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ABSTRACT

Electricity theft (ET) is a ubiquitous problem ravaging all electric utilities worldwide. Theft of
electricity is caused by so many factors, but developing a formidable anti-theft solution is one
of the major problems facing electric utilities globally. Like a virus, ET is slowly wreaking havoc
on power utilities worldwide and its dreaded curves need to be flattened. Since ET cannot be
totally eradicated in power grids, the motivation for this research is to profoundly detect and
mitigate ET in electric networks. ET must be utterly detected and mitigated to uncover the
power pilferers, promote healthier electricity grids, generate more income for the utilities,
improve the reliability and sustainability of power systems, and consequently help in salvaging
the economies of nations worldwide. Power losses occasioned by ET could be redressed by
either generating more power to compensate for the theft-inflicted power shortfalls or by
mitigating the theft, but mitigating the theft is more significant and more cost effective. Artificial
intelligence-based (Al-based) machine learning (ML) methods are the state-of-the-art and
superior approach for the detection of ET or non-technical losses (NTL) in power grids when

compared with the conventional methods of electricity-theft detection (ETD).

The experimental work in this thesis centres on the detection of ET using the real-world energy
consumption dataset provided by the State Grid Corporation of China (SGCC), a state-owned
SG electric system, and the largest electric utility company in the world. The case-study dataset
which has thus been obtained from the smart meters of electricity consumers is formidable
because it has been used extensively in the existing literature by many researchers to develop
various ETD models. This gives room for comparison of results among several ETD models
developed using same SGCC dataset. In the experiments, ETD is performed with the infusion
of the features from convolutional neural network (CNN) model into random forest (RF) model
to form a hybrid model termed CNN-RF. The hybridization of the models is done in a quest to
achieve better NTL prediction results, as the combined strengths of CNN and RF achieves
complete elimination of undesirable false positives in the composite model. RF is noted to be
highly effective and efficient in resolving classification problems, hence it is a choice candidate
for the hybrid solution. Meanwhile, before finally adopting the proposed CNN-RF model, the
performances of CNN and RF models were individually checked. Simulations were performed

using Python, in a Google Colaboratory (Colab) Integrated Development Environment (IDE).

The performance metrics employed to evaluate the developed models are precision, recall, F1
score, accuracy, Matthews correlation coefficient (MCC), area under the receiver operating
characteristic curve (AUC), area under the precision-recall curve (PR-AUC), true negative rate

(TNR), false positive rate (FPR), and false negative rate (FNR). The proposed model show



very interesting and reliable performance results, achieving 100.00% precision, 98.36% recall,
99.17% F1 score, 99.20% accuracy, 98.40% MCC, 99.13% AUC, 99.55% PR-AUC, 100.00%
TNR, 0.00% FPR, and 0.02% FNR.

Overall, the proposed model outperformed other SGCC dataset-based ETD model results
presented in previous research. The proposed model achieves unprecedented high hit ratio,
making it more-effective and more-efficient in detecting NTL. Higher performance scores from
ETD models are proportional to greater mitigation of NTL attainable by utility inspectors or
technicians during onsite inspections. The feat achieved in this research by profoundly
detecting ET in SG, with its anticipated increased onsite mitigation prospects, is a fulfilment of
the aim and objectives of the research. Besides, the higher detection capability achieved by
the proposed model has also simultaneously proffered answers to the research questions. The
proposed model is therefore recommended as a suitable ETD solution for deployment by

electric utilities of various economies of the world.
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CHAPTER 1

INTRODUCTION

Background

Electricity is an indispensable commodity (Hassan et al., 2022:2; Khalid et al., 2024:1), and
the root of modernity (Breeze, 2014:1; French, 2017:123). It is an invisible commodity that
is largely produced based on the precept of Faraday’s law of electromagnetic induction, and
conveyed through wires (David, 2017:1-2; French, 2017:4). Electricity is the most significant
blessing that science has bestowed on humanity (Aziz et al., 2020; Pamir, Javaid, Qasim,
et al., 2022:56863). It is also the most versatile (Porcu et al., 2021:8), and the most useful
and used source of energy in our everyday lives (Aslam, Javaid, et al., 2020:1). The unique
commodity called electricity is fundamental to modern inventions and civilizations (Edris &
D’Andrade, 2017:37).

Electricity need is universal, and its usage traverses almost all occupations and endeavours
(Hassan et al., 2022:2). Human daily activities in the modern world strongly depend on the
availability of electrical energy (Stracqualursi et al., 2023:1; Iftikhar et al., 2024:01). The
modern-day technology and innovations like electric vehicles (EVs), electric trains,
computers, Internet, broadcast media, telecommunications, medical equipment, etc., would
not have been possible without electricity (Breeze, 2014:1, 3). Electricity plays an invaluable
role for a sound, successful, and sustainable economy (Nayak & Jaidhar, 2023:1). Apart
from the economy, national security and the health and safety of citizens are also dependent
on reliable electricity (USDOE, 2008; Casey et al., 2020). No country in the world could
develop without a reliable electricity (Aliyu et al., 2013:354).

However, like any other essential and valuable commodity, electricity is being stolen and its
continuous availability threatened (Stracqualursi et al., 2023:1; Wabukala et al., 2023:3).
One of the causes of electricity crisis is electricity losses, which especially occurs when the
energy generated falls short of the energy consumed (Fragkioudaki et al., 2016:44; Iftikhar
et al., 2024:01). Electricity theft (ET) is the principal contributor to electricity losses that
threaten the steady availability of electricity supply (Saeed et al., 2020:1; Barros et al.,
2021:1). ET is the illicit act of using electricity with the primary intent of avoiding utility
charges (Yurtseven, 2015:70).

ET pervades all electric systems and no power system could be 100% protected from it



(Smith, 2004:2067). Consequently, it causes dire financial and technical consequences
(Messinis & Hatziargyriou, 2018:251). ET is a wearisome social iniquity (Afridi et al.,
2021:1829) which has been officially declared a felony in Liberia (Dodoo, 2022), and has
also been decreed a sin in Pakistan (Reuters, 2009; Depuru et al., 2011a:1012). Electricity
is one of the most-plundered commodities globally (Appiah et al., 2023:1), such that, it is
ranked the third most-stolen commodity in the world after credit-card details and cars
(Ahmed et al., 2022:579). The detection of this peculiar stealing instance is one of the

biggest challenges confronting all electric utilities worldwide (Kwarteng et al., 2023:7).

Stolen electricity is the power supplied but which the electric utilities cannot account for,
since the electricity filchers took the commodity without the awareness of the utility providers
(Otcenasova et al., 2019:6). Such act of circumventing the utilities is illegal, a serious crime
that is punishable under the law. Theft of electricity is malevolent, a deliberate act of
swindling the utilities (Kambule & Nwulu, 2021:42; Hassan et al., 2022:2).

1.1.1 History of electricity theft

ET in the power sector is an age-long problem prevalent in all electric systems all over the
world (Stracqualursi et al., 2023:1). It is a tricky scourge which all electric utilities have been
grappling with for over a century. The first reported case of ET took place in New York City,
United States, in the late nineteenth century, specifically in the year 1886 (Glauner, 2019:2;
Xia et al., 2022:274). It was at this period that the commercialization of electricity started
when electric utilities began to distribute electricity for public consumption (Glauner,
2019:2).

The Daily Yellowstone Journal was the official newspaper of Custer County located in Miles
City, Montana, United States. The newspaper reported the first ET incident in one of its
articles on page two of its publication on Saturday 27 March 1886 (Daily Yellowstone
Journal, 1886:1-2). The article which reported the incident was titled “People Who Steal
Edison’s Electricity”. Espionage to uncover suspected pilferage of electricity was carried out
by the Edison power station, and an occurrence of ET was established. As a measure to
mitigate the theft, the superintendent of the power station sent power surge into the
distribution lines to destroy the illegally connected loads impinging on the lines (Pickering,
2016; Megger, 2020). The exact portion of the article relating the theft of Edison’s electricity
in 1886 (Daily Yellowstone Journal, 1886:2) is shown in Figure 1.1.
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A Big Spring of Cold Water.
It has recentiy been discovered that

Figure 1.1: Newspaper report on the stealing of Edison's electricity in 1886

(Daily Yellowstone Journal, 1886:2)

The content of the newspaper article is transcribed as follows:
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“Edison has encountered a novel form of theft in conducting his light business in New York.

It was found that numerous unprincipled persons had availed themselves of the opportunity

to steal electricity, and used it for operating motors and for induction coils. The method of
filching the electricity was by boring through the iron pipe surrounding the insulating
compound, and then further into one of the copper leads; a set screw fixed in the orifice

formed one connection the earth the other. Of course, this connection was made beyond
the electric meter.



“It was hardly worth while to maintain the continued espionage necessary to detect and
punish these pilferers, but the superintendent of the station, Mr. Chamberlain, coupled in
extra dynamos and threw as great an increase of current over the system as the safety
catches would permit, at various times for about one second; while this current was passing,
the incandescence lamps would give an unwonted glow, and every induction coil and motor
surreptitiously attached to the system would receive an extra current designed to burn it. In

this manner the system is occasionally cleared of all trespassers.”

The confirmation of this maiden ET incident in 1886 by the Edison power station launched
the era of the ET menace. Since then, the ET problem has however proven to be endemic
in all power systems worldwide, such that, the scourge can no longer be completely
eradicated in any electricity grid, but could only be managed by continual mitigation (Lewis,
2015:128-129; Kocaman & Tumen, 2020:1). The Edison power station was the first electric
utility in the world (Malik, 2013:140; Tuballa & Abundo, 2016:715). More on the Edison
power station concerning its establishment, characteristics, and the associated tussle for
survival and supremacy in the face of competition are further discussed under the review of
electricity grid in Sections 2.2.1, 2.2.1.1, 2.2.1.2 and 2.2.1.3 of Chapter 2.

1.1.1.1 Some other early instances associated with electricity theft

In some of the earlier court judgements in Germany, ET was not considered a crime. An
example of this was in the two rulings of the Imperial Court of Justice of Germany in 1896
and 1899 (Glauner, 2019:2). The Court ruled that, there was no inclusion of ET in the
German Criminal Code. The Court in its adjudications believed that electricity could not
actually be stolen since it was not regarded as a physical object, hence the offence relating
to pilfering of electricity could not be subsumed as theft. Subsequently, the German
Parliament brought up a new law in 1900 to criminalize ET and made it punishable under
the law (Schuster, 1901:120-121; Glauner, 2019:2-3). The new law stipulated a five-year

imprisonment and a fine as punishments for electricity thieves.

In another jurisdiction, the issue of ET had already been addressed in the criminal law of
France. The Court of Cassation of France had earlier ruled that ET had been
accommodated in the extant criminal law of the country, and that there was no need to
enact a new law to criminalize it (Glauner, 2019:3). Like in the previous situation in
Germany, the United Kingdom (UK) also believed that electricity could not be stolen, since
it is not a physical or concrete substance (Dick, 1995:91). However, the Theft Act 1968 was

eventually enacted in the UK to declare ET as an offence.



1.2 Technical and non-technical losses

The total amounts of electricity generated from the power stations have always not been
same as the net electricity distributed for consumption (Karimi et al., 2020; Adam et al.,
2021). The difference between the electricity generated and distributed for consumption in
the power system is known as loss (Adam et al., 2021). Although, a few inevitable energy
losses are peculiar to the power system but most of the energy losses in an electric system
are artificially induced. Electrical energy losses are energy not delivered for consumption
from the supply chain, and/or not paid for by the consumers. Technical losses (TL) and non-
technical losses (NTL) are the two types of energy losses in power systems (Khalid et al.,
2024:2; S. Zhu et al., 2024:15477). These losses take place during the generation,
transmission, and distribution of electricity.

TL are inherent natural losses in the power system, which inevitably occur due to the
dissipation of electrical energy in the power system components like generators,
transmission and distribution (T&D) lines, transformers, metering devices, and other
equipment which make up the power system (Karimi et al., 2020; Poudel & Dhungana,
2022:109). These power components are all the necessary equipment used in
accomplishing the T&D of electricity (Viegas et al., 2017:1260). There are also TL due to
heat dissipation by virtue of the material properties of the power system components and
their resistances to the flow of current (Wu et al., 2018:3073). In addition, there are also TL
by irradiation (Viegas et al., 2017:1256).

TL are systemically caused by intrinsic or internal factors within the power grid (Hassan et
al., 2022:2). TL are inevitable system losses (Aslam, Ahmed, et al., 2020:221768) which
could be reduced by routine preventive maintenance with qualitative and advanced T&D
technology (Smith, 2004:2068). Scheduled maintenance, while ensuring quality power
components, also improves system efficiency. Utilities should always improve and maintain
the efficiency of their power systems to ensure they operate at a power factor (PF) greater
than 0.95, in order to reduce the TL in their networks (ESI Africa, 2019). PF whose values
range between 0 and 1, is the proportion of the real or active power consumed by devices
to that of the apparent or total power supplied to the devices, and is used as indicator to
show the efficiency level of power distribution systems (Ramos et al., 2018:679; Saeed et
al., 2020:5). PF values closer to 1 indicates higher efficiency and vice versa. The losses in
the generation subsystem of the power system are technical, and could be defined and
precisely computed (Tatte et al., 2019:175) by using the fundamental laws of electrical

engineering (Osypova, 2020:11).



In contrast to TL, NTL are avoidable non-natural losses caused by deliberate human
dishonest actions, errors and other third-party activities external to the power grid
(Otcenasova et al., 2019:6; Poudel & Dhungana, 2022:110). Since the causes of NTL are
multifarious in nature, hence NTL cannot be represented as a function of specified actions
(Depuru et al., 2011a:1007). NTL take the largest portion of the cumulative electrical losses
in the power system (Petrlik et al., 2022:420). NTL occur both in Smart Grid (SG) and
conventional electricity grid systems. However, the SG with its embedded smart meters
(SMs) in the advanced metering infrastructure (AMI) significantly prunes NTL to an
appreciable degree when compared with the conventional grid, but with the introduction of
novel security risks (Shahzadi et al., 2024:1).

Meanwhile, the losses in the T&D networks of the power grid are a combination of TL and
NTL (Lewis, 2015:122; Viegas et al., 2017:1256; Onat, 2018:165). Unlike the generation
losses which could be technically determined, T&D losses cannot be precisely determined
from the amount of energy supplied from the power plants to the distribution feeders (Tatte
et al., 2019:175). This fundamental characteristic clearly confirms the involvement of NTL
in the T&D of electricity, and to the total amount of energy losses in the power system.
Usually, there is a need to firstly compute the value of TL before the determination of the
approximate value of NTL in the T&D networks (Viegas et al., 2017:1256).

In very efficient systems like in the US and Western Europe, T&D losses are less than 6%,
which includes ET of around 1-2% (Smith, 2004:2070; Yurtseven, 2015:70). T&D losses in
less efficient systems are around 9-12% and over 15% in inefficient systems (Smith,
2004:2070). NTL proportions are up to 30% of the total electricity generated in countries
like Bangladesh and Tirkiye (Turkey) (Kambule & Nwulu, 2021:42), up to 40% of the overall
electricity distributed in countries like India, Brazil, Lebanon and Malaysia (Glauner et al.,
2016:254; Glauner et al., 2017:761; Kambule & Nwulu, 2021:43), and up to 50% of the

entire electricity generated in the sub-Saharan Africa (Lepolesa et al., 2022:39638).

The T&D networks of the electricity system are divided into low voltage (LV), medium
voltage (MV) and high voltage (HV) electric networks (Althobaiti et al., 2021:159294). To
attain these voltage levels, the T&D voltages are being transformed. Transformation is the
use of transformers in stepping up and/or down of electrical voltages before electricity
transportation (Jamil & Ahmad, 2019:454). The HV transmission networks are used to
transmit power over longer distances to primary distribution substations where voltages are
stepped down to MVs via the primary distribution transformers. MVs are transported to the

secondary distribution substations where they are further stepped down by secondary



distribution transformers to LVs and supplied to end users for consumption via LV

distribution networks. Figure 1.2 shows the different kinds of TL and NTL in the power

system.
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Figure 1.2: Losses in the power system

(Aldegheishem et al., 2021:25038)

NTL are primarily domiciled in the LV distribution networks (Adam et al., 2021) and hence
cause serious problems for the electricity distributors. ET is exclusive to LV distribution
networks, since the distribution grids are more prone to being affected by illegal activities.
LV networks are more attractive to electricity thieves because voltages at this level of the
grid may not be retransformed before being put to direct use and are also safer when

compared with the MVs and the HVs. The MV and HV networks of the power system are




not so susceptible to ET because of the fatal risk of electric shock associated with voltages
at these levels. This is the obvious reason electricity thieves avoid venturing into theft at
such more-dangerous voltage levels. Besides the fatal risk of electric shock involved, MVs

and HVs still need to be transformed before being put to direct use.

Aside the fact that TL are inherent to the electric system, errors in technical-loss calculations
also contribute to NTL (Yip, Wong, et al., 2017:230; Osypova, 2020:12-13). As previously
averred, majority of the losses in the electricity system is owing to NTL (Aslam, Ahmed, et
al., 2020:221768; Petrlik et al., 2022:420); therefore, regardless of the contribution of TL to
the power system losses, mitigating NTL is more significant and brings about major
reduction in the overall power losses in the electricity grid (Fragkioudaki et al., 2016:44).
Significant degree of NTL triggers the need to generate more power to compensate for the
resulting power inadequacies caused, but increasing generation is not as cost-effective as
reducing NTL in the power distribution system (Abaide et al., 2010:1).

NTL are commercial losses (Poudel & Dhungana, 2022:109; Kwarteng et al., 2023:7).
Commercial losses, as the name infers, are NTL associated with the commercialization of
electricity (Ramos et al., 2011:181), which also cause disruptions in commercial activities
by slowing down the production of goods and services (Osypova, 2020:11). Commercial
losses are the electrical energy that the utilities received for distribution and eventually
pushed to the consumers, but which was not billed for or invoiced owing to ET (Osypova,
2020:11). The total amount of lost energies in an electricity system is determined through
the addition of TL and NTL (Poudel & Dhungana, 2022:109), and is also calculated by
subtracting the total electricity billed or sold to the consumers from the total electricity
supplied or fed into the power distribution system (Pereira & Saraiva, 2021:1). NTL could
only be estimated by finding the difference between the total energy losses and the TL
(Poudel & Dhungana, 2022:110), but cannot be expressly calculated like TL (Depuru et al.,
2011a:1007).

NTL is otherwise known as ET (Jamil & Ahmad, 2019:454). NTL is the common term used
primarily to refer to ET and other irregularities in power distribution systems (Yakubu et al.,
2018:611). This is further established in Figure 1.2 where NTL is described as ET. NTL is
alternatively known as ET because ET is the primary and predominant cause of NTL, and
hence takes the largest percentage in its constitution (Appiah et al., 2023:1). To affirm the
fact that ET is the prevailing cause of NTL, the authors in Dimf et al. (2023:1) have also
asserted that about 80% of NTL in power systems are affiliated to ET. In other words, ET

contributes the greatest amount of NTL in electricity systems (Appiah et al., 2023:1). Itis on
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this ground that both NTL and ET are interchangeably used in the literature (Kgaphola et

al., 2024), and will also be used synonymously in this thesis.

Apart from NTL being referred to as ET, energy theft (Mohammad et al., 2023) and power
theft (Dimf et al., 2023) are alternative terms used for ET in the literature. Like a typical NTL,
ET cannot be accurately calculated or measured by either using formulas or electric meters,
but could only be estimated (Dick, 1995:90; Smith, 2004:2070; Osypova, 2020:11).

Forms of electricity theft

Electricity abstraction is manifested in four ways in all power systems. ET could be in the
form of stealing, fraud, billing irregularities, and non-payment of electricity bills (Onat,
2018:166; Jamil & Ahmad, 2019:454). All these forms or types of ET are interrelated
because they all cause revenue losses to the utilities (Lewis, 2015:121). Electricity
customers engage in one form of theft or the other in a bid to lower or to entirely avoid
electricity bills (Depuru et al., 2011a:1010). Conscious dubious actions or errors which are
external or extrinsic to the electricity grid are responsible for NTL (Poudel & Dhungana,
2022:110). All the various forms of ET or NTL are represented in Figure 1.3. The figure is a
schematic model showcasing all the probable sources of NTL, and meant to simplify and

aid quick overview of the entirety of the different forms of ET available in the power system.
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Figure 1.3: Sources of NTL or NTL vulnerability points

(Viegas et al., 2017:1258)



Viegas et al. (2017:1258, 1260) have shown in Figure 1.3 that the unbroken line depicts the
physical connection of electricity from the pole-mounted distribution transformer, while the
broken or dashed lines are the channels of communication. There are eight points or
sources of NTL labelled in the figure. Those points are the attack or vulnerability points at
the distribution line and/or service cable before the meter, at the meter in the premises of

the customer, and at areas which affect billing by the utilities.

Point 1 in Figure 1.3 depicts the distribution line that supplies the premises of the electricity
customer; point 2 represents the software of the customer’s meter; point 3 represents the
physical hardware and components of the electric meter; point 4 refers to the electricity
customer; point 5 denotes the communication link between the meter and the electric utility;
point 6 represents the interaction or relationship between the utility employees and the
electricity customers; point 7 is the point of communication or interaction between the utility
and its employee; while point 8 represents the information systems of the electric utility
(Viegas et al., 2017:1260). Electricity pilferers achieve their devious objectives by
leveraging on these vulnerability points at various network levels of the electricity grid to
steal the priced commodity.

1.3.1 Stealing

Stealing of electricity occurs when the electricity users rig wires and connect directly to the
distribution lines; or by way of bypassing the electric meters to connect indirectly to the utility
distribution lines through the service cables or the cut-out fuses (Mehdary et al., 2024:1).
Stolen electricity is such that the supposed units associated with consumptions at the points
where the electricity is being abstracted are completely unregistered, and such
consumptions are in essence utterly unknown to the utilities (Winther, 2012:111-112).
Stealing is attributable to physical attacks on the grid.

Point 1 in Figure 1.3 is before the meter, and it is a depiction of the distribution lines which
supplies the homes of electricity customers. A real illustration of the scenario in point 1,
where electricity is being stolen by hooking illegal wires directly on the distribution lines is
shown in Figure 1.4. Lewis (2015:119, 121) calls these lllegal wires “throw-ups”. Throw-ups
are also known as “spider webs” (Smith, 2004:2069; Lewis, 2015:119). Throw-ups are
illegal-wire connections on the grid distribution lines used to siphon electricity (Lewis,
2015:119, 121, 129, 133).

10
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Figure 1.4: Stealing electricity directly from the distribution lines via throw-ups

(Express Tribune, 2016)

Apart from throw-ups on the distribution lines, electricity is also being stolen before the
meter within the consumers’ premises by bypassing the electric meter as shown in Figure
1.5. The red cables in the figure were used to bypass the meter. Bypassing the meter is the
act of circumventing the electric meter and tapping power directly through the service cables
coming from the distribution lines to the consumers’ premises. The electricity consumed at
the point of bypass is not registered as the electric meter installed after this point is oblivious
of those consumptions taken at that point. Power is rerouted to an alternate path at the point
of bypass, and such renders the meter redundant as its primary essence of registering

energy consumptions has thus been defeated.

Another method of bypassing the meter, especially via electromechanical energy meters, is
by unconventionally connecting the load between the phase (live wire) from the meter and
a separate wire attached to the earth (i.e., earth wire). This earth wire is used as a return
path instead of the neutral or return wire supplied by the utilities, which normally completes
the electric circuit by returning the phase current from the load to the supply source, that is,
the distribution transformer (Anas et al., 2012:178; Avancini et al., 2019:711). With this
method of bypassing the electric meter, the electromechanical meter considers that the

electric circuit is incomplete and assumes that the voltage between the phase and the earth
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wire (pseudo neutral) is zero, implying that no energy has been consumed and hence, the

meter registers no reading (Depuru et al., 2011a:1009).

Figure 1.5: Bypassing the electricity meter

(MyBroadband, 2015)

Stealing of electricity is also achieved through the swapping of the connections of the supply
or input terminals and the load or output terminals of electromechanical meters. In this
method, the supply or service cables are incorrectly connected to the load terminals of the
meter, while the load cables which are supposed to provide the equipment or load of the
customers with electricity are also inappropriately connected to the supply terminals of the
meter in an interchanged manner. The swapping of the terminals is done in a bid to give
lower billable readings, as this causes the rotating disc of electromechanical meters to move
in a reverse direction (Depuru et al., 2011a:1008; Anas et al., 2012:178; Avancini et al.,
2019:711).

1.3.2 Fraud

Fraud covers all the sharp practices on electric meters and the utility billing systems, as
orchestrated by electricity fraudsters, to give inaccurate meter readings or billings (Poudel
& Dhungana, 2022:110). Fraud is committed when electricity customers intentionally
deceive the electric utilities. Fraud is ascribable to physical, cyber and data attacks on

12



electric meters and/or billing infrastructure. A popular means of defrauding the utilities is by
tampering with the electric meters to hinder their normal operations (Mehdary et al., 2024:1).
This is to dishonestly reduce the actual consumption levels of the meters vis-a-vis lowering
the electricity bills payable to the utilities (Kambule & Nwulu, 2021:43; Poudel & Dhungana,
2022:110). By defrauding, malicious customers deliberately outwit the electric utilities, while
the latter continue to believe that all is well with the metering devices of the customers, their

energy billings, and the transactions between them.

Electricity fraud also involves the physical and/or hacking (remote or cyber-based attacks)
the smart electric meters and/or their communication links to the utilities, in a bid to modify
the normal electric readings to give lower or erroneous readings (Naeem, Aslam, et al.,
2023:59496). Hacking or cyber-attack on electric meters is exclusive to SMs and its
communication infrastructure in SG. Cyber-attack on SMs and their communication links to
the utilities is a novel form of attack due to the advent of the SG system (Aggarwal & Kumarr,
2021:466). The primary aim of the cyber and data attacks is to commit electricity fraud by
compromising consumers’ electricity consumption data (Yan & Wen, 2021). Several
methods of committing fraud through electricity meters take place at points 2, 3, 5, and 8 of
Figure 1.3.

Hitting the energy meter to cause shock or damage to its inner electromagnetic coils;
inserting an external object to stop the rotating disc; inverting the meter to cause it to run
backwards and reversing its readings; physically obstructing the rotating disc with a foreign
object; putting a magnet on the meter to affect its magnetic field lines in an effort to slow
down the rotating disc of the meter or to absolutely stop the rotating disc if a strong magnet
is placed on the meter (Bihl & Hajjar, 2017:274) are exclusive ways to fraudulently abstract
electricity via electromechanical meters. The electromechanical meter is discussed in detalil
in Section 2.3.2.1 of Chapter 2.

Putting a magnet on an electromechanical meter subverts the functionality of the current
sensing components of the meter and alters the magnetic flux produced by it. This affects
the normal metrology of the meter by slowing down the spinning of the rotating disc, thereby
giving lower than expected readings. Magnets generally affect the voltage and current
sensing mechanisms of electromechanical meters by changing its electrical characteristics
and cause them to malfunction by lowering or stopping (in the presence of strong magnets)
the energy measurement of the meter. Voltage and current sensing mechanisms of
electromechanical meters are made of magnetic materials and are therefore affected by

external magnetic field which causes the meter to falter. Making changes to the internal
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wire connections of an electricity meter is also one of the methods of swindling the electric
utilities (Bihl & Hajjar, 2017:274).

1.3.3 Billing irregularities

Irregularities in electric billings could occur for so many reasons. The most common act that
ultimately leads to billing irregularities is the corruption collusion between the electricity
customers and the utility employees, an act which is more popular in the developing
countries (Lewis, 2015:121; Osypova, 2020:12; Ahmed et al., 2022:581). Some corrupt
utility employees dishonestly register lower than the actual readings on the electric meters,
because of the financial gratifications or bribes they expect in return from the electricity
customers (Smith, 2004:2069; Kambule & Nwulu, 2021:43). This fraudulent association
between the consumers and the utility employees leads to inaccurate meter readings,
causing incomplete invoicing (Onat, 2018:166) and ultimately resulting in billing
irregularities (Depuru et al., 2011a:1007). Billing irregularities could take place at points 3,
6, 7 and 8 of Figure 1.3.

Other forms of billing irregularities that contribute to NTL and loss of revenue to the utilities
are energy accounting errors or billing errors, utility employees’ errors in reading the electric
meters or errors in meter readings owing to faulty electric meters; and estimated billings for
unmetered customers or even at times for metered customers (Glauner et al., 2017:761;
Kambule & Nwulu, 2021:43). Cyber-attack frauds on SG billing system as mentioned in
Section 1.3.2, and customers who fail to pay their electricity bills (as described next in
Section 1.3.4) also cause billing irregularities (Viegas et al., 2017:1260).

1.3.4 Non-payment of electricity bills

Like other forms of ET, non-payment of electricity bills is also tantamount to stealing
electricity, since it ultimately leads to shortfalls in utility revenues (Naeem, Aslam, et al.,
2023:59496). Non-payment of electric bills is a situation whereby customers do not pay the
bills they owe to the electric utilities. This attitude among electricity customers is not only
limited to those in developing countries, but is also a cause for concern among electricity
customers in the developed countries (Smith, 2004:2069). In contrast to the unpaid
electricity bills by regular customers who have been correctly charged by the utilities as
discussed in this section, all the previously highlighted forms of ET in Sections 1.31, 1.32,
and 1.33 all result in unbilled energy usages, as the electric utilities are completely oblivious

of those consumptions. However, non-payment of billed electricity also contribute to NTL
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because the benefit of unpaid electricity is equal to the units of stolen electricity (Jamil &

Ahmad, 2019:453). Non-payment of electricity bills occurs at point 4 of Figure 1.3.

Statement of the research problem

Electricity losses is one of the determinants of energy crisis that undermines the power grid
(Fragkioudaki et al., 2016:44; Iftikhar et al., 2024:01). ET causes major power losses,
financial losses and equipment damage in the electrical power system (Depuru et al.,
2011a:1007). ET is a pervasive problem (Sharma et al., 2016:41), and no power system
anywhere in the world is completely free from it (Smith, 2004:2067). ET hampers the
reliability and sustainability of electricity grids and impedes national economic growths,
causing interruptions that lead to economic downturns and job losses (Naeem, Aslam, et
al., 2023:3; Huang et al., 2024:1).

Since ET cannot be totally eradicated in the power systems (Lewis, 2015:128-129;
Kocaman & Tumen, 2020:1), the motivation for this research project is to profoundly detect
ET in the electricity grids so as to mitigate it to the barest minimum. ET pruning is more
significant and more cost-effective than generating more power to compensate for the
energy losses occasioned by NTL (Abaide et al., 2010:1; Fragkioudaki et al., 2016:44).

Research aim and objectives

The aim of this research is to detect and mitigate ET in SG, by using the energy
consumption data of utility consumers to develop efficient NTLD model that would achieve
higher detection performances to enhance better onsite mitigation of ET. The objectives of

the research are:

(a) to extensively review the existing literature on ETD or NTLD methods.

(b) conduct ETD simulations. The simulations are done primarily to improve the predictive
powers or detection performances of existing ETD models in a bid to develop cost-

effective and more-efficient ETD model with excellent detection performances.

(c) to prudently shortlist ET suspects and recommend them for onsite inspections, such
that cost-effective manual onsite inspections of the very suspicious customers are
carried out to establish the ET culprits. After the theft culprits have been established,

necessary fines and other correctional measures are imposed on them by the utilities
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within the scope of the existing laws to further discourage such heinous acts from

recurring. This measure tend to mitigate ET in power grids.

1.6 Research questions

1.7

1.8

This research project is about ETD and ET mitigation in the SG using consumers’ real-world
electricity consumption data. Thus, the primary research question is: “how do we detect ET
better in SG?” The next crucial and complementary question to the first question would then
be: “how do we mitigate ET better in SG?” After the detection of ET, the mitigation of it is
the next natural priority. The latter research question is premised on the former, since the
performance success achieved by the proposed ETD model would translate directly to the
accomplishments attainable during onsite ET mitigation efforts. The greater the efficiency
achieved by the proposed ETD model as depicted by their higher performance results, the
greater the mitigation successes achievable during onsite inspections by the utility
technicians or inspectors who affirm and prosecute theft culprits in a bid to mitigate the ET

scourge.

Delineation of the research

This research project centres on the detection and mitigation of ET, and has precluded
cybersecurity of the utility infrastructure. Probable cyber and data attacks (Yan & Wen,
2021) to the information systems of electric utilities have not been considered in this
research. Electric utilities should endeavour to strengthen the security of their information
systems, as SG communication systems are expected to be highly reliable and secure
(Rastogi et al., 2016:14). This is to ensure that intruders whose ulterior motives of
compromising, manipulating, and delivering fraudulent readings to the utilities do not gain
remote access to the electricity consumption data of the customers via the SMs and their
communication links in the AMI (Knapp & Samani, 2013:49-50; Viegas et al., 2017:1257).
The twenty-first century SGs and their SMs should be resilient against cyber and physical
attacks (Edris & D’Andrade, 2017:38; Avancini et al., 2019:712).

Significance of the research

The quality and the economy of the power system are the prime priorities of electricity
providers (Rastogi et al., 2016:13). The effects of ET are highly damaging, hence, a more
efficient and reliable anti-theft approach is needed (Mujeeb et al., 2020). This research
project is important in that it provides the means to remarkably reduce NTL and help

increase utility revenues and profits, protect honest electricity customers, improve the
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1.10

reliability, sustainability, and security of power systems, and thereupon save national
economies (Liao, Zhu, et al., 2024:5075). The traditional manual onsite NTLD scheme,
which was the only means of mitigating ET is very expensive and unattractive with many
social and technical limitations (Huang et al., 2024:1; Liao, Zhu, et al., 2024:5075). ET is
the major hitch plaguing the AMI and therefore calls for the development of effectual theft-
detection techniques (Jiang et al., 2014:106). Al-based approach for NTLD has been the
attractive choice because it renders a high hit ratio, cost-effective and efficient, and requires
less manpower (Ghori et al., 2020:16033-16034; Poudel & Dhungana, 2022:110).

Contributions of the research

The primary contribution of this research project is based on the improvement of ETD
efficiencies in SG. NTLD models with higher performance scores spur greater detection and
subsequent reduction of NTL in the power grids. The proposed ETD model developed in
this research project perform better and is more accurate in detecting ET when compared
with other NTLD models presented in the previous research. The models which have been
compared with the proposed model are those that have been developed using the same
energy consumption dataset employed in this research in the various literature where they
have been presented. The proposed NTLD model completely expunges false positives
(FPs) which tend to prevent unnecessary and expensive onsite inspections (Aldegheishem
et al., 2021:25051; Pamir, Javaid, Qasim, et al., 2022:56866, 56870). This is a significant
improvement in what was earlier achieved in the previous research studies. Onsite
inspection is a follow-up process to confirm the fraudulent electricity customers who have
been pinpointed by the proposed ETD model in a quest to mitigate NTL. The greater the
performance scores achieved by evaluation metrics, the more the resources saved by

electric utilities on probable unnecessary onsite inspections.

Outline of the thesis

This section describes the arrangement of the thesis. This thesis is structured into five
chapters. Apart from Chapter 1, which is an introduction to the research study, the remaining

part of the thesis is structured as follows:
Chapter 2 expounds review of the literature on the components relating to the research. In

this chapter, reviews have been made on electricity grid, electricity metering, causes and

effects of ET, and the various methods used to prevent, detect, and mitigate ET.
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Chapter 3 focusses on the methodology used in the modelling of the ETD system developed

in this thesis.

Chapter 4 analyses the results of the NTLD experiment carried out in Chapter 3, and

discusses the interpretations of the results obtained.

Chapter 5 is the final chapter, and thus signifies the closing of the thesis. The chapter entails
the summary of the research findings and its contributions, and also recommends future
directions that could further enhance the research results to supplement the current ETD

and ET mitigation efforts.

Conclusion

This chapter introduces the concept of ET by accentuating the role of electricity in our daily
lives and establishing the ET problem along with its history and forms. The research
statement and questions, aims and objectives, delineation, significance, and contributions
of the research were also further discussed, including how the thesis has been structured.
The next chapter is a literature review on electricity grid, electricity metering, and NTL
solutions. The chapter also touches on the causes, effects, detection and mitigation of ET,

and established that Al-based ML techniques are the state-of-the-art approach for ETD.
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2.2

CHAPTER 2

LITERATURE REVIEW

Introduction

This chapter is a review of the literature, and has been structured into three parts. The first
part explores the electricity grid from the traditional grid to the current developmental state
known as the Smart Grid (SG). The second part examines the evolution of electric meters
from the first-invented Gardiner meter to the state-of-the-art smart meter (SM) used in SG
electric systems. The last part constitutes the core of this research project, and analyses
the existing detection and mitigation methods of non-technical losses (NTL) in the power
grid, by surveying how electricity theft (ET) has been forestalled, determined, and curtailed.
Meanwhile, the causes and effects of ET have also been discussed.

Any NTL detection (NTLD) method which may have been proposed by researchers in the
field of NTLD must belong to one or a combination of the categories of NTL solutions
reviewed in this chapter. However, artificial intelligence-based (Al-based) machine learning
(ML) approach is the state-of-the-art and the most-efficient method used in detecting ET in
power grids (Glauner et al., 2017:761; Glauner, 2019:31, 110; Ghori et al., 2020:16033-
16034; Saeed et al., 2020:1; Guarda et al., 2023:4; Stracqualursi et al., 2023:12, 16; Coma-
Puig et al., 2024:2704), as already established in Sections 2.4.5 and 2.4.5.1. Electricity must
be generated, transmitted and distributed before it reaches the consumers, and it must also

be measured to determine whether it is being stolen or not.

Electricity grid

The grid, power grid, electricity grid, electric grid, or electrical grid is one of the engineered
most-complex systems in the world (Khoussi & Mattas, 2017:226). The essence of
electricity grid is to deliver power from the point of generation to load centres (Breeze,
2014:6; Khoussi & Mattas, 2017:227). The basic quantities of electricity are the flowing
electrons (current), and the pressure or electric potential (voltage) from the power source
which propel the current through conductors. The electricity grid is also known as electric
power system (Qazi, 2017:4).

Electricity grid is a critical infrastructure for the generation, transmission, and distribution of

electrical energy. The grid consists of power supply components like the power generators,

transmission lines, transformers, and the distribution lines. Power is conveyed directly from
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the power generation plants through the transmission lines and substations to the
consumers at their various premises (Khoussi & Mattas, 2017:226-227; Kathiresh &
Subahani, 2020:177). Electricity grid is the interconnection of these power supply
components or the interconnection of power subsystems from generation where the power
is being produced, through the transmission lines and distribution lines, to consumption or
load centres where the power is being put to direct use, covering broad geographical area
and forming a large electric network (Qazi, 2017:4). This large electric network is usually
being referred to as the “largest machine” in the world owing to its immense size (Porcu et
al., 2021:8).

Electricity consumers derive all their power needs from the grid, and connect to the grid
whenever they switch on their bulbs or plug-in their residential, commercial, or industrial
devices (Erenodlu et al., 2019:14).

2.2.1 The pioneer electricity grid

After Thomas Edison succeeded in making the first commercially viable incandescent
electric lamp in 1879 (Sulzberger, 2003b:64; Lobenstein & Sulzberger, 2008:84), his power
station known as the Pearl Street Station which was located in lower Manhattan, New York
City, United States, began to generate electricity on 4 September 1882 (Lobenstein &
Sulzberger, 2008:86; Sulzberger, 2013:78; Birleanu et al., 2019:609).

Edison who in 1880 decided to construct a permanent power station (the Pearl Street
Station), had purposely founded a corporation called Edison Electric llluminating Company
of New York in the same year, under which to carry out the proposed power station project
(Rutgers, 1882:423; Sulzberger, 2003b:65; Lobenstein & Sulzberger, 2008:85; Sulzberger,
2013:78). Edison’s decision to establish the Pearl Street Station was primarily to
commercialize his invented incandescent lamps or bulbs, by generating and distributing
electricity to power the invented bulbs for his prospective customers (Sulzberger, 2003b:64;
Tuballa & Abundo, 2016:715). The commencement of operations by the Pearl Street power
generating station on 4 September 1882 launched the era of commercial incandescent
electric lighting (Hughes, 1958:143). Incandescent lamps are the predecessor light bulbs
typical of the more-efficient and longer-lasting modern energy-saving light bulbs used today
(Birleanu et al., 2019:609).

The Pearl Street Station was a low-voltage (LV) direct current (DC) power utility
(Sulzberger, 2003b:64), and the first electric power station in the world (Malik, 2013:140).
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The Station, which cogenerated electricity and heat, was also the first commercial and
permanent central power plant in the world (Lobenstein & Sulzberger, 2008:85-86; Lovett,
2013:1; Sulzberger, 2013:76, 78). Figure 2.1 shows the sketch of the exterior view of the
Pearl Street Station of the Edison electric utility. The horse-drawn cart seen in front of the
power-station building in the figure was used to transport coal to the power plant for the
running of the steam engines, which was used to turn the dynamos. The coal was taken
into the power station through a sidewalk vault into the coal storing room known as cellar
(Essig, 2009:63-64).
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Figure 2.1: Exterior-view sketch of the Pearl Street Station

(Sulzberger, 2013:76)
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Dynamos were the earliest outmoded DC generators used to produce commercial DC
electricity before the advent of alternating current (AC) generators or alternators used to
produce large-scale AC electricity (Owens, 2019:1). Alternators or AC generators replaced
the dynamos owing to the advantages of AC over DC as discussed in Section 2.2.1.3.
Electricity has been produced in the form of DC or AC and conveyed through cables for
consumption by the end users (Erenoglu et al., 2019:14). DC flows in one direction while
the AC is sinusoidal and thus flows back and forth (Sulzberger, 2003b:66).

Figure 2.2 shows the sketch of the dynamo room of the Pearl Street generating station of
the Edison electric utility. Each of the six dynamos in the room had a capacity of 100 kW
and could supply up to 1200 lamps at 110 Vdc when it began operation (Rutgers, 1882:425;
Lobenstein & Sulzberger, 2008:85-86). As apprised in the description of Figure 2.1 above,
coal-fired steam engines were the prime movers used to drive the DC dynamos of the
Edison power plant (Lobenstein & Sulzberger, 2008:85; Tuballa & Abundo, 2016:715).

Figure 2.2: Sketch of the dynamo room of the Pearl Street Station

(Rutgers, 1882:425)

The distribution system for Pearl Street Station was an underground distribution system as
shown in Figure 2.3. It consisted of manhole for underground access, and conduits where
the distribution cables of the electric utility were laid for onward delivery of electricity to the

consumers. The Edison Pearl Street central power generating station, with its distribution
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system formed the revolutionary first electricity grid system (Tuballa & Abundo, 2016:715).
The Edison electric utility which initially served 85 customers with about 400 lamps on the
day it commenced operation (Lobenstein & Sulzberger, 2008:86) was an original model, a
foundational prototype and the evolutive forerunner of the intricate electricity grid system of
today, comprising central power generation, distribution, and consumption (Tuballa &
Abundo, 2016:715; Erenoglu et al., 2019:12).

Figure 2.3: The underground distribution system of the Pearl Street Station

(Lobenstein & Sulzberger, 2008:86)
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Edison’s electricity was reportedly stolen in New York in 1886 as discussed in Section 1.1.1
of Chapter 1. It was the first-ever case of ET incident that had been reported. That incident
established that the first electric power system (Malik, 2013:140; Tuballa & Abundo,
2016:715) did not escape the plague of ET (Glauner, 2019:2; Megger, 2020). Similarly, all
other power systems of today have also not been spared of the endemic menace (Winther,
2012:111; Sharma et al., 2016:40). All electric utilities worldwide are therefore battling with
the daunting ET problem (Yip, Wong, et al., 2017:230; Yip et al., 2018:190) and devising
ways to mitigate it, to ease its harmful effects on electric grids and national economies
(Viegas et al., 2017:1258; Shokoya & Raji, 2019a:96).

2.2.1.1 Shortcomings of the pioneer electricity grid and the ensued rivalry

Edison’s DC electric system suffered a setback, in that, it started to lose voltage when an
attempt was made to distribute the DC electricity over distances longer than a mile
(Sulzberger, 2003b:66; Cowdrey, 2006:89). The main rival to Edison in the electricity market
was George Westinghouse, an inventor of the railway braking system, who became
interested in the AC electricity business and commercialized it (Hughes, 1958:153;
Sulzberger, 2003b:66). The rivalry between them began in 1886 after Westinghouse
founded the Westinghouse Electric Company (renamed Westinghouse Electric and
Manufacturing Company), in Pittsburgh, Pennsylvania, United States; to promote the
development of the AC electric system, an alternative electric system for commercial
electricity (Hughes, 1958:143).

Westinghouse purchased transformer patents (Sulzberger, 2003b:66; Cowdrey, 2006:91)
and incandescent lamp patents that were different from Edison’s (Kommajosyula, 2017:38)
for his AC electric lighting business. Westinghouse who wanted more than lighting, also
purchased the complete polyphase AC system and the induction motor patents from Nikola
Tesla who he also hired in 1888 to work in his company (Ruch, 1984:1397; Sulzberger,
2003a:70, 72; Cowdrey, 2006:91). With the polyphase systems, and its associated
components like the transformers and transmission lines, the maiden three-phase electric-
line network commenced operation in 1893 (Sulzberger, 2003a:72-73). The AC electric
power system and the AC induction motor that are still being used currently all over the
world were the original inventions of Nikola Tesla (Sulzberger, 2003b:67; King, 2013).

Tesla’s inventions were ranked to be the most valuable after the telephone (King, 2013).

Edison acknowledged the range limitation of his DC system and had earlier sought a

remedy from Tesla who he hired in 1884 (before Westinghouse later hired him) to help solve
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the entrenched DC short-range issue (Sulzberger, 2003b:67; Cowdrey, 2006:90; King,
2011). Tesla had advised Edison that the solution to the short range of DC and the future
of electricity distribution for long-range transmission was in the AC electric system; but
Edison who knew taking Tesla’s advice would render his DC system obsolete rejected
Tesla’s advice and grimly told him he was not interested (Sulzberger, 2003b:67; Cowdrey,
2006:90; King, 2011). Tesla parted ways with Edison in 1885 after the latter reneged on a
financial promise made to the former as a form of compensation after accomplishing the

given task upon which the pledge was based (King, 2011; King, 2013).

Westinghouse leveraged on the range-limited shortcoming of the DC to promote the AC,
which could be transmitted efficiently over longer distances (Cowdrey, 2006:91) to load
centres at a relatively cheaper cost (Coltman, 1988:92). Edison who did not want to lose his
electricity-purveyor monopoly (Cowdrey, 2006:91) and the royalties he was getting from his
DC patents (Lantero, 2014) felt threatened and launched fierce attacks against the
competing AC electric system (Sulzberger, 2003b:64).

2.2.1.2 War of the currents

The business rivalry between Edison and Westinghouse led to the epic and shocking
competition dubbed the “war of the currents” (King, 2011). The war of the currents or the
battle of the currents started in 1888 (Sulzberger, 2003a:70; Sulzberger, 2003b:67). The
ensued ‘war was a legal and publicity battle (Coltman, 1988:92) between the duo
entrepreneurs, who had to vie to make a case for the commercial acceptance of either of
their DC or AC current for the generation, transmission, and distribution of electricity
(Hughes, 1958:143; Sulzberger, 2003b:64). Aside Edison and Westinghouse who were the
gladiators in the electric current tussle, other proponents and/or opponents who also got
involved in the battle of the currents were scientists, engineers and the businessmen; even
the lawmakers and the public were also in the picture and played a remarkable role in it
(Hughes, 1958:144).

Edison persistently exhibited the disadvantages of AC, while Westinghouse rather focused
on the technical advantages of AC (Cole & Chandler, 2019:21). Edison’s criticisms were
that the AC high voltage was perilous to work with as it could electrocute (deadly current),
which made it more dangerous to human lives; and hence, not a feasible option for the
electric system (Cowdrey, 2006:90). Edison who at a point could no longer contest the

popularity and the significant economic advantage of the AC system over his DC system,
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went a step further to launch an offensive and vigorous smear campaign against the AC
system (Hughes, 1958:144-145; Rapp & Mensink, 2011:142).

Edison and the DC proponents were adamant about their anti-AC standpoints, as they
wanted the AC outlawed and tried every means to associate it with death (Hughes,
1958:145-146, 152, 154, 160). An electrician and an AC opponent, Harold Brown, referred
to AC as “executioner’s current”, and worked surreptitiously in alliance with Edison to
malignly prove the potency of AC in causing death (Hughes, 1958:147, 151, 154, 157,
Sulzberger, 2003a:71). Harold Brown carried out public electrocution of animals and
dispatched them with AC electricity (Hughes, 1958:148-149, 151; Cowdrey, 2006:91).
Edison supported death penalty by electrocution (on an electric chair) using the
Westinghouse’s AC and was also instrumental to its realization (Hughes, 1958:151, 160,
164-165; Sulzberger, 2003a:70-71; Cowdrey, 2006:91; Rapp & Mensink, 2011:142). Edison
had abhorred human capital punishment before the battle of the currents, but backed death
by electrocution as an alternative to the conventional hanging method, in an opportunity to
deviously defame Westinghouse’s AC (Hughes, 1958:151, 160, 164-165; Cowdrey,
2006:91).

Edison also coined and introduced the new word “Westinghoused” to the public. He formed
the new word from the last name of his main rival in the electricity business. He used this
word in his speeches to indicate that those criminals who had been found guilty by the
authority and sentenced to death for committing various capital offences would be executed
using the AC electricity (King, 2011; Rapp & Mensink, 2011:142). He also advocated for the
official adoption of his contrived word, but “electrocuted” was endorsed instead (Rapp &
Mensink, 2011:142). Edison’s antics against the competing AC were basically meant to get
rid of the rivalry from Westinghouse, protect his DC electricity business, and restore the
earlier monopoly he enjoyed in the electricity market. However, the macabre marketing
tactics adopted and deployed by Edison and his cohorts were unorthodox and went beyond

the bounds of conventional competition (Hughes, 1958:143, 145).

2.2.1.3 Thetriumph of alternating current over direct current

In 1892, when the war of the currents was still at its height, Westinghouse won the bid to
iluminate the proposed 1893 Chicago World's Fair (Cowdrey, 2006:92). The 1893
exhibition in Chicago was an all-electric fair, and the first of its kind which had 27 million
visitors in attendance (Sulzberger, 2003a:72; Cowdrey, 2006:92; Essig, 2009:254).

Westinghouse was able to underbid his main rival (Edison) by less than half to win the

26



contract (Cowdrey, 2006:92; Essig, 2009:254). The underbidding was feasible owing to the
cheaper nature of the AC system as against the DC system (Sulzberger, 2003a:72;
Cowdrey, 2006:92). The 1893 Chicago World’s Fair otherwise known as Columbian
Exposition, where about 130,000 incandescent lamps and 8,000 arc lamps were lit up was
a huge success (Sulzberger, 2003a:72; Essig, 2009:254) . Those lamps were powered by
12,750 kW two-phase 60 Hz alternators, as the buildings at the fair were luminously turned
to “city of light’. The awesome exposition gave credence to the AC system and enhanced

it to expeditiously eclipse the DC system (Sulzberger, 2003a:72).

Leveraging on the success achieved at the Columbian Exposition, the cheaper nature of
the AC system coupled with its ability to transmit power over longer distances, in conjunction
with another round of underbidding, Westinghouse in 1893 also won the bid to exploit the
immense power of the waterfalls of the Niagara River located at Niagara Falls in New York
(Sulzberger, 2003a:73; Cowdrey, 2006:92). The Niagara Falls hydroelectric power plant
project was also delivered and commissioned in 1895 (Cowdrey, 2006:92). Dominion of the
AC system over its counterpart DC was further entrenched with the successful development
of the Niagara Falls hydroelectric power station (Sulzberger, 2003a:72). The Niagara Falls
Project became the first-ever hydroelectric power plant, its delivery consolidated the
superiority of AC over DC, symbolized victory for the AC, and thus signalled the end of the
battle of the currents (Sulzberger, 2003a:72; Essig, 2009:257). Henceforth, the AC system
became the dominant and the undisputable de facto standard in the electricity industry
(Sulzberger, 2003a:73).

In the end, the negative propaganda approach employed by Edison to discredit and create
public exasperation about the AC ultimately failed (Cowdrey, 2006:91). The war of the
currents was won in 1895 in favour of Westinghouse’s AC after the successful execution of
the Niagara Falls Project (Hughes, 1958:144, 165; Coltman, 1988:92; Cowdrey, 2006:92).

The AC is scalable as its voltage could be increased with step-up transformers or lowered
with step-down transformers. The fact that the AC system is cheaper and that its voltage
could be increased (by lowering its current) with the help of a step-up transformer for
transmission over longer distances gave the AC system the unique advantage and triumph
over the DC system (Hughes, 1958:144-145; Sulzberger, 2003b:66; Cowdrey, 2006:91-92).
The stepped-up voltages could later be stepped down within the vicinity of the consumers
to lower voltages by a step-down transformer for end-use (Sulzberger, 2003b:66; Cowdrey,
2006:91; Essig, 2009:258). The fact that the AC is transformable or scalable is the primary

advantage for its economic transmission over lengthy distances. The stepping up and/or
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down of voltages is done by transformers (secondary generators) during the process of
transformation (Sulzberger, 2003b:66; Cowdrey, 2006:91; Jamil & Ahmad, 2019:454). The
sinusoidal current (AC) has since then been accepted for universal use and adopted as the
industry standard for the electric system. Edison eventually regretted not heeding Tesla’s
advice (King, 2011).

2.2.2 Modern electric power system

The battle of the currents had a far-reaching effect. The contest was incidentally not only
about partisan business rivalry, but also instrumental and vital to the future direction and
development of the electricity industry all over the world (Hughes, 1958:145; Sulzberger,
2003a:73). The modern electricity grid is mainly AC-based. The AC had taken precedence
after its triumph over the DC as mentioned previously in Section 2.2.1.3. The AC electric
system is still referred to as “modern” because it is still in use till today. The complete AC-
based legacy electricity grid system is known as the conventional grid. The conventional
grid is currently being improved upon to the state-of-the-art Smart Grid electric system to
cater for some of its inherent challenges (Khoussi & Mattas, 2017:228-229; Kularatha &
Gunawardane, 2021:28).

The conventional grid and the Smart Grid are the two main types of electricity grid system.
The conventional grid and Smart Grid electric systems are discussed in Sections 2.2.3.1
and 2.2.3.2 respectively. Electricity is generated, transmitted, distributed, and consumed in
the modern electricity grid (Khoussi & Mattas, 2017:227), unlike in the pioneer DC electricity
grid where electricity was only generated, distributed, and consumed without being
transmitted (Tuballa & Abundo, 2016:715), owing to the DC short-range limitation issues

stated earlier.

i. Generation

The centralized AC-generated power system is economical, efficient, reliable, and long-
distance enabled, as it is usually located far away from the end users (Erenoglu et al.,
2019:14-15; Kularatna & Gunawardane, 2021:1, 27). The AC generation plants are the
central source of power in the electricity grid, with generators that are either driven by steam
turbines, gas turbines or hydro turbines, etc. (Kularatna & Gunawardane, 2021:1). A turbine
is a prime mover that serves as the source of rotational mechanical energy which drives the
generators. Turbines produce mechanical energies by converting the kinetic energies of
steam, gas, or water, etc. into whirling energies to turn the generators. The generated power

needs to leave the remote locations where it is being generated and get closer to the users.
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This is literally like taking a product to the market. These remote locations where power is
generated are mainly places where the natural energy sources (waterfalls or fuels) that drive

the turbines are abundant and readily available (Cowdrey, 2006:91).

ii. Transmission

Transmission is the transportation of the generated electricity via the transmission lines.
Transmission is accomplished by stepping up the AC voltages of the generated power at
the transmission substations by step-up transformers, so that it would be able to travel over
longer distances to the distribution substations nearby the electricity consumers.
Transmission should be efficient with lower losses at low cost (Erenoglu et al., 2019:16).
High voltage transmission allows power to be transmitted over longer distances through
cheaper cables of smaller diameters, thereby reducing power and heat losses (Hughes,
1958:44; Papalexopoulos, 2013:227-229).

iii. Distribution

At the distribution substations where transmission lines terminate, voltage step-down takes
place using primary distribution transformers, to reduce the AC voltage level from
transmission voltage to primary distribution voltage for subsequent distribution to the
secondary distribution transformers via the primary distribution lines (Khoussi & Mattas,
2017:227). The primary distribution voltage at the secondary distribution phase of the grid
is further stepped down to service voltage by the secondary distribution transformers, and
taken to the premises of the consumers or service locations via the secondary distribution
lines for consumption (Cowdrey, 2006:91; Khoussi & Mattas, 2017:227).

iv. Consumption

Consumption takes place at the demand-side or consumer-end of the grid. It is the final
stage of the grid where electricity at its service voltages is delivered to customers at their
various locations for direct utilization (Khoussi & Mattas, 2017:227). The use of electricity
to power appliances in homes and offices, and machines in industries by the consumers
are examples of putting electricity to direct use. Consumers of electricity are meant to use
the product judiciously and efficiently without causing NTL. Electricity must be accessible
to the consumers because the power that is generated but fails to get delivered to the
intended consumers would eventually not worth its while. Consumption must be fulfilled to

complete the value chain of electricity.
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Characteristics of alternating current

In contrast to the continuous current of DC, the AC varies as it reverses several times in a
second and undergoes electromagnetic induction or magnetic effect in the iron cores of
transformers. This current induction from the primary coils to the secondary coils of
transformers causes a corresponding voltage effect from the primary coils to the secondary
coils. The number of turns of the secondary-coil windings with respect to the number of
turns of the primary-coil windings of a transformer determines whether the transformer is a
step-up or a step-down transformer. A step-up transformer has a greater number of turns
of coils in the secondary windings when compared with the number of turns of coils in the
primary windings; while a step-down has a lesser number of turns of coils in the secondary
windings when compared with the number of turns of coils in the primary windings
(Cowdrey, 2006:91; Essig, 2009:102; Crawford, 2019).

The primary coil of the transformer is connected directly to the primary mains supply of the
utility, while transformation takes place at the secondary coil via induction. To induce
voltage in the secondary coil, the magnetic field produced by the flow of current in the
primary coils needs to keep changing constantly, as it is only a changing magnetic field that
causes voltage induction (in the secondary coil) via a process known as electromagnetic
induction. For this reason, it is only the AC that is transformable, that is, it is only the AC
that could be stepped up or down using a transformer. Transformers do not transform an
unvarying DC current that flows with a constant magnetic field because the direction of the
DC voltage and current are not changing or switching (Essig, 2009:101-102; Crawford,
2019; Owens, 2019:14).

AC electricity is produced and consumed in real time; hence, grid operators ensure that
power is supplied in accordance with demand in a bid to stabilize and optimize the grid
(Soliman et al., 2021:3712). Although, energy storage is possible nowadays, but it is very
expensive (Khoussi & Mattas, 2017:228-229). Power system frequency is an indicator of
the grid stability (Arief et al., 2020:2). The grid is stable if its frequency does not deviate or
does deviate within an acceptable limit (OBAID et al., 2019:10; Kruse et al., 2021:1-2).
Frequency stability means that there is a balance between the power generated and the
power consumed (OBAID et al., 2019:10; Bevrani et al., 2021:1). With stable grid frequency,
corresponding stable grid voltage is simultaneously maintained, ensuring good power
quality and technical stability of the entire power system (Osypova, 2020:25). The frequency

of the power grid measured in Hertz (Hz) is equivalent to the number of times (number of
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alternations) in a second that alternating current and its voltage change direction or switch

polarity to make a complete cycle (Alhelou, 2019:202).

National grid frequencies of either 50/60 Hz are the mains frequencies, the reference grid
frequencies or the nominal operating frequencies in most countries of the world (Kruse et
al., 2021:1-2). 50 Hz AC reference frequencies mean that the directions of voltage and
current of the alternating current constantly switch directions fifty or sixty times per second,
making a corresponding fifty or sixty cycles during the same one-second period. Grid
frequency increases if the demand falls below the supply, but if the grid frequency drops, it
means the demand is higher than the supply (Soliman et al., 2021:3712). The rotor of
standard AC generator oscillates, alternates, or turns and completes a cycle fifty or sixty
times in a second, corresponding to the mains frequency (50/60 Hz) used in a particular
country or region. These oscillations which correlates with the mains frequencies are
proportional to the speed of rotation of the AC synchronous generators (Bevrani et al.,
2021:1). Countries that use 50 Hz grid frequencies tend to use single-phase LVs between
220-240 V range, while those realms that use 60 Hz frequencies use single-phase LV range
between 100-120 V (Brown, 2013:1-2; Zaitsu et al., 2018:352).

< Latest trend

Although, the conventional AC system still remains the pervasive and predominant
electricity system delivering most of the needed electrical energy worldwide (Hammerstrom,
2007:1; Kularatna & Gunawardane, 2021:27, 29), but the DC system is gradually coming
back to prominence (Van Hertem & Delimar, 2013:144). DC renewable-energy deployments
are also growing rapidly. The revival of DC comes in the form of high-voltage direct current
(HVDC), whereby the DC is gradually competing again with the conventionally established

AC system for long distance power transmission after it lost the war of the currents in 1895.

2.2.2.1 Conventional grid

The conventional grid, legacy grid, traditional grid, or classical grid is the existing electricity
grid of the last century (Khoussi & Mattas, 2017:226-229; Birleanu et al., 2019:608). The
conventional grid has existed for more than 100 years (Khoussi & Mattas, 2017:227), and
was designed to meet the power requirements of that era. The legacy grid is basically a
radial (Ma et al., 2013:36), and hierarchical (Bansal & Singh, 2016:174) network. The
traditional grid allows power flow in one direction from the generating stations to the

distribution substations, and to the consumers (Khoussi & Mattas, 2017:227; Kularatna &
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Gunawardane, 2021:28); hence, can only transmit and distribute electrical energy (Tuballa
& Abundo, 2016:712). Figure 2.4 is a depiction of a conventional grid system.

Transmission

system
Generator

Gasoline cars

Figure 2.4: Conventional grid

(Khoussi & Mattas, 2017:229)

Apart from power flow, communication flow is also unidirectional in the conventional grid
(Bansal & Singh, 2016:174). Information flows from the generating stations to the utilities
and from the utilities to the customers, but not the other way round. The consumers cannot
send information to the utilities in the traditional grid system. Power is generated centrally
in the conventional grid system and the grid is also manually restored in case of faults (Ma
et al., 2013:36). The conventional grid is no longer suitable for the power requirements of
today, and needs an upgrade (Jiang et al., 2014:105).

2.2.2.2 Smart Grid

The conventional grid is faced with several challenges that need to be fixed in order to
enhance its capacity and efficiency. Some of these challenges are: increase in electricity
demand, need for diversification of the centralized power generation to cater for the
increased energy demand, conservation of energy, reduction in carbon emissions, demand
response, and optimal deployment of the available grid assets for efficient performance,
etc. (Khoussi & Mattas, 2017:228-229; Kularatna & Gunawardane, 2021:28).
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To overcome the challenges and achieve the ambitious goals highlighted in the preceding
paragraph, we are expected to modernize, optimize, or make the existing grid smarter
(Khoussi & Mattas, 2017:226), so that the generation, transmission and distribution
subsystems and the end-user demand side of the power grid could be efficiently managed.
Modernizing the conventional grid evolves an enhanced electricity grid or an intelligent
electrical network known as Smart Grid (SG), which constitutes telecommunications,
Internet and consumers’ electronic devices in addition to the existing power system
components (Dlodlo et al., 2014:2, 13). The word “smart” means intuitive, responsive and
adaptive in operation, culminating into grid intelligence from power generation to
consumption (Tuballa & Abundo, 2016:712; Khoussi & Mattas, 2017:226; Zhou et al.,
2017:73). The SG self-heals grid-related problems swiftly, and reduces human level of
involvement in the operation, management and planning of the grid (Bihl & Hajjar, 2017:274;
Shokoya & Raji, 2019a:98). This allows humans to only deal exclusively with the exceptions
which automated machine intelligence may not be able to handle. Figure 2.5 is a depiction
of a SG system, showing enhancements or improvements to the underlying conventional

grid system portrayed in Figure 2.4.
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Figure 2.5: The Smart Grid

Smart meter

(Khoussi & Mattas, 2017:233)

The concept of SG came about due to the need to improve the power delivery of the legacy
grid, to make it greener, more reliable, more secure and more efficient (Tuballa & Abundo,
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2016:711; Edris & D’Andrade, 2017:37-38; Khoussi & Mattas, 2017:231). The SG tends to
proffer solutions to the challenges posed by the conventional grid outside the confines of
the legacy grid itself; such that, the revitalized electricity grid will be able to meet up with the
energy demands of the twenty-first century (Kularatha & Gunawardane, 2021:28). The SG
is both evolutionary and revolutionary (Khoussi & Mattas, 2017:231; Tsiatsis et al.,
2019:257; Ahmed et al., 2022:580) in terms of the transformation of the power grid. The
transformation is about the optimization and intelligent integration of the whole power
system (Viegas et al., 2017:1256) by informatizing and intellectualizing the existing grid
(Sun & Liang, 2016:900).

The pace for the modernization of the electric grid was set when the Energy Independence
and Security Act (EISA) of 2007 was enacted in the United States. The EISA of 2007
proposed the attributes of the modern electricity grid to promote energy efficiency and to
stipulate the characteristics of the generation, transmission, distribution, and consumption
subsystems of the electricity grid (Tuballa & Abundo, 2016:713; Kabalci & Kabalci, 2019:5-
6). The National Institute of Standards and Technology (NIST) coordinates the SG
standards, by providing conceptual blueprints and the framework to achieve interoperability
between devices in the SG system (Khoussi & Mattas, 2017:230). These efforts were

geared towards achieving the ambitious goal of modernizing the grid.

SG is the next-generation electricity grid meant to replace the existing conventional grid
(Birleanu et al., 2019:607; Kularatna & Gunawardane, 2021:28). The SG forms a
convergence between the conventional grid and information and communications
technology (ICT) (Porcu et al., 2021:8). Sometimes, the SG is called a modernized grid,
since it is an improvement or upgrade on the ancestral conventional grid (Khoussi & Mattas,
2017:231) and addresses its peculiar deficiencies (Kularatna & Gunawardane, 2021:28).
SG is the modernization of the conventional grid (Mashima & Cardenas, 2012:210; Knapp
& Samani, 2013:17) to a digitally-enabled (El Bassam et al., 2013:202), networked (Bansal
& Singh, 2016:174), and self-sufficient electricity-grid system. This modernization involves
the upgrade of the generation, transmission, distribution, and the metering system of the

conventional grid (Knapp & Samani, 2013:17).

Upgrading the conventional grid to SG involves a conglomeration of embedded
technologies that enhances the generation, transmission, distribution, and consumption
subsystems of the electricity network with better efficiency and reliability (Aggarwal &
Kumar, 2021:456). These technologies include communication, controls, automation,

management tools, information technology and other new technologies, to deliver a robust,
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optimized, efficient, secure, reliable, intelligent, and automated power grid (Khoussi &
Mattas, 2017:231; Viegas et al., 2017:1256; Shokoya & Raiji, 2019a:98), while creating
greater transparency and providing choices that are beneficial to the electricity customers
(Mashima & Cérdenas, 2012:210).

The SG also intends to solve the inherent ET problem, and eradicate other inadequacies
associated with the antiquated conventional grid (Faria et al., 2016:362; Yip, Wong, et al.,
2017:230). A very important feature of the SG system is the replacement of the traditional
electromechanical meters with SMs (Jiang et al., 2014:105; Yip, Wong, et al., 2017:230).
SG and its innate SMs allow a significant reduction in NTL and guard against amateur
physical tampering (Ahmed et al., 2022:580). Although, novel security risks and pilferage
strategies have also emerged owing to the emergence of SG (Yip, Wong, et al., 2017:230;
Ahmed et al., 2022:580; Xia et al., 2022:273).

Existing method of electricity-theft detection (ETD) is centred solely on the availability of
specific metering hardware devices which forms the fulcrum of the theft and its detection,
but electricity could also be stolen remotely via the advanced metering infrastructure (AMI)
of the SG system without physical contacts with the metering hardware. The AMI network
is a key component of the SG that facilitates bidirectional communication between the
electric utilities and the meters of their customers (Mujeeb et al., 2020; Aggarwal & Kumar,
2021:463). The constituents of AMI and the SM are discussed in detail in Section 2.3.2.2.
The availability of vast consumption data of customers with increased granularities has
increased tremendously owing to SG roll-out. These datasets of customers could then be
used for ET predictions by detecting anomalies in energy consumptions using Al-based ML
methods (Jiang et al., 2014:109; Glauner et al., 2017:761; Yip, Wong, et al., 2017:231;
Guarda et al., 2023:1-2), as discussed in Sections 2.4.5 and 2.4.5.1.

In addition to the customary central power generation plants, SG also allows for the stable
integration of smaller power generation units known as distributed energy resources (DER)
like residential batteries, electric vehicles (EVs), microgrids and renewable energies into the
underlying conventional grid (Khoussi & Mattas, 2017:233; Kathiresh & Subahani,
2020:177). This energy diversification is to decentralize generation, enhance capacity for
sustainability to meet growing consumers’ demand. Apart from distributed energy addition
to the grid, SG also allows for the efficient transmission of energy (Viegas et al., 2017:1256),
bidirectional energy flow with a two-way digital communication and control capabilities that
enable the customers to participate and contribute to the sustainability of the electricity grid
(Khoussi & Mattas, 2017:231; Viegas et al., 2017:1256).
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The two-way communication flows in SG allow customers to make informed economic
decisions on their energy usage when they react to the demand-response prompt
information they receive from the utilities via their SMs; while the two-way energy flows also
allow customers to contribute to grid generation capacities by selling their excess DER back
to the utilities (Viegas et al., 2017:1256; Shokoya & Raji, 2019a:96). The connection
between the smart energy meters of the customers and the utility information systems is to
deliver real-time energy information to the utilities and vice versa in a two-way
communication mode via the AMI; while the bidirectional energy flows including the trade
flows between the utilities and their customers form the Energy Internet (Sun & Liang,
2016:900). With SG, power systems are being transformed into data-driven systems with
increased communications and digital controls (Xia et al., 2022:273; Kim et al., 2024:1).

« Demand response

Demand response is a powerful tool and one of the main strategies peculiar to the SG
concept, whereby power demand by electricity consumers is being managed in response
to the supply (Ekanayake et al., 2012:100; Osypova, 2020:26). Demand response is a load-
shifting or load-curve flattening strategy that brings about consumers’ load reduction, by
transferring loads from a period of high demand to a period of low demand. It is the inclusion
of the demand-side management mechanism into the grid operations for the overall efficient
management of the SG system. This improves the interaction between the utilities and their
customers to assuage supply-demand mismatch, for the regulation and sustainability of the
electricity grid. Demand response is mainly facilitated by applying variable tariffs or rates by
electric utilities to units of electricity consumed during the peak and/or off-peak periods, as
a control measure to match supply to demand (Dlodlo et al., 2014:2-3, 6-7, 9, 12). The
matching of supply to demand is done by controlling, adapting, or synchronizing demand in

accordance with the available supply.

Electricity tariffs are relatively higher during peak periods when demand is higher and lower
during the off-peak periods when there is less energy demand. This enhances electricity
customers to make smart or informed decisions about their energy usage. The customers
tend to react to real-time increase in electricity tariffs when grid load increases especially
during the peak periods; or react to the load reduction alert prompted by the electric utilities
via their SMs to prevent supply shortage during peak periods (Dlodlo et al., 2014:5-6;
Shokoya & Raji, 2019a:99). The utilities may take the prerogative of disconnecting
consumers remotely if the load-reduction notifications they sent through the customers’ SMs

were not being adhered to, or reconnecting them when the grid is more stable (Gupta et al.,
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2022:12). These remote disconnections or reconnections are owing to the ability of the SMs
to execute remote commands in addition to its execution of local commands (Depuru et al.,
2011b:2736).

