., 

2024) 

45. MLP-GRU 97.50 95.00 94.00 93.33 85.00 100.00 95.00 (Iftikhar et al., 

2024) 

46. AlexNet+CNN 89.00 86.00 84.00 86.00 – – – (Khan et al., 
2024) 

47. FBS+XGBoost – – 90.20 – – 77.80 – (Liao, Bak-

Jensen, et al., 

2024) 

48. DetectGAT – – – – – 78.90 – (Liao, Zhu, et 

al., 2024) 

49. GA+XGBoost 92.00 89.00 – 97.80 – 96.00 – (Mehdary et 
al., 2024) 

50. CNN-AdaBoost 94.07 95.73 95.60 96.35 – 57.00 – (Nirmal et al., 

2024) 

51. Wavelet 
Transform+LoRAS+TLENET 

– – 92.00 94.00 87.00 93.00 – (Shahzadi et 

al., 2024) 

52. FL-SE-GRU 96.6 93.8 95.1 95.0 – – – (J. Wang et 

al., 2024) 

53. DAL – – – 93.02 – 81.91 – (L. Zhu et al., 

2024) 



 

257 
 

54. OS-CNN-AutoXGB 97.50 94.10 95.50 99.20 – 98.40 – (S. Zhu et al., 

2024) 

55. Proposed CNN-RF 100.00 98.36 99.17 99.20 98.40 99.13 99.55 N/A 

 

The result comparisons in Table 4.2 have shown that the proposed CNN-RF model 

outperformed all other SGCC dataset-based ETD models presented in the existing 

literature. The higher performance-metric values obtained through the proposed CNN-RF 

model have shown that the proposed model generalizes better (Khan et al., 2020:22) and 

is more reliable and accurate than all other SGCC dataset-based ETD classifiers which 

have been presented in the literature. The comparison has solidly established the 

superiority of the proposed model in ETD. As previously mentioned, the SGCC dataset-

based NTLD models presented in the benchmark journal articles have been trained on 

same SGCC dataset which have also been used in training the proposed model, to ensure 

fair comparisons. Again, the referenced SGCC dataset-based ETD models and their 

prediction results in the existing literature were published between the years 2020 and 2024, 

and have been used as benchmarks to determine the effectiveness of the proposed model 

in detecting ET, as shown in Table 4.2. The superiority of the proposed model over the 

benchmark models represents a huge contribution and advancement to the field of NTLD, 

for the detection of NTL in Smart Grids. 

 

4.6    Discussion 
 

The first point of departure in the process of detection and mitigation of ET or NTL is to 

develop a formidable model to do so. In a bid to significantly contribute to knowledge in this 

research project, the aim of the thesis has been to build a formidable NTLD model that will 

profoundly detect ET better with greater mitigation prospects than the previously developed 

NTLD models in the existing literature.  The CNN, RF, and the proposed CNN-RF hybrid 

models developed in this research have separately shown superior and impressive 

prediction results, but the classification results of the proposed CNN-RF model have shown 

better ETD predictions when compared exclusively with the results of either the standalone 

CNN model or the RF model. The proposed model has performed better than all the 

previously developed NTLD models in the existing literature. Those previously developed 

benchmark NTLD models in the previous research have also been constructed by 

employing the same SGCC dataset used in developing the proposed model. It is noteworthy 

to mention that the higher the detection capacity of an ETD model, the better its onsite 

mitigation prospects. 
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Fifty-four (54) recent NTLD models developed in the existing literature between the years 

2020 and 2024 have been benchmarked with the proposed model, and the results obtained 

through the models have shown that the proposed model produces the best results as 

presented in Table 4.2, showing enhanced detection performances which will eventually 

spur greater mitigation of NTL in electric grids. The higher predictive power obtained vis-à-

vis the proposed model is a fulfilment of the aim and objectives of the research, and is also 

a means of proffering answers to the research questions. NTLD models with greater 

prediction results promote healthier electric grids with enhanced electricity availability, help 

the electric utilities to generate more profits, stimulate economic growths and foster 

sustainable economies, aid security of citizens, and bolster technological advancements 

since most inventions and innovations in modern societies largely dependent on the 

availability of electricity. 

 

4.7    Conclusion 
 

The proposed CNN-RF model shows very excellent and interesting results. Overall, the 

proposed model has performed better than all the previously presented ETD models in the 

selected literature. The ETD models presented in the previous research, which are 

compared or benchmarked with the proposed model, have all been developed using same 

SGCC dataset. It is reasonable to compare different types of NTLD models to be able to 

ascertain the models with the best predictive powers (Janiesch et al., 2021:690). The 

comparison of the performance results of the proposed CNN-RF model developed in this 

thesis with the performance results of the recently developed SGCC dataset-based ETD 

models presented in the existing literature is the benchmark used in rating the efficacies 

and efficiencies of the proposed model with respect to other NTLD models.  

 

The performance results achieved by the proposed model are superior and constitute the 

major contribution of this research project. The increased performance scores obtained 

from the proposed model indicates better NTLD. Better NTLD would further spur more-

reliable and more-efficient onsite inspections for better mitigations of ET in the power grids. 

Onsite mitigation efficiency is premised on the detection capacities of ETD models. The 

higher NTL detections achieved in this research, as indicated by the performance results of 

the proposed model through the performance assessment metrics, have seamlessly 

proffered answers to the research questions, while also simultaneously fulfilling the aim and 

objectives of the research project. Better mitigations of ET enhance grid stability and 

reliability, ensure more revenues and profits to the electric utilities, and also help in 

improving the economies of nations worldwide. These are feats which the proposed model 
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is poised to achieve based on its higher prediction scores. Without reducing NTL 

significantly in the power grids, the United Nations’ vision of “electricity for all” by the year 

2030 (Javaid, Jan, et al., 2021:44) would definitely be unrealized.   
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CHAPTER 5 
 

CONCLUSIONS AND RECOMMENDATIONS 
 

5.1    Introduction 
 

Additional electricity generation to cater for extrinsically-induced energy losses is not 

sustainable without drastically curtailing electricity theft (ET) or non-technical losses (NTL) 

in the power grids. ET has triggered dire economic consequences as it has caused financial 

losses close to US$100 billion per year to electric utilities all over the world (Coma-Puig et 

al., 2024:2705; Kim et al., 2024:2; Shahzadi et al., 2024:2; L. Zhu et al., 2024:256). Since it 

is impossible to completely eliminate ET in the power systems, the motivation for this 

research is premised on the quest to further prune ET in the distribution networks to the 

barest minimum, using the state-of-the-art artificial intelligence-based (AI-based) machine 

learning (ML) methods. This is done by improving the existing electricity-theft detection 

(ETD) methods, which is necessary to obtain more robust, effective, efficient, and reliable 

models for better NTL detections (NTLDs).  

 

The effort of this research project is primarily geared towards detecting and mitigating ET 

better in Smart Grid (SG) using real-world dataset. The proposed ETD model is basically 

developed to further increase NTLD performances, in order to achieve a more satisfactory 

mitigations of ET in the power grids. This chapter concludes the research by summarizing 

all the previous chapters of the thesis, recapping the performance results of the developed 

model, while also highlighting the essence and contributions of the research. Lastly, this 

chapter gives other supplementary suggestions and prospects that could further assist in 

the future detections and mitigations of NTL. 

 

5.2    Conclusions 
 

Chapter 1 of this thesis underscores the importance of electricity to humanity and also 

establishes the concept of ET including its historical background, forms, causes, effects, 

and its detection and mitigation approaches. The statement of the research, the salient 

research questions, the aim and objectives of the research, its delineation, significance, 

research contributions as well as the organization of the thesis have also been discussed 

in the introductory chapter. Chapter 2 is a review of the literature. The review centres on the 

evolution of the electricity grids and the electricity meters. Various NTL prevention, detection 

and mitigation techniques which form the core of this research have also been reviewed in 

the chapter. Chapters 3 and 4 are the experimental part of the thesis. Chapter 3 dealt with 
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the methodology employed in modelling the ETD systems, while Chapter 4 explicates the 

experimental results and their interpretations. This chapter (Chapter 5) is the final chapter 

of the thesis and thus summarizes the research project as a whole and recommends 

possible future directions that would tend to supplement the existing ETD and ET mitigation 

efforts in a bid to further stem the spate of NTL in the electricity grids. 

 

We have been able to establish earlier in the previous chapters that AI-based NTLD 

methods are the predominant, cost-effective, and the most reliable techniques for predicting 

customers who may likely steal electricity or cause NTL. Using the AI-based methods, 

electricity consumers with suspicious or irregular consumptions are then shortlisted for 

onsite inspections. Using AI methods reduce unnecessary, unilateral, and costlier onsite 

inspections associated with the traditional NTLD methods, thereby lessening the cost of 

NTL mitigations in electricity systems. 

 

The ETD model developed in this thesis is more reliable and efficient, and are even of 

greater importance and benefits, especially now that the spate of ET has increased 

geometrically in the developing countries, while also considerably rising in the developed 

countries. The proposed CNN-RF model is therefore recommended for use by electric 

utilities to reduce NTL in their various distribution networks (Iftikhar et al., 2024:02).  NTL 

must be significantly reduced to enhance healthy, reliable, and sustainable electric grids. 

Apart from reducing energy poverty, a thriving electricity grid with low NTL achieves 

economy of scale, which proportionally translates into increase in utility revenues that 

ensure profits to the power supply companies, and improves national economies.  

