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ABSTRACT

This research presents the results of experimental and numerical investigations on water
ingress trapped in honeycomb panels. Ingress of atmospheric water in aircraft honeycombs
may cause damage to aircraft. The percentage of water/ice filling honeycomb cells is an
important factor in possible cell wall damage. This study is focused on the analysis of the
following inspection parameters: 1) influence of panel orientation (horizontal, vertical and
Inclined at 30° and 60°) on the efficiency of water detection, 2) efficiency and optimisation of
a heating technique in evaluating water ingress, 3) influence of water/ice phase transformation

on the detectability of water ingress, 4) quantifying of the water ingress.

The numerical analysis was conducted by using the finite difference algorithms (ThermoCalc-
3D), image processing algorithms (ThermoFit Pro), finite difference algorithms with only
radiation heat transfer boundary condition ( ThermoCalc-3D-radiation), and Normalization
image processing algorithm (ThermoDouble software), and the experiments were conducted
by using active and passive infrared thermography to evaluate the detectability of water
ingress and image processing in the cases where a test panel is placed in different spatial
orientations. The samples with water and ice were tested and analysed using several data
processing algorithms in the ThermoFit software to enhance water detection performance.
The Maximum surface differential temperature signals (AT), running contrast (Cr) and their
observation times (tat and tcm) were recorded and analysed for both samples with water and
ice in the honeycomb cells. The signal-to-noise ratio (SNR) concept was used to compare the
efficiency of image processing algorithms in inspecting water ingress in honeycomb panels

with varying water content, spatial orientation and water/ice phase transformation.

The computational results indicate that cells filled with water (100%) in a horizontal panel
(180°) exhibit the highest differential temperature signal (ATm) of 30.1°C and a running
contrast (Cnm) of 0.88. In contrast, cells filled with 50% water in the same orientation show a
ATm of 27°C and a Cn, of 0.14. For the panel in a vertical position, the recorded AT, and Cn
values are 30.0°C and 0.82, respectively. The inclined panel (60°) with 50% water-filled cells
shows the optimal AT, and Cr, values of 30.1°C and 0.83.

These computational trends are supported by the experimental data, which demonstrate that
the horizontal panel (180°) filled with 100% water yields the highest AT of 6.5°C and Cy, of
0.7. The same panel orientation with 50% water-filled cells results in a ATm of 3.96°C and Cr,
of 0.59. The vertical panel shows a AT, of 4.8°C and Cy, of 0.55. The inclined panel (60°) with
50% water-filled cells yields optimal values of 3.71°C for AT, and 0.58 for Cn.

To assess the efficiency of data processing and improve water ingress detection (visibility),

computing the Signal-to-Noise Ratio (SNR) during image processing is essential. Using a



single image processing algorithm (Fourier phase 3rd harmonic) across all scenarios, the
horizontal panel with 100% water-filled cells recorded an SNR of 88.1, while the vertical and
inclined (60°) panels recorded SNRs of 21.9 and 20.2, respectively.

The qualitative data indicate that the variation in AT, and Cn across panel orientations is
minimal, suggesting that panel orientation has little impact on the detection of water ingress.
This implies that water visibility is primarily dependent on water content rather than the panel's
orientation.

Quantifying the amount of water trapped in honeycomb cells is crucial. From the calibration
curve, it was observed that passive heating results in a maximum ATy, of 11°C, which remains
constant as water content increases, due to the rapid thermal equilibrium between the panel
and the environment. Active heating, on the other hand, generates a AT, of 27°C, with a
positive correlation to increasing water content.

These findings suggest that active heating provides a more reliable calibration curve, while
passive heating is better suited for detecting the presence of water ingress.

The overall findings from this study make a valuable contribution to aircraft fuselage
maintenance and provide useful data for aviation engineers to quantify water content in the

cells of honeycomb panels.
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ACRONYMS AND ABBREVIATIONS

e Thermal effussivity (Wm®5/(m?2 °C)

a Thermal diffusion coefficient (mz/s)

Cm Running contrast

k Thermal conductivity (W/mk)

q Heat flux (W/m?)

Orad Radiation heat lost (W/m?): heat escaping from the surface of the specimen
to the environment when it is subjected to heat flux

Jconv Convection heat lost (W/m?): heat escaping from the surface of the specimen
to the environment when it is subjected to heat flux

AT Differential temperature signals (OC)or(K)

Fo Fourier number (dimensionless): used in the conduction equation when
predicting the temperature response of materials undergoing transient
conductive heating

(x,y,2) Directions of heat flow

At Time change (seconds)

Bi Biot number (dimensionless): ratio of the thermal resistance inside of a body
(defect) and at the surface of the body

Ny Nusselt number (dimensionless): the ratio of convective to conductive heat
transfer across a boundary (surface)

Py Prandtl number (dimensionless): a ratio between kinematic viscosity and
thermal diffusivity.

SNR Signal to Noise ratio: an average power image to average power noise in the
image or sequence.

NDE Non-destructive evaluation: a non-contact technique used for material
evaluation

NDT Non-destructive Testing : a technique used to evaluate properties of
components without causing damage.

TNDT Thermal Non-destructive Testing : an NDT technique which uses external
heat source (heat flux) to excite components.

AIRT Active Infrared thermography: a non-contact and non-destructive technique

used for material testing and evaluation with the assistance of the infrared

camera and external heat source.
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PIRT Passive Infrared thermography: a non-contact and non-destructive technique
used for material testing and evaluation due to temperature difference
between the material and the environment.

PPT Phase Pulse thermography: an NDT technique that uses a brief pulse of light
to heat a material's surface for testing and evaluation.

LPT Long pulse Thermography: an NDT technique that uses long pulse thermal
excitation to heat a material's surface for testing and evaluation

GFRP Glass fibre-reinforced polymer: a composite material made by combining

glass fiber sheet/skin with a polymer resin matrix.

ThermoCalc-3D

Modelling software for solving Thermal Non-destructive evaluation problems

(3D heat transfer problems)

SNR Signal to Noise ratio: the ratio of the signal power to the noise power.

TSR Thermal signal reconstruction: a data processing technique to analyse image
sequence captured during thermography experiment.

TPU Tomsk Polytechnic University: A university located in Tomsk, Russia

DTT Dynamic Tomography: an NDT technique that allows capturing a series of
images of a moving or changing object or process.

UTT Ultrasonic Stimulated Infrared Thermography: It's an NDT technique that

uses ultrasonic waves to induce vibrations in a material, then infrared

thermography detects temperature changes revealing water ingress.

Composite material

A material made as a single rigid unit from constituent others that may have

different properties

Water ingress

Water trapped in the honeycomb cells
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CHAPTER 1:
INTRODUCTION TO RESEARCH

1.1 Introduction

Honeycomb Composite panels are mostly used in aerospace and automotive industries due
to their high strength-to-weight ratio and thermal insulation properties. However, water ingress
poses a significant threat to their structural integrity and performance (Smith & Jones, 2020).
It is for this reason that the characterisation of honeycomb cells filled with water ingress
becomes an integral part of the structural integrity of the panels, especially in the aviation
industry. Several studies have been developed to investigate the integrity of composite
material panels associated with the application in a particular field due to the nature of impact
forces and the environment. To avoid the degradation and total failure of the composite panels,
it is important to develop a preventative maintenance plan that responds to maintaining the
integrity of these panels. Non-destructive testing (NDT) methods can test and evaluate the
structural integrity of composite materials.

NDT is among the most commonly used methods to investigate the integrity of material
structures (Niccolai et al., 2021). NDT involves the testing of materials for defects without
impairing their future usefulness (Deepak et al., 2021). Common NDT methods include
acoustic emission, radiography, thermography, ultrasonic testing, eddy current testing,
magnetic particle testing, penetrant testing, etc. There is substantial literature on the
inspection of composite materials using NDT methods. However, more needs to be done on
the inspection of water ingress in honeycomb composite materials using infrared
thermography (IR), specifically active pulsed thermography. With the other NDT methods, the
need to personalise the inspections is inevitable, which could easily explode costs, leading to

financial constraints.

This study explores Active Infrared Thermography (AIRT) as a validation technique for
computationally predicted data, given its feasibility. The focus is on its applicability, ease of
implementation, and the range of structural sizes on which it can be used. The AIRT provides
useful information on the spatial homogeneity or inhomogeneity of a component or structure
in the form of thermal distribution (Ruwandi et al., 2019). Two types of IR Thermography exist
passive and active thermography. This study will focus on active thermography, where a
heating lamp will be used to excite thermal waves into the composite material, and after that,
the thermal distribution, temperature contrast, and excess temperature will indicate the

presence of defects.



1.2 Background of the Problem

Honeycomb panels are preferred for interior aircraft structural panels because they deliver
safety, durability, and weight savings. Detecting water ingress in honeycomb panels of aircraft
under operation is still challenging. Vavilov, Pan and Nesteruk (2016) used an infrared
thermography technique to detect water in aviation honeycomb panels. They discussed the
framework of both 1D analytical and 3D numerical models. They also demonstrated the
influence of the honeycomb cell structure on the modelling protocol. Optimal test conditions
were also formulated theoretically and experimentally in scenarios where the force of gravity
causes the water to be against the face sheet at the bottom of the cells or where an air gap
separates the water from the top face sheet. Similarly, Vavilov et al. (2017) discussed the use
of Infrared thermography and numerical modelling for the quantitative evaluation of water
ingress in aviation honeycomb panels. The focus was to develop a correlation between water
thicknesses and the surface temperature anomalies and the times of their appearance in
active one-sided thermal tests. It was found that quantitative evaluation of water content in
honeycomb cells using IR thermography is a challenging task, and the results obtained were
not promising. It was suggested to inspect both panel surfaces and use a ratio of respective
temperature signals ATqon/ATrear Or contrasts Cron/Crear fOr water mass calibration. Later,
Shrestha, Choi and Kim (2021) inspected water ingress in composite honeycomb sandwich
structures. The focus was to do a comparative study among Lock-in thermography algorithms
(i.e. Fast Fourier transform, Harmonic approximation, and the principal component analysis)
in terms of signal-noise ratio (SNR). Meaningful structural health monitoring techniques by the
aviation industry are critical elements in the quality approval process. The emphasis has

always been on detecting and characterising water ingress in the cells of honeycomb panels.

Normally, aircraft surveying is done remotely on an aircraft at a distance from 3 to 30 m, with
the survey time being at most 1 hour per 1 aircraft. The survey is done when an aircraft lands
and reaches a final stop place. The survey may start even when passengers leave the aircraft
or after. Therefore, the first hour after landing is the best for water detection, but if there is a

lot of water, clear signals may be present for up 6 hours.

The warmer the ambient temperature, the better the detection of water ingress. However,
since it is -50 to -60°C at a cruising altitude, any temperature at the ground level is sufficient
to produce a necessary gradient. However, Water tends to get at the bottom of the panel cells
under gravitation. So, the maximum of water is observed at the bottom sections of the

fuselage, rudder, and air intakes. In ailerons, water is concentrated closer to the edges.



If an aircraft is not painted by a darker paint, i.e. is shiny, it is recommended to avoid a very
sunny day or take a survey in the early morning or night.

Infrared Thermography is the most popular technique which is employed to characterise sub-
surface defects in composite materials, the specific parameters used to accurately
characterize the sub-surface defects should be identified. However, the complexity of the
relationship between these parameters (depth, lateral size and shape) yields a critical need

for a combination of methods to accurately predict the size, depth, and shape.

For this research, the thermographic survey will be done without input heat intensity. The
temperature difference between the aircraft fuselage and the ground level temperature after
the aircraft has landed will be used to detect water ingress. The surface temperature variation
is widely used by researchers in this field as the preferred parameter to be considered. Most
researchers have opted for the excess surface temperature, which is the difference between
the highest temperature observed above water ingress and that of the adjacent nodes to
identify and characterize (depth) the sub-surface water pockets over the temperature
variation. For this reason, it is critical to perform an experimental and numerical comparative
study between the IR with the surface temperature variation and the IR with the fuselage
surface temperature difference to identify a reliable, affordable, and, most importantly, a
technique which is practically acceptable in the non-destructive field.