The essence of demand response is to encourage reduction in energy usage, to control
and reduce the total energy demand and lessen the grid burden. With demand response,
no power outage is experienced but the electricity customers receive rate increase alerts
and/or energy reduction prompts which they are obliged to react to (Ma et al., 2013:36-37).
Demand response allows consumers to have more control of their energy bills and helps
prevent blackouts during peak hours (Dlodlo et al., 2014:12). Demand response in SG
ensures balance between energy generation and consumption, so that power is produced
and used at the capacity constraints of the grid (Shokoya & Raji, 2019a:99). This is to lower
the production cost and to ensure successful demand-side management and security of the
grid. Maintaining a balance between generation and consumption is achieved by the utilities
using the precise information of the load they need to cater for in real time. The load
information is seamlessly available in real time owing to the peculiar two-way
communication between the consumer and the utility, as provided for by the AMI in a SG
system, for the efficient management of the grid (Mujeeb et al., 2020; Aggarwal & Kumar,
2021:463). Information on the consumers’ load allows the utilities to match power supply to
demand and thus generate electricity in accordance with demand. This prevents the burning
of more fossil fuels, thereby saving the environments and the economies of realms
worldwide (Ramchurn et al., 2012:86-89). Demand response functionality is not available

with the conventional grid and its meters.

< Smart Grid: the overview

In summary, the cyber-physical system called SG improves the efficiency, reliability, and
sustainability of the traditional power grid by drastically reducing system losses (Shahzadi
et al., 2024:1). Elements of reliability improvement in the SG are self-healing, addition of
alternative energies to the grid for capacity increment, promoting the economical use of
electricity, and providing cyber and physical security to the grid information systems. The
SG is efficient because power generation, transmission and distribution within the grid are
cost-effective with reductions in generation and distribution losses. Demand response at
the demand side of the grid introduces more flexibility to electricity tariffs and consumptions
by allowing the engagement of customers in the management of the grid, ensuring that the
SG is sustainable while also creating a level-playing field, promoting a mutually beneficial

scenario, and a fostering harmonious relationship between the electric utilities and their
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2.3

customers. The following six essential features distinguish SG from the conventional grid:
addition of renewable energies to bolster the grid capacities and to reduce carbon
emissions, reliable two-way communication from generation to consumption endpoints,
advanced metering infrastructure, reliable energy storage abilities, management and

processing of data, and lastly cyber-physical security (Aggarwal & Kumar, 2021:461-467).

Deployment of Al techniques have been proposed and adapted to SGs for optimizing
demand-side management, dynamic load profiling, automatic resolution of grid-related
issues and for several other application areas that are crucial to the resilience and reliability
of SGs. The unique cognitive characteristics of the SG responsible for its astute edge over
the legacy grid is not without the powerful technical support provided by Al (Stracqualursi
et al., 2023:3). In fact, Al is the driver behind the intelligence of SGs (SAP, 2021).
Deployment of SG in Africa will reduce power crises on the continent owing to the ability of
SGs in allowing the incorporation of renewable energies, including its better energy-
management prowess (Shokoya & Raji, 2019b:467, 470). Reliable electricity may snowball
Africa into a production hub rather than her current perpetual consumption state.

Electricity meters

An electricity meter, electric meter, energy meter or kilowatt-hour meter is a device used by
electric utilities to measure the consumptions of electrical energy for billing and monitoring
purposes (Babuta et al., 2021:1; Bajpai & Reddy, 2021:65), and to reduce the effect of NTL
(Depuru et al., 2011a:1011). Electricity meters are cash registers which serve as direct
revenue interfaces between the utilities and their customers (Ajenikoko & Adelusi, 2015:99).
Electricity meter is installed at the premises of consumers, either in the residential or
industrial buildings, to measure the energy consumed by all the electrical loads situated in
the buildings, or at times to measure the consumption of a particular standalone device
(Sowmya et al., 2016:4368). Metering is fundamental and crucial to the commercial
management of electricity (Hashmi & Priolkar, 2015:1424). There must be a reliable means
of measurement to evaluate the power transfer by the utilities and the consumers’ energy
consumptions to determine whether electricity is being stolen or not (Babuta et al., 2021:1).

When utility revenues fall noticeably short of what they anticipated, then ET is suspected.

2.3.1 Historic electricity meters

To deeply understand the essence of electric meters in the power system, there is need to
go down memory lane to perceive how important electric meters had been and why the

early inventors made them priorities. Quantity measurement is critical to businesses to
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promote transparency and to instill transactional trusts among customers. Even though
electricity is an invisible commodity, the quantity of its consumption still need to be
measured and doing so incontrovertibly to generate revenues. That was the original
motivation behind the production of electricity meters. So many efforts had been put into
the art of electricity metering in the past. Historic electric meters were the earliest meters
deployed to determine the amount of electricity consumed when the production of electricity
started, before the advent of the modern electromechanical meters and the later
introduction of the more-accurate and more-efficient electronic meters (Ekanayake et al.,
2012:84, 87; Weranga et al., 2014:18, 26).

2.3.1.1 Edison chemical meter

Thomas Edison was the first to set up an electric utility as discussed in Section 2.2.1. He
was also the first to start the commercial electric metering in 1881 (Ricks, 1896:61; Dyer,
2001:875), when he developed and made available DC electric meters that were deployed
to measure the level of consumption of his then forthcoming commercial product (DC
electricity) in an effort to generate revenue (AIEE, 1941:421). Edison had already invented
and produced the chemical meters before his Pearl Street DC power station began
commercial electricity generation on 4 September 1882. That was a smart business move
by Edison who ensured that the then proposed power station started to generate income
immediately after it commenced operations. Edison meter was technically an electrolytic-
deposit meter in which the weight of its deposited mass would later be measured to
determine the current consumed (AIEE, 1941:421).

The Edison meter was industrially known as Edison chemical meter, and was used to
measure electricity consumption using the concept of electrolysis, by taking advantage of
the chemical effects of electrical current (AIEE, 1941:421; SEI, 2006).The Edison meter
was a coulomb meter which was used with direct currents only, to determine the amounts
of direct currents consumed (Ricks, 1896:61). A small amount of current was made to pass
through the electrolytic cells of the meter by shunting the meter with the main circuit to
prevent the whole circuit current from flowing through the meter. If not for this, the meter
would had required huge meter resistance to cater for the large main-circuit current (Ricks,
1896:62; Jones, 1982:30). The Edison chemical-based electric meter system was
independent of electrical voltage (AIEE, 1941:421). The meter consisted of a copper
sulphate electrolyte (Ricks, 1896:62) in a jar with two copper electrodes and was used to
determine the ampere-hour of electricity consumed (Ricks, 1896:62; AIEE, 1941:421). The

electrolytic process began after the passage of current through the electrolyte via the
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electrodes. There were two versions of the Edison chemical meter. The original version of
the meter was made up of a balanced beam, with copper plates suspended in copper

sulphate solution at both arms of the meter beam as shown in Figure 2.6.

Figure 2.6: Original version of the Edison chemical meter

(Ricks, 1896:62)

The copper plates as seen in Figure 2.6 were the electrodes. As the electrolytic process
continued, copper was transferred from the heavier anode to the lighter cathode, until the
cathode was heavy enough to turn over the beam. When this happened, a unit would be
registered on the counting mechanism of the meter and the direction of current would be
reversed. The reversal of the direction of the current changed the polarity of the electrodes
and the electrolytic process would continue unabatedly. The beam turnover allowed
continual making and breaking of electrical contacts and the eventual reversal of the
direction of the current through the meter. Also, the more the current flowed in the main
circuit, the more the temperature of the main circuit increased and went higher than the
temperature of the copper sulphate electrolyte of the meter. That translated to an increase
in the resistance of the main circuit and a relative decrease in the resistance of the

electrolyte, which allowed more current flow through the electrolyte of the meter. The
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temperature variations of the electrolyte affected the accuracy of the meter (Ricks, 1896:61-
62; AIEE, 1941:421). The original Edison chemical meter was refurbished to cater for these
shortcomings. The refurbished or the improved version of the Edison chemical meter is

shown in Figure 2.7.

Figure 2.7: Improved version of the Edison chemical meter

(Ricks, 1896:63)

In the improved version of the Edison chemical meter, the amount of electricity consumed
was determined by weighing the measurement of the cathode at the start, and at the end
of the billing period (Dyer, 2001:875). The anode was heavier while the cathode was lighter.
The weight of the anode metal transferred to the cathode during the electrolytic process
was equivalent to the amount of electricity (in ampere-hours) that had passed through the
meter for that billing period. The difference between the original weight of the cathode and
its weight after the electrolytic process determined the exact weight of the copper
transferred from the anode to the cathode and also determined the actual amount of
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electricity consumed. The cathode weight was proportional to the power utilized for a given
billing period (Ricks, 1896:63; AIEE, 1941:421; SEI, 2006).

In the previous Edison meter, the current that flowed through the meter increased owing to
the increase in the temperature of the main circuit, while the current flow through the meter
also reversed intermittently due to the making and breaking of electrical contacts. To correct
these shortcomings of the previous version of the Edison meter, the mechanical switching
(making and breaking of electrical contact) in the original meter was absent in the updated
version, as the current in the improved version of the meter then flowed in one direction
only. Also, a copper resistance or German silver was placed in series with the electrolyte,
such that the increase in the copper resistance due to increase in the circuit temperature
was equivalent to the supposed decrease in the resistance of the electrolyte. The copper
resistance or German silver placed in series with the electrolyte was to cater for the
temperature coefficient of resistance of the electrolyte and cancel out the effect that the
temperature of the main circuit would have had on the electrolyte of the meter. That helped
to remove the variation of the flow of current through the meter. Alternatively, amalgamated
zinc plates could also be used as electrodes and immersed in zinc sulphate electrolyte,
instead of copper electrodes and copper sulphate electrolytes as described earlier (Ricks,
1896:62-63; AIEE, 1941:421).

One of the disadvantages of the refurbished version of the Edison chemical meter was that
the customers could not determine their electricity consumptions by direct reading from the
meter (Ricks, 1896:63). The customers could not read their meters themselves directly from
the device, but the cathode weight measurement was done in their presence to promote
transparency and customer goodwill. Removing and weighing of the electrodes was a
tedious task for the meter reader who was otherwise known as ‘calculator’ in those days
(Ricks, 1896:63-64; AIEE, 1941:421-422). Previously used electrodes were replaced with
fresh ones when they wore out. Also, Incandescent lamp was located within each meter,
which was left burning to prevent the freezing of the copper sulphate or zinc sulphate
electrolytes (Ricks, 1896:62; Jones, 1982:30).

2.3.1.2 Gardiner DC lamp-hour meter

The first known electricity meter was the DC lamp-hour electromagnetic meter produced
and patented in 1872 by Samuel Gardiner (Birleanu et al., 2019:609; Coelho et al., 2019:98;
Ezhilarasi & Ramesh, 2019; Martins et al., 2019:90). Unlike the Edison chemical meter

discussed earlier, the Gardiner lamp-hour meter was not deployed commercially. The
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Gardiner lamp-hour meter was produced when the need to monitor electricity usage arose,
because lighting which was the first mass application of electricity needed to be monitored
and billed (SEI, 2006). The Gardiner DC lamp-hour meter was the first-ever electric meter
produced and preceded the Edison chemical meter, but the Edison chemical meter was
more popular in practice because it was deployed for commercial use. The Gardiner DC

lamp-hour meter is shown in Figure 2.8.

Figure 2.8: Gardiner DC lamp-hour meter

(Smithsonian, 2019)

The Gardiner DC lamp-hour meter used a simple electromagnet to control the start and stop
of the timer or clock mechanism revealed in Figure 2.8 when current passed through it
(Malik, 2013:140; Birleanu et al., 2019:609; Coelho et al., 2019:98). The meter was used to
measure the electricity consumed by the earliest DC arc lamps (Primicanta, 2013:10). The
arc lamps were centrally controlled by a switch and the current drawn by the lamps were
constant (SEl, 2006; Primicanta, 2013:10). The cost of the electricity consumed was
determined by the number of arc lamps powered per hour, as read from the current-flow
duration registered on the Gardiner meter (SEI, 2006; Primicanta, 2013:10; Birleanu et al.,
2019:609). The DC arc lamps went obsolete with the introduction of Edison incandescent
lamps (SEI, 2006). Unlike the arc lamps that consumed more power and produced high
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intensity of light appropriate for outdoor lighting, Edison incandescent lamps consumed low
power, provided less illumination suitable for indoor use and made possible the replacement
of an arc lamp with several incandescent lamps, by technically subdividing the supposed
intense radiance expected of a single arc lamp into several incandescent lighting units
(Smithsonian, 2001; Sulzberger, 2003b:64-65; SEI, 2006).

2.3.1.3 Shallenberger meters

Oliver Shallenberger was the chief electrician at the Westinghouse Electric Company
(renamed Westinghouse Electric and Manufacturing Company), Pittsburgh, Pennsylvania,
United States (Guarnieri, 2013:52). In 1888, he invented the self-indicating and direct-
reading induction ampere-hour meter (a coulomb meter) shown in Figure 2.9 (Ricks,
1896:67-68; AIEE, 1941:423; Sulzberger, 2003a:70).

Figure 2.9: Shallenberger ampere-hour meter

(AIEE, 1941:424)
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This Shallenberger ampere-hour meter was the first commercial and successful AC electric
meter, which was used to measure the amount of AC current consumed by electricity users
by leveraging on the rotary effect of magnetic field (AIEE, 1941:423). The meter was put
into commercial production by the Westinghouse Electric Company. Shallenberger’s
ampere-hour meter then became the cash register of the electricity industry (Ruch,
1984:1397) used for accurately billing of customers. The Shallenberger ampere-hour meter
eventually solved the lingered metering and billing issues associated with AC electricity
(Coltman, 1988:92). The greatest discovery of the electric metering art took place in 1894
when Shallenberger developed the induction watt-hour meter (AIEE, 1941:423-424).
Shallenberger used the basic principles of his ampere-hour meter to produce the
subsequent Shallenberger AC watt-hour meter (Sowmya et al., 2016:4369). The discovery
made it possible for Shallenberger’s earlier ampere-hour meter which registered readings
only in ampere-hours to be upgraded to measure readings in watt-hours or energy (AIEE,
1941:424). Figure 2.10 shows the Shallenberger watt-hour meter.

Figure 2.10: Shallenberger watt-hour meter

(AIEE, 1941:426)
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Although, Ott6 Blathy in 1889 made the first specimen of the AC induction watt-hour energy
meter based on the principle of the Shallenberger ampere-hour meter (Ricks, 1896:422;
AIEE, 1941:422), and later in the same year, Elihu Thomson also developed the
commutator-type watt-hour meter, which could be used with either DC or AC electricity to
measure energy consumptions (Ricks, 1896:66-67; AIEE, 1941:422-424; Sowmya et al.,
2016:4369). However, despite Blathy’s and Thomson’s works on watt-hour meters for the
registration of AC electricity consumptions, Shallenberger’'s AC induction watt-hour meter
developed in 1894 remained the only forerunner meter typical of the modern
electromechanical meters, providing the cutting edge and setting new standard in the art of

electric metering (Primicanta, 2013:11; Sowmya et al., 2016:4369).

2.3.2 Modern electricity meters

The modern electricity meters are conventional energy meters that have been recently
deployed by electric utilities for use by the electricity consumers. The mode of operation of
the modern electricity meter is that it continually measures the instantaneous current and
voltage of the load circuit and calculates the product of the two to determine the power
consumed; while the consumed power is later integrated with respect to time to determine
the energy consumed (Bajpai & Reddy, 2021:65; Ghosal et al., 2022:160). This principle of
operation took after the working principle of the Shallenberger watt-hour induction energy

meter.

Analogue and digital or electronic meters are the two basic categories of the modern
electricity meter (Kathiresh & Subahani, 2020:177; Xia et al., 2022:279). Analogue meters
are electromagnetic, while digital meters are electronic. The analogue electric-meter
readings are displayed by a pointer-type or dial-type register mechanism, while the readings
on digital meters are displayed on a liquid crystal display (LCD) or on a light-emitting diode
(LED) screen (Ekanayake et al., 2012:95; Gopinath et al., 2013:429; Kathiresh & Subahani,
2020:178). The prominent example of analogue meter is the electromechanical meter, while
that of digital meter is the SM (Rastogi et al., 2016:13).

Since the electromechanical meter could only measure the consumed electrical energy,
there was the need for an electronic meter which could not only measure the amount of
instantaneous energy used, but also able to measure and communicate other electrical load
and supply parameters like the frequency, phase currents, phase voltages, reactive power,
active power, apparent power, power quality measurement, maximum demand and power

factor (PF) to the utilities, to allow them have more control over efficiency and capacity
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(Ekanayake et al., 2012:87; Weranga et al., 2014:17-18; Avancini et al., 2019:705;
Kathiresh & Subahani, 2020:178).

Unlike the electromechanical meters, the working of electronic meters is not affected by
external magnets or the orientation or positioning of the meters (Weranga et al., 2014:26).
Electronic meter is more flexible, reliable, stable, provides higher accuracy in measurement,
updates and gives measured data timeously (Ekanayake et al., 2012:87; Weranga et al.,
2014:26). A standard electronic meter consists of a microcontroller, an LCD and its digital
counter-type display, communications ports, a power supply, and a real time clock (RTC)
(Weranga et al., 2014:25) with no moving parts. Prepaid or prepayment meter is a kind of
electronic meters which allows customers to pay their electricity bills in advance before
power usage, to reduce revenue losses and the risks of unpaid electricity bills (Ajenikoko &
Adelusi, 2015:100). Customers then lose access to electricity after they have exhausted
their pre-purchased electricity units.

Electronic meter communication was one way before the advent of SMs. The one-way
communication capability was added when electronic meter in a conventional grid was
automatized with automatic meter reading (AMR) to relate consumers’ basic status
information and consumption records to the utilities. This was before the emergence of AMI
with SMs in SG that allows for a two-way power flow and a two-way communication flow
between the electric utilities and the consumers (Xia et al., 2022:280). Before the
introduction of AMR and its one-way communication capability (Ekanayake et al., 2012:84-
85; Xia et al., 2022:274, 280), early electronic meters even though had display units like

LCDs were read manually onsite for billing purposes (Ekanayake et al., 2012:87).

A SMis an advanced electronic meter and the state of the art in electricity metering, which
has evolved owing to improvements on the previous electronic meters (Weranga et al.,
2014:27; Oloruntoba & Komolafe, 2018:15). Aside the mentioned two-way communication
capability for SMs in AMI, power-outage detection and notification, load profiling, tamper
detection, remote disconnection and reconnection of power supply by the utilities, ability to
display information on multi-tariffing and on the current source of power supply (renewable
or conventional), including other energy usage information, etc., are other features peculiar
to SMs (Mashima & Cérdenas, 2012:210; Weranga et al., 2014:23; Gupta et al., 2022:12).
Electromechanical meters are more susceptible to ET when compared with electronic
meters (Weranga et al., 2014:23).
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% Units and costs of electricity

The electric meter captures the units of electricity consumed by the customers to determine
the amount of bills payable to the utilities. The unit of the active electrical energy consumed
is measured in kilowatt-hour (kwWh) (Oladokun & Asemota, 2015:37). The kWh is the most
common commercial standard unit of the electric meter for measuring the amount of
electrical energy consumed by the consumers for billing purposes (Ghosal et al., 2022:160).
The kWh of energy consumption in modern meters is measured by the integral of the real
power consumed via the load circuit with respect to time (Bajpai & Reddy, 2021:65; Ghosal
et al., 2022:160).

One unit of electricity (1 kwh) is the electrical energy consumed when 1000 watts or 1 kW
of electrical power is consumed and maintained for a period of one hour (Oladokun &
Asemota, 2015:37; Abdul-Aziz et al., 2023:250), or when 1 watt of electrical power is
consumed over a period of 1000 hours. Multiplying the power rating (in watts) of a device
or an appliance by the duration of time (in hours) during which the device is turned on
divided by 1000, indicates the energy consumption of the device in kWh (Abdul-Aziz et al.,
2023:249). For example, a 60-watt rated bulb turned on for a one-hour period would
consume 60 watt-hour (0.06 kWh) of electrical energy, that is, 0.06 unit of electricity has
been consumed in one hour. Ten bulbs of the same power rating turned on for ten hours
would consume 6000 watt-hour (6 kWh) of electrical energy, that is, 6 units of electricity
have been consumed in ten hours. The cost of the electricity consumed is based on the

total energy usage measured in kWh multiplied by the tariff per unit of the used electricity.

Electricity tariff or rate is a regulated price charged per unit of electricity consumed. The bills
payable to the utilities by their customers are based on the units of electricity they have
consumed with respect to the rate charged per unit of it by the respective utilities. The
amounts charged per unit of electricity consumed by every utility are determined by the
stipulated tariffs implemented by electric utilities in different countries, as approved by their
various electricity regulatory authorities. Electricity tariffs are expected to be realistic as to
allow for utility revenues that will enable gradual recovery of initial-investment costs on
electricity infrastructures, and also viable to cater for the running costs of grid operations

and maintenances (Oladokun & Asemota, 2015:37), while ensuring sufficient profits.

2.3.2.1 Electromechanical meter

Electromechanical meter or watt-hour meter is an analogue energy meter and the most

common type of electricity meter used for registering energy consumptions (Ahmad et al.,
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2016:90; Avancini et al., 2019:705). The meter is the oldest type of modern meter which
has been in use for over a century (Weranga et al., 2014:18; Ahmad et al., 2016:90). The
modern electromechanical energy meter works on the principle of electromagnetic induction
(Bajpai & Reddy, 2021:65), and is very identical to the AC induction watt-hour meter
developed by Shallenberger in 1894, as discussed earlier in Section 2.3.1.3. The
Shallenberger watt-hour meter was the forebearer of the current electromechanical meters
as they work on the same principle (Primicanta, 2013:11; Sowmya et al., 2016:4369). Figure

2.11 shows a sample of a single-phase electromechanical energy meter.

Figure 2.11: Single-phase electromechanical meter

(Gopinath et al., 2013:429)

The meter readings on the electromechanical meters are manually read onsite by the utility
employees, usually once in a month and manually entered to the utility databases (Gopinath
et al., 2013:428; Weranga et al., 2014:23; Rastogi et al., 2016:13) in a process known as
static load profiling. Manual onsite meter readings are inevitable in analogue metering
because the conventional electricity meters lack advanced communication capacities
(Knapp & Samani, 2013:47). Manual meter readings require the deployment of large human
resources, and it is time consuming (Kathiresh & Subahani, 2020:178). The readings on the
analogue counter-type dials of electromechanical meters are used to prepare the monthly
electricity bills for the customers. Subtracting the current meter readings from the previous
meter readings gives the current billable readings. Electromechanical meters have five
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analogue counter dials (four black dials and one red dial). Only the digits on the black dials
are read and used for billing purposes by the electric utilities. The digit on the red dial after
the decimal point is neither read nor used for billing purposes, but measures the number of
rotations of the central aluminium disc. The rotational speed of the aluminium disc at the
centre of the meter is correlative to the instantaneous active power being consumed through
the load circuit at any point in time (Masnicki & Mindykowski, 2018:0183; Avancini et al.,
2019:705; Kathiresh & Subahani, 2020:177-178).

The electromechanical meter is basically a special kind of an induction electric motor
(Ahmad et al., 2016:90; Bajpai & Reddy, 2021:65), consisting of electromagnets (stator)
and rotating aluminium disc (rotor) that spins within the air gap between the electromagnets.
The aluminium disc at the centre of the meter is supported by a shaft or a vertical spindle,
which turns gear arrangements or gear trains connected to the register mechanism on the
front of the electric meter (Kathiresh & Subahani, 2020:178; Bajpai & Reddy, 2021:67). The
current coil and the load circuit are connected in series with, while the voltage coil is
connected across the supply (Weranga et al., 2014:19).

An induction coil (known as current coil or series coil) which is excited by the load current
is wound around the series magnet; while another induction coil (known as voltage coil,
pressure coil, shunt coil or potential coil) with higher number of turns (more inductive than
the current coil) is excited by the current of the supply voltage and is wound around the
central limb of the shunt magnet (Weranga et al., 2014:19; Bajpai & Reddy, 2021:66-67;
Dimkpa et al., 2023:2639). The series and shunt magnets are laminated electromagnets
(Bajpai & Reddy, 2021:66) with their magnetic fields induced by the voltage and current
coils (Ekanayake et al., 2012:86). A single-phase electromechanical meter uses a single
voltage and current induction coils, while a three-phase electromechanical meter uses more
than one voltage and current induction coils (Gopinath et al., 2013:428; Kathiresh &
Subahani, 2020:178).

Power is fed into the meter through the induction coils (electromagnets), which eventually
produce current-coil magnetic flux and voltage-coil magnetic flux. The magnetic flux
generated by the current coil is proportional and also in phase with the load current, while
the current and its produced magnetic flux in the voltage coil lags the supply voltage by 90°,
giving rise to eddy currents in the aluminium disc (Weranga et al., 2014:19; Ahmad et al.,
2016:90; Kathiresh & Subahani, 2020:177; Bajpai & Reddy, 2021:66; Dimkpa et al.,
2023:2639). It is the interaction between the changing magnetic fields of the electromagnets

(current and voltage coils) with the conductive aluminium disc that gives rise to eddy
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currents being induced in the aluminium disc. Eddy currents are induced in conductors
placed in changing or alternating magnetic fields. The internal components of the single-

phase electromechanical meter shown in Figure 2.11 are depicted in Figure 2.12.

Supply side Load side
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Figure 2.12: Internal components of the single-phase electromechanical meter

(Weranga et al., 2014:19)

The 90° current and magnetic flux phase lags or phase delays in the voltage coil (owing to
its highly inductive nature) can be calibrated using a lag coil (with its series connected lag-
adjusting resistor located between the voltage coil and the disc, but not shown in Figure
2.12) and an adjustable copper rings (lag plate) on the central limb of the shunt magnet in
a bid to maintain unity PF within the meter, so as to enhance accurate measurements
(Kathiresh & Subahani, 2020:177; Bajpai & Reddy, 2021:66; Dimkpa et al., 2023:2639). The
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90° phase lags mentioned in the preceding paragraph is maintained using a lag coil or using
the adjustable copper rings (adjusted in such a way that the magnetic flux produced by the
voltage coil lags the supply voltage by a displacement angle of 90° (Weranga et al., 2014:19;
Kathiresh & Subahani, 2020:177; Bajpai & Reddy, 2021:66-67; Dimkpa et al., 2023:2639).
Although, a few electromechanical meters use the lag coil with its lag-adjusting resistor to
maintain the 90° phase lags in the voltage coil (Weranga et al., 2014:19); but most
electromechanical meters use the adjustable copper rings instead, an instance when the
adjustable resistor of the lag coil will be undisturbed. The lag coil with its lag-adjusting
resistor and the adjustable copper rings are also known as PF compensators (Bajpai &
Reddy, 2021:67). The meter works at unity PF (after being calibrated by the lag coil or the
copper rings), but still maintains the 90° current and magnetic-flux phase lags with the
supply voltage to ensure that the meter functions properly.

The interaction between the magnetic flux generated by the current coil and that produced
by the voltage coil with the induced eddy currents in the aluminium disc causes a driving
torque that spins or rotates the aluminium disc (Ahmad et al., 2016:90; Avancini et al.,
2019:705; Bajpai & Reddy, 2021:67-68). The torque or force exerted on the meter disc is
proportional to the product of the instantaneous voltage and current (instantaneous true
power) consumed via the load circuit (Ekanayake et al., 2012:86; Kathiresh & Subahani,
2020:178; Bajpai & Reddy, 2021:67), as well as proportional to the number of rotations
made by the aluminium disc (Ahmad et al., 2016:90; Bajpai & Reddy, 2021:67), while
compensating for friction. A rotation in this regard means a complete spin of the aluminium
disc of the meter from one point to another, which is also referred to as a revolution. When
the aluminium disc rotates, it turns series of gears via the disc shaft, which resultantly move
the register dials and record energy consumption in kilowatt-hours (Bajpai & Reddy,
2021:67). This is done by integrating the speed of rotation of the meter disc over time
through the count of the number of disc revolutions (Weranga et al., 2014:19; Dimkpa et al.,
2023:2639).

The rotation speed of the aluminium disc is controlled by the brake magnet (an adjustable
permanent magnet positioned at the edge of the disc), with the help of the eddy currents
induced in the disc by the magnetic fluxes produced by the electromagnets. The aluminium
disc also spins between the gaps of the brake magnet as it does between the
electromagnets. Eddy currents react with the magnetic flux of the brake magnet to provide
the required opposing torque equal to the rotational speed of the aluminium disc. The
opposing torque stalls the spinning of the disc when no power is being drawn by the load

circuit. These two opposing equilibrium forces from the aluminium disc and the permanent
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or brake magnet allow the disc to rotate in accordance with the amount of the power being
consumed through the load circuit (Kathiresh & Subahani, 2020:178; Bajpai & Reddy,
2021:67; Dimkpa et al., 2023:2639).

The meter constant, which is the number of revolutions per kWh of energy consumption
(Bajpai & Reddy, 2021:70) of the meter is 600, as conspicuously written as 600 r/kWh on
the nameplate of our sample electromechanical meter shown in Figure 2.11. This means
that the meter disc makes 600 revolutions to register one unit (1 kWh) of energy consumed.
We can approximately rewrite the meter constant as 1.7 watt-hour per revolution of the
meter disc. The electromechanical meter constant is usually denoted by the symbol “Kh”
(Dimkpa et al., 2023:2639). The more the active loads on the load circuit, the less time it
takes the meter disc to make a revolution. The meter constant varies from meter to meter
(Apogee, 2001), as the amount of energy consumed per revolution of the meter disc
depends on vendor-design specifications (Primicanta, 2013:11). If for example an electrical
appliance rated at 100 watts is connected to our sample electromechanical meter as load,
it would take 60 seconds for the meter disc to make a revolution and register approximately
1.7 watt-hour of energy. The time per revolution of any electromechanical meter disc can
be calculated using Equation 2.1 (Dimkpa et al., 2023:2639).

3600XKh
P==— (2.1)

The time ( T in seconds) per revolution of the meter disc can be calculated from Equation
2.1 by making T the subject of formula, and then substituting for the values of the meter
constant Kh and that of the power (P in watts) consumed by the load circuit into the
rearranged equation. It should be noted again that the meter constant Kh of
electromechanical meters is vendor-specific and varies for meters with different
manufacturers. Electromechanical meters are still very common in the developing countries,
but the developed countries are phasing them out in favour of the more-accurate and more-
efficient electronic meters (Ahmad et al., 2016:90; Avancini et al., 2019:705).

2.3.2.2 Advanced metering infrastructure

Unlike the electromechanical meter in conventional grids which is a standalone metering
device, metering in SG constitute a system (Anas et al., 2012:178) called the advanced
metering infrastructure (AMI). The AMI is an integral component of the SG, which is an
integrated hierarchical network system (Jiang et al., 2014:106-107; Yip et al., 2018:191),

53



and comprises of SMs, communication networks, data collectors or concentrators, AMI
server, and Meter Data Management System (MDMS) in its architecture, for intelligent
control, better grid load management, and data management in the SG system (Yip et al.,
2018:191; Yan & Wen, 2021; Nayak & Jaidhar, 2023:1). The AMI brings about an end-to-
end electric metering between the consumers and the utilities (Althobaiti et al.,
2021:159295), as shown in Figure 2.13.

LW ide Area Network (WAN)

Headend

Collector

Neighborhood Area Network (NAN)
Collector 2 SM
Collector = H SM
(i
5 3
SM
Ngh = _
g SM
L = ,
; s
7 SM
ik,
& =

Figure 2.13: Architecture of the AMI

(Jiang et al., 2014:106)

The idea of the AMI to improve the demand-side management and promote energy
efficiency started the SG concept (Fang et al., 2012:945). AMI is the modernization of the
conventional electricity metering system by replacing the old electromechanical meters with
SMs (Mashima & Cardenas, 2012:210; Jiang et al., 2014:105; Yip, Wong, et al., 2017:230;
Micheli et al., 2019:330), and allowing two-way reliable communication between electricity

customers and the utilities (Aggarwal & Kumar, 2021:463).

AMI is an integrated and computerized metering system, a key technology and a core part
of SG, with SMs, data management systems and bidirectional communication network links
to the utilities (Jokar et al., 2016:216; Aggarwal & Kumar, 2021:463). The AMI system
monitors electricity consumption, serves as a tool used for energy management and for

billing purposes. The advent of AMI has opened the door for novel vulnerabilities in the
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electricity system because of the embedded communication layer (Aggarwal & Kumar,
2021:466; Xia et al., 2022:273-274). The AMI two-way communication allows the SMs to
be read remotely and to implement and execute other grid management controls (Depuru
et al., 2011b:2736; Jiang et al., 2014:105-106). The SG AMIs and their SMs has made the
gathering of data used for ETD easier (Liao, Zhu, et al., 2024:5075). Data-driven ETD is

less expensive and more efficient (Mujeeb et al., 2020; Kim et al., 2024:7).

Although, SMs with advanced networking and software tools are difficult to hack and tamper
with (Depuru et al., 2011b:2741), but they are not totally immune to physical tampering,
bypassing, and other conventional means of stealing electricity, despite the fact that SMs
more robust and provide the cutting edge when compared with their conventional-meter
counterparts (Shokoya & Raji, 2019a:98-99). This fact has still invariably makes ET a big
issue in SG (Jiang et al., 2014:105; Aldegheishem et al., 2021:25036). Electromechanical
meters could only be physically tampered with locally, attacks on SMs could be done locally
and remotely (Jokar et al., 2016:216).

Attacks in AMI could be accomplished before the meter by preventing the meter from
registering the energy consumed, at the meter by tampering with the stored data in the SM,
and modifying the network by intercepting it and injecting false data into the communication
link between the SM and the utility (Jiang et al., 2014:109; Jokar et al., 2016:216; Avancini
et al., 2019:711). The attackers could also hack into the SG, disconnect the consumers
remotely and compromise system operations of the utilities (Jiang et al., 2014:106; Viegas
et al.,, 2017:1257). These attacks lead to disruption of normal readings, resulting to
erroneous readings and causing NTL. Cyber-attacks on smart electric meters could
compromise the software of the meter and cause it to start to send erroneous or fraudulent
readings to the utilities (Viegas et al., 2017:1257; Yan & Wen, 2021).

< AMI communication networks and technologies

As could be seen from Figure 2.13, the AMI constitute different communication networks
such as the Home Area Network (HAN), the Neighbourhood Area Network (NAN) and the
Wide Area Network (WAN), making the SG a network of networks (Saponara & Bacchillone,
2012:1, 3; Birleanu et al., 2019:612; Micheli et al., 2019:330). The communication between
these networks are Internet Protocol-based (IP-based) (Birleanu et al., 2019:612), and are
used for data collection in the SG system (Jiang et al., 2014:106-107; Rastogi et al.,

2016:15). IP-based networks and communications are more secure and efficient (Birleanu
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et al., 2019:612). Figure 2.14 takes a closer look at NAN architecture with its electrical and

communication network flows in the AMI.
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Figure 2.14: The NAN architecture of the AMI

(Yip et al., 2018:191)

HAN is somewhat a Local Area Network (LAN) having the SM as its core (Jiang et al.,
2014:107), with other home appliances and devices like smart sockets, smart appliances,
in-home display, HVAC (heating, ventilation, and air conditioning) systems, EVSs,
microgenerators, etc., forming an integrated system (Ekanayake et al., 2012:95-96; Micheli
et al., 2019:330). The NAN is a LAN network (Birleanu et al., 2019:612) of several
neighbouring HANs or group of HANs with NAN data collector, a local access point, and
metering data aggregation unit for the data of the neighbouring interconnected SMs of
different homes (Jiang et al., 2014:107; Micheli et al., 2019:330). The NAN collector
aggregates the cumulative SM data of several HANs in the same zone or service area and
send it to headends at utility operation centres via WAN (Yip et al., 2018:191). The utility
operation centres consists of headends and control centres. The WAN is however the
network which connects all the NAN data collectors to utility headends (Yip et al., 2018:191;
Micheli et al., 2019:330).
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For the SMs to communicate with each other and the utility servers in the AMI, different
available media or communication technologies are employed. Wired communication
technologies that could be used are digital subscriber line (DSL), coaxial cables, optical
fibre, Power Line Carrier (PLC) or Distribution Line Carrier (DLC), Ethernet, cable modems,
Public Switched Telephone Network (PSTN), and an advanced form of PLC called
Broadband over Power Lines (BPL); while the wireless communication technologies
employed are IEEE 802.11s, ZigBee, Wavenis, Z-Wave, Bluetooth, Insteon, infrared, peer-
to-peer (P2P), World Interoperability for Microwave Access (WIMAX), radio-frequency
mesh, satellite communication, and network technologies affiliated to mobile
communications like, Global System for Mobile Communications (GSM), Code Division
Multiple Access (CDMA), General Packet Radio Service (GPRS), and 3G/4G technologies
(Ekanayake et al., 2012:96; Saponara & Bacchillone, 2012:3-4; Rastogi et al., 2016:14-15;
Porcu et al., 2021:8-9). 3G is the third-generation technology in cellular communications,
while 4G is the fourth-generation technology in cellular communications. Internet is also
used as a communication medium in the AMI, and may be used to connect a SM directly to
the utility headend (Rastogi et al., 2016:14).

Low power short-distance wireless radio-frequency communication technologies like Wi-Fi,
Bluetooth, ZigBee, Wavenis, Z-Wave and Insteon are HAN network solutions used to
connect the appliances in the home with the SM (Saponara & Bacchillone, 2012:3-4;
Rastogi et al., 2016:15), and allows appliance monitoring and control for better economic
usage (Jiang et al., 2014:107). ZigBee is the most reliable and cost-efficient of all the HAN
network solutions (Weranga et al., 2014:36). The communication technology deployed in
NAN depends on the size of data being transferred (Ekanayake et al., 2012:98). Wi-Fi
wireless radio technology has been suggested for NAN to send SM data to the collectors,
but cellular or WiMAX technologies could also be employed (Jiang et al., 2014:107). For the
WAN transmission of data to the utility headend, optical fibre Is proposed, but cellular and
WIMAX technologies are also used as options (Jiang et al., 2014:107; Weranga et al.,
2014:36). According to Rastogi et al. (2016:14), PLC is the best communication technology
for establishing connection between the SMs of different households in NAN, because it
does not require a separate communication medium, but the usage of the existing power
lines. PLC could also be employed to send SM data from HAN to the collection points at the
distribution stations (Weranga et al., 2014:36).

As previously established in Section 2.2.2.2, the electrical network and the communication

network in the AMI are overlaid, and their flows are in a two-way fashion (Fang et al.,
2012:944; Yip, Wong, et al., 2017:231). The electrical network of NAN allows power flow,
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while its communication network allows information flow which constitutes data and control
signals (Depuru et al., 2011b:2737-2738; Yip, Wong, et al., 2017:238). The NAN comprises
of the household SMs and their communication and electrical networks, the collector located
at the distribution substation (secondary distribution substation) as shown in Figure 2.14.
The utility control centres monitor the electrical and communication networks of the

distribution system.

Usually, the SMs of various households in a NAN and the collector at the secondary
distribution substation communicates wirelessly, while the collector at the secondary
distribution substation, the primary distribution substation, and the headends at the
operation centre communicate via a wired medium (Yip, Wong, et al., 2017:232). The utility
distributes electricity from the primary distribution substation to the secondary distribution
substation located in the neighbourhood of the electricity consumers. The secondary
distribution substation provides electricity to all the consumers in the locality, and its
endowed collector or master SMs aggregate all the household consumption profiles in the
neighbourhood (Yip, Wong, et al., 2017:232; Yip et al., 2018:191). Interfaces on SMs which
make connections using various communication technologies are available by default on
the meter via its embedded radio adapters for wireless communications, and connection

ports for wired communications (Knapp & Samani, 2013:48) as depicted in Figure 2.16.

< Smart meter

SM is a digital meter, an advanced and intelligent electronic meter used for energy
measurement and communication (Khan et al., 2024:9). It is an improvement on the
conventional electric meters (Kabalci & Kabalci, 2019:49), a next-generation electric meter
(Ahmad et al., 2016:90), and the latest device in the art of electricity metering (Oloruntoba
& Komolafe, 2018:15). The SM is like a computer in the interconnection of a vast SG
network. Unlike the electromechanical meters which are manually read by the utility
employees, the SM readings are automatically read and sent to the utility information
systems in real time, giving accurate details on the use of energy (Rastogi et al., 2016:13-
14; Micheli et al., 2019:330).

A digital electronic meter is genuinely “smart” if it is part of the AMI network, allowing the
electric companies to read and monitor the customers’ electricity consumptions remotely
and allowing the SMs of the customers to receive information from the utilities via a two-
way communication channel in real time (Micheli et al., 2019:330). If an electronic meter is
not part of the AMI, it is not being referred to as a SM (BSE, 2021; DeBoer, 2021). The SM
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is an entity in AMI (Anas et al., 2012:178) and one of the many applications of Internet of
Things (loT) (Rastogi et al., 2016:13). While the SM is the regarded as the heart of the AMI
and the cornerstone of the modernized grid (Reinhardt & Pereira, 2021:1), the AMI is also
considered as the heart of the entire SG system (Birleanu et al., 2019:611). The two-way
communication between SMs and utilities via the AMI makes the SMs stand out from other
forms of electronic meters. SMs are installed at the premises of electricity customers to
record real-time electricity consumption and transmit the data to the utilities through a two-
way communication channel. Like the electromechanical meters, SMs also exist as single
or three-phase meters (Weranga et al., 2014:26). SMs optimize the use of electricity by
assisting consumers to manage their loads to conserve energy and to consequently reduce
their electricity bills. The intelligent smart energy meter is depicted in Figure 2.15.
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Figure 2.15: Smart meter

(Kabalci, 2016:309)

The key elements of a SM are the solid-state device itself, a microprocessor, and a
communication network (Knapp & Samani, 2013:48). The microprocessor and local
memory are for storing and transmitting the digital-meter measurements to the utilities via
the communication network. Since we now have the more-robust and powerful
microcontrollers at low cost, most SM processors are currently made of microcontrollers
(Aurilio et al., 2014:1459).

59



Traditional electromechanical meters could only be compromised by physical tampering,
while the introduction of AMI with its inherent SMs and the addition of a cyber layer in SG
has opened new vulnerabilities for the electricity thieves to explore (Yip, Wong, et al.,
2017:230; Aggarwal & Kumar, 2021:466; Xia et al., 2022:273-274). Physical tampering on
SMs is easily detected by the utilities (Rastogi et al., 2016:13). Any zero reading on the
meter is also being detected as the energy pilferers are effortlessly being identified by the
utilities, since the utilities would be informed of such null reading through the AMI (Anas et
al., 2012:178; Avancini et al., 2019:711; Shokoya & Raiji, 2019a:100). The installation of
SMs are expected to increase after the year 2020 (Ekanayake et al., 2012:84).

The SM is a hardware used for the periodical acquisition of the real-time energy
consumption data (load or consumption profiles) that are being delivered to the utilities
(Micheli et al., 2019:330). SMs record the energy consumed at stipulated time intervals per
day (depending on the specific AMI deployments) and deliver them to the utilities (Mashima
& Cérdenas, 2012:215). The utilities manage the timestamped SM load profiles using a
software known as MDMS (Birleanu et al., 2019:611; Rendroyoko et al., 2021:405).

The MDMS, which is the data repository of the AMI, receives the SM data or the SM
readings through the AMI server via the AMI communication medium, and then validate,
adjust, and store them (Rendroyoko et al., 2021:403) in a real-time process known as
dynamic load profiling. The stored SM data are then used for billing, ETD (by identifying
potential fraudulent electricity consumers from among the SM readings or consumption
profiles of consumers), outage control, demand response management to prevent system
overloads, fault detection, and to determine which consumer are eligible to be connected
and/or needed to be disconnected remotely, etc. (Jiang et al., 2014:106; Rendroyoko et al.,
2021:405). The massive volume of data provided by SMs through AMI in SG have enhanced
the opportunity of developing ETD technology driven by data (Liao, Zhu, et al., 2024:5075).

Hardware components of a smart meter and their functions

The hardware components of a typical SM are power supply unit, voltage and current
sensing unit, energy measurement unit (i.e., energy metering integrated circuit or energy
metering IC), microcontroller unit (MCU), RTC, and communicating unit (Weranga et al.,
2014:28), as shown in Figure 2.16. Basically, the SM works by continuously acquiring
current and voltage signals from the utility supply, conditions the signals and convert them

from analogue to digital via the analogue-to-digital converter (ADC), computes and
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communicates the output signals to the utilities or perhaps receive control signals or
commands from the utilities (Ekanayake et al., 2012:87-99; Weranga et al., 2014:27-28).

Utility Consumer
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Figure 2.16: Internal hardware components of a smart meter

(Weranga et al., 2014:28)

The power supply unit powers the SM by driving its hardware components. The battery-
switchover circuitry is used to switch over to the meter rechargeable backup-battery, to
power the SM in case there is mains power failure from the utilities. The backup battery is
being charged and controlled by the filtered system power output from the power supply
unit. The voltage sensing unit is a voltage sensor, while the current sensing unit is a current
sensor, employed to capture the voltage and current input signals from the utility supply.
Typically, low-cost SMs use shunt resistors as current sensors, and simple resistor dividers

as voltage sensors. Other available current sensors used in SMs are hall effect-based linear
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current sensors, current transformers (CTs), and Rogowski coils. Signal conditioning,
analogue-to-digital conversion by the ADC and computation or energy calculations take
place in the energy measurement unit or the energy metering IC (Ekanayake et al., 2012:87-
89; Weranga et al., 2014:28-31, 33-34).

Signal conditioning is the preparation of analogue input signals for digital conversion. Signal
conditioning is done by the digital signal processor (DSP) embedded in the energy metering
IC. Computation involves performing arithmetic operations (energy calculations) on the
voltage and current input signals, timestamping or time-referencing the energy consumption
data and preparing them for communication to the output peripherals, etc. The energy
consumption calculation is done by multiplying the digital values of the voltage and current
it collects from the voltage sensor and the current sensor of the meter. This metrological
procedure is done at steady intervals to determine the energy used or consumed. Before
computation takes place, the voltage and current values from the voltage and current sensor
circuits are converted from analogue to digital by the ADC of the energy metering IC. The
energy metering IC also provides information on active, reactive, and apparent power, etc.
Energy metering IC in a SM could be a single-phase or a three-phase chip. Single-phase
SMs use single-phase energy metering ICs while three-phase SMs use three-phase energy
metering ICs. For SMs that do not have a separate energy metering IC, the MCU would be
built to perform its functions (Ekanayake et al., 2012:89-95; Weranga et al., 201434-35).

The MCU is referred to as the core of the SM where all the meter functions take place. The
functions of other hardware components of the SM are controlled by the MCU. The MCU
controls power management, tamper detection, reading of the smart card for the available
units of electricity, and the display of electrical parameters like the time-of-use or time-of-
day tariff, electricity cost, and power outages on the LCD of the meter and on an in-home
display. The in-home display is a separate handy display unit placed at any convenient
place within the home to make the SM data easily accessible to the customers. The MCU
does data calculations depending on the data received and then manages the data with
electrically erasable programmable read-only memory (EEPROM). It also communicates
with the energy metering IC and other communication devices associated with the meter.
The RTC of the SM (equipped with a dedicated clock battery meant strictly for providing
continuous power during maintenance or power failure) provides information about alarm
signals, time of the day, and the current date. Timestamping of energy consumption data is
done by RTC during their computations (Ekanayake et al., 2012:95; Weranga et al.,
2014:35-36).

62



2.4

SMs are also equipped with breaker, anti-tampering circuitry and reset/update circuitry
(Weranga et al., 2014:28). Breaker or the SM circuit breaker trips off the power when
consumers consume more than their subscriptions or beyond the energy capacity allocated
to them by the power companies, or when the breaker responds to remote command from
the utilities to connect/disconnect power into the building. For those customers who may
want to fiddle with their SMs in a bid to steal electricity, the meter is equipped with anti-
tampering sensors. Anti-tampering is a tamper detection security feature for forestalling
tampering and protecting the device (Ngamchuen & Pirak, 2013). When the customer
tampers with the meter, the SM anti-tampering sensor detects it, and the anti-tampering
circuitry sends signals to the utilities through the communication unit via the MCU, informing
them of the illicit act. The reset/update circuitry allows the meter to be reset to factory
settings and/or to update the SM software.

Electricity theft: causes, effects, detection and mitigation techniques

There is a need to discuss the causes, effects, detection and mitigation of electricity theft
or NTL before delving fully into its various curtailing methods and solutions that are

mentioned in the literature.

2.4.1 Causes of electricity theft

Several factors drive consumers to indulge in illegal electricity consumption. Some of these
factors are controllable, while some are almost uncontrollable because of unpredictable
human behaviours (Jiang et al., 2014:109; Gao et al., 2023:4565). The motivation behind
ET is the bait to completely evade payment, manipulate energy meters to read less than
the actual consumption and/or partly hide some stolen energy (to convey less overall
consumption) in a bid to reduce the entirety of bills payable to the utilities (Depuru et al.,
2011a:1010; Appiah et al., 2023:1). Some consumers use electricity legally for minor
household loads, and tap it illegally to operate hefty loads (Ahmad et al., 2018:2917). This
is commonly done at night times when the possibility of utility-employee inspection is

relatively low (Depuru et al., 2011c:2).

The utility companies do not have the knowledge of how the energy deficits caused by theft
are taken out of the grid. The cause of NTL is unexplainable within the ambience of the
electricity grid system, until superficially detected and confirmed. This further establishes
the fact that those factors that cause ET are external to the electric grid system. Utilities
cannot account for such losses, which would consequently resort to unbilled electric units.

The only losses the utilities are aware of are the unpaid bills. When customers fail to pay
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their bills, the utility suffers revenue losses; and such revenue paucity ultimately counts
towards NTL (Jamil & Ahmad, 2019:453).

The parameters that cause ET are multifarious and complex in nature (Depuru et al.,
2011a:1007). Some of these parameters are social, some are economical, some are
managerial, some are political, while some are caused by the criminal and corruption

tendencies on the part of the electricity consumers and the utility employees, etc.

The main cause of ET in the developing countries is related to poverty (Yurtseven, 2015:70).
High unemployment rate, a causal effect of most of the severe economic conditions faced
by electricity customers, is a huge factor responsible for most ETs (Depuru et al.,
2011a:1009; Shokoya & Raji, 2019a:97; Shokoya & Raji, 2019b:469). Poor or low income
is another financial-limiting factor which causes ET (Mirza & Hashmi, 2015:602). Weak
financial situation of electricity consumers is one of the causes of ET and is mainly
responsible for non-payment or non-remittance of electricity bills by the customers (Depuru
et al., 2011a:1007). Some consumers who had been genuine and used to paying their
electricity bills regularly could as well turn to start stealing electricity owing to their prevailing

unfavourable financial conditions.

Non-payment of electricity bills is not only restricted to poor communities or indigent
citizens, but also to rich and influential citizens who know their power connections would
not be interrupted whether they pay their bills or not (Smith, 2004:2069; Yakubu et al.,
2018:611). Some government agencies also default in paying their electricity bills (Depuru
etal., 2011a:1010-1011). Non-payment of electricity bills itself is a form of NTL as discussed
in Section 1.3.4 of Chapter 1, no matter the reasons or excuses behind the consumers’
inability to pay (Lewis, 2015:118, 121; Bihl & Hajjar, 2017:272-273). Non-payment of
electricity bills is an indirect way of engaging in theft, since the benefit of unsettled bills is
equivalent to the units of stolen electricity (Jamil & Ahmad, 2019:453). Also, poor power
infrastructure and inconsistencies in distribution systems and metering cause ET in the

developing countries (Jiang et al., 2014:108).
In South Africa, vandalizing utility equipment, stealing of electric cables, scooping oil from
transformers at substations, and selling of illegal prepaid vouchers (ghost vending) also

contribute to NTL (Shokoya & Raji, 2019a:97; Kambule & Nwulu, 2021:43).

In the developed countries like the United States and Canada, some citizens who unlawfully

grow marijuana steal electricity to conceal their huge overall electricity usage, as a means
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to avoid suspicion and subsequent inspection and prosecution by the law enforcement
agents (Depuru et al., 2011a:1010; Jiang et al., 2014:108). Electricity is also popularly
stolen by Bitcoin miners to operate their Bitcoin-mining machines. Bitcoin miners engage in
stealing electricity due to the high electricity consumption required by Bitcoin-mining
computers during Bitcoin production, and in the production of cryptocurrencies in general
(Dindar & Gul, 2021).

While some unscrupulous electricity customers tend to try to bribe their way out after being
caught to have stolen electricity either by meter tampering, meter bypassing, or direct
hooking of wires on the distribution lines etc. (Smith, 2004:2069), some corrupt utility
employees also tend to subscribe to these crooked gestures and collude with them to
arrange and negotiate settlements. At times, some unprincipled utility employees initiate the
corruption process themselves by offering to help the customers tamper their meters to
lower their billable readings. This is in a bid to influence the customers to offer them bribes
in return, instead of being forthright and carrying out their duties appropriately according to
their work ethics. This customer-employee corruption connivance spurs ET, as the action
reduces the tendencies of the defaulting customers being detected, fined, or prosecuted.
This infamous mutual corruption does not only embolden the dishonest electricity customers
to continue to indulge in the despicable acts of stealing electricity, but also generate
unofficial incomes for the vicious employees (Jamil & Ahmad, 2019:452, 458; Ghori et al.,
2020:16033). This employee-customer collusion causes a form of NTL called billing

irregularities (Depuru et al., 2011a:1007).

Billing irregularities are caused when the utility employees intentionally record lower
readings as against the actual readings on the energy meter to fulfil their part of the
corruption deal. This is different from the billing irregularities occasioned by errors in meter
readings (Sharma et al., 2016:43) and accounting errors made during the preparation of
customers’ billing invoices (Bihl & Hajjar, 2018:271), which are entirely due to human errors
(Glauner et al., 2017:761). Some corrupt politicians also cause billing irregularities by aiding
and abetting ET (Depuru et al., 2011a:1009-1010; Gaur & Gupta, 2016:129). ET and
corruption are intertwined. High rates of ET are evidences of corruption within the electric
utility companies. ET thrives where corruption thrives (Smith, 2004:2072). The concept of
billing irregularities as one of the forms of ET has been discussed in Section 1.3.3 of Chapter
1.

The erroneous belief that stealing from neighbours, family, or friends is criminal, while

stealing from the state or publicly owned utility companies is acceptable, also contributes to
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ET (Depuru et al., 2011a:1009; Shokoya & Raji, 2019a:97). Some dishonest customers
derive their motivation for engaging in power theft from this fictitious notion. Such a notion
is most common amongst the citizens of developing countries. They believe anything that
comes from the state or publicly-owned sectors should be given free of charge. Some of
these citizens particularly presume that electricity should be regarded as a social service
(Onat, 2018:166; Ojoye, 2019; Shokoya & Raji, 2019b:469) or be given by entitlement
(Robinson, 2014). This belief system is malicious and criminal, as electricity is not free
anywhere in the world or given deliberately on an entitlement or right basis. Electric utilities
and other public utilities are not charities, but business institutions that need to make

sufficient profits to maintain and sustain them.

Unmetered supply which gives rise to estimated billings (Gaur & Gupta, 2016:130; Shokoya
& Raji, 2019b:469; Soyemi et al., 2021:1); and defective or faulty meters (Hashmi & Priolkar,
2015:1424) which generate erroneous or false readings are also some of the causes of
NTL.

Some places are a no-go area for the utility employees because they are dangerous
territories. Going to inspect or claim electricity bills in these areas could be a perilous
mission. However, the utilities have already supplied those areas with electricity. Most
residences in these areas are informal, while most residents there are poor and connect to
the grid through illegal connections. Unmanageable areas with high crime rates such as
favelas in Brazil, and slums in other countries have such characteristics. Inhabitants of such
areas are potentially hostile to the utility employees who come around with the motive of
removing their illegal connections, fining them, compelling them to pay their bills or entirely
disconnecting them from the grid if they are not able to pay. Utility employees fear physical
attacks in such areas and avoid going there for inspections, let alone attempting any
disconnection. The utilities generate very low income or at most times, are unable to
generate any income from those uncontrollable areas. Cases like this cause loss of
revenues to the utilities and eventually contribute to NTL (Antmann, 2009:26, 33; Glauner,
2019:6).

Other factors that cause ET are higher energy tariffs. Higher electricity prices discourage
some electricity customers from wanting to pay their bills (Smith, 2004:2069-2070)
irrespective of whether they are customers of developed countries or not. llliteracy amongst
electricity consumers about the fact that that there are established laws that criminalize ET
and make them prosecutable if found culpable (Depuru et al., 2011a:1009; Shokoya & Raiji,
2019a:97; Shokoya & Raji, 2019b:469) is also a contributory factor. Epileptic supply
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(Shokoya & Raji, 2019b:467-469) or outright lack of electricity supply (Depuru et al.,

2011a:1010) in some locations are also reasons some fellows indulge in stealing electricity.

Finally, weak enforcement of the law against ET culprits encourages them to carry on
(Yakubu et al., 2018:611-612, 614, 616). Countries that do not strictly enforce the law to
punish electricity offenders create enabling environment for the menace to thrive and such

countries record high proportions of ET (Depuru et al., 2011a:1009).

2.4.2 Effects of electricity theft

The effects of ET focus on the impacts of stealing electricity. ET is costly (Lewis, 2015:119,
121), as it comes with critical consequences and also very challenging to detect and curtail
(Fei et al., 2022:1; Stracqualursi et al., 2023:1). The difficulty in curtailing ET is due to the
various tricky means by which it is pilfered, and also owing to the fact that stealing of
electricity could be carried out intermittently and may not always be done continuously (Gao
et al., 2023:4565; Wang et al., 2023:1, 20).

2.4.2.1 Economic effects

The electricity sector is very crucial to the economic development of every nation
(Stracqualursi et al., 2023:2). According to surveys, ET has caused economic losses to
countries around the world (S. Zhu et al., 2024:15478). The direct adverse effect of power
theft is that it causes losses of huge revenues to the utilities (Arango et al., 2017:570; Zheng
et al., 2018:1606). Revenue losses to the utilities is the most-significant negative effect of
ET mentioned in the literature (Smith, 2004:2072; Messinis & Hatziargyriou, 2018:251).
Since ET is a global phenomenon (Stracqualursi et al., 2023:1), electric utilities of all
countries of the world lose a lot of revenue annually, and thus contributing to national
financial losses. Apart from the direct financial losses to electric utilities worldwide, the
effect of poor electricity supply owing to ET undermines economic activities of countries,
leading to corresponding reduction in national revenues as evaluated through losses in
gross domestic products (GDPs) in various realms. GDP losses also immensely contribute
to the annual cumulative financial losses of nations globally (Ahmed et al., 2022:579;
Wabukala et al., 2023:2).

The total annual financial losses incurred globally by all electric utilities due to ET is
estimated to be around US$100 billion (Coma-Puig et al., 2024:2705; Kim et al., 2024:2;
Shahzadi et al., 2024:2; L. Zhu et al., 2024:256). Out of this whopping US$100 billion in

losses, the developing countries are responsible for losses of up to around US$64.7 billion,
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while the rest of the world account for about US$31.3 billion in financial losses (Energy
Central, 2019; Khan et al., 2023:537).

To establish how prevalent the ET scourge is biting around the world, some approximate
country-specific annual financial losses across the developed and the developing countries
will be mentioned. These revenue losses to the utilities create a setback in financial and
economic prosperities of the different countries (Petrlik et al., 2022:420; Naeem, Javaid, et
al., 2023:3). The huge national financial losses inflicted by ET as discussed in the
succeeding paragraphs are estimated values, based on the fact that it is not possible to
precisely measure ET or NTL (Fragkioudaki et al., 2016:44; Viegas et al., 2017:1260).

In the developed countries, the United States loses about US$6 billion (Khan et al., 2024:1),
United Kingdom loses around £173 million (Ullah et al., 2022:18681), Australia loses an
estimate of A$15 million (Robinson, 2014), while Germany, Spain, and ltaly lose around
€504 million, €426 million, and €408 million respectively (Kwarteng et al., 2023:7) to ET
every year.

Still in the developed terrain, the yearly financial losses brought about by ET in Canada
have been reported on provincial basis. Most of the ETs in Canada occur majorly due to
marijuana-grow operations (Tweed, 2013). ET costs the Ontario province of Canada around
C$500 million yearly (Kelly-Detwiler, 2013). BC Hydro, an electric utility in the British
Columbia province of Canada reportedly loses approximately C$100 million to ET annually
(Kambule & Nwulu, 2021:42); while Hydro-Québec, an electric utility in the Québec province
of the North American country could lose up to C$75 million per annum on account of ET
(Jones, 2021). The sum of the reported financial losses caused by ET per annum from the
already mentioned three provinces of Canada (out of the total ten provinces and three
territories that make up the entirety of Canada) is obviously above C$500 million. This is in
consonance with the Canadian Government’s estimate that the country loses over C$500
million in annual utility losses due to ET, as reportedly remarked by Zach Pollock in Tweed
(2013).

In the developing countries, larger sums (with respect to the size of the economies of the
different nations) are lost to ET every year. South Africa loses at least R20 billion (Mujuzi,
2020:79) every year to ET. Mozambique loses US$100 million (Kambule & Nwulu,
2021:43), while Zimbabwe loses around Z$237 billion (Kambule & Nwulu, 2021:43). In
Nigeria, the eleven electricity distribution companies in the country lose about N33 billion

monthly to ET, which cumulatively translates to around &396 billion in energy-theft losses
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per year (Okwumbu-Imafidon, 2020). Ghana loses over US$1 billion (Otchere-Appiah et al.,
2021:3), Kenya loses about KSh18 billion (Amadala, 2021), Rwanda loses FRw1.9 billion
(Iribagiza, 2020), Liberia loses around US$48 million (Boayue, 2022), Tunisia loses
US$106.8 million (North Africa Post, 2021), Morocco loses MAD 1.2 billion which is
equivalent to US$131.4 million (Mebtoul, 2020), Russia loses about US$5.1 billion
(Lepolesa et al., 2022:39638), while Turkiye loses approximately US$1 billion (Yurtseven,
2015:71) every year to ET.

Further on the financial losses to ET in the developing countries, Malaysia’s losses were up
to RM500 million (Abdullateef et al., 2012:250) annually, Pakistan loses over Rs53 billion
(Aziz et al., 2020) which is an equivalent of US$0.89 billion (Javaid, 2021:162936) yearly to
ET. Taiwan loses around NT$1 billion (Su et al., 2016:493), China as a whole loses US$560
million every year (Yao et al., 2023:11162), while Fujian, a province in the Southeastern
coast of China, loses more than CN¥100 million (Pamir et al., 2023:3576) per year on
account of ET. Jamaica loses approximately US$46 million (Lewis, 2015:128), Honduras
loses approximately US$13 million (Naeem, Aslam, et al., 2023:59496), Puerto Rico loses
US$400 million (Anwar et al., 2020:2138), Ecuador loses around US$200 million (TBY,
2014), Mexico loses Mex$25.7 billion (Serrano, 2019), Peru loses S/103 million (Petrlik et
al., 2022:420), and Brazil loses around US$10.5 billion (Ali et al., 2023:2) to ET every year.
Meanwhile, India, the country with the highest financial losses to ET (Xia et al., 2022:274),
loses at least US$16.2 billion (Ali et al., 2023:2) annually to the ET menace.

The ET-inflicted financial losses of some countries as stated in the preceding paragraphs
tend to spur GDP losses in those realms (Ahmed et al., 2022:579; Wabukala et al., 2023:2).
ET has compounded the economic misfortunes of Nigeria and the power crisis in the West
African country has also demystified its supposed economic mightiness amongst fellow
African nations (Shokoya & Raji, 2019b:467, 469). Financial losses due to ET contribute
immensely to the economic woes of any country of the world (Aslam, Javaid, et al., 2020:2)
and also result in lack of investments in the power sectors (Fragkioudaki et al., 2016:44;
Jamil & Ahmad, 2019:452).

As already intimated, theft of electricity and its resulting economic impasse impacts
negatively on national GDPs of countries (Wabukala et al., 2023:2). The ET menace caused
about 1.5% reduction in the GDP of India (Otchere-Appiah et al., 2021:2), and could
averagely cause losses greater than 0.5% of GDP in the sub-Saharan Africa, and as much
as 1.2% of GDP losses in some other countries within the sub-Saharan African terrain

(Antmann, 2009:9). The GDP losses in India owing to ET have recently been reported to be
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up to 2.5% from the initial 1.5%, translating to about US$14.8 billion in India’s financial
losses (Ahmed et al., 2022:579). Generally, power interruption causes approximate GDP
losses in the range of 1% to 5% in the sub-Saharan African countries (Trace, 2020). These
economic losses also contribute to a decline in the human development index (HDI) of every
country. High level of NTL exists in the developing countries, while the developed countries
record low NTL cases (Viegas et al.,, 2017:1256; Stracqualursi et al., 2023:1). NTL
variations among countries are broadly dependent on their level of developments as
revealed by their respective HDIs and GDPs (Glauner, 2019:7; Osypova, 2020:14).
Renowned metrics such as HDI and GDP are typical indicators published periodically by
the United Nations to determine the development statuses of countries (Conceicdo &
UNDP, 2019; Glauner, 2019:7; Osypova, 2020:14).

The growth and sustainability of any industry is hinged on capacity building. The economic
effect of ET is huge, as it hinders the electric utility companies from investing in system
rehabilitation and capacity improvement (Jamil & Ahmad, 2019:452; Hassan et al., 2022:2).
Capacity addition to the electricity supply infrastructure is very important to shrink the
cleavage between the demand and supply of electricity, and to promote sustainability.
Capacity addition takes care of the events when there are excessive demands for electricity.
Private sectors which are expected to invest in the electricity sector to increase capacity are
unwilling to do so because of ET (Jamil & Ahmad, 2019:458).

ET makes the electricity sector an unattractive venture to potential investors. The horrible
effects of ET discourage electricity stakeholders from wanting to invest their hard-earned
monies in the power sector, and such investment dearth would eventually lead to supply
shortfall (Jamil & Ahmad, 2019:458). The potential private investors’ fear of ET is notable
and understandable because no one wants to get involved in any business that may be
dead on arrival owing to the persistent ET scourge right from inception. Theft of electricity
also hinders human development. The utilities may not be able to improve the existing
members of staff by sending them on trainings that would improve their quality of services,
and may also be unable to employ more members of staff because of the financial paucity
brought about by ET (Lewis, 2015:121).

2.4.2.2 Technical effects

Apart from the immense revenue losses (Zheng et al., 2018:1606) which come as a huge
drawback to the sustainability of the electric supply companies, ET also undermines the

efficiency and security of the electricity grid (Fragkioudaki et al., 2016:44). Stealing of
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electricity overloads the utility generating units and could ultimately trip or shut generators
down abruptly (Depuru et al., 2011a:1008; Shokoya & Raji, 2019a:97). Overload is a form
of TL caused by commercial losses (Abaide et al., 2010:2; Poudel & Dhungana, 2022),
because the unanticipated or emergency increase in grid load causes corresponding
increase in TL beyond the expected levels (Karimi et al.,, 2020). Overvoltage and/or
congestion stress and overstretch the network equipment. Overloading the generating units
is the potential cause of overvoltage and performance drop (Depuru et al., 2011a:1008;
Fragkioudaki et al., 2016:44). All these lead to irregularities in power supplies, damage to
the grid infrastructure and thus cause system failures (Yip, Wong, et al., 2017:230; Shokoya
& Raji, 2019b:469).

System overloads as triggered by erratic load increase occasioned by ET cause supply
shortfalls, power interruptions or disruptions, system failures, instabilities and decrease in
grid frequencies (Anas et al., 2012:180; Lewis, 2015:121; Kocaman & Tumen, 2020:1). The
more the ET-inflicted damage caused by overloading the generating units and stressing the
grid equipment, the more the maintenance costs increase. Since the utilities are insolvent
in meeting up with their financial obligations towards the maintenance and upgrade of the
electricity grid owing to the liquidity crunch caused by ET, the unexpected and unpredictable
additional loads brought about by theft consequently lead to electricity interruptions which
cause reliability issues. As hinted earlier, these Interruptions come in the form of a drop in
the quality of power supply known as brownout, or a complete power outage otherwise
known as blackout (Depuru et al., 2011a:1008; Lewis, 2015:119, 121; Fragkioudaki et al.,
2016:44; Kruse et al., 2021:1; Petrlik et al., 2022:420). Electrical surge caused by load
imbalance (overload) was one of the causes of the blackout that occurred in North America
in August 2003 (Casey et al., 2020:1, 3).

Persistent overloading of the electric power system may eventually lead to power rationing
known as load shedding (Anas et al., 2012:180) or rolling blackouts (Nduhuura et al.,
2020:2; Nduhuura et al., 2021:7). ET causes load shedding after wreaking energy shortfall
(Anas et al., 2012:180; Mujuzi, 2020:78). Load shedding is a power management measure
which helps to distribute power demand and prevent countrywide blackouts. With load-
shedding scheme, power supply is mandatorily rationed, and supply to some designated
locations is temporarily shut down when the power system is constrained, that is, when
supply is insufficient to cater for demand. Load shedding could be used to compensate for
power shortage and to ascertain security of supply. Load shedding is an emergency event
implemented to salvage the power generating units of utilities from imminent breakdown,

prevent a nationwide power outage (total blackout), and protect electricity grids (Eskom,
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2013). Power shutdowns owing to load shedding are scheduled and controlled to prevent
complete power system collapse (Trace, 2020). Load shedding is temporarily discomforting
to the electricity customers, but the endurance would just be for a short while, serving as a
provision for preventing longer hideous power outage situations. Load shedding scheme
could also be used to manage peak-period demand pressure, to ascertain energy balance

in the power system (Depuru et al., 2011a:1008).

Load shedding, which started in recent years in South Africa (Grootes, 2019), is now a
popular occurrence in the Southern African country. Load shedding occurs mainly because
of the undue pressure caused by power system overload (Trace, 2020). ET is one of the
stimulators of power-system overload which causes electricity shortage that eventually
leads to incessant load shedding in South Africa (Shokoya & Raji, 2019a:96-97; Mujuzi,
2020:78-79). To cater for the persistent power generation deficits (worsened with the spate
of ET) bedevilling Nigeria, load shedding is inevitably and perpetually implemented in the
country (Shokoya & Raji, 2019b:467-468). Load shedding is also being implemented across
many other developing countries, owing to limited generation capacities (Oluwasuiji et al.,
2018;1590; Oluwasuiji et al., 2020:1-2), and because of the added grid-strains caused by
ET (Nduhuura et al., 2020:2).

Generally, overloading the grid hampers electricity quality, reliability and sustainability
(Depuru et al., 2011a:1008; Yip, Wong, et al., 2017:230; Guarda et al., 2023:1). Aside the
mentioned detrimental ET effects of overloading the grid, overloading may also cause
damage to the appliances of honest legitimate customers (Depuru et al., 2011a:1008;
Fragkioudaki et al., 2016:44), or even cause instigation of power surges that could damage
electric wirings and cause fire outbreaks (Zheng et al., 2018:1606; Petrlik et al., 2022:420).