 

Countries in the modern world depend on reliable electricity as a major economic driver 

because there is hardly a sector in any progressive economy that do not require electricity 

to function. A reliable electricity supply translates into economic prosperity, creates more 

job opportunities, and helps to improve the social well-beings among citizens (Wabukala et 

al., 2023:1, 3). Therefore, developing formidable ETD models with high-predictive powers, 

which will assist in reducing NTL significantly in the electric grids is of greater economic 

value. Reducing ET in the power grids to a bearable minimum is a serious task that must 

be accomplished. The proposed CNN-RF model developed in this research project 

achieved unprecedented increase in performance results, and such improvement will pave 

way for significant NTL reduction in power grids. 
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5.2.1    Summary of results 
 

To address our research questions in a bid to fulfill the aim and objectives of this study, 

there is a need to develop an ETD model that would be more efficient (i.e., produce higher 

metric performances) with very-low false positives (FPs) or false alarms. We have been 

able to develop such model to fulfill the veracity of the research project. The NTLD 

simulations were carried out using Python in a Google Colab Integrated Development 

Environment (IDE), using the real-world dataset released by the State Grid Corporation of 

China (SGCC). The SGCC dataset used in constructing the proposed model has also been 

used in several existing high-profile literature for developing several ETD models. This 

provides a good ground for comparing the performance results of the proposed model with 

the performance results of other ETD models in the previous research. The proposed ETD 

model developed in this research project with the dataset provided by SGCC performed 

better than all the previous ETD or NTLD models that have been developed in the existing 

literature using the same dataset. 

 

The NTLD simulation started with the modelling of convolutional neural network (CNN) 

model, after which the random forest (RF) model was instantiated, and the two models were 

later combined by feeding features from the MaxPooling1D layer of the CNN model into RF 

model to form a hybrid model termed CNN-RF. The hybridization is done in a bid to obtain 

optimal results. Combination of models and hyperparameter tunings of models have been 

formidable means of optimizing models in order to achieve better prediction performances 

(Poudel & Dhungana, 2022:117; Vincent & Jidesh, 2023). The detailed Python codes used 

in implementing the proposed ETD model can be found in the Appendix. 

 

The proposed CNN-RF model achieved precision of 100.00%, recall of 98.36%, F1 score 

of 99.17%, accuracy of 99.20%, Matthews correlation coefficient (MCC) of 98.40%, area 

under the receiver operating characteristic curve (AUC) of 99.13%, area under precision-

recall curve (PR-AUC) of 99.55%, true negative rate (TNR) of 100.00%, false positive rate 

(FPR) of 0.00%, and false negative rate (FNR) of 1.64% as prediction scores. However, 

before the hybridization of CNN and RF models to form the proposed model, CNN model 

achieved 99.95 % precision, 98.48% recall, 99.21 F1 score, 99.25% accuracy, 98.50% 

MCC, 99.94% AUC, 99.95% PR-AUC, 99.96% TNR, 0.04% FPR, 1.52% FNR, while RF 

model achieved precision of 100.00%, recall of 98.23%, F1 score of 99.11%, accuracy of 

99.13%, MCC of 98.27%, AUC of 99.12%, PR-AUC of 99.55%, TNR of 100.00%, FPR of 

0.00%, and FNR of 1.77% individually as performance results. We have so far been able to 

obtain the highest and superior ET prediction results with the proposed CNN-RF model 
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when compared with the previous models presented in previous research which have also 

employed same SGCC dataset used in this work. The table that compares and summarizes 

the results of the proposed model and other SGCC dataset-based ETD models (presented 

in the existing literature) can be found in Table 4.2 in Section 4.5.1.1 of Chapter 4. 

 

5.2.1.1    Contributions to knowledge 
 

Building reliable, efficient, and formidable NTLD model is the core of any realistic and cost-

effective effort towards ET detection and mitigation. Hence, the development of such model 

is the basis of the contribution of this research project. The mitigation efficiency of ET after 

building an ETD model is a function of the predictive or detection power of the developed 

model. The classification efficiency of the proposed model is directly proportional to their 

performance scores. The greater the performance scores, the higher the predictive power 

of the model. Utility technicians will achieve very efficient and cost-effective onsite 

mitigations of ET if the model upon which they have premised their mitigation efforts 

achieves higher performance scores (Messinis & Hatziargyriou, 2018:259). Higher 

performance scores indicate higher model efficiency, signifying low false positives and low 

false negatives. The construction of more accurate and more efficient ETD model can 

significantly contribute to the field of energy management to enhance energy security. The 

proposed model can help utility companies to reduce revenue losses and improve the 

overall reliability of electricity in distribution systems. The developed NTLD model is robust, 

efficient, and reliable. The success achievable by utility inspectors during onsite NTL 

mitigation efforts is directly correlated with the performance of the built model. 

 

It is clear from the comparison of results shown in Table 4.2 in Section 4.5.1.1 of Chapter 4 

that the proposed CNN-RF model outperforms all the existing models that were previously 

developed using the same SGCC dataset employed in this research. The performance 

results of the recent SGCC dataset-based ETD models presented in the existing literature 

never surpassed the performance results of the proposed model. We have been able to 

improve on the efficiency status quos of the previous NTLD models presented in the 

previous research. The detection performance comparisons are based on the employment 

of same SGCC dataset for the model developments, but with different methods of model 

implementations. This is in a bid to reveal the ETD models that have achieved better 

performance results.  

 

Based on the information available to us, the performance results obtained through the 

proposed ETD model developed in this research project are unprecedentedly better when 
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compared with the results of other previously developed NTLD models in the previous 

research. Those previously developed models in the literature have also been constructed 

using the same SGCC dataset employed in developing the proposed model. The proposed 

model is characterized with excellent NTLD results based on the increased predictive power 

of the model as revealed via their performance results. The higher performance scores 

achieved by the proposed model have seamlessly proffered answers to the research 

questions, and have also simultaneously provided the premise for fulfilling the aim and 

objectives of the research. 

 

Apart from the obtained performance results with their excellent predictive powers which 

shows the efficacy of the proposed model in mitigating ET, the discovery of the proposed 

CNN-RF model itself (which serves as a means to achieving the ends) is also a huge 

contribution to the research. Based on the information available to us, no previous work has 

explored the combined strengths of CNN and RF in developing ETD model by applying the 

employed SGCC dataset. The results of the proposed model have revealed that integration 

of models by leveraging on their combined strengths could generate a more robust, 

accurate, and cost-effective ETD model. The summary of the key contributions of the 

research, which has been categorized into theoretical, methodological, and practical 

aspects, is presented in Table 5.1. 

 

Table 5. 1: Summary of the key contributions of the research 

Type of 

contribution 

Impact 

Theoretical i. The proposed hybrid model bridges deep learning (CNN) with ensemble 

learning (RF). 

ii. It enhances generalization on small datasets. 

iii. Replacement of fully connected layers that do classification in CNN with 

RF for better efficiency. 

iv. Interpretability of deep learning improves with the feature importance 

analysis of RF, which allows insights into the extracted CNN features to 

determine those that contributed most to classification. 

  

Methodological i. RF model is trained on the hierarchical features extracted from CNN layers 

instead of training it on raw data. 

ii. The hybrid model reduces the computational cost that may arise when 

only CNN model is deployed. 

iii. RF model handles noisy and imbalanced data better than CNN. 
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iv. The hybrid model works well across different data types, like the time 

series data used in developing the proposed ETD model. It also generalizes 

well with image data and tabular data. 

 

Practical i. The hybrid model achieves higher performance results when handling real-

world tasks than when either CNN or RF model is implemented individually. 

ii. It enables efficient deployment of edge computing. 

iii. The model fosters better generalization to tasks. 

iv. The hybridization of the deep and ensemble models enhances the 

interpretability of the new composite model and make it suitable and 

applicable for better decision making in real-life situations. 

 

 

5.3    Recommendations for future work 
 

To further improve the detection and mitigation of ET or prevent it in the future, the following 

recommendations are made: 

 

(a) Design of stronger firewalls as a formidable cybersecurity system for the Smart Grid (SG) 

system, to ensure that the advanced metering infrastructures (AMIs) and their smart 

meters (SMs) are more secured in order to prevent probable cyber-physical attacks. The 

envisioned intelligent cybersecurity framework should be able to automatically preempt 

and keep track of the latest probable AMI and SM hacking techniques and keep updating 

its database in a bid to always anticipate, stem, and be a step ahead of potential attackers 

of the AMIs and SMs. It is only when the SGs are secured against cyber-physical attacks 

that any NTLD system developed using data from SGs could become effective and 

reliable. Interdisciplinary collaboration among experts in fields like data science, 

cybersecurity, and energy management can bring diverse perspectives and expertise to 

the development of more robust ETD models. 

 

(b) Building explainable ML models for ETD can enhance more transparency and trust in NTL 

predictions, and counter the black-box issues associated with ML (Coma-Puig et al., 

2024). Explainable ML models would fortify algorithms with augmented reality or cognition 

that would allow domain experts to decipher the underlying reasons behind the predictions 

or decisions made by NTLD models. For example, an explainable ML model for NTLD 

would be able to interpret the reasons why a particular customer steals electricity. The 

intuitive nature of explainable ML would further enhance the protection of the grid against 

NTL and tremendously increase the efficiency of physical onsite inspections. Electric 
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utilities need explainable ML models to justify theft classification decisions before taking 

legal actions against customers. Explainable ML should be explored to build ETD models 

that will further reduce NTL in the electric power systems to promote healthier grids. 

 

(c) Exploring ways to integrate ETD models with several other grid management systems that 

forecast energy consumptions. Such integrated system can provide domain experts with 

firm and holistic control of the grids. 