Water's detection and characterisation process in the honeycomb structure is like that of sub-
surface defects characterisation. Literature in the recent past has proposed techniques and
parameter correlation when characterising sub-surface defects. For instance, Sharat, Menaka
and Venkatraman (2013), Manchor, and Di Scalea (2014), Grys. (2018), Wei et al. (2021),
Moskovchenko et al. (2021), and Wang et al. (2022) have been focussing on a non-destructive
evaluation (NDE) technique known as infrared thermography (IRT) to characterise sub-
surface defects in composite materials, focusing on the use of excess temperature directly
above the defects (water ingress) to estimate their sizes and depths. Vavilov and Burleigh
(2020) discuss defect characterisation techniques, including analysing temperature response
over time on a sample heated with a pulse. This technique focuses on describing the surface
temperature of a semi-infinite object subjected to direct heating. The Thermal properties of a
sample material, such as thermal diffusivity, are independent of time in the case of a non-
defected material. Therefore, any deviation of the surface temperature (Ts) from a reference
value (non-defected area) should be treated as an indication of the presence of sub-surface
defects and variations in thermal properties. This technique, generally used by NDE
specialists, is considered one of the most trusted techniques for non-destructive inspection. In

the past, it was primarily used for the identification of sub-surface defects/voids, mostly for

3



homogenous materials; however, the detection and characterisation of defects such as
delamination in composite structures has become a challenge with IRT in terms of its ability
to accurately characterise the defects in terms of their depth and sizes. Estimating a defect’s
depth from the inspection surface of the defect is an important first step towards preventative

maintenance against failure for such materials.

The detection and characterisation of water ingress in the aircraft fuselage, rudder, and air
intakes using IRT is influenced by the thermal behaviour of the material, the temperature
difference, and complex boundary conditions (convection and radiation heat transfer).
Consequently, much effort has been — and continues to be made, to incorporate mathematical
or analytical modelling in such a way as to predict the presence of water in the panel

accurately.

However, Airbus and Boeing employ a relatively straightforward procedure for detecting water
in aircraft components when they are moved to a hangar. This process typically involves
placing a warm "blanket" or heating element on the surface of the part for a specific duration
to encourage any moisture present to evaporate. This method, while effective for identifying
the presence of water, does not include a quantitative evaluation of the amount of moisture or
the severity of the issue. The procedure primarily serves as a qualitative measure, relying on
the assumption that any residual water will be driven off by the applied heat (Airbus, 2017).
However, this approach lacks precision in quantifying moisture levels or determining the
impact on the structural integrity of the component, which could be crucial for more rigorous

maintenance protocols

1.3 Problem Statement

The characterisation of water ingress in terms of the level of water in the cell and the position
of water concentration in different parts of the aircraft has been critical for the thermographic
survey of aircraft just after landing. Failure to accurately detect and characterise these water
pockets means failure of the entire panel, which may result in catastrophic failures in actual
applications. To detect and characterise these water pockets, quantitative data should be
obtained using specialised modelling software and high-standard equipment for experimental
work. In practice, water ingress weakens the aircraft fuselage, and it may lead to a total failure,
which is catastrophic due to the operating conditions of an aircraft. This has given this research
study purpose, which is to assess the water ingress in aircraft fuselage and other parts using
the integration of computational technique (CT) and infrared thermography (IRT). This will

subsequently benefit the management of aircraft structures with honeycomb core materials.



However, it should be noted that a temperature gradient between the ground level and a
cruising altitude is so high that water, due to its high heat capacity, keeps its low temperature
for a reasonably long time after landing. A drawback of passive inspection is the difficulty in
evaluating water content. Approximately this can be done by measuring the surface occupied
by water. In practice, aircraft engineers often just would like to know is there: "a lot of water",

"reasonable amount", "few water", "no water". Quantitative determination of water, whether

in an active or passive procedure, is a challenging task.

14 Research Aims and Objectives

The study aimed to perform qualitative and quantitative investigation of water trapped in a
honeycomb structure. Firstly, computational analysis is performed to detect water trapped in
honeycomb structures. The cells were to be fully (100%) and partially (25% and 50%) filled
with water at various orientations. The key parameters to be recorded and analysed were the
signal-to-noise ratio, surface differential temperature, the running contrast and their
observation times. Secondly, active and passive IRT NDT will detect water trapped in the
honeycomb structures at various orientations. Similar key parameters were recorded and
analysed. Data is to be processed for both sets of image sequences (computational and
experimental) and the signal-to-noise ratio of each algorithm across all scenarios. It also aimed
at quantifying water in the honeycomb cells using experimental data. Lastly, it aimed at
performing a 3D normalisation, which is a scientific approach to enhance the visibility of water

in the cells of the honeycomb structure.

1.4.1 The sub-objectives of this research study are:

e The use of a specimen’s surface temperature variation to identify the water level in the
honeycomb cell considering their thermal diffusivity.

e The induced positive thermal contrast directly over the water pocket to identify the
water levels in the material.

e The use of a finite difference numerical model (ThermCalc-3D) to predict the water
ingress in honeycomb cells and validate the predictions with physical experimental
work (Active and passive thermography).

e To analyse how a source of heating such as halogen lamps, hot air guns, and flash
lamps affects the detection of water ingress. The signal-to-noise ratio to be used as
the key parameter

e To determine the most suitable image processing technique to enhance the results.



1.5 Research Questions

This research study will seek to address the following research questions:

e How can the TNDT model be used to characterise water ingress (pockets) in the
ThermoCalc-3D software?

e How can different heating techniques be used in the finite difference numerical model
(ThermCalc-3D) to minimise possible errors when characterising sub-surface water
ingress?

¢ What is the water level range of water ingress that can be detected using infrared
thermography?

o How does the emissivity of the aircraft fuselage affect the inspection results?

¢ Which is/are the most suitable image processing techniques that can be used with

pulsed thermography?

1.6 Research Impact

This research is based on the very real need for water detection and characterisation in
honeycomb composite materials in the fuselage of an aircraft. The honeycomb panels are
more favoured materials due to their excellent thermal and physical properties. It is important
for researchers to provide techniques which are critical for water detection and
characterisation in honeycomb structures after the aircraft has landed for better and safe

application.

The output of this research may directly benefit the aviation, composite manufacturing, and

non-destructive testing industries.

The method applied in this research study is expected to yield results that are satisfactory to
industrial or laboratory applications in the non-destructive testing of composite materials.
Including the numerical model will minimise time spent detecting the presence of water and
accurately detect sub-surface water in honeycomb structures and identify the water content in

cells.

1.7 Significance of the Research

This research contributes to the aviation industry as it develops a theoretical framework and
experimental techniques to conduct a thermographic survey and implement preventative
maintenance to avoid catastrophic damage to the aircraft. Active and passive thermographic
techniques have been introduced to inspect the aircraft fuselage. passive technique has posed

some challenges to accurately determining water levels(content) in the cells. for accuracy and



simplicity, there is a need to couple the experimental work with the numerical model for the
sole purpose of detecting and characterising the water content in a honeycomb structure. The
material output of this research may directly benefit the aviation composite manufacturing and
non-destructive testing industry



CHAPTER 2:
LITERATURE REVIEW

2.1 Introduction

This chapter examines recent and pertinent literature on the general use of honeycomb
structures and the methods employed to characterise subsurface defects, such as water
ingress, within these structures. Specifically, it highlights thermal non-destructive testing
(TNDT) techniques for honeycomb structures, with an emphasis on infrared thermography
(IRT). Additionally, the chapter addresses the literature related to mathematical modelling
formulations and their applicability to analysing subsurface defects. Furthermore, it reviews
studies on water ingress analysis in inclined surfaces and the associated data processing

techniques.

2.2 Honeycomb structures

According to Ku et al. (2011), fibre-reinforced polymers are composite materials which consist
of two or more materials with different physical and thermal properties. These materials are
bonded together during manufacturing and produce a finished panel or structure. Most of
these structures are strong, lightweight, stiff and low-density. It is a material revolution within
the advanced manufacturing industry to cater to specific applications in fields such as aviation,
marine, automotive, and thermal systems design. A typical fibreglass composite with a Nomex

honeycomb core is depicted in Fig. 2.1.

Carbonfiber Skin Panel
Film Adhesive

Nomex® Honeycomb Core

Figure 2.1:Honeycomb Panel assembly( Ku et al,2011)

Ramirez-Vazquez et al. (2016) resonated with the above statement by indicating that
composite materials have improved the materials and manufacturing sector; however, proper
standards, durability data, and life cycle assessments should be instituted before they become

proper alternatives to conventional materials. To date, researchers continue to investigate



some of these composites' thermal and physical properties. In fact, for these materials to be
regarded as viable alternatives, they must be structurally and economically feasible.

2.3 Infrared Thermography and Thermal Testing

It is a non-contact and non-destructive inspection technique where thermal excitation
produces heat flux in the form of pulses. The pulses travel through the specimen. Upon
encountering internal heat flow resistance due to defect, void or any form of non-uniformity,
the excess temperature is accumulated on top of the defect. This phenomenon takes place
when the defect has a lower thermal conductivity (k) than the parent material. It forms a either
a positive or negative differential temperature signal (AT,,,) and the running contrast (C;*"). On
the contrary, the specimen consisting of higher thermal conductivity (k), such as water in
honeycomb cells, forms negative differential temperature signals (AT,,) and the running
contrast (C}*™) (Maldague, 2001)

Umar et al. (2019) introduced ultrasonic-stimulated Infrared Thermography (UIT) as an
innovative method for detecting damage in carbon-carbon composites. This technique applies
a short ultrasonic pulse to the material, and an infrared camera records the resulting surface
temperature variations. UIT can detect subsurface, low-energy impact damages in the
material. However, a practical challenge arises in on-site aircraft fuselage inspections, as the
ultrasonic transducer must be in direct contact with the specimen, unlike thermal non-
destructive infrared testing, which uses a non-contact excitation source. So, for this reason,

the active and passive IR are adopted in this study

In principle, the IRT uses an infrared camera that can detect and measure small temperature
differences on the surface of the material, resulting from differences in radiation emission
captured by the camera. The temperature difference is caused by the heat flux as is
transmitted through the thickness of the material induced by an external heat source such as
halogen lamps. The surface temperature history on the surface over time is generated in forms
of thermograms. The thermograms can be downloaded from the infrared camera and
analysed. According to Marquez et al. (2020), infrared thermography inspection can be

conducted either as an active infrared thermography or passive infrared thermography.

Figure 2.2 gives an overview of the various IRT techniques.
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Figure 2.2: Classification of Infrared thermography techniques

Active infrared thermography (AIRT) uses an external heat source that excites the specimen
by applying flux to the surface. The temperature gradient is developed in the specimen due to
heat conduction. The common types of this technique include pulse thermography, lock-in

thermography, long-pulsed (transient) thermography, and vibrothermography.

In pulsed thermography, a body is externally heated with a heat pulse from sources such as
a heating gun, halogen lamps or flashes. The thermal images which record temperature data
are captured during cooling. Lock-in thermography uses lock-in frequency to pulse sample
material, where a thermal diffusion is propagated into the sample material. The surface
temperature variation is monitored by the IR camera, which captures the amplitude and phase
of local responses provided by pixels using an image processing protocol. The algorithms are
embedded in the data analysis software. The long-pulse (transient) thermography uses an
external heat source for a relatively long-time increment to aid better heat penetration for
thicker materials with low thermal and can be used to evaluate the heating and cooling
processes. Vibrothermography is another commonly used technique where mechanical
energy due to vibration(friction) is converted to thermal energy, and hot spots are generated

and detected in the defective areas.

Passive infrared thermography (PIRT) does not require an external source. The object under
investigation should be at a different temperature, and the infrared radiation emitted by the

sample material should be captured and analysed. The PIRT is mostly used for the
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thermographic investigation of subsurface defects on panels on site and during phase change
of water trapped in honeycomb cells (Magoda et al., 2024). It is more effective if the
temperature difference between the panel and the environment is relatively big. For instance,
the presence of frozen water ingress in the cells of the honeycomb panel.

There are other well-established NDT techniques, such as ultrasonic testing, that are capable
of detecting the presence of defects but still, the challenge is to be able to characterise them,

particularly with materials that attenuate the ultrasound waves.