2.4.2.3 Environmental effects

ET is detrimental to public safety (Zheng et al., 2018:1606; Khan et al., 2024:2), as electricity
thieves ignore this important factor when carrying out their illicit acts. Electricity thieves do
not care, notwithstanding they put the lives of others in danger just to accomplish their
malevolent objectives. Cables are carelessly laid when they steal electricity, and hence they
imminently put the lives of others in danger. Electric shock hazards and/or fatalities to
innocent persons may occur due to carelessly laid cables, and at most times, the power
filchers themselves put their lives in jeopardy by risking great injuries or death (Hall, 2015;
Petrlik et al., 2022:420; Stracqualursi et al., 2023:1). Apart from these, the electric utility
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employees too also stand a great risk of these hazards during maintenance and inspection
activities (Meuse, 2016).

More carbon emission occurs while burning more coal, gas, or other limited natural
resources (Ma et al., 2013:36; Kocaman & Tumen, 2020:1) during the generation of more
electricity to stabilize the grid and to make up for the power deficits caused by ET
(Fragkioudaki et al., 2016:44). This causes more atmospheric pollution (Glauner et al.,

2017:761), and also make the Earth vulnerable to climate change (Osmanski, 2020).

2.4.3 Electricity-theft sufferers

Worthy of separate mention are those that are at the receiving end of the ET menace. ET
causes financial losses to the utilities and inflict technical damages to the grid infrastructure.
Moreover, the electricity crises caused by power theft affect economic activities causing
drops in national GDPs. This is in addition to the risk of poor-quality supply that could
damage the appliances of honest customers, outright supply outages, or even at times fire
outbreaks. These adverse effects of electricity pilferage have been discussed in Sections
24.2,24.2.1,2.4.2.2, and 2.4.2.3. Those who get the direct backlashes of ET have also
been somewhat mentioned in those sections during discussions. The burden of ET is
shared amongst electricity supply companies, honest legitimate consumers or customers,
and nations at large (Antmann, 2009:7; Viegas et al., 2017:1256).

To retrieve part of the financial losses caused to the utilities by electricity thieves, the utilities
also tend to apportion part of the huge theft-driven revenue losses by passing them to the
legal paying customers (Kocaman & Tumen, 2020:2; Guarda et al., 2023:1). Passing part
of the revenue shortfalls caused by ET to honest customers is done by increasing the
electricity tariff or rate (Depuru et al., 2011a:1008-1009; Anas et al., 2012:180; Guarda et
al., 2023:1), and/or sharing part of the huge pecuniary losses amongst benign legitimate
customers to shrink the financial-loss gaps (Yurtseven, 2015:71; Yakubu et al., 2018:611;
Kocaman & Tumen, 2020:1-2). Each honest electricity customer in the UK has been
reported to be paying extra £30 on their yearly electricity bills owing to ET (Xia et al.,
2022:274). Unfortunately, this is the sad reality of ET, an unavoidable ripple or domino effect
of it. The loss sharing is harsh and unfair on the honest consumers, but the utilities are
handicapped in this situation, since they cannot bear all the theft-inflicted economic

encumbrances alone (Kocaman & Tumen, 2020:2; Xia et al., 2022:274).
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To buttress the fact that honest consumers also shoulder part of the burdens of the adverse
effects of ET, Jay McCoskey, the Chief Executive Officer of Port Harcourt Electricity
Distribution Company (PHED), in an interview said that ET is the problem of everyone,
because if our neighbours steal electricity, they indirectly steal from us (Spark Media, 2016).
If one neighbour steals electricity, it means they are stealing obliquely from all their other
benign neighbours, because the unfavourable effects of the theft would ultimately reach
those neighbours who do not steal (Kelly-Detwiler, 2013). Honest customers should know
that they indirectly foot the bills for the thefts of electricity, since the nefarious acts practically
take money off their wallets (Kelly-Detwiler, 2013), and they in essence subsidize those who

steal electricity (Antmann, 2009:6).

Therefore, legitimate customers should see themselves as stakeholders in the campaign
against ET. They should endeavour to offer helping hands voluntarily and report known
cases of theft in their neighbourhoods to the utility companies. This is to express their
disapproval of the illicit acts, and to assist in combating the scourge collaboratively (Jamil
& Ahmad, 2019:457-458). Electricity customers should help the utilities to help themselves.
As the legitimate electricity customers do their bits by giving credible information on known
ET, the utilities should also be proactive in always keeping NTL under control in the overall
best interest of all the parties involved. In summary, the adverse effects of ET reach

everyone directly or indirectly.

2.4.4 Detection and mitigation of electricity theft

ET is a major impediment to electricity reliability and sustainability (Winther, 2012:111;
Sharma et al., 2016:40), and hence needs to be detected and significantly mitigated, so as
to conserve it and to enhance its effective use (Nayak & Jaidhar, 2023:1). ET could be
mitigated by preventing it from taking place; detecting and halting it if it has already taken
place; recovering some of the associated revenue losses owing to the theft, and debarring
such horrid incident from reoccurring (Dick, 1995:92). Researchers have made tremendous
efforts in finding lasting solutions to this plaguing problem of ET. NTL detection (NTLD)
techniques and approaches have been researched and presented in a lot of literature.
Existing ET prevention, detection and mitigation methods have been profoundly reviewed

in Section 2.5.
The ET imbroglio could be assuaged by many methods. These methods are either

technical, non-technical, or a combination of both, to achieve better results (Glauner,

2019:3-4). The non-technical methods are implemented by addressing some of the
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underlying socio-economic factors (Stracqualursi et al., 2023:1) which influence some
consumers who indulge in stealing electricity, and those factors that led some utility
employees into collecting bribes from defaulting customers. Other methods of controlling
ET are manual onsite inspections, imposing fines on defaulters, government giving
electricity subsidies to deserving indigent citizens of developing countries to encourage
them to become legal consumers, enforcing other elements of the existing laws to prosecute
offenders; while technical methods involve deploying electric meters, applying artificial
intelligence-based (Al-based) machine learning (ML) methods, including methods from
other fields of knowledge like cybersecurity/intrusion detection, distribution network analysis
and anomaly/outlier detection, etc. (Messinis & Hatziargyriou, 2018:251-252; Shokoya &
Raji, 2019a:98; Kgaphola et al., 2024:336-337). To limit NTL owing to unpaid bills as
discussed in Section 1.3.4 of Chapter 1, utilities may cut off electricity supply to the non-
paying customers, or reach realistic payment-solution agreements with them on the
modalities of their debt payments (Glauner, 2019:111).

In addition to the electricity-theft detection (ETD) and ET mitigation methods mentioned
above, naming and shaming of theft culprits by publishing their names and other particulars
in the media is also one of the veritable regulatory strategies of curbing ET (Antmann,
2009:24). Leading Nigerian electricity distribution companies have also launched this
peculiar approach to restrict ET within their distribution networks. They have introduced the
naming and shaming of those customers who are involved in stealing electricity, including
the utility employees who may engage in any corrupt activities in collaboration with the
customers, by publishing their names and addresses in all the available public media (Bolaji,
2020). This strategy is supplementary to the arrests and the prosecution of ET culprits. Also,
confidential whistleblowing platforms have been launched, which assures payment of
incentives to those who are committed and courageous enough to report those who engage
in ET (Vanguard, 2021). Utilities in Jamaica (Observer, 2017), Ghana (GhanaWeb, 2018),
Liberia (Sainworla, 2021), Pakistan (Dawn, 2009), and India (Upadhyay, 2018), etc. have
also embraced this method. All the rules guiding this NTL cutback approach have been
injected within the purview of the power-sector laws and regulations of every realm. This
theft-prohibitive measure is highly commendable and should be sustained as one of the

potent methods that could be employed to assuage the hydra-headed ET problem.

To reduce NTL in the high-crime or unmanageable areas mentioned in Section 2.4.1,
medium-voltage distribution (MVD) has been implemented by a Brazilian electric distribution
company in such areas, whereby shielded networks are installed to connect customers to

electricity supply, while each customer’s connection and the MV/LV distribution transformer
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that supply a group of customers are provided with dedicated meters in a shielded panel
located close to the transformer, and the consumers’ meter readings could be read via
repeating displays at their premises and remotely by the utility through the AMI (Antmann,
2009:26, 32-33). With the MVD concept, the shielded networks which are supplied directly
by the pole-mounted MV/LV transformers prevents illegal connections, the shielded panel
prevents meter tampering, while the LV distribution network is completely excluded.
Identifying unmanageable areas with high NTL is of no essence if no corrective measure

could be taken to stem the losses.

2.4.4.1 Characteristics of electricity-theft mitigation

Mitigation or minimization of NTL in the power grids is the only panacea to the obstinate ET
problem (Lewis, 2015:128-129; Kocaman & Tumen, 2020:1). Mitigating ET is the most
important and the cost-effective means of curtailing power losses (Abaide et al., 2010:1;
Fragkioudaki et al., 2016:44). Apart from maintaining stable and healthy electricity grid and
assuring financial prosperities to the electric utilities, another benefit of mitigating ET is the
reduction in atmospheric pollution caused by carbon emissions (Depuru et al., 2011a:1007;
Fragkioudaki et al., 2016:44). The more the success achieved in deterring and mitigating
ET, the more the reduction in carbon emissions into the atmosphere (Fragkioudaki et al.,
2016:44). This in turn tend to lower the risks of greenhouse effects that later cause global
warming and climate change (Osmanski, 2020). Mitigating ET creates a low-carbon and
energy-efficient environment and also promotes energy security (Depuru et al., 2011a:1007,
Fragkioudaki et al., 2016:44; Khan et al., 2024:7).

It is pertinent to reiterate that in reality, it is impossible to completely eradicate ET or NTL in
the power systems, but it is possible to reduce it to an acceptable and tolerable level (Lewis,
2015:128-129; Kocaman & Tumen, 2020:1). The unpredictable human nature involved, and
the financial considerations that surrounds ET compounds its intractability (Jiang et al.,
2014:109). So, ET is difficult to control in its entirety even with the most advanced
equipment; but could be cut down to a reasonable level by deploying variety of solutions
(Jiang et al., 2014:109; Jamil & Ahmad, 2019:458). Mitigation of ET is crucial and becomes
the only inevitable option to save various power utilities and national economies (Poudel &
Dhungana, 2022:109-110, 117) . ET mitigation helps the utilities to overcome major revenue
losses and increase electricity reliability by reducing dubious demands owing to pilfered

electricity and thus make more power available to boost economic activities.
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Sizeable reduction of ET will unburden the electricity grid and enhance its healthiness and
efficiency, thereby improving power quality and reliability, and ensuring financial profits to
the utility companies (Abaide et al., 2010:2; Shokoya & Raji, 2019a:100). Additionally, ET
mitigation also guards the honest consumers against paying for what they did not consume.
This prevents electric utilities from distributing part of the ET-inflicted financial deficits
amongst the legal honest customers (Depuru et al., 2011a:1008-1009; Anas et al.,
2012:180) or imposing higher electricity tariffs on them (Yurtseven, 2015:71; Yakubu et al.,
2018:611; Kocaman & Tumen, 2020:1-2; Guarda et al., 2023:1). The ET albatross must be
significantly reduced, if not, it will subdue the electric utilities and inflict unthinkable harm on
national economies (Guarda et al.,, 2023:1; Khan et al., 2024:8) and the environment
(Depuru et al., 2011a:1007; Fragkioudaki et al., 2016:44; Khan et al., 2024:8).

2.4.5 Electricity-theft detection: the state of the art

Conventional or traditional methods like the exclusive onsite inspections (Messinis &
Hatziargyriou, 2018:251), T&D loss analysis (Smith, 2004:2070-2074), or finding the
difference between the consumed and billed electricity within a community by using a
central observer meter (Ghori et al., 2020:16034) have been used to detect ET. These
conventional methods have several drawbacks in terms of social and technical limitations
(Messinis & Hatziargyriou, 2018:251; Savian et al., 2021:1-2). Exclusive onsite-inspection
method, which involves the onsite inspection of all available electricity customers on the
grid is less efficient, requires a significant amount of time to execute, and prohibitively very
expensive (Yip, Wong, et al., 2017:230; Zheng et al., 2018:1606; Liao, Zhu, et al.,
2024:5075).

The huge running cost involved in the large-scale deployment of human resources for
exclusive onsite inspections makes the conventional approach for detecting ET very
expensive and less attractive (Yip, Wong, et al., 2017:230; Messinis & Hatziargyriou,
2018:251; Zheng et al., 2018:1606; Liao, Zhu, et al.,, 2024:5075). Some T&D data
calculations are inconsistent and inaccurate (Smith, 2004:2070), while the use of an
observer meter could only help to determine the area where ET is taking place, but not the
actual theft culprits (Ghori et al., 2020:16034). The pilfering methods of electricity that spur
eventual onsite inspections have been mentioned in Sections 1.3, 13.1, 13.2, 1.3.3, and
1.3.4 of Chapter 1. With the obvious inadequacies of the conventional methods, there is a
need to explore other methods that will further assist in stemming the ET menace and its

horrendous effects.
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Al techniques are the state-of-the-art methods employed for the detection of ET (Glauner
et al., 2017:761; Glauner, 2019:31, 110; Ghori et al., 2020:16033-16034; Saeed et al.,
2020:1; Guarda et al.,, 2023:4; Stracqualursi et al., 2023:12, 16; Coma-Puig et al.,
2024:2704). This approach is proficient and predominant when compared with other
methods used for NTLD. Machine learning (ML), an Al-based method, is deployed in the
data-oriented NTLD methods (Messinis & Hatziargyriou, 2018:259; Saeed et al., 2020:9)
discussed under Section 2.5.3.2, and have also been exhibited in the experimental part of
the thesis. The Al-based methods for NTLD perform better than the traditional methods
(Saeed et al.,, 2020:1). Al-based NTL models identify irregular electricity or energy
consumptions in real time and such anomalous consumption patterns are indications of ET
(Jiang et al., 2014:108; Glauner et al., 2017:761; Yip, Wong, et al., 2017:231; Poudel &
Dhungana, 2022:110; Guarda et al., 2023:1-2). ETD or NTLD is technically a binary
classification problem because it involves the determination of theft and non-theft cases
(Chen et al., 2022:5).

2.4.5.1 Artificial intelligence

The term artificial intelligence (Al) was first coined by John McCarthy in 1956 to describe a
new field of knowledge associated with “thinking machines”, during a six-week Summer
Research Project Conference at Dartmouth College in Hanover, New Hampshire, United
States (Nilsson, 2013:77-78; Glauner, 2019:16). The 1956 Dartmouth Conference which
was organized by John McCarthy birthed Al and initiated it as a new discipline (Nilsson,
2013:77; Cao, 2022:3). Other notable scientists who attended the conference and also
assisted in its organization logistics were Claude Shannon, Marvin Minsky and Nathaniel
Rochester (Glauner, 2019:16).

Al has kept evolving ever since it was birthed in 1956 (Cao, 2022:4-8). It has continued to
experience exponential growth and has found applications in almost every discipline.
According to John McCarthy: “Al is the science and engineering of making intelligent
machines” (Hamet & Tremblay, 2017:S36-S37; Amisha et al., 2019:2328). Al refers to the
usage of digital computers and machines to simulate human intelligence (Raschka et al.,
2020:1). The objective of Al is to create intelligent machines that act effectually in novel
conditions (Russel & Norvig, 2021:19).

Al involves the incorporation of humanlike-intuition technology into machines by building

intelligent systems or models that allow machines to perform tasks that are normally

associated with humans (Choi et al., 2020:1). The operation of such models are automated
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and require little or no human involvements (Hamet & Tremblay, 2017:S36). Humanlike-
intuition technology constitutes algorithms that allow machines to imitate humans by
replicating their mental prowess to solve problems (Janiesch et al., 2021:686). Initially,
building an intelligent analytical Al model would require explicit programming using
algorithms to produce a model or computer program with cognitive capabilities. After the
intelligent model must have been developed, it can then reason critically to discover
meanings, learn from previous experience, generalize and make predictions,
recommendations, or generate answers, rules, etc. (Janiesch et al., 2021:686, 688; Russel
& Norvig, 2021). Application of Al solutions by implementing various branches of Al cut
across different fields of knowledge and are used to solve many discipline-specific problems
(Hamet & Tremblay, 2017; Amisha et al., 2019). But the application of Al in this research
project is restricted to ETD or NTLD in the power distribution systems.

Recent advancement in knowledge in the field of Al has brought about a more efficient and
superior approach to detecting NTL when compared with the conventional NTLD methods
(Saeed et al., 2020:1; Poudel & Dhungana, 2022:110). Al-based methods for ETD are the
most popular (Fragkioudaki et al., 2016:51), and the growing trend of Al-based research
articles on NTLD is a pointer to this fact (Saeed et al., 2020:1; Poudel & Dhungana,
2022:110). There is a need to monitor electricity consumption to be able to control ET. ET
can lead to unusual patterns in electricity consumption profiles. We can use Al-based ML
methods to discover abnormal patterns in electricity consumption data to uncover electricity
thieves (Jiang et al., 2014:109; Glauner et al., 2017:761; Yip, Wong, et al., 2017:231;
Guarda et al., 2023:1-2). Consumption profiling can also be used to improvise methods to
regulate electricity loads, so as to maintain and sustain the existing generation capacities
(Ahmad et al., 2018:2916-2917).

Al methods for ETD allows us to scrutinize and analyse the meter-reading records, the
consumption records, the consumption history, or consumption profiles of the electricity
consumers taken over a period and use them to determine irregular consumption
behaviours embedded in the consumption records in a bid to detect ET (Jiang et al.,
2014:109; Glauner et al., 2017:761; Yip, Wong, et al., 2017:231; Guarda et al., 2023:1-2).
This would assist us to detect customers with abnormal tendencies in their consumption,
which would eventually trigger probable inspections. To mitigate the theft, the utility
technicians would then carry out onsite inspections to fish out customers who may have
tampered with their power infrastructure in a bid to steal electricity. In the developing
countries, it may not be realistic enough to determine the theft of electricity from the

perspective of energy balance calculations used in electrical engineering. This is owing to
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changes in network topology and the irregularities associated with grid infrastructure, as
well as the probable inconsistent measurements derived from several grid elements. Hence,
there is a need for exploiting the Al techniques, a more-proficient approach, for the detection
of ET (Glauner et al., 2017:761).

Many NTLD solutions have been mentioned in the literature, but ETD by employing Al
methods are the predominant and advanced anti-theft approach used in latest research to
detect customers who may be stealing electricity (Glauner et al., 2017:761; Glauner,
2019:12, 31, 110; Poudel & Dhungana, 2022:110). This latest and the most-advanced ETD
approach uses the consumption data of the electricity customers to reveal irregular power
consumptions, and to uncover the very suspicious customers who are liable for onsite
inspections (Glauner, 2019:31, 110; Guarda et al., 2023:1-2). Deployment of Al methods
for NTLDs prevent unnecessary and expensive onsite inspections (Barros et al., 2021:1-2).
The conventional means of ETD adopt an indiscriminate and unilateral onsite inspection
approach which condones a lot of unnecessary, expensive, and time-wasting inspections
(Yip, Wong, et al., 2017:230; Messinis & Hatziargyriou, 2018:251; Zheng et al., 2018:1606;
Liao, Zhu, et al., 2024:5075).

Al-based NTLD methods are classified into ML and deep learning (DL) algorithms or models
(Arif et al., 2021:2). Meanwhile, DL is a subset or a type of ML (Janiesch et al., 2021:686),
while ML itself is a subfield (branch) of Al or a technigue to achieving Al (Brown, 2021;
Janiesch et al., 2021:686-687). NTLD using ML (Yip, Wong, et al., 2017:231; Guarda et al.,
2023:5) is the implementation and application of one of the branches of Al to solve the
perennial ET problem. However, the large volume of data generated by SMs via the AMI in
SG have made it possible for the application of technologies which are data-driven,
including the implementation of Al techniques for ETD (Liao, Zhu, et al., 2024:5075; S. Zhu
et al., 2024:15477).

R/

% Machine learning

ML is a branch or a subdiscipline in Al which forms an intersection between computer
science and statistics (Jordan & Mitchell, 2015:255-256; El Bouchefry & de Souza,
2020:225). ML is used to decipher patterns in datasets using algorithms and also used to
make new predictions without any explicit task-specific manual programming (Jordan &
Mitchell, 2015:255-256; Guarda et al., 2023:5). With ML, algorithms or computer programs
are able to perform cognitive tasks and learn from experience through problem-specific data
samples (Jordan & Mitchell, 2015:255; Glauner, 2019:12, 16; El Bouchefry & de Souza,
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2020:226; Janiesch et al., 2021:686). ML is an inductive process because it allows rules to
be derived from examples (Glauner, 2019:20). Questions on how computers that learn from
several input data are built, in a bid to anticipate outputs by learning from the input
experience and improving performance over time are addressed by ML (Jordan & Mitchell,
2015:255). ML allows humans to build more efficient and intelligent systems by formalizing

their knowledge into forms accessible to machines.

Instead of writing static programs to individually input knowledge into computers to solve a
particular problem, ML models rather train computers to dynamically learn relationships and
patterns from samples and cleverly perform predictions or decisions on new similar samples
based on the knowledge acquired through experience without explicitly programming or
exclusively codifying the computer to learn the new samples (Jordan & Mitchell, 2015:255;
El Bouchefry & de Souza, 2020:225; Janiesch et al., 2021:685). These learned patterns
from the sample data are recognized by machines, and predictions are made based on
them when new input sample data are fed into the ML algorithms or models (Jordan &
Mitchell, 2015:255).

While humans struggle to elucidate all their knowledge and available solutions to complex
problems, ML overcomes this limitation by learning through training and improving from
experience through increased performances (Jordan & Mitchell, 2015:255; Janiesch et al.,
2021:685-686). ML uses algorithms to automatically learn hidden insights and intricate
patterns in any data that is subjected to scrutiny (Janiesch et al., 2021:686). This learning
allows ML models in computers to automatically reprogram themselves in accordance with
the experience they have garnered. A typical example of learning the hidden or latent

patterns in a data is shown in Figure 2.17.

The Figure 2.17 is an example of the consumption pattern of a particular customer who
engages in stealing electricity (Glauner, 2019:2). The energy consumption pattern is
generated from the monthly time-series consumption profile of the customer, and shows a
typical example of how ET could be detected and later mitigated using the patterns hidden
in the electricity consumption data of the consumer (Glauner et al., 2016:253-254). Using
automated statistical methods to learn latent irregularities or fraudulent patterns from
datasets containing features of electricity consumptions, with the ulterior motive of gaining
insights from the data is achieved using ML (Glauner, 2019:16, 31, 36; Poudel & Dhungana,
2022:110).

81



Inspection

N

Inspection

200 =
1

kwh

100

I
2011 2012 2013 2014 2015
time
Figure 2.17: Consumption pattern indicating malicious usage of electricity

(Glauner, Meira, et al., 2016:254)

There was a sharp drop in the electricity consumption of the customer at the end of 2011
from the case-study consumption pattern shown in Figure 2.17. The drop was about a fifth
of the previous consumption. This signified that the electric meter of the customer may have
been manipulated. This drop persisted over time, and the customer was suspected of
pilfering electricity. The utility inspection team carried out an onsite inspection at the
premises of the customer at the beginning of 2013, and an instance of ET was detected.
After the theft detection, the electricity-infrastructure manipulation was reverted, and the
electricity consumption pattern of the customer went back to normal. In 2014, a year after
the previous inspection was carried out, another drastic drop in electricity consumption

occurred again, this time to about a third of the previous consumption. This drop brought
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about another inspection a few months later (Glauner et al., 2016:253-254; Glauner,
2019:4).

Sharp drops or anomalies in electricity usage are peculiar to those customers committing
ET (Jiang et al., 2014:109; Glauner et al., 2017:761; Yip, Wong, et al., 2017:231; Guarda
et al., 2023:1-2); but in some special cases those drastic drops in consumptions might be
because a building is currently uninhabited, the occupier of a building went on holiday,
travelled, moved out, or due to change in weather conditions, tariff, or that a factory reduced
its production level, etc. (Glauner, 2019:2; Coma-Puig & Carmona, 2022:488; Poudel &
Dhungana, 2022:110, 115-116; Guarda et al., 2023:20). This is the reason a physical onsite
inspections by utility technicians is very essential and imminent to get site feedbacks for
customers with irregular electricity consumption patterns, in a bid to confirm or establish
whether those customers with suspicious patterns of consumptions are actually fraudulent
or not (Messinis & Hatziargyriou, 2018:259; Liao, Bak-Jensen, et al., 2024).

After establishing the electricity thieves, the stealing customers are tagged as fraudulent
while the rest are identified as honest. The honest customers who do not steal electricity or
cause NTL are labelled or annotated as “0”, while the fraudulent customers who steal
electricity or cause NTL are labelled as “1” after the onsite inspections (Glauner, 2019:48;
Munawar, Javaid, et al., 2022:12; Ali et al., 2023:6, 9; Nayak & Jaidhar, 2023:4). Supervised
ML models then capitalize on these individual customer labels (Appiah et al., 2023:2) in
conjunction with their corresponding energy consumption data to make predictions about
new customers who may likely be stealing electricity. Using ML models for NTLDs reveal
the suspicious customers liable for onsite inspections, prevent unnecessary inspections and
drastically reduce the huge costs associated with indiscriminate onsite inspections
(Messinis & Hatziargyriou, 2018:259, 264; Barros et al., 2021:1-2).

Analytical model building tasks are automated using ML algorithms to achieve object
detection within the data without any explicit or manual programming. By extracting features
from huge databases and learning from earlier computations, ML algorithms assures
replicable and dependable decisions from the data (Janiesch et al., 2021:686). ML methods
are also known as data mining methods (Ahmad et al., 2018:2916-2917; Glauner, 2019:31,
45). ML methods are a superior approach for the detection of ET because they are more
efficient, more accurate, saves time and requires less labour (Ghori et al., 2020:16033;
Saeed et al., 2020:1). Different ML algorithms have been developed to adapt to various
datasets from different sources to solve different problem types (Jordan & Mitchell,
2015:255; Guarda et al., 2023:5).
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The four types of ML are supervised, unsupervised, semi-supervised, and reinforcement
learnings (Yang, 2019:139-140; Choi et al., 2020:2; El Bouchefry & de Souza, 2020:227-
228; Janiesch et al., 2021:686-687). Examples of supervised ML models are support vector
machines (SVM), optimum path forest (OPF), decision tree (DT), k-nearest neighbours
(KNN), Bayesian classifiers and rule induction methods, etc., while examples of
unsupervised ML methods are clustering algorithms, outlier detection methods, and
statistical methods, etc. (Saeed et al., 2020:9, 12; Guarda et al., 2023:5-6, 11-12). The
semi-supervised learning method forms a borderline between supervised and unsupervised
learnings (Choi et al., 2020:3). Supervised, unsupervised, and semi-supervised methods of
learning are further discussed under Section 2.5.3.2. Supervised and unsupervised
learnings are applied in anomaly or fraud detections like in ETDs or NTLDs. Applications of
reinforcement learning are found in games (Silver et al., 2018), robotics (Singh et al., 2022),
and broker systems (Peters et al., 2013).

Deep learning

DL is a subset of ML which learns from the multilayered form of basic hierarchical human
brain-like network (or artificial human brain) known as neural network (Islam et al., 2019:9;
Montesinos Lépez et al.,, 2022:379, 384). Neural network was brought about owing to
advancement in the field of ML, enabling superior learning algorithms with more proficient
preprocessing techniques (Janiesch et al., 2021:686). Artificial neural network (ANN) is a
basic neural network which forms the backbone of DL models (Montesinos Lopez et al.,
2022:383). The idea of neutral network was motivated by the functions and structure of the
biological neurons in the brains of humans, and has thus been modelled after it to make
predictions (Glauner, 2019:17; Islam et al., 2019:7; Montesinos Lopez et al., 2022:379-381).

Neural network is modelled after the human brain because the brain is a superior
information processing system which computes complex operations (Islam et al., 2019:7;
Montesinos Lopez et al., 2022:379). The brain is a component of the human nervous system
which is made up of the processing units called neurons where the term “neural” network
(network of neurons) derived its name. The neuron or node is the fundamental component
of a neural network, representing a simplified model of the neuron in human brains
(Lepolesa et al., 2022:39641). Neural network layers are trained to recognize the different
features of the input data and consequently produce an output based on the patterns learnt
through the hidden layers (Lepolesa et al., 2022:39641; Ali et al., 2023:12). A basic neural

network or ANN structure consists of input, hidden, and output layers (Xia et al., 2022:290).
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DL models contain multiple hidden layers and dynamically discovers the needed
representation commensurate to a specific learning task (Yang, 2019:151; Janiesch et al.,
2021:687-688; Montesinos Lopez et al., 2022:383). DL is an improved neural network that
is otherwise known as deep neural network (DNN), with depth of layers of multiple neurons,
in a deeply nested architecture, which enables it to process more complex data, produce
more-accurate predictions and outperform other conventional ML models (Lepolesa et al.,
2022:39641; Montesinos Lopez et al., 2022:383). This is achieved because DNN is able to
detect patterns or trends which are difficult for other traditional ML models to detect
(Lepolesa et al., 2022:39641). Learning via training a DNN is called DL. ANN consists of
one or two hidden layers (Mostafa et al., 2020:107), while a neural network that consists of
three or more hidden layers is referred to as a DNN (Mostafa et al., 2020:107). Hidden
layers share similar information (Montesinos Lopez et al., 2022:386), and are located
centrally in a neural network between the input layer and the output layer (Islam et al.,
2019:9; Ali et al.,, 2023:12). The neural network framework comprises of layers of
interconnected nodes (artificial or synthetic neurons) or processors, where the output of a
node serves as the input source of the next available node (Islam et al., 2019:9) as could
be seen in the DNN architecture shown in Figure 2.18.

Input layer Multiple hidden layers ~ Output layer

| I
NEAX AN NGLX X

PNRPNREN

Figure 2.18: Architecture of deep neural network

(Zhu et al., 2022:3)

Signals are transmitted between connected nodes in a neural network. The connection or
linkage between a node to another carries a real number value which corresponds to the

weight or strength of the transmitted signal (Islam et al., 2019:7, 9; Montesinos Lépez et al.,
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2.5

2022:394). Neural networks learn by updating the weights (Islam et al., 2019:7). Just like
the neurons in neural networks imitate the biological neurons in human brains, the unique
connection weights between neurons in neural networks also imitate the connections
between neurons in human brains (Lepolesa et al., 2022:39641). The input data in a neural
network is sent through the input layer to the hidden layer. The hidden layer receives the
input data, extracts features or information from it and use the extricated information to
update the network weights, while the final model predictions or results are done and
produced at the output layer (Islam et al., 2019:7; Ali et al., 2023:12). The number of
features in the input data determine the number of neurons at the input layer, while the
nature of the task being performed by the neural network (i.e., the number of parameters
being predicted) dictates the number of nodes at the output layer (Ali et al., 2023:12). In
addition to being able to predict as a model, DL models automatically learn features from
datasets and also perform well with the processing of big, unstructured, imbalanced and
noisy datasets (Arif et al., 2021:2; Janiesch et al., 2021:688-689; Guarda et al., 2023:23).
Examples of DL algorithms are convolutional neural network (CNN), recurrent neural
network (RNN), generative adversarial neural network (GAN), distributed representation,
and autoencoder, etc. (Janiesch et al., 2021:689-690).

NTL methods and solutions

NTL could be deterred, determined, and pruned by various techniques and approaches. A
typology of NTLD solutions has been proposed based on the overview of various technigues
and approaches present in the literature. The typology of these anti-theft techniques and
approaches are categorized under theoretical studies, hardware solutions and non-
hardware solutions (Viegas et al., 2017:1260; Saeed et al., 2020:7; Appiah et al., 2023:2)
as shown in Figure 2.19.

NTL detection methods

v v v

Theoretical studies Hardware solutions Non-harware solutions

Figure 2.19: Typology of NTL detection methods

Adapted from (Viegas et al., 2017:1260; Saeed et al., 2020:7; Appiah et al., 2023:2)
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NTL cutback approaches and techniques could be implemented in both conventional and
SGs (Yip, Wong, et al., 2017:231). SM is an intelligent metering device used in SG for the
acquisition of energy consumption data and other grid parameters for NTLD using Al
techniques. NTLD methods for optimal NTL mitigations are better and are accurately
implemented using the energy consumption data obtained from SMs, owing to the readily
available fine-grained or high-resolution data it generates in conjunction with other detailed
grid information. Data-based NTLD methods are the state of the art, and are further

discussed under Section 2.5.3.2.

2.5.1 Theoretical studies

In this NTL solution approach, variable factors that influence the existence of NTL amongst
the populace in a geographical area are analysed (Viegas et al., 2017:1260-1261).
Theoretical studies-based NTL solutions provide the non-technical means of controlling ET
by gathering and analysing information on social, economic, demographic, and market
variables that help the electric utilities to understand the root cause of NTL. After the
analyses, the variables that drive the illegal behaviours of consumers who cause NTL within
a particular topographical population are determined. Statistical techniques are mainly used
in leading studies to analyse these variables and to determine the relationships between
them (Viegas et al., 2017:1260-1261; Saeed et al., 2020:7-8). Theoretical studies proffer
alternative solutions to ET as against the conventional technical or engineering solutions
(Yurtseven, 2015:74).

The primary advantage of the theoretical solutions to NTL is that it helps to inspire policy
and decision makers in forming and making effective plans and resolutions that would have
great effects on ET reduction, and ultimately promote greater efficiency in the electric
system. But the major disadvantage of this approach is its limited scope, in that, it typically
focusses on case-study country or region at a point in time (Viegas et al., 2017:1261; Saeed
et al.,, 2020:8). The method is therefore insufficient to identify the precise point of theft
incident or points of other irregularities in metering or billing. The next subsections under
this section examine some theoretical methods which have been used to curb the effects
of NTL, as presented in the literature, and also the types of data used for the theoretical

analyses.

2.5.1.1 Empirical survey: customer-utility relational approach

Winther (2012) focused on bottom-up approach in combating corruption in the electrical

system, by using surveys and ethnographic fieldwork information. The author highlights
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customer-utility relationship as a means of understanding and curtailing the problem of ET.
According to Winther (2012), proactively improving utility reputation amongst the customers
tends to prevent the occurrence of ET. The approach of the author was based the on the
empirical findings of two different socio-cultural settings of rural Zanzibar in Tanzania, and
the Sunderban Islands in West Bangal, India. The two developing geographical references
have different provisional systems. The grid supply system in rural Zanzibar is centralized,
while that of Sunderban is decentralized. Insights have been obtained through the
ethnographic fieldwork in rural Zanzibar, and the fieldwork in Sunderban with customer-staff

house survey.

The author argued that relational and people-centred approaches are impactful in the quest
to reduce ET. The people-centred approach is about the formation of groups of local users
and their participation in helping to enhance the performance of the electricity providers.
The participation of these local-user groups gives the customers and the communities a
sense of belonging and motivation to trust the process. For example, these groups are
consulted when the utilities want to make changes to their tariff, etc. Consequently, these
groups feel obligated to report illegal use of electricity within their localities to the utilities. In
this study, the way the customers relate with their electricity providers is crucial, and any
changes made to such relationship would fundamentally reshape the electricity system in

terms of customers’ compliance and electricity sustainability.

According to the author’s findings on Zanzibar and Sunderban, trust relationship between
the customers and the utilities is an antidote to stealing electricity or causing NTL. If trust is
promoted between the parties, the customers will have faith in the process, and they would
be obliged to pay for what they consume and subsequently adhere to the utility regulations.
The device (technical mediator) between the customers and the utilities which enhances
trust between them is the electricity meter. Customers’ confidence in the proper functioning
of the electricity meters and the transparency in the utility accounting system translate to
customers being charged only for what they consume (social accountability). This fosters
the customer-utility trust relationship. To avoid suspicion on the part of the customers, the
utility should endeavour to determine, repair and/or change any dysfunctional meters. This
is done in order to always maintain the confidence between them and their customers. The
utilities should also educate their customers on billing, accounting, and metering, to
increase the customers’ awareness of how they get billed. It is always easier for humans to
comply with any process they trust, and thereby encourage others to do same. Equal and

fair treatment of customers are also particularly very important in the process.
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The utilities should also ensure satisfactory power availability because such promotes the
trust relationship. Utilities in alliance with the local customer-group members should not
condone non-payment of bills because if some customers do not pay their bills and could
get away with it, other customers would tend to follow suit. The electricity behaviour of peer
groups affects the compliance norms of others. The utilities in collaboration with the user
groups would encourage sanctions for defaulting customers. The utilities should reciprocate
the customers’ trust in them by reinvesting the profits they make into the system to improve
service quality and increase capacity. If these are done, the customers would have no cause
to have any iota of distrust in the utilities. The utilities should also not violate the trust the
customers have in them, as that would encourage the customers to always fulfil their part
in the customer-utility relationship or get sanctioned if they do otherwise.

The stakeholder mentality of the consumers ensures the smooth running of the electricity
system. These collaborative efforts help curtail activities that may lead to ET, as the
electricity customers would not want to destroy or desecrate the arrangement which they
are actively part of. The ingredients to ultimately analyse the customer-utility relationship
are via the grounded and socio-technical approaches. The grounded approach tries to
understand why consumers make illegal connections or refuse to pay their bills. The socio-
technical approach is about the electric meters and the customers’ confidence in them. The
electricity meter was referred to earlier as the technical mediator between the customers
and the utilities. The relational-approach analysis of either trust or otherwise is premised on
the inferences from the grounded and socio-technical approaches, and the utilities taking
other measures as stated previously. The whole process is to make the customers behave
in a way that suits the electricity suppliers and the political institutions that govern them.
This is in a bid to bring sanity into the electricity system, stem ET and promote sustainable
energy utilization and production. In summary, customer-utility relationship is a key factor

to maintaining sustainable electricity systems.

While Winther’s (2012) research is valuable for its sociological perspective, its applicability
to modern SGs, urban-theft contexts, and the integration of ML models with social data

analysis is limited.

2.5.1.2 Econometric analysis

In a bid to reduce the effect of ET in the power grid, Yurtseven (2015) presents econometric
analysis that examine the socio-economic basis for illegal electricity consumption using

Tarkiye (Turkey) as a case study. Prevention of ET is the priority of this study. This is
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achieved by estimating an ET equation by applying different econometric methods.
According to the author, if we understand the socio-economic drives behind the stealing of
electricity, including the political and natural variables surrounding it, we could prevent it
from taking place. To compute the ET estimation equation, the author used the socio-
economic data of provinces in the South-Eastern Anatolia Region of Turkiye from 2002 to
2010. According to the 2011 TEDAS (Turkish Electricity Distribution Company) report cited
by the author, tackling ET in Tilrkiye has been of paramount importance since an estimate
of about 16 billion units (16 billion kilowatt-hours) of electricity is stolen every year in the
country. These illegal energy consumptions represent around 15% of the total electricity
delivered for consumption, and approximately translate to around US$1 billion in financial
losses yearly. The empirical constant-elasticity model equation for ET as developed by
Yurtseven (2015) is illustrated in Equation 2.2. The ET model estimates the ratio of illegal

electricity consumption.
Lnr,=x +BInP, +yInl;, + X5 0" In Zl-',‘t + & ¢ (2.2)

Where 77 ; is the proportion of the electricity consumed illegally in province i at time ¢; P; is
the national tariff or price of a unit of electricity at time ¢; I;, is the income per capita of
province i at time t; Zi’ft is the city socio-economic and natural characteristics of type h by

province i at time t; g;, is the error term of the model; while « is a constant term. To

determine the underlying socio-economic reasons behind ET, the ET model is estimated
using instrumental variable generalized method of moments (IV-GMM) estimation method,
to test the correlation of the model variables and to increase its efficiency. After this, three-
stage least squares (3SLS) estimation technique was later used to further confirm the

efficacy of the IV-GMM approach.

From the estimations, the author concluded that income, social capital, education,
temperature index, agricultural production rate, and rural population rate are the most
significant variables that drive ET in the provinces of South-Eastern Anatolia Region of
Tirkiye. These variables tend to influence the ET ratio to go either higher or lower. However,
offering of social tariffs to indigents and low-income earners, increase in general education,
and social capital (which ensures that “illegal usage share” are recommended for provinces
with high ET ratio to increase social control) have been suggested to reduce illegal

consumption of electricity in a bid to lower the ET ratio.
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This study presented by Yurtseven (2015) is valuable for identifying socio-economic drivers,
and needs to be complemented by consumer-level data, real-time ML detection
technologies, and longitudinal approaches which track theft trends over time for a
comprehensive NTLD framework. The author should look beyond Turkiye and carry out

comparative studies across other countries.

2.5.2 Hardware solutions

Hardware-driven NTLD solutions focus on the description, characterization, design,
development, and deployment of metering equipment and/or sensing hardware that assist
in the identification, estimation, detection, and mitigation of NTL (Viegas et al., 2017:1261;
Saeed et al., 2020:8; Javaid, Jan, et al., 2021:45; Lepolesa et al., 2022:39639; Guarda et
al., 2023:2). In addition to the hardware-based electric meters, software is required for the
operation of some advanced electronic meters. The software of such electronic meters is
used for processing the data produced by the meters. This category of NTL solution can be
classified into three types according to the techniques used in presenting the solutions. The
classification types of the hardware-based methods deployed for NTL prevention, detection,
and/or mitigation are metering hardware, metering infrastructure, and signal generation and

processing (Viegas et al., 2017:1261) as shown in Figure 2.20.

Hardware solutions

v v v

Signal generation and

Metering hardware Metering infrastructure processing

Figure 2.20: Classification of NTL hardware solutions

Adapted from (Viegas et al., 2017:1260-1261)

2.5.2.1 Metering hardware

Metering hardware as a technique for NTLD specifies metering equipment details and their
specifications. This NTLD method presents diverse ways of designing new metering

hardware or modifying the existing ones to enhance the detection of ET. The advantage of
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this hardware-based NTL solution is that it can totally detect some kinds of NTL, for
example, reversing the meter and the disconnection taking place within the meter zone. The
shortcoming of this solution is that it could not detect NTL before and beyond the meter,
except for the NTL that emanates within the meter. Metering equipment are expensive and
also attract significant costs to install them in customers’ premises (Viegas et al.,
2017:1259, 1261).

The authors in Ngamchuen and Pirak (2013) proposed metering systems that are based on
using specific processors and anti-tampering algorithms to protect the meters from any form
of tampering through detection and communication of intrusion activities. Ngamchuen and
Pirak (2013) implemented anti-tampering algorithms on an ADE7953 chip, while
Dineshkumar et al. (2015) implemented same on an ARM-Cortex M3 processor. The
ADE7953 chip was able to detect overcurrent, overvoltage, dropping voltage, no-load
situation or outage, and other irregularities, and then sent a disruption signal to the MCU to
report the tampering event. In the case of meter cover and terminal tampering, alarm signals
are sent immediately to the MCU through the tampering switches connected to the input
and output (10) ports of the MCU. The electric meter designed by Dineshkumar et al. (2015)
has a GSM module which automatically sends a Short Message Service (SMS) or text
message to the utility server whenever any form of ET (like bypassing the entire electric
meter, bypassing of the phase-line wire, tampering the meter, or isolating the neutral wire)

is detected.

Ngamchuen and Pirak (2013) and Dineshkumar et al. (2015) contribute to tampering
detection and hardware-based solutions, but they lack data-driven anomaly detection
approaches and focus primarily on tampering and hardware alerts. Future NTLD models
should integrate hardware tampering detection with consumption pattern analysis using ML

techniques.

Dike et al. (2015) designed a prepaid electric meter which utiized GSM module, a
microcontroller, and an EEPROM, etc. The microcontroller of the electric meter is encrypted
with the unique identification (e.g., phone number) of each customer. Simulation results
showed that the GSM module of the meter sends SMS alert to the utility whenever an illegal
load is connected to the meter after tampering or bypassing it. Bin Yousuf et al. (2016) used
a PIC18F452 microcontroller in the design of an ET detector and also simulated it using
Proteus software. ET is detected if there was a mismatch between the forward current from

the phase line and the reverse current through the neutral line. If ET is detected, the
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microcontroller sends an alarm command and the alarm system of the device would sound

at the instance of ETD.

The authors in Dike et al. (2015) and Bin Yousuf et al. (2016) propose hardware-based anti-
theft solutions, they lack ML approaches that leverage SM data to detect consumption
anomalies. Future NTLD research should integrate hardware-based tampering detection

with data-driven consumption analysis for a comprehensive solution.

Astronomo et al. (2020) designed, fabricated, and tested an Arduino-based ET detector.
The circuitry of the ET detector consists of an Arduino Uno, LCD, two current sensors, and
GSM module. One of the current sensors is located on the drop wires from the electric
poles, and the other on the service cap where the drop wires enter the premises of the
customer. Whenever the difference between the current measurements from the two
current sensors reaches a threshold, ET is detected. After the theft is detected,
microcontroller would instruct the electric meter to alarm, while an SMS notification would

then be sent to the utility. Proteus 8 software was used to simulate the theft detector.

While the authors Astronomo et al. (2020) introduce a practical hardware-based tampering
detection system with GSM alerts, the approach is limited to physical tampering detection.
Combining hardware solutions with ML techniques can enhance detection capability by
identifying non-intrusive consumption anomalies. Additionally, addressing scalability,
communication resilience, and long-term operational stability will strengthen its applicability

to large-scale power systems.

Khoo and Cheng (2011) have proposed the use of radio frequency identification (RFID)
systems to protect the ammeter inventory management of an electricity supply company,
by using RFID tags on the ammeters to prevent ET. Unique data about the ammeter are
captured by the RFID tags to track and manage the ammeters in real time. ET is suspected
if the RFID tags on ammeters onsite are not intact, that is, if the tags are either broken or

removed.

This study by Khoo and Cheng (2011) provides valuable insights into the cost-benefit
analysis of RFID for asset protection in utilities, but it does not address consumption-based
ETD, which remains the most prevalent concern for utilities. Combining RFID systems with
data-driven approaches and real-time monitoring would offer a more comprehensive NTLD

solution. Also, the authors could also evaluate large-scale RFID deployment across multiple
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utility networks and investigate the robustness of RFID against tampering, spoofing, and

signal attacks.

A metering architecture which consists of two reading points has been proposed and tested
by Henriques et al. (2014), to enable easier detection of ET. The metering architecture at
the LV distribution grid consists of ammeters at the point of supply (local unit) and at another
point after the consumer electric meters (remote unit). The measured currents at the local
and remote units are transmitted via radio frequency to a receiver unit. Difference between

the measured currents at the local and remote units is an indication of ET.

Henriques et al. (2014) introduce a practical hardware tool for detecting physical tampering
and bypassing, but their approach is limited to manual inspections and physical
discrepancies. Combining ammeter-based tampering detection with smart metering, real-
time monitoring, and ML techniques would provide a more comprehensive and scalable
NTLD solution. Also, the authors could evaluate hybrid hardware-data systems across large
and diverse utility networks should and integrate field inspection devices with AMI systems

for real-time tampering alerts.

2.5.2.2 Metering infrastructure

This method of NTLD focuses on metering assets or infrastructure and their characteristics
like installation procedures, and the number of equipment that are needed to be deployed
based on the specific requirements of a particular geographical location (Viegas et al.,
2017:1261). Leading literature on metering infrastructure-based NTL solution focus on
placing different data-collection devices at various locations (e.g., premises of the
customers, distribution transformers and substations) of the grid, to detect sources of NTL
and to estimate the amount of NTL in the electric network (Viegas et al., 2017:1261;
Lepolesa et al., 2022:39639). The advantage of this type of NTL solution is that it detects
all kinds of NTL before the meter and within the meter zone. The drawbacks of this anti-
theft approach are the high costs needed to procure and install the needed equipment
(Viegas et al., 2017:1259, 1261).

The authors, Grochocki et al. (2012), presented a comprehensive analysis of various AMI
attacks in SG. The primary purpose of these attacks is to steal electricity. In this study,
system architecture to counter probable attacks in the AMI has been proposed. The authors
surveyed various probable AMI attacks and their techniques, gathered the information
needed to effectively detect these attacks which led to producing an extensive attack tree.

Hybrid sensing infrastructure which involves the utilization of intrusion detection system
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(IDS) and embedded SM sensors has been suggested by the authors to give the widest

coverage in monitoring to detect all probable AMI attacks.

It could be seen that the authors Grochocki et al. (2012) have contributed significantly to
AMI cybersecurity by defining IDS requirements and deployment strategies, but the study
lacks practical validation and integration with ML techniques for anomaly detection.
Combining IDS with data-driven NTLD models and physical tampering detection would
enhance the robustness of theft detection systems, particularly in developing regions. This
study did not also investigate distributed IDS frameworks for large-scale AMI deployments,

and did not combine cyber-IDS with physical theft detection methods.

The authors in Paruchuri and Dubey (2012) proposed functional and diagnostic systems in
a conventional grid for NTLDs. The functional system consists of SMs installed at the
distribution transformers, relays, and consumers’ premises. The SMs have in-built GSM
modules and use half-duplex communication protocols. The diagnostic system uses
software and algorithms to determine the exact location where NTL or ET took place. A
unique-code signal is sent from the GSM base to consumers’ SMs at regular intervals. This
signal could be sent either through power line or wireless communications. The consumers’
SMs accept the signal and update themselves. Once the SMs respond to the signal, an LV
carrier signal is injected into the grid before the SMs, and the infused signal then travels
through the grid. If a new code is sent from the GSM base after a while, the working SMs
will nullify the carrier signal and authenticate themselves. In the case of a consumer with
malfunctioning meter and/or committing theft, the SM of such customer will not update the
new signal or nullify the carrier signal, and there will be a voltage drop in the carrier signal
at the point where the theft is taking place. The software used in driving the diagnostic
system determines the location of the theft (but not the exact consumer who committed the

theft) and sends a notification.

While Paruchuri and Dubey (2012) provide a practical, feeder-level approach to estimating
NTL, their method lacks individual consumer-level analysis, smart metering integration, and
real-time data analytics. Combining feeder-level estimation with SMs and ML would

enhance ETD accuracy and efficiency, especially in developing regions.

2.5.2.3 Signal generation and processing

Signal generation and processing-based NTL solution presents a pragmatic way of

detecting and controlling ET directly from their sources. In leading studies, harmonic signals

95



are introduced to distribution lines to clear out illegal consumers on the line. The signals
sent to the lines are generated and processed to only execute the goals intended by the
sender. The signals are meant to destroy the electric devices or equipment illegally
connected to the distribution lines by the electricity thieves. To protect the equipment of
honest customers against the power surge sent to the distribution lines by the harmonic
signal generator, the utility agents disconnect the meters of all the benign customers before
sending the harmonic signals to the lines. This signal negatively affects the illegal
equipment connected to the distribution lines. This method has the advantage that it could
uncover all kinds of NTL in the electricity grid. The only shortcoming of this method currently

is its dependence on smart metering systems (Viegas et al., 2017:1259, 1261).

The authors in Pasdar and Mirzakuchaki (2007) proposed sending high-frequency test
signal using the principle of power line carrier communication (PLC) to LV distribution
network, in a bid to discover if illegal equipment is connected to the distribution grid or not,
after disconnecting the loads of legal electricity consumers on the grid through control
signals to their SMs. Characteristics of line impedance that connects the observer SM at
the distribution transformer and the SMs of the consumers are calculated using a software
which monitors the grid and also discovers the location of illegal electricity usage by
calculating the difference between supplied and consumed electricity. Other authors like
Christopher et al. (2014) also proposed an ETD technigue using the principle of PLC. In this
method, a narrow-band PLC signal is injected into the LV distribution line. According to
Christopher et al. (2014), a differential change in the amplitude of the narrow-band carrier
signal after injecting it to the distribution line is an indication of ET. Variation in the high-
frequency carrier signal can be detected effectively even if a high-frequency rejection circuit

is connected between the point of electricity abstraction and the load.

While both Pasdar and Mirzakuchaki (2007) and Christopher et al. (2014) introduce remote
monitoring solutions using smart metering and line monitoring respectively, neither of the
two papers incorporates advanced ML-based theft detection or consumer-level
consumption analysis. Combining smart metering, real-time line monitoring, and ML models
would offer a more comprehensive NTLD solution capable of detecting both physical

tampering and consumption anomalies.

The authors in Depuru et al. (2011a) proposed the use of harmonic signal generator to
introduce harmonic or unwanted signals to the LV distribution grid in an attempt to clear out
or destroy the connected equipment of illegal consumers contributing additional loads to the

grid. The genuine or legal consumers are isolated from the harmonic signals after
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disconnecting their loads or appliances from the grid via control signals to their SMs, in a

bid to mitigate ET and improve distribution efficiency.

While this method by Depuru et al. (2011a) aims to penalize illegal consumers, it is crucial
to recognize the ethical and legal implications of intentionally introducing harmful harmonics
into the power supply. Such actions could inadvertently affect legitimate consumers and
compromise the overall integrity of the electric grid. Although, the authors also provide a
valuable foundational discussion on SMs and policy interventions for ET prevention, the
study lacks implementation, ML integration, and contextual considerations for developing
regions. Combining SMs with data-driven ML models would enhance theft detection
capabilities, especially in regions with partial SG coverage.

2.5.3 Non-hardware solutions

Non-hardware NTL solutions or non-hardware NTLD methods involve the use and
manipulation of the data generated by measuring devices on the electric grid for ETD
(Viegas et al., 2017:1261; Guarda et al., 2023:22). The non-hardware NTLD methods allow
electric utilities to use their existing infrastructure for the gathering of consumers’
consumption information for the determination of ET, and do not require the procurements
of new hardware or equipment (Viegas et al.,, 2017:1259. 1261; Saeed et al., 2020:8;
Guarda et al., 2023:4). Grid observability is increased tremendously with SGs and SMs,
and provide increased availability for huge energy consumption data from various
consumers, in conjunction with other network data (Guarda et al., 2023:1). The authors in
Glauner et al. (2017:761), Glauner (2019:31, 110), Saeed et al. (2020:1), and Coma-Puig
et al. (2024:2704) have already established that the use of hon-hardware Al methods is the
state-of-the-art or the most-advanced technique used for ETD, while the authors in Ghori et
al. (2020:16033-16034), Guarda et al. (2023:4), Stracqualursi et al. (2023:12, 16), and
Coma-Puig et al. (2024:2704) have also attested to that fact by affirming that ML methods
are more efficient and more effective in detecting NTL than several other available methods.

The classification of the non-hardware NTLD methods is presented in Figure 2.21.

This category of NTL solution has been latched upon based on the advancement in data
processing and in the capacities of modern communications. The energy consumption data
or load profiles of electricity customers are analysed and pilferage of electricity is predicted
or inferred based on deviations of consumers’ consumption patterns from the norm. Other
grid data like network topology or network measurements from the distribution grid may also

be used for analysis to determine the irregularities between the billed electricity and the
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actual electricity distributed for consumption. Existing hardware equipment with specified
functions are required at various points of the grid to acquire data for analysis (Viegas et
al., 2017:1261-1262; Messinis & Hatziargyriou, 2018:251; Saeed et al., 2020:8). Points of
irregular patterns which are probable sources of NTL in the consumption data are trends of
energy losses and an indication of the presence of NTL in the electrical system. The
customers with high irregularities in consumptions show high probability of theft and are
therefore inspected (Depuru et al.,, 2011a:1011; Poudel & Dhungana, 2022:110) and
prosecuted if found culpable of stealing electricity (Jiang et al., 2014:111).

Non-hardware solutions

v v v

Data-oriented b Hybrid methods |4 Network-oriented

methods methods

Figure 2.21: Categorization of non-hardware NTL detection methods

y h h h y
Supervised Unsupervised Semi-supervised . .
learning learning learning Estimation Load flow Sensor networks
Hybrid State Technical loss
learning estimation modelling

Adapted from (Viegas et al., 2017:1260-1263; Messinis & Hatziargyriou, 2018:252; Ghori et

al., 2020:16035; Saeed et al., 2020:7-8; Guarda et al., 2023:4-5; Kim et al., 2024:6-7)

2.5.3.1 Tools used for the implementation and evaluation of non-hardware solutions

The classification of the various non-hardware methods for NTLDs has been shown in
Figure 2.21. Before reviewing each category of the non-hardware NTL solutions later in
Section 2.5.3.2, the tools or parameters (i.e., dataset and their features) required for the
implementation of the non-hardware NTLD methods, and evaluations (i.e., performance

metrics) of the aftermath NTLD models are discussed in this section.
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« Dataset

Datasets are like raw materials for the NTLD system, used as inputs into models to produce
outputs. The raw dataset used for NTLD can be categorized as Consumer level and Area
level datasets according to the location where they are physically sourced (Messinis &
Hatziargyriou, 2018:253, 258). Consumer level dataset are sourced from individual
electricity consumers, while the Area level dataset relate to the area where the data is taken.
Example of consumer level data is active energy consumption, while that of Area level data
is network topology. Either of the categories of data could be time series data or static data.
The different types of data used in NTLD are shown in Figure 2.22. In SG system, the AMI
collects energy consumption readings from SMs and send them to utility companies at
different time intervals per day. The time between when readings are dynamically registered
(time resolution) are different from one AMI deployment to another, as there is no stipulated
timing standard attached to the time resolutions when energy consumptions are registered
by SMs (Mashima & Céardenas, 2012:215). However, some timestamped resolutions or
granularities of datasets have been classified whereby consumer level time series data
could be high-resolution, medium-resolution, low-resolution active/reactive energy data and

SM network data as shown in Figure 2.22.

Raw Data
Consumer Area
Level Level
Time - Time .
; Static . Static
Series Series
— High Resolution Ener — Consumer —  Observer meter data — Network Structure
9 ay Non-Technical
— Medium Resolution Energy — FATU data
) Consumer [ Area Non-Technical

— Low Resolution Enegy ™ Technical — Average area consumption
— SM Network Data — Environmental I~ Area Technical

Figure 2.22: Categorization of the data types used for NTL detections

(Messinis & Hatziargyriou, 2018:258)
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Resolutions or granularities are the sampling times or time intervals between when
consumption data are registered from the different SMs in the AMI before they are being
stored in the database of the utilities. High-resolution energy data are data taken within a
period that is less or equal to ten minutes, medium-resolution energy data are taken
between fifteen minutes and one hour, while low-resolution energy data are taken within the
period of a month or further. SM network data is a non-energy consumption data which
correlates with alarms, voltage, line resistance or current obtained from SMs. Consumer
level static data comprise of consumer non-technical data and consumer technical data.
Consumer non-technical data describe the behaviours of the electricity consumers as it
regards their economic activities, perceptions on inspections, etc. Consumer technical data
is the technical information that has to do with the power infrastructure of the electricity
consumers, for example, power installed and power demand in kW, rating of power
transformer in kVA, number of line phases, number of the available appliances used,
remote-controlled space heating system, etc. (Messinis & Hatziargyriou, 2018:253, 258).
The consumer level time-series data is referred to as consumption profile, while the
consumer level static data is referred to as additional data (Viegas et al., 2017:1263; Ghori
et al., 2020:16035, 16037).

Area level time-series data is further divided into observer meter data, feeder remote
terminal unit (FRTU) or simply remote terminal unit (RTU) data, average area consumption
data and environmental data. The installed observer meter at the LV side of the secondary
transformer of the electricity distribution network measures the voltage, current, and power
consumption. The FRTU data are voltage, current, and power measurements obtained from
the RTUs installed at the LV or medium-voltage (MV) end of the electricity distribution
network. Average area consumption is the average energy consumption of a particular area
in question, while the environmental data is basically a measure of temperature, although it
may also comprise other factors. Area level static data consists of network structure, area
technical and the area non-technical data. The data representing the network structure
represent the network topology of the MV and LV network, for example, the percentage of
TL or the transformer to which an electricity consumer is connected to. Area technical data
are data that reveals the technical characteristics of an area, for example, numbers of
transformers being used in an area, the percentage of customers with irregular power
consumption, the percentage of irregular consumers using a particular transformer, etc.
Area non-technical data are the non-technical data that represents the social and/or
economic information of electricity customers, for example, average income, campaign

efforts against ET, average number of residents in a particular area, percentage of residents
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who have access to water, and literacy percentage, etc. (Messinis & Hatziargyriou,
2018:258).

The size of the dataset used for NTLD is dependent on the numbers of consumers involved
or the numbers of consumers’ consumption data collected and used in NTLD simulations.
Datasets from 1000 customers upwards are considered as large or big data. Customer data
between 100 customers up to or less than 1000 customers are regarded as medium data,
while dataset that is not up to 100 customers are referred to as small data (Messinis &
Hatziargyriou, 2018:252). The size of datasets also provides information on the scalability
of NTLD algorithms.

Features

Features are the most important components of any ML methods or technigues (Osypova,
2020:35). Features are extracted from raw datasets as input data into ML models to provide
suitable representation of the raw datasets in order to make predictions or decisions
(Messinis & Hatziargyriou, 2018:252; Janiesch et al., 2021:688). Features are mostly used
by researchers in the field of electrical engineering and other related fields for NTLD. A
feature is a separate computable characteristic of a system under consideration
(Chandrashekar & Sahin, 2014:16). Feature selection involves the methods of finding the
most important variables in a dataset for the detection of NTL. These features or variables
are selected by domain experts or by using feature selection algorithms (Messinis &
Hatziargyriou, 2018:252).

Selecting relevant and optimal set of features reduces data dimension, removes
redundancies, and improves prediction performances (Khalid et al., 2014:372; Miao & Niu,
2016:919). Features for NTLD are commonly used with data-oriented methods or
sometimes hybrid methods, for the detection of NTL (Messinis & Hatziargyriou, 2018:258).
Energy/kWh consumption profiles with varying resolutions are the main features used for
NTLD (Ramos et al.,, 2018:680). Listed and defined below are other common features
computed from kWh consumption profiles which are also used for NTLD, as reported in the
literature (Messinis & Hatziargyriou, 2018:252; Saeed et al., 2020:5):

(a) Standard deviation, max/min, average: Statistical measures calculated over a
specified period of electricity consumption.
(b) Load factor: Itis an index that shows the ratio of the average energy consumed in kWh

over a period to the peak or maximum energy consumed in kWh over the same period.
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(c) Streaks: It is the number of times in which energy consumption curves move up or go
down the mean axis. It is also known as the moving mean of the energy consumption
curve.

(d) Wavelet coefficients: Wavelet coefficients refer to the difference or gap between the
consumption curves (or load curves) that are currently being considered for
classification, and the wavelet coefficients of the consumption curves of the previous
year.

(e) Estimated readings: The approximated readings used by the electric utilities to bill
electricity customers because the utilities could not obtain the actual readings.

(f) Predicted kWh: It is the difference between the expected active-kWh energy
consumptions and the observed active-kWh energy consumptions

(g) Reduction in the consumption of energy: The reduction in the energy consumed at
a particular current period as compared the energy consumed in the past over the same
time period.

(h) Seasonal consumption rates: The comparison of the total energy consumption in a
particular season to the total energy consumption in a different season.

(i) Euclidean distance to mean customer: It refers to the Euclidean distance between
the overall energy consumption curve and the active energy consumption curve within
a dataset, which is a measure of the average consumption of all customers in the
dataset.

(i) Power factor: Power factor (PF) which has values between 0 and 1 and used to
express energy efficiency, is the ratio of the real power consumed in kilowatt (kW) to
the apparent power in kilovolt-ampere (kVA).

(k) Energy factor: The energy factor, which is also an expression of energy efficiency of
appliances and equipment, is the ratio of the reactive energy consumed in kilovolt-
ampere reactive hour (kVArh) to the consumed active energy in kWh during the same
period of time.

() PCA components: They are those components or variables derived from the active
energy consumption curves as calculated by using Principal Component Analysis (PCA)
or Kernel Principal Component Analysis (KPCA).

(m) Pearson coefficient: This coefficient shows the correlation between the real energy
consumed over a given period of time as measured by a linear equation.

(n) Skewness: Is the measure of distortion or asymmetry in a typical dataset that is
normally distributed.

(o) Fractional order dynamic errors: These are features that shows distinction between
a profiled energy consumption data and a time series energy consumption data obtained

in real time.
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(p) Mismatch ratio: It is the difference between the energy consumed as measured at the
medium voltage to low voltage (MV/LV) secondary distribution transformer and the sum
of energy consumptions registered by the consumers’ electric meters including the
estimated energy losses due to technical losses (TL), divided by the rated output power
released from the primary distribution substation.

(q) Kurtosis: Is a measure of the number of outliers available in a normal-distribution data.

(r) Fourier coefficients: It is the difference between the calculated Fourier coefficients
from the consumption curve that currently is to be classified and the Fourier coefficients
derived from the consumption curves of the previous years.

(s) Decrease in consumption as compared to a previous period: This is the reduction
in energy consumption when compared with the energy consumption of an earlier period
of the same length of time.

(t) Slope of consumption curve: This is the slope of the line of best fit of time-series
active energy consumption curve derived from the linear equation of the line.

(u) Coefficients of Discrete Cosine Transform: These coefficients are the first or initial
coefficients (i.e., k coefficients) of discrete cosine transform.

(v) Coefficients of polynomial fit: It is the difference between the coefficients of the
polynomial that fits best the consumption curve to be classified and the coefficients of
the polynomial that fits best the consumption curve of the previous years.

(w) Demand billed: This is the active power demanded to be consumed and billed. It is

measured in kilowatt (kW).

< Performance metrics

Performance metrics are evaluation metrics used for the assessment of ETD or NTLD
models to determine their prediction efficacies and efficiencies (Messinis & Hatziargyriou,
2018:252; Poudel & Dhungana, 2022:115). These metrics are used to rate or compare the
performances of various ETD models (Messinis & Hatziargyriou, 2018:252, 259). The
evaluation metrics validate how well NTLD models have been able to execute the given
prediction tasks. All the available performance evaluation metrics encountered in the

reviewed ETD or NTLD literature have been discussed in this section.

To calculate the performance metrics of NTLD models, the conventional table known as
confusion matrix is first calculated (Messinis & Hatziargyriou, 2018:259). Since ETD is a
binary classification problem (Chen et al., 2022:5), the traditional 2x2 confusion matrix,
which is the classification summary for binary classification models, are being produced

through NTLD models to evaluate the potency of their detection capacities (Farid et al.,
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2023:84; Xia et al., 2023:6). Prediction results from confusion matrix are regarded as “True
(T)” when they are rightly classified, and “False (F)” when they are wrongly classified (Saeed
et al., 2020:6; Poudel & Dhungana, 2022:115).

The basic 2x2 confusion matrix which contains the summary of the classification results or
performance breakdown of ETD or NTLD models is shown in Table 2.1 (S. Zhu et al.,

2024:15487).

Table 2.1: Confusion matrix

Predicted class
Actual class Positive (1) Negative (0)
Positive (1) True positive (TP) False negative (FN)
Negative (0) False positive (FP) True negative (TN)

As could be seen in the confusion matrix presented in Table 2.1, true positive is represented
as TP, true negative as TN, false positive as FP, and the false negative is represented as
FN (Huang et al., 2024:11; Mehdary et al., 2024:19).

TP refers to the fraudulent electricity consumers who have been correctly predicted as
dishonest, TN indicates honest consumers that have been correctly predicted as non-
fraudulent, FP relates to honest consumers who have been wrongly predicted fraudulent,
while FN denotes dishonest consumers that have been incorrectly predicted honest
(Gunduz & Das, 2024:13; Mehdary et al., 2024:18). In the Table 2.1, honest and fraudulent
electricity customers are regarded as ‘negative’ and ‘positive’ customers, which are also be
depicted with “0” and “1” labels respectively (Glauner, 2019:48; Munawar, Javaid, et al.,
2022:12). Predicted class represents the honest and fraudulent customers being classified
by ML models, while actual class represents the customers’ labels given to them by the
utility technicians after confirming their NTL statuses during onsite inspections (Lu et al.,
2019:5; Khattak et al., 2022:5). FPs are undesirable since they spur unnecessary onsite
inspections and contribute to high operational costs to the electric utilities (Messinis &
Hatziargyriou, 2018:259, 264; Saeed et al., 2020:6; Aldegheishem et al., 2021:25051;
Pamir, Javaid, Qasim, et al., 2022:56866, 56870).

The imbalanced nature of electricity consumption dataset with unequal distribution of labels
or classes is characteristic of real-world datasets obtained from electric utilities (Ghori et al.,
2020:16034, 16036). This is owing to the fact that electric utilities have more honest

customers on their grids than fraudulent customers (Guarda et al., 2023:21). In the class
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distribution of real datasets, it is natural to discover that honest customers who do not steal
electricity are far more than the few unscrupulous customers who steal electricity from the
grid. For this reason, most real datasets are found naturally to be imbalanced and biased
since they convey more representations of the honest customers. Hence, all real-world
datasets that are used to train and validate NTLD models are naturally imbalanced in terms
of labels or classes, except if the minority classes in the dataset have been synthetically
resampled and balanced during data preprocessing using various class-balancing
techniques. Imbalanced datasets negatively affect the consistency of ETD or NTLD models
(Khattak et al., 2022:1, 18), and hence affect their performance results. For synthesized,
simulated, or fabricated datasets, the class of those customers who steal electricity and
those customers who do not steal electricity contain equal distributions (Ghori et al.,
2020:16034, 16036, 16040).

Accuracy is the most popular performance metric used in evaluating ML classifier models
(Ghori et al., 2023:15336). Accuracy indicates the number of the correctly predicted
samples out of all the available validation or test-set samples (Khan et al., 2020:15; Mehdary
et al., 2024:19). Equation 2.3 (Gunduz & Das, 2024:14; Huang et al., 2024:11) shows the

mathematical expression of the accuracy metric.

TP+TN

Accuracy = ——
Y = IP+TN+FPFN

(2.3)

TP, TN, FP, and FN in Equation 2.3 indicate the proportions of true positive, true negative,
false positive, and false negative respectively as predicted by the classifier model. Normally,
increased accuracy shows that the NTLD model or system where the accuracy result is
obtained classifies or predicts the negative and positive samples satisfactorily. However,
higher accuracy performance may be unreliable or misleading if the datasets used in
developing the NTLD model is imbalanced causing overfitting of the majority class (Ghori
et al., 2023:15336). Imbalanced dataset means that the samples of those consumers who
did not steal electricity (negative samples or negative class) are overly more than those
consumers who steal electricity (positive samples or positive class) (Messinis &
Hatziargyriou, 2018:259; Ghori et al., 2020:16034). Besides the misleading tendency of the
accuracy metric as mentioned, accuracy may also be high with high FPs as shown in the
table presented in Poudel and Dhungana (2022:116).

Precision and recall are computed using Equations 2.4 and 2.5 (Huang et al., 2024:12;

Itikhar et al., 2024:10). Precision, assertiveness, confidence or positive predictive value
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(PPV) refers to the proportion of the correctly predicted number of consumers who cause
NTL (positive samples or positive class) out of the total predicted consumers causing NTL
(Messinis & Hatziargyriou, 2018:259; Saeed et al., 2020:6; Lepolesa et al., 2022:39647;
Ghori et al., 2023:15336; Mehdary et al., 2024:19), giving a perception into the actual
number of predicted electricity thieves in a given dataset (Ghori et al., 2020:16041) as
predicted by the NTLD system. The recall metric refers to the success achieved in detecting
NTL (Messinis & Hatziargyriou, 2018:259). It is the proportion of the correctly predicted
positive samples (fraudulent or malignant customers) out of all the available positive
samples, giving an insight into the actual number of electricity thieves in a given dataset
(Ghori et al., 2020:16041; Khan et al., 2020:15; Khan et al., 2023:544; Mehdary et al.,
2024:19).

TP

Precision = (2.4)
TP+FP
Recall = —= (2.5)
TP+FN

Recall is also known as detection rate (DR), sensitivity, true positive rate (TPR) or hit rate
(Messinis & Hatziargyriou, 2018:259; Pamir, Javaid, Qasim, et al., 2022:56870). If precision
increases, it means that most of the correctly predicted positive samples or the actual
number of electricity thieves out of the total predicted positive samples by the NTLD model
have been classified correctly. Greater values of recall convey that the success attained
when predicting fraudulent customers or positive samples (out of all the available positive

samples) is high, implying that the NTLD system is performing commendably well.