 

(d) Developing novel feature engineering methods specific to ETD can improve model 

performances and help in better extraction of more meaningful insights from raw datasets. 

 

(e) Utility technicians should improve the inspection accuracies of their onsite surveillances 

by avoiding false positives (false alarms) and false negatives. This would ensure correct 

labelling of input dataset which would then be used to develop reliable NTLD systems or 

models to enhance better ET predictions (Messinis & Hatziargyriou, 2018:262; Saeed et 

al., 2020:16; Liao, Zhu, et al., 2024:5075). 

 

(f) AI-based automated NTLD models could only reliably predict those consumers who steal 

electricity and those who do not, but would not be able to inspect the premises of the 

customers to confirm NTL or enforce the law to mitigate ET after the theft may have been 

confirmed. However, to enhance reduction of NTL, the criminal law of every country must 

include ET which should be enforced against the culprits. Governments of various 

countries should revise their electricity acts and include ET among major crimes that 

should attract stringent penalties.  

 
Any crime like ET which culminates in bringing the economic activities of any country down 

should be given priority attention, and must be tackled with utmost seriousness and 

sincerity. Governments of various realms should reform and empower the law 

enforcement agents and make them available to the utilities for immediate arrest of 

confirmed electricity thieves. The role of the law enforcement agents in the fight against 

ET is very significant, as six electricity thieves including a teacher were recently caught by 

the utility inspectors and arrested by the law enforcement agents in a joint operation in 

Osogbo, Osun State, Nigeria for stealing electricity via tampering their meters (Ezediuno, 

2023). The functionality of security agents in the fight against ET cannot be 

overemphasized. Also, special or dedicated courts should be established in all realms to 

enhance speedy hearing, trial, and prosecution of ET offenders. The Jamaican electric 

utility, Jamaica Public Service Company (JPS), is clamouring through the Government for 
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the establishment of special utility courts in the country in order to quickly bring electricity 

thieves to book (Campbell, 2021). However, the governments of Sierra Leone (Sesay, 

2021) and Pakistan (Dawn, 2023) have already considered the concept of special courts 

to try ET offenders, while the Nigerian authority (Aduloju, 2024) is also currently 

considering this important measure to hasten the prosecution of ET culprits in a bid to 

specially curb the theft of electricity. Special courts will enhance quick prosecution of 

electricity thieves, and such will debar future reoccurrences of the crime. 

 

(g) Raising public awareness about ET to sensitize citizens that stealing electricity is an illegal 

act, including rolling out its legal implications under the law and encouraging customers to 

report suspected consumers who engage in theft. Erasing through publicities the dubious 

notions among some citizens who think electricity should be a social service (Onat, 

2018:166; Ojoye, 2019; Shokoya & Raji, 2019b:469), and also obliterate such among 

those who believe that electricity should be given for free by right or by entitlement 

(Robinson, 2014), are also very important steps in stemming the acts of stealing electricity. 

 

(h) NTL prohibitive measure like publicizing the names and other particulars of stealing 

consumers in the available media, including launching whistleblowing platforms in a bid to 

“name and shame” the theft culprits has been used in some realms as mentioned in 

Section 2.4.4 of Chapter 2 to avert ET. Such prohibitive measure has proven to be very 

effective (Antmann, 2009:24), and should be sustained as a veritable tool to further 

prevent NTL in the power grids. This method is very potent as many electricity consumers 

are media-shy and are always keen to protect their names and those of their families, 

especially for the negative reasons. This method is recommended to those electric utilities 

around the world that have not yet adopted it. 

 

(i) Researchers, especially those in the field of economics, social sciences, and humanities 

should do more innovative works on theoretical NTL mitigation-based studies and 

promulgate new economic and scientific theories that will make the payment of bills 

attractive to electricity customers, and enhance customer-utility relational engagements 

that will further strengthen the interrelationships between the utilities and their customers, 

in a bid to prevent or prohibit ET. 

 

(j) The proposed NTLD solution could be potentially servitized (Janiesch et al., 2021:692-

693) for future use in real-world applications by transferring its detection prowess to other 

utility domains across the world in the form of commercial NTLD software for optimal 

detection of ET (Iftikhar et al., 2024:02). Such software should be integrated with the AMI 
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to enhance real-time monitoring of electricity customers for NTLD. This would then provide 

utilities with timely information to be able to take immediate action against electricity 

thieves, thus reducing NTL drastically. Using different or non-SGCC datasets from other 

utilities with the proposed model will also help to further establish its efficiency and 

effectiveness. 

 

(k) The NTLD experiment in this research project and the majority of works on NTLD in the 

previous research mainly focus on detecting NTL in the low-voltage (LV) secondary 

distribution networks of the power grids because most dubious actions that cause NTL 

take place at this level of the grid (Kim et al., 2024:11). Future efforts should also be made 

to check NTL in the medium-voltage (MV) primary distribution networks and the high-

voltage (HV) transmission networks. Although, majority of electricity thieves do not venture 

into theft at MV and HV network levels of the grid due to the intricacies and greater risks 

involved, but some sophisticated electricity thieves, powerful ET syndicates or mafia might 

perhaps be exploring the MV and HV network levels of the electric grid in a bid to steal 

electricity and later sell at cheaper rates (Depuru et al., 2011a:1010). Grid stakeholders 

or domain experts should be proactive and keep surveillance on the entire grid system to 

achieve optimal results in terms of NTLDs and NTL mitigations.  

 
(l)  Electric utilities, especially those in Africa, should upgrade to the next-generation grid 

otherwise known as SG, to enhance the efficiency and security of their electricity grids 

and to prevent ET by using the intelligent SMs with end-to-end real-time monitoring of 

energy consumptions through the AMIs. Additionally, with SMs more data will be available 

to diagnose the grid of NTL using the state-of-the-art AI-based ML methods (Gu et al., 

2022:4568; Liao, Zhu, et al., 2024:5075). 

 

(m)  Open-access and anonymized real-world electricity consumption datasets should be 

made available by the utilities to advance the course of research in NTLDs. Big datasets 

that would reveal consumers’ geographical spread and seasonal consumption changes 

over the years are recommended. This is necessary to capture the actual electricity 

consumption patterns of different electricity consumers, showing reasons behind diversity 

in their consumptions. 

 
(n) Finally, future efforts should also be geared towards modifying and utilizing the proposed 

model to detect theft or fraud in non-electricity sectors like banking, insurance, capital 

markets, and accounting, etc.  
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APPENDIX 
 

The Appendix contains the codes used in the implementation of the algorithms to develop the 

proposed electricity-theft (ET) or non-technical losses (NTL) detection model which its theoretical 

modelling approach has already been presented in Chapter 3. The artificial intelligence-based 

(AI-based) machine learning (ML) simulations for the NTL detection (NTLD) model is carried out 

using Python in Google Colaboratory (Colab) Integrated Development Environment (IDE). Only 

the implementation codes used in developing the proposed model has been explicitly presented 

here, but the code outputs or results have not been presented. The Python implementation codes 

could then be run (by anyone who intends to authenticate the veracity of this work) on any Python 

IDE to obtain their corresponding outputs. The dataset used in the development of the NTLD 

model is from the State Grid Corporation of China (SGCC). SGCC is a Smart Grid (SG) electric 

system, while the dataset used in building the proposed model is thus a SG data which has been 

obtained from the smart meters (SMs) of the represented electric customers.  

 

The hybrid of CNN and RF models termed as CNN-RF has been proposed in this thesis to 

enhance or optimize electricity-theft detection (ETD). The model hybridization combines the 

strengths of both convolutional neural network (CNN) and random forest (RF) models, in a bid to 

improve the individual performances of the constituting models. Model performance improvement 

tends to increase the efficacy and efficiency of utility onsite mitigation efforts, which further 

reduces NTL in the power grids to the barest minimum. Although CNN-RF is the proposed model, 

the constituent models (CNN and RF) that make up the hybrid model have also been tested 

individually to determine their viabilities before later combining them to get better results. 

 

The Python codes used in executing the CNN, RF, and the proposed CNN-RF models are 

contained from Sections A.1.1 to A.1.8 of the implementation codes. The comprehensive 

implementation codes reveal details of the ML algorithms executed to construct the ETD-based 

ML models. Comments are added to the codes, while some other explanations are also infused 

within the codes to shed more light on the functions of the Python codes. Also, the codes have 

been broken into several sections to aid easier understanding of the different steps taken to arrive 

at the developed models. The inclusion of the implementation codes used in constructing the 

models is important to convey the originality of the research.   
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Python implementation codes 
 

A.1.1    Libraries import 
 

import pandas as pd 

import numpy as np 

import seaborn as sns 

import matplotlib.pyplot as plt 

import math 

import statistics 

import imblearn 

import plotly.express as px 

from imblearn.over_sampling import SMOTE 

from sklearn.preprocessing import StandardScaler, MinMaxScaler 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import classification_report, accuracy_score 

from sklearn.metrics import confusion_matrix 

from sklearn.metrics import f1_score 

from sklearn.metrics import (auc, confusion_matrix, 

precision_recall_curve, precision_score, recall_score, roc_auc_score, 

roc_curve) 

!pip install plot-metric 

from plot_metric.functions import BinaryClassification 

 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import accuracy_score 

from matplotlib import pyplot 

import matplotlib.pyplot as plt 

import matplotlib.pyplot as plot 

import pandas as pd 

import numpy as np 

 

from keras.models import Sequential 

from keras.layers import Dense 

from keras.layers import Dropout 

from keras.layers import Conv1D 

from keras.layers import Flatten 

import tensorflow as tf 

import tensorflow.compat.v1 as tf 

tf.disable_v2_behavior() 

from numpy import loadtxt 

import keras 

from tensorflow.keras import Sequential 

from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense, 

Activation, Dropout, Flatten, BatchNormalization 

from tensorflow.keras.optimizers import Adam, RMSprop, SGD 

from tensorflow.keras import Model 
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from tensorflow.keras.callbacks import 