The advantages of the IRT technique include the ability to record temperature changes with
time, that the setup is portable and non-contact, it is simple to record data, has the ability to
inspect/evaluate large areas. It is mostly used to evaluate sandwich panels, carbon/epoxy
composites, spot welds, adhesive bonds and delamination in composites. However, this
technique also has a few shortcomings, such as a need for specific training to interpret
properly the infrared images and the fact that it should be used under a controlled environment
(temperature, airflow, and humidity). It requires a special chamber (covered by black cloth) to

prevent interference from the environmental radiation during data capturing process.

Genest and Martinez (2009) indicated that pulsed thermography has widely been used for
various applications, such as detecting and monitoring debond growth in bonded graphite
repairs. Ishikawa et al. (2013) indicated that for a one-dimensional heat transfer, when the
heat flux is applied to the top surface of the specimen, the surface temperature variation over

time is given by:

o 2 ,
T(t) — 2Q Z :un Zef,un Fo
ocH = B, + 2B, + u,

2.1

Where t is the time after heating [s], H is the defect’s depth, p and c respectively denote the
density [kg/m®] and specific heat [J/(kg K)] of the specimen. B;is the Biot number defined

by B; = hTH where h is surface heat exchange coefficient [W/(m? K)] and k is the thermal

conductivity [W/(m K)] of the material, and Fo is Fourier number defined by F, = z—z in which

a represents thermal diffusivity [m?s], u, is a dimensionless variable, which is determined

from Equation 2.2.
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L 2.2

Almond and Pickering (2014) gave experimental insight into the significance of thermographic
non-destructive testing (TNDT). The TNDT involves the flash heating of a component under
inspection by a high optical intensity flash lamp and the monitoring of the transient surface
temperature with an infrared camera. The technique is generally considered suitable for
detecting and imaging near-surface, in-plane delamination, such as those found in composite
material components, or delamination between coatings and their substrates caused by a
failure in adhesion. Inspection of composite components and thermal barrier-coated

components has become the main field of industrial application of TNDT.

Maldague and Marinetti (1996) specified the application of the TNDT in composite materials.
They indicated that the defect within the material (composites) can be detected by using either

flash or long pulse excitation TNDT technique.

The short pulse phase thermography (PPT) uses pulse excitation, which is evaluated in the
frequency domain. Fourier transformation of the pixel temperature change is adopted to define
thermal waves. The records of variation of phases of these waves (thermal waves) are critical
because they penetrate the sample specimen to exhibit failures in the material at different

depths.

Wrobel, Pawlak and Muzia (2011) indicated that when conducting an IRT NDT experiment, it
was observed that the time dependence of the magnitude of a disturbance over a defect is
such that the temperature differences near the defect increases with time, reaches a
maximum, and subsequently decreases. This is strictly a function of the thermal diffusivity of

the material.

Due to the relatively low thermal diffusivity of the composite materials, a long-pulse thermal

excitation approach is recommended and was used in the work of Tewary, et al (2009).

Vollmer et al. (2018) explained that thermography is a measurement technique which is able
to quantitatively measure the surface temperatures of objects. To use this technique correctly,
the user must know exactly what the camera does and how the useful information from the

images can be extracted. It is also indicated that the correctness of the IR images can be
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affected by a number of factors, such as radiation from the specimen, the emission from the
atmosphere due to its temperature and the presence of warm or hot objects from the
surroundings. Table 2.1 indicates several parameters and factors affecting the quality and
correctness of the thermograms.

Table 2.1 Parameters and factors affecting images recorded with modern IR Cameras system.

Parameters affecting IR images generated from o Emissivity of sample material
the camera. They can be adjusted using Camera . Distance of Camera and its
software position (should be perpendicular to the

sample material)

. Size of specimen

. Relative humidity

. Surrounding temperature

. Interference from nearby objects
Parameters affecting data analysis and . Thermograms (IR images)
processing visualization.

. IR Image colour patterns and

temperature span

. Temperature range and level

231 The insight of Infrared and Thermal Non-destructive Testing protocol

The technique of Infrared thermography consists of three main elements: an infrared camera,
a heat flux source, and an image or data processing system. This technique has been widely
used for structural monitoring and evaluation. Kylili et al. (2014) reviewed the application of
IRT technique for building diagnostics and indicated that the principle of passive IRT is
applicable where thermal radiation from the walls is recorded by the Infrared Camera. The
wall materials absorb heat from the environment and emit radiation because of temperature

difference.

They concluded that while IRT is a useful tool for characterising defects in the building sector,
there is a great prospect for developing more advanced, effective and accurate approaches
that will employ a combination of thermography approaches or thermography and

mathematical modelling.

The latter statement was supported by Vavilov and Burleigh (2015), who indicated that
mathematical models can be applied to evaluate parameters of materials and defects when

analysing heat transfer in the material. They also suggested that lateral dimensions of sub-
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surface defects can be determined directly (or using some simple procedures) by surface
temperature footprints of sub-surface defects with accuracy better than 5-10%, and the
defect’s depth can be evaluated with an accuracy of 20-30%. Furthermore, the determination

of the defect’s thickness or thermal resistance is characterised with an accuracy of 30-60%.

In practice, there are two groups of methods intended for solving thermal non-destructive

testing.

i)Using the inversion formula
iApplying an iteration least-square process to match experimental and theoretical data.

A typical IRT NDT set-up is shown in Figure 2.3.
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Figure 2.3: The setup and scheme of active Infrared thermography technique,

adopted for the thermal process (source: Tewary (2009))

24 Infrared Thermography Inspection of Composite Materials

Composite materials have good mechanical properties and thermal insulation behaviour and
are lightweight. For this reason, their application rapidly grows in structures for which these
qualities are vital, such as aerospace structures. Typical defects of composite materials are

due to the manufacturing process (delaminating and lack of adhesion) or during exploitation
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(concentrations, deformations and water ingress). With the development of technology for
producing composite materials, the requirements for the assessment of their quality are
growing. For this purpose, non-destructive testing (NDT) techniques such as Infrared
thermography is used (Maldague,2001). Recently, Wei et al. (2024) employed long pulse
thermography (LPT) as the primary method for identifying debonding or delamination defects
in composites due to its full-field imaging capabilities and high detection efficiency. The study
showed that, when paired with thermal sighal processing algorithms, this technique effectively
identifies debonding defects in rubber-to-metal bond plates. Furthermore, it was noted that
LPT outperforms shearography in quantitatively assessing defect sizes. The relationship
between the defective and non-defected areas in the composite material is normally depicted

in the log temperature and log time graph as indicated in Figure 2.4.
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Figure 2.4: Principle of stimulated Infrared thermography (Source: Prakash,2012)

IRT testing is an effective non-destructive technique that is broadly used for inspecting
composite materials. The presence of defects such as water ingress in the honeycomb cells
may change an effective thermal conductivity of a panel. The thermal radiation emitted by a
surface of a panel is recorded by means of an infrared camera to create images that reveal
temperature variations, which indicates the presence of defects such as water ingress within

the material (Mulaveesala & Tuli, 2008).

In a similar vein, Rani and Mulaveesala (2022) propose novel pulse compression excitation
schemes to enhance the effectiveness of infrared (IR) non-destructive testing (NDT) for glass
fibre-reinforced polymer (GFRP) materials. The study focuses on improving the sensitivity and
resolution of thermal wave imaging techniques used to detect defects or inhomogeneities

within GFRP composites. By optimising the pulse compression method, the authors
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demonstrate how these advanced excitation schemes can reduce signal distortion and
improve the overall accuracy of NDT inspections. Their findings offer valuable insights for
enhancing the reliability and efficiency of IR-based NDT methods in composite material

evaluation.

The IRT technique can accurately assess any damage within the compaosite structure provided
that the sub-surface defect is within the infrared range which is 2 to 3 mm from the thermal
excited surface. IRT is critical to prevent premature failure and extend the service life of the
structures. Infrared thermography among others has been used in the evaluation of composite
and conventional materials as an effective technique that is quick and precise in detecting of
sub-surface defects. In principle, heat excitation on the surface of the structure is allowed to
go through the layers of the structure with materials of different conductivities (k) and
diffusivities (a). The presence of either delamination or a defect in the layer causes an
irreversible degradation of mechanical properties, which will provide a resistance to the heat
flow and cause a temperature increase (a hot spot) on the surface due to slow heat transfer
around the defect. However, a flat bottom hole provides cold spot on the surface due to the
circulation of air underneath the object, which facilitates the natural cooling of the material.

Based on the complexity posed by the presence of layers with different thermal properties,
Springer and Tsai (1967) assume a one-dimensional heat flow model through the material to
determine the effective thermal conductivity of the composite material. They integrate across
a layer of the material and arrive at an expression for effective thermal conductivity. For a

cylindrical fibre and a square packing array with heat flow transverse to all fibres, the equation

is as follows:
1 BZVf
KT Vf 1 4 -1 - I
—=1—2’—+— T — tan —— 2.3
Km T B 1_82:]“ ) BZVf
— o (Kr _
p=2 <Kf ) '

where kr is the thermal conductivity in transverse direction, kn, is the thermal conductivity of

the matrix, k; is the thermal conductivity of the skin (fibre), Vi is the fibre volume fraction.

Equation 2.3 was later simplified by Behrens (1968) which incorporates volume ratio and fibre

geometry information but no packing geometry. For circular fibres, the equation is:
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Upon obtaining effective thermal conductivity, the heat transfer in the composite material can
easily be determined. It is also possible to analyse heat transfer through layers if the heat

conductivities of the individual layer materials are known.
2.5 Introduction to Active and Passive Infrared Thermography
2.5.1 Activeinfrared thermography

In this work, two thermographic experimental techniques were used, namely active infrared

thermography (AIRT) and passive infrared thermography (PIRT).

The AIRT is a non-destructive and non-contact thermographic technigue for water ingress
detection and characterisation. During the experimental work of this research, various heating
sources such as halogen lamps, flash lamps, and hot air guns were used. This process aimed
to identify a better heating technique. Critical heating parameters such as heating time (s),
time step (s), total time (s) and pulse time (s) were set in the software controlling the heating
source and the infrared camera. The image sequences were recorded at various heating times
(s), i.e. 5s,3s,1s. These external heat sources produce heat flux (W/m2) and reach the surface
of the specimen. Only the effective heat flux is conducted into the specimen. Water is
considered to be a heat-resistive defect with high heat capacity (kJ/kg.K) compared to air in
the neighbouring cells and the cell wall (Nomex paper). It is due to this reason that cells filled
with water demonstrate a cold environment during heat conduction (negative delta
temperatures). It is easier to detect this water, especially when water in cells is in contact with

skin.

In this technique, Dirac thermal pulses travel in the specimen at low or high frequency and
amplitude. The fluctuation of these thermal pulses depends on the resistance they encounter
in the specimen. Pulses with high frequency and short wavelengths detect deeper defects,
and those with low frequency and long wavelengths are used to detect shallow defects. When
the Dirac pulse is absorbed into a semi-infinite medium, the surface temperature decay
conforms to AT= Q/(e\/rrt), where AT is the temperature increase of the surface, Q is the
quantity of energy absorbed, and e=VKpC is the thermal effusivity of the material with K being
the thermal conductivity, p is the density, and C is the specific heat capacity and t the time
(Carslaw and Jaeger,1959).
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The Infrared Camera records/ captures the temporal evolution of the specimen surface
temperature and pulse history over time, allowing sub-surface defects to be revealed.

According to Maldague (1993), the temperature of the material changes rapidly after the initial
thermal perturbation because the thermal front propagates by diffusion under the surface and
also because of radiation and convection losses. The presence of a defect reduces the
diffusion rate so that when observing the surface temperature, defects appear as areas of
different temperatures with respect to surrounding undamaged areas once the thermal front

has reached them. As a result, deeper defects will appear later with reduced contrast.

Cielo et al. (1987 and Allport and McHugh (1988) provided a parameter correlation between

the observation time (t), thermal diffusivity (a) and the defect’s depth (z), whereby
t=z"2/(x ) and c=1/z"3
where c is a loss of contrast

Based on the above correlation, the observable defects will be shallow, and the contrasts will
be weak. An empirical rule, according to Vavilov and Taylor (1982), says that the smallest

detectable defect should be at least one to two times larger than its depth under the surface.