Precision and recall are disproportional metrics, meaning that when one increases, the
other one decreases (Messinis & Hatziargyriou, 2018:259; Saeed et al., 2020:6). Therefore,
the balance between the two metrics could be found by combining them. Performance

metrics like arithmetic mean, F-measure or F1 score, and Fﬁ as expressed in Equations

2.6, 2.7, 2.8, and 2.9 combine the results of precision and recall (Ghori et al., 2023:15336-
15337; Gao et al., 2024:15; Gunduz & Das, 2024:14; Huang et al., 2024:12). F-measure or
F1 score is also referred to as F-score. Other evaluation metrics like average precision (AP),
mean average precision (MAP), and area under precision-recall curve (PR-AUC) are also
obtained by combining precision and recall scores, but they are specifically associated with
the precision-recall curve. AP, MAP, and PR-AUC are later discussed in the subsequent

paragraphs.
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Precision+Recall

Arithmetic mean = . (2.6)
__ 2X(Precision x Recall)
F —measure = (Precision+ Recall) (2.7)
2TP
F1score = —— (2.8)
2TP+FP+FN
Fy = (1+B?)x(Precision x Recall) (2.9)

B2%x(Precision+ Recall)

The arithmetic mean in Equation 2.6 represents the average of precision and recall scores.
F-measure or F1 score expressed in Equations 2.7 and 2.8 gives an insight on precision
and recall metrics by maximizing them, and is better suited for assessing imbalanced
datasets (Messinis & Hatziargyriou, 2018:259; Ghori et al., 2020:16041; Khan et al.,
2020:15; Saeed et al., 2020:6). High F1 score is an indication that the NTLD system detects
so many NTL or frauds in the power system (Messinis & Hatziargyriou, 2018:259; Saeed
et al., 2020:6). F-measure is an alternative term to F1 score, as either term stands for the
weighted average or the harmonic mean of both precision and recall, and gives reliable
performance evaluations with imbalanced datasets (Messinis & Hatziargyriou, 2018:259;
Khan et al., 2020:15; Bohani et al., 2021:5; Ghori et al., 2023:15337; Xia et al., 2023:6;
Mehdary et al., 2024:19). Hence, it should be noted that Equations 2.7 and 2.8 are equal,
as Equation 2.8 is derived from Equation 2.7 by substituting for the precision and recall of
Equations 2.4 and 2.5 into Equation 2.7 (Ghori et al., 2020:16041; Saeed et al., 2020:7).

Another form of F1 score, F-measure or F-score metric is denoted as Fﬁ in Equation 2.9
(Ghori et al., 2023:15336; Gao et al., 2024:15). In the Equation 2.9, £ is a coefficient that is
used to adjust the weight or priority of precision with respect to recall. When f = 1, it means
that both precision and recall have equal relative importance or equal priority, but if 8 > 1,
it means that recall is given more priority than precision, while if § < 1, precision is given
more priority than recall. However, the coefficient value f = 1 is mostly used when dealing
with imbalanced datasets (Ghori et al., 2023:15336). The arithmetic mean in Equation 2.6
is rarely used as it gives no insight into both precision and recall metrics; hence, the F-
measure or F1 score (harmonic mean) in either Equation 2.7 or Equation 2.8 is preferred
(Ghori et al., 2023:15336-15337). It should be noted that Equations 2.7 and 2.9 will be

similar if the value of f§ in Equation 2.9 is equal to 1 (i.e., f§ = 1) (Messinis & Hatziargyriou,
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2018:259), conveying that precision and recall are given equal priority (Ghori et al.,
2023:15336). At § = 1, the Fp in Equation 2.9 will be written as F;, which is where the term

F1 score was derived.

Precision-recall curve is a graph of precision against recall at various classification
thresholds, showing the trade-off between the two metrics at varying thresholds (Calvo et
al., 2020:7). The performance metrics which are based on the precision-recall curve and
used for evaluating ETD models are average precision (AP), mean average precision
(MAP), and area under the precision-recall curve (PR-AUC) (Xia et al., 2023:6; Khan et al.,
2024:12). Equation 2.10 expresses the average precision (AP) metric, where R,, in the
equation represents the recall score at the current or nth threshold, R,_; illustrates the
recall score at the previous threshold, the weight (R, — R,,_1) represents the increase in
recall between the current and the previous threshold, while P,, depicts the precision score
at the nth threshold (Calvo et al., 2020:7-8; Salman Saeed et al., 2020:12). AP is computed
from the precision-recall curve as the average of the precision score at each recall level for
every threshold (Calvo et al., 2020:7).

AP = X (Ry — Ry 1P, (2.10)

MAP is a way of summarizing the whole precision-recall curve into a single value which
represents the average or mean of all the precision scores available at different recall levels
within the curve when a particular threshold is being considered (Liao, Bak-Jensen, et al.,
2024). MAP@N (MAP attop N labels) can be calculated using the mathematical expression
in Equation 2.11; but before that, the variable P@k; (precision at location k;) in Equation
2.11 is calculated first by applying Equation 2.12 (Bai et al., 2023:14; Q. Zhang et al.,
2023:4; Liao, Zhu, et al., 2024:5080). k; is the position or location of the fraudulent or
positive individual ith sample among the fraudulent samples where ET is taking place,
where (i = 1, ...,7); while r is the number indicating how many electricity thieves are among
the top N users (top N samples) who are being mostly suspected of stealing electricity
(Zheng et al., 2018:1612; Bai et al., 2023:14; Xia et al., 2023:6; Liao, Bak-Jensen, et al.,
2024). MAP@N is the mean of all the retrieved P@Fk; instances in the precision-recall curve
fromk =1tok =N (Zheng et al., 2018:1612; Liao, Bak-Jensen, et al., 2024; Liao, Zhu,
et al., 2024:5080). Bai et al. (2023:14) used MAP@ALL to represent MAP for all the given

samples.
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MAP@N = %@" (2.11)

Yik:
P@k; = k—‘ (2.12)

Before calculating the MAP metric, the samples or electricity users in the test set are sorted
first in accordance with their prediction scores (Zheng et al., 2018:1611). After that, top N
samples are selected to determine the performance of the model. Test set is the collection
of data used in confirming the efficacy of the model after it must have initially been trained

using the train sets. Yy, refers to the number of electricity thieves with the greatest suspicion

who have been predicted correctly among the k; users (Xia et al., 2023:6). The MAP is a
location- or position-sensitive evaluation metric, and its values go higher if the fraudulent
electricity consumers are ranked higher than the honest consumers (Bai et al., 2023:14).
The position-sensitive MAP metric indicate the ability of ETD models to rank fraudulent
samples higher than non-fraudulent samples (Bai et al., 2023:14; Liao, Bak-Jensen, et al.,
2024).

PR-AUC is the area under the precision-recall curve of a binary classifier. The PR-AUC
metric is appropriate for evaluating ML models developed with imbalanced datasets (Khan
et al., 2020:15; Gao et al., 2024:16). Increased values of PR-AUC imply that both precision
and recall simultaneously achieve high values, indicating a better trade-off between the
precision and recall metrics (Gao et al., 2024:16). Such models with higher PR-AUC values
have better predictive powers with lower prediction errors (Kulkarni et al., 2021:534). The
equivalent mathematical equation for the calculation of PR-AUC is expressed in Equation
2.13 (Gao et al., 2024:16), where m in the equation represents the number of thresholds

within the precision-recall curve, Recall; and Precision; are the precision and recall

values at mth threshold, while Recall;_, is the recall value of the previous threshold.

PR — AUC = Y% ;(Recall; — Recall;_,) X Precision; (2.13)

Some other performance metrics (Saeed et al., 2020:7; Elreedy et al., 2024:4917; Khalid et
al., 2024:11; X. Wang et al., 2024:2186) used in the literature for the evaluation of NTLD

models are:

TP
TP+FN

TPR =

(2.14)
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FP

FPR = (2.15)
FP+TN

TNR = —~ (2.16)
TN+FP

FNR = =2 2.17)
FN+TP

NPy = 2 (2.18)
TN+FN

G — mean = VRecall X TNR (2.19)

Dominance = TPR — TNR (2.20)

Recognition rate =1 — 0.5 (iV—P + %) (2.21)

BDR = — P xDR (2.22)
P(I)XDR+P(—I)XFPR '

MCC = TPXTN—FPXFN (2.23)

J(TP+FP)(TP+FN)(TN+FP)(TN+FN)

It should be noted that TPR of Equation 2.14 and the recall or sensitivity of Equation 2.5 are
same (Iftikhar et al., 2024:10). FPR in Equation 2.15 is the false positive rate. FPR is the
number of honest customers (negative samples) that have been wrongly classified or
predicted as fraudulent (positive samples) divided by the total number of honest customers
(negative samples), or FPR is the ratio of false positives to that of total instance of actual
negative samples (i.e., the proportion of incorrectly predicted negative samples) (Ghori et
al., 2023:15336; Khan et al., 2023:544). TNR in Equation 2.16 is true negative rate, while
FNR in Equation 2.17 is false negative rate. TNR or specificity is the proportion of honest
consumers (negative samples) who have been correctly identified as honest or benign out
of all the available negative samples, while FNR is the proportion of fraudulent consumers
(positive samples) who have been wrongly classified as honest consumers (negative
samples) out of all the available positive samples (Ghori et al., 2023:15336). TPR can also
be determined from (TPR = 1 — FNR), while TNR can as well be calculated from (TNR =1
- FPR).
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Precision, recall or TPR, accuracy, FPR, TNR, FNR and F1 score are common metrics
calculated from the confusion matrix and are often used to evaluate NTL classification
models (Messinis & Hatziargyriou, 2018:259; Saeed et al., 2020:6). The negative predictive
value (NPV) in Equation 2.18 is the proportion of the correctly predicted negative samples
out of all the samples predicted as negatives (Ghori et al., 2023:15336). The geometric
mean (G-mean) in Equation 2.19 measures how good a classifier has performed for both
recall and TNR (Ghori et al., 2023:15337).

The dominance metric in Equation 2.20, which was first proposed by Garcia et al. (2008),
measures the influence or dominance between the positive and negative classes. The
values of dominance ranges between -1 and +1 (Ghori et al., 2023:15337). Dominance
value equals to 1 denotes that the minority class is perfectly predicted, but the majority-
class cases are being missed; and vice versa for when dominance value equals to -1. A
good prediction accuracy for the positive class is indicated if the dominance value is close
to 1, while a good prediction accuracy of the negative class is depicted if the dominance
value is close to -1 (Ghori et al., 2023:15337). Recognition rate in Equation 2.21 is also
referred to as accuracy rate and measures the percentage of correct predictions in a dataset
under consideration (Ramos et al., 2018:682). Recognition rate depicts how well an NTLD
system is able to correctly predict the target positive or negative samples in a given dataset.
P in the equation refers to the number of the entire real positive samples in a given dataset
which is equivalent to (TP+FN), while N in the same equation denotes the overall number
of real negative samples in a given dataset which is equal to (TN+FP) (Messinis &
Hatziargyriou, 2018:259).

Bayesian detection rate (BDR) is the probability of ET taking place under ETD or NTLD
conditions, or BDR is the proportion of NTL detected by NTLD models or intrusions/network
attacks in intrusion detection systems (Gu et al., 2022:4571). BDR is not a commonly used
metric in NTLD literature (Messinis & Hatziargyriou, 2018:259; Saeed et al., 2020:6). For
the BDR metric in Equation 2.22, P(I) is the probability that a consumer commits electricity
theft or the probability of intrusion occurrence; P(—I) is the complement of P(I) meaning
probability of no electricity theft and is equivalent to (1 — P(I)), but the value of P(I) should
be high, while a very low FPR is also required to achieve an acceptable high BDR value, in
order to reduce false alarms (Jokar et al., 2016:221; Gu et al., 2022:4571).

The Matthews correlation coefficient (MCC) metric as shown in Equation 2.23 (Appiah et

al., 2023:4; X. Wang et al., 2024:2186) is the most reliable evaluation metric for evaluating
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models constructed with imbalanced datasets (Kulkarni et al., 2021:534). MCC gives a high
score only on a condition that all the four values of TP, TN, FP and FN in a confusion matrix
produce good prediction results (Khan et al., 2020:15; Aldegheishem et al., 2021:25051;
Kulkarni et al., 2021:534). The prediction scores of MCC is in the range of -1 to 1, with 1
indicating an incorrect prediction, 0 showing no prediction, close to 1 values showing good
prediction, while 1 shows perfect prediction (Khalid et al., 2024:11; X. Wang et al.,
2024:2186).

Cohen’s kappa coefficient or simply “kappa” as expressed in Equation 2.24 is a metric used
for the assessment of the extent of alignment between the expected and observed
accuracies, in a bid to determine the strength of classification models (Hussain et al.,
2022:1268). The symbol p, in Equation 2.24 represents the observed accuracy, observed
agreement, or the general accuracy of the model; while p, depicts the expected accuracy,
expected agreement, likelihood of accurate prediction, chance agreement, random chance,
or random accuracy of the model (Ghaedi et al., 2022:68). The equivalents of p, and p,
based on the conventional 2x2 confusion matrix for a binary classifier are respectively
shown in Equations 2.25 and 2.26 (Chicco et al., 2021:78371; Ghaedi et al., 2022:69). The
Cohen’s kappa coefficient metric is based on the customary 2x2 confusion matrix and is

usually employed for evaluating two-class or binary classifiers (Chicco et al., 2021:78371).

kappa = pl"_—_pp: (2.24)
TP+TN
Po = TpiTN+FP+FN (2.25)

( TP+FP x TP+FN ) ( TN+FP x TN+FN )

2.26
TP+TN+FP+FN TP+TN+FP+FN TP+TN+FP+FN TP+TN+FP+FN ( )

Pe =

The observed accuracy (p,) in Equation 2.25 is the proportion of correct predictions (TP +

TN) divided by the outright number of samples (TP + TN + FP + FN), which is equal to the
accuracy metric expressed in Equation 2.3. Equation 2.26 can be explained by considering
that the columns of the confusion matrix of a binary classifier represent the predicted class
while the rows represent the actual class with fraudulent predictions first before the benign
predictions at the columns and rows of the confusion matrix like in Table 2.1, then the

expected accuracy (pe) as shown in Equation 2.26 is the sum of the fraudulent predictions

of the predicted class in the first column (TP + FP) divided by the total number of samples
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(TP + TN + FP + FN), multiplied by the fraudulent predictions of the actual class in the first
row (TP + FN) divided by the total number of samples (TP + TN + FP + FN); plus the benign
predictions of the actual class in the second row (TN + FP) divided by the total number of
samples (TP + TN + FP + FN), multiplied by the benign predictions of the predicted class in
the second column (TN + FN) divided by the total number of samples (TP + TN + FP + FN)
in the confusion matrix. Unlike the overall accuracy metric of Equation 2.3 which is biased
towards the majority class and hence gives misleading results with imbalanced datasets,
kappa gives reliable results with imbalanced datasets (Alkhresheh et al., 2022:808-809;
Saxena, 2023). By substituting for p, and p, from Equations 2.25 and 2.26 into Equation
2.24, Equation 2.27 is obtained (Chicco et al., 2021:78371; Gao et al., 2022).

kappa = 2X(TPXTN—FPXFN) 2.27)

"~ (TP+FP)X(FP+TN)+(TP+FN)X(FN+TN)

Like the MCC, the Cohen’s kappa coefficient ranges between -1 to 1, indicating the degree
of classification agreement or accuracy (Chicco et al., 2021:78371; Ghaedi et al., 2022:69).
The higher the value of the kappa coefficient, the better the predictive model, showing
greater accuracy or agreement and vice versa (Ghaedi et al., 2022:69). A kappa coefficient
value of -1 indicates that the classification is perfectly wrong, a coefficient value of 0
indicates no agreement, while a coefficient of 1 shows perfect agreement (Chicco et al.,
2021:78371).

Area under the curve (AUC) is another performance metric used for the evaluation of ETD
or NTLD models (Aslam, Javaid, et al., 2020:13; Khan et al.,, 2020:15; Asif et al.,
2022:27469). AUC is specifically the area under the receiver operating characteristic curve
(ROC) to determine the overall quality of models (Ali et al., 2023:13; Bai et al., 2023:14; Xia
et al., 2023:6; Liao, Bak-Jensen, et al., 2024). The ROC curve is the plot of TPR against
FPR over different classification thresholds (Ali et al., 2023:14; Xia et al., 2023:6; Iftikhar et
al., 2024:10; Liao, Bak-Jensen, et al., 2024). However, AUC can be computed using the
formula provided in Equation 2.28 (Huang et al., 2024:12; Liao, Bak-Jensen, et al., 2024;
Liao, Zhu, et al., 2024:5080). Equation 2.28 is based on the probability that a positive
sample chosen at random will rank higher than a negative sample that has also been
chosen in the same randomly manner (Zheng et al., 2018:1611; Liao, Bak-Jensen, et al.,
2024). The AUC metric indicate the ability of ETD models to rank fraudulent (positive)
samples higher than non-fraudulent (negative) samples (W. Liao et al., 2022:3521; Liao,
Bak-Jensen, et al., 2024).
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M(@(1+M)
YiePositiveClass Rank;—

AUC = 2 (2.28)

MXN

Where i € PositiveClass in Equation 2.28 depicts that the sample i being considered is a
positive sample and belongs to the positive class; Rank; represents the number of samples
from the n samples which the prediction value of sample i exceeds when n samples are
being arranged in ascending order, in accordance with the prediction scores of the positive
samples (Khan et al., 2020:15). However, M is the number of positive samples in the
positive class, while N is the number of negative samples in the positive class (Bai et al.,
2023:14; Khan et al., 2023:544).

The performance evaluation metrics which have so far been discussed are based on the
values in the categories of TP, TN, FP, and FN from confusion matrices. TP and TN are
correctly predicted, while FP or false alarm and FN are errors made by the NTLD system,
as a result of wrongly predicting the given input data samples (Messinis & Hatziargyriou,
2018:259; Saeed et al., 2020:6; Mehdary et al., 2024:19). The performance scores of ETD
or NTLD models normally range between 0 and 1, except for those mentioned otherwise.
The higher the values of the performance metrics obtained from ETD models, the more
reliable and efficient the NTLD models that produced them, except for FPR and FNR that
were discussed earlier, and logarithm loss (log loss), and regression loss functions (which
will be discussed in the subsequent paragraphs) are vice versa. The discussed regression
loss functions are mean squared error (MSE), root mean squared error (RMSE), absolute
error (AE), mean absolute error (MAE), absolute percentage error (APE), and mean
absolute percentage error (MAPE). The lower the values of FPR, FNR, log loss, and the
regression loss functions, the fewer the errors produced by the ETD or NTLD models that
produced such scores, and hence the better and more-efficient the models. Reduced FPR
scores result in lower onsite inspection costs (Messinis & Hatziargyriou, 2018:259, 264,
Aldegheishem et al., 2021:25051; Pamir, Javaid, Qasim, et al., 2022:56866, 56870; Xia et
al., 2023:10).

The logarithmic loss (log loss), loss function, or cross entropy performance metric is
expressed in Equation 2.29 (Wang et al., 2023:12; Liao, Zhu, et al., 2024:5080). The log

loss metric is also referred to as binary cross entropy because it is basically used for binary
classification problems (Liao, Zhu, et al., 2024:5080).

Log loss = —%Zf’zlyi X log(P(yl-)) + (1 —-y) X% log(l — P(yi)) (2.29)
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In Equation 2.29, y; represents the actual-class or ground-truth label of either O value for

honest customer i or a 1 value for fraudulent customer i, P(y;) is the probability or

likelihood that customer i committed ET (i.e., have a label value of 1) as predicted by the
model, while N is the total samples of electricity customers in a given dataset (Wang et al.,
2023:12; Liao, Zhu, et al., 2024:5080). The log loss or loss function is a metric used to
evaluate the difference between the observed or predicted and the actual or expected
values, to determine the extent of classification wrongness or correctness (i.e., classification
error) (Coma-Puig, 2022:14; Khan et al., 2024:13). The log-loss values range between 0

and oo (Banga et al., 2022:9590). The greater the difference or deviation between the

observed and actual values, the greater the log-loss metric values (Coma-Puig, 2022:14;
Gao et al., 2022). The closer the log-loss values to 0, that is, the lower the values of log
loss, the higher the accuracy of the ETD or NTLD model, and hence the better the

performance of the model and vice versa (Banga et al., 2022:9590).

The following Equations 2.30 to 2.35 found in the literature are known as regression loss
functions, and are also used for the purpose of evaluating ETD or NTLD models (Bian et
al., 2021:47259; Ribeiro et al., 2021; Coma-Puig & Carmona, 2022:14-15; Irfan et al.,
2022:2154; Velasco Rodriguez, 2022:26-27).

MSE = =31, (y; — 91)? (2.30)
RMSE = \/%Z?:l(yi — §1)? (2.31)
AE = |y; — 3 (2.32)
MAE = =% |y; — | (2:33)
APE = |%| x 100 (2.34)
MAPE =31, |yyi| x 100 (2.35)

Regression loss functions are commonly used for evaluating regression models. The mean

squared error (MSE), root mean squared error (RMSE), absolute error (AE), mean absolute
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error (MAE), absolute percentage error (APE), and mean absolute percentage error (MAPE)
expressed in Equations 2.30, 2.31, 2.32, 2.33, 2.34, and 2.35 respectively, are used for
evaluating ETD or NTLD models to determine classification errors (Badawi et al., 2022:10).
In the equations, y; represents the expected or actual value of energy consumption (using
train data), y; is the predicted value of energy consumption (using validation or test data), i
is the identification number for the particular electricity consumption sample being
considered, while n is the number of the total energy consumption samples (Bian et al.,
2021:47259-47260; Ribeiro et al., 2021; Irfan et al., 2022:154). If the calculated errors using
the regression loss functions go beyond certain set thresholds, then ET or NTL is suspected
(Ford et al., 2014; Tehrani et al., 2022:2). Generally, the lower the metric values of the
regression loss functions, the more reliable the models that produced them, indicating better

model performances (Kawoosa et al., 2023:4807).

Another performance metric called coefficient of determination, which is otherwise referred
to as R-squared and denoted as R? (Ribeiro et al., 2021; Farhan & Nafi, 2022; Velasco
Rodriguez, 2022:26) is expressed in Equation 2.36. The R-squared metric describes how

the variation of a variable affects the variation of another variable (Ribeiro et al., 2021).

n 502
R = 1 sy 230
The variable y; in Equation 2.36 represents each actual value or feature, y; represents each
predicted value through the regression line of best fit or through the dependent variable,
while y represents the average or mean of all the actual or original values (Ribeiro et al.,
2021; Farhan & Nafi, 2022). In a regression model, the coefficient of determination (R?)
refers to how well the predictor or independent variables of the model can predict the
outcome or dependent variable (Ribeiro et al., 2021; Farhan & Nafi, 2022; Velasco
Rodriguez, 2022:26). In the fractional part of Equation 2.36, the numerator is the sum of the
squared errors between each feature and the regression line of best fit, while the
denominator represents the sum of the squared errors between every feature or actual
value and the mean of all the features. The regression line of best fit is drawn based on the

values of the dependent and independent variables. The values of R? range between 0 and

1 (Farhan & Nafi, 2022). The higher the value of R?, the more reliable the regression model
is, and hence the better the explainability of the outcome variable by the predictor variables,
showing the strength of the association between the dependent and the independent
variables (Ribeiro et al., 2021; Farhan & Nafi, 2022).
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Finally, the remaining performance metrics mentioned in the literature are support,
classification time, training time, energy balance mismatch, cost of an undetected attack,
inspection cost or normalized labour cost, average bill increase, anomaly coverage index,
minimum detected variation, decrease in stolen electricity, and the RTU cost metrics. These
performance metrics (Messinis & Hatziargyriou, 2018:253; Saeed et al., 2020:7) are

described below:

(a) Support: In arule-based system, support is illustrated as the sample counts upon which
a rule has been applied when compared with the total number of representative data
samples. It is the number of instances that are currently being considered out of the
total available instances.

(b) Classification time: Is the time it takes an NTLD model to categorize or classify the
given input data samples.

(c) Training time: It is the time taken to groom an NTL model before it is able to learn.

(d) Energy balance mismatch: Energy balance mismatch is the difference between the
supplied by the energy distribution companies and the energy consumed by electricity
customers.

(e) Cost associated with undetected attack: It is the cost connected with the impact of
the worst-possible attack on the utility infrastructure.

(f) Inspection cost or normalized labour cost: It is the amount incurred during the
inspection of electricity consumers that have been classified or predicted as fraudulent
by the NTLD system.

(g9) Average bill increase: Average bill increase is referred to as the general increase in
the electricity bill of every customer due to the revenue deficits incurred by the electric
utilities owing to ET.

(h) Anomaly coverage index: It is the ratio of the electricity thieves detected by RTUs to
the total number of consumers stealing electricity.

(i) Minimum detected variation: Is the least possible deviation detected from a specific
load profile.

(i) Decrease in stolen electricity: It is the drop in the electricity siphoned from the grid
after the application of a particular NTLD model.

(k) RTU cost: This is the amount spent or incurred on acquiring and installing RTUs.

All the performance metrics mentioned should not be confused with ‘response time’, which
is not an evaluation metric, but the time it takes an NTLD system to determine if an electricity
customer commits theft. Response time is the time taken by the utilities to obtain the input

data, which serves as input to NTLD models during ML simulations, and not the time taken
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for NTL algorithms to produce prediction results based on the input data (Messinis &
Hatziargyriou, 2018:252, 254-257, 264-265).

2.5.3.2 Classification of non-hardware solutions

Non-hardware NTLD solutions make use of algorithms in detecting NTL. Algorithms are
procedures or step-by-step methods used for NTLD in the power system (Messinis &
Hatziargyriou, 2018:252, 259). NTLD algorithms form the core of the methods used for non-
hardware NTLDs. Different algorithms that make up NTL models use grid data in different
ways to detect NTL in the power system. To further analyse the non-hardware-based
solution approach, the method is classified into three types namely: data oriented, network
oriented, and the hybrid methods (Messinis & Hatziargyriou, 2018:251-252, 259; Saeed et
al., 2020:8-9; Guarda et al., 2023:4-5) as shown in Figure 2.21.

<+ Data-oriented methods

Data-oriented, data-based, or data-driven methods for NTLD are basically the application
of ML methods and data analytics (Messinis & Hatziargyriou, 2018:259; Saeed et al.,
2020:9; Nayak & Jaidhar, 2023:2) on electricity consumption profiles or readings and
sometimes additional data (Viegas et al., 2017:1263; Ghori et al., 2020:16035, 16037), to
detect ET and eventually shortlist ET suspects for manual onsite inspections (Glauner et
al., 2017:761; Messinis & Hatziargyriou, 2018:259). The advent of SG has greatly enhanced
the application of data-oriented methods for ETD, owing to the huge amounts of data
produced through the AMI of the intelligent grid, by employing Al-based machine learning
(ML) and deep learning (DL) techniques (Gu et al., 2022:4568; Liao, Zhu, et al., 2024:5075;
S. Zhu et al., 2024:15477). Data-based NTL solutions are more comprehensive, resilient,
and efficient (Bai et al., 2023:2).

Some examples of additional data are temperature, environmental or geographical data,
and customer information like type of house, contract type, etc., which are at times
combined with the consumption data to improve NTL predictions (Viegas et al., 2017:1263;
Ghori et al., 2020:16035, 16037). Some seventy-one different types of features that include
consumption and additional data with their priorities and importance as determined based
on F-measure are mentioned and listed in Ghori et al. (2020:16041-16041, 16045), while a
couple of some other features are also mentioned in Poudel and Dhungana (2022:112) and
Guarda et al. (2023:19). However, majority of data-based NTL models only make use of the
energy consumption data or load data as the input data in NTL models for ETDs (Viegas et

al., 2017:1263). Also, most data-oriented methods employ supervised-learning methods
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owing to their superior performances in terms of ETD or NTLD (Messinis & Hatziargyriou,
2018:262; Saeed et al., 2020:16; Fei et al., 2022:1, 7; Guarda et al., 2023:21; Liao, Zhu, et
al., 2024:5075).

Al-based methods for the detection of ET is commonly referred to as the classification of
the load data/profile or consumption profile of electricity consumers by training NTL models
with the annotated data of benign or honest and malignant or fraudulent customers obtained
during onsite inspections, to determine irregular consumption patterns in the load profile
(Fragkioudaki et al., 2016:51). The consumption profile contains the consumption records
or meter readings of the electricity customers taken hourly, daily, or monthly (Ghori et al.,
2020:16035). Data-oriented methods particularly employs the use of consumer level time-
series data and consumer level static data for NTLD as shown in Figure 2.22 (Messinis &
Hatziargyriou, 2018:253, 258). These data are usually smart metering data of large
volumes and less variety, with either medium or low resolutions for making generalized
predictions (Messinis & Hatziargyriou, 2018:264). With data-oriented methods, existing
infrastructure of utilities is made use of, as data-driven techniques do not require the
purchase of additional equipment for the periodic gathering of voluminous data and/or
labelling of the data (Messinis & Hatziargyriou, 2018:264; Osypova, 2020:45).

The various types of data-driven algorithms used for the detection of NTL by employing
customers’ consumption profiles fall under supervised learning, unsupervised learning,
hybrid learning and semi-supervised learning (Ghori et al., 2020:16035), using Al-based ML
methods (Bai et al., 2023:2). These learnings under the data-oriented method are premised
on Al methods (Messinis & Hatziargyriou, 2018:259-260). The use of customers’ electricity
consumption data and applying the Al-based ML approach is the state-of-the-art and the
most-effective approach in ETD (Glauner et al., 2017:761; Glauner, 2019:31, 110; Ghori et
al., 2020:16033-16034; Saeed et al., 2020:1; Guarda et al., 2023:4; Stracqualursi et al.,
2023:12, 16; Coma-Puig et al., 2024:2704). The common ML procedures used for
supervised and unsupervised learnings (Messinis & Hatziargyriou, 2018:259) while
deploying the consumption data of electricity customers are depicted in the flowchart shown
in Figure 2.23.
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Figure 2.23: Procedures for supervised and unsupervised learnings

(Messinis & Hatziargyriou, 2018:260)

For the supervised and unsupervised learning procedures shown in Figure 2.23, the raw
data is first processed, and a model for data analytics and prediction is selected. The data
is processed by cleaning it and extracting the features in it. The selected model is then used
for NTL prediction. During the modelling, supervised learning is used if the data is labelled,
while unsupervised learning or method is used if the data is unlabelled. The quality and
variety of the data employed would determine the type of algorithms or models to be used
to analyse the data. For supervised methods, the input dataset is divided into training and
test sets. Training sets from input data are used to tutor the model, so that the model could
be able to infer meaningful patterns from the data. To verify the operation of the model and
its performance, a new set of data (test set) from the samples in the dataset are used, and
a suspect list is generated for customers who have the probability or propensity of engaging
in ET (Messinis & Hatziargyriou, 2018:259).
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Supervised learning

Supervised learning is the most common and one of the widely used types of ML owing to
its impressive performance (LeCun et al., 2015:436; El Bouchefry & de Souza, 2020:227;
Muhammad et al., 2020:2; Hanif et al., 2021:14). Supervised learning methods for ETD or
NTLD make use of positive and negative labels from the consumption profiles of consumers
to train ML classifiers, such that different patterns are learnt from given historical datasets
of energy consumptions (Saeed et al., 2020:9; Guarda et al., 2023:5, 21; Liao, Zhu, et al.,
2024:5075). The samples that are labelled as positives are the energy consumptions of
those malignant customers who steal electricity, while the negative samples represent the
benign customers who do not steal electricity (Messinis & Hatziargyriou, 2018:251). In
supervised learning, the labels on the datasets are the correct answers or the expected
outcomes which are used for training ETD or NTLD models to accustom them to what is
already being anticipated from them, and to determine the efficiency of the models in
predicting ET after testing with new or test data samples (Osypova, 2020:41; Saeed et al.,
2020:9).

The main demerits connected to supervised learning is the imbalanced nature of real-world
datasets and the issue of data labelling or annotation which limits its usage if the expected
labels are not available (Saeed et al., 2020:9; Liao, Bak-Jensen, et al., 2024). Examples of
supervised learning methods are support vector machine (SVM), optimum path forest OPF),
decision tree (DT), Bayesian classifiers, artificial neural network (ANN), k-nearest
neighbours (KNN), rule induction methods, and generalized additive model (GAM)
(Messinis & Hatziargyriou, 2018:260-261; Saeed et al., 2020::9-11; Guarda et al., 2023:5-
11).

Support vector machine

SVM models have been frequently used as binary classifiers in NTLD problems owing to
their resilience and immunity to imbalance datasets (Messinis & Hatziargyriou, 2018:260;
Saeed et al., 2020:9; Guarda et al., 2023:6). SVM models use hyperplane in a high
multidimensional space to maximally classify classes by drawing a wide boundary between
support vectors (Pamir, Javaid, Qasim, et al., 2022:56871). SVM models have been
deemed to be trusted in detecting NTL in a lot of literature, but may as well be time
consuming and difficult to tune (Messinis & Hatziargyriou, 2018:260). SVM methodologies
like one-class SVM (OC-SVM) and cost-sensitive SVM (CS-SVM) have been used in
various SVM implementations. OC-SVM model is used for anomaly or outlier detections in

an unsupervised manner because sample dataset used for its implementation is single-
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class (usually negative class or honest customers who do not steal electricity) labelled
dataset (Messinis & Hatziargyriou, 2018:260; Saeed et al., 2020:9).

With CS-SVM, different weight values like high cost are added to classes owing to
misclassifications or classification errors of different types caused mainly by minority
classes to improve performance (Messinis & Hatziargyriou, 2018:260; Guarda et al.,
2023:6). An example of this is the assignment of high cost to the misclassifications of
minority classes in datasets to yield higher performances (Messinis & Hatziargyriou,
2018:260). Other types of SVM are linear kernel SVM (LK-SVM) and radial basis function
kernel SVM (RBFK-SVM) (Messinis & Hatziargyriou, 2018:260; Saeed et al., 2020:10;
Guarda et al., 2023:6). Between LK-SVM and RBFK-SVM, RBFK-SVM is more commonly
used (Messinis & Hatziargyriou, 2018:260). Cost and gamma parameters are tuned for
RBFK-SVM, while only cost parameter is tuned for LK-SVM. SVM could be combined with
fuzzy interference system (FIS), DT, neural networks and other models to improve its
performance (Messinis & Hatziargyriou, 2018:260; Saeed et al., 2020:10; Guarda et al.,
2023:6).

Nagi et al. (2010) develops SVM model for ETD. Energy consumption data of customers
and additional data are used to identify the irregular patterns in the electricity consumptions
of the customers. These irregular patterns are highly correlated with NTL in the power grids.
The energy consumption data employed was taken from three cities in Malaysia. The
historical energy consumption profile of 265, 870 customers taken over 25 months were
considered for the NTL simulations. The SVM model classifies the consumption data by
separating the normal customers and the fraudulent customers. The model uses binary
classification to try to determine sudden changes in the energy consumption data by using
data mining and statistical analysis. Classification is done by finding the optimal decision
function f(x) using the SVM classifier model in Equation 2.37. Equation 2.37 classifies test
data into two classes and minimizes classification error as much as possible. The term g (x)
is the decision boundary or hyperplane between the two classes of normal and fraudulent
customers. The term f(x) minimizes classification error and improve model generalization
by following the principle of structural risk minimization (SRM), as expressed in Equation
2.38 (Nagi et al., 2010:1163; Jiang et al., 2014:110; Ghori et al., 2023:15335).

f(x) = sgn(g (x)) (2.37)
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- (2.38)

<ty (NG

In Equation 2.38, R is the expected error, classification-error expectation, or test-sample
prediction error, t illustrates the number of training errors or errors from the training
samples, n is the number of training samples, h is the dimension of the SVM set of
hyperplanes, while n is a confidence measure (Nagi et al.,, 2010:1163; Jiang et al.,
2014:110; Ghori et al., 2023:15335). The features used for the NTLD by Nagi et al. (2010)
are the energy consumption data of each customer which corresponds to 24-hour daily
average values of their energy consumptions, and the additional data known as the credit
worthiness rating (CWR) which is automatically produced by the utility billing system for
every customer who falter in paying their bills. The data were preprocessed and then later
used to train and validate the SVM model. The SVM model achieved a tremendous hit rate
increase from 3% to 60%. The SVM model The hit-rate increase of 57% was achieved when
compared with the previous hit rate accomplished by the Tenaga Nasional Berhad electric

distribution company in Peninsular Malaysia during onsite inspections.

The work of Nagi et al. (2010) reviewed above was extended and enhanced by Nagi et al.
(2011), as the previous hit rate of 60% was increased to 72% by the improved model. This
feat was achieved by introducing the IF-THEN rules form of FIS that involves the inclusion
of human expert knowledge into the former SVM model that achieved a hit rate of 60%. The
FIS produce an output that ranges from 0 and 1 for each customer. Those customers who

have 0.5 outputs or higher are deemed to have higher propensity of being fraudulent.

While Nagi et al. (2010) and Nagi et al. (2011) contribute valuable insights into NTLD using
SVMs and fuzzy logic, they have several limitations. The lack of comparative benchmarking,
inadequate evaluation metrics, scalability concerns, and failure to address cost-sensitive

learning reduce the practicality of their proposed methods.

Optimum path forest

OPF conquers the challenge that Al methods require high computational overhead while
training ETD models (Guarda et al., 2023:9). OPF algorithm is an algorithm that is based
on graphs, and may be used for clustering or classification, but it is commonly used for
classification (Messinis & Hatziargyriou, 2018:260; Saeed et al.,, 2020:10; Poudel &
Dhungana, 2022:113). Unlike SVM and other models that uses hyperplane to distinguish
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two classes, the OPF algorithm does not separate two classes by finding an optimal
hyperplane, but each annotated sample in a training set is regarded as a graph node that

has its coordinates as its feature values (Messinis & Hatziargyriou, 2018:260).

The target of OPF is such that the graph is partitioned into two or more optimal-path trees,
whereby each tree represents a class (Messinis & Hatziargyriou, 2018:260; Saeed et al.,
2020:10). Each tree is attached to its prototype where it is rooted (Messinis & Hatziargyriou,
2018:260). Prototype is the root of the optimum-path trees, whereby the classification of
each node is dependent on the node-prototype connection strength, resulting in optimal
feature-space partitioning (Messinis & Hatziargyriou, 2018:260; Saeed et al., 2020:10;
Guarda et al., 2023:9). The grouping of these trees which are connected to their various
prototypes is referred to as the OPF classifier (Messinis & Hatziargyriou, 2018:260; Saeed
et al., 2020:10).

Classification with OPF is interpreted as the combination of the computations of optimal-
path trees or nodes based on prototypes (Guarda et al., 2023:9). During model validation,
new samples being tested are assigned the labels of the prototype where they are
eventually rooted, in accordance with a cost function (Messinis & Hatziargyriou, 2018:260;
Saeed et al., 2020:10). OPF classifies are parameter-free and take a lower time in its
training phase to train the model with train samples even with overlapped classes; hence it
is well appropriate for online training of ETD system (Messinis & Hatziargyriou, 2018:260;
Saeed et al., 2020:10; Guarda et al., 2023:9). OPF algorithm employs path-cost function to

optimally group samples with similar characteristics (Guarda et al., 2023:9).

The authors in Ramos et al. (2011) were interested in the regions that exist between classes
(overlapped regions), and addressed the path-cost function (f;,,4,) for the region using
Equation 2.39.

0, ifseS

2.39
400, otherwise ( )

fmax((s)) = {
fmax (T0(s, t)) = max{fpq, (1), d(s, t)}
Considering the neighbouring samples in 7T when the path of 1 is not trivial, the function of

the path cost f,,.(m) in Equation 2.39 calculates the greatest distance between the

adjoining samples. Whereas d(s, t) represents the distance between s and t along path 7.

One optimum path P*(s) is assigned by the OPF algorithm from S to each sample s € Z1,
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to form an optimum path forest P. The optimum path forest P is a function with no cycles
which assigns a marker nil or its predecessor P(s) in P*(s) to every s € Z{\S when s € S.
It should be noted that the train, validation, and test sets are represented as Z,, Z,, and Z3.

Classification is done by evaluating the optimum cost function C(t) shown in Equation 2.40.

C(t) = min{max{C(s),d(s,t)}},Vs € Z; (2.40)

The authors in Ramos et al. (2011) introduce an innovative application of the OPF classifier
for NTLD. However, the lack of comparative benchmarking, insufficient feature analysis,
imbalanced data handling, and real-world scalability concerns limit the practical impact of
their findings.

iii. Decision tree

The OPF algorithm mentioned previously classifies in graph-like manner, while DT
algorithm classifies its set of rules in a flowchart-like or tree-like manner when predicting
new samples (Saeed et al., 2020:11; Guarda et al., 2023:9). The sets of rules of DT, which
are determined by the input-output attributes relationships in data, allow for better
understanding of NTL characteristics, where the algorithm split dataset into several tree-
like branches according to the rules of decision (Messinis & Hatziargyriou, 2018:261;
Guarda et al., 2023:9). The rules of DT algorithm has been combined with experts’ rules
and other classifiers to form ensemble methods (Messinis & Hatziargyriou, 2018:261). DT
is able to handle non-linearity in data better than linear models, but it is sensitive to the
problem of class imbalance in datasets (Messinis & Hatziargyriou, 2018:261; Saeed et al.,
2020:11; Guarda et al., 2023:9).

DT is used for classification and regression problems (Saeed et al., 2020:11). DT types like
C4.5, C5.0, CART, QUEST, EBT, ID3, and QUEST have been used in the literature to solve
NTL-related problems (Messinis & Hatziargyriou, 2018:261; Saeed et al., 2020:11; Guarda
et al., 2023:10). Divide-and-conquer methods are used to construct DT tree-based models
to uncover the optimal points where the tree splits (B. Gupta et al.,, 2017:15; Dinov,
2018:157).

Recently a DT type known as M5P has been used by Cody et al. (2015). The M5P algorithm

is a reconstruction of the M5 algorithm used in Quinlan (1992). M5P is a combination of DT

and linear regression where the regression algorithm predicts future variables based on the
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already learned variables from data. The M5P algorithm learns the pattern of consumptions
from the energy consumed by each consumer, and these learned patterns are then used to

predict future patterns of energy consumptions (Guarda et al., 2023:10).

Both Quinlan (1992) and Cody et al. (2015) contribute to DT-based learning, however,
Quinlan’s (1992) study lacks modern evaluation metrics and comparisons with other
regression models, while the work of Cody et al. (2015) did not explore alternative models,

imbalanced data handling, or real-world deployment challenges.

iv. Bayesian classifiers

Bayesian classifiers are used to detect ET, NTL or intrusions in a network (Gu et al.,
2022:4571). Classification using Naive Bayes classifiers are probabilistic and require the
knowledge of NTL probability which may have been previously acquired from huge national
statistical energy information repository, to predict events to come (Messinis &
Hatziargyriou, 2018:261; Saeed et al., 2020:11). The principle upon which this classifier
operates is such that, the different features of a class could be estimated using the non-
intrusive load monitoring (NILM) technique if the class of such sample is already known or
determined (Guarda et al., 2023:11).

With NILM, the probability of each of the appliances used per consumer in a building and
their respective probable energy consumptions learnt through the consumption pattern of
every load device used by the electricity consumer are predicted in a bid to determine NTL
(Saeed et al., 2020:11; Guarda et al., 2023:11). The NILM calculates the possibility of ET
using NTL probability from the previously acquired information when a new device or
sample is introduced (Messinis & Hatziargyriou, 2018:261; Saeed et al., 2020:11). Bayesian
probability (i.e., joint probability) is a probability which conveys some set of variables
graphically. The Bayesian probability is a kind of Bayesian classifier which is also known as

Bayesian network (Messinis & Hatziargyriou, 2018:261).

The authors in Massaferro et al. (2020) proposed a Bayesian risk framework to detect NTL,

in order to increase the income and profits of the Uruguayan electric utility, to restore its

economic stability. The framework which is about obtaining the optimal subset )?m, such

that )?m = {x;1, ..., X;;m}, is represented by Equation 2.41, while the cost-sensitive

classification loss of the framework is shown in Equation 2.42.
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Xm = arg maxg {Xpq ayuP Vi = 1xy) — Xkeq Cid (2.41)

L(x,q) = X P(y = k|x)ugy (2.42)

The framework to optimize the revenues of the Uruguayan electric utility as proposed by
Massaferro et al. (2020) is expressed in Equation 2.41; where m represents the number of
inspections that the utility needs to perform, while X,,, = X represents the random subset
of m samples of X. The term P(y; = 1|x;) in the equation represents the probability that
the given sample x; is causing NTL. The monetary amount which an ith electricity customer
could be siphoning from the utility owing to theft is represented by a;, while the amount it

costs the utility to inspect the ith customer is denoted by c;. The ug in Equation 2.42 is the

cost associated with the misclassification or misprediction of a member of class k as that of
class q. Experimental results have shown that the proposed NTLD method is proficient in

returning the economic status quo of the electric utility.

Massaferro et al. (2020) contribute to cost-aware fraud detection but have several
limitations. The study lacks generalizability, does not benchmark against other cost-
sensitive methods, and overlooks key issues like model adaptability and real-world

deployment challenges.

Artificial neural network

ANN or simply ‘neural network’ is a branch or a subcategory of ML which basically consists
of three layers called input, hidden, and output layers, for the recognition or classification of
patterns (Guarda et al., 2023:7). ANN can be used for forecasting energy consumptions in
time series, and also for binary classifications (Saeed et al., 2020:10; Guarda et al., 2023:7).
The difference or deviation between the forecasted or predicted energy consumptions and
the actual or measured values of energy consumptions can be used for detecting frauds or
NTL in the power grids (Messinis & Hatziargyriou, 2018:260; Saeed et al., 2020:10; Guarda
et al., 2023:7). Backpropagation (BP) trained Multilayer perceptron (MLP) which is jointly
termed BP-MLP is the most common type of ANN used as binary classifier for detecting
NTL in distribution grids (Messinis & Hatziargyriou, 2018:260; Saeed et al., 2020:10). The
cross validation process is used in ANN to ensure that the trained model generalizes well
after using trial and error method to determine the optimal network structure of the model
(Messinis & Hatziargyriou, 2018:260; Poudel & Dhungana, 2022:113).
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Zheng et al. (2018) used wide and deep convolutional neural network (WDCNN) for ETD.
The wide component of the model captures the global features of one-dimensional energy
consumption data, while the deep component of the model captures the periodicity of
normal electricity consumption, and also captures accurately the non-periodicity energy
consumptions attributable to ET based on two-dimensional energy consumption data. Most
of the previous works on ETDs were based on one-dimensional energy consumption data.
The missing values in the energy consumption data used in the work are replaced by the

linear interpolation method shown in Equation 2.43.

Zia™is1 € NAN, x;_q o x4, & NaN
fx) = 0, x; € NAN, x;_, or x;,, € NaN (2.43)
Xi, X e NaN

Where X; is the unit of the energy consumed over a period of time and it is represented as
NaN when it is null, undefined, or missing. NaN stands for “Not a Number”. After the missing
values have been replaced, the energy-consumption dataset is then normalized by setting
the range of the features to values between 0 and 1 using the min-max scaling method as
expressed in Equation 2.44.

__ xj—min(x)
f(xi) - max(x)—min(x) (2.44)

Where min(x) is the minimum value of the energy consumptions in x, and max(x) is the
maximum value of the energy consumptions in x. Each neuron or node of the fully-

connected convolutional neural network (CNN) layers calculates its own score as shown by

Equation 2.45 using the one-dimensional energy consumption data.

y] = Z?=1 Wl"jxi + bl (245)

From Equation 2.45, y; is the output of the jth neuron in the fully connected layer, n is the
length of the input data x which is a one-dimensional data, w; ; is the weight of the neuron

between the input value ith and the jth neuron, while b, is the bias term of the neuron. After
the calculation in Equation 2.45, the neuron will send the calculated value to the connected
nodes in the higher layer of the network after applying Rectified Linear Unit (ReLU)
activation shown in Equation 2.46, to determine how much the previous node contributed

to the prediction of the next step in the network.
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;= f(y;) = max(0, y;) (2.46)

The output after calculating activation function is denoted by u;. After the activation-function

calculations, the Deep CNN processes the one-dimensional energy consumption data into
a two-dimensional format according to weeks, to improve the performance of the traditional
ANN. One-dimensional data could also be converted to two-dimensional format according
to convinient number of days, but transforming it to two-dimensional data according to

weeks has produced the best performance.

The work of Buzau et al. (2020) is an improvement on the work of Zheng et al. (2018) and
other deep learning models and prominent classifiers in terms of performances. Buzau et
al. (2020) have used the combination of long short-term memory (LSTM) with MLP to
enhance the performance of ANN. The LSTM analyzes the consumption history of the raw
data while MLP integrates the non-sequential data. LSTM uses sigmoid and hyperbolic

tangent (tanh) for non-linear activations, as expressed in Equations 2.47 to 2.51.

i = o(Wx, + Uh,_; + b;) (2.47)
fe = o(Wsx, + Ushy_y + by) (2.48)
o, =cW,x; + Uyh,_; + b,) (2.49)
C,=f(t)®OCr_qy+ i ©tanh(Wx, + U.he_q + b.) (2.50)
h, = o, © tanh(C,) (2.51)

Where i, represents the input gate activation, f; represents the forget gate activation, 0,
represents the output gate activation, C; represents the cell state activation, h; illustrates

the hidden-state activation at time-step t, while h;_; denotes the hidden-state activation
at the previous time-step t. W;, Wr, W,, and W, depict the weights of the input layer. U,
Ur, U,, and U, denote the recurrent weights of LSTM, while b;, bs, b,, b, are the biases

of the LSTM neural network. The x; vector represents the input feature the time-step t.
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z, = Wyh,_1 + by, (2.52)

In the MLP network, N which is chosen based on the validation dataset is the number of
hidden layers, while every hidden layer goes through an affine transformation as expressed

in Equation 2.52. The choice of N is based on the validation dataset. W}, represents weights
of the ngy, layer of the MLP network, h,,_; depicts the hidden state of the preceding layer,

while b, denotes the bias of the layer n of the network. For the model evaluation, the

logarithmic loss function or the binary cross entropy function shown in Equation 2.53 is used

to evaluate the performance of the model.

L= _%Zli\il —(yilog(PirL) + (1 — ) log(1 — Pir,)) (2.53)

The term M in Equation 2.53 represents the available number of customer samples, y;
represents the ground-truth or actual-class label. The computed NTL probability for the

sample i of the customer using the hybrid LSTM-MLP model is represented by Pfr;.

Although, Zheng et al. (2018) and Buzau et al. (2020) demonstrate the effectiveness of DL
models (CNN, LSTM) for ETD, their approaches face computational complexity,

interpretability, real-time deployment considerations, and generalizability challenges.

vi. K-nearest neighbours

KNN algorithm is one of the simplest supervised ML models which uses proximity of nearest
neigbours for classification and regression to detect NTL (Messinis & Hatziargyriou,
2018:261; Saeed et al., 2020:11). KNN algorithm calculates the lowest Euclidean distance
between all the k-training features or new features (test data) to determine the k-training
features or k-nearest neighbours and then select the class that has the highest k-nearest
neighbours (majority vote) as the correct class for the test data (Messinis & Hatziargyriou,
2018:261; Ghori et al., 2020:16039). The mean values of the k-nearest neighbours is the

predicted value for the test data when regression is being considered.

Pedramnia and Shojaei (2020) proposed a method that detects the injection of false data
into phasor measurement units (PMUS) in SG, using a variant of the traditional KNN called
decomposed k-nearest neighbours (DKNN) algorithm. These attacks on PMUs are called
false data injection (FDI) attacks, which is a very critical attack in SGs. Datasets from

multiple PMUs are saved in the phasor data concentrator (PDC) at the utility control centres.
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DKNN is an improvement on the conventional KNN algorithm which decomposes datasets
into smaller subspaces, in a bid to enhance scalability, accuracy, and efficiency. The
proposed DKNN method is used by the authors on PMU measurements and tested on IEEE
14-bus system. The authors used complex optimization method in the DKNN algorithm to
extract and categorize PMU data features, reduce the distances between intraclass and
interclass neighbours, enhance computational efficiency by helping to reduce the time
complexity associated with feature extraction and classification, and minimize errors in
classification. The DKNN algorithm classifies the PMU dataset based on KNN-centroid
distances after considering k-nearest neighbours from each class. The results obtained are
satisfactory as the DKNN algorithm outperforms other ML algorithms used for the detection
of false data injected into PMUs at utility control centres.

The authors in Pedramnia and Shojaei (2020) have made a valuable contribution to FDI
detection in SGs, however, their approach is limited to cyber anomalies and overlooks
physical tampering and consumption-based theft detection. A hybrid approach combining
cyber anomaly detection, ML-based consumption pattern analysis, and physical tampering
detection would offer a more robust NTLD solution, especially in regions where electricity
thieves apply diverse theft techniques. Also, the lack of generalizability, imbalanced-data
handling, scalability concerns, and absence of comparative benchmarking limit the practical

applicability of this approach.

Aziz et al. (2020) also applied KNN algorithm to detect ET in electricity consumption dataset
collected from AMI in SG. The authors used interpolation method to restore the missing
values in the dataset, empirical mode decomposition (EMD) to break down the extracted
features into intrinsic mode functions (IMFs), and adaptive synthetic (ADASYN) sampling
algorithm to balance the two unequal classes in the dataset. After extracting features from
the dataset, thirteen best features which give maximum classification accuracy have been
chosen by the authors for the ETD experiment. The authors deployed traditional KNN
variants like Fine KNN, Medium KNN, Coarse KNN, and Cosine KNN, including other ML
algorithms like Fine Tree, Medium Tree, Coarse Tree, logistic regression and linear
discriminant to classify the honest and fraudulent electricity customers in the employed
dataset. Of all the algorithms used in the experiment, Fine KNN produced the best prediction

results with classification accuracy of 91.0%.
While Aziz et al. (2020) introduce an innovative EMD-based feature extraction approach for

ETD, the reliance of this method on KNN and offline processing limits its scalability and

real-time applicability. The authors can investigate online version of EMD, and also test the
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method using large, diverse real-world SM datasets. The authors could evaluate alternative

feature extraction methods like CNN-based methods for improved efficiency.

vii. Rule induction methods

Rule induction methods use algorithms to automatically extract set of rules in the form of
“IF-THEN-ELSE” statements hidden in training data, to classify or predict the class of a new
given sample or test data, in a bid to detect NTL or fraud (Nettleton, 2014:99; Messinis &
Hatziargyriou, 2018:261; Saeed et al., 2020:10). This method is usually used with labelled
datasets (Saeed et al., 2020:10). In the field of Al, rule induction methods are closely related
to expert systems, in that, rule induction methods could be used as a tool to automatically
refine or generate rules within the framework of expert systems, but in actual fact, both
methods serve different purposes. Rule induction methods belong to the category of
supervised learning, while expert systems belong to the category of unsupervised learning.
Rule induction methods are driven by data, and involves the extraction of rules and patterns
from labelled data; while expert systems are driven by human knowledge based on
expertise (Saeed et al., 2020:10; Messinis & Hatziargyriou, 2018:261).

viii. Generalized additive model

The inspiration for the use of GAM model for NTL reductions came from the field of
epidemiology in medicine (Messinis & Hatziargyriou, 2018:261). GAM has been used in the
field of NTL to model the spatial distribution of NTL, because it is presumed that NTL the in
a domain spread epidemiologically in accordance with technical and social characteristics
(Messinis & Hatziargyriou, 2018:261; Saeed et al., 2020:8). The probability of NTL in an
area is estimated with GAM, based on the influence of the social and technical
characteristics, using Markov chain to model how the NTL may spread in the future within
a given area (Faria et al., 2016:362, 364; Messinis & Hatziargyriou, 2018:261). Although,
GAM algorithm does not detect NTL or fraud, but evaluates the probability or likelihood of
NTL by spatial distribution (Messinis & Hatziargyriou, 2018:261).

e Unsupervised learning

Unsupervised learning models do not make use of labels at all in the data profiles provided
to train classifiers for NTLDs or predictions (Messinis & Hatziargyriou, 2018:251; Osypova,
2020:37; Saeed et al., 2020:11; Guarda et al., 2023:11). With unsupervised learning, the
relationships and patterns in a dataset are learned without any prior knowledge about the

dataset or with the datasets that are being partially labelled. Unsupervised learning can also
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be used with methods that uses a single label, or when the labelled samples of those
customers that steal electricity are very small when compared with the large numbers of
labelled representative samples of those customers who did not steal electricity (Messinis
& Hatziargyriou, 2018:251-252, 260, 262). The detection accuracies of supervised learning
models are better than those of unsupervised learning models because supervised learning
models already have deep knowledge of the datasets via their labels prior to modelling
(Messinis & Hatziargyriou, 2018:262; Saeed et al., 2020:16; Liao, Zhu, et al., 2024:5075).
Examples of unsupervised learning methods are self-organizing map (SOM), outlier
detection methods, regression models, expert systems, clustering algorithms, statistical
methods, game-theoretic methods (Messinis & Hatziargyriou, 2018:261-262; Saeed et al.,
2020:12-13; Guarda et al., 2023:11-15).

Self-organizing map

SOM is an exclusive kind of neural network which works on training and mapping modes in
an unsupervised manner (Messinis & Hatziargyriou, 2018:261; Poudel & Dhungana,
2022:114). In the training mode, the map is built using datasets while in the mapping mode,
new data samples are classified automatically (Poudel & Dhungana, 2022:114). The SOM
algorithm does dimensionality reduction to produce a low-dimensional equivalence of a
high-dimensional data in order to convey the network distribution in a graphical map and
detect features using unsupervised learning, while the topology of the original data (high-
dimensional data) is still being retained (Sacco et al., 2017:68; Messinis & Hatziargyriou,
2018:261; Misra et al., 2020:146). Similar samples are mapped together using SOM (Sacco
etal., 2017:68) to produce an output that depict whether NTL have occurred or not (Messinis
& Hatziargyriou, 2018:261).

In Cabral et al. (2008), the authors applied SOM to detect ET among high-voltage (HV)
consumers by comparing the historical energy consumption data with the present data
obtained from an electric distribution company in Brazil. The energy consumption data is
aggregated into weekly consumptions. Out of the 156 customers selected for ETD
simulation, 30% of the customers were suspected of causing NTL by the SOM-based ETD
system. Guerrero et al. (2018) developed a framework of two modules to increase the
success rate of onsite inspections in the premises of electricity customers. The first module
was based on text mining and ANN to filter electric customers, while the second module
involved a data mining process that contained classification and regression tree (C&R), and

SOM neural network.
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The work of Cabral et al. (2008) lacks generalization to LV consumers and real-time fraud
detection, while that of Guerrero et al. (2018) over-relies on inspection-based detection.
However, both studies lack real-time ML-based detection, scalability considerations, and

fully automated fraud prediction techniques.

Outlier detection methods

Outliers are features that differs significantly from regular features. The concept of outlier
detection methods applied for ETD involve the identification of the unusual features that
behave differently in a given dataset for the purpose of detecting NTL (Messinis &
Hatziargyriou, 2018:262; Guarda et al., 2023:12).

Linear programming is being employed by Yip et al. (2018) to detect NTL using the concept
of outlier detection. The method is able to identify NTL and locate defective SMs in SG, in
an effort to reduce revenue losses. In this method, cumulative meter readings from
consumers are compared with the total readings from the distribution transformers to
shortlist areas that have high probability of ET. The quantity of the electricity stolen at the
point of a SM is modelled as anomaly coefficient, where a non-zero value of the anomaly
coefficient indicates ET or defect in metering equipment. The NTL method also detects

intermittence in the theft of electricity or in the working of faulty metering equipment.

While the authors in Yip et al. (2018) introduce an anomaly detection framework for ET and
defective meters, their reliance on unsupervised learning, historical data, and lack of

interpretability limits its practical usage in large-scale SGs.

Fenza et al. (2019) have been able to address the issue of context and time awareness
associated with anomaly detection, the concept of drift, as well as the issue of FPR that
occurs based on the changes in energy consumption habits of electricity users. To fill the
gaps mentioned by the authors, the authors have employed the Long short-time memory
(LSTM) model to address stated issues. The LSTM model profiled and predicted the
behaviour of consumers drawing from their energy consumptions in the recent past, and

was able to detect outliers at a time instance close to real time.
Inasmuch as Fenza et al. (2019) introduce a valuable drift-aware anomaly detection model,

its reliance on traditional feature extraction, lack of real-time processing, and absence of

explainability mechanisms limit its practical deployment in large-scale SGs.
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iii. Regression models

To predict NTL using time series data, regression models such as auto-regressive moving
average (ARMA) and auto-regressive integrated moving average (ARIMA) have been
utilized (Messinis & Hatziargyriou, 2018:262; Saeed et al., 2020:13). If regression method
is trained with energy consumption data and the distinction between the measured energy
consumed and the expected or estimated energy consumption is high, then a potential
likelihood of NTL or fraud is suspected (Messinis & Hatziargyriou, 2018:262; Saeed et al.,
2020:13; Guarda et al., 2023:13). However, ARIMA models have proven to perform better
than ARMA (Messinis & Hatziargyriou, 2018:262; Saeed et al., 2020:13).

The authors in Yip, Tan, et al. (2017) used the Linear Regression-based Scheme for
Detection of Energy Theft and Defective Smart Meters (LR-ETDM) model previously
developed by Yip, Wong, et al. (2017), in conjunction with a new scheme in a SG
environment. For a service area that is assumed to have N consumers, the readings of the

SMs in the area are registered at the time stamp of T = t,,t,, ..., t4g. The proposed model

is represented by Equation 2.54 where p; ~in the model is energy consumption by

consumer n at the time interval t; € T in near real-time. a,, denotes the anomaly coefficient

of every consumer n, while y,, is the disparity in the readings of the meter at the time interval

of t; € T. Equation 2.54 is formulated if there is over/under-reporting by SMs and the
objective of the equation is to find the values of all a,,, where the values of n = 1,2, ..., N;

to evaluate the reliability of the consumers’ SMs or the abnormal behaviours of the

consumers.

a;Pt; , + azPt;, + -+ aAnDe;y = Ve Vt, €T (2.54)

The sum of all the customers' energy consumptions must be in accord with the total load
consumptions measured by the collector during the time interval t;. Yip, Tan, et al. (2017)
later developed the Categorical Variable-Enhanced Linear Regression-based scheme for
Detection of Energy Theft and Defective Smart Meters (CVLR-ETDM) model because the
LR-ETDM algorithm designed by Yip, Wong, et al. (2017) may not be able to detect all
frauds, especially when consumers only commit theft during a specific period in a day. The
CVLR-ETDM algorithm uses dummy coding which introduces categorical variables x,, into
the linear regression to fix time-varying or dynamic ET problem. Equation 2.55 conveys the
CVLR-ETDM scheme.
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Py, + o+ anPey + BiDe, X1+t BuPe g XN = Ve VEHET (2.55)

Considering N consumers in a service area as in Equation 2.55, and each consumer n
commits ET independently, then S,, and x,, parameters are defined wheren = 1,2, ..., N.
B, is the detection coefficient of consumer n during the on-peak hours, while x,, is the
categorical variables depicting whether the period of ET is during on-peak or off-peak hours
as shown in Equation 2.56.

X = {O, of f — peak hours (2.56)

1, on — peak hours

The period of ET and the period of metering defect can be determined from Equation 2.55
by solving for the values of a, and f,, to discover any anomalous behaviour from the
consumers and/or their faulty meters at any time of the day. The values of a,, and that of
(a, + B,) from Equation 2.55 represent the coefficient of anomaly for consumer n during
the low-demand (off-peak) and the high-demand (on-peak) periods respectively. Results
from the proposed CVLR-ETDM model shows that it is capable of detecting power pilferers

as well as locating their faulty meters regardless of their mode or period of stealing.

While Yip, Tan, et al. (2017) and Yip, Wong, et al. (2017) contribute valuable insights into
ET and defective meter detection using linear regression, their reliance on basic statistical
models, lack of feature engineering, and absence of real-time processing limit their

effectiveness in large-scale SGs.

iv. Expert systems

The decision making abilities of human experts are enhanced by expert systems (Poudel &
Dhungana, 2022:114). Expert systems refers to the rules that are defined by professionals
like utility-domain experts or utility technicians in a bid to detect NTL (Messinis &
Hatziargyriou, 2018:261; Saeed et al., 2020:12; Poudel & Dhungana, 2022:114). This
method, which although does not require learning is considered unsupervised and allows
domain experts to apply their professional experience or expertise into the process of
detecting NTL by introducing rules that enhance the detection of frauds in the power grids
(Messinis & Hatziargyriou, 2018:261; Guarda et al., 2023:12). Expert systems may also be
applied in supervised learning approaches because various models or methods can
accommodate professional expertise or expert knowledge (Saeed et al., 2020:12; Guarda
et al., 2023:12).
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In the field of Al, expert systems are closely related to rule induction methods because
expert systems accommodate rule induction algorithms as a tool to automatically refine or
generate rules within their frameworks, but in actual fact, both methods serve different
purposes. Expert systems belong to the category of unsupervised learning, but rule
induction methods belong to the category of supervised learning. Expert systems are driven
by human knowledge and are processed by inference engine, to make decision and/or
proffer solutions to problems; while rule induction methods, which are driven by data,
involves the extraction of rules and patterns from labelled data (Saeed et al., 2020:10;
Messinis & Hatziargyriou, 2018:261).

Integrated expert system (IES) has been used by Leén et al. (2011) to analyse all the
information of electric customers using the dataset obtained from Spain’s Endesa electric
utility in a bid to detect electricity fraud. The IES includes modules like data mining, text
mining, and rule-based expert system. Guerrero et al. (2014) implemented an expert-
system rule where a consumer is recommended for ET inspection if the reactive energy

consumed is greater than or equal to the active energy consumed.

The authors in Ledn et al. (2011) and Guerrero et al. (2014) have introduced expert system-
based NTLD methods, but their reliance on static rule-based models, lack of real-time
detection, interpretability, and absence of scalable ML solutions limit their effectiveness in

large SGs.

Clustering algorithms

Clustering algorithms are used to group unlabelled energy consumption data of different
consumers with similar consumption patterns together in an unsupervised manner, to
assemble consumers that behave identically for the purpose of NTLD (Messinis &
Hatziargyriou, 2018:261; Poudel & Dhungana, 2022:114). Baseline power profiles can also
be calculated using clustering algorithms, such that fraud is suspected if new sample
significantly differs from the baseline samples (Messinis & Hatziargyriou, 2018:261; Saeed
et al., 2020:12). Meanwhile, fraud may also be suspected by the distance between the new

sample (Messinis & Hatziargyriou, 2018:261).

Angelos et al. (2011) has employed fuzzy c-means algorithm or fuzzy clustering where
every new sample is associated with fraud, and then the most probable theft case is chosen
by tuning the system according to the peculiar parameters of requirements. The clustering

algorithm called Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

137



with the combination of PCA have also been proposed by Krishna et al. (2015). PCA has
been applied on the high-dimensional energy consumption data obtained from SMs, where
each consumer is visualized in a two-dimensional space. After this, the DBSCAN is then
able to cluster samples efficiently by distinguishing normal consumers from anomalous

consumers.

While Angelos et al. (2011) and Krishna et al. (2015) contribute valuable statistical and
PCA-based approaches for ETD, but their reliance on traditional methods, lack of real-time

processing, and limited scalability reduce their effectiveness in modern SGs.

Babu et al. (2013) used fuzzy c-means cluustering algorithm to cluster or categorize
consumers into classes based on their patterns of electricity usage. The clustering algorithm
achieved 80% hit rate when tested with 57 customers in a particular neigbourhood in India.
Determination of customers who committed theft is dependent on the application of fuzzy
membership function and cluster-centre distances. The cluster-centre distances are the
Euclidean distances from the centre of clusters, which are standardized and arranged using
unitary index score. The fraudulent customers are those customers that have the highest
unitary-index score greater than a predefined threshold of 0.7. The fuzzy c-means algorithm
used the following attributes to create a general pattern of consumption for each customer
over a period of 6 months: average units of energy consumption per consumer, maximum
units of energy consumption per consumer, standard deviation of energy consumption of
each consumer, average energy consumption in a neighbourhood or residential area, and

6-month inspection remarks.

Although, Babu et al. (2013) provide a useful rule-based method for detecting ET, their
reliance on static statistical techniques, lack of feature extraction, adaptability, and absence

of real-time detection limit the effectiveness of their approach in large-scale SGs.

Sharma et al. (2017) applied DBSCAN clustering to separate unusual patterns in energy
consumption datasets with local outlier factor (LOF) algorithm which is used to rank the
unusual energy consumptions based on the densities of the neighbours. If LOF value is
higher, it shows there a significant difference between the densities of the feature under
consideration and its neighbours, hence revealing such point as being suspicious.
Silhouette coefficient and Davies Bouldin index have been used to validate the method.
LOF is the ratio of the density of a feature in a cluster to that of the density of its KNNs
(Ghori et al., 2020:16035).
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While the authors in Sharma et al. (2017) provide a useful statistical framework for detecting
irregular electricity consumption, their reliance on traditional methods, lack of DL integration,
and the absence of real-time detection limit the effectiveness of their approach in modern

SGs. The authors did not evaluate the scalability and generalizability of the model.

vi. Statistical methods

Control charts from time-series data can be used for monitoring the energy consumption of
individual consumers and for defining anomalous regions in the graphs after which rules
are formed to indicate which consumptions violate the rules. The customers whose
consumptions violate the set rules are regarded as being fraudulent, and such suspicious
customers will need to be inspected (Messinis & Hatziargyriou, 2018:262; Saeed et al.,
2020:12; Guarda et al., 2023:14).

The XMR control chart in Spiri¢ et al. (2015) monitors the X chart which represents a chart
of actual individual energy consumption values and their corresponding MR chart which
illustrates the chart of moving range values, to determine variations in consumptions that
may be regarded as frauds based on certain set rules. Other statistical charts are the
Exponentially-Weighted Moving Average (EWMA) and non-parametric cumulative sum
(CUSUM) charts used by Mashima and Cardenas (2012) to visualize data for the purpose
of detecting NTL.

In the papers presented by Spiri¢ et al. (2015) and Mashima and Céardenas (2012), they
provide valuable insights into ETD through statistical and ML approaches. However, their
over-reliance on conventional methods, lack of deep learning integration, and absence of
real-time detection reduce their effectiveness in large-scale SGs. The authors Mashima and
Céardenas (2012) primarily focus on data integrity attacks but do not account for other

cybersecurity vulnerabilities in ETD.

Liu et al. (2015) proposed Bollinger bands which is commonly used in stock trading for
NTLD. To determine NTL using the Bollinger bands, lower and upper bands are determined
based on N periods of moving average and standard deviation of the time-series data, such
that if the energy consumed at a specific time goes beyond the limit set for that period, then
an anomaly, fraud or NTL is being suspected. However, the main disadvantage of this
approach is that fraud cannot be detected if the incident had taken place of the monitoring

period, since the method is basically used for detecting changes in energy consumptions.
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While Liu et al. (2015) introduce a cybersecurity-based approach to ETD, their reliance on
rule-based threat analysis, lack of real-time fraud monitoring, adversarial robustness,
comparative evaluations, and limited scalability reduce the effectiveness of the framework

in large-scale SG environments.

vii. Game-theoretic methods

Game-theoretic methods or game theory for NTLD are used to model NTL solution as a
kind of game between the electricity swindlers and the electric utilities, where electricity
thieves are modelled as attacker systems while the NTL solutions provided by the electric
utilities are modelled as defender systems (Cardenas et al., 2012:1830; Messinis &
Hatziargyriou, 2018:262; Gul et al., 2020:2). The game-theoretic approach for NTLD has
been recently proposed and is still evolving as one of the major constituent of NTLD
methods (Jiang et al., 2014:114-115; Messinis & Hatziargyriou, 2018:262).