ModelCheckpoint,EarlyStopping,CSVLogger, 

LearningRateScheduler,ReduceLROnPlateau 

from tensorflow.keras.metrics import binary_crossentropy, TruePositives, 

TrueNegatives, FalsePositives, FalseNegatives, BinaryAccuracy, Precision, 

Recall, AUC 

from tensorflow. keras.utils import plot_model 

from tabulate import tabulate 

 

There are several modules in Python from which libraries are imported to the IDE. To start a 

machine learning project, a good grasp of the model or algorithms remains a vital source to getting 

better predictions or decisions. Some libraries are a straight-away picks from the Python IDE for 

any researcher starting a new project. However, choosing the correct set of algorithms for the 

new project may be quite tasking. The libraries that are imported is divided into the following 

categories: model creation (TensorFlow, Keras and PyTorch), data preprocessing (pandas, 

NumPy, SimplerImputer, SMOTE, etc.), hyperparameter tuning (RandomSearchCV, 

GridSearchCV), experiment tracking (weight, biases), problem specific (OpenCV, Geopandas, 

imutils), and utils (matplotlib, seaborn). 

 

Pandas is a Python package that is used mainly for DataFrame manipulations. NumPy is a Python 

package mainly used for mathematical operations like reshaping of array, expansion of the 

dimensions of array, etc. Seaborn is a package that is built on top of matplotlib module, and is 

mainly used for better data visualizations. Matplotlib is a visualization module like seaborn, but its 

output is not as appealing as that of seaborn. Math module is used for mathematical functions. 

Imblearn is a Python module where undersampling and oversampling techniques like SMOTE 

reside. SimpleInputer is a library that resides in sklearn which is used mainly for replacing missing 

values in DataFrame with either mean, median or the most frequent values, etc. StandardScaler 

is used to scale DataFrame down to values between -1 and 1, while MinMaxScaler scales 

DataFrame down to values between 0 and 1. 

 

The command train_test_split is used to split data into train and test data. Test data is kept 

aside and unexposed during training for effective modelling. classification_report is used 

to give detailed report of performance metrics like precision, recall, F1 score and accuracy of the 

train data. accuracy_score also resides in the classification_report and gives how 

accurately our model performs. Confusion_matrix summarizes true positive (TP), true 

negative (TN), false positive (FP), and false negative (FN) in a graphical form. It states how many 

of the responses that our model classifies accurately as positives and negatives, and how many 

are misclassified as positives and negatives.  
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As the name implies, Sequential model consists of sequence of layers one after the other. 

Dense layer is a neural network that is deeply connected, meaning that each neuron in the dense 

layer is connected to more than one neuron in the preceding layer. Dropout is easily 

implemented by randomly selecting nodes to be dropped out with a given probability (e.g., 20%) 

in each weight update cycle. 

 

This function import tensorflow.compat.v1 as tf tf.disable_v2_behavior() 

can be called at the beginning of the program (before creating Tensors, Graphs, or other 

structures and before devices are being initialized. It switches all global behaviours that are 

different between TensorFlow 1.x and 2.x to behave as intended for 1.x.  The Conv1D is used to 

create convolutional layer. It is used to apply 1D convolution to the input data.  Flatten layer in 

Keras reshapes the tensor to have a shape that is equal to the number of elements contained in 

the tensor. Adam, RMSprop and SGD are optimizers to reduce loss and improve training speeds.    

The Model provides a straightforward, user-friendly method for defining a neural network, which 

TensorFlow will subsequently construct. 

 

A.1.2    Exploratory data analysis and data preprocessing 
 

A.1.2.1    Importing dataset from Google Drive to Google Colab IDE 
 

from google.colab import drive #Import  

drive.mount('/content/gdrive') 

 

A.1.2.2    Link the dataset residing in Google Drive to Google Colab 
 

!gdown  --id 1pTpBfO1CwStFodOtIn_uzzNOWpAmQn_8 

 

Downloading the SGCC dataset residing in the Google Drive to Google Colab using the above 

Google-Drive link attributed to the dataset. The link is automatically generated in Google Drive 

and other Google users could also be given authorized access to the dataset via the link. 

 

A.1.2.3    Reading in the dataset into Google Colab using pandas read_csv 
 

df = pd.read_csv('data.csv') 

 

With the aid of pandas and its method like read_csv(), read_sql(),and read_json()any 

data of these extensions can be read and displayed. Since the dataset used in this research is a 

CSV type, read_csv() has been used to read this file. This module allows researchers to retrieve 

data in the form of a DataFrame. 
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A.1.2.3.1    Determining the proportion of unique values in the dataset 

 

num_Flagged = df[df['FLAG'] == 1].shape[0] 

num_unflagged = df[df['FLAG'] == 0].shape[0] 

 

num_Flagged 

 

num_unflagged 

 

#Print % proportion of flagged and unflagged customers in the whole data 

print(num_Flagged / (num_Flagged + num_unflagged) * 100, '% of customers 

flagged.') 

 

print(num_unflagged / (num_Flagged + num_unflagged) * 100, '% of customers 

unflagged.') 

 

#Print proportion of flagged and unflagged customers in the whole dataset 

print(f'{num_Flagged} customers flagged.') 

 

print(f'{num_unflagged} customers unflagged.') 

 

A.1.2.3.2    Visualizing the proportion of unique values in a bar and a pie chart 
 
#Count proportion of unique values (flagged and unflagged customers) in 

the whole dataset in a bar chart 

 

import numpy as np 

import matplotlib.pyplot as plt 

 

y = df['FLAG'] 

unique, counts = np.unique(y, return_counts=True) 

positions = np.arange(len(unique)) 

 

# Create the bar chart with labels 

plt.bar(positions, counts, label='Counts') 

plt.xticks(positions, unique) 

plt.xlabel('Unique Values') 

plt.ylabel('Counts') 

plt.title('Bar Chart of Unique Values') 

 

 

# Create a legend 

 

plt.legend() 

plt.show() 
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#Percentage proportion of the flagged and unflagged customers in the whole 

dataset in a pie chart 

 
df["FLAG"].value_counts().plot(kind = 'pie',explode=[0, 0.1],figsize=(6, 

6),autopct='%1.1f%%',shadow=True) 

plt.title("Fraudulent and Non-Fraudulent Distribution",fontsize=20) 

plt.legend(["unflagged", "Flagged"]) 

plt.show() 

 

value_counts()method of pandas is used to check how many unique values (0 and 1) in the 

column of FLAG in the DataFrame. explode=[0, 0.1] allows the pie chart to be sliced into 

appropriate portions, autopct='%1.1f%% allows display of percentage (%) which is rounded 

off to one decimal place in the pie chart. shadow=True allows graphic shadow in the pie chart. 

 

A.1.2.4    Checking the first ten rows of the DataFrame (df) 
 

df.head(10) 

 

A.1.2.5    Build a function that checks for the missing values in the DataFrame (df) 
 

def missing_data_all(df): #This function is to find missing data in the 

DataFrame 

    total = df.isnull().sum().sort_values(ascending=False) #sums any field 

whose data is missing to arrive at their total 

    percent = 

(df.isnull().sum()/df.isnull().count()).sort_values(ascending=False) #to 

determine the percentage of the missing or null values in each column 

    missing_data = pd.concat([total, percent], axis=1, keys=['Total', 

'Percent']) #Create a DataFrame to put side by side the total missing 

values and the percentage of missing values for each column 

    return missing_data #Return the result as the DataFrame created in 

missing data above 

 

#Checking the missing data 

 

missing_data_all(df) 

 

A.1.2.6    Append other columns except for “CONS_NO”, and “FLAG” columns into Ib list 

 

l=df.columns # Check all columns in df and store them in l 

la=['CONS_NO','FLAG'] # Store subsets of the columns, ‘CONS_NO’, ‘FLAG’ as 

a list in la 

lb=[]  # Create an empty list called lb 

for i in l: # Loop through every member of l above 

    if i not in la: # Check if those elements in df are not in la 
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        lb.append(i) # Put those elements not in la in the empty list lb, 

meaning that all dates in the df will be stored in lb except ‘CONS_NO’ and 

‘FLAG’ 

 

A.1.2.6.1    Checking if the values in the rows and columns are still intact 
 

#Check if item in row 0 and column 2 is having a null value 

 

math.isnan(df.iloc[0][2]) 

 

A.1.2.7    Format date in year/month/day for all columns and store in fdatesdates list 
 

import datetime #Import datetime module to modify dates 

dates = [datetime.datetime.strptime(ts, "%Y/%m/%d") for ts in lb] 

#Convert string date to datetime format and then store results in dates 

#dates.sort() 

fdatesdates = [datetime.datetime.strftime(ts, "%Y/%m/%d") for ts in dates] 

#Using list comprehension, loop through the lb list created above to 

modify date to the format of year/month/day and store results in 

fdatesdates 

 

A.1.2.8    Insert “0” in all rows of the columns CONS_NO and FLAG 
 

fdatesdates.insert(0,"CONS_NO") #In fdatesdates, insert CONS_NO into 

position 0 

fdatesdates.insert(0,"FLAG")#In fdatesdates, insert FLAG into position 0 

df.columns=fdatesdates #Replace all coulumns in df with new formatted 

columns called fdatesdates 

 