This technique was used to detect and characterise water ingress in honeycomb cells at

various orientations when heated on front and rear surfaces.
2.5.2 Passiveinfrared thermography

This study used the PIRTR to detect water ingress in the solid phase (ice) in honeycomb cells.
The sample specimens were filled with water and stored in a freezer overnight. No external
heating source was used; in a steady state, the specimens were heated by the ambient
temperature in the thermographic unit. This phenomenon was done because water and ice
have different heat capacities which animates to different s delta temperatures (AT), thermal
contrast (Cm), Signal to Noise ratio (SNR), and the optimum observation times for both AT
and Cm. In fact, this technique relies on capturing thermal emissions from the surface of the
material, allowing for the identification of temperature variations that indicate the presence of
ice. The ice alters the thermal conductivity and surface temperature of the honeycomb cell,
creating discernible thermal patterns. By employing infrared cameras, operators can visualise
these patterns and assess the structural integrity of the honeycomb, ensuring early detection

of potentially hazardous conditions.
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The application of passive thermography in ice detection offers several advantages over
traditional methods. It allows for real-time monitoring without direct contact with the material,
reducing the risk of damage during inspections. Furthermore, this method can be used in
various environmental conditions, making it versatile for different operational settings. By
integrating passive thermography with advanced image processing techniques, operators can
enhance the accuracy of ice detection, thereby improving safety and reliability in structures
where honeycomb cells are utilised. This proactive approach not only aids in maintenance but
also extends the lifespan of critical components by addressing ice-related issues before they

escalate.

2.6 Equipment for Thermal Non-Destructive Testing

TNDT involves the excitation sources, data recording equipment, and image processing
algorithms to detect defects, measure material properties, and ensure structural integrity.
Normally, the TNDT experimental setup includes the environmental chamber to avoid
interference from the environment in order to obtain credible results. The heating source must
be chosen carefully to ensure an effective heating process and to prevent any potential areas
of non-heating. According to Vavilov et al. (2016), techniques like infrared thermography can
be utilised to characterise water ingress in honeycomb panels. Normally, infrared
thermography experiments are carried out using the active mode of heating in the lab or a

passive mode of heating in the lab or on-site.

2.6.1 External Thermal Stimulation Techniques in Infrared Thermography

There are active and passive heating modes in infrared thermography. Active heating involves
applying an external heat source to the inspected object to induce a thermal response. Pulsed
thermography forms part of active heating, which involves applying a brief, intense heat pulse
to the object and observing the subsequent thermal response. The common heating technique
involves hot air blowers, which deliver a stream of hot air to raise the object's temperature;
heat lamps, using infrared or halogen lamps to heat the surface of the object; and flash lamps,
using high-intensity flash lamps to deliver a rapid thermal pulse. on the object’s surface
(Vavilov et al., 2016).

As indicated above, there are several applicable thermal excitation sources in the TNDT
experiments. These thermal sources provide heat flux on the surface of the sample specimen.
The sample surface exchanges some of this heat with the environment and the rest is
conducted in the material. Upon encountering heat resistance in the material due to the

presence of sub-surface defects, the fluctuation in temperature signals is revealed on the
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surface of the sample. The next section outlines some of the common thermal excitation

sources.

26.1.1 Thermal lamps and hot air blowers

Thermal lamps, such as flashbulb-based lamps or halogen lamps with specific capacity
(power) are used to apply localised or controlled thermal loads to test specimens. Similarly,
hot air blowers are also used as an active heating source. However, the use of hot air blowers
may cause uneven heating on the specimen’s surface. Normally, pulsed thermal waves at a
specific heating time (tn) and frequency (Hz) are applied to the test specimen, and the
temperature signals are monitored and recorded by the infrared camera. The flash lamps and

halogen lamps are shown in Figures 2.5 (a), (b), (c), and (d).

Figure 2.5: Active IRT heat sources a) Flash lamps b) halogen lamps c) flash lamp d) Hot air

blower (Source: Tomsk Polytechnic University, laboratory for thermal testing)

2.7 Thermal Measurement and Data Processing Systems

A standard pulsed TNDT procedure generates a series of infrared images that capture the

temperature changes over time: T(x,y,t). This sequence can be mathematically represented
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as a 3D matrix of temperature: T(i,j,k,t), where i and j denote surface coordinates and k
indicates discrete time. In TNDT, data processing algorithms are typically either 1D, focusing
on pixel-based temperature changes over time T(t), or 2D, analysing individual images T(X,y).
To minimise random noise or to examine the geometrical features of areas of interest, single
infrared images are often filtered or segmented. Analysing the time evolution of temperature
provides significantly more insights into defect parameters. As a result, most TNDT processing

algorithms utilise pixel-based T(t) functions (Vavilov and Burleigh,2015).

Omar and Zhou, (2008) in their work offers a comprehensive analysis of various processing
techniques used in flash thermography for non-destructive testing (NDT) applications. The
review focused on three prominent flash thermography routines which are thermal signal
reconstruction TSR, dynamic thermal tomography DTT, and pulse phase thermography PPT
imaging. Through experiments in an analytical domain, it was observed that the PPT is found
to be least sensitive to anisotropy variations, while the signal time-delay in TSR is shown to

be dependent on defect aspect ratio and not on its depth.

According to the laboratory for thermal testing in TPU (2022), the infrared Camera
ThermoCam (Optris Pl 450) captures thermal images of the specimen’s surface, allowing for
the visualisation of temperature distribution and identification of defects. The data recording
system is embedded with the image processing software. However, TPU has developed a

special data processing software (ThermoFit Pro) with quite a few algorithms.

2.7.1 Filters used in the IR images processing and the thermogram analysis.

In this study, pre-processing steps such as noise reduction through Gaussian filtering, which
is widely used to minimize noise while preserving critical structural details in thermal images,
and calibration for emissivity variations, play a vital role in enhancing image quality, as
discussed in section 4.7.1. Similarly, the image processing software employed in this research
includes several algorithms. However, the primary focus is on Fourier phase, Principal
Component Analysis (PCA), Time gram, Tomogram, Correlogram, and Tomography (negative
time gram, upper threshold). The resulting images from these algorithms are compared and
analysed. in section 4.7.1. In infrared (IR) image processing and thermogram analysis, filters
are key tools used to improve image quality and extract meaningful, reliable data. Specifically,
spatial filters are applied in this study to reduce noise, sharpen edges, and enhance water

ingress detection within the thermal images (Thermogram).
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For thermogram analysis, the above-mentioned image processing algorithms and Signal-to-
Noise ratio are utilized to analyse the temperature distribution captured in IR images, aiming
to detect water ingress. In this context, filters are employed to isolate thermal patterns of
interest, particularly distinguishing between empty cells and those partially or fully filled with
water. When combined with other image processing techniques such as thresholding,
histogram equalization, and contrast enhancement, filters help to provide a more accurate
interpretation of thermographic data, thereby improving the precision of water ingress

detection in honeycomb panels.

2.7.2 Controlled environment during data recording in Therma Non-Destructive

Testing

The accuracy of measurements and data recording in a laboratory environment depends on
a few parameters, including emissivity, ambient temperature, and distance from the
investigated object that could potentially result in false readings. This is more evident in
passive thermography, which is more applicable to recording data on site. However, Emissivity
is a common obstacle to IRT. According to Avdelidis and Moropoulou (2003), Non-metallic
surfaces that have high emissivity (>0.8) are easily detected by an IR camera and metallic
surfaces of low emissivity act as reflectors and do not emit energy efficiently. This makes
measuring their temperature very difficult since radiation of nearby surfaces biases the
readings. For this reason, the test samples used in this work were covered with high-emissivity
black cloth. Furthermore, during the transmittance of energy from the investigated object to
the IR thermal imager, some energy may be scattered or absorbed by large atmospheric
particles, limiting the measurements. Tomsk Polytechnic University laboratory for thermal
testing has a customized environmental chamber made from an aluminium frame covered with

black cloth, as indicated in Figure 2.7.

Black cloth

Aluminum

frame

Figure 2.7: Environmental Chamber (Source: Tomsk Polytechnic

University, laboratory for thermal testing)
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2.8 TNDT of Inclined Honeycomb Panels with Water Ingress

This chapter previously indicated that TNDT is a technique used to inspect and evaluate
materials and structures for defects or anomalies without causing any damage. This method
uses thermal imaging and other thermal measurement techniques to assess the integrity of
materials, especially oriented surfaces with specific directional properties (Vavilov et al.,
2016).

The inclined surfaces represent samples with water ingress set at an angle. This is a crucial
factor since aircraft panels can be oriented in multiple ways—vertically, horizontally, and at
various angles. However, initial research by Vavilov et al. (2017) primarily focused on
horizontal aviation honeycomb panels. It demonstrated that the angle of inclination has a
minimal effect on both heat conduction properties and the detectability of water within the cells.

2.8.1 Challenges with Oriented Surfaces

According to Ladd (1999), oriented surfaces, such as those in composite materials or layered
structures, present unique challenges when analysing their heat conduction. The thermal
properties are direction-dependent, which affects how heat spreads through the material. The
other is the Irregularities and complex geometries which can complicate the analysis of

thermal responses.
2.8.2 Applications of TNDT on Oriented Surfaces

TNDT is used in various fields to inspect oriented surfaces for structural integrity. According
to O’Brien (2001), the aircraft design involves surfaces at various orientation aircraft wings
and fuselage. Similarly, Silva J.B (2009) indicated that the TNDT can be used to evaluate the
condition of bridges and other structures for maintenance needs. These bridges consist of
composite slabs oriented at various angles. The other area of application is to assess the

quality of composite parts in vehicles (El-Atab,2004)

TNDT is a versatile and effective method for inspecting oriented surfaces. By applying
advanced thermal techniques and overcoming challenges associated with anisotropic
materials and complex geometries, TNDT can provide valuable insights into the condition of

materials and structures.
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2.9 Modelling for Thermal Non-Destructive Testing

TNDT is a powerful technique for evaluating the integrity of materials and structures without
causing any damage. This testing method relies on thermal principles to detect flaws, assess
material properties, and ensure the safety and reliability of various components. To model
TNDT effectively, it is essential to understand the underlying principles, methodologies, and

applications.

Vavilov and Pawar (2015) presented a novel approach for one-sided thermal nondestructive
testing of composites by using infrared thermography. A one-dimensional classical plate
sample (model) was introduced and the temperature responses from both surfaces were
recorded. In the book authored by Vavilov and Burleigh, 2020, numerical modelling provides
accurate solutes as opposed to analytical methods. They also indicated that commercial
software packages designed for heat transfer problems are available. However, there are
some limitations associated with these packages. For this reason, Tomsk Polytechnic
University (Russia) developed the specialized TNDT software to provide a numerical solution
for heating a 2D three-layer disk body and a 3D six-layer parallelepiped-like body up to 40
parallelepiped-like defects.

2.10 Thermal Non-destructive Testing (TNDT) of Honeycomb Panels with Water

Ingress

Thermal Non-Destructive Testing (NDT) of honeycomb panels with water ingress involves
complex modelling to assess the integrity and condition of these structures. Honeycomb
panels are widely used in aerospace, automotive, and civil engineering applications due to
their high strength-to-weight ratio. Water ingress can significantly degrade the structural
performance of these panels, making effective NDT methods crucial.

In fact, modelling water ingress in honeycomb panels for thermal NDT requires understanding
both the thermal properties of the materials and the effects of defects. However, according to
Chen and Lu (2012), Liao and Cline (2013) and Lee and Chang (2014), the finite element
analysis (FEA), Analytical models (AM) and finite difference methods (FDM) are Key
approaches in estimating thermal responses in 3D heat transfer problems. In the FEA, the
panel is divided into discrete elements, and the heat transfer equations are solved numerically.
Water can be modeled as a defect with different thermal properties compared to the dry core.

The FDM provides discrete solutions, while FEM provides a continuous solution.

According to Magoda et al. (2024), there are several non-destructive testing (NDT) techniques

which were suggested by previous researchers to successfully detect water ingress and
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assess water content in the cells of aircraft panels. Such techniques include ultrasonic,
magnetic resonance (MR), the introduction of argano-ceramicscomposite and the near-field
microwave NDT. These techniques are contact and cover a small area of inspection.
Therefore, active and passive infrared (IR) thermography has proven to be the most popular
and widely used technique to evaluate sub-surface defects, including water ingress. The
introduction of advanced infrared cameras, numerical modelling software and image
processing software have enhanced the reliability of the obtained data for application in

various industries such as aviation.