ETD problem is conceived and modelled as a game between the stealing customer
(attacker) and the electric utility (defender) by Cardenas et al. (2012). The electricity thief
intended to steal a predefined amount of electricity and try as much as possible to avoid
being detected. The attacker avoided being detected by changing the probability density
function of their electric consumptions during the measurement period of the AMI. According
to the authors, a probability density function called Nash equilibrium have been identified
as the attacker and defender which the electric utility must select before delivering their AMI

measurements, to optimize the possibility of theft detection in the game.

Cardenas et al. (2012) introduce a novel game-theoretic approach to ETD, their reliance on
theoretical models, lack of real-time fraud monitoring, deficiency of explainable
mechanisms, and absence of ML integration reduce the effectiveness of the framework in

large-scale SG environments.

The authors in Lin et al. (2014) initiated the idea of non-cooperative game model for
abnormality or NTL screening by compounding SMs with functional order self-
synchronization error formulation, in a bid to distinguish between profiled consumptions and
NTL-causing illegal consumptions. The authors in Amin et al. (2015) have proposed an
extensive game-theoretic algorithms to model and analyse the functioning capacities of
various techniques of classical statistics by using the data collected from smart meters for
the purpose of ETD. This framework is motivated owing to cyber-attacks on electricity

consumptions. In this work, firm preconceptions about how the fraud are being carried out
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are made, while estimates on precise detection capacity of the developed model under the

made assumptions are provided.

The authors in Lin et al. (2014) and Amin et al. (2015) introduce innovative game-theoretic
frameworks for ETD, however, their reliance on mathematical models, lack of real-time
fraud monitoring, lack of cost-benefit analysis, and absence of ML integration reduce the

effectiveness of the framework in large-scale SG environments.

Hybrid learning

Hybrid learning is the composite or combination of supervised and unsupervised learnings
(Ghori et al., 2020:16036) as depicted in Figure 2.21, and different from hybrid methods or
techniques, which is the combination of both data-driven methods and network-driven
methods (Messinis & Hatziargyriou, 2018:252, 263; Ghori et al., 2020:16035-16036).

In a bid to detect NTL using hybrid learning, Peng et al. (2016) used the daily energy
consumption dataset of Chinese Southeast coastal city. During the initial phase of the
hybrid-learning process, clusters of different consumers are being formed based on their
patterns of consumptions using the k-means clustering algorithm. In the next phase of the
learning process, reclassification is done by applying DT, random forest (RF), SVM and
KNN to the consumers filtered initially. The classification done in the following phase using
the ensemble classifiers surmounts the weakness of the clustering done in the initial phase.
The authors employed the grouping of electricity consumers into classes in accordance with
the patterns of their energy consumptions to assist in detecting any anomalous behaviours

via their consumption patterns.

While Peng et al. (2016) present a useful two-stage pattern recognition approach for SG
customer classification, their model does not explicitly address ET, lacks DL-based feature
extraction, and does not support real-time fraud detection, making it less effective in

practical fraud prevention scenarios.

The NTL approach proposed by Terciyanli et al. (2017) is a hybrid of fuzzy c-means
clustering and fuzzy classification. In this work, clusters of consumers that have similar
consumption patterns using fuzzy c-means clustering are first formed. After this, fuzzy
classification with membership matrices is then performed next, which further classifies the
electricity consumers. Furthermore, the deviation between the expected or target energy

consumption values and the observed or predicted energy consumption values of each
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customer is calculated. If the deviation between the expected energy consumption values
and that of the observed energy consumption values surpass a specified threshold, a
potential fraud is suspected, and such customers whose energy difference passes the set

threshold are shortlisted.

The authors in Terciyanli et al. (2017) introduce a rule-based score-driven approach for
fraud detection, but its reliance on static scoring rules, lack of DL integration, and absence

of real-time monitoring make it less effective for large-scale ETD.

Semi-supervised learning

In the case of semi-supervised NTLD methods, the labelled samples (positive and negative
samples) in the given dataset are too small or few with respect to the unlabelled samples,
forming a borderline between supervised and unsupervised learnings (Messinis &
Hatziargyriou, 2018:252; Lu et al., 2019:4; Yang, 2019:140; Osypova, 2020:40). In other
words, semi-supervised learning methos make use of labelled and unlabelled samples with
the proportion of the labelled-data samples being very small when compared with the
unlabelled samples in the datasets (Messinis & Hatziargyriou, 2018:252; Yang, 2019:140).
The primary objective of employing semi-supervised learning is to take advantage of the
learning capabilities of both supervised and unsupervised learnings to produce a more-
efficient ETD model (Kim et al., 2024:7).

The authors, Junior et al. (2016), have used two techniques or paradigms of semi-
supervised and unsupervised learnings for NTLD. The semi-supervised learning is used for
anomaly detection with the dataset which has the information of only one class, while the
OPF classifier is used for the unsupervised learning. The two techniques are used with
datasets which contains commercial and industrial energy consumptions from Brazilian
electrical power company. The metric performances of both techniques are compared with
SVM, Gaussian mixture model (GMM), OC-SVM, k-means, balanced iterative reducing and
clustering using hierarchies (BIRCH), and affinity propagation (AP). The authors submitted
that the two techniques or paradigms of OPF and anomaly detection outperformed the other

techniques compared with them, while the results of the OPF classifier is the most accurate.

Janior et al. (2016) introduce an OPF clustering technique for fraud detection, nonetheless,
the reliance of the method on unsupervised learning, lack of real-time processing,
explainability issues, and absence of deep feature extraction reduce the effectiveness of

the model in large-scale SG environments.
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Network-oriented methods

Network-oriented or network-based methods employ the analysis of power system networks
for the purpose of NTLD (Guarda et al., 2023:22). This method uses data from the sensors
on the distribution grid placed on smart meters and transformers, network-related data such
as the topology of the grid, loading of the distribution transformer, current flow and voltage
profile data, and phase connectivity data, etc. for NTLD (Messinis & Hatziargyriou,
2018:262-263; Guarda et al., 2023:15; Liao, Bak-Jensen, et al., 2024; Liao, Zhu, et al.,
2024:5075). Network-oriented methods keenly depend on the understanding of the LV and
MV network topology, including the measurements obtained from devices like RTUs and
observer meters. Network-based methods make use of network measurements for its NTLD
by employing physical rules and network analysis like estimation, load flow and sensor
network (Viegas et al., 2017:1262; Messinis & Hatziargyriou, 2018:252, 262; Guarda et al.,
2023:4-5) as shown earlier in Figure 2.21.

Unlike the data-based method, network-based NTLD method requires extra electric meters
and devices like RTUs, RFIDs, wireless sensors, and software tools to enhance the
monitorability of the distribution grid (Jiang et al., 2014:112; Osypova, 2020:45; Ali et al.,
2023:2; Nayak & Jaidhar, 2023:2; Liao, Bak-Jensen, et al., 2024; Liao, Zhu, et al.,
2024:5075). These ancillary devices are in addition to the existing grid equipment used in
data-oriented methods for gathering consumer-related data. The costs involved in procuring
the supplementary equipment make the network-oriented methods more expensive when
compared with the data-based methods; although, the method provides better accuracy in
terms of measurements and performances (Messinis & Hatziargyriou, 2018:264; Osypova,
2020:45; Gu et al.,, 2022:4568; Nayak & Jaidhar, 2023:2; Khan et al., 2024:2). The
procurement of extra equipment or devices in conjunction with the existing grid equipment
for additional measurements do not change the non-hardware-method status of the
network-oriented method, because it is only the data generated by the added devices that
are being worked upon for the purpose of ETD, and not that the hardware devices
themselves are used to detect NTL (Guarda et al., 2023:22). Unlike data-based methods,
network-based methods require less-voluminous datasets, but necessitates the use of
higher-resolution datasets with more variety of features (Messinis & Hatziargyriou,
2018:263; Osypova, 2020:45; Guarda et al., 2023:18, 23).

Estimation

This technique of NTLD provides considerable approximation of the NTL in an area or the

NTL of a particular customer under investigation. The methods to estimate NTL in the
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electric distribution network is subdivided into state estimation and technical loss modelling
(Viegas et al., 2017:1262) as depicted in Figure 2.21. The state estimation method
determines the extent of irregularities associated with the energy consumptions of the
customers by checking the deviations between their billed and actual consumptions; while
technical loss modelling evaluates the TL in the distribution network to assist in the direct
calculation of the approximate value of NTL present in the network (Anas et al., 2012:177;
Viegas et al., 2017:1262-1263).

State estimation

State estimation method is premised on finding the coherence between the grid data
measured from the consumers’ end and that measured from the electric network
(Fragkioudaki et al., 2016:45). It is used mainly in the MV networks at substations for
observing the distribution grid to detect NTL in the MV/LV transformers using central
observer meters, to check if the total energy distributed matches the sum of individually
consumed electrical energies by the customers at the LV networks (Messinis &
Hatziargyriou, 2018:263; Saeed et al., 2020:14). State estimation checks the errors and
irregularities like or bad data attacks or FDI in the energy demand of consumers (Viegas et
al., 2017:1262; Messinis & Hatziargyriou, 2018:263; Saeed et al., 2020:14). FDIs and/or
bad data attacks are indications of the presence of NTL in the consumption data (Messinis
& Hatziargyriou, 2018:263; Saeed et al., 2020:14).

Bandim et al. (2003) proposed the methodology for the detection of deviations in energy
balance of a group of consumers in a secondary distribution network owing to metering
problems by using a central observer meter. This method is used to observe the meters of
many consumers and pinpointing those meters that show the likelihood of causing NTL in
a less costly and effective manner, while preventing the possibilities of inspecting
individually all the electric meters under investigation. Defective meters that cause NTL are
those that have been tampered with thereby registering incorrect readings, or those meters
that have been completely bypassed. To determine those customers who have problems
with their respective meters, deterministic and statistics techniques are employed. At any
given time, the total energy recorded by the central observer meter and those recorded by

the electric meter of each customer is represented by Equation 2.57.

Etotal - klEl + kZEZ + .- klEl + -+ kNEN (257)

Where E;,+4; is the total energy recorded by the central observer meter, which constitutes
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the sum of each energy consumed by the meter of consumer i out of the total N meters
being considered. k; of the meter of consumer i is a constant that is dependent on the
accuracy class of the particular meter, while E; is the energy recorded by the electric meter
of consumer i. In case the energy of each of the N meters of all the i consumers with the

central observer meter are computed separately for every i consumer, matrix inversion or
weighted-least squares (WLS) state estimation algorithm could be used to solve the

resulting system of linearly independent N equations shown in Bandim et al. (2003:164).

Bandim et al. (2003) introduce an innovative mathematical framework for fraud detection
using central observer meters. The authors only focuses on a specific type of ET (tampered
meters), assumes that the central observer meter is tamper-proof, which may not always
be the case, uses simulated data to test the proposed mathematical approach, but does not
validate the results using real-world data. The authors did not address potential security

and privacy concerns related to the use of central observer meters.

The authors in Chen et al. (2011), Lo et al. (2012), and Luan et al. (2015) have also used
WLS state estimation method for the load estimation of MV/LV transformers by using the
real-time three-phase measurements of current, voltage, active and reactive power
measurements obtained from the MV/LV transformers as the input data to the WLS
algorithm. NTL is suggested in the distribution network if the estimation done using the WLS
state estimator exceeds a predefined threshold.

While Chen et al. (2011), Lo et al. (2012), and Luan et al. (2015) have introduced state
estimation-based frameworks for fraud detection, but none of the authors discuss the
potential security and privacy concerns related to the use of advanced measurement data,
and SG technologies for ETD. The authors’ reliance on mathematical models, lack of real-

time detection, and absence of ML integration reduce their effectiveness.

A statistical model known as analysis of variance (ANOVA) has been used alongside state
estimation method by the authors in Huang et al. (2013) and Lu et al. (2013) to form a two-
stage NTLD approach. The first stage is the state estimation of the MV level of the grid to
estimate the load on the MV/LV transformer in order to identify the feeders with defective
or tampered meters. The second stage involves using ANOVA to identify suspicious

customers with metering issues.
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Huang et al. (2013) and Lu et al. (2013) introduce state estimation and ANOVA-based
techniques for NTL detection. However, their reliance on predefined statistical models, lack
of real-time processing, and absence of ML integration reduce their effectiveness in large-
scale SG environments. Also, the authors did not discuss practical implementation issues,
such as the cost and feasibility of installing new measurement devices or their potential

impact on the existing electric grid.

Salinas and Li (2016) proposed a centralized state-estimation algorithm known as Kalman
filter, which utilizes the real-time energy consumptions from consumers’ SMs to detect NTL
in a microgrid. However, a privacy-preserving algorithm decomposes Kalman filter to
estimate line currents and biases in the energy consumptions to reveal the ET culprits. The
privacy-preserving algorithm protects the privacy of electricity users by hiding information
on their energy consumptions from system operators and eavesdroppers. Customers
whose energy biases are higher than a predetermined threshold are considered to have

committed ET.

Although, Salinas & Li (2016) introduce an innovative privacy-preserving framework for
fraud detection in microgrids, their reliance on predefined state estimation models, lack of
real-time monitoring, and non-consideration of other theft methods reduce their

effectiveness for large-scale implementations.

Technical loss modelling

In this method, the technical loss of the electricity distribution network is modelled to enable
the direct calculation of NTL in the network (Viegas et al., 2017:1262-1263). Most utilities
already have the technical loss data of their power networks, which gives an added
advantage using the direct-calculation method. A higher NTL value beyond a tolerable
benchmark is an indication of probable fraud. The authors in de Oliveira et al. (2006) and
de Oliveira et al. (2008) proposed statistical methods to find accurate relationships between
load factors and loss factors in order to improve the calculation of TL, which are
consequently used to calculate NTL. NTL could then be evaluated by direct calculation after

the determination of TL in electric systems.

Load flow

One of the ways to detect NTL activities in an electric distribution grid is the calculation of
energy flow in that network (Saeed et al., 2020:14). Load flow analysis entails the use of an

observer meter which monitors the total energy consumed from the LV terminal of the
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distribution transformer and compares it with the total sum of consumptions as measured
from the individual meters of the electricity customers (Messinis & Hatziargyriou, 2018:262;
Saeed et al., 2020:14; Guarda et al., 2023:15). If the difference between the reading on the
observer meter located at the distribution transformer and those readings collated from the
electric meters of individual customers is great (considering the percentage of TL), then the
probability of NTL occurring in the distribution network is higher (Messinis & Hatziargyriou,
2018:262-263; Yan & Wen, 2022; Guarda et al., 2023:15). This approach used for the
determination of NTL is otherwise called the energy balance method, and happens to be
the most popular approach of the network-based methods used by researchers in the
literature (Guarda et al., 2023:15).

Kadurek et al. (2010) have proposed smart substation method which examines the energy
disparities between the smart meters of electricity consumers and the utility observer
meters. If an appreciable mismatch occurs in the energy balance, this method then attempts
to locate the consumer location where the fraud or NTL is actually taking place. Probabilistic
power-flow approach has been used by Neto and Coelho (2013) to determine TL so as to
estimate and detect NTL in a large electric distribution system in the presence of load
variations. The total energy consumed by the customers as measured from the feeder using
observer meter is compared with the consumers’ billed energy. With the addition of the
obtained TL to the billed energy, the NTL are therefore estimated using energy balance
method. In this work, the feeder is divided into subnetworks with individual observer meters,
such that the estimated NTL of a particular circuit is determined with greater accuracy.
However, the literature authored by Nikovski et al. (2013) and Tariq and Poor (2016) have
proposed methods for the identification of network parameters and calculating TL in the

distribution networks for better estimation of NTL.

While Kadurek et al. (2010) and Neto and Coelho (2013) introduce valuable discussions on
smart metering practices and probabilistic NTL estimation, however, their reliance on
predefined models, lack of real-time processing, and absence of ML integration reduce their
effectiveness in addressing scalability and practical implementation challenges in utility

settings.

The authors, Ferreira et al. (2020), modelled load buses as QV buses to identify the illegally
connected loads to the distribution system. The method also requires the measurements of
active (real) and reactive (imaginary) powers and the magnitude of voltage obtained from
SMs. QV buses are busses in which their reactive voltage and power are specified. Buses

showing a discrepancy between calculated and measured active powers suggest potential
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locations of non-technical losses (NTL). The core concept of this approach is to model load
buses as QV buses to address a load flow problem. The basic idea of this work is to model
load buses as QV buses in a bid to solve a load flow problem. The calculated active power
(P.q) for each QV bus are determined using the load flow method. These active-power
values from the QVs are then contrasted with the measured values of the active powers
(Peqs) Obtained from SMs. If the difference between these powers for each QV bus and
SM for a particular customer goes beyond the proposed threshold value which is also

referred to as minimum detectable power (MDP), then such customer is suspected of

causing NTL. The MDP is calculated for each bus using the submatrices /pg, Jpy, Jgg, and

Jov from the Jacobian matrix shown in Equation 2.58.
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Deviations in active powers are caused by the maximum voltage measurement errors
(AV;1ea5) which correlate to the MDP index. The deviation can be determined by applying

a Kron reduction which leads to Equation 2.59. The impact of voltage measurement errors

on the computed active power is estimated using Equation 2.59.
MDP = (Jpy = Jpo-Jgz-Jov)- AVineed® = Jrpc- Vet (2.59)
AWy = Y jea AP ;. Aty (2.60)

Equation 2.60 denotes the energy deviation index (AW},;) at bus i, where those customers
that have higher values of AW,,; are regarded as being suspicious of causing NTL. The
term A is the amount of time the measurement set is accessible, whereas APL-J- is the
difference between the measured and calculated active power at the bus i at time interval
Jj (Atj). The unauthorized loads that are not permanently connected to the system but

injected at any time are identified using the index A, which also helps in decreasing the

effect of errors owing to measurements.
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Although, Ferreira et al. (2020) introduce an innovative load flow-based fraud detection
method, but the reliance of their method on deterministic calculations, lack of real-time
processing, and absence of consumer behavioral analysis limit its effectiveness in large-
scale ETD.

Sensor network

The sensor network approach aspect of the network-oriented methods for NTLD involves
the use of sensors which are installed at designated points in the electric distribution
network (Messinis & Hatziargyriou, 2018:263). These sensors are used to localize NTL by
optimally positioning them and deploying them at lower-infrastructure cost, in order to
increase the probability of NTLDs, so that they can be detected more efficiently (Messinis
& Hatziargyriou, 2018:263; Saeed et al., 2020:15; Guarda et al., 2023:17). The sensor
network approach requires an in-depth knowledge of the topology of the distribution grid
(Messinis & Hatziargyriou, 2018:263). The implementation of this approach is closely
related to the state estimation method, since the sensors increase the observability of the
electric network, and also for the fact that the installed sensors alone cannot ascertain if
NTL has been detected in the electric network or not (Messinis & Hatziargyriou, 2018:263;
Saeed et al., 2020:15; Guarda et al., 2023:17).

The placement of redundant SMs for the purpose of detecting NTL has been proposed by
Xiao et al. (2013). In this framework, an observer meter and an inspector box which contains
a specified number of inspector SMs which are mounted at the secondary distribution
substation before the SMs of the electricity consumers. The inspector meters engage in
data exchanges between them and the SMs of the consumers to compare the energy
consumptions measured by the inspector meters and those measured by the consumers’

SMs. Differences in these measurements are possible indications of NTL.

Xiao et al. (2013) introduce an important security framework for identifying malicious meter
inspections, but the study overlooks broader fraud detection techniques, lacks real-time

monitoring capabilities, and does not empirically validate its proposed methods.

McLaughlin et al. (2013) present an AMI intrusion detection system (AMIDS) for ETD. The
method uses attack graph-based information fusion technique to combine three types of
information specific to the AMI which include information obtained from: anti-tampering
sensors on the SMs, the cyber network and host intrusion detection systems, and

anomalous power consumptions learnt via NILM. AMIDS learns the frequency of the daily
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usage of each appliance using the data of the appliances that the NILM provides. NILM
technique leverages on the database of appliances to learn their patterns of usage over
time. The anomaly or irregularity in the time series power consumption data is analysed,
and the edges in the consumptions that corresponds to on/off events are logged. NILM

functions by solving the binary integer programming problem shown in Equation 2.61.

min BT x

s.t. Qy=<e;+6 (2.61)
—Qx < —e + 6
x=0

Where B = [1,1, ...,1]54x1; @ = [@p; —Qp], and Qp is an |A|-dimensional vector of the
power consumption profile of the electric appliances. The motive for solving the linear

programming problem is to obtain 2 -|A|-dimensional binary vector x, where a vector
element represents whether or not the appliance it depicts contributed to the edge e;;. The

small threshold value of & accounts for the measured noise.

McLaughlin et al. (2013) offer a promising multi-sensor framework for ETD by leveraging
diverse data sources within AMI. The approach is limited by its lack of real-time processing,
challenges in scaling to large networks, and issues related to sensor data integration, cost,

and privacy.

< Hybrid methods

Hybrid techniques have been initiated as part of the efforts to improve ETD methods, in an
attempt to further increase the accuracy of NTLDs in electric grids (Messinis &
Hatziargyriou, 2018:263; Guarda et al., 2023:17). The hybrid methods use a merger of the
data-based and network-oriented methods (Guarda et al., 2023:4, 17, 22) as shown in
Figure 2.21, in conjunction with the data types shown in Figure 2.22, for NTLDs. To achieve
the hybridized NTLD solutions, energy consumption data have been combined with network
data (Ghori et al., 2020:16037). This method is more efficient and reassuring (Guarda et
al., 2023:4). The hybrid method involves the use of network data in order to firstly detect
NTL in parts of the distribution grid, after which statistical or ML method can then be
employed to further detect NTL among the electricity customers by using their energy
consumption data. An example of hybrid method is the use of state estimation method at
the MV level to detect NTL at the MV/LV transformer level of the grid in a bid to discover

the particular section of the distribution network harbouring NTL. After this, ML classification
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algorithms using supervised methods could then be employed in conjunction with the
energy consumption data of electricity customers to detect NTL at the consumer level
(Messinis & Hatziargyriou, 2018:252).

In Guo et al. (2014), the authors used RTU measurements and consumers’ SM
measurements to determine the sections in the distribution network that causes NTL.
Initially, subnetworks in the distribution network is created according to the number of
available RTUs. TL in the network are estimated by applying distribution power flow method.
If the difference or mismatch between the RTUs and SM measurements exceed a certain
threshold then the presence of NTL in the distribution network is assumed. fuzzy c-means
and SVM algorithms are applied to determine whether individual customers cause NTL or
not. The analysis of losses has been proposed by Spiri¢ et al. (2014) to estimate the number
of consumers committing ET in the distribution network after which rough set theory is then
used to calculate the boundary region of suspected electricity fraud.

Although, Guo et al. (2014) and Spiri¢ et al. (2014) introduce innovative rule-based fraud
detection techniques, however, their reliance on static models, lack of real-time fraud
detection, and limited scalability assessment reduce their effectiveness for large-scale ETD.
Guo et al. (2014) focuses on online data validation for distribution operations against cyber-
tampering, but did not consider other types of cyber threats or attacks. Spiri¢ et al. (2014)
assumes that fraudsters will exhibit specific patterns of behaviour that can be detected using

rough set theory, but did not consider that fraudsters may change their behaviour.

The authors in Jokar et al. (2016) deployed consumption pattern-based energy theft
detector (CPBETD) algorithm to detect NTL using observer meters at the distribution
transformers, in conjunction with SVM classifier. The output of the SVM classifier is being
compared with the observer meters used to evaluate the active energy balance of the
distribution network under consideration. The CPBETD algorithm is used to estimate the TL
in the network and to measure the energy-balance mismatch. If the mismatch goes beyond
a predetermined threshold and the SVM classifier produces a positive output or sets of
positive outputs after classifying the daily energy consumptions, then the consumers under
NTL investigation are classified as fraudulent and are then recommended for onsite
inspections. This concept was also applied earlier by Jindal et al. (2016), but in this case,
the combination of DT and SVM was proposed in addition to grid balancing at the

transmission and distribution levels.
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2.6

While Jokar et al. (2016) and Jindal et al. (2016) introduce innovative ETD methods using
consumption patterns and ML, their lack of real-time capabilities, scalability assessment,
and integration of DL techniques limit their effectiveness for large-scale SG applications.
Jokar et al. (2016) and Jindal et al. (2016) assume that customers' consumption patterns
are consistent and can be used to detect ET, but did not consider the potential impact of

changes in customers’ behaviour or lifestyle on the proposed approach.

Conclusion

Electricity must be generated before it can be transmitted and distributed to the consumers.
It must also be measured to determine whether it is being stolen or not. In this chapter, the
review of electricity grid led us to SG, the latest development in the electricity grid system.
Similarly, the review of electricity metering led us to SM, the latest version of the electric
meter. Both the SG and the SM are important components of this research project, as we
will be using the smart metering data from SG for our ETD experiments. The electricity
system, including its metering and its associated NTL prevention, detection, and mitigation
techniques have been thoroughly reviewed in this chapter. Also, inquests have also been
made into the causes and effects of ET. The next chapter is the experimental part of the

thesis which discusses the methods employed in modelling the proposed NTLD model.
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CHAPTER 3

METHODOLOGY

3.1 Introduction

Detection of electricity theft (ET) in power grids primarily requires the development of
formidable and reliable models. This is the core and the most significant aspect of detecting
and mitigating ET. Building effective electricity-theft detection (ETD) models requires
developing intelligent systems to detect non-technical losses (NTL) in electric grids.
Developing ETD models are inevitable as NTL cannot be determined by strictly applying
the fundamental laws of electrical engineering like in the case of technical losses (TL)
(Osypova, 2020:11). NTL detection (NTLD) models are constructed from algorithms that
run on a given dataset through simulations to produce intelligent NTLD models or systems
capable of detecting fraud in electric distribution systems. ETD models serve as the basis
upon which electric utilities tackle the ET menace. The aim of this research is to build
intelligent and efficient ETD model that profoundly detect ET, leading to corresponding

effective mitigation of theft or fraud in the power grids.

It has earlier been asserted in Section 2.4.5 of Chapter 2 that employing artificial intelligence
(Al) by implementing machine learning (ML), a subfield of Al, is the state-of-the-art method
used in building efficient and cost-effective NTLD models (Glauner et al., 2017:761;
Glauner, 2019:31, 110; Ghori et al., 2020:16033-16034; Saeed et al., 2020:1; Guarda et al.,
2023:4; Stracqualursi et al., 2023:12, 16; Coma-Puig et al., 2024:2704). Hence, the
proposed NTLD model developed in this chapter is based on ML methods. A very efficient
ETD model has been built and the procedures leading to its development have also been
explicitly analysed. The developed model, which is also being referred to as the proposed
model, is an integration of deep convolutional neural network (CNN) and an ensemble
random forest (RF) models, to form an hybrid model termed CNN-RF model. The developed
NTLD system has been modelled with the intent of fulfilling the aim and objectives of the
research and also to concurrently proffer answers to the research questions. The Python
codes used in implementing the proposed model can be found in the Appendix. This chapter

analyses the methods involved in modelling the proposed CNN-RF hybrid model.

3.2 System model

Since NTL cannot be completely eliminated in the power systems (Lewis, 2015:128-129;

Kocaman & Tumen, 2020:1), the motivation behind this research project is to develop a
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reliable ETD model that will enhance the reduction of NTL considerably in power grids. The
methodology adopted to develop the proposed ETD model in this research is the Al-based
ML methods, as this approach is the latest and the most-efficient method used in developing
the most-effective models for NTLDs (Glauner et al., 2017:761; Glauner, 2019:31, 110;
Ghori et al., 2020:16033-16034; Saeed et al., 2020:1; Guarda et al., 2023:4; Stracqualursi
et al., 2023:12, 16; Coma-Puig et al., 2024:2704). So many ML models have been
experimented with the employed SGCC dataset described in Section 3.2.2, to identify the
model that would give better performance results. The model development process was a
rigorous and painstaking exercise with so many trials and errors before arriving at the model
which produces the best results with respect to other tested models. The search for the best
suited model has to be done inevitably since there is no accurate method, hard-and-fast
rule, or universal best practice for finding the best model to solve any problem (Bramer,
2020:185). In the end, the NTLD model with suitable results that fulfil the aim and objectives
of the research project and which also proffer answers to the research questions has been
discovered and adopted as the proposed model (Poudel & Dhungana, 2022:117), while
those models that did not produce satisfactory results were dropped.

The proposed ETD model is developed through the combination of convolutional neural
network (CNN) model with random forest (RF) model to form a new hybrid model termed
CNN-RF model. The new model involves the infusion of the features from the convolutional
layer of the CNN model into RF model to increase prediction capacity. RF combines
different decision trees (DTs) as against a single DT in a DT model to enhance robustness
and also to prevent overfitting (Javaid, Jan, et al., 2021:50; Khan et al., 2024:14). The
proposed model is a supervised NTL classification model. The model is a “supervised”
model in the sense that the SGCC dataset used in training it is labelled (Appiah et al.,

2023:2), in this case for honest (non-theft) and fraudulent (theft) customers.

3.2.1 Simulation tool

Python is the most popular and most pervasive simulation software and programming
language used in ML and data science (Voskoglou, 2017). Python is an open-source
package which is preferred over other simulation tools and programming languages like
MATLAB, R, Julia, Scala, Java, Octave, SAS, JavaScript, C/C++, Ruby, etc., owing to its
simplicity, flexibility, robustness, proficiency, and efficiency. Python is reinforced with
comprehensive libraries, as it is an all-encompassing simulation tool deployed in carrying
out any ML-related tasks. Hence, the ML simulations in this research project for the

detection of suspicious customers who may have committed ET have been carried out using
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Python, in a Google Colaboratory (Colab) integrated development environment (IDE).
Google Colab is preferred over other conventional IDEs like Jupyter Notebook, PyCharm,
Thonny, Spyder, PyScripter, Visual Studio Code, Eclipse, PyDev, and Rodeo, etc., due to
its numerous advantages. Google Colab is increasingly used for executing ML projects
particularly in academic settings, due to its seamless integration with GitHub by simply

allowing direct import and export of notebooks.

Other justifications for choosing Google Colab IDE over other conventional IDEs are that it
fully offers free and unrestricted cloud-based service, which implies that no Python
installation software or setup is required on local computers, as all processing are done
directly on Google servers. This thereby saves the memories and storages of personal
computers. While other IDEs such as Jupyter Notebook, Visual Studio Code, and PyCharm
also support version control, cloud-based execution and collaborative learning among Al
enthusiasts, Google Colab combines all these functions in one platform. Google Colab
connects with Google Drive for automated backups, gives free access to specialized
computing resources such as hardware runtime accelerators like graphics processing units
(GPUs) and tensor processing units (TPUs), to enhance computationally intensive ML
simulations. Unlike other IDEs, Google Colab has higher random-access memory (RAM)
runtime option and is already fortified with standard built-in libraries like NumPy, Pandas,
Matplotlib, Scikit-learn, TensorFlow, OpenCV, Keras, and PyTorch, etc., which have been
exclusively preinstalled for Al-based simulations. Google Colab is more powerful, more

flexible, and swifter in command executions.

Simulations to implement the proposed ETD model is carried out using Python in Google
Colab IDE, where the model is constructed by applying it to the SGCC dataset described in
Section 3.2.2. All the Python implementation codes used for simulating the proposed model
can be found in the Appendix. The local computer used in running the simulations has
processor: Intel Core i5-10210U CPU @ 1.60GHz — 2.10GHz, RAM: 8GB, system type: 64-
bit operating system, x64-based processor as specifications. Running the proposed NTLD
model on Google Colab reduces computational overhead on the local computer because of
some of the advantages of Google Colab mentioned in the previous paragraphs. The
training time expended for developing the proposed model is around fifteen minutes using
Google Colab. This could have taken up to two hours if the model had been run directly on
the local computer. Memory usage during the ML simulations is about 3GB using Google
Colab. This could have been up to 7GB using the local computer. The inference speed
(expected prediction time) is about fifteen milliseconds using Google Colab, which could

have been up to 600 milliseconds using the local computer.
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3.2.2 Dataset acquisition and description

The dataset used in this work for ML simulations in developing the proposed model, to
detect NTL in power grids, is an open-source real-world large time-series electricity
consumption dataset. The employed dataset which is provided by State Grid Corporation
of China (SGCC) is available online and could be found in Dai (2018). SGCC is a state-
owned Smart Grid (SG) electric system, and the largest electric utility company in the world
(Wang et al, 2016:379; Zhou et al, 2017:73), with the domain name:
(http://www.sgcc.com.cn). The dataset is widely-used and formidable, and is the most
popular and one of the most-dependable datasets available for carrying out ETD
experiments (Badawi et al., 2022:9; Bai et al., 2023:19; Khan et al., 2024:6; Kim et al.,
2024:8; Liao, Bak-Jensen, et al., 2024). The SG dataset contains unbalanced daily
electricity consumption records, or load profiles of 42,372 electricity customers in kilowatt-
hour (kwh) taken for two years and ten months over 1034 days between Wednesday 01
January 2014 and Monday 31 October 2016. The daily energy consumption of every
electricity consumer in the SGCC dataset represents the total units (in kWh) of electricity

consumed per day by each electricity customer.

The SGCC dataset is well-known, and has been employed extensively by many prominent
researchers in the field of ETD or NTLD in making their contributions to the corpus of
knowledge. This is owing to its being comprehensive, standard, reliable, and effective for
developing ETD or NTLD models as against other available datasets (Khan et al., 2024:6).
The far-and-wide usage peculiarity of the SGCC dataset provides a good and fair ground
for comparing the performance scores obtained through the ETD model developed in this
work and the performance results achieved by the ETD models constructed by other
researchers in the previously published research. The major contribution to knowledge of
this research project is based on benchmarking the results of the proposed model with other
recently developed NTL models in the existing literature. The NTL models in the benchmark
literature (previous works) have also been developed using the same SGCC dataset

employed in this thesis to build the proposed model.

As a typical non-synthesized real data, the consumption profile of the SGCC dataset is
imbalanced (Ghori et al.,, 2020:16034, 16036). The dataset is in Microsoft Excel file in
comma-separated values (CSV) format. Table 3.1 depicts the first ten rows of the employed
SGCC dataset which is used as a prototype in describing the structure of the dataset. The
figure is obtained from Google Colab IDE by invoking the Python codes in Section A.1.2.4
of the Appendix. This was done during the exploratory data analysis (EDA) stage of the ML
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simulations to reveal the characteristics of the dataset, after importing the SGCC dataset
into Google Colab. Other vital information about the SGCC dataset could also be reaffirmed
during the simulations. The first column in the data frame is the CONS_NO column denoting
the consumer identity numbers, the second column is the FLAG column with labels
depicting the NTL statuses of every consumer, while the remaining 1,034 columns which
represent each day of the 34-month period of the load profiling consist of the daily energy

consumption units per the 42,372 electricity consumers contained in the dataset.

Table 3.1: The first ten rows of the SGCC dataset

CONS_NO FLAG 2014/1/1 2014/1/10 2014/1/11 2014/1/12 2014/1/13 2014/1/14 2014/1/15 2014/1/16 ... 2016/9/28 2016/9/29

0 0387DDBAOTE07FDAG6271170F86AD9151 1 NaN NaN NaN NaN NaN NaN NaN NaN .. 1012 9.96
1 01D6177B5DAFFEQCABASEF17DAFC2B84 1 NaN NaN NaN NaN NaN NaN NaN NaN .. 0.00 0.00
2 4BT5ACAF2D8434CFF620B64D0BB43103 1 NaN NaN NaN NaN NaN NaN NaN NaN .. NaN NaN
3 B32ACBCCEDSD805AC053657ABOSF5343 1 NaN NaN NaN NaN NaN NaN NaN NaN .. 6.50 9.99
4 EDFC78B07BA2908B3385C4EB2304665E 1 290 342 381 4.58 356 425 386 353 .. 17.17 10.37
5 6BCFD78138BC72A9BA1BFBOB79382192 1 NaN NaN NaN NaN NaN NaN NaN NaN .. 282 552
6 34C1954AA3703C4F8BDSEAEATCABTBES 1 0.1 053 0.45 051 1.32 0.7 0.12 052 .. 433 246
T 768309BOEB11FD436CEESABFBB4F4COC 1 0.91 0.86 110 0.66 582 347 118 405 .. 236 2.82
8 DOA186208CEB3FBCCF730857COATOBOF 1 NaN NaN NaN NaN NaN NaN NaN NaN .. 3.36 341
9  516954F5FF177CE314656D727FCCBBAS 1 11.02 8.24 7.94 792 8.31 739 827 805 .. 51.36 52.39

The labels in the FLAG column are binary indicators, which are also known as unique values
or target variables in the dataset, to depict whether a particular consumer steals electricity
or not. The consumers labelled or annotated “0” are the honest or benign customers who
do not steal electricity or cause NTL, while the consumers labelled “1” are the fraudulent or
malignant consumers who steal electricity and thus cause NTL in the electric grid (Glauner,
2019:48; Munawar, Javaid, et al., 2022:12; Ali et al., 2023:6, 9; Nayak & Jaidhar, 2023:4).
The “0” label or annotation attributed to honest consumers is also referred to as a negative
label, while the “1” label ascribed to fraudulent consumers is otherwise known as a positive
label. Although, the “0” labels are not shown in the limited data distribution of the SGCC
dataset shown in Table 3.1, but they are definitely in the subsequent rows of the data frame.

Both the “0” and “1” labels represents the classes in the dataset.
The labels or target variables is critical for supervised learning, as it helps models to learn

what constitutes typical usage (periodic usage with label “0”) and abnormal usage (nhon-

periodic usage with label “1”). Periodicity or consistency in energy consumptions typically
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points to non-theft situations, while non-periodicity or inconsistency in energy consumptions
potentially portends fraudulent situations, which may point to theft or illegal electricity usage
(Zheng et al., 2018:1608-1609; Bai et al., 2023:13; Wang et al., 2023:5, 9, 19-20; S. Zhu et
al., 2024:15477). Features like electricity consumption values, temporal attributes, and
labels in the dataset help to detect anomalies in consumptions. The customer information
provided helps to determine which customer is honest or fraudulent. These features
enhance the training of models to allow them learn complex patterns. These patterns help
to distinguish between honest and fraudulent consumptions, enables revenue recovery,

reduces costly manual onsite inspections, and enhance better management of the grid.

From the dataset, 3,615 consumers committed ET, which is equivalent to about 8.5% of the
total consumers, while 38,757 are consumers who did not commit ET, which constitute
around 91.5% of the whole consumers. The fraudulent electricity consumers constitute the
minority class, while the honest consumers comprise the majority class. The labels on the
energy consumption dataset for each electricity consumer have been assigned manually by
the SGCC utility stakeholders after onsite inspections were conducted by their utility
technicians or inspectors to determine the honest and fraudulent consumers (Lu et al.,
2019:5; Khattak et al., 2022:5). As could be seen from the data frame in Table 3.1, some
spaces which are normally supposed to contain units of daily energy consumptions are
rather filled with missing values or undefined values called Not a Number (NaN) (Bohani et
al., 2021:3). Missing values in raw energy consumption datasets used for ETD are common
issues which cause performance impairments of NTLD models (Liao, Bak-Jensen, et al.,

2024). Table 3.1 shows the distribution summary of the employed SGCC dataset.

Table 3.2: Description summary of the SGCC dataset

Description Values

Period of data collection 01 January 2014 — 31 October 2016
Number of days of data collection 1,034

Total number of electricity consumers 42,372

Total number of fraudulent consumers 3,615

Percentage of fraudulent consumers 8.5%

Total number of honest consumers 38,757

Percentage of honest consumers 91.5%

NaNs could occur as a result of faulty smart meters (SMs) or SM failures due to

malfunctioning of device components and/or memory loss, errors from utility members of
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staff, tampering of SMs, data storage issues at the utility end, unplanned system
maintenance, cyberattacks, lag or delay in data registration, corruption of data, unstable or
unreliable data transmissions or fluctuations of SM network, congestion or blockage of
communication, failure or malfunction of sensors and collectors, distribution-line faults, etc.
(Khan et al., 2024:6; Nirmal et al., 2024:3; L. Zhu et al., 2024:259). In essence, all the cases
leading to missing values in electricity consumption datasets as mentioned above are
basically owing to faults that occur during data collections (Mujeeb et al., 2021:128524;
Wang et al., 2023:5). Missing values during the collection of electricity consumption dataset
is unavoidable in reality (W. Liao et al., 2022:3525). Figure 3.1 shows the proportion of
honest and fraudulent consumers in a bar chart, while Figure 3.2 depicts the pie chart of
the distribution of the honest and fraudulent electricity consumers in the SGCC dataset. The
bar chart shows size of the unique values for honest and fraudulent customers, while the
pie chart shows the percentage proportions of the honest and fraudulent electricity
customers in the SGCC dataset.

Bar Chart of Unique Values
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Figure 3.1: Count proportion of the unique values in the dataset
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As mentioned earlier, the unique values in the SGCC dataset are the binary labels “0” and
“1”, which corresponds to the labels attributed to honest electricity customers and those
customers who engage in stealing electricity. The Python implementation codes used to
obtain the bar chart and the pie-chart of the unique values in the dataset as shown in Figures
3.1 and 3.2 can be found in Section A.1.2.3.2 of the Appendix. In both figures, the unique
values “1” and “0” respectively correspond to customers who steal electricity (flagged) and

the customers who did not steal electricity (unflagged).

B 7ero
e one
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Figure 3.2: Percentage proportions of unique values in the dataset

The comparison of the results of the proposed model developed in this thesis and those of
other SGCC dataset-based models in the existing literature is shown in Table 4.2 in Section
4.5.1.1 of Chapter 4. Benchmarking of the results was done with a view to validate the
efficacy of the proposed model in detecting ET with respect to the previously developed
NTLD models in the literature. The proposed model is superior and more potent in detecting
NTLD owing to its higher performance results when compared with the performance results
obtained in the previous research.
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% Justification for the choice of the employed SGCC dataset

The selection of the SGCC dataset for the ETD experiments in this study, rather than
datasets from Africa and some other developing countries, is primarily due to the fact that
SG is still in the developmental phase in these regions, unlike in more developed areas
such as Europe, North America, Australia, and certain parts of Asia. The SGCC dataset
originates from China, a developing country, making it relevant to the context of Africa and
other developing nations. Moreover, there is a general scarcity of standard and labelled
datasets for NTLD in Africa and other developing regions. Despite regional differences in
electricity consumptions, the patterns of ET are universally consistent across geographies.
The SGCC dataset, therefore, reflects the typical patterns of ET that are common globally.

Although absolute consumption levels, such as peak load values, may vary between the
SGCC dataset and those typical in Africa and other developing countries, the underlying ET
patterns are comparable and transferrable. This allows the proposed model (developed
using the SGCC dataset) to be adaptable and applicable for use by utilities in Africa and
other developing regions. Additionally, the SGCC dataset is a widely recognized and
accepted dataset within the NTLD research community, which is frequently used by
prominent scholars. As such, models developed using this dataset can be easily
benchmarked and validated, ensuring the reliability and robustness of the proposed model.
Furthermore, the SGCC dataset is the most popular and one of the most-reliable datasets
for developing NTLD models (Khan et al., 2024:6; Kim et al., 2024:8).

3.2.2.2 Mathematical representation of the dataset

Each feature in the SGCC time series dataset represents the amount of energy used at
certain times by electricity customers, and can be represented as a sequence or a matrix
of readings. The input dataset which is used to develop the proposed ML model for ETD
consists of a sequence of energy consumption values or feature vectors in kWh at a
specified time for every electricity customer represented in the SGCC dataset, as shown in

Equation 3.1.

Xi = [xi,l , xi,Z ,xi,3 . 'xi,L] (31)
Where X; is the feature vector of the daily energy consumptions of an arbitrary electricity
customer i, spanning through the entire time window of the dataset. Considering that L is

the sequence length (i.e., the number of features, time points or time steps in the sequence)
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of each feature vector of an arbitrary electricity customer i in any row of the dataset, then
X ; is the j —th feature or meter reading of a customer i at a particular time (daily in this

case) in the customer’s feature vector as shown in Equation 3.1. The first measured daily

energy consumption feature in the feature vector of an arbitrary customer i recorded on 01
January 2014 is depicted as (x; 1); while the last feature in the feature vector of length L
corresponds to 1,034th day in the dataset, which was registered on 31 October 2016 is
represented as (X; ;) as shown in Equation 3.1. For example, [x11,X12,X13, ..., X1,1034] I
the dataset represents the feature vector of the first electricity customer in the dataset, while

[.X'z’l,xz’z,xz’g, v x2,1034] denotes the feature vector of the second electricity customer in

the dataset, etc. The X; in Equation 3.1 is such that:

X; € RE (3.2)

Where X; is a feature vector with L components of real numbers as depicted in Equation

3.1. For the binary labels attributed to the feature vectors of the energy consumptions of
every electricity customer in each row of the dataset, Equation 3.3 represent the
mathematical denotation of the binary labels.

y; € {0,1} (3.3)

Where y; represents the corresponding binary label or the expected output of the energy
consumptions or feature vector of an arbitrary electricity customer i in any row of the SGCC

dataset. The y; label represents the class of each feature vector belonging of an arbitrary
customer i, where customer i with O label (i.e., y; = 0) belongs to the negative class, while
another customer i with 1 label (i.e., y; = 1) belongs to the positive class. The customers
with O label represents the honest customers who do not engage in stealing electricity or

causing NTL, while the customers with 1 label denotes the customers who engage in ET.

The customer i in Equations 3.1, 3.2, and 3.3 respectively has the possible values i =
1,2,3, ..., N; connoting the number of every sample which also corresponds to the numbers

ascribed to every electricity customer i contained in the SGCC dataset.

Therefore, the equation representing the entire SGCC dataset, which consists of the X;

feature vectors of the energy consumed by electricity customers, and their corresponding
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y; binary labels for each feature vector of customer i in a particular row of the dataset is

illustrated in Equation 3.4 (Li et al., 2019:7; Yan & Wen, 2021; Kawoosa et al., 2023:4805).
D = {(Xll yl)l (Xi+]_l yi+1)l ey (XNI YN)l i = 112131 ey N} (34)

Where D represents the entire dataset, X; illustrates the feature vector or the meter
readings of a particular customer i for the entire duration of the daily energy registrations of

the customer in the dataset, y; denotes the binary label of the particular customer i with

feature vector X;. The value of y; indicates the class (theft or no theft) in which the particular

customer i belongs, while i = 1,2,3, ..., N indicates the number of every sample in the SGCC
dataset which also corresponds to the numbers attributed to each electricity customer i
contained in the dataset. The total number of samples represented as N corresponds to the
total number of customers in the dataset, which is equal to 42,372, according to the total
number of customers represented in the employed SGCC dataset. From Equation 3.4, the

input-output pair (X1,y1) represents a sample or data point of electricity customer 1 with
its feature vector X; and its corresponding label y,, while (Xz,yz) represents a sample or

data point of electricity customer 2 with its feature vector X, and its corresponding label y,,

etc. A sample or a data point in the dataset represents the feature vector of a customer i

with its associated label.

3.3 Development of the proposed CNN-RF model

The proposed CNN-RF model indicates that both convolutional neural network (CNN) and
random forest (RF) models are dynamically integrated to form the resulting hybrid model.
CNN model is hybridized with RF model because the combined model achieves better
prediction results which tends to enhance detection efficiencies and ensure more profits to
electric utilities. For every developed model being simulated, their classification results or
test performances are generated alongside, an aspect which will be discussed explicitly in
Chapter 4. The flowchart of the proposed CNN-RF model is depicted in Figure 3.3, while
the block diagram of the prescribed NTLD model is illustrated in Figure 3.4.

The flowchart and the block diagram show the processes involved in the implementation of
the recommended model. Combining the strengths of directly linked CNN and RF models
in an hybrid layout is more advantageous because CNN models are effective in feature
extraction (Ullah et al., 2020:1599; W. Liao et al., 2022:3520; Khan et al., 2024:16; Nirmal
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et al, 2024:1), while ensemble RF classifier model is endowed with outstanding
classification accuracy as well as high efficiency and robustness (Xu et al., 2019:1, 4; Wang,
2023:505).
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Figure 3.3: Flowchart of the proposed CNN-RF model
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Figure 3.4: Block diagram of the proposed CNN-RF model

To prepare the employed SGCC load profile for Al modelling and simulation, the dataset is
first explored and then systematically preprocessed. The dataset is explored by launching
an inquiry to seek further details about it and to verify whether it has missing values in it or
not. The dataset is later preprocessed by replacing its missing values, scaling or normalizing
its features, and balancing its classes.

3.3.1 Exploratory data analysis and data preprocessing

EDA is the foundation of any data analytics. Datasets must be cleaned before deploying
them for ML predictions. EDA prepares the dataset for preprocessing. EDA and data
preprocessing are the processes involved in cleaning up a dataset before applying any ML
model to such dataset. Data cleansing is done to improve the quality of the dataset and to
improve the accuracy of model predictions when an ML model is being applied to the
dataset. Datasets are explored first during EDA to gain insights and uncover patterns so as
to determine their characteristics. Later the explored datasets are preprocessed to enhance
the training of the model applied to the datasets (Ali et al., 2023:1).
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EDA is all about launching inquiry or digging deep into a dataset to reveal its true nature,
gather general information about it, and then identify its characteristics that may need to be
addressed during data preprocessing. EDA involves checking the shape of the dataset,
checking for missing values in the dataset, and identifying relationships between variables
found in the dataset, etc., to obtain valuable information or gain perception into the given
dataset. EDA leads to data preprocessing after investigating what needs to be fixed in the

dataset being explored.

The more the information gathered about a dataset, or how well a dataset is known during
EDA determines how useful such dataset will be during analytics. Part of EDA also involves
reformatting the dates in our SGCC dataset from the original DD/MM/YYYY date format to
the new YYYY/MM/DD date format. This is in a bid for the date in the SGCC dataset to
conform with the default date format of Google Colab, as implemented in Sections A.1.2.7
to A.1.2.11 of the Appendix. Other implementation processes which may not have been
referred to in this chapter are all contained in the Appendix. Data preprocessing is done to
refine the features in a raw dataset, in a bid to improve the quality of the dataset and also
to enhance the performance and reliability of the ML models that are being applied to the
dataset (Khan et al., 2024:6; Shahzadi et al., 2024:5-6; J. Wang et al., 2024:4; S. Zhu et
al., 2024:15479).

Preprocessing of the SGCC dataset takes place before applying the model to the dataset.
Although, the SGCC dataset has been examined during EDA to discover if there are missing
values in it; however, the mathematical expressions which denote the process of checking
and estimating the number of the missing values in the SGCC dataset is expressed in
Section 3.3.1.1. The dataset is preprocessed by replacing its missing values and
normalizing the features in the dataset (Arif et al., 2022:4; Mehdary et al., 2024:16; Nirmal
et al.,, 2024:3; L. Zhu et al., 2024:259). The replacement of missing values, scaling or
normalization, and resampling methods discussed in Sections 3.3.1.3, 3.3.1.4, and 3.3.1.5
respectively are all processes involved in data preprocessing for cleaning or purifying the

employed dataset to remove the flaws in it (Khan et al., 2024:7).

3.3.1.1 Inspecting the dataset for missing values

The process of checking for missing features or values in the SGCC dataset can be

represented mathematically below:

Let X represent the dataset features with m X n dimension as shown in Equation 3.3.
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X=| : : (3.3)

Where m = number of rows (samples), while n = number of columns (features).

Let the feature or element in the i — th row and j — th column of the dataset be denoted
as X; j. To check for the missing features in the dataset, an indicator function I(Xl-’j) for

each feature is defined in Equation 3.4. Indicator functions are used to check whether

individual features or values are missing or not.

1, if X;;:is a missing value or NaN
(X)) = { f X J (3.4)

0, otherwise

Missing values or features in a specific row i and column j in the matrix of Equation 3.3 can

be checked using Equations 3.5 and 3.6 respectively.

Missing values in row i = )%, I(Xl-’j) (3.5)

Missing values in column j = X% | I(Xl-,j) (3.6)

Where m and n are the total number of features in the i —th row and j — th column
respectively. Equation 3.5 checks how many values are missing in row i, while Equation

3.6 checks for the number of missing values in the column j of the feature matrix of the

SGCC electricity consumption dataset described in Equation 3.3. The total number of

missing values or features in the entire dataset can be determined using Equation 3.7.
Total missing values = %[, Y74 1(X;;) (3.7)

The total missing values in the entire dataset can be found by summing up the results of
the indicator function over all elements in the feature matrix of Equation 3.3, by checking
each cell individually across the rows and columns of the features, to produce a complete

count of all the missing features in the entire dataset. Finding the missing features across
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the rows and columns separately provides the opportunity of iterating over each element or

feature in the feature matrix of Equation 3.3 individually.

3.3.1.2 Interpolation method for replacing missing and undefined values

After establishing that there are missing features or values in the dataset as confirmed in
Section 3.3.1.1, the next thing is to replace the missing values. Missing values in datasets
lead to impairments in ML models, leading to wrong predictions (Munawar, Khan, et al.,
2022:04; Appiah et al., 2023:1; Khan et al.,, 2024:7). To enhance the accuracy of the
proposed CNN-RF model, it is essential to address the missing values. In the SGCC
dataset, these missing values are replaced using linear interpolation, which assumes a
linear relationship among the features in the dataset. Linear interpolation is a technique
widely used in ETD literature for replacing missing values. It is a method used for
determining values between two features in forward and backward directions, and enabling
the connection of dots in a one-dimensional set of features (Huang, 2021:2). When a point
falls between two others, linear interpolation helps estimate its value based on the
surrounding points in the sequence. It is a way of smoothly filling in missing gaps in a
dataset. In essence, linear interpolation fills in the missing values by utilizing the values of
adjacent features. The linear interpolation function is represented by Equation 3.8 (Noor et
al., 2014:279; Aldegheishem et al., 2021:25042). The linear interpolation function of

Equation 3.9 is otherwise known as forward interpolation.
f(x1)—f(x0)
f(x)= fxo) + #(x — Xo) (3.8)

Where (f(xy),xo) are the first coordinate features, while (f(x;),x,) are the second

coordinate features. x is the point at which interpolation is to be performed, while f (x) is
the value obtained after interpolation. Generally, x is the independent variable, while x
and x, are the known values of the independent variables. f (x) is the dependent variable

which depends on independent variable x, while f(x,) and f(x;) are known values of the

dependent variables. The interpolation technique expressed in Equation 3.8 involves

forward and backward directions. This means that:

For forward interpolation, the condition x, < x < x; applies, and the estimated f (x) at

the x position within the range (xg, x1) based on the linear relationship between them is

derived from the known values using Equation 3.8.
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For backward interpolation, the condition x; < x < x, applies, and the estimated f(x) at

the x position within the range (xg, x1) based on the linear relationship between them is

determined using Equation 3.9.
f(xo)—f(x1)
fO)= flx)+ %(x —x) (3.9)

The conditions for forward and backward interpolations determine which method of the
interpolations is to be used depending on the position of x relative to the known values.
Forward interpolation is done using the values before the missing feature and works well
when the missing values are closer to the starting point of the data series; while backward
interpolation is done using the values after the missing feature and works well when the
missing values are nearer to the end of the sample data series. Replacing missing values
or features using backward or forward interpolation helps to improve the continuity and
guality of the dataset. The linear interpolation approach has been considered to be easy
and highly computationally efficient. Generally, the method outperforms non-linear
interpolation techniques for predicting missing values with constant rates (Lepot et al.,
2017:3). Essentially, the robustness and lower computational demand of linear interpolation

method, owing to the regularly spaced features informed the choice of the technique.

3.3.1.3 Normalization of features

After passing through the interpolation stage to fill up the missing values, data normalization
is required next to recalibrate the inconsistent independent-feature values in the dataset
(Khan et al., 2024:9). Normalization is the process of scaling the independent features in
the data frame to a suitable span of values to increase the rate of convergence and time of
execution of ML models (Huang et al., 2024:11; Khan et al., 2024:8). With normalization,
features in datasets are pegged to the same scale for numerical uniformity, such that each
of the feature in the data frame is as important as another, thereby removing the weights
on variables with large range, thus reducing feature dominance and ascertaining fair
contributions from features, so as to alleviate the effect of outliers, and produce a
restructured dataset which ML models can process more easily without any bias (Pamir,
Javaid, Qasim, et al., 2022:56867; Khan et al., 2024:7). Like a typical deep learning model,
CNN model is sensitive to unscaled diverse data (Pamir, Javaid, Qasim, et al., 2022:56867).
Normalization of features is generally important and is required by many ML models to
enhance convergence speed, to stabilize training process, and to improve performance
(Liao, Zhu, et al., 2024:5077).
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Minimum-maximum normalization technique also known as MinMaxScaler, which is used
to transform features typically to values between 0 and 1 has been used to scale the
features in the SGCC data frame (Badawi et al., 2022:5; Lepolesa et al., 2022:39647). After
normalization, the independent features in the dataset are kept to a minimum and maximum
threshold of 0 and 1 respectively. MinMaxScaler has been adopted for this research project
as against other scaling methods like StandardScaler, RobustScaler, MaxAbsScaler, and
QuantileTransformer, because it produced the best model performance when used with the
employed dataset. However, MinMaxScaler is most proficient when dealing with scale-
sensitive models like neural networks and algorithms which are based on gradient descent
(Cheng et al., 2021:7; Guizeni, 2024).

The MinMaxScaler method for normalizing features in the data frame is expressed in
Equation 3.10 (Huang et al., 2024:11; Liao, Zhu, et al., 2024:5077; Mehdary et al., 2024:16;
Nirmal et al., 2024:3).

Xp—min(X)
max(X)—-min(X)

NX) =

(3.10)

Where N (X) is the min-max scaling function that scales each feature in every column X of

the SGCC data frame where the original input feature X, to be scaled is located, min(X) is
the original minimum value in each column X, while {max(X)} is the original maximum value
in the particular column X. The MinMaxScaler technique substracts the original minimum
value {min(X)} from the original value of each feature X, to be scaled in column X, and then
divides it by the range {max(X) — min(X)}, to give scaled evaluation value that lies between
0 and 1, providing linear transformation and keeping relationship among original data range
in every column X being normalized (Patro & Sahu, 2015:20), while also preserving the
shape of the original dataset (Singh & Singh, 2022:1). Range is the difference between the
original maximum and the original minimum values of the features in each feature column
X of the data frame for every feature X, in a particular column that is to be scaled or
normalized. All the features in all the the X columns (a total of 1,034 feature columns) of the
SGCC data frame are hereby scaled accordingly using the MinMaxScaler technique, such
that every input feature or independent variable in the data frame are normalized to values

that range between a minimum of 0 and a maximum of 1.
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3.3.1.4 Balancing the classes in the dataset

Imbalanced datasets contain uneven distribution of class labels (L'Heureux et al.,
2017:7779). Without balancing the classes in the employed real dataset from SGCC,
models trained using the dataset will tend to overfit and thus leading to a bias towards the
majority class (Yang et al., 2023:3; S. Zhu et al., 2024:15483). Overfitting occurs when a
model fails to generalize to unseen or test data, but rather learn patterns that are too specific
to the training data, thus having high training accuracy but poor test accuracy. The two
classes in the SGCC dataset are the theft or positive and non-theft or negative classes
containing daily electricity consumption features. It is obvious from Section 3.2.2 during the
description of the employed dataset that the numbers of customers who did not steal
electricity (majority class) are overly more than those customers who stole electricity
(minority class), giving rise to an imbalanced dataset that needs to be resampled in order
to balance it.

For ML models to effectively classify labelled datasets, a more-effectual method is to
oversample the under-represented samples in the dataset by generating artificial samples
to supplement the minority samples to equal the size of the majority samples in order to
balance the class distribution within the dataset (Ghori et al.,, 2021:98931). A class
balancing method known as the synthetic minority oversampling technique (SMOTE) has
been utilized to oversample the minority theft samples, thereby addressing the class
imbalance issue in the SGCC dataset. SMOTE is a very reliable, powerful, and the most
prominent oversampling technique which has been utilized by many researchers to handle
imbalanced-dataset problems (Elreedy et al., 2024:4903-4904). SMOTE generates artificial
samples of the minority class by interpolating the minority samples and the nearest
neighbours of the minority samples in an effort to balance the distribution of classes in the
dataset (Pereira & Saraiva, 2021:3).

Another means of balancing the classes in the highly imbalanced SGCC dataset is to
undersample the majority class to match the size of the minority class. However,
oversampling of the minority class has been considered in this research since
undersampling the majority class may be counterproductive owing to the lower proportion
of the available theft samples when compared with the non-theft samples (Javaid, Jan, et
al., 2021:49). Since the employed dataset is severely imbalanced, reduction in the
magnitude of the majority non-theft instances using undersampling technique will be
sizeable, which will severely truncate more of the representations of the customer samples

under the non-theft class, leading to loss of vital information (Ghori et al., 2021:98931). This
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will thereby reduce the quality of the employed SGCC dataset and thus increase the risk of
overfitting by the model developed with such dataset which has been diminished through
undersampling. Data-quality reduction will undermine the learning and performance efficacy
of the ML model that would later be trained with the undersampled dataset (Javaid, Jan, et
al., 2021:49).

However, ML models typically perform better when trained with big datasets (Ramezan et
al., 2021:19; Ghosh, 2023), so a reduction in dataset size by undersampling may hamper
the performance of the proposed model. Consequently, the employed SGCC dataset has
therefore been appropriately oversampled using SMOTE to balance the dataset. In general,
imbalanced datasets severely affect the performance and reliability of ML models (Pamir et
al., 2023:3580; Liao, Bak-Jensen, et al., 2024).

% Oversampling using the SMOTE algorithm

To demonstrate the processes involved using the SMOTE algorithm, let D be the employed
dataset with samples and labels, where D = {(X;,y;), (Xi+1,yi+1),...,(XN,yN)} as

illustrated in Equation 3.4, and y; is the class label of the i — th customer sample X; in the
dataset. The SMOTE oversampling technique for generating synthetic samples in an
imbalanced dataset is applied to the minority class and involves identifying the minority
class, selecting the minority class, finding the k-nearest neighbour of the chosen sample
within the minority class, generating the synthetic samples of the minority class by
oversampling a subset of the minority samples, and adding the generated synthetic samples
to the dataset based on the steps described in Farid et al. (2023:83) and Elreedy et al.
(2024:4907), as illustrated in the subsequent paragraphs.

The SMOTE oversampling process starts with identifying the minority class in the dataset

by finding the class with the minimum or fewest number of samples. This is achieved using
Equation 3.11.

Cinin = arg min, | {i:y; = c} | (3.11)

Where C,,;,, is the class that has the minimum number of samples in the dataset (minority
class), arg min. is a notation which indicates that the argument or value of a specific class

(minority class) ¢ that minimizes the given expression | {i: y; = c} |, while the expression
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| {i:y; = c} | itself represents the absolute value of the minority-class samples (c) in the

dataset for which the class label y; is equal to c.

After determining the minority class samples using Equation 3.11 above, then a subset of

the minority class samples which will be used to generate the synthetic data samples is

chosen at random. After this, a sample instance X; from the subset of the selected minority

samples is chosen, where y; = Cpin-

The k-nearest neighbours for each sample X; from the randomly selected subset of the

minority class are determined next using Euclidean distance between the minority class

samples. The Euclidean distance equation expressed in Equation 3.12 is used to determine
the k-nearest neighbours between the minority sample X; and another sample X; from the

feature space of the minority class.

d(X, X;) = 2mes Kim — Xjm)? (3.12)

Where d(X;, X;) is the Euclidean distance between the two samples X; and another

sample Xj in the feature space of the minority class, m is the feature index, while n is the

total number of features in the feature space of the minority class. The value of k determines
the numbers of nearest neighbours that will be considered for interpolation. For the purpose

of interpolation to generate synthetic samples, one of the k-nearest neighbours is chosen

at random. The k-nearest neighbours of sample X; are being determined from the set {Xj
:¥j = Cmun,J # 1}. This set consists of all samples or feature vectors X; that belong to the
minority class (y; = Cpin) €xcept the X; sample which is critical for selecting the nearest

neighbours. The set is used to obtain the k-nearest neighbours of the feature vector X;
within the minority class, with the goal of generating synthetic samples by interpolating

between X; and its neighbouring data points within the set.

Next is the generation of the synthetic samples. For each nearest neighbor Xj, synthetic

samples are being generated along the line connecting the minority class sample X; and
one of its randomly chosen nearest neighbour Xj. This is done to keep the newly generated

synthetic sample within the region of the minority class samples. The synthesized sample
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is generated by selecting a neighbour Xj from the previously mentioned set {Xj: yj = Cin

,J # i}. Therefore, the newly generated synthetic sample is represented in Equation 3.13.
Xnew =X+ 2+ (X, — X;) (3.13)

Where X;,.,, is the newly generated synthetic sample between a minority class sample X;
and one of its nearest neighbours Xj, while A is a unique random number that ranges
between 0 and 1 (i.e., 0 < A < 1), which is a parameter that determines the position of the
newly synthesized data point between X; and X;. If A = X; — X;, then Equation 3.13

becomes:
Xnew = X; + A0 (3.14)

Finally, all the newly generated synthetic samples are being appended or added into the
default dataset. It should be noted thatif A* > 1, SMOTE will allow for extrapolation beyond
the standard interpolation range of the minority class samples on the line connecting the

sample X; and its randomly selected neighbour X;. With A* = 1, SMOTE will generate

more diverse minority samples outside the original range or feature space (i.e.,0 < A1 < 1)

of the minority class samples, with greater risk of generating noisy and unrealistic samples.

3.3.2 Development of the ConvlD CNN model

After the data preprocessing stage discussed in the previous sections, the next stage of the
ETD modelling is feature engineering, which involves feature selection and feature
extraction (Khan et al., 2024:6). For effective ETD, selection of appropriate features is
required to develop a formidable model (Khan et al., 2024:9). There are three types of CNN
model namely one-dimensional CNN (Conv1D or 1D-CNN), two-dimensional CNN (Conv2D
or 2D-CNN), and three-dimensional CNN (Conv3D or 3D-CNN) (Verma, 2019).

Basically, the most common type of the CNN model is Conv2D which is primarily used for
the classification of images (Verma, 2019; Brownlee, 2020). Conv2D requires two-
dimensional input data and a corresponding two-dimensional kernel or filter. Conv3D
requires three-dimensional input data, for example, a three-dimensional image or video and

a corresponding three-dimensional kernel or filter. ConvlD requires one-dimensional input

174



data (e.g. text or time series) and a corresponding one-dimensional kernel or filter. Conv1D
is primarily used with one-dimensional data like the employed SGCC time-series dataset
used in developing the proposed ETD model. The ConvlD network defines the CNN
architecture used to train the employed one-dimensional (1D) SGCC time-series dataset
for binary classification. ConvlD model is chosen as against Conv2D or Conv3D CNN
models because the electricity consumption dataset used in constructing the ETD or NTLD

model is a one-dimensional dataset (Cheng et al., 2021:5; Chung & Jang, 2022:9).

The ConvlD model architecture is built and configured such that the model can accept input
features and also suitable for binary classification to distinguish between the honest and
fraudulent electricity customers. Using the Sequential API in a neural network framework
like TensorFlow and Keras involves a series of steps. This ETD model demonstrates an
example of a 1D-CNN model using Sequential APl in Keras. Figure 3.5 represents the
architecture of the ConvlD model. The architecture of the CNN model includes a
convolutional layer (Conv1D layer), pooling layer (MaxPoolinglD layer), flatten layer, fully
connected (FC) layer or dense layer, dropout layer, and an output layer. The model training
is monitored for accuracy and loss over epochs.

Input Conv1D (ReLU) MaxPooling1D Flatten FC Dropout Output
layer (ReLU) (Sigmoid)

(Feature Extraction Classification
t (CNN) (CNN)

Figure 3.5: Architecture of the Conv1lD CNN model

The choice of 32 neurons with kernel size of 3 for the ConvlD model is a common starting
point for Conv1D layers, especially in the early layers of CNN. Size-3 kernels are noted for
their high polarization exponents and have the lowest decoding complexity among larger

kernels (Ardakani et al., 2021:919). These choices are often used as defaults in many
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architectures and have been found to work well across various tasks, and they strike a
balance between computational efficiency and model complexity for capturing patterns in a
sequential data. Kernel size specifies the dimension of the array of weights in the kernel.
The specified array of weights determines the length of the kernel. A filter is a collection of
kernels (Panchal, 2021). Other hyperparameters of the ConvlD model are 50 epochs, and
30 batch size of training samples. The input layer of 1D-CNN is denoted by the application
of a Convl1D operation on the 1D input data. In this model setup, the CNN learns from the
one-dimensional SGCC time-series electricity consumption data by extracting and training

features from the dataset.

A kernel is a matrix of numbers or weights that convolves or slides over the input tensor to
extract features and produce a feature map (Ganesh, 2019; Wen et al.,, 2021:1641;
Panchal, 2021). During convolution to extract features, the array of input features or a local
receptive field covered by the kernel window are multiplied by the kernel weights, in an
elementwise manner and then later summed up to produce a feature map. A feature map
is the result or output of a convolution operation by a kernel or filter over an entire dataset.
A kernel size of proper length is preferred to obtain a high-quality representation to capture
the salient features in a time series data. For time series classification task using 1D-CNN,
the selection of kernel size is critically important to ensure the model can capture the right-
scale salient features from a long time series input data. Most of the existing work on 1D-
CNN treats the kernel size as a hyperparameter and tries to find the proper kernel size

through a grid search which is time consuming and inefficient.

For 1D-CNN models, the selection of kernel size is essential to capture the required salient
features properly. Since the employed SGCC dataset has only one feature at each time
point or time step, thus each filter in the ConvlD model will also consist of one kernel.
However, the 32 neurons mentioned in the previous paragraph directly relates to the
number of filters in the Conv1D network. Therefore, the convolutional layer of the Conv1lD
model applies 32 1D convolutional filters, each of size 3 at the same time to the input data
during convolution. One-dimensional kernel is typically used to process one-dimensional
input data. Hence, the one-dimensional kernel size 3 or filter size 3 (3-element kernel) used
in the ConvlD model is an array of weights of length size 3, capturing three consecutive
adjacent features at a time from the input data, and extracting features by processing these

captured sequential input data features which a kernel or filter would convolve or slide over.

Forward propagation and backward propagation or backpropagation are the two essential

steps a neural network goes through during training. The first stage of training a neural
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network is the forward propagation phase before the later backward propagation stage
(Medium, 2023). In the forward propagation phase, the input data is supplied into the
network, and the output is thereby calculated by traversing the input across several layers.
The observed or predicted output is then compared with the target output. The difference
between the target and the observed output is used to calculate the error in the ConvlD
network. In backward propagation, the calculated error at the output layer is propagated
back through the network, and the neuron weights are updated iteratively to minimize the
computed error (Jaokar, 2019). The architecture and backpropagation of a neural network

during training is guided based on the nature of the classification task (Ali et al., 2023:12).

3.3.2.1 Forward propagation

Forward propagation in CNN is the process of passing the input feature vectors through the
CNN network layer by layer, whereby the input features are being transformed before being
passed from one layer to the next to produce an output at the final layer (Jaokar, 2019).
Figure 3.6 depicts a simple representation of one complete-forward propagation cycle
through the ConvlD architecture shown in Figure 3.5. Figure 3.6 consists of the input,
hidden, and output layers made of neurons or nodes. The total losses or errors in the
Conv1D network are computed during the forward pass. The input layer involves feeding
the input data into the network, the hidden layer processes the input data, such that each
layer in the hidden layer applies activation functions to a set of weights and biases, while

the output layer produces the final predictions also known as processed data.