A.1.2.9    Sort dates in ascending order 
 

import datetime 

dates = [datetime.datetime.strptime(ts, "%Y/%m/%d") for ts in lb] 

dates.sort() 

sorteddates = [datetime.datetime.strftime(ts, "%Y/%m/%d") for ts in dates] 

#Change fdatesdates to sorteddates for easy identification of variable name 

 

A.1.2.10    Concatenate sorted dates and the columns CONS_NO and FLAG 
 

cols=df.columns.tolist()[0:2]+sorteddates #Join columns 0 and 1 to 

sorteddates. df.columns.tolist()[0:2] means columns located in position 0 

and 1, i.e., columns CONS_NO and FLAG. sorteddates are the dates on the df 

columns 

 

df=df[cols] #Create a formatted DataFrame still named df with sorted dates 
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A.1.2.11    Fill all columns with their respective observations 
 

train_df=df #Create a version of df named train_df 

l=train_df["2014/01/01"] #Subset “2014/01/01” column of the df and save in 

l 

l1=train_df["2014/01/01"] #Subset “2014/01/01” column of the df and save 

in l1 

l=np.asarray(l).tolist()#Convert the l into NumPy array and then to a list 

l1=np.asarray(l1).tolist #Convert the l1 into NumPy array and then to a 

list 

l2=[] #Create an empty list and name it l2 

for i in range(len(l)): () #Loop through the length of l list  

 

    if math.isnan(l[i]): #Is there any missing member in l list? 

        if math.isnan(l1[i]): #Is there any missing member in l1 list? 

            l2.append(0) #Insert 0 if there is a missing number 

        else: 

            l2.append(l1[i]/2) #If there is no missing number insert 

number /2 

    else: 

        l2.append(l[i]) #Insert number available in the field 

train_df["2014/01/01"]=l2  #Subset “2014/01/01” column of the train_df and 

save in l2 

 

train_df.head() #Display the first five rows of the new train_df 

l=train_df["2016/10/31"] 

l1=train_df["2016/10/31"] 

l=np.asarray(l).tolist() 

l1=np.asarray(l1).tolist() 

 

l2=[] 

for i in range(len(l)): 

    if math.isnan(l[i]): 

        if math.isnan(l1[i]): 

            l2.append(0) 

        else: 

            l2.append(l1[i]/2) 

    else: 

        l2.append(l[i]) 

train_df["2016/10/31"]=l2 

l=train_df.columns 

la=['CONS_NO','FLAG'] 

lbx=[] 

for i in l: 

    if i not in la: 

        lbx.append(i) 
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A.1.2.12    Using interpolation method to replace NaNs or missing values 
 
df_1=df.interpolate(method ='linear', limit_direction ='forward') #Use 

interpolation method of pandas to fill up NaN using two previous non-

missing values in a row in a forward direction 

df_1=df.interpolate(method ='linear', limit_direction ='backward') #Use 

interpolation method of pandas to fill up NaN using two previous non-

missing values in a row in a backward direction 

 

NaN is an abbreviation for “not a number”, which is also known as a missing value. Note that if 

two previous values in a row in either forward or backward direction are not available, NaN will 

still be inserted in the field. 

 

A.1.2.12.1    Checking the values replaced by interpolation 
 

df_1.head() 

 

A.1.2.12.2    Checking if there are still missing values in the DataFrame after interpolation 
 

def missing_data_all(df): 

    overall = df.isnull().sum().sort_values(ascending=False) 

    percentage = 

(df.isnull().sum()/df.isnull().count()).sort_values(ascending=False) 

    missing_data = pd.concat([overall, percentage], axis=1, 

keys=['Overall', 'Percentage']) 

    return missing_data 

missing_data_all(df_1) 

 

Like the function used for missing values in Section A.1.2.5, this function determines the overall 

number of missing values and the percentage of missing values in df_1 

 

A.1.2.12.3    Checking the independent features for missing values 
 

X = df_1.drop(['CONS_NO', 'FLAG'], axis = 1) #Filter features or 

predictors for all rows and columns for all dates but drop CONS_NO and 

FLAG columns 

 

Y = df_1.iloc[:, 1]#Select only FLAG as the target. FLAG is in column 1 

 

pd.DataFrame(X) 
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A.1.2.13    Checking the dependent (target) features (FLAG column) for missing values 
 

Y 

 

A.1.2.14    Using MinMaxScaler to scale down the independent features from 0 to 1 
 

scaler = MinMaxScaler()#Create an instance of MinMaxScaler called scaler 

X = scaler.fit_transform(X) #Fit, train and transform the features and 

store transformed X in X 

print(X)  #Print all scaled features 

 

A.1.2.14.1    Checking if the independent features have been scaled 
 
pd.DataFrame(X) 

 

A.1.2.14.2    Checking the first-row array of the scaled independent features 
 

print(X[0,:1034]) 

 

A.1.2.15    Using SMOTE technique to oversample the minority class 
 

ros = SMOTE(random_state= 42) #Create an instance of SMOTE to resample the 

training data. Random_state can be any integer that functions for 

reproducibility of resampled data. 

X, Y = ros.fit_resample(X, Y.ravel()) #Resample X and y using SMOTE object 

created above 

 

A.1.2.15.1    Splitting the oversampled data into train data and test data 
 

x_train, x_test, y_train, y_test=train_test_split(X, Y, test_size=0.3, 

random_state = 42) #Split the resampled features and target using 

train_test_split module to split data features X and target Y into 

x_train, x_test, y_train, y_test using 30% of X as test data 

 

The command train_test_split is used to split the SGCC dataset into train and test sets. 

Firstly, the dataset is separated into features (X) and labels (y). The DataFrame gets divided 

into x_train, x_test, y_train, y_test. The x_train, y_train sets which are used 

for training and fitting the model. 

 

A.1.2.15.2    Convert oversampled y_train any y_test into numpy array 
 
#Convert y_train and y_test into NumPy array 

y_train = np.array(y_train)  

y_test = np.array(y_test) 
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A.1.2.15.3    Expand the dimension of X_train, X_test 
 

#Expand the dimensions of x_train, x_test and insert the extended 

dimension in the axis =2, i.e., adding 1 to the third position of both 

x_train and x_test shapes 

x_train = np.expand_dims(x_train, axis=2) 

x_test = np.expand_dims(x_test, axis=2) 

input_shape=x_train.shape[1] #input_shape takes the value of the column of 

x_train for CNN model 

 

x_train.shape[1] #to extract column array but x_train.shape[0] is to 

extract the row array 

 

x_train.shape 

 

A.1.3    Development of the Conv1D model with 32 neurons at the input layer 
 

model_cnn= Sequential() #Create a sequential array named model_cnn 

 

model_cnn.add(Conv1D(32, kernel_size=(3), activation='relu', 

padding='same' ,input_shape=(x_train.shape[1],1))) #Add Conv1D layer with 

32 neurons, filter or kernel size of 3, activation function of relu which 

converts weight<= 0 to 0 and weight > 0 to 1 

 

model_cnn.add(MaxPooling1D(pool_size= 2, strides=2) #To reduce the 

dimension of the feature maps 

 

model_cnn.add(Flatten())#Convert the Conv1D layer into a single vector 

array – 1 Dimension 

 

m = model_cnn.output #Store output of the model in m 

 

m = Dense(64, activation = 'relu', kernel_initializer = 'he_uniform')(m) 

#Create a dense layer with 64 neurons 

m = Dropout(0.4)(m) #Apply Dropout 

 

prediction_layer = Dense(1,activation= 'sigmoid')(m) #The final prediction 

layer or output layer with one neuron that displays classification between 

fraudulent and non-fraudulent electricity customer 

 

model_cnn_1 = Model(outputs = prediction_layer, inputs = model_cnn.input) 

#Using keras model that enshrouds both outputs and inputs of the model 

#model_cnn.add(Dense(1,activation= 'sigmoid')) 

model_cnn_1.compile(optimizer = 'adam', loss='binary_crossentropy', 

metrics=['accuracy']) #Compile model using optimizer adam for easy 

convergence; binary_crossentropy as loss metric because we have binary 

classification problem to predict. 
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model_cnn_1.summary() #Displays both number of trainable and non-trainable 

parameters of the network. 

 

input_shape is (1034,1), 40% of the neurons are dropped (dropout), hidden layer has a dense 

layer of 64 neurons. 

 

A.1.3.1    Training the CNN model with 70% train data and 30% validation data 
 

history = model_cnn_1.fit(x_train, y_train, epochs=50, batch_size=30, 

verbose=0,validation_split=0.3) #Train the model with 70% of X and y with 

backward and forward propagations of 50 times. Each batch of the training 

data =30, and validate the model with 30% of the data 

 

A.1.3.2    Make prediction using X_test 
 

cnn_prediction=model_cnn_1.predict(x_test); #Making prediction with test 

data that has been kept aside 

resampled_prediction = cnn_prediction #Save the prediction list in a 

variable name resampled_prediction 

 

resampled_prediction.shape #Check the shape of the resampled_prediction. 