According to Vavilov (2010), around 1980, there were quite a few researchers such as
Balageas, Vavilov and Taylor, MacLaughlin and Mirchandani, Popov and Karpelson and
others who extensively developed a thermal-physical approach to TNDT and introduced one-

dimensional (1D), two-dimensional (2D) and three-dimensional (3D) models of defects.

Later, in the work of Ishikawa et al. (2013), it was suggested that pulse phase thermography
provides an appropriate data acquisition technique, whereby the applied discrete Fourier
transformation leads to phase as a function of frequency. Based on the phase-frequency
relation, defect depths were examined.

It was further simplified by Vavilov and Burleigh (2015) that pulsed Infrared thermography
produces thermograms (IR images) which are the true reflection of the surface temperature
variation over time. The heat in the sample material is conducted in three dimensions (X, vy, z,
t), where z, x, and z are nodal coordinates and t is the time. However, the surface temperature
is presented in two dimensions and recorded based on pixel intensity variation with time. The
thermograms are normally filtered to eliminate or reduce noise level as part of the image
processing protocol. In fact, the IR technique uses pixel-based temperature variation function
as part of processing algorithms. One practical concern when using this technique is that only

point data is recorded, therefore it is a time-consuming process.

Classification and a short description of these TNDT algorithms are presented in Figure 2.8.
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Figure 2.8: lllustrating data processing algorithms in a hon-destructive technique
(source: Vavilov and Burleigh (2015:43))

2.10.1 Noisein Infrared Thermography

Noise refers to unwanted variations in the thermal image data that can obscure or distort the
actual thermal signals being measured. It can come from various sources and manifest as
random fluctuations or consistent errors in the thermal measurements. There are a few
sources of noise during the infrared thermography experiments such as sensor noise, thermal
noise, electronic noise, background noise and operational noise. According to the specialised
software (ThermoCalc-3D) from TPU, there are two categories of noise: additive noise and
multiplicative noise. The noise induces nonuniformities in the image or a sequence of images,
which affects the visibility of the sub-surface defects. Therefore, image processing is critical

to eliminate the noise effect by removing the background of the image through filtering.

2.10.2 Managing and Mitigating Noise in Infrared Thermography

Eliminating noise from the image sequence of thermal infrared thermography is critical to
achieve better detectability of sub-surface defects (water ingress). It is recommended that the
thermal camera to be calibrated more regularly to ensure accuracy. This includes checking
the emissivity settings and conducting routine maintenance to keep the camera in good

condition. Ensure stable environmental conditions during testing to minimize ambient
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temperature fluctuations and avoid reflective surfaces (lbarra-Castanedo, Tarpani &
Maldague, 2013). In fact, managing noise in Infrared Thermography requires a combination
of proper equipment handling, understanding environmental impacts, and employing

advanced data analysis techniques.

2.11 Conclusion

In this chapter, a brief review of literature is presented as relevant background knowledge for
the work that follows in Chapters 3 and 4.

The first section covers the theoretical foundations of composite materials, especially fibre-
reinforced composites. The second part of this chapter deals with non-destructive evaluation
techniques, in particular infrared thermography (IRT). The application principles of IRT in
evaluating the composite materials, as well as the data processing procedures, are presented.
It also presents the accuracy of data recording and processing.

The third section presents the numerical method, especially the numerical software
(ThermoCalc-3D) and the image processing software (ThermoFit Pro), with a focus on the 3D

model with water ingress at various levels and orientations.

Finally, the principles of experimental validation of the numerical solutions, formulated for the
purpose of characterising the water ingress in honeycomb composites, will be employed in

this work.
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CHAPTER 3:
NUMERICAL MODELLING

3.1 Introduction

This chapter is devoted to the three-dimensional heat conduction mathematical modelling of
honeycomb structures with cells partially or fully filled with water. A honeycomb is a porous
structure consisting of cells with a hexagonal prismatic configuration. The modelling of a
honeycomb structure is a challenging task due to its structural complexity. Honeycomb cells
filled with water at different levels, as well as cells containing air, are modeled using
ThermoCalc-3D software, with image processing algorithms applied to enhance visibility. The
models are at a horizontal, vertical, and inclined orientation. The ThermoCalc-3D is the
thermal modelling software (designed at Tomsk Polytechnic University) which can solve a
three-dimensional heat conduction problem of heating a 36-layer solid body containing up to
40 parallelepiped-like defects. It implements the finite difference method, which provides
better accuracy than the Finite Element method when solving Thermal NDT problems.
Therefore, the primary objective of this chapter is to predict water ingress levels (depth of
defect), perform 3D normalisation, investigate the effect of radiation and convection heat
transfer in detecting cells with water and provide a parameter correlation to estimate water
content (mass) in honeycomb cells when the model is placed in a different orientation. A critical
concept of signal-to-noise ratio (SNR) and the optimum observation time is used to accurately
detect water ingress in cells. In addition, the analysis of surface thermal contrast and delta

temperature variation over time of the model orientated at various angles is presented.

3.2 General TNDT Models to Analyse Sub-Surface Defects in Composite Panels

Most proposed 3D models are for composite materials with induced sub-surface defects, such
as flat bottom holes. However, a similar approach is adopted to characterise water ingress
(defects) in honeycomb panels. Several researchers have proposed and developed models
in 1D and 3D for composites with flat bottom defects. For instance, Maillet et al. (2000)
proposed a solution for a 3D Transient Non-destructive Testing problem of heating a
composite material with flat bottom holes (defects). A similar solution was later introduced by
Vavilov (2022) for the active TNDT problems with enclosed subsurface defects. The solution
was obtained by applying the Fourier transform to two lateral spatial coordinates and the
Laplace transform to time. In general, the TNDT model of the anisotropic non-adiabatic panel
with subsurface defects is based on heat diffusion mathematical formulation, which is a
parabolic differential equation of heat conduction as follows.

oTi(xyzt) _  9*Tixyzt) 0°Ti(x,y,zt) 0%T;(x,y.zt) .
at - dx2 y dy2 z 9z2 ’

i =1..(layers + defects); 3.1
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i) Initial conditions
Ti(t = 0) = Tin 3.2
i)  Boundary condition (top surface)

—kfw = Q(x,y,t) — hg[T1(x,y,2,t) — T,] heating and cooling 3.3

iii)  Boundary condition (bottom surface) in case of a 3 layered composite (skin, core, skin)

—k—fw = —hg[Ts3(x,y,2,t) —T,]  cooling only 3.4

iv)  Specific temperature boundary conditions on the side surfaces

oT;(x,y,z,t=0) _

= =Tyat x=0,y..Ly,; x=Ly, y.Ly 35
%&}ZI:O):Taat};:O’x:OLx’ y:Ly' xLX' 3.6

v)  Atthe defect boundaries

j 0T i(x,y,2, j OT; V.2,
Ti(x,,2,t) = Tiy1 (x,7,2,£) and ) ZLE220 kﬁél%fzo 3.7

Where ay, ay,and a, are thermal diffusivities of the material along coordinates x, y, and z. T;

. T, are the material initial and ambient temperatures. k¥, a¥’ are the thermal conductivity and
thermal diffusivity in the i-th area (material’'s layers and sub-surface defects) along
qj,x,y,z.which are the cartesian coordinates. (i =1 — 3)corresponds to sample layers and
(i=4—M+ M) corresponds to M defects).The h; and hyp are the coefficients of heat
exchange on the front and rear surfaces respectively. L, L,, and L, are the lateral dimensions

of a sample. Equation 3.7 represents the continuity of temperatures and heat fluxes at defect
boundaries.

It should be noted that in modelling anisotropic solids, it is assumed that only thermal
conductivity is anisotropic, and both specific heat (heat capacity) C and p are constant by all
coordinates. The concept is illustrated in Figure 3.1.
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Figure 3.1: Components of the Thermal conductivity (TPU,2018)

The flat bottom holes have widely been used in classical mathematical models as defects.
However, internal defects such as delamination have also been used to represent the practical

or possible actual defects found in composite panels.

There are several critical parameters to be considered when modelling sub-surface defects.

In fact, the thermal and physical properties of the host material and the defects are important.

The temperature contrast over defects depends on the thermal conductivity and diffusivity of
the defects. The heat conduction phenomena around the defect are critical to characterising
it accurately. The heat capacity and the thermal resistance (Rq) are the specific parameters
used in the model’s defect characterisation. In the case of water ingress, the “negative”
temperature contrast is expected due to water's higher thermal diffusion than that of host
material. The detectability of water ingress is also influenced by the contact between water

and the skin surface.

In general, computer simulations such as ThermoCalc-3D, COMSOL, ANSYS, ABAQUS, and
MATLAB have been used to characterise sub-surface defects. These software can be
combined to increase the results' accuracy rate. For instance, temperature data can be
exported from COMSOL to perform apparent effusivity reconstruction with the algorithm
implemented in MATLAB. However, ThermoCalc-3D has been tailored to solve 3D heat
conduction problems (models) with many layers and defects. It is user-friendly with high

accuracy.

3.3 Approaches to Modelling Composite Materials

In Chapter 2, the discovery of the existence of the defect within composite materials has been
presented. However, determining the depth of these defects is an area of further investigation;
hence, the purpose of this work. Chrysafi et al. (2017) used spatial mathematical methods to
determine the presence of defects in composite materials. These methods include the
depiction of the norm of the first and second spatial derivative of temperature, the Discrete

Fourier transform, and the Wavelet transform on the overall heat domain.
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The interest of this work focuses on the depiction of the norm of spatial derivatives of the
thermal field for 3D image processing because it uses the finite difference method presented

as follows:

mursyse = () + (G5 + () o

Based on Equation 3.1, the spatial derivative of the temperature changes abruptly around the

defect, and to identify this change at the specific region, the depiction of the temperature
derivative norm distribution is presented by the equation at various instants. The finite
difference method (central difference) expression for the spatial derivatives of temperature is
deployed and gives as follows:

Ve 2

n _ i-1,j,
D3Tijx =

n n 2 n n n 2 n n n
k2Tt Tiva ik n T i1k 2Tt T jaak n Tiik—1"2T;j it i j k1
(Ax)? (ay)? (Az)?

(3.9
The solutions of this model were obtained because of the steps shown in Figure 3.2. As
indicated, the development of the model is an iterative process of postulates formulation,
validation and refinement. This model is fashioned using information from three major areas:
the material's properties, the process of heat transfer, and the finite difference mathematical

technique.

Problem definition (scenario)

v

Conceptual model

v

Setting up parameters (Specimen, layers, defects)

v

Timing

If not satisfactory ¢
Heat source

A
Image processing

A
If satisfactory < Analysis

Figure 3.2: Different steps in model development
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3.4 Thermal Non-destructive Testing Models for Water Ingress in Honeycomb
Panels

Analytical methods and (TNDT) models have been used to detect and characterise the hidden
defects (water ingress) in honeycomb panels but do not provide accurate solutions, especially
in the case of the water content in the cells of honeycomb panels. Numerical methods are
more reliable for regular-shaped defect characterisation. Two numerical methods are used for
solving heat diffusion in composite materials: the finite element method and the finite

difference method.

Vavilov et al. (2017) analysed the 3D model of a honeycomb panel where water can fully or
partially occupy cells. The mathematical formulation of the model is executed in the

ThermoCalc-3D software.

The model consists of a honeycomb with square cells (10 mm high) made of Nomex paper
and the panel skin (0.5 mm thick) made of glass or carbon fibre-reinforced plastic. It was found
that the most important relationships between sample parameters and temperature signals
can be obtained by analysing a simple 1D model of heat conduction in a three-layer plate.
Still, the analysis of some more elusive phenomena requires 3D numerical modelling. It was
observed that it is difficult to quantitatively evaluate water content in the cells unless the
inspection is performed on both panel surfaces and a ratio of respective temperature signals

ATisont/ AT rear OF contrasts Cront/Crear fOr water mass calibration.

In fact, there are two parameters that are critical in thermal NDT. The differential temperature
signals AT = Tq4 -Tng and the running contrast C=AT/Tnq, along with their observation times t
(AT) and t (C). The Tq and Tnq are the temperatures on the defected and non-defected areas.
it was also noted that in the theory of thermal NDT, a defect detection limit is provided by the

noise contrast C, which is a characteristic of a material and surface conditions.