Input layer Hidden layer Output layer

W, W,

Figure 3.6: Forward propagation in the Conv1D network

The term W)}, in Figure 3.6 describes the weights of all the neurons in the hidden layer,

while W, represents the weights of all the neurons in the output layer. Apart from the input
layer which constitutes the customer feature vectors from the employed one-dimensional
(1D) time-series electricity consumption data with their target labels, and the output layer
that displays the final prediction of the binary classification, the hidden layer of a CNN model

is composed of convolutional, pooling, flatten, dropout, and the FC or dense layers. At the
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input layer before convolution, the 1D input data which had only sequence length as its
dimension is eventually transformed into a three-dimensional (3D) tensor with the shape
(batch size, sequence length, and number of features or time steps), before it is being fed
into the Conv1D network (MathWorks, 2021). The batch size is the number of samples or
data points that will be fed into the ConvlD network at once, the sequence length is the
number of features contained in each feature vector sample, while the number of features
in this case correspond to the count of the type of features contained in a time step. The
employed SGCC dataset contains one kind of feature (i.e., energy consumptions in kWh)
per time step. Since the input data is a univariate time series data containing one kind of
feature, therefore the number of features at time steps in the employed dataset is one.
Conceptually, the input data is still a 1D data but which has been structured into a 3D tensor
that the Conv1D network can process. This is to allow the model to process data samples
in batches with multiple features at the same time.

« Convolutional layer

The convolutional layer is depicted as Conv1D in the ConvlD model shown in Figure 3.5.
The function of the convolutional layer is to extract local features from the input data and
convolve them into feature maps using kernels or filters (Yang, 2019:151-152). Convolution
operation takes place in the convolutional layer of the ConvlD network using the one-
dimensional electricity consumption input data and kernel weights. The convolution is
carried out with the neuron of each kernel which processes the score of the convolution
operation as described in Equation 3.15 (Zheng et al., 2018:1609; Bohani et al., 2021:3;
Cheng et al., 2021:5; Saripuddin et al., 2021:153; Nawaz et al., 2023:5).

Zj(e) = Zi=1Wi(),j(c) * Xi(i) + bjo) (3.15)

Where:

Zj(c) = Weighted sum processed by the j —th neuron of the kernel or filter at the
convolutional layer,

Wi(),jc) = The weight of the j — th kernel at the convolutional layer applied to the i — th
input feature x;(;) at the input layer,

Xi(i) = The i — thinput feature from the input layer to the j — th neuron of the kernel in the
convolutional layer,

bj(c) = Bias term of the j — th neuron at the convolutional layer,

178



n = The total number of i — th input features connected to the j — th neuron.

The Wy (i) j(c) and bj(c) are learnable parameters and also the stored information in the
network (Ullah et al., 2021:6; Lepolesa et al., 2022:39641), while the product between
Wi(i),j(c) and X;(py (i.e., Wi, je) * xi(i)) is the convolution operation that took place in

the convolutional layer of the ConvlD network between the input features and the kernel
weights (Ullah et al., 2021:6). The sum of the convolutions as processed or computed by
the j — th neuron of each kernel in the convolutional layer, with the addition of the bias term
of the kernel produces the weighted sum. The weighted sum is also known as linear
combination of inputs. A single weighted sum as processed by the j — th neuron of a kernel
in the Conv1D network during convolution produces a single value in the eventual feature
map that the kernel will generate across the whole dataset. Typically, a convolutional layer
contains multiple kernels where each kernel matrix produces its own feature map by sliding
or convolving through the entire input data.

Unlike weights which are transmitted between neurons, biases or bias terms are not
transmitted. Bias terms are additional constant parameters or values which are specific to
every neuron and are being added after applying the weights to the input data during
convolution, to compute the weighted sum. This is done to shift or offset the output of the
neuron, to enable the neuron learn patterns, and also enhance the model to fit to the input
data (Ganesh, 2020; Turing, 2022). The convolution operation produces a 3D feature map
(Dertat, 2017) having the shape (batch size, output length, and number of filters or depth).
The batch size is the number of samples or data points fed into the ConvlD network at
once, the output length or the new sequence length is the number of features in each feature
vector of every input sample after the convolution operation, while number of filters which
corresponds to the number of channels or number of neurons refers to the total number of

convolutional filters used in the Conv1D network.

Besides convolution, another procedure that is very crucial to the convolutional layer is the
activation of the weighted sums using activation functions, as both the convolution and
activation processes forms a combined functionality. Activation functions decide which
features are passed on to the next layer of the Conv1D network and which ones are dropped
(Iftikhar et al., 2024:07). The weighted sum of each feature from the input data as processed
by each j — th neuron of the 32 neurons at the convolutional layer in the Conv1D network
are activated using activation functions. Offsetting the convolved input by adding the bias

term allows the shifting of the input to the activation function, to help in determining whether
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a neuron activates or not even when the input is zero. The bias term combines with the
activation function to enhance nonlinearity, so that neurons can be more flexible to learn
complex patterns, and thereby improve model performances (Ganesh, 2020; Turing, 2022).
Equation 3.16 (Ullah et al., 2021:6; Lepolesa et al., 2022:39641; Ullah et al., 2022:18685)
is the output of the j — th neuron out of the 32 filter neurons after applying activation

function to the weighted sum z; . of Equation 3.15:

Uiy = R(Zj) (3.16)

Where:

Uj(c) = output of the j — th neuron at the convolutional layer after the activation calculation,

R = Rectified Linear Unit (ReLU) activation function.

Activation functions are transformation functions that are used to squeeze or manipulate
the weighted inputs in neurons to generate outputs, by deciding whether the neurons should
be fired (activated) or not (Iftikhar et al., 2024:07). The activation process is like inspecting
and determining whether the provided input information into the neuron is relevant in the
prediction process or should be ignored. The RelLU activation function like other nonlinear
activation functions like softmax, maxout, Swish, hyperbolic tangent (tanh), sigmoid or
logistic activation functions, and RelLU variants like Leaky ReLU (LRelLU), Exponential
Linear Unit (ELU), and Parametric ReLU (PReLU) activation functions introduce nonlinearity
in the ConvlD model (Pamir et al., 2023:3581; Khan et al., 2024:10).

ReLU activation function is the state-of-the art activation function (Montesinos L6pez et al.,
2022:389), and it is chosen among other nonlinear activation functions because it allows
models to learn faster (i.e., faster model training and computation), performs better than
other activation functions, increases nonlinearity, favours backpropagation, and is devoid
of the issues of exploding and vanishing gradients attributable to sigmoid and tanh
activation functions (Saripuddin et al., 2021:153; Gao et al., 2022; Ullah et al., 2022:18686;
Khan et al., 2024:10). Nonlinear activation functions are required by deep learning models
to convert linear inputs to nonlinear outputs in a bid for the model to learn complex tasks

and transform the input to perform better (Kilicarslan & Celik, 2021:1). Essentially, for the
given weighted input Zj(.) from the feature map, the ReLU activation function to activate

the j — th neuron at the convolutional layer using the weighted sum calculated by the j —
th neuron in Equation 3.15 is described in Equation 3.17 (Ullah et al., 2022:18686; Nirmal
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et al., 2024:3), or otherwise expressed using the equivalent piecewise function given in
Equation 3.18 (Lepolesa et al., 2022:39643; Huang et al., 2024:8).

R(zj(c)) = max (0, zj(c)) (3.17)

O, Zj(c) <0

Zj(cyr Zj(c) > 0 (349

R@mﬂ={

Where the Zj(c) (the weighted sum processed by the j — th kernel neuron) in the ReLU

activation function of Equation 3.17 or Equation 3.18 is determined using Equation 3.15
(Cheng et al., 2021:5), before applying the ReLU activation function to it as demonstrated
in Equations 3.16, 3.17, or 3.18. The ReLU activation function maps the weighted sums that
are equal or less than zero to zero and retains the weighted sums which are greater than

Zero.

s Pooling layer

The pooling layer is a subsampling layer in CNN used to minimize redundant features in the
network (Xia et al., 2022:291). After applying activation function to the feature maps, the
resulting features of the Conv1D network can further be downsampled by pooling (Ullah et
al., 2021:6). Pooling is done to further transform (downsample) the kernel outputs (feature
maps) after the application of activation function to the feature maps. The pooling layer is
used to obtain dominant features from the local convolved features by condensing the
numeric arrays generated by the kernels, and thereby reducing the dimensionality of feature
maps while retaining the most important features (Kumar, 2023; Khan et al., 2024:9).
Pooling reduces the dimensionality of feature maps in space, thereby reducing the number
of parameters that the ConvlD model needs to learn (Kumar, 2023). This thereby controls
overfitting and shortens the training time of the model (Kumar, 2023). Maximum pooling
(max pooling) and average pooling are the two available types of pooling methods, but max
pooling performs better than average pooling (Ullah et al., 2021:6; Ullah et al., 2022:18686).
Max pooling returns the maximum values of the activations in the small windows of a feature
map, while average pooling returns the average activation values in the small windows (Li
et al., 2019:6; Ullah et al., 2021:6).

Max pooling is the most common type of pooling used in reducing the dimensionality of

feature maps to reduce computational complexity and increase execution time (Ullah et al.,
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2021:6). MaxPoolinglD has been adopted in the ConvlD network for pooling the features
in the feature map. MaxPoolinglD is used in this work for pooling because the input data is
a 1D dataset. Unlike average pooling that returns average values from each pooling
window, max pooling decreases feature-map dimensions by extracting or returning the
maximum values or the most dominant features of the features in each pooling window of
the feature map. The small window mentioned in the previous paragraph is actually a
pooling window. The pooling window used for ConvlD model has a size of 2 with a stride
length of 2. The size-2 pooling window considers two elements or features at a time in the
feature map and selects the maximum of the two. Stride is the step size or units of the
movement of the pooling window at a time across the adjacent elements in the feature
vector (Kumar, 2023). Since the stride length of the pooling window is 2, it means that the
pooling window moves two steps at a time across the elements in the feature vector during
the pooling without overlapping. Using the employed input 1D time series data, the pooling
equation after applying MaxPooling1D layer to the Conv1D network is described in Equation
3.19 (Li et al., 2019:6; Liao et al., 2022:3519-3520; Gunduz & Das, 2024:10; Liao, Zhu, et
al., 2024:5080).

Y, = max M 3.19
L= max M (3.19)
Where:

Y, = Output of the max-pooling operation at position [ in the feature map,

W, = The pooling window for the set of input features or activations around position £,
max = Max-pooling operation that takes the maximum value from the pooling window W,
Kk = Set of features in the pooling window W/,

M;, = The values of k input features from the feature map M within the window WW/,.

Applying MaxPooling1D, the maximum value in a specified window of the feature map is
selected and taken to the next layer of the Conv1D network, while the other is dropped. The
pooling operation only downsampled the size of the feature map after the convolution

operation, but the pooled feature map retains its 3D shape.

< Flatten layer

The output of the classification process is expected to be in one-dimensional (1D) binary

format. Meanwhile, the shape of the pooled feature map is in a three-dimensional (3D)
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tensor as mentioned earlier, but the next layer after the flatten layer known as the fully
connected layer requires the feature map to be in a 1D feature vector (Dertat, 2017; Yang,
2019:152), so that the FC layer can interpret the feature map correctly before the output
layer finally makes the classification. Therefore, the flatten layer reshapes or rearranges the
multidimensional 3D feature-map array into a 1D high-dimensional vector appropriate for
the fully connected layer (Yang, 2019:155-156; Ullah et al., 2022:18686; L. Zhu et al.,
2024:260). Flattening of the feature-map matrix for each filter can be done by stacking each
matrix of the 3D tensor in a sequential order to form a 1D tensor (Yang, 2019:156). The
flatten layer is non-parametric, that is, it does not learn any parameter but only modify
tensors. The flattening of the 3D feature map from the max pooling layer into a 1D feature
vector can be represented in Equation 3.20.

Fp, = flatten (Y)) (3.20)

Where:

Ffl = Flattened feature vector,

Y, = The pooled 3D feature map from the MaxPooling1D layer,

flatten = Operation that flattens the pooled 3D feature map into 1D feature vector.

It should be noted that what the flatten layer only does is structural rearrangement or
reshaping of the input tensor (i.e., flattening is simply about dimension rearrangements)
without any information or feature change, as the information in the feature map is retained
in the transformed 1D feature map used as input to the fully connected layer in the Conv1D

network.

s Fully connected layer

The FC layer is also known as the dense layer (Pamir, Javaid, Javaid, et al., 2022:11). This
layer outputs the latent features extracted by the convolutional layer before the output layer
makes the eventual classification (W. Liao et al., 2022:3520). The flattened 1D feature map
from the flatten layer, which is the appropriate tensor for the final classification at the output
layer, is fed into the FC layer (Yang, 2019:156). The FC layer contains the aggregate result
of all the features across the entire inputs of the ConvlD network, providing a global
representation of the input features and interpreting these features for the sake of final
classification at the output layer (Ullah et al., 2022:18687). Each neuron in the FC layer is

connected to every other neuron in the previous layer (flatten layer), that is the reason the
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FC layer is referred to as being “fully connected” (Liu & Zhao, 2023:13854). In short, the FC
layer combines all the features learnt in the previous layers and maps them to the output
space for final classification. Equation 3.21 represents the weighted sum of a j — th neuron
at the FC layer (Ullah et al., 2021:6; Ullah et al., 2022:18687).

Zj(re) = Di=1 Wirn,j(fo) " Zirn T bjrey (3.21)

Where:

Zij(fo) = Weighted sum of a j — th neuron at the fully connected layer,

Wi(rD),j(fc) = Weight between the activated i — th neuron at the flatten layer and the j —
th neuron at the fully connected layer,

Zi(f1) = The activated i — th input from the flatten layer,
bj(fc) = Bias term of the j — th neuron at the fully connected layer,

n = The total number of flattened activated Z; (¢, inputs from the flatten layer to j neurons

at the fully connected layer,

The activation of the j — th the neuron at the fully connected layer is represented in Equation
3.22.

Uicre) = R(Zj(re)) (3.22)

Where:

Uj(fc) = Output of the j —th neuron at the fully connected layer after applying the
activation function,

R = RelLU activation function.

The ReLU activation function to activate the j — th neuron at the fully connected layer using
the calculated weighted sum by the j—thneuron as described in Equation 3.21 is

expressed in Equation 3.23.

0, z; <0
_ _ v 4j(fe) =
R(Zj(fc)) - maX(O, Zj(fc)) B {Zj(fc)' Zj(fc) > 0 (3.23)
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< Dropout layer

The dropout layer can be implemented to nodes or neurons at the input layer or nodes
located anywhere within the hidden layer, except to the nodes at output layer (Dertat, 2017;
Yadav, 2022; Pansambal & Nandgaokar, 2023:716, 718). However, dropout layer is usually
implemented between the FC layer and the output layer, to drop or retain the activated
nodes at the FC layer (Park & Kwak, 2017:189-190). The dropout layer performs better
when it is positioned between the fully connected and the output layer. Dropout operation
occurs at the dropout layer but it affects the neurons at the preceding FC layer. Of all the
techniques used for regularizing neural networks, dropout is the most common because it
performs better than other regularization techniques and it is easier to implement (Dertat,
2017; Park & Kwak, 2017:189-190). The dropout layer regularizes the model by randomly
deactivating or dropping some neurons from the previous layer during training by turning off
their activations to prevent overfitting (Iftikhar et al., 2024:07; Khan et al., 2024:9, 13). This
layer also tends to improve the generalization of neural network models by increasing their
accuracies (Dertat, 2017). The dropout equations for the Conv1D network which has been
deduced from the principles described in Srivastava et al. (2014:1930-1934) and
Goodfellow et al. (2016:258-262) is depicted in Equations 3.24 and 3.25. Dropout is done
by retaining or dropping some of the activated neurons at the fully connected layer during

the forward pass, at a particular training epoch.

1

Y scateal ~ 1-P (wigre) © aigan) (3.24)
Where:

Uj(ar) (scaled] = Scaled output at the dropout layer after performing dropout operation on

the i — th input activation U;r) from the FC layer,

Uj(fc) = The i —th input activation to the dropout layer from the FC layer before applying
the binary mask to drop or retain the activation,
Q;(ar) = The dropout mask at the dropout layer applied to the i — th input activation u; s

from the FC layer to either drop or retain the activation,

P = Dropout probability or dropout rate.

The element-wise multiplication between U;(¢cy and a;(gy) (ui(fc) © ai(dr)) as shown

in Equation 3.24 is the dropout operation that took place at the dropout layer which accounts
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for the application of a random binary mask a;g,) (Where Qjqr) € {0,1}) to the
activations from the FC layer during training, to determine which activation from the FC layer

should be dropped or retained. The term (ﬁ) in Equation 3.24 is the scaling factor that
normalizes the output activations when the dropout mask is being applied to the activations
from the FC layer during training. This is to compensate for the dropped activations, to

ensure that the expected value of the output from the FC layer does not change during

testing when the binary mask must have been deactivated. The binary mask @;(q;), which

is applied to the activation U; (g, at the dropout layer (from the FC layer), is generated at

the dropout layer, to determine the eventual output of the activations from neurons at the

FC layer. The mask keeps the activations from the neurons of the FC layer when its value

is 1 and disable or drop them when its value is 0. The mask a; (4, has the same shape as
Uj(fc), and it is generated randomly and multiplied elementwise with U;(¢¢). In another

convention, the term (%) could be used as the scaling factor. In this case, P will be called

keep probability (i.e., probability of keeping an activation from a neuron active) instead of
the dropout probability (or probability of dropping an activation) used in Equation 3.24. In
general, scaling factor ensures that the expected values of activations remain the same
during training (when the binary mask is deployed) and during testing (when the binary

mask is deactivated).

The dropout rate or dropout probability of neurons at the dropout layer in the CNN model is
set at 0.4, which is equivalent to a dropout rate of 40%. This signifies that 40% of the
activations from the FC layer are being disabled during the forward pass to prevent
overfitting, while only the remaining 60% contribute to the output. The dropout is done
randomly at every epoch or iteration during training to prevent model overreliance on a few
numbers of activations from the neurons at the fully connected layer (Dertat, 2017; Yadav,
2022). This in a bid to compel each node in the network to operate independently and
unrestrictedly, to allow all neurons in the network contribute in generating the output, to
improve the performance of the model (Dertat, 2017). Dropout is only activated during
training and disabled during testing. The 1 or 0 value of the dropout mask or binary mask is
determined if the random number generated by a random number generator (which uses a
Bernoulli distribution) for the i — th activation from a neuron at the FC layer during training
is greater or lower than the dropout rate (Yadav, 2022; Pansambal & Nandgaokar,
2023:718). The value of the binary mask becomes 1 if the generated random number is

greater than the dropout rate and becomes 0 if otherwise.
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< Output layer

The last layer of the ConvlD model is the output layer, which is meant to predict theft and
non-theft cases (Shahzadi et al., 2024:11). For the Conv1D model, ReLU activation function
is applied to all other layers within the hidden layer of the CNN network, except the output
layer where sigmoid activation function is used (Iftikhar et al., 2024:07). The prediction
expected of the CNN model is a probability score that ranges between 0 and 1, indicating
a no-theft or theft instance, which falls perfectly under the binary classification task. For the
binary classification at the output layer, the sigmoid activation function is employed because
it is the only activation function that is capable of mapping any input to values between 0
and 1, and is well-suited for tasks involving binary classifications, as against the softmax
activation function which is used for multiclass classifications (Montesinos Lépez et al.,
2022:391; Ali et al., 2023:13). The weighted sum of each neuron at the output layer is
represented in Equation 3.25.

Zj(o) = Di=1 Wi(fo),j(0) " Yi(fe) T bjco) (3.25)

Where:

Zjo) = The output or weighted sum of the j — th neuron at the output layer,

Wi(fc),j(o) = Weight between the i — th input neuron at the FC layer and the j — th neuron
at the output layer,

Uj(fc) = Input activation from i — th neuron at the FC layer to the j — th neuron at the
output layer, which is equivalent to the output of the Uj(fc) neuron from the FC layer after
the dropout operation during training or without dropout during testing,

bj(o) = Bias term of the j — th neuron at the output layer,

n = The total number of activated i — th inputs from the fully connected layer to the j — th

neuron at the output layer.

The classification output y; (or the predicted probability y; of the i — th sample from the

input layer) processed by the j — th neuron at the output layer of the ConvlD model is

described in Equation 3.26.

yi =3 = S(zj0)) (3.26)
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Where the sigmoid function S with respect to Zj(o) (i€, S(Zj(o)), is defined in Equation

3.27 (Ali et al., 2023:12; Nawaz et al., 2023:5).

~ 1
S(zj) =9 = Tl (3.27)

After determining the output of the classification, the loss calculation of the CNN network is
computed next. Loss calculation measures the difference between the classified output and

the expected output. This calculation is crucial for training the Conv1D neural network.

«+ Loss calculation

The loss or error at the output layer of the ConvlD network is being evaluated using the
binary cross entropy loss function expressed in Equation 3.28 (Wang et al., 2023:12; Liao,
Zhu, et al., 2024:5080). The binary cross entropy loss function is generally used for tasks
involving binary classifications, to determine the losses between the observed output and
the expected output (Yang, 2019:148). The primary objective of calculating loss in neural
networks is to try to minimize it as much as possible, in a bid to produce a model that
generalizes better. Loss is calculated based on what the model has predicted as input and

what the actual input is.
Loss(L) = == %I, y; x log(y) + (1 — ;) x log (1 — 3) (3.28)

Where:

y; = True label or target output for the i — th input sample,
y; = Predicted probability for the i — th sample at the output layer of the Conv1D model,
log = Natural logarithm,

N = Total number of samples or data points.

The loss is computed for each sample independently using the predicted or observed output
obtained during the forward propagation and the actual output or true label for each sample.
Each sample or data point in the employed dataset consists of a feature vector and its
associated binary label. After calculating the loss or error by applying the binary cross

entropy, the next phase of the prediction training process is to backpropagate the errors
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into the CNN layers to update the weights and biases, in a bid to minimize the errors in the

network.

3.3.2.2 Backward propagation

Backward propagation or backpropagation commences immediately when the forward pass
is completed. Backward propagation is the process of distributing the total error computed
during forward propagation back into the CNN network from the output layer through to the
input layer. This is to determine how changes in network parameters (weights or biases)
will affect model accuracy, and then these network parameters are later updated in a bid to
minimize the loss function in the network to improve model performance. In other words,
the total error in the CNN model are distributed back into the network during the backward
pass, and the network weights and biases are adjusted and updated accordingly to
minimize losses or errors in the model (Jaokar, 2019). Backpropagation is very crucial to
the training and optimization of the Conv1D CNN model. Losses or errors are the disparities

between the actual targets or labels and the classified outputs.

When training neural networks, gradients are used to minimize loss functions. Figure 3.7
depicts a simple representation of one complete backpropagation cycle through the ConvlD

CNN architecture shown in Figure 3.5.

Input layer Hidden layer Output layer
W, W,
Input layer Errorin Errorin
_) (— . &
error hidden layer output

Figure 3.7: Backward propagation in the Conv1D network

Gradient points are in the direction of the steepest ascent, but since our target is to minimize

losses in the network, we then have to go in the reverse direction of the gradient to ensure
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that the update of each model parameter reduces error in the network (Crypto, 2024).
Hence, this process is referred to as backpropagation. Backpropagation involves back-
passing of gradients from the output layer through to the input layer. To implement
backpropagation, the derivative of the loss function with respect to the predicted output is
calculated first and propagated backward through the CNN layers, followed by calculating
the loss gradients for each layer of the CNN network with respect to every weight and bias
in the network, using the chain rule of calculus. Once the gradients have been calculated,

weights and biases are then updated accordingly using an optimizer.

The weights and biases updates are repeated for multiple epochs until the loss converges
and a desired output performance is achieved by the model. The gradient of the loss
function indicates how a small change in either weight or bias will affect a change in the

loss function.

% Backpropagation through the CNN layers

The purpose of backpropagation is to compute gradients that can help update the
parameters of the CNN network in a way that minimizes the loss function L of Equation
3.28. Equations 3.29 to 3.40 in this section and Equations 3.41 to 3.47 in the next section
convey the processes involved in backpropagation through the CNN layers (Nielsen,
2015:39-118; Goodfellow et al., 2016:300-350; A. Zhang et al., 2021:225-296; Aggarwal,
2023:305-360). The backward-pass equations are written in accordance with the
parameters in their forward-pass equations. Before calculating the gradient of each layer of

the CNN model, the derivative of the loss function expressed in Equation 3.29 is calculated

with respect to the predicted output ¥; first, as depicted in Equation 3.29.

oL _ Vi—Yi
2y yi(1-9;)

(3.29)

Where:

oL

g = Gradient of the loss function L with respect to the predicted output ¥;,
i

y; = Predicted or observed output,

y; = Target or actual output.
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To reduce prediction errors through backpropagation, the gradient of the loss function of
each weight and bias in the CNN network is calculated (Medium, 2023). Gradients are
calculated for each layer of the ConvlD model during backpropagation to update the
weights and biases in the network in order to minimize the loss function. To backpropagate

through the output layer, the gradient of the loss function with respect to the weighted sum

Zjo) at the output layer, which represent the input to the output layer from the FC layer

before activation (as described in Equation 3.26) is expressed in Equation 3.30.

oL _ 0L 0y; _ Yi~Vi
9zjo)y 99; 0zj) Pi(1-9;

) Y A=9)=9—w (3.30)

Where:

3 = Gradient of the loss function L with respect to the weighted sum at the output layer
Z .
j(o)

before applying the activation function,
oL

g = Gradient of the loss function L with respect to the predicted output ¥;,
i

y; = Predicted or observed output,

Y; = Target or actual output.

Equation 3.30 conveys the error or loss between the predicted output label and the actual
input label. The calculated loss gradient is then backpropagated from the output layer into
the dropout layer. Calculated gradients are passed backward through the CNN network to
compute the gradients with respect to weights and biases at each layer, and thereafter the
weights and biases are updated using the computed gradients (Kilicarslan & Celik, 2021:1).
The backpropagation process tend to reduce prediction errors in the CNN model. A network
can be backpropagated by adjusting each weight and bias in the network according to how
much they contributed to the overall error (Jaokar, 2019). The loss gradient of Equation
3.30 calculated at the output layer is backpropagated into the dropout layer as depicted in
Equation 3.31.

oL aL

= a; 3.31
Quire)y  Oujiar) O icar) (3.31)
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Where:

daL

™ = Gradient of the loss function L with respect to the input activation to the dropout
i(fo)

layer from the FC layer,
daL . . .

™ = Gradient of the loss function L with respect to the output of the dropout layer,
j(dr)

A;(dr) = The dropout mask.

It should be noted that the dropout mask Ai(dr) is applied to ensure that only the activations

that were not dropped during the forward pass have their gradients backpropagated into the
dropout layer. After the dropout layer, the gradients are further backpropagated into the fully
connected layer. For the backpropagation to the FC layer, the gradients with respect to
weights, biases and input activations from the dropout layer are propagated back to the FC
layer. Equations 3.32, 3.33, and 3.34 respectively represent the gradient equations with
respect to weight, bias and input activation, which were backpropagated into the FC layer
from the dropout layer.

oL daL
3 = 3 . ui(ﬂ) (3.32)
Wi(fe),i(f Zj(fo
oL daL
= : Zi(fl) (3.33)
djirey  0zZj(ro)
daL oL
= " Wife),i(f) (3.:34)
Ouirry  0zj(ro) ’
Where:
daL
— = Gradient of the loss function L with respect to the weight between i — th
OWi(f1),j(fc)

neuron at the flatten layer and j — th neuron at the fully connected layer,
oL

= Gradient of the loss function L with respect to the pre-activation output of the fully

0zj(fc)

connected layer,
JL , . . . ,

b = Gradient of the loss function L with respect to the bias of the j —th neuron at
jfo)

the fully connected layer,
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oL
dui(sry

= Gradient of the loss function L with respect to the Input activation from the flatten

layer to the fully connected layer,

Zj(fc) = Pre-activation output of the fully connected layer,
Ujrr) = Input activation from the flatten layer to the fully connected layer,

Wi(rD),j(fc) = Weight between i —th neuron at the flatten layer and j — th neuron at the

fully connected layer.

The gradients at the FC layer have been computed using Equations 3.32, 3.33, and 3.34.
However, the gradient of the loss function L with respect to the Input activation from the
flatten layer to the fully connected layer of Equation 3.34 is backpropagated to the flatten

layer, providing the necessary information to adjust network parameters. Equation 3.34
helps us understand how changes in the input to the fully connected layer (ui(ﬂ)) would
impact the overall loss L, enabling updates that would optimize the performance of the

network. At the flatten layer, feature vectors are reshaped back to 3D vectors from the
flattened 1D vectors as shown in Equation 3.35.

oL _ reshape oL (3.35)
ay; - p aFﬂ '
Where:

daL . . . . .
Iy = Gradient of the loss function L with respect to the activations Y; from the pooling
l

layer,
oL

e Gradient of the loss function L with respect to the flattened activations,
fl

oL
reshape = The reshape operation changes the shape of the gradient v, to match the
l
original shape before it was flattened.
Flatten layer is non-parametric and it simply just reshapes the incoming gradient from the

FC layer back into the original shape that matches the initial output of the MaxPoolinglD

layer (before flattening) during the forward propagation.
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Backpropagation to the MaxPooling1D layer from the flatten layer is described in Equations
3.36 and 3.37. In this process, gradients are passed back through the positions that held

the maximum values during the forward pass.

oL _ % (3.36)
auj(c) ay; '
oL . , , . .
oL —, if Y; was a maximum value in the pooling window
— = {0uj 3.37
ay; j© ( )

0, otherwise

Where:

Y Gradient of the loss function L with respect to the output activation of j — th neuron
j(©

from Conv1D layer, which serves as input to the MaxPooling1D layer and corresponds to

maximum value in the pooling window,

daL . . . . .
Iy = Gradient of the loss function L with respect to the output of the pooling operation at
l

position .

The gradients that belong to the non-maximum elements in the pooling window do not
receive any gradient and are thereby set to zero as described in Equation 3.37. This is
because those non-maximum elements or features did not contribute to the output of the
pooling layer during the forward pass. Equations 3.38, 3.39, and 3.40 represent the
backpropagation process to the convolutional (Conv1D) layer.

aL aL
= Yo Xy (3.38)
Wii),j(c) Zj(c)
oL aL (3.3
=Y, _
abjc) 0zj(c)
oL _ oL . w (3.40)
iy 0Zj(0 i(1),j(c) '
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Where:

JL
EN Gradient of the loss function L with respect to each weight W;(;) j(¢) between
i(D,j(0) ’
the input sequence (or feature vector) and the kernel or filter,
JL

0zj(c)

= Gradient of the loss function L with respect to the j — th weighted-sum output Zj(c)

of the convolutional layer,

= Gradient of the loss function L with respect to the bias bj(c) of every j — th kernel

9bji(c)

or filter in the convolutional layer,

daL . . . .

T Gradient of the loss function L with respect to the input sequence to the
i(c)

convolutional layer,

Xi(c) = Input sequence from the input layer which serves as input to the convolutional
layer,

Wii),j(c) = Weight between the input sequence from the input layer and the kernel or filter

at the convolutional layer.

In the convolutional layer, the gradients of the loss function L with respect to the input
sequences, and with respect to the weights and bias of each kernel or filter are calculated.
The gradients calculated in Equation 3.38 are summed over all the [ — th positions in the
feature map where the convolutional kernel or filters are applied across the input sequence.
The gradients calculated in Equation 3.39 are also summed across all the [ — th positions.
The gradients of the loss with respect to the input sequences in Equation 3.40 are passed
back to the input layer. The calculated gradients are then used to update corresponding

model parameters to minimize loss L.

Finally, backpropagation to the input layer completes the backward-pass process. Although
input layer does not have parameters to update, it does receive gradients from the

convolutional layer, which are meant for gradient-flow purposes in the network.

« Optimization approach for adjusting the parameters of the model

Updating or adjusting the weights and biases of the CNN network can be done using three
popular optimization algorithms like Adaptive Moment Estimation (Adam), Stochastic

Gradient Descent (SGD) or Root Mean Square propagation (RMSprop) to optimize the
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network (Javaid, Gul, et al.,, 2021:98694; C. Zhang et al., 2023:1497). However, Adam
optimizer has been used to update the weights and biases of the CNN network because it
is deemed as the best optimization algorithm for neural networks (Javaid, Gul, et al.,
2021:98685). Adam is more robust and preferred than other optimization algorithms
because it is computationally less expensive and easier to implement, can adjust the
learning rate of the model adaptively by reducing the time it takes to train the model with
higher convergence speed, more reliable for noisy, large, and sparse datasets, can handle
sparse gradient issue on noisy data, prevents local-optima trapping, reduces losses, quickly
achieves optimal results with minimal memory requirements, and has the highest accuracy
in terms of performance (Shehzad et al., 2021:128672; Pamir, Javaid, Qasim, et al.,
2022:26864; Bai et al., 2023:12; Naeem, Javaid, et al., 2023:7; Huang et al., 2024:12). For
the stated reasons, Adam optimizer is used in this work to update parameters in the CNN

network.

Unlike gradient descent optimizers that use fixed learning rates, Adam combines both
momentum (using the first moment estimate) and RMSprop (using the second moment
estimate) to create an adaptive learning rate for each parameter (Kingma & Ba, 2015:1, 7,
Goodfellow et al., 2016:294, 308). Adam uses the first and second moments of the gradient
to modify the learning rate for each parameter of the model, allowing it to handle sparse
gradients and noisy data more efficiently. Equations 3.41 to 3.47 illustrate the processes
involved when deploying Adam optimization algorithm to update the weights and biases of
the CNN network (Liu et al., 2023:6; Reyad et al., 2023:17100).

oL
It = 6_Wt (3.41)
me = Pime_q + (1 —B1)ge (3.42)
Ve = Bove—r + (1 — Br) gt (3.43)
My = —~ (3.44)
-
D, = —& (3.45)
1B
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Where:

g¢ = Gradient of the loss function L with respect to weights at the current timestep t,
m; = The first moment estimate at timestep ¢,

mg_q1 = The previous moment estimate at timestep t — 1,

VUt = The second moment estimate at timestep ¢,

Vt—_1 = The previous moment estimate at timestep t — 1,

fr\lt = The bias-corrected first moment estimate at timestep t,

D; = The bias-corrected second moment estimate at timestep t,

[1 = The decay rate for the first moment,

B, = The decay rate for the second moment,

t = Current timestep which increases with every epoch or iteration.

The gradient g; in Equation 3.41 gives the direction and rate of change of L with respect
to each element of W;. During the backpropagation process, the gradient g; is used to

adjust W, in the direction that effectively reduces L, in order to effectively train the model.
This is a fundamental part of the optimization process where gradients are used to update
weights in every epoch. The f3; in Equation 3.42 is the exponential decay rate for the first
estimate which determines how much of the past gradients to consider, while 5, represents
the exponential decay rate of the second estimate which controls how much of the past
squared gradients gZ contribute to the current estimate. The default value of 8, is 0.9, while
that of 5, is 0.999 (Kingma & Ba, 2015:2, 9; Goodfellow et al., 2016:311; Reyad et al.,
2023:17100). The term (1 — ;) in Equation 3.42 controls how much the current gradient

gt influences my, while the term (1 — ;) in Equation 3.43 determines how much weight

the current squared gradient gf contributes to V.

The first moment estimate m; (mean of gradients or moving average of gradients) and the

second moment estimate U; (squared mean of gradients or moving average of the squared

gradients) in the Adam optimizer are initialized to zero at the beginning of training. This can
underestimate actual average gradient and the actual average squared gradient early in the

training, which then cause them to be biased towards zero, especially when only a few
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gradients have been observed. Without correction, this initial zero bias could cause

instability or slow convergence in the early stages. Adam optimizer corrects the zero initial
bias present in m; and U; by applying a bias correction to m; and V; of Equations 3.42
and 3.43 by adjusting the initial bias in order to obtain the bias-corrected values denoted as

Mm; and U; in Equations 3.44 and 3.45 respectively (Reyad et al., 2023:17100).

The initial-zero bias correction ensures that M, and D, accurately represent the true mean
and the variance of the gradients throughout training. The bias-corrected first moment

estimate fflt is essentially the momentum term which is an exponentially decaying average

of past gradients. The bias-corrected second moment estimate ﬁt controls the adaptive
scaling, and it is calculated from the average of the squares of past gradients, to adjust the

learning rate for each parameter. The bias corrections are done by dividing m; by (1 — ,8;)
and dividing v by (1 — ,8;) as described in Equations 3.44 and 3.45, to adjust the initial

zero bias. The bias correction terms (1 — ,82) and (1 — ,8;) do the adjustments to correct
the initial zero bias in a bid to stabilize the optimization process. 5} represents decay rate
f3; raised to the power of timestep t, while B¢ represents decay rate f3, raised to the power

of timestep t. They adjust for the exponential weightings introduced by £, and S, over

multiple timesteps. Equations 3.46 and 3.47 represent the weight and bias updates using
Adam optimizer.

_ mg
Wipi =we—1 N (3.46)
_ My
beyy =br —1 _\/ﬁ_t+e (3.47)
Where:

W11 = The updated weight at timestep ¢ + 1,
W, = The current weight at timestep ¢,

b1 = The updated bias at timestep t + 1,

b; = The current bias at timestep ¢

1 = Learning rate,

fflt = The bias-corrected first moment estimate at timestep ¢,
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D; = The bias-corrected second moment estimate at timestep t,
€= An added small constant to avoid division by zero and ensure numerical stability,

t = Current timestep which increases with every epoch.

The update of the bias term in Equation 3.47 follows the same process as the weight update
in Equation 3.46. The updates are done by combining moment and adaptive learning rate

components. Each weight w and bias b are updated using both first moment ﬁit and
second moment 9,: to achieve adaptive learning rate for each parameter. Dividing by \/ﬁ_t+e
scales the learning rate 1) of each parameter based on the magnitude of recent gradients
and helps the algorithm to converge quickly. The constant € has a default value of 1078,

while the learning rate 1] has a default value of 0.001 (Kingma & Ba, 2015:2; Goodfellow et
al., 2016:311).

After the weights and biases have been updated through the backward pass, the next
forward pass would utilize the updated weights and biases to reduce the total error in the
network, and the process would be repeated iteratively until the error is reduced to a minima
(Jaokar, 2019). Eventually, a set of weights and biases that yield accurate predictions can
be obtained once the error of each weight and bias in the network are minimized by
decreasing them repeatedly over time. After successfully developing the ConviD CNN
model, attempt was also made to further improve the model. In doing this, features from
CNN layers were used to train and test random forest (RF) model in a standalone and hybrid

arrangements.

3.3.3 Random forest

Random forest (RF) is an ensemble learning model, which is developed from a large
number of randomly-constructed decision trees (DTs) called forest, and is trained on
different subsets of training data to make predictions (Xu et al., 2019:4; Wang, 2023:507).
RF is a typical supervised learning algorithm which predicts by collective learning, and is
known for high efficiency, robustness, and outstanding classification accuracy (Wang,
2023:505). Random forests are quick and simple to implement, deliver highly accurate
predictions, and can manage a large number of input variables without the risk of overfitting
(Fawagreh et al., 2014:605).
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RF model uses a bagging (bootstrap aggregating) technique by training multiple DTs on
different random subsets of the training data, creating a wide array of decorrelated trees, in
a bid to reduce variance in the model and increase robustness and accuracy (Breiman,
2001:5). The random feature selection at each split within a tree adds an additional layer of
randomness, making RF even more diverse and less likely to overfit when compared with

simple bagging methods.

RF model will randomly sample subsets of the training data to build each of the fifty DTs (as
used in this project) in the forest. Once all the trees in the model have been trained, RF
combines the predictions from each of these trees to make the final prediction. For
classification tasks, the final prediction of the RF model is determined by selecting the most
common class out of the predicted class among the DTs in a process called majority voting;
while for regression tasks, the final output of RF model is determined by the prediction
average from of all the DTs in the model (Fawagreh et al., 2014:604; Wang, 2023:507). The
equation of the RF model for classification is depicted in Equation 3.48, while the equation
of the RF model for regression is expressed in Equation 3.49 (Wang, 2023:507).

5)1' = mOde(Tl(Xi);TZ(Xi)) JTK(XL)) (348)
9 =~ XK1 Tie (X)) (3.49)
Where:

¥; = The final predicted class,
K = The total number of decision trees in the random forest,
T (X;) = The prediction made by the k — th decision tree for the input feature vector X;,

mode = The most common class label predicted by the K trees.

While the trees in the RF grows to its full depth, the total number of K trees in the forest of
the RF model is set at 50, while the random state which indirectly controls randomness in
the model to ensure reproducibility is set at 42. It is important to mention that aside the
thorough and excellent data preprocessing carried out on the employed SGCC dataset used
in developing the proposed model, the train-validation-test split of the large dataset,
applying dropout regularization to the CNN model, and the deployment of ensemble RF as

final classifier are enough to mitigate any potential overfitting issues that may arise within
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the proposed model. The hyperparameters of the CNN and RF models are summarized in

Table 3.3.

Table 3.3: Hyperparameters for the CNN and RF models

CNN

RF

Kernel or filter size = 3

Stride of kernel or filter = 1
Batch size = 30

Number of kernels or filters = 32
Padding =0

Number of trees = 50

Maximum depth = default
Minimum samples split = 2
Maximum terminal nodes = default

Minimum samples leaf = 1

Size of pooling window = 2 Maximum samples: default

Stride of pooling window = 2 Maximum features = default
Optimizer = Adam
Activation functions = ReLU, Sigmoid
Dropout rate = 0.4

Learning rate = 0.001

Number of epochs = 50

3.3.4 Leveraging the combined strengths of CNN and RF models

When the strengths of deep CNN and ensemble RF models are being combined, the deep
feature extraction capability of CNN and the robust classification ability of RF are being
leveraged. The resulting composite CNN-RF model which is derived from infusing features
from CNN layers to train RF classifier model operates in two stages. In the first stage, the
CNN performs feature extraction, while the RF makes the final classification in the second
stage based on the extracted features. CNNs are effective for feature extraction (Ullah et
al., 2020:1599; W. Liao et al., 2022:3520; Khan et al., 2024:16; Nirmal et al., 2024:1), while
RF is excellent in classification (Xu et al.,, 2019:1, 4; Wang, 2023:505) and avoids the
overfitting problem peculiar to imbalanced datasets (Ghori et al., 2023:15335). Hence, this
research project explores the individual strength of each model to improve ETD. In real-
world scenarios, datasets can be noisy and contain outliers. RF is robust to noisy data, and
is also known for its ability to handle missing values, outliers, and still provide accurate
predictions (Fawagreh et al., 2014:602; Xu et al., 2019:1, 4). The stated characteristics of
the RF classifier make it a good fit for ETD in classifying honest and fraudulent electricity
customers. A blend of CNN and RF synergize efficiently and effectively in producing a

composite ETD model, which is more robust than individual CNN and/or RF models.
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The convolutional (Conv1D) layer of the CNN network performs convolution operation on
the input data to extract structured convolved features from it. The extracted features (high-
dimensional feature maps) from the convolutional layer then serves as input into the RF
classifier. RF models work better with more structured convolved features like the Conv1lD
layer-extracted features instead of raw input data. To ensure compatibility with RF format,
the extracted three-dimensional (3D) feature maps from the ConvlD layer are reshaped
into two-dimensional (2D) feature maps for RF training and testing, as implemented in
Section A.1.4.4 of the Appendix. In this work, three instances of model developments were
carried out. In the first instance, ConvlD model was trained as tested separately as
previously discussed in Sections 3.3.2, 3.3.2.1, and 3.3.2.2. In the second instance, RF
model was trained and tested as a standalone model with static pre-extracted features from
the ConvlD layer of the separately pretrained CNN model. In the third instance, features
were extracted dynamically from the Conv1D layer of the CNN model into an RF model, in
an adaptive joint arrangement as shown in Figure 3.8, to form the hybrid CNN-RF model.
The three instances of model developments were carried out to check which of the models
would performs best. Eventually, the integrated model proves to be more efficient than the
standalone CNN and RF models in terms of its performance results.

tree 1
\\
f tree 2
\\
+ —_
tree n
K
Input Conv1D (ReLU) Output

Feature Extraction Classification
(CNN) (Random Forest)

Figure 3.8: Architecture of the proposed CNN-RF model

In the eventual architecture of the proposed hybrid model shown in Figure 3.8, CNN and
RF are trained together as a single model by combining the strengths of CNN and RF.

Instead of using FC layer for classification in a conventional CNN architecture shown in

202



Figure 3.5, RF is used instead, in a hybrid CNN-RF network displayed in Figure 3.8. In the
CNN-RF hybrid model, CNN adjusts and dynamically updates and adapts the extracted
features used to train the RF (based on the feedback from RF), in a bid to improve RF
classification. Empirical studies have shown that connecting the RF model to the Conv1D
layer (Layer 1 of the CNN network in this case) is often optimal and preferable for producing
superior results (Munawar, Khan, et al., 2022; Gunduz & Das, 2024). This is because the
convolved features retain rich spatial patterns in a compact form while reducing noise and
dimensionality in the data to enhance classifier performance. Features extracted from
Convl1D layer also preserves low-level and mid-level representations before excessive
transformation. These characteristics make the ConvlD layer-extracted features more
suitable for a traditional ML classifier like the RF ensemble model.

The CNN features imputed into the RF classifier from the ConvlD layer is expressed in
Equation 3.16, while the RF model which ultimately does the classification to predict the
honest and fraudulent electricity customers is described in Equation 3.48. Extraction of
features from the Conv1D layer to train RF model can be implemented by running the codes
in Section A.1.4.2 of the Appendix. The combination of CNN and RF leverages the strengths
of the deep learning (CNN) model for feature extraction, and the ensemble (RF) model
reduces overfitting and improves generalization. The results of the CNN-RF model shows
that the performance of the proposed model is comparatively better than the individual
performances of either the CNN or RF model, and also better than the results of all the
previous SGCC dataset-based ETD models developed in the existing literature, as
explained in Sections 4.2.1 and 4.2.3 of Chapter 4, and as also shown in Table 4.2 of the

same chapter.

In a bid to check whether the efficiency of the proposed model could further be improved or
not, concatenation of the Conv1D and MaxPooling1D layers of the CNN network is done as
shown in Figure 3.9, to better enrich the features used to train and test the RF model. To
achieve this, a variant of the proposed CNN-RF model termed CNN-RF (concatenation)
model is developed, to explore whether or not the enriched features may further improve
the efficiency of the proposed CNN-RF model. Concatenating features from multiple pairs
of convolutional and max pooling layers before feeding them into RF model can enrich and

improve the feature set for RF training (Yu et al., 2022).
The CNN-RF (concatenation) model is built when the output features of the concatenation

of three pairs of ConvlD and MaxPoolinglD layers are fed from the last MaxPooling1lD

layer (Layer 6 of the CNN network in this case) into the RF model to train and test it. The
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Python codes which show the implementations of the proposed CNN-RF model are
presented in Sections A.1.1 to A.1.8 of the Appendix, while the codes used to implement
the variant CNN-RF (concatenation) model can be found in Section A.1.9 of the Appendix.
The performance scores of the proposed model are marginally greater than the
performance scores of the variant model, as revealed in Table 4.1 in Chapter 4. Since the
proposed CNN-RF model proves to be a bit more efficient than the CNN-RF (concatenation)

model, the proposed CNN-RF model is thus preferred.

ConviD-1  MaxPooling1D ConviD-2  MaxPooling1D ConviD-3  MaxPooling1D

3.4

(ReLU) 1 (ReLU) 2 (ReLU) 3
Feature Extraction Classification
(CNN) (Random Forest)

Figure 3.9: Architecture of CNN-RF model with concatenation of layers

The proposed CNN-RF hybrid model is a promising solution for ETD, especially in
developing regions. However, its real-world effectiveness depends on overcoming data
limitations, computational constraints, and the need for periodic model updates. Obtaining
standard and labelled dataset especially in Africa and other developing countries can be
very challenging. The constituent CNN model of the hybrid model introduces computational
overhead when using local computers with limited computational resources especially
during training. The proposed model requires continuous monitoring and periodic retraining

to maintain detection accuracy.

Performance metrics used in evaluating the developed models

It is necessary to choose the performance metrics that suits the goal of this research project
in a bid to determine the efficiency and reliability of the obtained results (Poudel &
Dhungana, 2022:117). The aim of the research project is to reliably detect electricity thieves
by profoundly reducing false positives (FPs), and to lessen the high operational cost
incurred by the electric utilities with respect to FPs (Messinis & Hatziargyriou, 2018:259,
264; Saeed et al., 2020:6). While high FPs accrue huge cost to the utilities in terms of onsite-
inspection costs during NTL mitigation efforts (Aldegheishem et al., 2021:25051; Pamir,

Javaid, Qasim, et al., 2022:56866, 56870), reduction of false negatives also translates to
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corresponding increase in NTL detection (true positives), which allows for the apprehension
of more electricity thieves. Apprehension and prosecution of electricity thieves reduce NTL,
and assist in generating more revenues for the utilities. Selecting appropriate performance
evaluation metrics for ETD models is crucial for assessing the effectiveness of the
developed model. The choice of performance metrics for the evaluation of the developed
ETD models is based on those metrics that can give reliable results even with imbalanced
datasets, and are also able to better predict those customers who steal electricity. Reliable
performance results prevent unnecessary and costly onsite inspections which spike huge
revenue losses to the utilities (Ghori et al., 2020:16034:16041). Traditional NTL method
involves general inspections of all electricity consumers; a measure which is very expensive
and inefficient (Zheng et al., 2018:1606; Liao, Zhu, et al., 2024:5075).

When dealing with class-imbalanced datasets, It is imperative to use different types of
metrics to ascertain reliable results (Messinis & Hatziargyriou, 2018:259; Saeed et al.,
2020:6; Poudel & Dhungana, 2022:115). However, the use of different performance metrics
ascertains the reliability of classifiers (Ali et al., 2023:14). Therefore, the performance
metrics used for the evaluation of the developed ETD models are precision, recall, and F1
score, accuracy, Matthews correlation coefficient (MCC), area under receiver operating
characteristic curve (AUC), and area under precision-recall curve (PR-AUC). Other metrics
also being considered are true negative rate (TNR), false positive rate (FPR), and false
negative rate (FNR). The prediction values of all the other performance assessment metrics
range between 0 and 1, except for MCC which ranges between -1 and 1. In general, the
closer the prediction values of an ETD model to 1, the better the performance of such model,
indicating that the model is good and generalizing well, except for FPR and FNR which is
vice versa. The closer the values of FPR and FNR to zero, the better the performance of
such ETD model.

However, It is very vital to note that the choice of evaluation metrics should align with the
specific goals and constraints of the ETD problem, as their applications may vary from one
use case to another. Therefore, it is crucial to understand the trade-offs and choose the
metrics that corroborate best to the business objectives and priorities of the electricity
providers. Ultimately, detection of ET done in a bid to considerably purge the grid of NTL is
the main priority of all electric utilities. The evaluation measures used for the assessment

of the developed ETD models have been carefully chosen to align with this objective.
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3.4.1 Confusion matrix

Confusion matrix is a performance indicator table that contains the result summary or the
performance breakdown of a binary classifier using machine learning (ML) (Xia et al.,
2023:6; Mehdary et al., 2024:19). It is used primarily for evaluating the performances of
classifier models (Hussain et al., 2022:1269; Farid et al., 2023:84). Performance metrics of
ETD models are being determined from the confusion matrix (Gul et al., 2020:13; Khan et
al., 2020:15; Kawoosa et al., 2023:4807).

Confusion matrix contains the actual class and the predicted class from the test samples as
predicted by ML models. ML models produce four possible prediction results in a confusion
matrix that include true positive (TP), true negative (TN), false positive (FP), and false
negative (FN) (Pamir et al., 2023:3586; Khan et al., 2024:12). A typical 2x2 confusion matrix
which gives the summary of ETD or NTLD binary classification results is shown in Table 3.4
(S. Zhu et al., 2024:15487).

Table 3.4: Confusion matrix

Actual class
Predicted class Negative (0) Positive (1)
Negative (0) True negative (TN) False negative (FN)
Positive (1) False positive (FP) True positive (TP)

In Table 3.4, honest or benign electricity customers are referred to as ‘negative’ and can
also be depicted by “0” label, while electricity thieves or fraudulent customers are denoted
as ‘positive’ and can also be labelled as “1” (Ali et al., 2023:6, 9; Nayak & Jaidhar, 2023:4).
The TN, FN, and FP, TP in the columns under the predicted class represent the outcome
of ML predictors, while the TN, FP, and FP, TP in the columns of the actual class show the
NTL statuses of electricity customers given by utility technicians after onsite inspections (Lu
et al., 2019:5; Khattak et al., 2022:5). TPs are the actual values of positive samples
(electricity thieves) which the NTLD classifier has correctly predicted as positives, TNs are
the actual values of the negative samples (honest electricity consumers) which the ETD
model has correctly predicted as negatives, FP is a type of classification error made by ML
classifiers where actual negative values have been misclassified or mispredicted as positive
values, FN is another type of classification error made by ML classifiers in which actual
positive values have been misclassified as negative values (Khan et al., 2024:12; Mehdary
et al., 2024:19).
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In summary, TPs are actual electricity thieves or fraudulent consumers who cause NTL,
while TNs are honest electricity consumers who neither engage in theft nor cause NTL. FPs
and FNs are errors made while classifying into TPs and TNs (Messinis & Hatziargyriou,
2018:259; Saeed et al., 2020:6; Mehdary et al., 2024:19).

3.4.1.1 Precision

The precision metric or positive predictive value (PPV) measures the proportion of correctly
predicted positive or theft cases among all the instances the NTLD model has predicted as
positives (Lepolesa et al., 2022:29647; Ghori et al., 2023:15336). In the context of ET,
precision is important to minimize false alarms or FPs, and reduce the effect of unnecessary
inspections in order to lessen the consequences of high operational costs attributable to
FPs (Aldegheishem et al., 2021:25051; Pamir, Javaid, Qasim, et al., 2022:56866, 56870).
High precision ensures that positively flagged cases are more likely to be actual thefts
indicating low FPs (Ali et al., 2023:14). In simpler terms, precision is a measure of how
accurately the ETD model predicts the positive samples. The precision evaluation metric is
the ratio of the predicted TPs to that of the total number of predicted positives (TP + FP) as
expressed in Equation 3.50 (Huang et al., 2024:12; Iftikhar et al., 2024:10).

TP
TP+FP

Precision = (3.50)

In a binary classification problem, the precision evaluation metric is useful when the focus
of the prediction is to minimize FPs. Higher precision values indicates that the models that
produce such performance results have low FPs (Ali et al., 2023:14), signifying that positive
samples are accurately identified. Precision is the ability of a model to avoid or ignore
irrelevant data, that is, the ability of the model to minimize the incorrect classification of

negatives as positives.

3.4.1.2 Recall

Recall or true positive rate (TPR) or sensitivity is the measure of the proportion of the actual
positive samples (or actual number of electricity thieves or fraudulent consumers) that have
been correctly identified or predicted by the model as positives out all the available actual
positive samples (Khan et al., 2023:544). Higher recall values depict low false negatives
(FNs) (Ali et al., 2023:14), indicating that the model is good at identifying large proportion
of positive or fraudulent cases. The recall metric is shown in Equation 3.51 (Khan et al.,
2023:544; Iftikhar et al., 2024:10).
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TP
TP+FN

Recall = (3.51)

Recall is the ability of a model to identify the relevant data, that is, the ability of the model

to minimize the incorrect classification of positives as negatives.

3.4.1.3 F1score

The performance metric called the F1 score or F-measure aggregates recall and precision
into a single value called harmonic mean or weighted average, to maximize precision and
recall, and provide a balance between them (Bohani et al., 2021:5; Xia et al., 2023:6). This
metric is particularly important when a balance between precision and recall is intended,
especially when evaluating models with imbalanced datasets or datasets with uneven
distribution of class (Khan et al., 2020:15; Saripuddin et al., 2021:154; Mehdary et al.,
2024:19). Higher F1 score values indicate that there is a strong balance between precision
and recall suggesting that the model is reliable and performing well. F1 score can be
evaluated using Equation 3.52 (Fei et al., 2022:4).

2TP
F1lscore = ——— (3.52)
2TP+FP+FN

Precision, recall, and F1 score are commonly used evaluation metrics in the ML community.
Using these metrics makes it easier to compare the performances of models being

considered with other similar models or benchmarks.

3.4.1.4 Accuracy

Although, accuracy is the most popular and most-frequently used performance assessment
metrics used in the world of ML, but it is very susceptible to class imbalance, cause
overfitting of the majority class, and hence convey misleading or unreliable results (Khattak
et al., 2022:11; Ghori et al., 2023:15336). Based on class imbalance or imbalanced dataset
problem, a model may have a higher accuracy, but the model may still not be viable or
useful owing to unequal label distribution in the dataset. The accuracy metric is eventually
considered for the evaluation of the NTLD models in this research project because the
SGCC dataset used in developing the models has been oversampled and balanced.
Equation 3.53 depicts the mathematical expression of the accuracy metric (Fei et al.,
2023:5; Iftikhar et al., 2024:10).
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TP+TN

— (3.53)
TP+TN+FP+FN

Accuracy =

Accuracy, as defined in Equation 3.53, represents the proportion of correct predictions out
of the total number of predictions. In general, higher accuracy indicates a better-performing
model, except in cases of imbalanced data. Accuracy is a good metric in evaluating
classification models when the datasets used in developing the models are balanced.
Real-world datasets used for ETDs or NTLDs often suffer from class imbalance, where the
number of non-theft instances significantly outweighs the theft instances (Ghori et al.,
2020:16034, 16036). In such cases, adopting accuracy as a performance metric could be
misleading. In ETD experiments, imbalanced datasets are capable of causing overfitting if
the dataset is not well balanced using appropriate class-balancing techniques. Therefore,
a model predicting all instances of non-theft with an imbalanced dataset could still achieve
a high accuracy because the accuracy metric is naturally biased towards the majority class
(Aslam, Javaid, et al., 2020:4; Khan et al., 2020:9).

3.4.1.5 True negative rate

TNR or specificity is the measure of the proportion of actual negative samples (or actual
number of honest electricity consumers) which have been correctly predicted as negatives
out of all the available negative samples (Khan et al., 2020:15; Ghori et al., 2023:15336).
Equation 3.54 shows the mathematical expression of TNR (Gunduz & Das, 2024:14).

TN
TN+FP

TNR =

(3.54)

The greater the value of TNR, the better the ETD or NTLD model that produced such score.

3.4.1.6 False positive rate

The FPR metric is the measure of the true negative samples that have been misclassified
or predicted wrongly as positive by the ML model out of all the available instances of
negative samples (Ghori et al., 2023:15336; Khan et al., 2023:544). FPR can be calculated
using Equation 3.55 (Huang et al., 2024:11).

FP
FP+TN

FPR = (3.55)
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FPR needs to very low to ensure an efficiently working ETD model and to enhance lower
onsite inspection costs (Pamir, Javaid, Qasim, et al., 2022:56870; Xia et al., 2023:10).

3.4.1.7 False negative rate

The FNR metric is the measure or ratio of actual positives samples which have been
misclassified or mispredicted as negatives by the classifier out of all the available instances
of positive samples (Hussain et al., 2021:4431; Ghori et al., 2023:15336). FNR is expressed
in Equation 3.56.

FN
FN+TP

FNR =

(3.56)

The lower the value of FNR becomes, the better and more reliable the ETD or NTLD models
producing such desired scores.

3.4.1.8 Matthews correlation coefficient

The Matthews correlation coefficient (MCC) is the most reliable metric used to determine
the performance of models developed with datasets of imbalanced classes (Kulkarni et al.,
2021:534), as the metric is insensitive to class imbalance (Glauner, 2019:90), and is very
reliable to check quality of predictions. MCC can be evaluated using Equation 3.57 (Khalid
et al., 2024:11; X. Wang et al., 2024;2186).

TPXTN-FPXFN
MCC = \J(TP+FP)(TP+FN)(TN+FP)(TN+FN) (3.57)

The prediction values of MCC ranges between -1 to 1 (Ghaedi et al., 2022:68; Khalid et al.,
2024:11). MCC value or score of -1 indicates incorrect prediction, MCC value of 0 indicates
no prediction, MCC score close to 1 is a good prediction indicating that the model producing
such prediction is working well and that all the categories of the confusion matrix (TP, TN,
FP, and FN) produce good prediction results, while MCC value equals to 1 indicates a
perfect model producing a perfect prediction, which is rare and unrealistic (Ghaedi et al.,
2022:68; Khalid et al., 2024:12).

3.4.1.9 Areaunder receiver operating characteristic curve

Area under the curve (AUC) is the area covered by the receiver operating characteristic
curve (ROC) (Ali et al., 2023:13; Xia et al., 2023:6; Liao, Bak-Jensen, et al., 2024). The
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ROC curve is a graph generated by plotting the TPR against the FPR (Ali et al., 2023:14;
Xia et al., 2023:6; Iftikhar et al., 2024:10; Liao, Bak-Jensen, et al., 2024). It is a useful metric
to assess the overall discriminative power or performance of a model (Pamir, Javaid,
Qasim, et al., 2022:56873). AUC evaluates the capacity of a model to discriminate between
theft (positive) and non-theft (negative) instances. AUC is a summary of the trade-off
between precision and recall values of a model (Khan et al., 2020:15), and gives a reliable
model assessment when dealing with highly imbalanced datasets (Khan et al., 2023:544;
Itikhar et al., 2024:10). A higher AUC closer to 1 indicates a better ability in ranking
randomly-chosen fraudulent or positive samples higher than negative samples, therefore
indicating better ETD performance (W. Liao et al., 2022:3521; Liao, Bak-Jensen, et al.,
2024).

Several confusion matrices are created under varying classification thresholds. Separate
values of TPR and FPR are also calculated and obtained through the several confusion
matrices. The ROC curve can be generated by plotting the different values of TPRs against
the varying values of FPRs obtained under different classification thresholds that range
between 0 and 1, showing trade-off between TPR and FPR (Xia et al., 2023:6; Liao, Bak-
Jensen, et al., 2024). The implementation of AUC in Python for the individual CNN, RF, and
the combine CNN-RF models are depicted respectively in Sections A.1.3.6, A.1.5.6, and
A.1.6.4 of the Appendix. The AUC result of the NTLD models obtained through simulation

has been presented as the AUC value.

The AUC performance score is realised in Python by implementing Equation 3.58 (Huang
et al., 2024:12; Liao, Zhu, et al., 2024:5080). The AUC performance metric demonstrate
that positive samples are rated higher than negative samples (W. Liao et al., 2022:3521;
Liao, Bak-Jensen, et al., 2024)

M(1+M)
YiePositiveClass Rank;—

AUC = = (3.58)

MXN

Thetermi € PositiveClass as shown in Equation 3.58 represents that sample i is a positive
sample and therefore belongs to the positive class; Rank; is the number of samples which
the prediction value of sample i exceeds when the samples are being arranged in
ascending order according to the prediction scores of the positive samples (Zheng et al.,
2018:1611; Khan et al., 2020:15). The terms M and N are the number of positive and
negative samples found in the positive class (Bai et al., 2023:14; Khan et al., 2023:544).
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3.4.1.10 Areaunder precision-recall curve

3.5

The area under the precision-recall curve (PR-AUC) is the area under the plot of precision
against recall at varying thresholds (Kulkarni et al., 2021:533; Ali et al., 2023:14; Khan et
al., 2024:12). PR-AUC is more reliable and appropriate when evaluating models with
imbalanced datasets (Khan et al., 2020:15; Gao et al., 2024:16). Several confusion matrices
are created under varying classification thresholds. Separate values of precision and recall
are also obtained through the several confusion matrices.

The precision-recall curve is a plot that shows the trade-off between precision and recall,
and is drawn by plotting the varying values of precisions against the different values of
recalls obtained under varying classification thresholds (Calvo et al., 2020:7; Khan et al.,
2024:12). The classification thresholds range between 0 and 1 (Sun et al., 2023:15; Khan
et al., 2024:12). The area under the precision-recall curve is known as PR-AUC. The
implementations of the values of PR-AUC in Python for CNN, RF, and CNN-RF models are
depicted respectively in Sections A.1.3.6, A.1.5.6, and A.1.6.4 of the Appendix. The PR-
AUC results of the developed models obtained through simulation has been presented as
the PR-AUC value. The Python program executed the PR-AUC scores using Equation 3.59
(Gao et al., 2024:16).

PR — AUC = Y% ;(Recall; — Recall;_;) X Precision; (3.59)

Where m depicts the total number of thresholds contained within the precision-recall curve,
Recall; and Precision; are the precision and recall scores at i — th threshold, while

Recall;_4 is the recall score of the previous threshold.

Conclusion

The proposed NTLD model developed in this thesis is a hybrid model termed CNN-RF
model. The methods employed in developing the proposed ETD model have been explicitly
discussed in this chapter. After rigorous trial of several ML models in a bid to achieve better
NTLD results, the proposed model has been discovered to give the best performance
results when compared with several other ETD models which have earlier been developed
in the existing literature using same SGCC dataset employed in constructing the proposed
model, as extensively explored in Section 4.5.1.1 of the next chapter (Chapter 4). Therefore,
the proposed model becomes the choice model for this research project. The performance

metrics used in evaluating the proposed model, to determine its efficiencies and efficacies,
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have also been explicitly explored in this chapter. The next chapter is an extension of this
chapter, as it discusses the performance results of the developed models, to validate the

essence of the research.
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4.1

4.2

CHAPTER 4

RESULTS AND DISCUSSION

Introduction

This chapter gives insights into the electricity-theft detection (ETD) model developed in this
thesis. The modelling approach leading to the ETD model has been presented in Chapter
3, while the implementation codes for the developed models are also presented in the
Appendix. The proposed model is a hybrid of convolutional neural network (CNN) and
random forest (RF) models which is otherwise referred to as CNN-RF. The dataset issued
by the State Grid Corporation of China (SGCC), as discussed in Section 3.2.1 of Chapter
3, has been used as the input data to train, validate and test the developed ETD models.
After the analysis of the methods used in arriving at the detection models for electricity theft
(ET) or non-technical losses (NTL) in Chapter 3, this chapter analyses the results obtained
through the modelled NTL detection (NTLD) systems and also discusses the interpretation
of the attained results.

The results of the developed models are determined through the performance assessment
metrics. These results show the efficacy or the predictive power of the built model. Just as
the model is developed using Python in a Google Colaboratory (Colab) Integrated
Development Environment (IDE), the simulation results can also be assessed within the
confines of the IDE. The proposed CNN-RF model has been developed such that the results
obtained through it are able to accomplish the aim and objectives of the research, while at

the same time proffering answers to the research questions.

Results analysis of the CNN, RF, and CNN-RF models

The analysis of the results of the convolutional neural network (CNN), random forest (RF),
and the hybrid CNN-RF models will be done separately in the subsequent sections under
this section. Precision, recall, F1 score, accuracy, true negative rate (TNR), false positive
rate (FPR), false negative rate (FNR), Matthews correlation coefficient (MCC), area under
receiver operating characteristic curve (AUC), and area under the precision-recall curve
(PR-AUC) have been used to check how the CNN, RF, and CNN-RF models have fared.
These performance assessment metrics used to evaluate the models in Sections 4.2.1,
4.2.2, and 4.2.3 have been sufficiently described in Chapter 3 from Sections 3.4.1.1 to

3.4.1.10. The accuracy metric has however been eventually considered for evaluation since
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the dataset employed has been balanced using appropriate data balancing technique
during the ETD simulations.

4.2.1 Results analysis of the CNN model

After training, validating and testing the CNN model as implemented in Sections A.1.3.1
and A.1.3.2 of the Appendix, the classification results depicted by the confusion matrix in
Figure 4.1 is obtained. The confusion matrix is obtained by implementing the code in Section
A.1.3.3 of the Appendix.

From the confusion matrix in Figure 4.1, True positive (TP) =1.1e+04 = 1.1x10* = 11000,

True negative (TN) = 1.2e+04 = 1.2x10* = 12000, False positive (FP) =5,

False negative (FN) =1.7e+02 = 1.7x10% = 170.

10000

8000

6000

- 4000

1.7e+02

- 2000

Figure 4.1: Confusion matrix of the CNN model

Based on the confusion matrix presented in Figure 4.1, the performance scores of the CNN
model are thus calculated through the following evaluation metrics:
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.. _ TP _ 11000 _ _
Precision= ﬁ —m =0.9995=99.95%

Recall = —— = — 22 = 0.9848 = 98.48%

F1 score = o = e aig = 0:9921=99.21%
posuracy = oI = D 655200 25
TNR= 1 = 2 = 0.9996 = 99.96%

MCC= TPxTN-FPxFN

J(TP+FP)(TP+FN)(TN+FP)(TN+FN)

(11000%12000)-(5%170)

= = 0,
\/(11000+5)x(11000+170)x(12000+5)x(12000+170) 0.9850 = 98.50%

~MCC =

_ FP _ 5 _ _
FPR= — " = —— =0.0004 = 0.04%

FNR = FN 170

FN+TP _ 170+11000 =0.0152=1.52%

For the CNN model, AUC score of 0.9994 (99.94%) and the PR-AUC value of 0.9995
(99.95%) at 0.5 detection threshold were obtained by implementing the codes in Section
A.1.3.6 of the Appendix. The performance scores from precision, recall, F1 score, accuracy,
TNR, and the MCC metrics show that the CNN model performs well in terms of the
classification or prediction of the honest and fraudulent electricity customers, while the FPR

and FNR scores show that little errors were made in the classification process.

The precision-recall curve shown in Figure 4.2 is obtained by implementing the code in
Section A.1.3.4 of the Appendix. The precision-recall curve, which is a plot of the precision
values against the recall values at different exploratory thresholds between 0 and 1, is a
useful visualization tool to illustrate the performance of ML models. Figure 4.2 depicts that
the CNN model is performing well since the PR-AUC score (0.9995) of the curve which
summarizes the performance of the CNN classifier is closer to 1, indicating that the model

is distinguishing between honest and fraudulent electricity customers very satisfactorily.
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From the precision-recall curve, the values of the precision and recall scores are also closer
to 1, showing that the model achieves high precision and high recall values. If precision
decreases significantly as recall increases, it means that the model is struggling to maintain
accuracy while trying to capture more positive instances. Lowering the threshold for the

precision-recall curve increases recall and decreases precision, and vice versa.

Precision-Recall Curve

1.0 1 y

0.9

0.8 4

Precision

0.7 A

0.6

0.5 1

0.0 0.2 0.4 0.6 0.8 1.0
Recall

Figure 4.2: The precision-recall curve of the CNN model

The high precision and high recall values achieved by the CNN model indicates that the
model predicts very few false positives and successfully identifies most true positives. The
curve being closer to the top-right corner of the plot also indicates a better performing CNN
model. Figure 4.3 shows the ROC curve of the CNN model, which is a plot of the TPR
values against the FPR values at different exploratory thesholds. Infact, precision-recall
curves summarize the trade-off between precision and recall, while ROC curves summarize
the trade-off between TPR and FPR at different exploratory thresholds (Brownlee, 2023).
The ROC curve has a broken red diagonal line that indicates a fixed final decision threshold
or final classification threshold of 0.5. The threshold for making the final classification is a

standard decision point for random guessing of the prediction class, and a common choice
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for interpreting binary probabilities. The final prediction threshold of 0.5 assumes balanced
classes and equal costs for false positives and false negatives. The final classification
threshold is applied to performance score and is compared to it to determine the prediction
class of the model. With a final decision threshold of 0.5, it means that if the performance
score of the model is greater than or equal to 0.5, the predicted electricity customer is
fraudulent, and also indicates that the predicted electricity customer is honest if the

performance score of the model is less than 0.5.