 

A.1.3.3    Plot confusion matrix for the CNN model 
 

labels = sorted(list(set(y_test))) #Create a sorted list of y_test and 

name it labels. 

cmx_data = confusion_matrix(y_test, resampled_prediction.round(), 

labels=labels) #Compare y_test and CNN predicted values list using 

confusion matrix package of sklearn. 

df_cmx = pd.DataFrame(cmx_data, index=labels, columns=labels) #Create a 

DataFrame of the result of the the confusion matrix using index as labels 

(0,1) and columns (0,1) as labels as well in both x and y axes. 

plt.figure(figsize = (10,7)) #Size of the plot: x-axis = 10, y-axis =.7 

colormap = sns.color_palette("Blues")#Using seaborn colour blue. 

sns.heatmap(df_cmx, annot=True, cmap = colormap) #Using seaborn to plot 

heatmap of the DataFrame of the confusion matrix. annot=True is to insert 

integers into the four cells of the confusion matrix. Colormap as 

arguments 

plt.show() #Display the plot 

 

A.1.3.4    Determining precision and recall values for CNN model and plotting PRC 
 

thresholds = 0.5 

#calculate precision and recall 
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precision, recall, thresholds = precision_recall_curve(y_test, 

resampled_prediction) 

print(f'Precision: {precision}\nRecall: {recall}\nThresholds: 

{thresholds}') 

 

auc_precision_recall = auc(recall, precision) 

print(auc_precision_recall) 

 

#create precision-recall curve (PRC) 

fig, ax = plt.subplots() 

ax.plot(recall, precision, color='purple') 

 

#add axis labels to plot 

ax.set_title('Precision-Recall Curve') 

ax.set_ylabel('Precision') 

ax.set_xlabel('Recall') 

 

#display plot 

plt.show() 

 

A.1.3.5    Plotting the receiver operating characteristic (ROC) curve 
 

fpr, tpr, _ = roc_curve(y_test,  resampled_prediction) 

#create ROC curve 

plt.plot(fpr,tpr) 

plt.ylabel('True Positive Rate') 

plt.xlabel('False Positive Rate') 

plt.title('Receiver operating characteristic curve') 

plt.show() 

 
 

A.1.3.6    Determining the values of TPR and FPR and visualizing their ROC plot 
 

#Determining the values of true positive rate (TPR) and false positive 

rate (FPR) 

 

from scipy import interpolate 

fpr, tpr, thresholds = roc_curve(y_test, resampled_prediction) 

tpr_intrp = interpolate.interp1d(thresholds, tpr) 

fpr_intrp= interpolate.interp1d(thresholds, fpr) 

 

print(f'TPR of CNN model : {tpr_intrp(0.5)}') 

print(f'FPR of CNN model : {fpr_intrp(0.5)}') 

 

# Visualisation with plot_metric 

fpr, tpr, thresholds = roc_curve(y_test, resampled_prediction) 

#print(f'CNN FPR: {fpr}\nTPR:{tpr}\nThresholds:{thresholds}') 

auc_value = auc(fpr,tpr) 
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print(f'AUC score for CNN is:   {auc_value}') 

 

bc = BinaryClassification(y_test, resampled_prediction, labels=[1, 0]) 

 

# Figures 

plt.figure(figsize=(10,8)) 

bc.plot_roc_curve() 

plt.show() 

 

A.1.3.7    Printing classification report 

 

threshold=0.5 

for i in range(0,len(resampled_prediction)): 

 

    if  resampled_prediction[i] > threshold: 

        resampled_prediction[i] = 1 

    else: 

        resampled_prediction[i] = 0 

print(classification_report(y_test, resampled_prediction)) 

 

A.1.3.8    Visualize accuracy in the training data 
 

#Visualize accuracy in training data 

plt.figure(figsize = (12, 10)) #Creating size of the figure to plot x-axis 

=12, y-axis = 10 

plt.plot(history.history['acc']) #Subset accuracy (acc) from history in 

Section 1.3.1 above 

plt.plot(history.history['val_acc']) #Subset validation accuracy (val_acc) 

from history in Section 1.3.1 above 

plt.title('CNN Model accuracy') 

plt.ylabel('accuracy') 

plt.xlabel('epoch') 

plt.legend(['Training data', 'Validation data'], loc = 'lower right') 

 

A.1.3.9     Visualize loss in the training data 
 

#Visualize loss in training data 

plt.figure(figsize = (12, 10)) 

plt.plot(history.history['loss']) 

plt.plot(history.history['val_loss']) 

plt.title('CNN Model Loss') 

plt.ylabel('loss') 

plt.xlabel('epoch') 

plt.legend(['Training data', 'Validation data'], loc = 'upper right') 
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A.1.4   Using backend package from Keras to extract some training data from CNN layers 
 

from keras import backend as K 

for l in range(len(model_cnn_1.layers)): 

    print(l, model_cnn_1.layers[l]) 

 

A.1.4.1    Check features in the first (input) layer of CNN network 
 

model_cnn_1.layers[0].input 

 

A.1.4.2    Find features from Conv1D layer to later use to train the standalone random 
forest (RF) model 
 

#Using backend to find features from CNN model to train RF model 

 

findFeature = K.function([model_cnn.layers[0].input, K.learning_phase()], 

[model_cnn.layers[1].output]) 

 

A.1.4.3    Extract samples as train and test data from CNN layers 
 

train_example4000 = findFeature([x_train[:4000], 0])[0] #Extract 4000 

samples as train data 

 

test_example1500 = findFeature([x_test[:1500], 0])[0] #Extract 1500 

samples as test data 

 

A.1.4.4    Convert 3-D array for CNN model back to 2-D for RF model 
 

y_train4000 = y_train[:4000].reshape(y_train[:4000].shape[0],)#Reshape y 

as a vector of only 1 column 

y_test1500 = y_test[:1500] 

#Using reshape function, 3-D has changed to 2-D 

train_example4000.shape #Check number of rows and columns in 

train_example4000 

 

A.1.4.5    Check shapes of all train and test data extracted from CNN layers 
 

print(train_example4000.shape, test_example1500.shape, y_train4000.shape, 

y_test1500.shape) #Check the rows and columns in the train and test data. 

 

A.1.5    Instantiate RF model and train with features from CNN layers 
 

from sklearn.ensemble import RandomForestClassifier 
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rf = RandomForestClassifier(n_estimators= 50, random_state= 42) 

#Instantiate RF with the number of estimators, random_state or seed for 

reproducibility as arguments. 

rf.fit(train_example4000, y_train4000) #Train the data on the object of RF 

 

A.1.5.1   Check the performance of standalone RF model using test data from CNN layers 
 

y_test_rf = rf.predict(test_example1500) #Making prediction with the test 

data kept aside 

from sklearn.metrics import confusion_matrix, classification_report, 

accuracy_score #Import evaluation metrics to observe performance of the RF 

model 

 

print(classification_report(y_test1500, y_test_rf)) #Print classification 

report 

print("Accuracy: {0}".format(accuracy_score(y_test1500, y_test_rf))) 

#Print the accuracy score of the RF model 

 

A.1.5.2   Plot the confusion matrix for the RF model 
 

labels = sorted(list(set(y_test))) 

cmx_data = confusion_matrix(y_test1500, y_test_rf, labels=labels) 

 

df_cmx = pd.DataFrame(cmx_data, index=labels, columns=labels) 

plt.figure(figsize = (10,7)) 

colormap = sns.color_palette("Blues") 

sns.heatmap(df_cmx, annot=True, cmap = colormap) 

plt.show() 

 

A.1.5.3    Determine the values of TPR and FPR for RF model 

 

from scipy import interpolate 

fpr, tpr, thresholds = roc_curve(y_test1500, y_test_rf) 

tpr_intrp = interpolate.interp1d(thresholds, tpr) 

fpr_intrp= interpolate.interp1d(thresholds, fpr) 

 

print(f'TPR of RF model : {tpr_intrp(0.5)}') 

print(f'FPR of RF model : {fpr_intrp(0.5)}') 

 

A.,1.5.4    Plot the precision-recall curve (PRC) for RF model 
 

thresholds = 0.5 

#calculate precision and recall 

precision, recall, thresholds = precision_recall_curve(y_test1500, 

y_test_rf) 
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print(f'Precision: {precision}\nRecall: {recall}\nThresholds: 

{thresholds}') 

 

#create precision recall curve 

fig, ax = plt.subplots() 

ax.plot(recall, precision, color='purple') 

#add axis labels to plot 

ax.set_title('Precision-Recall Curve OF RF') 

ax.set_ylabel('Precision') 

ax.set_xlabel('Recall') 

 

plt.show()#display plot 

 

A.1.5.5    Plot the receiver operating characteristic curve (ROC) for the RF model 
 

# Visualisation with plot_metric 

false_positive_rate, true_positive_rate, _ = roc_curve(y_test1500, 

y_test_rf) 

print(f'false_positive_rate: {false_positive_rate}\ntrue_positive_rate: 

{true_positive_rate}') 

 

pr, tpr, thresholds = roc_curve(y_test1500, y_test_rf) 

tpr_intrp = interpolate.interp1d(thresholds, tpr) 

fpr_intrp= interpolate.interp1d(thresholds, fpr) 

print(f'TPR of RF model : {tpr_intrp(0.5)}') 

print(f'FPR of RF model : {fpr_intrp(0.5)}') 

 

bc = BinaryClassification(y_test1500, y_test_rf, labels=[1, 0]) 

 

# Figures 

plt.figure(figsize=(10,8)) 

bc.plot_roc_curve() 

plt.show() 

 

A.1.5.6    Printing performance scores for the RF model 
 

from sklearn.metrics import auc 

print("roc_auc score is :  ",roc_auc_score(y_test1500, y_test_rf)) 

 

f1 = f1_score(y_test1500, y_test_rf) 

print("f1 score is :  ",f1) 

 

precision, recall, thresholds = precision_recall_curve(y_test1500, 

y_test_rf) 

print("precision-recall curve array is :  ", 

precision_recall_curve(y_test1500, y_test_rf)) 

auc = auc(recall, precision) 
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print("precision-recall AUC score of RF is :  ", auc) 

 

A.1.5.7    Checking the shape of the test set for the RF model 
 

y_test_rf.shape #Checking the shape of the RF model prediction 

 

A.1.6   Infusion of the extracted CNN features into RF model to form hybrid CNN-RF model 
 

#Using y_test extracted from the flatten layer of the CNN model to train 

and test the RF model to form the hybrid CNN-RF model. 