3.5 Critical Qutput Parameters

The parameters such as the surface temperature, contrast, and observation time which are

obtained from the temperature images of the model are critical to effectively characterise water
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ingress in honeycomb panels. However, understanding the other physical and thermal
properties of the material is critical. For instance, how quickly the panel absorbs water (in
mass or volume), the rate of water ingress, time to saturation, and the height to which water
rises in the honeycomb cells, which is influenced by the geometry and size of the cells. The
critical thermal properties of the model material include thermal conductivity (k), and thermal
diffusivity (a). These parameters provide a comprehensive understanding of water ingress

behaviour in honeycomb panels.

3.5.1 The Differential Temperature Signals (AT)

Water ingress in honeycomb structure compromises the integrity of the structure and its
detection is necessary. However, in water ingress models, differential temperature signals can
provide valuable insights into moisture behaviour within honeycomb panels. Monitoring
temperature differences can help identify areas of increased moisture, as water has a higher

specific heat capacity than air.

Temperature gradients can indicate how heat moves through the panel. Water ingress can
slow down heat transfer, leading to observable temperature differences in thermographic
measurements. By analysing differential temperature readings over time, the moisture
migration paths can be traced. Areas with higher moisture levels will exhibit different thermal

responses compared to drier sections.

Most importantly, by establishing baseline temperature differentials in undamaged panels and
monitoring for changes over time, predictive maintenance strategies based on identified

thresholds can be implemented.

3.5.2 Lateral size of water cell

The water ingress model of a honeycomb structure consists of layers and defects. The water
cells are separated by fixed boundaries known as defects. Water which penetrates the cell will
occupy the cell's space. It was shown in the work of Magoda et al. (2024) that an increase in
water in the x and y directions has little or no impact on differential surface temperature or
contrast. However, water ingress in lateral size is also described as the shape of a defect
which is visible to the operator's eye. Vavilov (2022) summarised the specific proposed
processing techniques for the estimation of the 2D geometrical sizes (dx and dy) of the defects.
Such techniques include the Full Width Half Maximum (FWHM) technique, analysis of
temperature spatial derivatives and a non-linear fitting technique. Each technique has its

specific application to achieve estimation at minimum errors. For instance, the FWHM is

33



suitable for noisy temperature profiles but at times, may lead to both under and overestimation
of defect size. In the case of the derivative technique, it is suitable and well related to heat
conduction around defects, which indicates that the maximum lateral heat fluxes occur at
defect borders but are subject to temperature fluctuations.

It was also mentioned that the defect's true size and shape can be underlined by using simple

algorithms of gradient filtering and binarization.
3.5.3 The Depth of Defect (Water Level)

The non-linear fitting technique is proposed as the preferred processing technique to
determine defect depth and thermal resistance but is not accurate for smaller and deeper

defects producing lower temperature signals.

Based on the principle that when the heat flux is applied on the surface, the sub-surface
defects affect thermal diffusion and produce a corresponding thermal contrast on the surface
directly over defect/void, the analysis of either thermal contrasts on the surface or excess
surface temperature of the material is important. Manchor and Di Scalea (2014) modelled a
3D heat flow in composite materials with flat bottom holes (defects). They assumed that the
thermal conductivity of the material in the x and y directions are the same and different in the
z direction. The model was reduced from anisotropic heat conduction problem to the isotropic

problem. The excess surface temperature equation was developed.

Te = %To (1 + 3, 2 sin (ﬂ) e‘t“(””/hl)z) X (1 + Y022 ip (mh—7:b) e‘m(m”/hZ)z) X

nmwa hq mmb

(1 + Z}(;o=1 2(_1)ke—ta(k7t/d)2) (310)

The most common experimental techniques are the use of early detection times, apparent
effussivity method (Dirac Pulse Heating), Contrast difference, and the surface temperature
difference. The term early detection is when the evolving AT(T) signal starts to exceed noise.
At this time, the signal-to-noise ratio is lower than at optimum observation time, but defect
shape is better reproduced due to weaker lateral heat diffusion. Besides, defect thermal
resistance (defect thickness) scarcely influences surface temperature in defect areas at earlier
times. Therefore, the early detection technique can be used for determining defect depth |
independently of defect thickness. In fact, according to Vavilov and Burleigh, there are four
techniques normally used for the depth detection of the sub-surface defects and the thermal
resistance: the apparent effusivity, early detection (characteristic time form peak contrast),
artificial neural networks, the instant of maximum thermal contrast (Tcmax), and the excess

surface temperature. The apparent effusivity method uses two dimensionless parameters to
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obtain the excess surface temperature of the sample to describe the effusivity (e), the Biot
number (Bj) and the Fourier number (Fo). These dimensionless parameters are presented as

Fog = at/I? (3.12)

Where | is the depth of the defect from the surface of the sample, R, is the size (radius) of the

defect, a is the material’s thermal diffusivity and 7 is the heating time increment.

This method was adopted by Manchor and Di Scalea (2014), who found that the excess
surface temperature (Te = Taet — Tunder) IS proportional to the size and depth of defects.

In a similar vein, when using an instant of maximum thermal contrast method, Fang and
Maldague (2020) found that the maximum or peak thermal contrast is proportional to the

square of the defect’s depth.
Temax = aZ? (3.13)
Where Z is the defect’s depth and « is the thermal diffusivity of the material.

Man-made defects will be produced on selected specimens, and their effect on thermal

diffusion based on their depths will be analysed.

3.6 Description of the Model

This model consists of honeycomb Nomex with fibre glass reinforced plastics skin. This type
of composite panel is common in the construction of fuselage. When the aircraft is under use,
water ingress (atmospheric water) penetrates the fuselage and settles in the honeycomb cells.
Due to low temperatures at high altitudes, the water in the cells freezes and may cause either
temporary or permanent damage to the panel. Therefore, it is critical to model the panel with
water content. This model focuses on the detection of water ingress at different levels and
orientation. The impact of different heating methods on the visibility of water ingress using a
signal-to-noise ratio (SNR) concept is analysed. The appropriate technique or procedure for
water mass determination is suggested. The models in Fig. 3.3 have been analysed

numerically using the ThermoCalc-3D software.
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Figure 3.3: 3D numerical models (ThermoCalc 3D-software) of water ingress test cases: a)

horizontal heating from top b) horizontal heating from bottom, c) water in inclined position

3.6.1 Description of the material used during modelling

The parameters of the model in all scenarios were: 0.5 mm-thick fibreglass skin, Nomex paper
made cells, cell is 10x10x10 mm, heating power 50kW/m?, heating time step 0.1s, heating
time 0.5s, and total process time 20 s. The additive noise of 3% and additive noise standard
deviation of 10%, and the multiplicative noise of 1%-5% were introduced to the vertical and
inclined scenarios. The non-uniform heating was also applied to the latter scenarios. The
examples of the evolutions of delta temperature (AT) and contrast (C) in time are presented
in fig.3 indicating all scenarios (horizontal v=100%, 50%, vertical (v=50%), inclined (v=50%),
and non-uniform heating).In all scenarios, defect and non-defect points for horizontal panels
are chosen over the centres of water-filled and ‘dry’ cells respectively as indicated in fig.1 (a).
However, the defect points for inclined and vertical are chosen over the centroids and the
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centre of water filled respectively as shown in Figure. 1(d), and (e). The maximum values of
these parameters and their observation times calculated for several test scenarios are
presented in Table 3.3.

Material thermal properties such as thermal conductivity, density and specific heat capacity
used during modelling were of fibreglass skin composite panels with the Nomex honeycomb.

The specific material properties and dimensions are illustrated in Table 3.1.

Table 3.1 Material thermal properties

Material Thermal Density Heat Specific heat Thermal
conductivity  (kg/m”"3) flux capacity Thermal effusivity e,
(W/m. K) (W/m?) (J/kg. K) diffusivity a,
Wm?©5/(m?2 0C)
m2/s
Glass fibre
reinforced
] 11 1300 1775 1.30x107 832
Plastic
(GFRP)
0.61 1000 1005 1.41x107 1573
Water
50000
0.17 128 830 1.82x107 769
Honeycomb
(Nomex)
0.07 27.3 928 5.8x10% 9.192
Air

This is a three-dimensional heat conduction model analysed using ThermoCalc-3D (Tomsk
Polytechnic University, Russia) software. The ThermoCalc-3D implements an implicit finite
difference scheme in which the numerical grid inside defect areas is created automatically by

considering both the specified defect thickness and spatial step.

Figure 3.4 presents the model created in ThermoCalc-3D software with cells filled with water
at 25%, 50% and 100%.
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Figure 3.4: ThermoCalc-3D model

After the application of a uniform heat flux of 50kW/m? as depicted in Figure 3.4, the space,
time and delta-T profiles were drawn in Figures 3.5 (a), (b), (c), (d), and (e) to demonstrate

the effect of water content to the temperature variation over each cell.

3.6.2 Heating of the model

At first, the model will be heated using a periodic square pulse with the inputs time step (1s),
heating time (5s), total time (20s), and pulse time (5s). The surfaces are subjected to
convection +Radiation heat transfer. The same procedure is repeated using arbitrary heating,
and thermal waves (hot air). The exponential heating source with a maximum heat pulse

density of 10kW/m? is used. The coefficients of the spatial distribution of heat pulse in x and y

This software allows the modelling of uneven heating or cooling by specifying a Gaussian heat
source, as indicated in Figure 3.5.

Parameters >

Specimen Layers Defects Timing Heat source  Output

Source in space

O From file @ Exponential heating (O Exponential cooling

tdaximum heat pulse density im™m] 50000

Coefficients of spatial distribution of heat pulse [1/im*m)]

2 2 X
XX Yl Y~ 0
Q=q e %0 Ty y¥) o,

Heat source center (m)

0
Yo 0.01

Ambienttemperawre [0 |
intieltemperatre [0 ]

ok Cancel
Figure 3.5. Gaussian heat source (uniform heating)
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Figure 3.6: ThermoCalc-3D results (a) temperature image, (b) space profile, (c)

time profile -Logtemperature-logtime, (d)time profile-temperature-time, (e) DeltaT -
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The ThermoCalc-3D has specific surface heat exchange conditions for front and rear surfaces,
as indicated in equations 3.3 and 3.4, respectively. The following conditions are applicable for
the front heating on the model. A model is heated by a heat pulse Q(x,y,t) = 50kW that
operates during the time (t, = 5s) and the heat pulse is square. This model is treated as
adiabatic on the sides (h=0). However, the combined heat transfer exchange ( a, + @conv)
are considered during modeling. The heating is uniform with an exponential heating option
and the parameters of the Gaussian function (oy, ) are set zero to model as indicated in figure
3.6. The introduction of noisy levels on the model presents a practical analysis when
comparing to the experimental results. The most common noises are additive and
multiplicative which are random and specified in the custom under output option by choosing
X, Y, Z coordinates of outputting surface. Figure 3.7 depicts the introduction of noise onto the

model.

Parameters x

Specimen Layers Defects Timing Heat source  Dutput

Output surface
® Front ORear OTop  OBofttomO Left O Right O Custom

Qutputtime step (s)

Additive noise mean [degree]

Additive noise standart deviation [degree]
Multiplicative noise ma;v:imum

Multiplicative noise minimum

Figure 3.7: Additive and Multiplicative noise

The image processing algorithms form part of theThermoCalc-3D software. Although a
separate software (ThermoFit Pro) is specialized in processing the temperature images for
better visibility by eliminating noise and other unwanted background intrusions. For
demonstration processes, the above model was induced with noise and two different image

processing were applied. The results are shown in Figures 3.8 (a), (b), and (c).
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Fourier transform (harmonic 2)

Original temperature image with noise
(100% water)

Principal Component Analysis (2" Component)

Figure 3.8: Sample of image processing (a) original temperature
image, (b) Fourier transform, (c) PCA

Based on the above images, the cell with 100 % water is better seen when the Fourier
transform algorithm is applied. It should also be noted that water in the cell should be in contact
with top layer where the heat flux is applied on. It can be observed that an air gap between
the layer and the water, in the case of 50% or 25%, causes limited or no visibility of water in
the cells. As indicated in the previous work by Vavilov et al. (2020) that water should be in

contact with skin (layer) for better detection.