Receiver Operating Characteristic

Threshold : 0.50 Pia

# = ROC curve (area = 1.00)
— = Random guess
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Figure 4.3: The ROC curve of the CNN model

The AUC score (0.9994) of the ROC curve of the CNN model is closer to 1, showing higher
generalization ability by the model in terms of distinguishing between honest and fraudulent

electricity customers. Also, the fact that the curve is closer to the top-left corner of the plot
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accuracy

indicates that the CNN model is showing a better model performance. The ROC curve
demonstrates the predictive proficiency of the CNN model as its exploratory threshold is
being varied. Varying the threshold affects the trade-off between TPR and FPR. Lowering
the threshold increases TPR and also increases FPR, and vice versa. Both precision-recall
and ROC curves are generated by varying the exploratory thresholds of the model and
recalculating the performances (true positives, true negatives, false positives and false
negatives) of the model at each threshold. As the threshold changes, it affects both the
precision and recall values of the precision-recall curve, and the TPR and FPR values of
the ROC curve. Figure 4.4 shows the accuracy of the CNN model on training and validation

data. It is implemented in Python using the codes in Section A.1.3.8 of the Appendix.

CNN Model accuracy
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Figure 4.4: Accuracy of the training and validation data of the CNN model

Visualizing the accuracy of the training and validation data shown in Figure 4.4 is meant to

test whether the CNN model is overfitting or not. This is to determine the accuracy of the
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CNN model from the start of the training and validation processes till the end. From Figure
4.4, the training-data curve (blue curve) depicts the accuracy of the training data while the
validation-data curve (orange curve) shows the accuracy of the validation data at different
epochs. Looking at the training-data curve, it can be seen that around 1 epoch when we
started training the CNN model that the accuracy of the model is close to around 0.9775
(97.75%), and kept on increasing to about 0.9925 (99.25%) at around 50 epochs or
iterations. It is obvious from the validation-data curve that the accuracy of the validation
data is greater than that of the training data. The accuracy of the validation data started
around greater than 0.9875 (98.75%) at about 1 epoch to close to about 0.9950 (99.50%)
at around 50 epochs, showing that the validation data performs better than the training data.
The pattern of the curves shows that accuracy increases with increase in epoch for the
training and validation data (Nirmal et al., 2024:5). Since the performance of the model
using the validation data is better than that of training data, it clearly shows that the model
is generalizing well and not overfitting (Aldegheishem et al., 2021:25052).

CNN Model Loss

—— Training data
Validation data

1\Y4 \/\_/\/\/\

Figure 4.5: Training and validation data losses of the CNN model
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Figure 4.5 shows the losses experienced during training and validation processes using the
CNN model. The figure is the output of the Python codes implemented in Section A.1.3.9 of
the Appendix. The Figure 4.5 show the level of losses when the CNN model was tested with
the validation data. The validation-data curve (orange curve) shows more reduction in loss
in the validation data when compared with the training data as conveyed through the
training-data curve (blue curve). According to the training-data curve, the loss in the training
data started with about 0.10 (10%) at around 1 epoch and continued to decrease gradually
up to around 0.025 (2.5%) at around 50 epochs. The loss in the validation data as shown
by the validation-data curve started with around 0.05 (5%) at about 1 epoch to about 0.02
(2%) at around 50 epochs. The pattern of the curves indicates that loss decreases with
increase in epoch. The loss graph as shown in Figure 4.5 indicates the changes that occurs
in the loss function during training and validation processes, showing differences or
disagreements between the output predictions of the CNN model and the target values
(Khan et al., 2024:13-14). The decreasing trend in losses as shown in the loss graph is a
pointer to the fact that the CNN model is learning and predicting well (Aldegheishem et al.,
2021:25052; Khan et al., 2024:13; Nirmal et al., 2024:5).

A likely question that might arise owing to the performance results obtained through the
CNN model is that: since the CNN model has performed considerably well in terms of
prediction results, would there then be any need to further extend the ETD process by
building the RF model and subsequently the CNN-RF model? The answer to this probable
guestion is that we are trying to get the best possible prediction results by reducing false
positives (FPs) to the lowest minimum as much as possible in the proposed CNN-RF model
because of the higher costs associated with FPs. The justification for the RF model as
shown from its prediction results in Section 4.2.2 is that it perfectly predicts positive samples
without any error (i.e. without any FP) in its positive-sample predictions as against the CNN

model.

FP is very crucial to electric utilities because of the high cost associated with it. Predicting
zero FP by RF and CNN-RF as shown in their confusion matrices, and revealed in their
performance scores for the precision metric (100.00%) and the FPR metric (0.00%), as
described in subsequent Sections 4.2.2 and 4.2.3, indicate that the utilities would not have
to border to waste their scarce resources to inspect customers who do not engage in
stealing electricity during the process of electricity mitigation (Messinis & Hatziargyriou,
2018:259, 264; Saeed et al., 2020:6; Aldegheishem et al., 2021:25051; Pamir, Javaid,
Qasim, et al., 2022:56870). High values of FPR lead to increase in onsite inspection costs

of electric customers (Messinis & Hatziargyriou, 2018:259, 264; Aldegheishem et al.,
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2021:25051; Pamir, Javaid, Qasim, et al., 2022:56866, 56870; Xia et al., 2023:10). Electric
utilities have limited resources to execute onsite inspections, hence they cannot condone
high FPRs (Khattak et al., 2022:7).

Precision score is specifically very significant when considering the consequence of FP in
ML predictions (Mehdary et al., 2024:19), because high precision scores indicate low values
of FPs (Ali et al., 2023:14). High values of precision indicate that the ML models or
classifiers that produces such performance scores have correctly predicted majority of the
customers who steal electricity as fraudulent customers (Messinis & Hatziargyriou,
2018:259; Saeed et al., 2020:6). Lower values of FPs prevent unnecessary and expensive
onsite inspections during mitigation of ET and also ensure more profits to the electric utilities
(Messinis & Hatziargyriou, 2018:259, 264; Aldegheishem et al., 2021:25051; Pamir, Javaid,
Qasim, et al., 2022:56866, 56870; Xia et al., 2023:10). The RF and CNN-RF models
produced results that show that FPs are totally eliminated in the performance results of the
models. However, aside from the perfect precision score of 100.00%, the CNN-RF model
improved better in other performance metric scores than the RF model. The proposed CNN-
RF model is better than each of the standalone CNN and RF models in terms of comparative
advantage.

4.2.2 Results analysis of the RF model

The RF model is trained and tested with the output features from the convolutional (Conv1D)
layer of the CNN network in a standalone layout, as implemented in Sections A.1.5 and
A.1.5.1 of the Appendix. The confusion matrix provided in Figure 4.6 displays the
predictions of the standalone RF model. The confusion matrix is obtained by implementing

the code in Section A.1.5.2 of the Appendix.

From the confusion matrix in Figure 4.6, True positive (TP) =7.2e+02 = 7.2x10% = 720,
True negative (TN) =7.6e+02 = 7.6%1 0% = 760, False positive (FP) =0,
False negative (FN) = 13.

Based on the confusion matrix in Figure 4.6, the following performance metrics are used to

calculate the evaluation scores of the RF model:

.. _ TP _ 720 _ _
Precision = TP = 72010 1.0000 =100.00%
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Figure 4.6: Confusion matrix of the RF model

_ TP _ 720 _ _
Recall = PN m =0.9823=98.23%

2TP  _  2x720
2TP+FP+FN ~ 2x720+0+13

F1 score = =0.9911=99.11%

_ TP+TN  _  T720+760  _ _
Accuracy = TPTTNAEPIFN — 720376010513 0.9913=99.13%
TNR= - = 0 -4 0000=100.00%

TN+FP  760+0

TPXTN-FPxFN

MCC = J(TP+FP)(TP+FN)(TN+FP)(TN+FN)

(720x760)-(0x13)

~MCC= J(720+0)x(720+13)x(760+0)x(760+13)

=0.9827 =98.27%
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Precision

For the RF model, AUC score of 0.9912 (99.12%) and the PR-AUC value of 0.9955
(99.55%) at 0.5 decision threshold were obtained by implementing the codes in Section
A.1.5.6 of the Appendix. Figure 4.7 shows the precision-recall curve of the RF model.

Precision-Recall Curve OF RF

1.0

0.9

0.8

0.7

0.6

0.5

0.0 0.2 0.4 0.6 0.8 1.0
Recall

Figure 4.7: Precision-recall curve of the RF model

Much has been explained previously about the precision-recall curve and the ROC curve in
Section 4.2.1. The explanations for the precision-recall and the ROC curves of the RF model
and the subsequent CNN-RF hybrid model also follow the same principle. Figure 4.7 shows
that the RF model achieves high precision and high recall values, with its PR-AUC score

(0.9955) closer to 1, showing that the classification ability of the RF model is higher.
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However, the AUC score (0.9912) of the RF model is also closer to 1, showing greater
classification ability by the model in distinguishing between the benign and malignant
electricity customers. The precision-recall curve is also closer to the top-right corner of the
plot, indicating a better performing model. Figure 4.8 shows the ROC curve of the RF model.
The ROC curve is plotted using TPR and FPR values at different exploratory thresholds

ranging between 0 and 1.

Receiver Operating Characteristic

Threshold : 0.50 7’

/’ =—— ROC curve (area = 0.99)
= = Random guess

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 4.8: The ROC curve of the RF model

The decision threshold for final classification is set to 0.5 as depicted by the broken red line
in the ROC curve. The decision threshold of 0.5 means that If the prediction score is equal
to or greater than 0.5, the electricity customer is regarded as fraudulent, and the electricity
customer is considered as honest or benign if the prediction score is less than 0.5. Varying
exploratory thresholds when plotting the ROC curve shows the trade-off between TPR and

FPR. Lowering the exploratory threshold leads to increase in TPR and FPR, and vice versa.
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That the ROC curve is closer to the top-left corner of the plot indicates that the model is

satisfactory with better classification performance.

4.2.3 Results analysis of the proposed CNN-RF model

The infusion of features from the convolutional (Conv1D) layer (Layer 1) of the CNN network
into the RF model for final classification in a hybrid layout produce the proposed CNN-RF
model. This is implemented using the codes in Section A.1.6 of the Appendix. The final
classification of the ConvlD layer features by the RF model produced the confusion matrix
shown in Figure 4.9. The confusion matrix is obtained by implementing the code in Section
A.1.6.1 of the Appendix.

From the confusion matrix in Figure 4.9, True positive (TP) =7.2e+02 =7.2x10% = 720,

True negative (TN) =7.6e+02 = 7.6x10° = 760, False positive (FP) =0,
False negative (FN) = 12.
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Figure 4.9: Confusion matrix of the proposed CNN-RF model
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Based on the confusion matrix in Figure 4.9 above, the following performance metrics are

calculated:

.. _ TP _ 720 _ _
Precision = TPIFP = 72010 1.0000 = 100.00%

_ TP _ 720 _ _
Recall = TPEN m =0.9836 = 98.36%

_ 2TP _ 2x720  _ _
F1 score = TTPIFPTEN . @x 72010712 0.9917 =99.17%

_ TP+TN _ 7204760  _ _
Accuracy = TPTTNAFPIFN — 720376010512 0.9920 = 99.20%
TNR= —N_ = 7% -4 0000 = 100.00%

TN+FP 760+0

TPxTN-FPxFN

MCC = \/(TP+FP)(TP+FN)(TN+FP)(TN+FN)

~MCC = \/(720+0)xg§g::sg)j(-i(e);zz)))x(?esOH2) =0.9840 = 98.40%
FPR= ——— = —_ =0.0000 = 0.00%

FNR= -~ = 2 =0.0164 = 1.64%

For the CNN-RF model, AUC score of 0.9913 (99.13%) and the PR-AUC value of 0.9955
(99.55%) at 0.5 decision threshold were obtained by implementing the Python codes in
Section A.1.6.4 of the Appendix.

So far, the CNN-RF model has produced the best results because apart from achieving a
precision score of 100.00% and FPR score of 0.00% like the RF model, indicating that the
model is devoid of FPs, the CNN-RF model also achieved better prediction scores with
other evaluation metrics than the RF model. Since mitigation of ET is the primary aim of
detecting it, the results of the hybrid CNN-RF model will enhance the mitigation of ET better
because it will afford the utilities more economic strength as they will not bother to waste
resources inspecting customers who do not engage in stealing electricity (Khattak et al.,

2022:7). Reducing FPs to the lowest minimum, or eliminating them completely is a critical
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issue to be considered when developing models for the detection and later mitigation of ET,

and is one of the main targets in this research project.

Another question that may easily come to mind after checking out the performance scores
of the CNN-RF model is that: why did we go further to implement the CNN-RF model since
RF model has already afforded us a perfect precision score of 100.00% and an FPR score
of 0.00%, which indicated that the model is already devoid of any FP? The answer to this
probable question is that it could be observed that after outrightly eliminating FPs by the RF
and CNN-RF models, the performance scores of other evaluation metrics like recall, F1
score, accuracy, MCC, FNR, and AUC obtained from CNN-RF model have shown better
prediction scores than the RF model, spurring better detection of ET. In essence, the CNN-
RF model achieved better results than the RF model, while also completely eliminating FPs
in the model like the RF model. The precision-recall curve of the proposed CNN-RF hybrid
model is shown in Figure 4.10.
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Figure 4.10: The precision-recall curve of the CNN-RF model
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The Figure 4.10 shows that the CNN-RF model achieves high precision and high recall
values, with its PR-AUC score (0.9955) closer to 1, showing that the classification ability of
the CNN-RF model is higher. However, the AUC score (0.9913) of the CNN-RF model is
also closer to 1, showing greater classification ability by the proposed model in
distinguishing honest and fraudulent electricity customers. The precision-recall curve is also
closer to the top-right corner of the plot, depicting a better performing model. Figure 4.11
shows the ROC curve of the RF model. The ROC curve is plotted using TPR and FPR

values at different exploratory thresholds ranging between 0 and 1.

Receiver Operating Characteristic

Threshold : 0.50 ”
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Figure 4.11: The ROC curve of the CNN-RF model

As was done for CNN and RF models, the decision threshold for final classification for the
proposed CNN-RF model is set to 0.5 as depicted by the broken red line in the ROC curve
of Figure 4.11. With the 0.5 decision threshold, the CNN-RF model will predict an electricity
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customer as fraudulent if the prediction score of the proposed model is greater than or equal
to 0.5, and will predict an electricity customer as honest if the prediction score is less than
0.5. Exploratory thresholds are varied when plotting the ROC curve showing the trade-off
between TPR and FPR. Lowering the exploratory threshold leads to increase in TPR and
FPR, and vice versa. The fact that the ROC curve is closer to the top-left corner of the plot
indicates that the model demonstrates greater classification performance. In summary, the
proposed CNN-RF model provides a more cost-effective, versatile and robust approach to
ETD, which is comparatively better than the individual CNN and RF models and will be
preferred by utility stakeholders in the task of ETD.

However, an inquiry was carried out to check whether the results of the proposed CNN-RF
model could further be improved. This was done by taking features from the last
MaxPoolinglD layer (layer 6) of a three-pair of concatenated ConvlD and MaxPoolinglD
layers as depicted in Figure 3.9 of Chapter 3. This new variant of the proposed CNN-RF
model is referred to as CNN-RF (concatenation) model as implemented in Section A.1.9 of
the Appendix. In general terms, any undistinguished CNN-RF model mentioned in this
thesis refers to the proposed CNN-RF model.

From the confusion matrix in Figure 4.12, True positive (TP) =7.2e+02 = 7.2x10% = 720,
True negative (TN) =7.6e+02 = 7.6x1 0% = 760, False positive (FP) =0.0e+00 =0,
False negative (FN) = 1.3e+01 = 1.3x10" =13.

Based on the confusion matrix presented in Figure 4.12, the performance scores of the

CNN-RF (concatenation) model are thus calculated through the following evaluation

metrics:

.. TP _ 720 _ _
PreC|S|on—ﬁ—m =1.0000 =100.00%
Recall= —~ = "% - 9823 =98.23%

TP+FN 720+13

_2TP _ 2x720 _ _ o
F1 score = STPHFPIFN . @x720)0%13 0.9911=99.11%

_ TP+TN  _ 7204760  _ _ o
Accuracy = — o es = o —eionts — 0-9913=99.13 Yo
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Figure 4.12: Confusion matrix of the CNN-RF (concatenation) model

_ _ 760 _ _
TNR = TNeEP - 76010 - 1.0000 = 100.00%

MCC= TPxTN-FPXFN
J(TP+FP)(TP+FN)(TN+FP)(TN+FN)

. _ (720x760)-(0x13)
~ MCC J(720+0)x(720+13)%(760+0)%(760+13)

=0.9827 =98.27%

_ _ 0 _ _
FPR= —— = 5:7g5 = 0-0000 =0.00%

For the CNN-RF (concatenation) model, AUC score of 0.9912 (99.12%) and the PR-AUC
value of 0.9955 (99.55%) at 0.5 decision threshold were obtained from the IDE. The

summary of results for the CNN, RF, and CNN-RF (concatenation), and the proposed CNN-
RF models are shown in Table 4.1.
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Table 4.1: Summary of the performance scores

Model Precision | Recall | F1 Accuracy | TNR FPR FNR MCC AUC PR-
score AUC
CNN 0.9995 0.9848 | 0.9921 | 0.9925 0.9996 | 0.0004 | 0.0152 | 0.9850 | 0.9994 | 0.9995
RF 1.0000 0.9823 | 0.9911 | 0.9913 1.0000 | 0.0000 | 0.0177 | 0.9827 | 0.9912 | 0.9955
CNN-RF 1.0000 0.9823 | 0.9911 | 0.9913 1.0000 | 0.0000 | 0.0177 | 0.9827 | 0.9912 | 0.9955
(Concatenation)
Proposed 1.0000 0.9836 | 0.9917 | 0.9920 1.0000 | 0.0000 | 0.0164 | 0.9840 | 0.9913 | 0.9955
CNN-RF

Results have shown that there is really no significant difference between the performance

results of the proposed CNN-RF model and that of the CNN-RF (concatenation) model.

Hence, the proposed CNN-RF model constructed by simply taking features from the

ConvlD layer (Layer 1) of the CNN network to train the RF model, as shown in Figure 3.8

of Chapter 3, is preferred. In fact, the proposed CNN-RF model fared a bit better than the

CNN-RF (concatenation) model in terms of performance results, as evident in Table 4.1.

The proposed CNN-RF model is hereby adopted, while the CNN-RF (concatenation) model

is thus dropped. Figure 4.13 shows the comparison of all the developed ETD models in a

bar chart.

Comparison of results
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Figure 4.13: Bar chart showing comparison of performance results
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4.3

4.4

The bar chart in Figure 4.13 shows the result comparisons of the models using precision,
recall, F1 score, and accuracy metrics. Only four metrics vis-a-vis their performance scores
are used in evaluating the developed models as shown on the bar chart. This is owing to
economy of space, so that the bar chart could be more visible. Other scores of the
performance metrics used in assessing the developed models are presented in Table 4.1.

It is clear from the table and the bar chart that the proposed CNN-RF model performs best.

Pilot operation

Pilot operation in NTLD systems refers to the generation of customers’ suspect list, and the
manual field-operation exercise which serves as a follow-up process during NTL mitigation
efforts (Messinis & Hatziargyriou, 2018:259). After the NTLD simulations, suspected
electricity consumers are shortlisted. The suspect list contains those customers who may
be engaging in ET after the theft suspects have been identified through the developed NTLD
model. After collating the suspect list, a manual onsite inspection by the utility technicians
or inspectors is next, to affirm or establish the ET culprits (Glauner et al., 2017:761; Messinis
& Hatziargyriou, 2018:259). The proposed ETD model developed in this thesis provide utility
domain experts with definitive and dependable identification of the suspected electricity

thieves for reliable onsite inspections (Pamir, Javaid, Qasim, et al., 2022:56865).

The final verification of the suspect list is paramount, since the electric utilities cannot afford
to inspect all their customers; as such adventure is very expensive, unaffordable, and
practically infeasible (Yip, Wong, et al., 2017:230; Zheng et al., 2018:1606; Liao, Zhu, et al.,
2024:5075). Suspect list is a list of electricity thieves as classified by the proposed ETD
model. The suspect list for the CNN, RF, and the proposed CNN-RF models can be
generated by implementing the Python codes in Section A.1.7 of the Appendix.

Implications of the model results

The relevance of this research extends to Africa, other developing nations, and the global
electricity sector. The enhanced performance achieved through the proposed CNN-RF
hybrid model has direct and far-reaching implications for improving ETD, optimizing grid
operational efficiency, and promoting customer satisfaction. These improvements
collectively result in significant cost savings for electric utilities, enhanced operational

performance, and protection of consumer interests.

The cost-saving potential of the proposed model is particularly notable, as it reduces the

need for frequent onsite inspections and minimizes the associated labour costs. By
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effectively identifying ET, the model also aids in revenue recovery by mitigating the financial
losses traditionally incurred by electric utilities due to NTL. This recovered revenue
contributes to the stabilization and growth of national economies, particularly in regions

severely impacted by ET.

Furthermore, the proposed hybrid model enhances operational efficiency through its
automated, real-time detection capabilities. This allows utility providers to swiftly address
theft incidents, reducing response times and improving overall grid management. The
robust performance of the proposed model which completely eliminates FPs, also reduces
the likelihood of errors associated with manual inspections. Consequently, utility operators
can leverage the insights generated by the CNN-RF hybrid model to better regulate
electricity demand and supply, thereby facilitating more effective load management and

ensuring stable service delivery.

In addition, the ability of the proposed model to detect irregular electricity consumption
patterns fosters fair billing practices, which is crucial in protecting customers from being
charged for electricity they did not consume. This, in turn, strengthens customer trust and
confidence in utility providers. By promoting accurate billing and reducing theft-induced
power disruptions, the proposed model supports the minimization of supply interruptions
and contributes to overall power reliability. Ultimately, the proposed CNN-RF hybrid model
serves as a vital tool for enhancing grid performance, improving financial stability within the
electricity sector, and fostering sustainable electricity management, particularly in

developing regions.

Comparison of results

To determine the efficiency of the proposed ETD model, there is a need to compare the
performance or prediction results of the proposed model with the performance results of
other scholars. This is done by comparing the results obtained through the proposed model
and the results previously obtained in the existing literature by other researchers who have
also built their various ETD models using the same SGCC dataset employed in developing
the proposed model. The benchmarking is based on same dataset to ensure fair
comparison of results. The SGCC dataset is a standardized popular electricity consumption
dataset which is available online (Dai, 2018), and has been used by many prominent
researchers in recent high-profile ETD literature for NTLDs. Hence, the comparison is done
to determine the model that have fared much better (Janiesch et al., 2021:690). The

employed SGCC dataset has been described in detail in Section 3.2.2 of Chapter 3.
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The performance evaluation metrics such as precision, recall, F1 score, accuracy, MCC,
AUC, and PR-AUC obtained through the proposed model have been compared with
matching metrics presented in previous research. It should be noted that accuracy as a
performance metric is not a reliable metric because it is always biased by default towards
the majority class when using imbalanced datasets (Khan et al., 2020:15), unless the
datasets are properly balanced using appropriate class-balancing techniques. However,
since the SGCC dataset used in this research, as well as by other researchers in the
selected literature have been balanced appropriately using various resampling techniques,

the accuracy metric has however been considered for comparison.

45.1 Selected literature for comparison

Performance or prediction results in fifty-four (54) highly-rated journal articles published in
IEEE, IET, MDPI, Elsevier, Springer, etc., between the years 2020 and 2024 have been
selected as benchmarks for comparison with the prediction results of the proposed model.
This is to establish the superiority, veracity, and potency of the proposed model in detecting
NTL. To allow for unprejudiced comparison, the proposed model developed in this thesis
and the ETD or NTLD benchmark models built in the selected literature have been
developed using same dataset, as mentioned earlier in Section 4.5. The results of the
performance assessment metrics like precision, recall, F1 score, accuracy, MCC, AUC, and
PR-AUC of the proposed model and those of the ETD models in the selected literature are

being compared.

Performance results are the predictions derived from ETD models using test sets from the
given dataset. The various ETD models used in arriving at the performance results, the
different data resampling techniques used in balancing the dataset, and other parameters
used to enhance the predictions of the ETD models in the existing literature have also been
mentioned in the SGCC dataset-based literature synopses in Section 4.5.1.1. Also, if the
model performance scores in the literature have been presented originally in decimal, they
are being converted to their percentage equivalents (to two decimal places) for comparison

as shown in Table 4.2.

Performance metric results for precision, recall, F1 score, accuracy, MCC, AUC and PR-
AUC metrics obtained from the proposed model has been used for comparison with the
performance results from ETD models from the selected literature shown in Table 4.2. Any
metric space in Table 4.2 which is filled with dash (-) shows that the value of such metric is

not given in the referenced journal article. All the parameters attributable to the proposed
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model in Table 4.2 have been written in bold texts, while not applicable (N/A) appears in the
reference space of the proposed model in the table. This is because the supposed reference
of the proposed model with their performance results is this thesis. For authors who have
developed more than one ETD model in the selected literature, only the results of the best

performing models appear for comparisons in Table 4.2.

4.5.1.1 Synopses on the literature selected for comparison

This section gives the overview of each of the 54-selected journal articles in which the
performance results of the ETD model in each article are being compared with the
performance results of the proposed ETD model developed in this thesis. The performance
results attained by the various benchmark ETD models in the selected literature and that of
the proposed model have been realized using same SGCC dataset. The prediction results
in the selected literature and that of the proposed model have been summarized in Table
4.2. Each of the following paragraphs is a rundown of every piece of literature selected for

comparison.

Relational denoising autoencoder attention guided triple generative adversarial network
(RDAE-AG-TripleGAN) model has been proposed by the authors in Aslam, Ahmed, et al.
(2020) for ETD. The authors replaced the missing values in the SGCC dataset using linear
interpolation, and also used the generator and classifier submodels of AG-TripleGAN to
solve the class imbalance issue associated with the dataset. The missing values in the
SGCC dataset are represented as not a number (NaN) and zero (0). The model results of
98.70% precision, 95.60% recall, 96.70% F1 score, 94.30% MCC, 95.20% AUC, and
95.80% PR-AUC have been obtained using the proposed ETD model.

The authors in Aslam, Javaid, et al. (2020) used a combination of long short-term memory
(LSTM), UNet, and adaptive boosting (Adaboost) termed LSTM-UNet-Adaboost as ETD
model. Interquartile minority oversampling technique (IQMOT) was used by the authors as
class-balancing technique, and linear interpolation method to replace the missing values in
the SGCC dataset. The model acheived prediction scores of 99.80% precision, 92.90%
recall, 95.40% F1 score, 97.20% accuracy, 90.20% MCC, 94.80% AUC, and 95.80% PR-
AUC.

Adaptive synthetic (ADASYN) sampling algorithm has been used by Khan et al. (2020) to

address the class imbalanced problem and also deployed linear interpolation method to

replace the missing values in the SGCC dataset. The balanced dataset is then fed into
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Visual Geometry Group with 16 deep layers (VGG-16) module to detect anomalous patterns
and to extract relevant features from the electricity consumption dataset. Firefly algorithm-
based extreme gradient boosting (FA-XGBoost) is then used as the classifier or ETD model.
The model achieved performances of 93.00% precision, 97.00% recall, 93.70% F1 score,
95.00% accuracy, 85.60% MCC, and 95.90% AUC.

Aldegheishem et al. (2021) presented two models for ETD. The first model has been termed
SMOTEENN-AlexNet-LGB (SALM) model, while the second model is called generative
adversarial network GooglLeNet adaptive boosting (GAN-NETBoost). The SMOTEENN in
the first model is known as synthetic minority oversampling technique and edited nearest
neighbour (ENN), while LGB is light gradient boosting. In the first model, SMOTEENN
algorithm was employed to balance the dataset, Alexnet for feature extraction and
dimensionality reduction, while LGB was used for the classification of benign and malignant
customers. In the second model, conditional Wasserstein generative adversarial network
gradient penalty (CWGAN-GP) was used for dataset balancing, GoogLeNet used for feature
extraction and dimensionality reduction, while adaptive boosting (AdaBoost) was used for
the classification of honest and fraudulent electricity consumers. The authors used linear
interpolation method to replace the missing values in the SGCC dataset. The SALM model
achieves 95.5% precision, 91.80% recall, 93.90% F1 score, Matthews correlation coefficient
(MCC) of 87.60%, AUC of 90.60%, and accuracy of 91.00%; while the GAN-NETBoost
achieves precision of 96.80%, recall of 94.00%, F1 score of 95.00%, MCC of 91.00%, AUC
of 96.00%, and accuracy of 95.00%. Performance results have shown that the second
model (GAN-NETBoost) performs better than the first model (SALM).

Arif et al. (2021) have suggested the use of three tree-based classifiers to predict ET using
the SGCC dataset after using residual network (ResNet) to extract the hidden features in
the dataset. The deployed tree-based classifiers for ETD are decision tree (DT), random
forest (RF), and AdaBoost. The hybrid of synthetic minority oversampling technique with
near miss (SMOTE-NM) has been used as the data balancing technique, linear interpolation
method used to fill in the missing values, while Bayesian optimizer method has been
deployed for hyperparameter tuning to facilitate the model optimization process. The results
of the three tree-based classifiers with support vector machine (SVM) and linear regression
(LR) are compared with or without feature extraction and resampling techniques, and
hyperparameter tunings. From the results of all the mentioned ML models, RF produced the
best prediction results of 99.17% precision, 94.92% recall, 96.93% F1 score, 99.10%
accuracy, and 99.68% AUC after applying data balancing, ResNet, and hyperparameter

tuning.
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The deep artificial neural network (DANN) model proposed by Bohani et al. (2021) achieves
the best performance results when the train and test data were split into 60:40 ratio. The
authors ran the ETD simulations without balancing the SGCC dataset, and then used the
mean of each customer’s energy consumption on a particular row of the dataset to fill in the
missing energy values of that particular customer. The proposed DANN model at the said
60:40 split ratio achieves precision of 48.24%, recall of 61.03%, F1 score of 53.89%,
accuracy of 91.29%, and area under receiver operating characteristic curve (AUC) of

77.54% as the best performance sores when compared with other classifiers.

The hybrid model of day, week, and month convolutional neural network and random forest
(DWMCNN-RF) has been used as a classifier by Cheng et al. (2021) for ETD.
Dimensionality reduction of the dataset and increase in computation speed have been
achieved by K-means clustering. To deal with the missing values in the dataset, the authors
removed the missing values and also removed the zero values in the dataset. From the
confusion matrix derived through the predictions of the DWMCNN-RF model, 97.70% of
precision, 87.47% of recall, 92.30% of F1 score, 99.00% of AUC, and 90.65% of accuracy
have been achieved by the ETD classifier.

Hussain et al. (2021) uses categorical boosting (CatBoost) algorithm as ETD model to
predict consumers who steal electricity and the honest consumers who do not engage in
electricity theft. K-nearest neighours (KNN) technique using the mean of selected nearest
neighbours has been used to replace the missing values of the dataset used in developing
the ETD model. Synthetic minority oversampling technique-and Tomek link (SMOTE-
Tomek) algorithm has been used as resampling technique to balance the dataset, feature
extraction and scalable hypothesis (FRESH) algorithm has been used as feature extraction,
while tree-SHapley Additive exPlanation (tree-SHAP) algorithm has been used to interpret
the decision of the ETD model. The model achieved an average precision, recall, F1 score,
and accuracy metrics of 95.08%, 92.37%, 93.71%, and 93.38% respectively.

Javaid (2021) developed AlexNet and peephole long short-term memory echo state neural
network (APLSTM-ESNN) model for ETD. SMOTE-Tomek or ST-Links was used by the
authors for data balancing, APLSTM used as feature extractor from the dataset, grey wolf
optimization (GWO) technique used for hyperparameter tuning to improve the performance
of the model, ESNN as the classifier, and a paired t-test has been applied on the
classification results of the model to ensure reliable assessment. The author used data

interpolation method to handle the missing values in the SGCC dataset. The ETD model
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precision of 90.00%, recall of 92.10%, F1 score of 92.00%, accuracy of 96.30%, MCC of
84.00%, AUC of 96.40%, and PR-AUC of 97.30% as performance results.

The authors in Javaid, Gul, et al. (2021) proposed two ETD solutions. The authors proposed
GANCNN model in the first ETD solution. GANCNN is the combination of self-attention
generative adversarial network (SAGAN) and wide and deep convolutional neural network
(WDCNN). The first ETD solution involved using adaptive synthetic edited nearest
neighbour (ADASYNENN) as class balancing technique and locally linear embedding (LLE)
technique for feature extraction. The authors also proposed ERNET model as the second
ETD solution. ERNET is the hybrid of EfficientNet, ResNet, and gated recurrent unit (GRU).
The second ETD model involved using sparse auto encoder (SAE) for feature extraction
and a robust optimizer known as root mean square propagation (RMSProp) was used to
improve the rate of learning of the model and SMOTEENN as class balancing technique.
Imputation method has been used to replace the missing values in the SGCC dataset when
applying GANCNN model, while linear interpolation method has been used to replace the
missing values in the SGCC dataset when applying ERNET model to the dataset. Both
GANCNN and ERNET were used for the classification of honest and fraudulent electricity
consumers. The GANCNN model achieved the precision of 95.00%, recall of 99.00%, F1
score of 90.00%, accuracy of 95.00%, AUC of 98.50%, and FPR of 5.00% as performance
values, while ERNET model achieved 94.00% precision, 93.00% recall, 89.00% F1 score,
98.00% accuracy, 98.80% AUC, and 2.00% FPR as prediction results. From the results, the
GANCNN model has superior scores in terms of precision, recall, and F1 score metrics and

hence adjudged to perform better than the ERNET model.

In Javaid, Jan, et al. (2021), the authors proposed an integrated deep siamese network
(DSN) model for ETD. The DSN is a hybrid of CNN and LSTM. The authors also used
ADASYN as class balancing technique. In the DSN, CNN actually performed feature
extraction, while LSTM performed the classification of benign and malignant electricity
customers. The authors replaced the missing values in the SGCC dataset using linear
interpolation method. The effectiveness of the proposed model has been conveyed through
the 91.20% precision, 92.30% recall, 92.80% F1 score, 95.30% accuracy, 93.40% AUC,

and 90.00% MAP scores achieved as the best performance results at 80% training ratio.

The authors in Mujeeb et al. (2021) proposed differential evolution random undersampling
boosting (DE-RUSBoost) as first classifier and Jaya random undersampling boosting (Jaya-
RUSBoost) as second classifier for ETD. Also, the authors used reconstruction independent

component analysis-based sparse autoencoder (RICASAE) feature extractor to extract
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relevant features from the given datasets. The authors used linear interpolation method to
fill in the missing values in the dataset. Using the SGCC dataset, DE-RUSBoost classifier
achieved precision of 90.20%, recall of 73.50%, accuracy of 95.60%, AUC of 89.60%, and
specificity or TNR of 99.60%, while the Jaya-RUSBoost classifier achieved precision of
57.20%, recall of 100.00%, accuracy of 96.40%, AUC of 95.70%, and specificity (TNR) of
96.20% as performance evaluation scores. The Jaya-RUSBoost model obviously achieved

better prediction results.

Pereira and Saraiva (2021) submitted that data balancing is most critical to achieving better
prediction outcomes in terms of ETD, and hence used data-balancing techniques to improve
NTLD. The authors used CNN as the ETD model and experimented with cost-sensitive
learning (weighting), random undersampling (RUS), random oversampling (ROS), k-
medoids based undersampling, synthetic minority oversampling technique (SMOTE), and
cluster-based oversampling (CBOS) as class-balancing techniques to handle the
imbalanced SGCC dataset used in constructing the ETD model. The authors also used
linear interpolation method to fill in the missing values in the dataset. At the end of the ETD
experiment, CBOS data-balancing technique achieved the overall-best prediction results of
68.33% accuracy and 80.84% AUC with the CNN model.

The authors, Shehzad et al. (2021), achieved AUC of 96.00% and PR-AUC of 97.00% as
performance results using hybrid GoogLeNet and GRU as ETD model at 80% training ratio
proportion. Time least square generative adversarial network (TLSGAN) has been used by
the authors to solve the class imbalance problem, while also using linear interpolation

method to replace the missing values in the SGCC dataset.

Arif et al. (2022) employed temporal convolutional network with enhanced multilayer
perceptron (TCN-EMLP) as ETD model to classify honest and fraudulent electricity
customers. The authors also applied Tomek link borderline synthetic minority oversampling
technique with support vector machine (TBSSVM) as resampling technique to equalize the
imbalanced dataset in order to achieve the most-reliable prediction results, while also
deploying linear interpolation method to replace the missing values in the SGCC dataset.
The proposed TCN-EMLP classifier model achieved the greatest AUC of 84.00% as

performance measure using the SGCC dataset.
The NTLD model developed by Asif et al. (2022) involves combining two-dimensional

convolutional neural network (2D-CNN) and bidirectional long short-term memory (Bi-

LSTM) network. The authors employed bidirectional Wassertein generative adversarial
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network (Bi-WGAN) as data balancing technique, and linear interpolation method to fill in
the missing values in the SGCC dataset. The proposed model achieved precision of
97.00%, recall of 92.00%, F1 score of 94.00%, accuracy of 95.00%, MCC of 93.00%, AUC
of 97.00%, and PR-AUC of 98.00% as performance results.

Badawi et al. (2022) have proposed a two-stage ETD processes. The first stage involved
the extraction of new features from the SGCC dataset. Extraction of new features from the
default SGCC electricity consumption dataset involved sudden-change detection method
which detected sudden jump or unusual change in electricity consumptions. The newly
extracted features from the sudden-jump (fraudulent) patterns in energy consumptions were
moving average measures like auto-regressive integrated moving average (ARIMA), Holt-
Winters, seasonality, etc. The new features included smart meter features and other
mentioned statistical features, and were used in conjunction with electricity consumption
data. In the second stage, distributed random forest (DRF) was used as ETD classifier and
also handled the missing values in the SGCC dataset. DRF used the features in stage one
for the classification of honest and fradulent consumers. In this ETD experiment, the authors
took 7,000 samples (520 fraudulent, 6,480 honest) from the dataset out of the total available
42,372 samples (3,615 fraudulent, 39,757 honest). The ETD model achieved precision of
99.00%, recall of 98.00%, F1 score of 98.00%, accuracy of 98.00%, MCC of 97.00%, AUC
of 98.33%, specificity (TNR) of 99.00%, mean squared error (MSE) of 0.14%, root mean
squared error (RMSE) of 2.00%, log loss or cross entropy of 3.13%, and R-squared (R?)

or coefficient of determination of 99.46% as performance measures.

The authors in Fei et al. (2022) proposed a self-supervised method for ETD to cater for
situations where fully labelled data may not always be available. The authors implemented
this method by using NTL detection contrastive prediction coding (ND-CP) model. The ND-
CP model was used to extract long-term consumption patterns from the SGCC dataset to
detect NTL, but not short-term features which was determined using Pruned Exact Linear
Time (PELT) method. PELT was able to detect sudden or unexpected consumption
changes in the dataset and provided evidences for using long-term consumption patterns
in detecting NTL better than short-term consumption patterns. ND-CP involved using 1D-
CNN to encode a sequence of the SGCC dataset into a matrix, and then employing GRU
compact to summarize the matrix and make it compact . The authors removed customer
samples with up to 100 missing values and systematically splited the aftermath data into
unlabelled pretrain, and labelled train and test sets to balance and handle the missing
values in the dataset. The proposed method leveraged on the unlabelled data to improve

ETD rates. Although, the SGCC dataset is already labelled from source, but the larger part
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of the labelled samples were ignored by the authors to satisfy the proposed method, in an
attempt to accomplish better ETD than most supervised models. To achieve the self-
supervised method, the authors pretrained the ND-CP model with large unlabelled samples
from the dataset to extract long-term consumption-pattern features, and then trained a
single-layer neural network with the extracted long-term features and tested it using the
remaining fewer labelled data samples to classify or predict the honest and faudulent
customers. The proposed ETD model achieved F1 score of 78.90%, accuracy of 77.00%,

and AUC of 83.20% as evaluation scores.

Gao et al. (2022a) used hybrid convolutional long short-term memory (ConvLSTM) classifier
which supports default or raw format of the SGCC consumption dataset as input into NTLD
model with a batch normalization meant to improve training and testing efficiencies.
Borderline-synthetic minority oversampling technique (borderline-SMOTE) was employed
for class balancing, and KNN technique to handle the missing values in the dataset. The
NTLD model with tenfold cross validation achieves the better performance results of 98.40%
precision, 94.80% recall, 96.60% F1 score, 96.60% accuracy, 97.70% AUC, and 98.00%
PR-AUC.

A combined Kernel and Tree Boosting (KTBoost) classifier, an ensemble-based classifier,
which used Jaya algorithm to optimize its hyperparameters (Jaya-optimized combined
KTBoost) has been deployed by Hussain et al. (2022) for NTLD. The classifier used Robust-
SMOTE as class balancing technique and also used the intelligence of extreme gradient
boosting (XGBoost) algorithm to estimate and fix the missing values in the SGCC dataset.
This ETD method achieved the precision of 95.08%, recall of 93.18%, F1 score of 93.71%,

accuracy of 93.38%, and MCC of 90.77% as performance results.

Khan et al. (2022) developed a multi-model that is based on combination of ML and deep
learning (DL) algorithms called data preparations, first and second-order classification
(PFSC) to detect abnormality in electricity consumption patterns. The first-order classifier is
based on SVM, RF and gradient boosting decision tree (GBDT) machine learning (ML)
methods, while the second-order classifier uses a temporal convolutional network (TCN).
The data preparation aspect of PFSC involves interpolation, outlier detections,
normalization, and balancing (IONB). The authors used linear interpolation method to
replace the missing values in the SGCC dataset. The highest performance results achieved
by the multi-model (PFSC) at 80% train proportion are 96.40%, 95.40%, 95.90%, 98.50%
for precision, recall, F1 score, and AUC respectively. The proposed PFSC framework

performed better than the benchmarked individual ML and DL models.
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Khattak et al. (2022) proposed a hybrid of GRU and CNN models termed HGC for ETD.
GRU was used to extract temporal patterns, while CNN was used to extract hidden or latent
patterns from the SGCC dataset. ADASYN and Tomek links were used to resample and
balance the dataset, while linear interpolation method was used to handle the missing
values in the dataset. The better performance results of the HGC model achieved at 60%
training data are 92.10% recall, 94.8% F1 score, 94.70% accuracy, 98.70% AUC, and
98.50% PR-AUC.

In the journal article written by Lepolesa et al. (2022), a fully connected feed-forward deep
neural network (DNN) classifier was deployed as the ETD model, principal component
analysis (PCA) was used to reduce the feature size, Bayesian classifier was utilized to
optimize hyperparameter tuning, while minimum redundancy maximum relevance (MRMR)
has also been used to validate the most essential features for ETD. The features used for
the classification were time and frequency domains which have been manually extracted
from the raw time-series SGCC dataset. The classification done with the frequency-domain
features outperforms that done with time-domain features, and also outperforms that done
when both domains are combined. The mRMR scheme was also used to ratify and
consolidate the significance of frequency-domain features for ETD over the features in their
time domains. The authors used Piecewise Cubic Hermite Interpolating Polynomial (PCHIP)
technique to replace the missing values in the SGCC dataset. The prediction results of the
proposed classifier achieve accuracy of 91.80% and AUC of 97.00% as performance

measures.

The authors in Liao et al. (2022) achieved highest performance scores of 78.70% AUC, and
98.10% MAP@100, and 95.40% MAP@200 at 70% training ratio using the proposed GCN-
CNN hybrid model. GCN is graph convolutional neural network which perform graph
convolutional procedures by depicting temporal correlation or time dependency and
periodicity of consumer load curve from the perspective of graph, as captured through the
adjacency matrix. Meanwhile, CNN captured the latent features in the load curve using
Euclidean convolutional processes. Latent features were modelled from load curves at
different fraudulent ratios. The proposed model performed better than the benchmark
models at various training and fraudulent ratios or data imbalances. The higher metrics
(AUC and MAP) obtained at different fraudulent ratios indicated that the proposed model is
more robust and adaptable to model latent features from the load curves. The effect of class
imbalance was being suppressed by randomly selecting samples from the raw dataset to
form new dataset and then varying the fraudulent ratios of the train and test sets. Linear

interpolation method was deployed to fill in the missing values in the SGCC dataset.
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Munawar, Javaid, et al. (2022) used the hybrid of Bi-GRU and Bi-LSTM as a classifier to
predict benign and malignant electricity consumers. The authors also deployed Tomek links
to address the issue of misclassification of defused data, abstract features were extracted
using stochastic feature engineering to enhance classification, K-means SMOTE technique
was used to balance the SGCC dataset, while mean-based was deployed to replace the
missing values in the dataset. The hybrid ETD model achieved performance scores of
80.60% precision, 80.90% recall, 80.70% F1 score, 95.00% accuracy, and 95.00% AUC.

The performance of the classifier was eventually verified using an attack vector.

Munawar, Khan, et al. (2022) deployed an effective hybrid classification architecture which
consists of attention layers, LSTM, and inception modules termed AttenLSTMInception as
the proposed model to detect ET using the SGCC dataset. In this approach, the authors
only considered six months of data of 1500 honest customers from the SGCC dataset owing
to their limited computing resources. In these selected 1500 honest customers, the authors
used six false data injections (FDIs) to manipulate each honest customer sample, such that,
six new variants of fraudulent samples are synthesized for a single honest sample. This
then disrupts the class balancing in the dataset creating more fraudulent samples. The
novel FDI techniques were compared with the six theft attack cases used in Pamir, Javaid,
Javaid, et al. (2022). The complexity and variance introduced into the data distribution by
the FDI techniques and the six theft cases were determined via kurtosis and skewness
analysis. The complexity and skewness introduced into the data by the FDI techniques are
minimal when compared with that of the six theft attacks. Simple imputer method was
employed to replace missing values and remove outliers in the data. Data inconsistency
after the data synthesis was eventually tackled by balancing the dataset using a novel
resampling technique called Proximity Weighted Synthetic Oversampling (ProWsyn). The
proposed model achieved precision of 97.00%, recall of 94.00%, F1 score of 96.00%,

accuracy of 95.00%, and AUC of 98.00% as performance measures.

The authors in Pamir, Javaid, Javaid, et al. (2022) explored the combination of LSTM and
GRU to form an ETD model called theft attacks-based LSTM and GRU (TLGRU). This work
is an extension of the work in Pamir et al. (2021). Technically, the LSTM performed feature
extraction, while GRU did the classification. Simple imputer technique was used to replace
the missing values in the SGCC dataset, while artificial theft attacks that produced synthetic
theft samples were used to balance the dataset. The TLGRU model achieved 97.96%,
86.59%, 91.92%, 91.56%, 91.68%, and 1.00% for precision, recall, F1 score, accuracy,

AUC, and FPR respectively as prediction results.
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Meanwhile, the authors in Pamir, Javaid, Qasim, et al. (2022) used autoencoder and
bidirectional gated recurrent unit (AE-BiGRU) model for ETD. Six artificial theft attacks that
generated synthetic theft samples were used to balance the imbalanced SGCC dataset,
while simple imputer method was used to replace the missing values in the dataset. The
bidirectional gated recurrent unit (BiGRU) was used for identifying patterns in the
consumption data. The results obtained from the AE-BIGRU ETD classifier are 91.30%
precision, 88.60% recall, 89.90% F1 score, 90.10% accuracy, 90.10% AUC, and 10.20%
FPR.

In the ETD experiments performed by Ullah et al. (2022), AdaBoost model has been used
as the classifier, AlexNet used to handle dimensionality reduction, near miss used as the
class-balancing technique for the imbalanced SGCC dataset, while linear interpolation
method was used to fill in the missing values in the given dataset. The hyperparameters of
Adaboost and AlexNet have also been tuned using bee colony optimization algorithm,
otherwise known as artificial bee colony (ABC). The following performance results were
obtained owing to the ETD experiments are: 86.00% precision, 84.00% recall, 85.00% F1
score, 88.00% accuracy, 78.00% MCC, and 91.00% AUC.

The authors in Ali et al. (2023) proposed a stacking model for ETD. The stacking model
involved the combination of the prediction outputs of LGB, extra trees, XGBoost, and RF
ensemble models with an MLP deep learning model which served as a meta-classifier. The
combined prediction outputs of the ensemble models served as input features to the MLP
model. The MLP model was used to improve the predictions of the ensemble models. The
predictions of the MLP model or meta-classifier served as the final predictions of the
stacking model. The authors also used PCA technigue for feature extraction and data
reduction, while SVM-SMOTE was being used as the class-balancing technique. To
balance the dataset, SVM was first used to separate the theft and honest samples, while
SMOTE was later used to oversample the theft samples to balance the SGCC dataset. The
authors deployed simple imputer technique to reinstate the missing values in the SGCC
dataset. The stacking model achieved F1 score of 97.66%, accuracy of 97.69%, AUC of
97.69%, PR-AUC of 96.55%, FPR of 0.72%, and FNR of 2.05% as performance results at

80% training and 20% testing ratios.

Appiah et al. (2023) applied SMOTE-Tomek to balance the imbalanced SGCC dataset,
extremely randomized trees classifier as the proposed model to detect ET, and grid search
optimization technique to optimize the proposed model. The authors also deployed linear

interpolation technique to fill in the missing values in the dataset. The proposed model
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produced precision of 97.00%, detection rate (recall) of 98.00%, F1 score of 98.00%,
accuracy of 98.00%, MCC of 95.06%, and AUC of 99.65% as ETD performance scores.

In the journal article written by Bai et al. (2023), the authors deployed a CNN model which
constitutes a dual-scale and a dual-branch (DSDB) structure with periodic intra and inter
convolutional blocks, and a transformer network called Gaussian weighting (GWT) network,
to form a novel hybrid neural network termed DSDBGWT. The novel hybrid ETD model was
able to effectively discover anomalies in the electricity consumption dataset. The CNN-
based DSDB structure enabled comprehensive feature extraction from the SGCC dataset
during the process of shallow feature extraction, decreased parameter usage, and
increased efficiency. The transformer network-based GWT module was able to augment
the feature-extracting ability of DSDB by extracting characteristic features from extended-
distance sequences or dependences of longer duration in a more logical manner, allowing
the attention mechanism to further be rationally allocated. The authors addressed the
missing values in the dataset using zero replacement and binary mask approach. The
hybrid DSDBGWT model has proven to be more efficient in extracting anomalies in
electricity consumption dataset with increased F1 score, AUC, and MAP@ALL metric
values of 62.90%, 92.30%, and 82.30% respectively as performance evaluation scores.

Kawoosa et al. (2023) used XGBoost ensemble algorithm as ETD model, trained and tested
the model using energy consumption data from the SGCC dataset, in conjunction with
additional features like location, seasonality, weekends, weekdays, regional festivals, and
high-demand power curtailments taken from auxiliary databases as input data to train and
test the XGBoost classifier. According to the authors, the additional data improved the
capacity of the model in detecting NTL by reducing false positives. Six artificial theft attacks
which generated synthetic fraudulent samples have been used to balance the dataset, while
the dimension of the dataset was reduced using PCA. The missing values in the given
dataset have been replaced using the forward filling method. The performance results
obtained were 98.00% precision, 98.00% recall, 97.00% F1 score, and 3.00% FPR.

The authors in Khan et al. (2023) used sequential preprocessing, resampling, and
classification (SPRC) as ETD framework. The sequential preprocessing aspect of the
framework involves interpolation, outliers handling, and standardization (I0S), hybrid data
resampler (HDR) was used for resampling to balance the dataset, and classification was
done with improved artificial neural network (iIANN). Linear interpolation method was
deployed to inpute the missing values in the SGCC dataset. The authors achieved the best

results through iIANN using parallel sequential topology at 80% training ratio. The SPRC
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framework achieves 99.60% precision, 98.70% recall, 99.10% F1 score, 99.70% accuracy,
and 98.70% AUC.

The ETD model termed DenseNet-GRU-LightGBM has been used in Naeem, Aslam, et al.
(2023). DenseNet-GRU-LightGBM model is a hybrid of densenet-fully convolutional
network (DenseNet-FCN) and gated recurrent unit (GRU) with a light gradient boosting
machine (LightGBM). Random oversampling using both classes (ROBC) sampling
technique has been used by the authors to balance the imbalance real-world SGCC dataset
used in developing the proposed model. The authors also used linear interpolation method
to fill in the missing values in the SGCC dataset. The proposed ETD model achieved
precision of 92.00%, recall of 96.00%, AUC of 92.00%, and PR-AUC of 87.00%.

In Naeem, Javaid, et al. (2023), the authors proposed the application of seasonal and trend
decomposition using loess (STL), fractal network (FractalNet), and LightGBM as ETD
model. STL was used to transform the pattern of electricity consumption in the SGCC
dataset into seasonality and trend, FractalNet was used to learn the seasonality and trend
of benign and malignant customers, while LightGBM was employed to improve on the
learning capacity of FractalNet and to classify both the benign and malignant customers in
the dataset. A novel hybrid oversampling and undersampling using both classes (HOUBC)
was used as the class balancing technique by performing undersampling from the majority
class first, before oversampling both from the majority and minority classes. The two classes
mentioned in HOUBC are the honest and fraudulent labels or classes in the electricity
consumption dataset. However, linear interpolation method was utilized to handle the
missing values in the SGCC dataset. LightGBM model was used for the classification of
honest and fraudulent customers, and hence achieved the following performance results:
94.20% precision, 96.10% recall, 93.30% F1 score, 96.20% accuracy, 94.20% MCC,
92.10% AUC, and 90.40% PR-AUC.

The precision, recall, F1 score, accuracy, and AUC values of 92.00%, 54.00%, 15.00%,
92.00%, and 54.00% respectively have been obtained by Nawaz et al. (2023) in their SGCC
dataset-based ETD experiments. The mentioned performance metrics have been realized
through the proposed hybrid convolutional neural network and extreme gradient boosting
(CNN-XGB) ETD model developed by the authors. The proposed CNN-XGB model also
achieved a PR-AUC value close to 1. The authors used linear interpolation method to

replace the missing values in the given dataset.
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In the journal publication authored by Nayak and Jaidhar (2023), the authors intended to
achieve higher ETD prediction results by using fewer features from the SGCC dataset. To
address the class imbalance issue of the SGCC dataset, the number of benign samples
were made equal to the number of fraudulent samples by random selection. Each missing
value (NaN or 0) in the given dataset were imputed separately with random values that lie
between the minimum and maximum values of the features in the missing-value column.
Experiments were carried out using mutual information, low variance filtering, and PCA as
feature selection and extraction techniques to optimize the classification processes. RF,
SVM, KNN, Naive Bayes, and DT were used as ETD classifiers to determine which model
would perform best after the various feature selections and extractions from the dataset.
Experimental results revealed that RF classifier with 30 PCA components or features (PCA-
30) performed best and achieved 98.60%, 93.80%, 95.82%, and 98.90% as precision,
recall, accuracy, and AUC scores respectively.

Pamir et al. (2023) presented the combination of SSA, GCAE, and CSLSTM termed SSA-
GCAE-CSLSTM as ETD model. SSA is salp swarm algorithm, GCAE is a combination of
GRU and convolutional encoder known as gate convolutional autoencoder, while CSLSTM
is a combination of cost-sensitive learning and LSTM. The authors handled the missing
values in the SGCC dataset using linear interpolation method. The presented ETD model
achieved precision of 99.45%, recall of 92.66%, F1 score of 95.93%, accuracy of 92.25%,

and AUC of 71.13% as performance results.

The authors in Wang et al. (2023) proposed an NTLD model that is based on convolution-
non-convolution parallel deep network (CNCP). In this method, the output of two fused deep
heterogenous neural networks have been used for ETD. The CNCP-based two deep neural
networks captured the features in the load time-series of the SGCC dataset at different time
scales before fusing their outputs to produce the NTLD results. However, the load time
series data of the benign electricity customers have obvious periodicity in different time
frames when compared with the load time series data of the customers who stole electricity.
To cater for the missing values in the SGCC dataset, the load profile of a customer is
discarded if the missing-value ratio of the customer to the whole dataset is greater than
30%. After that, weighted interpolation is then used to correct the remaining missing values.
The CNCP-based method achieved precision of 95.08%, recall of 98.70%, and F1 score of
96.85% at 80% training sets of the dataset.

The improved hybrid WDCNN model developed by Xia et al. (2023) achieved F1 score
value of 53.72%, AUC of 83.61%, and mean average precision (MAP@2100) of 97.08% as
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highest performance assessment scores at 70% train ratio. MAP@100 means MAP among
top 100 electricity users. The authors used focal loss to solve the data imbalance problem
and also used Lagrange interpolation method to replace the missing values in the employed
SGCC dataset.

The authors in Yang et al. (2023) made use of broad learning system-based (BLS-based)
multi-view rotation model to improve ETD performances. The proposed ETD method is
termed rotation_dwbls and involved the design of rotational subspaces which maps the raw
samples in the SGCC dataset into distinct sub-views to remove the negative impacts of
redundant features in the dataset, and mitigate the effect of the characteristic class-
imbalance distribution nature of the dataset using a weighting mechanism and a weighted
broad learning system (BLS). Transformation of dual space or rotation of features was
meant to generate more accurate and robust ensemble classifier, weighting strategy was
based on regional distribution of the data and took into cognizance the distribution of the
data and class imbalance, and thirdly the selection of progressive ensemble model after
BLS-based models have been trained from various views are the cores of the
rotation_dwbls approach. The proposed ETD model achieved AUC of 83.41% and
geometric mean (G-mean) of 83.90% as prediction results, achieving the best performance

when the authors compared it with existing ML models.

The authors, Yao et al. (2023), deployed an ETD scheme called multiscale convolutional
neural network-bidirectional gate recurrent unit (MCNN-BiIGRU) to classify the honest and
fraudulent electricity consumers. The authors used convolutional transformer-Wasserstein
generative adversarial network (CT-WGAN) as the class balancing technique to augment
and equalize the SGCC dataset. To handle the missing values in the given dataset, the
authors applied linear interpolation method for consecutive missing values less than three
days, and assigned zero if otherwise. The ETD scheme achieved precision of 95.67%, recall
of 91.48%, F1 score of 93.53%, accuracy of 91.10%, and AUC of 93.00% as the best

performance results at different training ratios using the SGCC dataset.

Huang et al. (2024) leveraged on the weekly periodic consumption and weekly anomalous
consumption patterns attributable to normal and fraudulent customers in the SGCC dataset
to enhance ETD. The features of these weekly-scale electricity consumption features were
integrated with the default daily-scale consumption features of the dataset to form dual-time
features. The hybrid of TCN with LSTM multi-level feature extraction module termed LSTM-
TCN, and deep convolutional neural network (DCNN) were used to extract the dual-time

features from the SGCC dataset. Meanwhile, SMOTE-Tomek links was used as class
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balancing technique to equalize the imbalanced dataset. Linear interpolation method was
used to replace the missing values in the given dataset. The novel strategy proposed by the
authors to enhance ETD was based on the use of LSTM-TCN and DCNN in extracting dual-
time features from the dataset. The extracted features were then fused into a fully connected
layer as input features for classification to validate the novel NTLD framework. ETD
classification as processed by the fully connected layer achieved 93.20% precision, 96.40%

recall, 94.80% F1 score, 94.70% accuracy, and 98.60% AUC as performance measures.

In another quest to improve the accuracy and efficiency of ETD models using the SGCC
dataset, Iftikhar et al. (2024) proposed a hybrid ETD model of MLP and GRU (MLP-GRU),
and used k-means SMOTE as a class-equalizing technique to balance the dataset. The
authors used simple imputer method to replace the missing values in the given dataset. The
hybrid MLP-GRU model achieved precision of 97.50%, recall of 95.00%, F1 score of
94.00%, accuracy of 93.33%, MCC of 85.00%, AUC of 100%, PR-AUC of 95.00%, and test
loss of 20.00% as metric performances at 90% and 10% train and test ratios respectively.

Khan et al. (2024) used RUS technique to balance the imbalanced SGCC dataset during
data preprocessing, and then also applied AlexNet for reducing the dimension of the SGCC
dataset and for feature extraction to enhance ETD. After these, a CNN model was deployed
for ETD. The authors used data interpolation technique to replace the missing values in the
given dataset. The CNN model achieved precision of 89.00%, recall of 86.00%, F1 score of
84.00%, and accuracy of 86.00% as ETD results. The authors also experimented with
unpreprocessed SGCC dataset using fully connected neural network as the ETD model,

but the preprocessed dataset expectedly achieved better ETD results.

The authors in Liao, Bak-Jensen, et al. (2024) explored optimal sample selection of dataset
features as a proposed strategy to reduce dataset annotation efforts within a limited budget
in a bid to maximize ETD prediction performances. Although the employed SGCC dataset
is already annotated or labelled by default but the comprised annotations were not
considered by the authors. This approach tends to improve ETD from the perspective of
data by selecting the most useful samples instead of the conventional approach of
improving model performances through enhancing the structure of the ETD model. The
authors proposed uncertainty-based sample (UBS) annotation, fraud class-based sample
(FBS) annotation, and distance-based sample (DBS) annotation as the three innovative
strategies for the selection of the optimal samples for annotation in the SGCC dataset for
ETD. Linear interpolation was employed to impute the missing values in the given dataset,
while part of the functions of the FBS strategy was to handle the class-imbalance problem.

The SGCC dataset was divided into three different sizes of datasets (dataset 1, dataset 2,
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and dataset 3) before applying the novel strategies. Dataset 1 was referred to as small
dataset, dataset 2 as medium dataset, and dataset 3 as large dataset in accordance with
the sizes of their training samples. Simulations were carried out separately on each of the
three datasets with sample annotations of 500, 1500, 3000, and 4500 on each of the three
datasets at different fraudulent ratios and different ETD classifiers. The results of baseline
or traditional strategies like random sampling (RS), clustering-based sampling (CS), and
density estimation-based sampling (DES), including when the datasets were without any
annotation have also been compared with the novel strategies. Simulation results showed
that the results of the novel strategies were better than the baseline strategies. MLP, CNN,
RF, XGBoost, and LightGBM were used as ETD classifiers. Overall, the FBS strategy
produced the best results of 90.20% F1 score, 77.80% AUC, 95.90% MAP@100, and
93.00% MAP@200, at 1500 sample annotations using dataset 2 and XGBoost as classifier.
The proposed novel strategies are capable of improving ETD better across range of ML
classifiers when compared with the traditional ML strategies.

Also, the authors in Liao, Zhu, et al. (2024) have proposed DetectGAT model for ETD.
DetectGAT is a modified graph attention network (GAT), a new neural network model which
captures the periodicity and latent features of electricity consumption data through dynamic
graphs, for the purpose of ETD. DetectGAT refers to using GAT in dynamic-graph domain
for ETD after initially converting the electricity consumption data into a graph. This is done
by migrating GAT from conventional static graph inferences to ETD-based dynamic graph
inferences. Dynamic graphs allow necessary structural adjustments in order to capture
periodicity and latent features from the SGCC dataset. The authors used linear interpolation
method to replace the missing values in the given dataset. The DetectGAT model achieved
AUC of 78.90%, MAP@100 of 98.10%, and MAP@200 of 95.60% as the best performance
results during group 3 experiment when the ETD model proposed by the authors
(DetectGAT) was applied to the SGCC dataset.

Mehdary et al. (2024) employed XGBoost model for ETD and a metaheuristic algorithm
called genetic algorithm (GA) to enhance the performance of the model. The GA was used
to finetune the hyperparameters of XGBoost model to optimize the ETD metric
performances. The authors utilized linear interpolation method to replace the missing data
in the SGCC dataset, and also used SMOTE and ensemble methods to balance the dataset.
The performance metrics like precision, recall, accuracy, and the AUC of the ETD model
improved significantly after tuning hyperparameters using GA to optimize the XGBoost

model. After hyperparameter tunings, the performance metric value of precision increased
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from 75.00% to 92.00%, recall increased from 68.00% to 89.00%, accuracy increased from
82.00% to 97.80%, while AUC also increased from 78.00% to 96.00%.

The authors in Nirmal et al. (2024) proposed the hybrid of CNN and AdaBoost as ETD
model. The CNN extracts important features from the preprocessed SGCC dataset, while
AdaBoost classifies the benign and fraudulent electricity customers. Meanwhile the authors
used SMOTE as the class balancing technique to equalize the benign and fraudulent
consumer samples in the SGCC dataset. Also, linear interpolation method was used to fill
in the missing values in the dataset. The proposed model eventually achieved 94.07%
precision, 95.73% recall, 95.60% F1 score, 96.35% accuracy, 57.00% AUC, 28.80% RMSE,
and 8.29% mean absolute error (MAE) as evaluation scores to determine the model

performances.

In another attempt to develop an efficient NTLD model using the SGCC dataset, Shahzadi
et al. (2024) proposed Time Series Lag Embedded Network (TLENET) as ETD model to
classify honest and fraudulent electricity customers. The authors used Wavelet Transform,
Fastfood Transform, and Nystrom Transform as dimensionality reduction methods. They
also used Localized Random Affine Shadowsampling (LORAS) as a class-balancing
technique, and a game theory-based SHapley Additive exPlanation (SHAP) method to
interpret the output of the proposed DNN model. Aside LORAS, other class-balancing
techniques like Adaptive Oversampling Minority Samples (ADOMS), Synthetic Minority
Oversampling Borderline-Data (SMOBD), Minority Cloning Technique (MCT), Random
Oversampling Examples (ROSE), and Proximity Weighted Synthetic Oversampling
(ProwWsSyn) were also experimented, but LORAS proved to be a better technigue in terms
solving overfitting problem, and producing low variance with respect to the classifier output.
The authors deployed simple imputation method to fill in the missing values in the SGCC
dataset. The TLENET model achieved 92.00% F1 score, 94.00% accuracy, 93.00% AUC,
and 87.00% MCC as performance scores using LORAS class-balancing technique, and
Wavelet Transform for dimensionality reduction. The Wavelet Transform produced better
prediction scores with the TLENET classifier and LORAS class-balancing technique than

other experimented dimensionality reduction methods.

Wang et al. (2024) deployed multi-step model based on LSTM to fill in the missing data in
the SGCC dataset, and hybrid federated learning-based stacking ensemble gate recurrent
unit (FL-SE-GRU) algorithm which utilized the optimal features from the dataset as the ETD
model. The authors introduced artificial theft attacks from nine cyberattack models which

produced nine different types of data attacks on the SGCC dataset in order to balance the
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dataset. The model achieved 96.6% precision, 93.8% sensitivity or recall, 95.1% F1 score,

and 95.0% accuracy as ETD performance results.

The authors in L. Zhu et al. (2024) proposed a model that significantly reduced the inherent
high costs associated with the manual labelling of electricity consumption datasets used in
developing ETD or NTLD models. This is in addition to the authors’ fundamental objective
of achieving desirable performance scores to ensuring significant ET or NTL reduction in
electric grids. These objectives were accomplished by developing an intelligent and cost-
effective ETD model which is an incorporation of deep learning (DL) and active learning
(AL) termed deep active learning (DAL). DAL involved splitting the default annotated dataset
into labelled and unlabelled sets. The DAL scheme constitute the combination of CNN with
Bayesian AL or Bayesian active query that is based on Monte Carlo dropout. The CNN
algorithm dealt with the ETD aspect, while the Bayesian AL tackled the data annotation
aspect of the scheme. The Bayesian AL assisted in deriving a discriminative CNN model
that require minimum data annotations without compromising the detection reliability of the
proposed DAL model. Class-balancing of the SGCC dataset was not considered by the
authors, but forward interpolation method was used to replace the missing values in the
dataset. The proposed model achieved 93.02% accuracy, 81.91% AUC, 91.67%
MAP@100, and 87.89% MAP@200. The DAL model enhanced cost-effective data
annotation with reliable performance scores. The DAL scheme culminates in about 66.7%

reduction in manual data annotation costs.