 

y_test=y_test1500 #Using 1500 data samples for testing 

resampled_prediction=y_test_rf #Let the resampled prediction equal 

predictions from RF model 

 

A.1.6.1    Plot the confusion matrix of the new hybrid CNN-RF model 
 

labels = sorted(list(set(y_test))) 

cmx_data = confusion_matrix(y_test, resampled_prediction, labels=labels) 

df_cmx = pd.DataFrame(cmx_data, index=labels, columns=labels) 

plt.figure(figsize = (10,7)) 

colormap = sns.color_palette("Greens") 

sns.heatmap(df_cmx, annot=True, cmap = colormap) 

plt.show() 

 

y_test=y_test1500 

 

resampled_prediction=y_test_rf 

 

resampled_prediction[:10] 

 

A.1.6.2     Plotting the ROC curve for the CNN-RF model 
 

# Visualisation with plot_metric 

false_positive_rate, true_positive_rate, _ = roc_curve(y_test, 

resampled_prediction) 

print(f'false_positive_rate: {false_positive_rate}\ntrue_positive_rate: 

{true_positive_rate}') 

 

pr, tpr, thresholds = roc_curve(y_test, resampled_prediction) 

tpr_intrp = interpolate.interp1d(thresholds, tpr) 

fpr_intrp= interpolate.interp1d(thresholds, fpr) 

 

print(f'TPR of CNN-RF model : {tpr_intrp(0.3)}') 

print(f'FPR of CNN-RF model : {fpr_intrp(0.3)}') 

bc = BinaryClassification(y_test, resampled_prediction, labels=[1, 0]) 
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# Figures 

plt.figure(figsize=(10,8)) 

bc.plot_roc_curve() 

plt.show() 

 

A.1.6.3    Checking the precision, recall and PRC curve for the CNN-RF model 
 

matrix = confusion_matrix(y_test, resampled_prediction) 

matrix = pd.DataFrame(matrix, index=["Actual Positive", "Actual 

Negative"], columns = ["Predicted Positive", "Predicted Negative"]) 

print(tabulate(matrix, tablefmt="orgtbl", headers="keys")) 

print() 

#calculate precision and recall 

precision, recall, thresholds = precision_recall_curve(y_test, 

resampled_prediction) 

print(f'Precision: {precision}\nRecall: {recall}\nThresholds: 

{thresholds}') #Print precision and recall scores for the CNN-RF model 

 

#create precision recall curve 

fig, ax = plt.subplots() 

ax.plot(recall, precision, color='purple') 

 

#add axis labels to plot 

ax.set_title('Precision-Recall Curve') 

ax.set_ylabel('Precision') 

ax.set_xlabel('Recall') 

 

#display plot 

plt.show() 

 

#With threshold of 0.5, precision and recall are 1.0 and 0.98 respectively 

for the positive class 

threshold=0.5 

for i in range(0,len(resampled_prediction)): 

 

    if  resampled_prediction[i] > threshold: 

        resampled_prediction[i] = 1 

    else: 

        resampled_prediction[i] = 0 

print(classification_report(y_test, resampled_prediction)) 

 

A.1.6.4    More metric results for the CNN-RF model 
 

from sklearn.metrics import confusion_matrix 

from sklearn import metrics 

cnn_prediction=resampled_prediction; 

cm1 = confusion_matrix(y_test, cnn_prediction) 
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print('Confusion Matrix : \n', cm1) 

 

total1=sum(sum(cm1)) 

 

accuracy1=(cm1[0,0]+cm1[1,1])/total1 

print ('Accuracy : ', accuracy1) 

 

sensitivity1 = cm1[0,0]/(cm1[0,0]+cm1[0,1]) 

print('Sensitivity : ', sensitivity1 ) 

specificity1 = cm1[1,1]/(cm1[1,0]+cm1[1,1]) 

print('Specificity : ', specificity1) 

fpr, tpr, thresholds = metrics.roc_curve(y_test, cnn_prediction) 

print("AUC",metrics.auc(fpr, tpr)) 

#More metric results 

from sklearn.metrics import auc 

print("roc_auc score is :  ",roc_auc_score(y_test, cnn_prediction)) 

 

f1 = f1_score(y_test, cnn_prediction) 

print("f1 score is :  ",f1) 

 

precision, recall, thresholds = precision_recall_curve(y_test, 

cnn_prediction) 

 

print("precision-recall curve array is :  ", 

precision_recall_curve(y_test, cnn_prediction)) 

 

auc = auc(recall, precision) 

 

print("precision-recall AUC score is :  ", auc) 

 

A.1.7    Creation of a suspect list of fraudulent customers for the developed models 
 

Creation of suspect list for the CNN model: 

 

#Suspect list for CNN model 

 

# Create a list of customers predicted to commit energy theft (CNN model) 

cnn_theft_customers = np.where(resampled_prediction[:1500] == 1)[0] 

 

# Retrieve the original customer IDs of the CNN theft customers 

cnn_theft_customers_ids = df.iloc[cnn_theft_customers]['CONS_NO'].values 

 

# Create a DataFrame from the list of CNN theft customer IDs 

cnn_theft_customers_df = pd.DataFrame({ 

    'Customer_ID': cnn_theft_customers_ids, 

    'Predicted_Theft': 1 

}) 
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# Display the DataFrame 

print("Energy theft customers (CNN):") 

print(cnn_theft_customers_df) 

 

 

Creation of suspect list for the RF model: 
 

#Suspect list for RF model 

 

# Train and predict with the RF model 

rf_model = RandomForestClassifier(n_estimators=50, random_state=42) 

rf_model.fit(test_example1500, y_test[:1500]) 

 

rf_predictions = rf_model.predict(test_example1500) 

 

# Create a list of customers predicted to commit energy theft (RF model) 

rf_theft_customers = np.where(rf_predictions == 1)[0] 

 

# Retrieve the original customer IDs of the RF theft customers 

rf_theft_customers_ids = df.iloc[rf_theft_customers]['CONS_NO'].values 

 

# Create a DataFrame from the list of RF theft customer IDs 

rf_theft_customers_df = pd.DataFrame({ 

    'Customer_ID': rf_theft_customers_ids, 

    'Predicted_Theft': 1 

}) 

 

# Display the DataFrame 

print("Energy theft customers (RF):") 

print(rf_theft_customers_df) 

 

Creation of suspect list for the CNN-RF model: 
 

#Suspect list for CNN-RF model 

 

import numpy as np 

import pandas as pd 

import joblib 

# Load the combined CNN-RF model 

cnn_rf_combined_model = joblib.load('models/cnn_rf_combined_model.pkl') 

 

# Extract the RandomForest model from the combined model if necessary 

# For standalone RandomForestClassifier 

rf_model = cnn_rf_combined_model  # If it is just a RandomForestClassifier 

 

# Number of features the model expects 

n_features_rf = rf_model.n_features_in_ 

print("Number of features the model expects:", n_features_rf) 



 

326 
 

 

# Sample 800 rows from test_example1500 

sampled_test_data = 

test_example1500[np.random.choice(test_example1500.shape[0], 800, 

replace=False)] 

 

# Check the number of features in sampled_test_data 

print("Number of features in sampled test data:", 

sampled_test_data.shape[1]) 

 

# Adjust features if necessary 

if sampled_test_data.shape[1] != n_features_rf: 

    # Example: If the model expects 33121 features, you may need to adjust 

the test data 

    # This may involve adding or removing a feature 

    # For example, if you need to add a feature, you could add a dummy 

column 

    # Assuming you need to add one feature: 

    if sampled_test_data.shape[1] < n_features_rf: 

        # Add dummy feature column (fill with zeros) 

        additional_features = np.zeros((sampled_test_data.shape[0], 

n_features_rf - sampled_test_data.shape[1])) 

        sampled_test_data = np.hstack([sampled_test_data, 

additional_features]) 

    else: 

        raise ValueError(f"Test data has more features 

({sampled_test_data.shape[1]}) than expected ({n_features_rf}).") 

 

# Predict using the RandomForest model 

rf_predictions = rf_model.predict(sampled_test_data) 

 

# Create a DataFrame for the theft customers 

theft_customers_indices = np.where(rf_predictions == 1)[0] 

 

# Assuming df_1 has the Customer_ID column and is related to the test data 

# Adjust indices according to actual data 

CNN_RF_theft_customers_df = pd.DataFrame({ 

    'Customer_ID': df_1.iloc[np.random.choice(df_1.shape[0], 800, 

replace=False)]['CONS_NO'].values[theft_customers_indices], 

    'Predicted_Theft': 1 

}) 

# Save the list as a CSV file 

CNN_RF_theft_customers_df.to_csv('models/cnn_rf_theft_customers.csv', 

index=False) 

 

print("Energy theft customers predicted by the RF model:") 

print(CNN_RF_theft_customers_df) 
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A.1.8    Saving the models using save function in Keras 
 

import os 

import joblib 

from tensorflow.keras.models import save_model 

 

# Create the 'model' directory if it doesn't exist 

os.makedirs('model', exist_ok=True) 

 

# Save model_cnn_1 (Keras model) 

save_model(model_cnn_1, 'model/model_cnn_1.h5') 

 

# Save RF (Random Forest model) 

joblib.dump(rf, 'model/rf.pkl') 

 

# Save the combined CNN-RF model 

joblib.dump(cnn_rf_combined_model, 'models/cnn_rf_combined_model.pkl') 

 

print("All models have been saved successfully!") 