3.7 Details on Numerical Image Processing (ThermoFit software)

The image processing is an integral part of data analysis in Infrared thermography to achieve
a better defect’s characterisation and visibility. It is achieved by applying image processing
algorithms to reduce pixel’s noise levels. According to Herby (1998), at the pixel level, the
noise is additive, of Gaussian nature and of high frequency with respect to the useful signals.
Several techniques are used to characterise the noise content present in infrared images.
Such techniques include the use of image processing algorithms installed in software such as
ThermoFit ™ Pro. The most useful parameter when performing image processing is to

compute the signal-to-noise ratio (SNR), which is determined using equations 1.1 and 1.2
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In light of the above introduction, the section below details the image processing techniques
and algorithms used in this research work. The numerical modelling software (ThermoCalc-
3D Pro) has incorporated two image processing algorithms (Fourier transformation, and the
principal component analysis-PCA). Figure 3.9 shows the key features of the software.
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Figure 3.9: Fourier transform and PCA embedded in ThermoCalc-3D Software

This work uses the ThermoFit TM Pro (Tomsk Polytech University, Russia) for image
processing. It processes images recorded from the infrared (IR) camera due to pulsed TNDT.
The Program allows for enhancing defect visibility, evaluating material loss, determining
material thermal properties, and processing IR images statistically using processing
algorithms such as Background, Normalization, Fitting, Fourier transform, Derivative,
Maxigram and Tomography, Statistics, 1D and 3D Defect characterisation, Corrosion, Material
properties, Correction Point distance, Principal Component Analysis (PCA), and Wavelet
Analysis. Most of these algorithms are suited for solid homogenous materials. However, in
this research, the analysis is done on the honeycomb material filled with water. This non-
homogenous material consists of air, water, epoxy, fibreglass, and Nomex paper. For this
reason, Fitting, Fourier transform, and Principal Component Analysis (PCA) are the preferred

algorithms for this study.
3.71 Polynomial fitting

This is one of the popular and most effective technique of image processing in which the
logarithm reduces a sequence of arbitrary length to few images of polynomial coefficients. The
stored image sequence is free of high frequency noise which enable such mathematical
algorithms as differentiation. There are three fitting algorithms available/installed in this

program.
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The first fitting function (Fit 1) follows the classical solution for heating a semi-infinite adiabatic
body with a square pulse and is applied to decaying temperature signals. In the case of a
water defect, a cooling phase is more important than a heating one because of a vast
difference in heat capacity and diffusivity of air and water.

T(t) = Ay + A0 + A,0% + A;03+A4,0% + As0°; (3.14)

0= i—/i—LtZQ (3.15)
th th

This option is limited to the following conditions

The time step (At) > 0; heating time (t;) > 0; Time corresponds to k — th image (t) = ty,
k>2

Where Ay, A4, A,, A3, A4, and As are polynomial coefficients

The second fitting function (Fit 2) is general and independent on the physics of the analysed

process. It is applied for arbitrary temperature signals.
T(t) = Ap + Art + Ayt? + Ast3+A,t* + Agt® (3.16)

This option is limited to the following conditionsThe time step (At) >

0; Time corresponds to k — th image (t;,) =0, k = 2

The third fitting function (Fit 3) follows the classical solution for heating a semi-infinite adiabatic
body with a Dirac (flash) pulse. It is applied to decaying temperature signals

Ln[T(®)] = Ag + A,0 + 4,02 + A;03+A4,0% + A.0° 3.17
0 3 5

t t
9=’——/——Lt2q
th th

This option is limited to the following conditions

The time step (At) > 0; Time corresponds to k — th image (t;) =0, k = 2
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3.7.2 Fourier transform (FT)

The FT is a fundamental tool in image processing. It extends the Fourier transform to signals,
breaking them down into a sum of complex oscillations, or more precisely, complex
exponentials. In the context of image processing, the Fourier transform decomposes an image
into oscillations that vary in frequency, phase, and orientation. It's important to note that these

oscillations are not complex exponentials when the pixel values are real numbers.

In essence, the Fourier transform reveals the frequency content of an image, showing how

the intensity values are distributed across different frequencies.

FT normally performs a 1D or 2D Fourier transform through a sequence in time. It is a pixel-
based temporal evolutions of temperature signal to produce images of both magnitude and
phase at different Fourier frequencies. Normally, images of phase are preferred compared to
images of magnitude. It is because phasegrams can underline the subtlest differences
between the temperatures in a defect and non-effected area. Low frequency Fourier images
reveal better results. In fact, the interpretation of Fourier images is done qualitatively. The
Fourier transform is applied to a whole image sequence (N images in a sequence) except the
Image No.1. if T(i, j, k)is the temporal evolution in the pixel [i, j], where k = 2 + N, the images

of phase and Magnitude are produced according to

Magnitude = /[Re(T)]? + [Im(T)]%; (3.18)

Re(T)] .
m(m)l’

Phase = ArcTan [ (3.19)

where Re(T) and Im(T) represent the real and imaginary part of the Fourier transform applied
to the T'(i, j, k) function.

Below are the Fourier transform images for the honeycomb cell filled with water (50%) in an

inclined panel.

- s

(a) (b) (c)

Figure 3.10: “Standard” Fourier transform image processing in ThermoFit™ Pro of hidden water in

an inclined honeycomb panel reference sample (0.5 mm fiberglass skin, 20 x20x 23 mm cell,

50kW/m? heating flux, 0.5s heating stage, 20s total time: (a) raw image (c) Fourier phase image
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3.7.3 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a linear transformation method rooted in statistical
techniques. It serves as a powerful tool for data analysis and pattern recognition, frequently
applied in signal and image processing for tasks such as data compression, dimensionality
reduction, and decorrelation. In fact, in this research, the PCA is used as a tool for image

enhancement and analysis.

In the context of this research, PCA is an image processing technique in ThermoFit which
converts image sequences into the corresponding sequence known as Principal components
(PC). The PC reveals important statistical relationships between images in the analysed
sequence. It does not require any preliminary knowledge. Typically, the visibility of related
physics can apply to any image sequence. The visibility of defects (and other image features)
is enhanced in the first 3-5 images of the PC. In the ThermoFit, PC can be determined by
Correlation, Covariance or square sums. Below are the PCA images for the honeycomb cell

filled with water (50%) in an inclined panel

(@) (b)

Figure 3.11: PCA image processing with sigma normalization and correlation option (a) raw

image (b) image number 3 (c) image number 6

3.7.4 Correlation

This is an image processing algorithm which intends to correct pixel values by a sample shape.
It also allows to calculate the correlation coefficient between temporal evolutions in a chosen
reference point and other pixels. There are a few correlation modes during a cooling process
such as reference point, average, model front, model rear and self-correlation. The reference
point is applied in the models of this work. Below are the correlation images for the honeycomb
cell filled with water (50%) in an inclined panel and uniform heating.
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(a) (b)

Fig. 3.12: Correlation image processing with reference point correlation mode (a) raw image

(b) image number 3

3.7.5 Thermographic signhal reconstruction (TSR)

Generally, TSR analyses the time-dependent temperature changes (or thermal evolution) of
each pixel in a thermographic image sequence. It fits a low-order polynomial function to the
logarithmic time evolution of each pixel. This polynomial function is then transformed back to
the linear domain, resulting in a reconstructed temperature-time curve that is less noisy than
the original raw signal. The reconstructed data has now a higher signal-to-noise ratio, making
it more suitable for signal analysis. TSR effectively reduces temporal noise, leading to clearer
and more interpretable thermographic images which can reveal water ingress in the
honeycomb cells. The clear (noise free) thermograms with the help of Signal -to-Noise ratio,
the level of water in the cells can easily be determined.

It is a special data processing (algorithm) technique either installed in the equipment or within
the data processing software such as ThermoFit Pro. Its main objective is to enhance
thermographic images and improve the SNR. Basically, the TSR consists of the fitting of the
experimental log-log plot thermograms by the following logarithmic polynomial

log1o(AT) = ag + a; logyo(t) + az[logio(t)]* + .. ay[log; (O] (3.20)

AT is the temperature increase as a function as a function of time t (thermograms) for each

pixel (i,j).

It also consists of the computation of the first and second logarithmic derivatives of the

thermograms, which provide better SNR and sharpness than the raw thermographic images.
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() (b)
Figure 3.13: TSR image processing (a) raw image (b)

3.8 Introducing Noise into Image Processing (ThermoFit Pro)

Numerical modelling is an ideal (theoretical) approach with almost perfect data input for the
desired ideal output. However, in the experimental work, the data output is affected by several
factors, such as noise from the camera and the sample’s manufacturing quality, such as
surface roughness. In this section, both additive and multiplicative noises are applied to the
models using image processing algorithms to improve visibility and the SNR. The outputs from

these models are validated experimentally using an active pulse thermography.

(d) (e) (f)

Figure 3.14: Image (with noise) processing (a) raw image (b) fitting algorithm (c) Fourier (phase) (d)

Fourier (magnitude) (e) PCA with sigma normalization and correlation option (f) Self correlation
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3.8.1 Signal-to-Noise Ratio Analysis

The SNR analysis was conducted on the scenarios of 50% water in an inclined panel, 50%
water in a vertical plate and 100% water in a horizontal panel and the results are presented in
Table 3.2. All three models are induced with noise (3% of additive noise and 1%-5% of
multiplicative noise). It is shown that under similar parameters, the principal component
analysis algorithm has a high SNR value in the first and second scenarios. In contrast, in the
third scenario, the Fourier Phase (2 harmonic) shows a high SNR value. It shows that there is
no one best image processing algorithm across the board. The preferred algorithm depends
on the size of the selected areas for defected and non-defected areas on the images in the
ThermoFit. Generally, the SNR values presented below are high, it is because the skin of the
model is very thin (0.0005 m), and water has a very high heat capacity compared to other
materials of the panel, which leads to being sensed very well. It was also noticed from the
histograms in the ThermoFit that the defected and non-defected areas were well separated,

which indicates that the SNR values are high.

Table 3.2 Results of several SNR image processing algorithms

Scenario Algorithm Option SNR
Fitting 11.6
Fourier Amplitude(2 Harmonic) 21.7

Amplitude(3 Harmonic) 18.4

50% water in an inclined panel

i ) i Phase (2 Harmonic) 41.4
with uniform heating

Phase (3 Harmonic) 42.9

PCA( 2" component) 52.2

Self-correlation 15.3

Fitting 39.06

Fourier Amplitude(2 Harmonic) 34.3

50% water in a vertical panel

with uniform heating Amplitude(3 Harmonic) 35.4

Phase (2 Harmonic) 42
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Phase (3 Harmonic) 19.3
PCA( 2" component) 55.6
correlation 51.7
Fitting 27.9
Fourier Amplitude(2 Harmonic) 9.3
50% water in a vertical panel Phase (2 Harmonic) 120.3
with non-uniform heating
PCA( 3 component) 52.2
correlation 13.3
Fitting 28.5
Fourier Amplitude(2 Harmonic) 19.03
Amplitude(3 Harmonic) 18.6
Amplitude(4 Harmonic) 13.9
100% water in a horizontal panel Phase (2 Harmonic) 45.6
Phase (3 Harmonic) 35.5
Phase (4 Harmonic) 42.3
PCA ( 2" component) 16.6
Self-correlation 29.6

3.9

Initially, the evolution of excess temperature in water-filled cells was analysed. This evolution
is influenced by the panel orientation (scenario), water content, and the surface to which the
heat flux (W/m?) is applied. When water is in contact with the skin, the area over the defect
(water cell) displays relatively low temperatures compared to cells with an air gap. This is
because air significantly hinders heat flux propagation, while water, with its high heat capacity,

resists rapid heating. A cell filled with 100% water (with water in contact on both surfaces)

Modelling Results and Discussion
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generates higher maximum AT_m signals and shorter observation times (t_m). A similar
pattern is observed in the vertical panel scenario, where both surfaces are in contact with
water, albeit with less mass than cells containing 100% water. Previous research indicated
that observation time decreases with lower water content, and the presence of air gaps
between water and skin renders both C_m and t_m values highly dependent on water content.
When water is in direct contact with the skin, temperature signals show minimal dependence

on the thickness of the water layer (Ibarra-Castanedo et al., 2012).