Finally, S. Zhu et al. (2024) presented a combination of Omni-Scale CNN (OS-CNN) and
AutoXGB models termed OS-CNN-AutoXGB as the proposed model for ETD. The OS-CNN
was used for feature extraction, while AutoXGB was utilized for hyperparameter
optimization and classification of benign and malignant electricity consumers. The authors
deployed SMOTEENN as the class-balancing technique, and Piecewise Cubic Hermite
Interpolating Polynomial (PCHIP) method to replace the missing values in the SGCC
dataset. The OS-CNN-AutoXGB model achieved 97.50% precision, 94.10% recall, 95.50%
F1 score, 99.20% accuracy, and 98.40% AUC as experimental assessment results showing

the predictive powers of the model.
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Table 4.2: Performance comparison of the proposed ETD model and other SGCC dataset-based
models presented in the literature

S/No. Model Precision | Recall F1 | Accuracy | MCC | AUC PR- Reference
(%) (%) | Score (%) (%) (%) AUC
(%) (%)
1. RDAE-AG-TripleGAN 98.70 95.60 | 96.70 - 94.30 | 95.20 | 95.80 | (Aslam,
Ahmed, et al.,
2020)
2. LSTM-Unet-Adaboost 99.80 92.90 | 95.40 97.20 | 90.20 | 94.80 | 95.80 | (Aslam,
Javaid, et al.,
2020)
3. (FA-XGBoost) 93.00 97.00 | 93.70 95.00 85.60 | 95.90 - (Khan et al.,
2020)
4. GAN-NETBoost 96.80 94.00 | 95.00 95.00 91.00 | 96.00 - (Aldegheishem
et al., 2021)
5. ResNet+RF 99.17 94.92 | 96.93 99.10 - 99.68 - (Arif et al.,
2021)
6. DANN 48.24 61.03 | 53.89 91.29 - 77.54 (Bohani et al.,
2021)
7. K-means+DWMCNN-RF 97.70 87.47 | 92.30 90.65 - 99.00 - (Cheng et al.,
2021)
8. FRESH+treeSHAP+CatBoost 95.08 92.37 | 93.71 93.38 - - - (Hussain et al.,
2021)
9. AlexNet+APLSTM-ESNN 90.00 92.10 | 92.00 96.30 84.00 | 96.40 | 97.30 | (Javaid, 2021)
10. LLE+GANCNN 95.00 99.00 | 90.00 95.00 - 98.5 - (Javaid, Gul,
et al., 2021)
11. DSN 91.20 92.30 | 92.80 95.30 - 93.40 - (Javaid, Jan,
et al., 2021)
12. | RICASAE+Jaya-RUSBoost 57.20 100.00 - 96.40 - 95.70 - (Mujeeb et al.,
2021)
13. CBOS+CNN - - - 68.33 - 80.84 - (Pereira &
Saraiva, 2021)
14. | GoogLeNet+GRU - - - - - 96.00 | 97.00 | (Shehzad et
al., 2021)
15. TCN-EMLP - - - - - 84.00 - (Arif et al.,
2022)
16. | 2D-CNN+Bi-LSTM 97.00 92.00 | 94.00 95.00 | 93.00 | 97.00 | 98.00 | (Asif et al.,
2022)
17. | Default and generated 99.00 98.00 | 98.00 98.00 97.00 | 98.33 - (Badawi et al.,
statistical features+DRF 2022)
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18. | ND-CP+single-layer neural - - 78.90 77.00 - 83.20 - (Fei et al.,
network 2022)
19. | ConvLSTM 98.40 94.80 | 96.60 96.60 - 97.70 | 98.00 | (Gao et al.,
2022)

20. | Jaya algorithm+KTBoost 95.08 93.18 | 93.71 93.38 90.77 - - (Hussain et al.,
2022)

21. | PFSC 96.40 95.40 | 95.90 - - 98.50 - (Khan et al.,
2022)

22. | HGC - 92.10 | 94.80 94.70 - 98.70 | 98.50 | (Khattak et al.,
2022)

23. | PCA+Bayesian - - - 91.80 - 97.00 - (Lepolesa et
classifier+Mrmr+DNN al., 2022)

24. | GCN-CNN - - - - - 78.70 - (Liao et al.,

2022)
25. | Tomek links+BiGRU- 80.60 80.90 | 80.70 95.00 - 95.00 - (Munawar,
BIiLSTM) Javaid, et al.,

2022)

26. | AttenLSTMInception 97.00 94.00 | 96.00 95.00 - 98.00 - (Munawarr,
Khan, et al.,
2022)

27. | TLGRU 97.96 86.59 | 91.92 91.56 - 91.68 - (Pamir, Javaid,
Javaid, et al.,
2022)

28. | AE-BIiGRU 91.30 88.60 | 89.90 90.10 - 90.10 - (Pamir, Javaid,
Qasim, et al.,
2022)

29. | ABC+AlexNet+AdaBoost 86.00 84.00 | 85.00 88.00 78.00 | 91.00 - (Ullah et al.,
2022)

30. | PCA+stacking model - - 97.66 97.69 - 97.69 | 96.55 | (Alietal.,
2023)

31. | Grid search optimization 97.00 98.00 | 98.00 98.00 95.06 | 99.65 - (Appiah et al.,
technique+extremely 2023)
randomized trees

32. | DSDBGWT - - 62.90 - - 92.30 - (Bai et al.,

2023)
33. | PCA+XGBoost 98.00 98.00 | 97.00 - - - - (Kawoosa et
al., 2023)
34. | SPRC 99.60 98.70 | 99.10 99.70 - 98.70 - (Zlégaér)] etal,
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35. | DenseNet-GRU-LightGBM 92.00 96.00 - - - 92.00 | 87.00 | (Naeem,
Aslam, et al.,
2023)
36. | STL-FractalNet-LightGBM 94.20 96.10 | 93.30 96.20 94.20 | 92.10 | 90.40 | (Naeem,
Javaid, et al.,
2023)
37. | CNN-XGB 92.00 54.00 | 15.00 92.00 - 54.00 - (Nawaz et al.,
2023)
38. | PCA+RF 98.60 93.80 - 95.82 - 98.90 - (Nayak &
Jaidhar, 2023)
39. | SSA-GCAE-CSLSTM 99.45 92.66 | 95.93 92.25 - 71.13 - (Pamir et al.,
2023)
40. | CNCP 95.08 98.70 | 96.85 - - - - (Wang et al.,
2023)
41. | WDCNN - - 53.72 - - 83.61 - (Xia et al.,
2023)
42. | rotation_dwbls - - - - - 83.41 - (Yang et al.,
2023)
43. | MCNN-BiGRU 95.67 91.48 | 93.53 91.10 - 93.00 - (Yao et al.,
2023)
44, | LSTM-TCN+DCNN 93.20 96.40 | 94.80 94.70 - 98.60 - (Huang et al.,
2024)
45. | MLP-GRU 97.50 95.00 | 94.00 93.33 85.00 | 100.00 | 95.00 | (Iftikhar et al.,
2024)
46. | AlexNet+CNN 89.00 86.00 | 84.00 86.00 - - - (Khan et al.,
2024)
47. | FBS+XGBoost - - 90.20 - - 77.80 - (Liao, Bak-
Jensen, et al.,
2024)
48. | DetectGAT - - - - - 78.90 - (Liao, Zhu, et
al., 2024)
49. | GA+XGBoost 92.00 89.00 - 97.80 - 96.00 - (Mehdary et
al., 2024)
50. | CNN-AdaBoost 94.07 95.73 | 95.60 96.35 - 57.00 - (Nirmal et al.,
2024)
51. | Wavelet - - 92.00 94.00 87.00 | 93.00 - (Shahzadi et
Transform+LoRAS+TLENET al., 2024)
52. | FL-SE-GRU 96.6 93.8 95.1 95.0 - - - (J. Wang et
al., 2024)
53. DAL - - - 93.02 - 81.91 - (L. Zhu et al.,
2024)
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54. | OS-CNN-AutoXGB 9750 | 94.10 | 9550 | 99.20 — [ 9840 [ - [(S.zhuetal,
2024)
55. | Proposed CNN-RF 100.00 | 98.36 | 99.17 | 99.20 | 98.40 | 99.13 | 99.55 | N/A

4.6

The result comparisons in Table 4.2 have shown that the proposed CNN-RF model
outperformed all other SGCC dataset-based ETD models presented in the existing
literature. The higher performance-metric values obtained through the proposed CNN-RF
model have shown that the proposed model generalizes better (Khan et al., 2020:22) and
is more reliable and accurate than all other SGCC dataset-based ETD classifiers which
have been presented in the literature. The comparison has solidly established the
superiority of the proposed model in ETD. As previously mentioned, the SGCC dataset-
based NTLD models presented in the benchmark journal articles have been trained on
same SGCC dataset which have also been used in training the proposed model, to ensure
fair comparisons. Again, the referenced SGCC dataset-based ETD models and their
prediction results in the existing literature were published between the years 2020 and 2024,
and have been used as benchmarks to determine the effectiveness of the proposed model
in detecting ET, as shown in Table 4.2. The superiority of the proposed model over the
benchmark models represents a huge contribution and advancement to the field of NTLD,
for the detection of NTL in Smart Grids.

Discussion

The first point of departure in the process of detection and mitigation of ET or NTL is to
develop a formidable model to do so. In a bid to significantly contribute to knowledge in this
research project, the aim of the thesis has been to build a formidable NTLD model that will
profoundly detect ET better with greater mitigation prospects than the previously developed
NTLD models in the existing literature. The CNN, RF, and the proposed CNN-RF hybrid
models developed in this research have separately shown superior and impressive
prediction results, but the classification results of the proposed CNN-RF model have shown
better ETD predictions when compared exclusively with the results of either the standalone
CNN model or the RF model. The proposed model has performed better than all the
previously developed NTLD models in the existing literature. Those previously developed
benchmark NTLD models in the previous research have also been constructed by
employing the same SGCC dataset used in developing the proposed model. It is noteworthy
to mention that the higher the detection capacity of an ETD model, the better its onsite

mitigation prospects.
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4.7

Fifty-four (54) recent NTLD models developed in the existing literature between the years
2020 and 2024 have been benchmarked with the proposed model, and the results obtained
through the models have shown that the proposed model produces the best results as
presented in Table 4.2, showing enhanced detection performances which will eventually
spur greater mitigation of NTL in electric grids. The higher predictive power obtained vis-a-
vis the proposed model is a fulfilment of the aim and objectives of the research, and is also
a means of proffering answers to the research questions. NTLD models with greater
prediction results promote healthier electric grids with enhanced electricity availability, help
the electric utilities to generate more profits, stimulate economic growths and foster
sustainable economies, aid security of citizens, and bolster technological advancements
since most inventions and innovations in modern societies largely dependent on the

availability of electricity.

Conclusion

The proposed CNN-RF model shows very excellent and interesting results. Overall, the
proposed model has performed better than all the previously presented ETD models in the
selected literature. The ETD models presented in the previous research, which are
compared or benchmarked with the proposed model, have all been developed using same
SGCC dataset. It is reasonable to compare different types of NTLD models to be able to
ascertain the models with the best predictive powers (Janiesch et al., 2021:690). The
comparison of the performance results of the proposed CNN-RF model developed in this
thesis with the performance results of the recently developed SGCC dataset-based ETD
models presented in the existing literature is the benchmark used in rating the efficacies

and efficiencies of the proposed model with respect to other NTLD models.

The performance results achieved by the proposed model are superior and constitute the
major contribution of this research project. The increased performance scores obtained
from the proposed model indicates better NTLD. Better NTLD would further spur more-
reliable and more-efficient onsite inspections for better mitigations of ET in the power grids.
Onsite mitigation efficiency is premised on the detection capacities of ETD models. The
higher NTL detections achieved in this research, as indicated by the performance results of
the proposed model through the performance assessment metrics, have seamlessly
proffered answers to the research questions, while also simultaneously fulfilling the aim and
objectives of the research project. Better mitigations of ET enhance grid stability and
reliability, ensure more revenues and profits to the electric utilities, and also help in

improving the economies of nations worldwide. These are feats which the proposed model
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is poised to achieve based on its higher prediction scores. Without reducing NTL
significantly in the power grids, the United Nations’ vision of “electricity for all” by the year
2030 (Javaid, Jan, et al., 2021:44) would definitely be unrealized.

259



5.1

5.2

CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

Introduction

Additional electricity generation to cater for extrinsically-induced energy losses is not
sustainable without drastically curtailing electricity theft (ET) or non-technical losses (NTL)
in the power grids. ET has triggered dire economic consequences as it has caused financial
losses close to US$100 billion per year to electric utilities all over the world (Coma-Puig et
al., 2024:2705; Kim et al., 2024:2; Shahzadi et al., 2024:2; L. Zhu et al., 2024:256). Since it
is impossible to completely eliminate ET in the power systems, the motivation for this
research is premised on the quest to further prune ET in the distribution networks to the
barest minimum, using the state-of-the-art artificial intelligence-based (Al-based) machine
learning (ML) methods. This is done by improving the existing electricity-theft detection
(ETD) methods, which is necessary to obtain more robust, effective, efficient, and reliable
models for better NTL detections (NTLDs).

The effort of this research project is primarily geared towards detecting and mitigating ET
better in Smart Grid (SG) using real-world dataset. The proposed ETD model is basically
developed to further increase NTLD performances, in order to achieve a more satisfactory
mitigations of ET in the power grids. This chapter concludes the research by summarizing
all the previous chapters of the thesis, recapping the performance results of the developed
model, while also highlighting the essence and contributions of the research. Lastly, this
chapter gives other supplementary suggestions and prospects that could further assist in

the future detections and mitigations of NTL.

Conclusions

Chapter 1 of this thesis underscores the importance of electricity to humanity and also
establishes the concept of ET including its historical background, forms, causes, effects,
and its detection and mitigation approaches. The statement of the research, the salient
research questions, the aim and objectives of the research, its delineation, significance,
research contributions as well as the organization of the thesis have also been discussed
in the introductory chapter. Chapter 2 is a review of the literature. The review centres on the
evolution of the electricity grids and the electricity meters. Various NTL prevention, detection
and mitigation techniques which form the core of this research have also been reviewed in

the chapter. Chapters 3 and 4 are the experimental part of the thesis. Chapter 3 dealt with
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the methodology employed in modelling the ETD systems, while Chapter 4 explicates the
experimental results and their interpretations. This chapter (Chapter 5) is the final chapter
of the thesis and thus summarizes the research project as a whole and recommends
possible future directions that would tend to supplement the existing ETD and ET mitigation

efforts in a bid to further stem the spate of NTL in the electricity grids.

We have been able to establish earlier in the previous chapters that Al-based NTLD
methods are the predominant, cost-effective, and the most reliable techniques for predicting
customers who may likely steal electricity or cause NTL. Using the Al-based methods,
electricity consumers with suspicious or irregular consumptions are then shortlisted for
onsite inspections. Using Al methods reduce unnecessary, unilateral, and costlier onsite
inspections associated with the traditional NTLD methods, thereby lessening the cost of
NTL mitigations in electricity systems.

The ETD model developed in this thesis is more reliable and efficient, and are even of
greater importance and benefits, especially now that the spate of ET has increased
geometrically in the developing countries, while also considerably rising in the developed
countries. The proposed CNN-RF model is therefore recommended for use by electric
utilities to reduce NTL in their various distribution networks (Iftikhar et al., 2024:02). NTL
must be significantly reduced to enhance healthy, reliable, and sustainable electric grids.
Apart from reducing energy poverty, a thriving electricity grid with low NTL achieves
economy of scale, which proportionally translates into increase in utility revenues that

ensure profits to the power supply companies, and improves national economies.

Countries in the modern world depend on reliable electricity as a major economic driver
because there is hardly a sector in any progressive economy that do not require electricity
to function. A reliable electricity supply translates into economic prosperity, creates more
job opportunities, and helps to improve the social well-beings among citizens (Wabukala et
al., 2023:1, 3). Therefore, developing formidable ETD models with high-predictive powers,
which will assist in reducing NTL significantly in the electric grids is of greater economic
value. Reducing ET in the power grids to a bearable minimum is a serious task that must
be accomplished. The proposed CNN-RF model developed in this research project
achieved unprecedented increase in performance results, and such improvement will pave

way for significant NTL reduction in power grids.
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5.2.1 Summary of results

To address our research questions in a bid to fulfill the aim and objectives of this study,
there is a need to develop an ETD model that would be more efficient (i.e., produce higher
metric performances) with very-low false positives (FPs) or false alarms. We have been
able to develop such model to fulfill the veracity of the research project. The NTLD
simulations were carried out using Python in a Google Colab Integrated Development
Environment (IDE), using the real-world dataset released by the State Grid Corporation of
China (SGCC). The SGCC dataset used in constructing the proposed model has also been
used in several existing high-profile literature for developing several ETD models. This
provides a good ground for comparing the performance results of the proposed model with
the performance results of other ETD models in the previous research. The proposed ETD
model developed in this research project with the dataset provided by SGCC performed
better than all the previous ETD or NTLD models that have been developed in the existing
literature using the same dataset.

The NTLD simulation started with the modelling of convolutional neural network (CNN)
model, after which the random forest (RF) model was instantiated, and the two models were
later combined by feeding features from the MaxPooling1D layer of the CNN model into RF
model to form a hybrid model termed CNN-RF. The hybridization is done in a bid to obtain
optimal results. Combination of models and hyperparameter tunings of models have been
formidable means of optimizing models in order to achieve better prediction performances
(Poudel & Dhungana, 2022:117; Vincent & Jidesh, 2023). The detailed Python codes used

in implementing the proposed ETD model can be found in the Appendix.

The proposed CNN-RF model achieved precision of 100.00%, recall of 98.36%, F1 score
of 99.17%, accuracy of 99.20%, Matthews correlation coefficient (MCC) of 98.40%, area
under the receiver operating characteristic curve (AUC) of 99.13%, area under precision-
recall curve (PR-AUC) of 99.55%, true negative rate (TNR) of 100.00%, false positive rate
(FPR) of 0.00%, and false negative rate (FNR) of 1.64% as prediction scores. However,
before the hybridization of CNN and RF models to form the proposed model, CNN model
achieved 99.95 % precision, 98.48% recall, 99.21 F1 score, 99.25% accuracy, 98.50%
MCC, 99.94% AUC, 99.95% PR-AUC, 99.96% TNR, 0.04% FPR, 1.52% FNR, while RF
model achieved precision of 100.00%, recall of 98.23%, F1 score of 99.11%, accuracy of
99.13%, MCC of 98.27%, AUC of 99.12%, PR-AUC of 99.55%, TNR of 100.00%, FPR of
0.00%, and FNR of 1.77% individually as performance results. We have so far been able to

obtain the highest and superior ET prediction results with the proposed CNN-RF model
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when compared with the previous models presented in previous research which have also
employed same SGCC dataset used in this work. The table that compares and summarizes
the results of the proposed model and other SGCC dataset-based ETD models (presented

in the existing literature) can be found in Table 4.2 in Section 4.5.1.1 of Chapter 4.

5.2.1.1 Contributions to knowledge

Building reliable, efficient, and formidable NTLD model is the core of any realistic and cost-
effective effort towards ET detection and mitigation. Hence, the development of such model
is the basis of the contribution of this research project. The mitigation efficiency of ET after
building an ETD model is a function of the predictive or detection power of the developed
model. The classification efficiency of the proposed model is directly proportional to their
performance scores. The greater the performance scores, the higher the predictive power
of the model. Utility technicians will achieve very efficient and cost-effective onsite
mitigations of ET if the model upon which they have premised their mitigation efforts
achieves higher performance scores (Messinis & Hatziargyriou, 2018:259). Higher
performance scores indicate higher model efficiency, signifying low false positives and low
false negatives. The construction of more accurate and more efficient ETD model can
significantly contribute to the field of energy management to enhance energy security. The
proposed model can help utility companies to reduce revenue losses and improve the
overall reliability of electricity in distribution systems. The developed NTLD model is robust,
efficient, and reliable. The success achievable by utility inspectors during onsite NTL
mitigation efforts is directly correlated with the performance of the built model.

It is clear from the comparison of results shown in Table 4.2 in Section 4.5.1.1 of Chapter 4
that the proposed CNN-RF model outperforms all the existing models that were previously
developed using the same SGCC dataset employed in this research. The performance
results of the recent SGCC dataset-based ETD models presented in the existing literature
never surpassed the performance results of the proposed model. We have been able to
improve on the efficiency status quos of the previous NTLD models presented in the
previous research. The detection performance comparisons are based on the employment
of same SGCC dataset for the model developments, but with different methods of model
implementations. This is in a bid to reveal the ETD models that have achieved better

performance results.

Based on the information available to us, the performance results obtained through the

proposed ETD model developed in this research project are unprecedentedly better when
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compared with the results of other previously developed NTLD models in the previous
research. Those previously developed models in the literature have also been constructed
using the same SGCC dataset employed in developing the proposed model. The proposed
model is characterized with excellent NTLD results based on the increased predictive power
of the model as revealed via their performance results. The higher performance scores
achieved by the proposed model have seamlessly proffered answers to the research
guestions, and have also simultaneously provided the premise for fulfilling the aim and

objectives of the research.

Apart from the obtained performance results with their excellent predictive powers which
shows the efficacy of the proposed model in mitigating ET, the discovery of the proposed
CNN-RF model itself (which serves as a means to achieving the ends) is also a huge
contribution to the research. Based on the information available to us, no previous work has
explored the combined strengths of CNN and RF in developing ETD model by applying the
employed SGCC dataset. The results of the proposed model have revealed that integration
of models by leveraging on their combined strengths could generate a more robust,
accurate, and cost-effective ETD model. The summary of the key contributions of the
research, which has been categorized into theoretical, methodological, and practical

aspects, is presented in Table 5.1.

Table 5. 1: Summary of the key contributions of the research

Type of Impact
contribution

Theoretical i. The proposed hybrid model bridges deep learning (CNN) with ensemble
learning (RF).

ii. It enhances generalization on small datasets.

iii. Replacement of fully connected layers that do classification in CNN with
RF for better efficiency.

iv. Interpretability of deep learning improves with the feature importance
analysis of RF, which allows insights into the extracted CNN features to

determine those that contributed most to classification.

Methodological | i. RF model is trained on the hierarchical features extracted from CNN layers
instead of training it on raw data.

ii. The hybrid model reduces the computational cost that may arise when
only CNN model is deployed.

iii. RF model handles noisy and imbalanced data better than CNN.
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iv. The hybrid model works well across different data types, like the time
series data used in developing the proposed ETD model. It also generalizes
well with image data and tabular data.

Practical i. The hybrid model achieves higher performance results when handling real-
world tasks than when either CNN or RF model is implemented individually.
ii. It enables efficient deployment of edge computing.

iii. The model fosters better generalization to tasks.

iv. The hybridization of the deep and ensemble models enhances the
interpretability of the new composite model and make it suitable and

applicable for better decision making in real-life situations.

5.3 Recommendations for future work

To further improve the detection and mitigation of ET or prevent it in the future, the following

recommendations are made:

(a) Design of stronger firewalls as a formidable cybersecurity system for the Smart Grid (SG)
system, to ensure that the advanced metering infrastructures (AMIs) and their smart
meters (SMs) are more secured in order to prevent probable cyber-physical attacks. The
envisioned intelligent cybersecurity framework should be able to automatically preempt
and keep track of the latest probable AMI and SM hacking techniques and keep updating
its database in a bid to always anticipate, stem, and be a step ahead of potential attackers
of the AMIs and SMs. It is only when the SGs are secured against cyber-physical attacks
that any NTLD system developed using data from SGs could become effective and
reliable. Interdisciplinary collaboration among experts in fields like data science,
cybersecurity, and energy management can bring diverse perspectives and expertise to

the development of more robust ETD models.

(b) Building explainable ML models for ETD can enhance more transparency and trustin NTL
predictions, and counter the black-box issues associated with ML (Coma-Puig et al.,
2024). Explainable ML models would fortify algorithms with augmented reality or cognition
that would allow domain experts to decipher the underlying reasons behind the predictions
or decisions made by NTLD models. For example, an explainable ML model for NTLD
would be able to interpret the reasons why a particular customer steals electricity. The
intuitive nature of explainable ML would further enhance the protection of the grid against

NTL and tremendously increase the efficiency of physical onsite inspections. Electric
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utilities need explainable ML models to justify theft classification decisions before taking
legal actions against customers. Explainable ML should be explored to build ETD models

that will further reduce NTL in the electric power systems to promote healthier grids.

(c) Exploring ways to integrate ETD models with several other grid management systems that

forecast energy consumptions. Such integrated system can provide domain experts with

firm and holistic control of the grids.

(d) Developing novel feature engineering methods specific to ETD can improve model

performances and help in better extraction of more meaningful insights from raw datasets.

(e) Utility technicians should improve the inspection accuracies of their onsite surveillances

()

by avoiding false positives (false alarms) and false negatives. This would ensure correct
labelling of input dataset which would then be used to develop reliable NTLD systems or
models to enhance better ET predictions (Messinis & Hatziargyriou, 2018:262; Saeed et
al., 2020:16; Liao, Zhu, et al., 2024:5075).

Al-based automated NTLD models could only reliably predict those consumers who steal
electricity and those who do not, but would not be able to inspect the premises of the
customers to confirm NTL or enforce the law to mitigate ET after the theft may have been
confirmed. However, to enhance reduction of NTL, the criminal law of every country must
include ET which should be enforced against the culprits. Governments of various
countries should revise their electricity acts and include ET among major crimes that

should attract stringent penalties.

Any crime like ET which culminates in bringing the economic activities of any country down
should be given priority attention, and must be tackled with utmost seriousness and
sincerity. Governments of various realms should reform and empower the law
enforcement agents and make them available to the utilities for immediate arrest of
confirmed electricity thieves. The role of the law enforcement agents in the fight against
ET is very significant, as six electricity thieves including a teacher were recently caught by
the utility inspectors and arrested by the law enforcement agents in a joint operation in
Osogbo, Osun State, Nigeria for stealing electricity via tampering their meters (Ezediuno,
2023). The functionality of security agents in the fight against ET cannot be
overemphasized. Also, special or dedicated courts should be established in all realms to
enhance speedy hearing, trial, and prosecution of ET offenders. The Jamaican electric

utility, Jamaica Public Service Company (JPS), is clamouring through the Government for
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the establishment of special utility courts in the country in order to quickly bring electricity
thieves to book (Campbell, 2021). However, the governments of Sierra Leone (Sesay,
2021) and Pakistan (Dawn, 2023) have already considered the concept of special courts
to try ET offenders, while the Nigerian authority (Aduloju, 2024) is also currently
considering this important measure to hasten the prosecution of ET culprits in a bid to
specially curb the theft of electricity. Special courts will enhance quick prosecution of

electricity thieves, and such will debar future reoccurrences of the crime.

(g9) Raising public awareness about ET to sensitize citizens that stealing electricity is an illegal

act, including rolling out its legal implications under the law and encouraging customers to
report suspected consumers who engage in theft. Erasing through publicities the dubious
notions among some citizens who think electricity should be a social service (Onat,
2018:166; Ojoye, 2019; Shokoya & Raji, 2019b:469), and also obliterate such among
those who believe that electricity should be given for free by right or by entitlement
(Robinson, 2014), are also very important steps in stemming the acts of stealing electricity.

(h) NTL prohibitive measure like publicizing the names and other particulars of stealing

0)

)

consumers in the available media, including launching whistleblowing platforms in a bid to
“‘name and shame” the theft culprits has been used in some realms as mentioned in
Section 2.4.4 of Chapter 2 to avert ET. Such prohibitive measure has proven to be very
effective (Antmann, 2009:24), and should be sustained as a veritable tool to further
prevent NTL in the power grids. This method is very potent as many electricity consumers
are media-shy and are always keen to protect their names and those of their families,
especially for the negative reasons. This method is recommended to those electric utilities

around the world that have not yet adopted it.

Researchers, especially those in the field of economics, social sciences, and humanities
should do more innovative works on theoretical NTL mitigation-based studies and
promulgate new economic and scientific theories that will make the payment of bills
attractive to electricity customers, and enhance customer-utility relational engagements
that will further strengthen the interrelationships between the utilities and their customers,

in a bid to prevent or prohibit ET.

The proposed NTLD solution could be potentially servitized (Janiesch et al., 2021:692-
693) for future use in real-world applications by transferring its detection prowess to other
utility domains across the world in the form of commercial NTLD software for optimal
detection of ET (lIftikhar et al., 2024:02). Such software should be integrated with the AMI
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to enhance real-time monitoring of electricity customers for NTLD. This would then provide
utilities with timely information to be able to take immediate action against electricity
thieves, thus reducing NTL drastically. Using different or non-SGCC datasets from other
utilities with the proposed model will also help to further establish its efficiency and

effectiveness.

(k) The NTLD experiment in this research project and the majority of works on NTLD in the

0

previous research mainly focus on detecting NTL in the low-voltage (LV) secondary
distribution networks of the power grids because most dubious actions that cause NTL
take place at this level of the grid (Kim et al., 2024:11). Future efforts should also be made
to check NTL in the medium-voltage (MV) primary distribution networks and the high-
voltage (HV) transmission networks. Although, majority of electricity thieves do not venture
into theft at MV and HV network levels of the grid due to the intricacies and greater risks
involved, but some sophisticated electricity thieves, powerful ET syndicates or mafia might
perhaps be exploring the MV and HV network levels of the electric grid in a bid to steal
electricity and later sell at cheaper rates (Depuru et al., 2011a:1010). Grid stakeholders
or domain experts should be proactive and keep surveillance on the entire grid system to
achieve optimal results in terms of NTLDs and NTL mitigations.

Electric utilities, especially those in Africa, should upgrade to the next-generation grid
otherwise known as SG, to enhance the efficiency and security of their electricity grids
and to prevent ET by using the intelligent SMs with end-to-end real-time monitoring of
energy consumptions through the AMIs. Additionally, with SMs more data will be available
to diagnose the grid of NTL using the state-of-the-art Al-based ML methods (Gu et al.,
2022:4568; Liao, Zhu, et al., 2024:5075).

(m) Open-access and anonymized real-world electricity consumption datasets should be

made available by the utilities to advance the course of research in NTLDs. Big datasets
that would reveal consumers’ geographical spread and seasonal consumption changes
over the years are recommended. This is necessary to capture the actual electricity
consumption patterns of different electricity consumers, showing reasons behind diversity

in their consumptions.

(n) Finally, future efforts should also be geared towards modifying and utilizing the proposed

model to detect theft or fraud in non-electricity sectors like banking, insurance, capital

markets, and accounting, etc.
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APPENDIX

The Appendix contains the codes used in the implementation of the algorithms to develop the
proposed electricity-theft (ET) or non-technical losses (NTL) detection model which its theoretical
modelling approach has already been presented in Chapter 3. The artificial intelligence-based
(Al-based) machine learning (ML) simulations for the NTL detection (NTLD) model is carried out
using Python in Google Colaboratory (Colab) Integrated Development Environment (IDE). Only
the implementation codes used in developing the proposed model has been explicitly presented
here, but the code outputs or results have not been presented. The Python implementation codes
could then be run (by anyone who intends to authenticate the veracity of this work) on any Python
IDE to obtain their corresponding outputs. The dataset used in the development of the NTLD
model is from the State Grid Corporation of China (SGCC). SGCC is a Smart Grid (SG) electric
system, while the dataset used in building the proposed model is thus a SG data which has been

obtained from the smart meters (SMs) of the represented electric customers.

The hybrid of CNN and RF models termed as CNN-RF has been proposed in this thesis to
enhance or optimize electricity-theft detection (ETD). The model hybridization combines the
strengths of both convolutional neural network (CNN) and random forest (RF) models, in a bid to
improve the individual performances of the constituting models. Model performance improvement
tends to increase the efficacy and efficiency of utility onsite mitigation efforts, which further
reduces NTL in the power grids to the barest minimum. Although CNN-RF is the proposed model,
the constituent models (CNN and RF) that make up the hybrid model have also been tested
individually to determine their viabilities before later combining them to get better results.

The Python codes used in executing the CNN, RF, and the proposed CNN-RF models are
contained from Sections A.1.1 to A.1.8 of the implementation codes. The comprehensive
implementation codes reveal details of the ML algorithms executed to construct the ETD-based
ML models. Comments are added to the codes, while some other explanations are also infused
within the codes to shed more light on the functions of the Python codes. Also, the codes have
been broken into several sections to aid easier understanding of the different steps taken to arrive
at the developed models. The inclusion of the implementation codes used in constructing the

models is important to convey the originality of the research.
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Python implementation codes

A.1.1 Libraries import

import pandas as pd

import numpy as np

import seaborn as sns

import matplotlib.pyplot as plt

import math

import statistics

import imblearn

import plotly.express as px

from imblearn.over sampling import SMOTE

from sklearn.preprocessing import StandardScaler, MinMaxScaler
from sklearn.ensemble import RandomForestClassifier

from sklearn.model selection import train test split

from sklearn.metrics import classification report, accuracy score
from sklearn.metrics import confusion matrix

from sklearn.metrics import fl score

from sklearn.metrics import (auc, confusion matrix,

precision recall curve, precision score, recall score, roc_auc_score,
roc_curve)

'pip install plot-metric

from plot metric.functions import BinaryClassification

from sklearn.model selection import train test split
from sklearn.metrics import accuracy score

from matplotlib import pyplot

import matplotlib.pyplot as plt

import matplotlib.pyplot as plot

import pandas as pd

import numpy as np

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import Dropout

from keras.layers import ConvlD

from keras.layers import Flatten

import tensorflow as tf

import tensorflow.compat.vl as tf

tf.disable v2 behavior()

from numpy import loadtxt

import keras

from tensorflow.keras import Sequential

from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense,
Activation, Dropout, Flatten, BatchNormalization

from tensorflow.keras.optimizers import Adam, RMSprop, SGD
from tensorflow.keras import Model
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from tensorflow.keras.callbacks import
ModelCheckpoint,EarlyStopping, CSVLogger,

LearningRateScheduler, ReducelLROnPlateau

from tensorflow.keras.metrics import binary crossentropy, TruePositives,
TrueNegatives, FalsePositives, FalseNegatives, BinaryAccuracy, Precision,
Recall, AUC

from tensorflow. keras.utils import plot model

from tabulate import tabulate

There are several modules in Python from which libraries are imported to the IDE. To start a
machine learning project, a good grasp of the model or algorithms remains a vital source to getting
better predictions or decisions. Some libraries are a straight-away picks from the Python IDE for
any researcher starting a new project. However, choosing the correct set of algorithms for the
new project may be quite tasking. The libraries that are imported is divided into the following
categories: model creation (TensorFlow, Keras and PyTorch), data preprocessing (pandas,
NumPy, Simplerimputer, SMOTE, etc.), hyperparameter tuning (RandomSearchCV,
GridSearchCV), experiment tracking (weight, biases), problem specific (OpenCV, Geopandas,
imutils), and utils (matplotlib, seaborn).

Pandas is a Python package that is used mainly for DataFrame manipulations. NumPy is a Python
package mainly used for mathematical operations like reshaping of array, expansion of the
dimensions of array, etc. Seaborn is a package that is built on top of matplotlib module, and is
mainly used for better data visualizations. Matplotlib is a visualization module like seaborn, but its
output is not as appealing as that of seaborn. Math module is used for mathematical functions.
Imblearn is a Python module where undersampling and oversampling techniques like SMOTE
reside. Simplelnputer is a library that resides in sklearn which is used mainly for replacing missing
values in DataFrame with either mean, median or the most frequent values, etc. StandardScaler
is used to scale DataFrame down to values between -1 and 1, while MinMaxScaler scales

DataFrame down to values between 0 and 1.

The command train test split is used to split data into train and test data. Test data is kept
aside and unexposed during training for effective modelling. classification report is used
to give detailed report of performance metrics like precision, recall, F1 score and accuracy of the
train data. accuracy score also resides in the classification report and gives how
accurately our model performs. Confusion matrix sSummarizes true positive (TP), true
negative (TN), false positive (FP), and false negative (FN) in a graphical form. It states how many
of the responses that our model classifies accurately as positives and negatives, and how many

are misclassified as positives and negatives.
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As the name implies, sequential model consists of sequence of layers one after the other.
Dense layer is a neural network that is deeply connected, meaning that each neuron in the dense
layer is connected to more than one neuron in the preceding layer. Dropout is easily
implemented by randomly selecting nodes to be dropped out with a given probability (e.g., 20%)

in each weight update cycle.

This function import tensorflow.compat.vl as tf tf.disable v2 behavior ()

can be called at the beginning of the program (before creating Tensors, Graphs, or other
structures and before devices are being initialized. It switches all global behaviours that are
different between TensorFlow 1.x and 2.x to behave as intended for 1.x. The Conv1D is used to
create convolutional layer. It is used to apply 1D convolution to the input data. Flatten layerin
Keras reshapes the tensor to have a shape that is equal to the number of elements contained in
the tensor. Adam, RMSprop and SGD are optimizers to reduce loss and improve training speeds.
The Model provides a straightforward, user-friendly method for defining a neural network, which

TensorFlow will subsequently construct.

A.1.2 Exploratory data analysis and data preprocessing

A.1.2.1 Importing dataset from Google Drive to Google Colab IDE

from google.colab import drive #Import

drive.mount ('/content/gdrive')

A.1.2.2 Link the dataset residing in Google Drive to Google Colab

!gdown --id 1pTpBfOlCwStFodOtIn uzzNOWpAmQOn 8

Downloading the SGCC dataset residing in the Google Drive to Google Colab using the above
Google-Drive link attributed to the dataset. The link is automatically generated in Google Drive

and other Google users could also be given authorized access to the dataset via the link.

A.1.2.3 Reading in the dataset into Google Colab using pandas read_csv

df = pd.read csv('data.csv')

With the aid of pandas and its method like read csv (), read sgl(),and read json()any
data of these extensions can be read and displayed. Since the dataset used in this research is a
CSV type, read csv () has been used to read this file. This module allows researchers to retrieve

data in the form of a DataFrame.
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A.1.2.3.1 Determining the proportion of unique values in the dataset

num Flagged = df[df['FLAG'] == 1] .shape[0]
num unflagged = df[df['FLAG'] == 0] .shape[0]

num Flagged

num unflagged

#Print % proportion of flagged and unflagged customers in the whole data
print (num Flagged / (num Flagged + num unflagged) * 100, '% of customers
flagged. ")

print (num unflagged / (num Flagged + num unflagged) * 100, '$ of customers
unflagged. ')

#Print proportion of flagged and unflagged customers in the whole dataset
print (f'{num Flagged} customers flagged.')

print (£f'{num unflagged} customers unflagged.')

A.1.2.3.2 Visualizing the proportion of unique values in a bar and a pie chart

#Count proportion of unique values (flagged and unflagged customers) in
the whole dataset in a bar chart

import numpy as np
import matplotlib.pyplot as plt

y = df ['FLAG']
unique, counts = np.unique(y, return counts=True)
positions = np.arange (len (unique))

# Create the bar chart with labels
plt.bar (positions, counts, label='Counts')
plt.xticks (positions, unique)

plt.xlabel ('Unique Values')

plt.ylabel ('Counts"')

plt.title('Bar Chart of Unique Values')

# Create a legend

plt.legend()
plt.show ()
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fPercentage proportion of the flagged and unflagged customers in the whole
dataset in a pie chart

df ["FLAG"] .value counts () .plot(kind = 'pie',explode=[0, 0.1],figsize=(6,
6) ,autopct="%51.1£%%", shadow=True)

plt.title("Fraudulent and Non-Fraudulent Distribution", fontsize=20)
plt.legend(["unflagged", "Flagged"])
plt.show ()

value counts () method of pandas is used to check how many unique values (0 and 1) in the
column of FLAG in the DataFrame. explode=[0, 0.1] allows the pie chartto be sliced into
appropriate portions, autopct="'%1.1£%% allows display of percentage (%) which is rounded

off to one decimal place in the pie chart. shadow=True allows graphic shadow in the pie chart.

A.1.2.4 Checking the first ten rows of the DataFrame (df)

df .head (10)

A.1.2.5 Build afunction that checks for the missing values in the DataFrame (df)

def missing data all(df): #This function is to find missing data in the
DataFrame

total = df.isnull() .sum().sort values (ascending=False) #sums any field
whose data is missing to arrive at their total

percent =
(df .isnull () .sum()/df.isnull () .count()) .sort values (ascending=False) #to
determine the percentage of the missing or null values in each column

missing data = pd.concat([total, percent], axis=1l, keys=['Total',
'Percent']) #Create a DataFrame to put side by side the total missing
values and the percentage of missing values for each column

return missing data #Return the result as the DataFrame created in
missing data above

#Checking the missing data

missing data all (df)

A.1.2.6 Append other columns except for “CONS_NO”, and “FLAG” columns into Ib list

l=df.columns # Check all columns in df and store them in 1
la=['CONS NO', 'FLAG'] # Store subsets of the columns, ‘CONS NO’, ‘FLAG’ as
a list in la
1b=1[] # Create an empty list called 1b
for i in 1: # Loop through every member of 1 above

if 1 not in la: # Check if those elements in df are not in la
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lb.append (i) # Put those elements not in la in the empty list 1b,
meaning that all dates in the df will be stored in lb except ‘CONS NO’ and
‘FLAG’

A.1.2.6.1 Checking if the values in the rows and columns are still intact
#Check if item in row 0 and column 2 is having a null value

math.isnan(df.iloc[0][2])

A.1.2.7 Format date in year/month/day for all columns and store in fdatesdates list

import datetime #Import datetime module to modify dates

dates = [datetime.datetime.strptime(ts, "%$Y/%m/%d") for ts in 1b]

#Convert string date to datetime format and then store results in dates
#dates.sort ()

fdatesdates = [datetime.datetime.strftime(ts, "%$Y/%m/%d") for ts in dates]
#Using list comprehension, loop through the 1b list created above to
modify date to the format of year/month/day and store results in
fdatesdates

A.1.2.8 Insert “0” in all rows of the columns CONS_NO and FLAG

fdatesdates.insert (0, "CONS NO") #In fdatesdates, insert CONS NO into
position 0

fdatesdates.insert (0, "FLAG") #In fdatesdates, insert FLAG into position 0
df.columns=fdatesdates #Replace all coulumns in df with new formatted
columns called fdatesdates

A.1.2.9 Sort dates in ascending order

import datetime

dates = [datetime.datetime.strptime(ts, "%$Y/%m/%d") for ts in 1b]
dates.sort ()
sorteddates = [datetime.datetime.strftime(ts, "%Y/%m/%d") for ts in dates]

#Change fdatesdates to sorteddates for easy identification of variable name

A.1.2.10 Concatenate sorted dates and the columns CONS_NO and FLAG
cols=df.columns.tolist () [0:2]+sorteddates #Join columns 0 and 1 to
sorteddates. df.columns.tolist () [0:2] means columns located in position O
and 1, i.e., columns CONS NO and FLAG. sorteddates are the dates on the df

columns

df=df[cols] #Create a formatted DataFrame still named df with sorted dates
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A.1.2.11 Fill all columns with their respective observations

train df=df #Create a version of df named train df

l=train df["2014/01/01"] #Subset “2014/01/01” column of the df and save in
1

ll=train df["2014/01/01"] #Subset “2014/01/01” column of the df and save
in 11

l=np.asarray(l) .tolist () #Convert the 1 into NumPy array and then to a list
ll=np.asarray(ll) .tolist #Convert the 11 into NumPy array and then to a
list

12=[] #Create an empty list and name it 12
for i in range(len(l)): () #Loop through the length of 1 1list
if math.isnan(1[i]): #Is there any missing member in 1 1list?
if math.isnan(11[i]): #Is there any missing member in 11 1list?

12.append (0) #Insert 0 if there is a missing number
else:
12.append (11[1i]/2) #If there is no missing number insert
number /2
else:
12.append(1[i]) #Insert number available in the field
train df["2014/01/01"]1=12 #Subset “2014/01/01” column of the train df and
save in 12

train df.head() #Display the first five rows of the new train df
l=train df["2016/10/31"]

ll=train df["2016/10/31"]

l=np.asarray(l) .tolist ()

ll=np.asarray(ll) .tolist ()

12=1]
for i in range(len(l)):
if math.isnan(1[1i]) :
if math.isnan (11[i]):
12.append (0)
else:
12.append (11[1]/2)
else:
12.append (1[i])
train df["2016/10/31"]=12
l=train df.columns
la=['CONS NO', 'FLAG']
1bx=1[]
for i in 1:
if 1 not in la:
1lbx.append (i)
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A.1.2.12 Using interpolation method to replace NaNs or missing values

df 1=df.interpolate(method ='linear', limit direction ='forward') #Use
interpolation method of pandas to fill up NaN using two previous non-

missing values in a row in a forward direction

df 1=df.interpolate(method ='linear', limit direction ='backward') #Use
interpolation method of pandas to fill up NaN using two previous non-

missing values in a row in a backward direction

NaN is an abbreviation for “not a number”, which is also known as a missing value. Note that if
two previous values in a row in either forward or backward direction are not available, NaN will

still be inserted in the field.

A.1.2.12.1 Checking the values replaced by interpolation

df 1.head()

A.1.2.12.2 Checking if there are still missing values in the DataFrame after interpolation

def missing data all(df):

overall = df.isnull () .sum().sort values (ascending=False)
percentage =
(df .isnull () .sum() /df.isnull () .count()) .sort values (ascending=False)

missing data = pd.concat([overall, percentage], axis=1,
keys=['Overall', 'Percentage'])

return missing data
missing data all(df 1)

Like the function used for missing values in Section A.1.2.5, this function determines the overall

number of missing values and the percentage of missing values in df 1

A.1.2.12.3 Checking the independent features for missing values

X = df 1.drop(['CONS NO', 'FLAG'], axis = 1) #Filter features or
predictors for all rows and columns for all dates but drop CONS NO and
FLAG columns

Y = df 1.iloc[:, 1]#Select only FLAG as the target. FLAG is in column 1

pd.DataFrame (X)
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A.1.2.13 Checking the dependent (target) features (FLAG column) for missing values

Y

A.1.2.14 Using MinMaxScaler to scale down the independent features from Oto 1

scaler = MinMaxScaler () #Create an instance of MinMaxScaler called scaler
X = scaler.fit transform(X) #Fit, train and transform the features and
store transformed X in X

print (X) #Print all scaled features

A.1.2.14.1 Checking if the independent features have been scaled

pd.DataFrame (X)

A.1.2.14.2 Checking the first-row array of the scaled independent features

print (X[0, :10347])

A.1.2.15 Using SMOTE technique to oversample the minority class

ros = SMOTE (random state= 42) #Create an instance of SMOTE to resample the
training data. Random state can be any integer that functions for
reproducibility of resampled data.

X, Y = ros.fit resample(X, Y.ravel()) #Resample X and y using SMOTE object
created above

A.1.2.15.1 Splitting the oversampled data into train data and test data

x train, x test, y train, y test=train test split(X, Y, test size=0.3,
random state = 42) #Split the resampled features and target using
train test split module to split data features X and target Y into

X train, x test, y train, y test using 30% of X as test data

The command train test split is used to split the SGCC dataset into train and test sets.
Firstly, the dataset is separated into features (x) and labels (y). The DataFrame gets divided
into x_train, x_test, y train, y test. The x train, y train sets which are used

for training and fitting the model.

A.1.2.15.2 Convert oversampled y_train any y_test into numpy array

#Convert y train and y test into NumPy array
y _train = np.array(y train)
y test = np.array(y test)
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A.1.2.15.3 Expand the dimension of X_train, X_test

#Expand the dimensions of x train, x test and insert the extended
dimension in the axis =2, i.e., adding 1 to the third position of both

x train and x test shapes

x _train = np.expand dims (x train, axis=2)

x _test = np.expand dims(x_test, axis=2)

input shape=x train.shape[l] #input shape takes the value of the column of
x _train for CNN model

X _train.shape([l] #to extract column array but x train.shape[0] is to
extract the row array

x train.shape

A.1.3 Development of the ConvlD model with 32 neurons at the input layer

model cnn= Sequential () #Create a sequential array named model cnn

model cnn.add(ConvlD (32, kernel size=(3), activation='relu',
padding='same' ,input shape=(x train.shape[l],1))) #Add ConvlD layer with
32 neurons, filter or kernel size of 3, activation function of relu which
converts weight<= 0 to 0 and weight > 0 to 1

model cnn.add(MaxPoolinglD(pool size= 2, strides=2) #To reduce the
dimension of the feature maps

model cnn.add(Flatten())#Convert the ConvlD layer into a single vector
array — 1 Dimension

m = model cnn.output #Store output of the model in m

m Dense (64, activation = 'relu', kernel initializer = 'he uniform') (m)
#Create a dense layer with 64 neurons

m = Dropout (0.4) (m) #Apply Dropout

prediction layer = Dense(l,activation= 'sigmoid') (m) #The final prediction
layer or output layer with one neuron that displays classification between
fraudulent and non-fraudulent electricity customer

model cnn 1 = Model (outputs = prediction layer, inputs = model cnn.input)
#Using keras model that enshrouds both outputs and inputs of the model

#model cnn.add(Dense(l,activation= 'sigmoid'))
model cnn_ 1l.compile (optimizer = 'adam', loss='binary crossentropy',
metrics=["'accuracy']) #Compile model using optimizer adam for easy

convergence; binary crossentropy as loss metric because we have binary
classification problem to predict.
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model cnn_ 1.summary () #Displays both number of trainable and non-trainable
parameters of the network.

input_shape is (1034,1), 40% of the neurons are dropped (dropout), hidden layer has a dense
layer of 64 neurons.

A.1.3.1 Training the CNN model with 70% train data and 30% validation data

history = model cnn 1.fit(x train, y train, epochs=50, batch size=30,
verbose=0,validation split=0.3) #Train the model with 70% of X and y with
backward and forward propagations of 50 times. Each batch of the training

data =30, and validate the model with 30% of the data

A.1.3.2 Make prediction using X_test

cnn_prediction=model cnn l.predict(x test); #Making prediction with test

data that has been kept aside

resampled prediction = cnn prediction #Save the prediction list in a
variable name resampled prediction

resampled prediction.shape #Check the shape of the resampled prediction.

A.1.3.3 Plot confusion matrix for the CNN model

labels = sorted(list(set(y_test))) #Create a sorted list of y test and
name it labels.

cmx data = confusion matrix(y test, resampled prediction.round(),
labels=labels) #Compare y test and CNN predicted values list using
confusion matrix package of sklearn.

df cmx = pd.DataFrame (cmx data, index=labels, columns=labels) #Create a
DataFrame of the result of the the confusion matrix using index as labels

(0,1) and columns (0,1) as labels as well in both x and y axes.

plt.figure(figsize = (10,7)) #Size of the plot: x-axis = 10, y-axis =.7
colormap = sns.color palette("Blues")#Using seaborn colour blue.
sns.heatmap (df cmx, annot=True, cmap = colormap) #Using seaborn to plot

heatmap of the DataFrame of the confusion matrix. annot=True is to insert
integers into the four cells of the confusion matrix. Colormap as
arguments

plt.show () #Display the plot

A.1.3.4 Determining precision and recall values for CNN model and plotting PRC

thresholds = 0.5
#calculate precision and recall
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precision, recall, thresholds = precision recall curve(y test,
resampled prediction)

print (f'Precision: {precision}\nRecall: {recall}\nThresholds:
{thresholds}"')

auc_precision recall = auc(recall, precision)
print (auc precision recall)

fcreate precision-recall curve (PRC)
fig, ax = plt.subplots()
ax.plot(recall, precision, color='purple')

#add axis labels to plot

ax.set title('Precision-Recall Curve')
ax.set ylabel ('Precision')

ax.set xlabel ('Recall')

#display plot
plt.show ()

A.1.3.5 Plotting the receiver operating characteristic (ROC) curve

fpr, tpr, _ = roc curve(y test, resampled prediction)

#fcreate ROC curve

plt.plot (fpr, tpr)

plt.ylabel ('True Positive Rate')

plt.xlabel ('False Positive Rate')

plt.title ('Receiver operating characteristic curve')
plt.show ()

A.1.3.6 Determining the values of TPR and FPR and visualizing their ROC plot

#Determining the values of true positive rate (TPR) and false positive
rate (FPR)

from scipy import interpolate

fpr, tpr, thresholds = roc_curve(y test, resampled prediction)
tpr intrp = interpolate.interpld(thresholds, tpr)
fpr intrp= interpolate.interpld(thresholds, fpr)

print (£'TPR of CNN model : {tpr intrp(0.5)}")
print (£'FPR of CNN model : {fpr intrp(0.5)}")

# Visualisation with plot metric

fpr, tpr, thresholds = roc_curve(y test, resampled prediction)
#print (f'CNN FPR: {fpr}\nTPR:{tpr}\nThresholds:{thresholds}"')
auc_value = auc (fpr, tpr)
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print (£'AUC score for CNN is: {auc_valuel}')

bc = BinaryClassification(y test, resampled prediction, labels=[1, 0])
# Figures

plt.figure(figsize=(10,8))

bc.plot roc curve ()
plt.show ()

A.1.3.7 Printing classification report

threshold=0.5

for i in range (0, len(resampled prediction)):

if resampled prediction[i] > threshold:
resampled prediction[i] =1

else:
0
print (classification report(y test, resampled prediction))

resampled prediction([i]

A.1.3.8 Visualize accuracy in the training data

#Visualize accuracy in training data

plt.figure(figsize = (12, 10)) #Creating size of the figure to plot x-axis
=12, y-axis = 10

plt.plot (history.history['acc']) #Subset accuracy (acc) from history in
Section 1.3.1 above

plt.plot (history.history['val acc']) #Subset validation accuracy (val acc)
from history in Section 1.3.1 above

plt.title ('CNN Model accuracy')

plt.ylabel ('accuracy')

plt.xlabel ('epoch')

plt.legend(['Training data', 'Validation data'], loc = 'lower right')

A.1.3.9 Visualize loss in the training data

#Visualize loss in training data

plt.figure(figsize = (12, 10))

plt.plot (history.history['loss'])

plt.plot (history.history['val loss'])

plt.title ('CNN Model Loss')

plt.ylabel ('loss'")

plt.xlabel ('epoch')

plt.legend ([ 'Training data', 'Validation data'], loc = 'upper right')

318



A.1.4 Using backend package from Keras to extract some training data from CNN layers

from keras import backend as K

for 1 in range (len(model cnn 1.layers)):
print (1, model cnn 1.layers[1l])

A.1.4.1 Check features in the first (input) layer of CNN network

model cnn 1l.layers[0].input

A.1.4.2 Find features from Conv1D layer to later use to train the standalone random
forest (RF) model

#Using backend to find features from CNN model to train RF model

findFeature = K.function([model cnn.layers[0].input, K.learning phase()],

[model cnn.layers[1l].output])

A.1.4.3 Extract samples as train and test data from CNN layers
train example4000 = findFeature([x train[:4000], 0])[0] #Extract 4000

samples as train data

test examplel500 = findFeature([x test[:1500], 0]) [0] #Extract 1500
samples as test data

A.1.4.4 Convert 3-D array for CNN model back to 2-D for RF model

y _traind4000 = y train[:4000].reshape(y train[:4000].shape[0],) #Reshape y

as a vector of only 1 column

y _testl500 = y test[:1500]
#Using reshape function, 3-D has changed to 2-D

train exampled4000.shape #Check number of rows and columns in
train exampled4000

A.1.4.5 Check shapes of all train and test data extracted from CNN layers

print (train example4000.shape, test examplel500.shape, y train4000.shape,
y testl500.shape) #Check the rows and columns in the train and test data.

A.1.5 Instantiate RF model and train with features from CNN layers

from sklearn.ensemble import RandomForestClassifier
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rf = RandomForestClassifier(n estimators= 50, random state= 42)
#Instantiate RF with the number of estimators, random state or seed for
reproducibility as arguments.

rf.fit(train example4000, y train4000) #Train the data on the object of RF

A.1.5.1 Check the performance of standalone RF model using test data from CNN layers

y test rf = rf.predict(test examplel500) #Making prediction with the test
data kept aside

from sklearn.metrics import confusion matrix, classification report,
accuracy score #Import evaluation metrics to observe performance of the RF
model

print (classification report(y testl500, y test rf)) #Print classification
report

print ("Accuracy: {0}".format (accuracy score(y testl500, y test rf)))
#Print the accuracy score of the RF model

A.1.5.2 Plot the confusion matrix for the RF model

labels = sorted(list (set(y test)))

cmx _data = confusion matrix(y testl500, y test rf, labels=labels)

df cmx = pd.DataFrame (cmx data, index=labels, columns=labels)

plt.figure (figsize = (10,7))

colormap = sns.color palette("Blues")
sns.heatmap (df cmx, annot=True, cmap = colormap)
plt.show ()

A.1.5.3 Determine the values of TPR and FPR for RF model

from scipy import interpolate

fpr, tpr, thresholds = roc curve(y testl500, y test rf)
tpr intrp = interpolate.interpld(thresholds, tpr)
fpr intrp= interpolate.interpld(thresholds, fpr)

print (f'TPR of RF model : {tpr intrp(0.5)}")
print (£'FPR of RF model : {fpr intrp(0.5)}")

A., 154 Plotthe precision-recall curve (PRC) for RF model

thresholds = 0.5

fcalculate precision and recall
precision, recall, thresholds = precision recall curve(y testl500,
y_test rf)
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print (f'Precision: {precision}\nRecall: {recall}\nThresholds:
{thresholds}"')

#create precision recall curve

fig, ax = plt.subplots()

ax.plot(recall, precision, color='purple')
#add axis labels to plot

ax.set title('Precision-Recall Curve OF RF')
ax.set ylabel ('Precision')

ax.set xlabel ('Recall')

plt.show () #display plot

A.1.55 Plotthereceiver operating characteristic curve (ROC) for the RF model

# Visualisation with plot metric

false positive rate, true positive rate, = roc curve(y testl500,
y _test rf)
print (f'false positive rate: {false positive rate}\ntrue positive rate:

{true positive rate}')

pr, tpr, thresholds = roc curve(y testl500, y test rf)
tpr intrp = interpolate.interpld(thresholds, tpr)

fpr intrp= interpolate.interpld(thresholds, fpr)

print (£f'TPR of RF model : {tpr intrp(0.5)}")

print (f'FPR of RF model : {fpr intrp(0.5)}")

bc = BinaryClassification(y testl500, y test rf, labels=[1, 0])

# Figures

plt.figure (figsize=(10,8))
bc.plot roc curve ()
plt.show ()

A.1.5.6 Printing performance scores for the RF model

from sklearn.metrics import auc

print ("roc auc score is : ",roc auc_score(y testl500, y test rf))

fl = f1 score(y testl500, y test rf)
print ("fl score is : ", f1)

precision, recall, thresholds = precision recall curve(y testl500,
y test rf)

print ("precision-recall curve array is : ",
precision recall curve(y testl500, y test rf))

auc = auc (recall, precision)
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print ("precision-recall AUC score of RF is : ", auc)

A.1.5.7 Checking the shape of the test set for the RF model

y test rf.shape #Checking the shape of the RF model prediction

A.1.6 Infusion of the extracted CNN features into RF model to form hybrid CNN-RF model

#Using y test extracted from the flatten layer of the CNN model to train
and test the RF model to form the hybrid CNN-RF model.

y test=y testl500 #Using 1500 data samples for testing

resampled prediction=y test rf #Let the resampled prediction equal
predictions from RF model

A.1.6.1 Plotthe confusion matrix of the new hybrid CNN-RF model

labels = sorted(list (set(y test)))

cmx _data = confusion matrix(y test, resampled prediction, labels=labels)
df cmx = pd.DataFrame (cmx data, index=labels, columns=labels)
plt.figure(figsize = (10,7))

colormap = sns.color palette("Greens")

sns.heatmap (df cmx, annot=True, cmap = colormap)
plt.show ()

y_test=y testl500

resampled prediction=y test rf

resampled prediction[:10]

A.1.6.2 Plotting the ROC curve for the CNN-RF model

# Visualisation with plot metric

false positive rate, true positive rate, = roc curve(y test,
resampled prediction)

print (f'false positive rate: {false_positive_rate}\ntrueipositiveirate:
{true positive rate}')

pr, tpr, thresholds = roc curve(y test, resampled prediction)
tpr intrp = interpolate.interpld(thresholds, tpr)
fpr intrp= interpolate.interpld(thresholds, fpr)

print (£'TPR of CNN-RF model : {tpr intrp(0.3)}"')

print (f'FPR of CNN-RF model : {fpr intrp(0.3)}"')
bc = BinaryClassification(y test, resampled prediction, labels=[1, 0])
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# Figures
plt.figure(figsize=(10,8))
bc.plot roc curve ()
plt.show ()

A.1.6.3 Checking the precision, recall and PRC curve for the CNN-RF model

matrix = confusion matrix(y test, resampled prediction)
matrix = pd.DataFrame (matrix, index=["Actual Positive", "Actual
Negative"], columns = ["Predicted Positive", "Predicted Negative'"])

print (tabulate (matrix, tablefmt="orgtbl", headers="keys"))

print ()

#calculate precision and recall

precision, recall, thresholds = precision recall curve(y test,
resampled prediction)

print (f'Precision: {precision}\nRecall: {recall}\nThresholds:
{thresholds}') #Print precision and recall scores for the CNN-RF model

#create precision recall curve
fig, ax = plt.subplots()
ax.plot(recall, precision, color='purple')

#add axis labels to plot

ax.set title('Precision-Recall Curve')
ax.set ylabel ('Precision')

ax.set xlabel ('Recall')

#display plot
plt.show ()

#With threshold of 0.5, precision and recall are 1.0 and 0.98 respectively
for the positive class

threshold=0.5

for 1 in range (0, len(resampled prediction)):

if resampled prediction[i] > threshold:
1

resampled prediction[i]
else:
0
print (classification report(y test, resampled prediction))

resampled prediction[i]

A.1.6.4 More metric results for the CNN-RF model

from sklearn.metrics import confusion matrix

from sklearn import metrics
cnn_prediction=resampled prediction;
cml = confusion matrix(y test, cnn prediction)
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print ('Confusion Matrix : \n', cml)
totall=sum(sum(cml))

accuracyl=(cml[0,0]+cml[1,1])/totall

print ('Accuracy : ', accuracyl)

sensitivityl = cml[0,0]/(cml[0,0]+cml[0,1])

print ('Sensitivity : ', sensitivityl )

specificityl = cml[1,1]/(cml[1,0]+cml[1,1])

print ('Specificity : ', specificityl)

fpr, tpr, thresholds = metrics.roc curve(y test, cnn prediction)
print ("AUC",metrics.auc (fpr, tpr))

#More metric results

from sklearn.metrics import auc

print ("roc auc score is : ",roc auc_score(y test, cnn prediction))
fl = f1 score(y test, cnn prediction)
print ("fl score is : ", f1)

precision, recall, thresholds = precision recall curve(y test,
cnn_prediction)

Al

print ("precision-recall curve array is : g
precision recall curve(y test, cnn prediction))

auc = auc (recall, precision)

print ("precision-recall AUC score is : ", auc)

A.1.7 Creation of a suspect list of fraudulent customers for the developed models

Creation of suspect list for the CNN model:

#Suspect list for CNN model

# Create a list of customers predicted to commit energy theft (CNN model)
cnn_theft customers = np.where(resampled prediction[:1500] == 1) [0]

# Retrieve the original customer IDs of the CNN theft customers
cnn_theft customers ids = df.iloc[cnn_theft customers]['CONS NO'].values

# Create a DataFrame from the list of CNN theft customer IDs
cnn_theft customers df = pd.DataFrame ({

'"Customer ID': cnn_theft customers ids,

'Predicted Theft': 1
b
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# Display the DataFrame
print ("Energy theft customers (CNN):")
print (cnn_theft customers df)

Creation of suspect list for the RF model:

#Suspect list for RF model

# Train and predict with the RF model
rf model = RandomForestClassifier(n estimators=50, random state=42)
rf model.fit (test examplel500, y test[:1500])

rf predictions = rf model.predict (test examplel500)

# Create a list of customers predicted to commit energy theft (RF model)
rf theft customers = np.where(rf predictions == 1) [0]

# Retrieve the original customer IDs of the RF theft customers
rf theft customers ids = df.iloc[rf theft customers] ['CONS NO'].values

# Create a DataFrame from the list of RF theft customer IDs
rf theft customers df = pd.DataFrame ({

'"Customer ID': rf theft customers ids,

'Predicted Theft': 1
9

# Display the DataFrame
print ("Energy theft customers (RF):")
print (rf theft customers df)

Creation of suspect list for the CNN-RF model:

#Suspect list for CNN-RF model

import numpy as np

import pandas as pd

import joblib

# Load the combined CNN-RF model

cnn_rf combined model = joblib.load('models/cnn rf combined model.pkl')

# Extract the RandomForest model from the combined model if necessary
# For standalone RandomForestClassifier
rf model = cnn_rf combined model # If it is just a RandomForestClassifier

# Number of features the model expects

n features rf = rf model.n features in
print ("Number of features the model expects:", n features rf)

325



# Sample 800 rows from test examplel500

sampled test data =

test examplel500[np.random.choice (test examplel500.shape[0], 800,
replace=False) ]

# Check the number of features in sampled test data
print ("Number of features in sampled test data:",
sampled test data.shape[l])

# Adjust features if necessary
if sampled test data.shape[l] != n features rf:
# Example: If the model expects 33121 features, you may need to adjust
the test data
# This may involve adding or removing a feature
# For example, if you need to add a feature, you could add a dummy
column
# Assuming you need to add one feature:
if sampled test data.shape[l] < n features rf:
# Add dummy feature column (fill with zeros)
additional features = np.zeros((sampled test data.shape[0],
n features rf - sampled test data.shape[l]))
sampled test data = np.hstack([sampled test data,
additional features])
else:
raise ValueError (f"Test data has more features
({sampled test data.shape[l]}) than expected ({n features rf}).")

# Predict using the RandomForest model
rf predictions = rf model.predict (sampled test data)

# Create a DataFrame for the theft customers
theft customers indices = np.where(rf predictions == 1) [0]

# Assuming df 1 has the Customer ID column and is related to the test data
# Adjust indices according to actual data
CNN RF theft customers df = pd.DataFrame ({

'Customer ID': df l.iloc[np.random.choice(df 1.shape[0], 800,
replace=False) ] ['CONS NO'].values[theft customers indices],

'Predicted Theft': 1
})
# Save the list as a CSV file
CNN RF theft customers df.to csv('models/cnn rf theft customers.csv',
index=False)

print ("Energy theft customers predicted by the RF model:")
print (CNN_RF theft customers df)
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A.1.8 Saving the models using save function in Keras

import os
import joblib
from tensorflow.keras.models import save model

# Create the 'model' directory if it doesn't exist
os.makedirs('model’', exist ok=True)

# Save model cnn 1 (Keras model)
save model (model cnn 1, 'model/model cnn 1.h5")

# Save RF (Random Forest model)
joblib.dump (rf, 'model/rf.pkl'")

# Save the combined CNN-RF model
joblib.dump (cnn_rf combined model, 'models/cnn rf combined model.pkl')

print ("All models have been saved successfully!™)

A.1.9 Creating a variant of the CNN-RF model using features from concatenated layers

Instead of taking features from the ConvlD layer (Layer 1) of the CNN network to train and test
the RF model to form the proposed CNN-RF model, features are otherwise taken from the last
MaxPoolinglD layer (Layer 6) where three pairs of ConvlD and MaxPoolinglD layers (3-layer
CNN) are concatenated in a bid to enrich the extracted features used to train and test RF. This

process leads to the development of the variant CNN-RF (concatenation) model.

The implementation codes to develop the variant CNN-RF (concatenation) model are thus:

# DEVELOPING THE VARIANT CNN-RF (CONCATENATION) MODEL

def build 3layer cnn (input shape) :

mmon

Builds a 3-layer CNN with MaxPooling model using Functional API.
inputs = Input (shape=input shape)
# 1lst Conv + MaxPool
x = ConvlD (32, kernel size=3, activation='relu',
padding='same') (inputs)
x = MaxPoolinglD (pool size=2) (x)

# 2nd Conv + MaxPool
ConvlD (64, kernel size=3, activation='relu', padding='same') (x)

b
Il

MaxPoolinglD (pool size=2) (x)
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=

3rd Conv + MaxPool

= ConvlD (128, kernel size=3, activation='relu', padding='same') (x)
x = MaxPoolinglD (pool size=2) (x)
x = Flatten () (x)
x = Dense (128, activation='relu', kernel initializer=HeUniform()) (x)
x = Dropout (0.4) (%)
outputs = Dense(l, activation='sigmoid') (x)

model = Model (inputs, outputs, name="3LayerCNN")
return model

# Build, compile, and train

model cnn 3 = build 3layer cnn((x _train.shape[l], 1))

model cnn 3.compile (optimizer=Adam(), loss='binary crossentropy',
metrics=['accuracy'])

model cnn_3.summary ()

history 3 = model cnn 3.fit(
x train, y train,
epochs=50,
batch size=30,
validation split=0.3,
verbose=1

# Predict probabilities on the test set
y pred prob = model cnn 3.predict(x_test)

# Convert probabilities to binary class labels (using 0.5 as threshold)
y pred = (y pred prob > 0.5).astype (int)

# Compute the confusion matrix
cm = confusion matrix(y test, y pred)

# Create a ConfusionMatrixDisplay with custom labels
disp = ConfusionMatrixDisplay (confusion matrix=cm, display labels=['Non-
theft', 'Theft'])

# Plot the confusion matrix with a custom values format (.le for

scientific notation)

disp.plot (cmap=plt.cm.Greens, values format='.le')
plt.title("Confusion Matrix for 3-layer CNN model")
plt.show ()
# Predict

cnn_3 proba = model cnn 3.predict (x_test).ravel()
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cnn_3 pred = (cnn_ 3 proba > 0.5).astype(int)

# Evaluate
cnn_3 metrics = calculate metrics(y test, cnn 3 pred, cnn 3 proba)
print ("\n=== 3-Layer CNN Metrics ===")
for k, v in cnn 3 metrics.items() :
if v is None:
print (f"{k}: None")
else:
print (f"{k}: {v:.4£f}")

# Define a feature extractor model that outputs the features from the last
ConvlD layer at the MaxPoolinglD layer

feature extractor = Model (inputs=model cnn 3.input,
outputs=model cnn 3.layers[6].output) # Layer 6 is the last MaxPoolinglD
layer in the concatenated network of three pairs of ConvlD and
MaxPoolinglD layers.

# Get feature maps for training and testing data
train features = feature extractor.predict(x train[:4000])
test features = feature extractor.predict(x test[:15001])

# Reshape features for Random Forest
train features = train features.reshape(train features.shape[0], -1)
test features = test features.reshape(test features.shape[0], -1)

# Train Random Forest Model
rf = RandomForestClassifier (n estimators=50, random state=42)
rf.fit(train features, y train[:4000])

# Evaluate Random Forest model
rf predictions = rf.predict proba(test features) [:, 1]
rf label predictions = rf.predict(test features)

# Evaluate
rf metrics = calculate metrics(y test[:1500], rf label predictions,
rf predictions)
print ("\n=== Random Forest Metrics ===")
for k, v in rf metrics.items():
print (f"{k}: {v:.4f}" if v is not None else f"{k}: None")
# Compute the confusion matrix
cm = confusion matrix(y test[:1500], rf label predictions)

# Create a ConfusionMatrixDisplay with custom labels

disp = ConfusionMatrixDisplay (confusion matrix=cm, display labels=['Non-
theft', 'Theft'])
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# Plot the confusion matrix with a custom values format (.le for

scientific notation)

disp.plot (cmap=plt.cm.Greens, values format='.le')
plt.title("Confusion Matrix RF 3-Layer CNN")
plt.show()

# Combine CNN and RF Predictions for 3-layer CNN
cnn_weight = 0.3
rf weight = 0.7

# Combine predictions using weighted averaging
cnn_rf predictions = (cnn _weight * cnn 3 pred[:1500].flatten() + rf weight
* rf predictions)

# Convert probabilities to binary class labels (using 0.5 as threshold)
cnn_rf predictions = (cnn rf predictions > 0.5).astype (int)

# Evaluate combined model
cnn_rf 3 metrics = calculate metrics(y test[:1500], (cnn rf predictions >
0.5) .astype(int), cnn rf predictions)
print ("\n=== 3-Layer CNN-RF Ensemble Metrics ===")
for k, v in cnn rf 3 metrics.items():
print (£f"{k}: {v:.4f}" if v is not None else f"{k}: None")

# Compute the confusion matrix
cm = confusion matrix(y test[:1500], cnn rf predictions)

# Create a ConfusionMatrixDisplay with custom labels
disp = ConfusionMatrixDisplay (confusion matrix=cm, display labels=['Non-
theft', 'Theft'])

# Plot the confusion matrix with a custom values format (.le for
scientific notation)

disp.plot (cmap=plt.cm.Greens, values format='.le')
plt.title("Confusion Matrix for ensembled CNN-RF")

plt.show ()

# PLOT METRIC COMPARISON BAR CHART FOR ALL MODELS

# Find common metrics across all models
common keys = set(cnn_3 metrics.keys()) & set(rf metrics.keys()) &
set(cnn_rf 3 metrics.keys()) & set(cnn rf 1 metrics.keys())

# Preferred order of metrics

preferred order = |
"Precision", "Recall", "F1 Score", "Accuracy",
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metric order = [m for m in preferred order if m in common keys]

# Extract scores for each model

cnn3_scores = [cnn 3 metrics[m] for m in metric order]

rf3 scores = [rf metrics[m] for m in metric order]

cnnrf3 scores = [cnn_rf 3 metrics[m] for m in metric order]
cnnrfl scores = [cnn rf 1 metrics[m] for m in metric order]

# Plot settings
plt.figure(figsize=(20, 15))

x = np.arange (len(metric order))
width = 0.2 # Adjusted for four bars

# Create bars

bars cnn3 = plt.bar(x - 1.5*width, cnn3 scores, width, label='CNN',
color="'blue', edgecolor='black'")

bars rf3 = plt.bar(x - 0.5*width, rf3 scores, width, label='RF',
color='green', edgecolor='black')

bars cnnrf3 = plt.bar(x + 0.5*width, cnnrf3 scores, width, label='CNN-RF
(Concatenated) ', color='red', edgecolor='black')

bars cnnrfl = plt.bar(x + 1.5*width, cnnrfl scores, width, label='CNN-RF
(proposed) ', color='orange', edgecolor='black')

# Labels and titles

plt.xlabel ('Metrics', fontsize=14)

plt.ylabel ('Scores', fontsize=14)
plt.title('Comparison of results', fontsize=16)
plt.xticks(x, metric order, rotation=45, ha='right')
plt.legend()

# Annotate bars with values
def autolabel (rects):
for rect in rects:
height = rect.get height ()
plt.annotate (f'{height:.4f}",
xy=(rect.get x() + rect.get width()/2, height),
xytext=(0, 3),
textcoords="offset points",
ha='center', va='bottom', fontsize=12)

autolabel (bars cnn3)

autolabel (bars rf3)

autolabel (bars cnnrf3)

autolabel (bars cnnrfl)

plt.ylim (0, max(cnn3 scores + rf3 scores + cnnrf3 scores + cnnrfl scores)
+ 0.1)

plt.tight layout ()

plt.show ()
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