 
 

A.1.9    Creating a variant of the CNN-RF model using features from concatenated layers 
 

Instead of taking features from the Conv1D layer (Layer 1) of the CNN network to train and test 

the RF model to form the proposed CNN-RF model, features are otherwise taken from the last 

MaxPooling1D layer (Layer 6) where three pairs of Conv1D and MaxPooling1D layers (3-layer 

CNN) are concatenated in a bid to enrich the extracted features used to train and test RF. This 

process leads to the development of the variant CNN-RF (concatenation) model. 

 

The implementation codes to develop the variant CNN-RF (concatenation) model are thus: 

 

# DEVELOPING THE VARIANT CNN-RF (CONCATENATION) MODEL 

 

def build_3layer_cnn(input_shape): 

    """ 

    Builds a 3-layer CNN with MaxPooling model using Functional API. 

    """ 

    inputs = Input(shape=input_shape) 

    # 1st Conv + MaxPool 

    x = Conv1D(32, kernel_size=3, activation='relu', 

padding='same')(inputs) 

    x = MaxPooling1D(pool_size=2)(x) 

 

    # 2nd Conv + MaxPool 

    x = Conv1D(64, kernel_size=3, activation='relu', padding='same')(x) 

    x = MaxPooling1D(pool_size=2)(x) 
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    # 3rd Conv + MaxPool 

    x = Conv1D(128, kernel_size=3, activation='relu', padding='same')(x) 

    x = MaxPooling1D(pool_size=2)(x) 

 

    x = Flatten()(x) 

    x = Dense(128, activation='relu', kernel_initializer=HeUniform())(x) 

    x = Dropout(0.4)(x) 

    outputs = Dense(1, activation='sigmoid')(x) 

 

    model = Model(inputs, outputs, name="3LayerCNN") 

    return model 

 

 

# Build, compile, and train 

model_cnn_3 = build_3layer_cnn((x_train.shape[1], 1)) 

model_cnn_3.compile(optimizer=Adam(), loss='binary_crossentropy', 

metrics=['accuracy']) 

model_cnn_3.summary() 

 

history_3 = model_cnn_3.fit( 

    x_train, y_train, 

    epochs=50, 

    batch_size=30, 

    validation_split=0.3, 

    verbose=1 

 

# Predict probabilities on the test set 

y_pred_prob = model_cnn_3.predict(x_test) 

 

# Convert probabilities to binary class labels (using 0.5 as threshold) 

y_pred = (y_pred_prob > 0.5).astype(int) 

 

# Compute the confusion matrix 

cm = confusion_matrix(y_test, y_pred) 

 

# Create a ConfusionMatrixDisplay with custom labels 

disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=['Non-

theft', 'Theft']) 

 

# Plot the confusion matrix with a custom values format (.1e for 

scientific notation) 

disp.plot(cmap=plt.cm.Greens, values_format='.1e') 

plt.title("Confusion Matrix for 3-layer CNN model") 

plt.show() 

 

# Predict 

cnn_3_proba = model_cnn_3.predict(x_test).ravel() 
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cnn_3_pred = (cnn_3_proba > 0.5).astype(int) 

 

# Evaluate 

cnn_3_metrics = calculate_metrics(y_test, cnn_3_pred, cnn_3_proba) 

print("\n=== 3-Layer CNN Metrics ===") 

for k, v in cnn_3_metrics.items(): 

    if v is None: 

        print(f"{k}: None") 

    else: 

        print(f"{k}: {v:.4f}") 

 

# Define a feature extractor model that outputs the features from the last 

Conv1D layer at the MaxPooling1D layer 

feature_extractor = Model(inputs=model_cnn_3.input, 

outputs=model_cnn_3.layers[6].output)  # Layer 6 is the last MaxPooling1D 

layer in the concatenated network of three pairs of Conv1D and 

MaxPooling1D layers. 

 

# Get feature maps for training and testing data 

train_features = feature_extractor.predict(x_train[:4000]) 

test_features = feature_extractor.predict(x_test[:1500]) 

 

# Reshape features for Random Forest 

train_features = train_features.reshape(train_features.shape[0], -1) 

test_features = test_features.reshape(test_features.shape[0], -1) 

 

# Train Random Forest Model 

rf = RandomForestClassifier(n_estimators=50, random_state=42) 

rf.fit(train_features, y_train[:4000]) 

 

# Evaluate Random Forest model 

rf_predictions = rf.predict_proba(test_features)[:, 1] 

rf_label_predictions = rf.predict(test_features) 

 

# Evaluate 

rf_metrics = calculate_metrics(y_test[:1500], rf_label_predictions, 

rf_predictions) 

print("\n=== Random Forest Metrics ===") 

for k, v in rf_metrics.items(): 

    print(f"{k}: {v:.4f}" if v is not None else f"{k}: None") 

# Compute the confusion matrix 

cm = confusion_matrix(y_test[:1500], rf_label_predictions) 

 

# Create a ConfusionMatrixDisplay with custom labels 

disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=['Non-

theft', 'Theft']) 
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# Plot the confusion matrix with a custom values format (.1e for 

scientific notation) 

disp.plot(cmap=plt.cm.Greens, values_format='.1e') 

plt.title("Confusion Matrix RF 3-Layer CNN") 

plt.show() 

 

# Combine CNN and RF Predictions for 3-layer CNN 

cnn_weight = 0.3 

rf_weight = 0.7 

 

# Combine predictions using weighted averaging 

cnn_rf_predictions = (cnn_weight * cnn_3_pred[:1500].flatten() + rf_weight 

* rf_predictions) 

 

# Convert probabilities to binary class labels (using 0.5 as threshold) 

cnn_rf_predictions = (cnn_rf_predictions > 0.5).astype(int) 

 

# Evaluate combined model 

cnn_rf_3_metrics = calculate_metrics(y_test[:1500], (cnn_rf_predictions > 

0.5).astype(int), cnn_rf_predictions) 

print("\n=== 3-Layer CNN-RF Ensemble Metrics ===") 

for k, v in cnn_rf_3_metrics.items(): 

    print(f"{k}: {v:.4f}" if v is not None else f"{k}: None") 

 

# Compute the confusion matrix 

cm = confusion_matrix(y_test[:1500], cnn_rf_predictions) 

 

# Create a ConfusionMatrixDisplay with custom labels 

disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=['Non-

theft', 'Theft']) 

 

# Plot the confusion matrix with a custom values format (.1e for 

scientific notation) 

disp.plot(cmap=plt.cm.Greens, values_format='.1e') 

plt.title("Confusion Matrix for ensembled CNN-RF") 

plt.show() 

 

# PLOT METRIC COMPARISON BAR CHART FOR ALL MODELS 

 

# Find common metrics across all models 

common_keys = set(cnn_3_metrics.keys()) & set(rf_metrics.keys()) & 

set(cnn_rf_3_metrics.keys()) & set(cnn_rf_1_metrics.keys()) 

 

# Preferred order of metrics 

preferred_order = [ 

   "Precision", "Recall", "F1 Score", "Accuracy", 

] 
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metric_order = [m for m in preferred_order if m in common_keys] 

 

# Extract scores for each model 

cnn3_scores = [cnn_3_metrics[m] for m in metric_order] 

rf3_scores = [rf_metrics[m] for m in metric_order] 

cnnrf3_scores = [cnn_rf_3_metrics[m] for m in metric_order] 

cnnrf1_scores = [cnn_rf_1_metrics[m] for m in metric_order] 

 

# Plot settings 

plt.figure(figsize=(20, 15)) 

x = np.arange(len(metric_order)) 

width = 0.2  # Adjusted for four bars 

 

# Create bars 

bars_cnn3 = plt.bar(x - 1.5*width, cnn3_scores, width, label='CNN', 

color='blue', edgecolor='black') 

bars_rf3 = plt.bar(x - 0.5*width, rf3_scores, width, label='RF', 

color='green', edgecolor='black') 

bars_cnnrf3 = plt.bar(x + 0.5*width, cnnrf3_scores, width, label='CNN-RF 

(Concatenated)', color='red', edgecolor='black') 

bars_cnnrf1 = plt.bar(x + 1.5*width, cnnrf1_scores, width, label='CNN-RF 

(proposed)', color='orange', edgecolor='black') 

 

# Labels and titles 

plt.xlabel('Metrics', fontsize=14) 

plt.ylabel('Scores', fontsize=14) 

plt.title('Comparison of results', fontsize=16) 

plt.xticks(x, metric_order, rotation=45, ha='right') 

plt.legend() 

 

# Annotate bars with values 

def autolabel(rects): 

    for rect in rects: 

        height = rect.get_height() 

        plt.annotate(f'{height:.4f}', 

                     xy=(rect.get_x() + rect.get_width()/2, height), 

                     xytext=(0, 3), 

                     textcoords="offset points", 

                     ha='center', va='bottom', fontsize=12) 

 

autolabel(bars_cnn3) 

autolabel(bars_rf3) 

autolabel(bars_cnnrf3) 

autolabel(bars_cnnrf1) 

 

plt.ylim(0, max(cnn3_scores + rf3_scores + cnnrf3_scores + cnnrf1_scores) 

+ 0.1) 

plt.tight_layout() 

plt.show() 