Figure 3.14 illustrates the AT and C over time for all scenarios, while Figures 3.15 (a) and (b)
present 3D temperature distributions on the sample surface for selected scenarios (vertical
and inclined panels). It is important to note that due to the specific test parameters, both the
differential temperature signals and contrasts are negative, indicating that the temperature
over water-filled cells is lower than that in defect-free areas; the minus sign is therefore

omitted.
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The modeling results presented above are considered "ideal" due to the precisely defined
input parameters. They show that water-filled cells remain cooler than those without water.
Typically, the differential temperature signals, AT_m, reach their maximum values at specific
times, t_m. These AT_m values occur earlier than the C_m values, and both are higher in cells
with greater water content. Notably, in all scenarios, if the inspection occurs on the surface
where water is in direct contact with the skin, the AT signals appear and peak more quickly.
The vertical panel reflects a similar observation time of 5.1 seconds, as expected. However,
when the inspection is conducted on a surface where an air gap separates the water from the
skin, the AT signals appear later and are of lower magnitude. Overall, it seems that the
presence of water in the cells could be detected through air gaps, but the thicker the air gap,

the greater its thermal resistance, resulting in a weaker temperature signal on the surface.

Table 3.3 presents the modelling results for all critical parameters related to water ingress
detection in honeycomb panels subjected to flash heating (0.1 seconds). When examining
data from the front surface, the cell filled with 100% water exhibits the highest temperature
differential signal (-30.3°C) and thermal contrast (-88%). This scenario also has the shortest
observation time of 1.2 seconds, making it the most favourable for detection. In contrast, the
lowest temperature signal (-30°C) and contrast (-14%) occur on the surface of the horizontal
panel with 50% water due to the presence of an air gap.

Regarding the temporal behaviour of thermal contrast, the inclined and vertical panels with
50% water show shorter observation times (5.1 and 5.5 seconds) compared to the 100% water
scenario (9.3 seconds). When water is in direct contact with the skin, it is generally observed
that thermal contrasts can reach as high as 1 (or 100%) at brief observation times.
Consequently, cells with water can be detected earlier than those with air gaps. This significant
contrast is attributed to the high heat capacity of water, which allows water-filled areas to retain
thermal energy (and temperature) for extended periods, even after being heated for a shorter

duration
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Table 3.3. Optimum water detection parameters (fibreglass honeycomb panel, modelling results,
t, = 0.1s, Q=50 kW-m-?)

Scenario AT, °C t,.(AT ), s Cn tn(C), s

Cell filled with water (100%) in horizontal

30.3* 1.2 0.88 9.3
panel
Cell filled with water (50%) in horizontal
= 27.0 135 0.14 20
© panel
(o))
T
2 Cell filled with water (50 %) in vertical
— 30.0 1.4 0.82 5.1
) panel
<
IS
o> Cell filled with water (50 %) in inclined
L 30.1 1.8 0.83 55
5 panel
g
o Cell filled with water (50 %) in inclined
IS
= I -unif heating.
= panel under non-uniform heating 28.1 15 0.86 58
c
o
L
Cell filled with water (50%) in horizontal
panel. 2.9 20 1 1.3
=
=~
(%]
=
=
3]
£ 30.0 14 0.82 5.1
S Cell filled with water (50 %) in vertical ' ’ ' ’
o
£ panel
R
% Cell filled with water (50 %) in inclined
2
o panel. 2.8 20 1.0 1.3
IS
]
Q
Q
8
a Cell filled with water (50 %) in inclined
E _ . .
3 panel under non-uniform heating. 14 20 10 14

* The minus sign of AT and C is omitted.
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3.10 Surface Heat Transfer (Convection and Radiation) to be Replaced with
Convective Heat Transfer only

This section provides clarity on a scientific phenomenon that in thermal NDT if temperatures
are close to the ambient, the non-linear radiation heat exchange can be neglected. It is
achieved by performing a modelling analysis using a ThermoCalc-3D radiation program
(software) to obtain surface temperature when Convective heat exchange is applied and when
Adaptive heating is applied on the front surface and Rear surface (Figure 3.18). This
phenomenon demonstrates the impact of environmental conditions in detecting water ingress
in the honeycomb panel. In this analysis, the convection heat transfer is assumed to be under

natural conditions, such as when the experimental work is done in a controlled lab
environment.

The convective heat transfer coefficient (h) or the heat exchange coefficient (a) is critical when
analysing the heat transfer rate between the model's surface and the environment. It varies

based on flow velocity, surface roughness, and temperature difference.

L
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Figure 3.18: Convective heat exchange set up in the ThermoCalc-3D_Radiation
software
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Figure 3.19: 3D Model (scheme) in ThermoCalc-3D_Radiation software

The results are presented in Figures 3.20 and 3.21.
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It can be observed that the results for convective and adaptive heat exchange are identical,
which proves that in thermal NDT, if temperatures are close to the ambient, the non-linear

radiation heat exchange can be neglected.
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3.10.2 Heat Exchange Ecoefficiency

The general heat exchange coefficient (a) between the model's surface and the environment
depends on both time and temperature (eqn. 3.11) and is derived from the combination of

convective and radiative heat exchange coefficients (egn. 3.12):
ageneral:f (Time and Temp) (3.21)

Ageneral = Xconv T Xrad (3.22)

In an environment where natural convection occurs, the convection heat exchange coefficient
(a) is approximately 10. In case of unnatural conditions, the exchange coefficient ranges
between 50 and 100 W/m?-°C. For an adiabatic model, there will be no change if the following

condition is satisfied:
Bi=%<01 (3.23)

3.11 ThermoCalc- 3D Normalisation

This section focuses on a new scientific procedure for the 3D normalisation of experimental
data, specifically image sequences. It is worthwhile to note that 3D normalisation is supposed
to consider lateral diffusion of heat in surface clutters, such as spots, and areas of uneven
heating, because the pairs of images taken at the same times of heat conduction are to be
normalised. While common normalisation involves division of images taken at different times
by the image taken at one time moment. The latter is the focus of this section, which employs
ThermoDouble software in conjunction with both the experimental image sequence and the
mask image calculated sequence to obtain a normalised sequence. By utilising this approach,
we aim to improve the analysis of 3D images, ensuring that regions of interest are effectively
isolated and artefacts are minimised, leading to more precise interpretations of the

experimental results.
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Calculate using Mask option

Two sequences

(to be normalized)

Figure 3.22. A mask imaging in ThermoCalc for 3D normalization

In this study, the sequence of experimental images captured at 3 seconds using a halogen
light source at 16 Hz, consisting of 500 images, was chosen for the normalization process.

The image corresponding to the end of the heating cycle was selected for this analysis,

Water
detected

(a) (b)
Figure 3.23: Mask images (a) image #7 (b) image #48 (end of heating)

specifically identified as image #48. However, this image faintly reveals water in the sample.
Therefore, image #7 (figure 3.22) was selected as a mask image.

A new sequence was created, including the following images: #7(mask image), #48 (3s), #98
(6s), #144 (9s), #192 (12s), #240 (15s), #288 (18s), #336 (21s), #384 (24s), #432 (27s), and
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#480 (30s). These images are uniformly spaced, with intervals of 48 frames, corresponding to

3 seconds each.

From this newly created sequence, images #7 and #48 were selected as the masks for
normalization in ThermoCalc-3D, as they represent the data point at 3 seconds. A new
scenario for ThermoCalc-3D utilizing these mask images were developed. The intention was
to make a meaningful comparison between the mask image with no detected water (#7) and

with detected water (#48) which the end of heating.

For successful normalization, it is essential that the dimensions of the mask image align
closely with the numerical mesh used in ThermoCalc-3D. In this case, the mask image has
dimensions of 382 x 287 pixels, while the numerical mesh comprises 381 x 286 spatial steps.
The sample size utilised for the experiment measures 200 x 150 mm, ensuring compatibility

between the mask and the numerical mesh for effective normalisation.

Figure 3.23 is the ThermoDouble window, which shows that all other files are located in the

same folder, and the sequences are divided.
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Figure 3.24: (a) ThermoDouble window (b) normalized image

Figures 3.24 and 3.25 present the 3D normalisation results when using image #7 as a mask

and when using image #48 as a mask.
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Figure 3.25: A mask image #7 calculation in ThermoCalc for 3D normalization
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Figure 3.26: A mask image #48 calculation in ThermoCalc for 3D

The following observations emanated from the above results

a) Indeed, normalization enhances water ingress detection (reference to figure 3.24
results from a mask image #7)

b) In Figure 3.24, perfect results are obtained from 9s to 27s heating period

c) Figure 3.25 (mask image #48) presents bad results because this mask image (end of
heating) reveals water present in cells. It can be seen from the calculated images
(figure 3.25)
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3.12 Accuracy and Possible Errors

Accurately modelling water ingress in honeycomb panels ensures the structural integrity and
longevity of composite materials used in various applications, including aerospace.
Honeycomb panels are designed for lightweight strength and durability but are inherently
vulnerable to moisture infiltration, which can lead to significant damage over time. By
effectively simulating water ingress, engineers can predict how moisture affects the
mechanical properties of the panels, identify potential failure points, and develop more
effective mitigation strategies. This helps maintain performance standards and reduces the

risk of catastrophic failures that could arise from undetected moisture damage.

Furthermore, precise modelling of water ingress is essential for compliance with industry
standards and regulations. As manufacturers strive to create safer and more reliable products,
understanding the moisture dynamics within honeycomb structures becomes increasingly
important. Advanced modelling techniques, such as finite element analysis and computational
fluid dynamics, allow for a detailed investigation of moisture pathways and accumulation
patterns within the panels. This knowledge not only aids in designing better materials but also
enhances maintenance strategies, ensuring that honeycomb panels can withstand harsh
environmental conditions without compromising safety or performance. Overall, accurately
modelling water ingress plays a vital role in advancing material science and engineering

practices.

This section identifies factors influencing accuracy and potential errors in modelling.

3.12.1 Model Assumptions
3.12.1.1 Simplified Geometry

Simplifying the geometry of a honeycomb structure when modelling water ingress can lead to
significant inaccuracies in predictions of moisture behaviour and its subsequent effects on
material integrity. Honeycomb panels possess intricate internal features that influence how
water penetrates and distributes within the material; oversimplifying these geometries may
overlook critical pathways for moisture ingress or misrepresent the flow dynamics. Such
reductions can result in underestimating potential damage, leading to unforeseen failures or
compromised structural performance in real-world applications. Ultimately, while simplified
models may facilitate quicker computations and analyses, they can misguide design decisions
and maintenance protocols, potentially compromising safety and reliability in critical

applications.
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3.12.1.2 Material Homogeneity

Considering the heterogeneity of materials in honeycomb structures is vital when modelling
water ingress, as these panels often exhibit variable properties due to differences in material
composition, cell geometry, and manufacturing processes. Assuming uniform properties can
lead to significant inaccuracies in predictions of moisture behaviour, as it overlooks how
localised variations can affect permeability and moisture retention. This can result in
misestimations of the rate and extent of water infiltration, ultimately compromising the
structural integrity and performance of the panel. Such oversights can lead to premature failure
or degradation, posing serious safety risks and increasing maintenance costs. By
acknowledging the heterogeneous nature of materials, engineers can create more accurate
models that better reflect real-world conditions, enabling more effective design and

preventative measures against moisture-related issues.
3.12.2 Input Parameters
3.12.2.1 Water Content

Accurate characterisation of water content is essential when modelling water ingress in
honeycomb structures, as it directly influences the material’s mechanical properties and
overall performance. Variability in water distribution within the panel can significantly impact
model outcomes; uneven moisture accumulation can lead to localised weakening, increased
risk of delamination, and unexpected failure modes. If models fail to capture this variability,
they may produce misleading predictions regarding the panel's structural integrity, potentially
resulting in insufficiently informed design choices and maintenance strategies. Consequently,
understanding and quantifying water content and its distribution is critical for developing
reliable predictive models, ensuring that the structural performance of honeycomb panels is

maintained even in challenging environmental conditions.
3.12.2.2 Boundary Conditions

Boundary conditions are critical parameters that define how a model interacts with its
environment, significantly influencing the accuracy of simulations related to water ingress in
honeycomb structures. These conditions determine factors such as moisture entry rates,
environmental pressures, and temperature gradients, which can drastically affect how water
permeates through the material. Common boundary condition assumptions, such as treating
the surface as perfectly impermeable or assuming uniform moisture exposure, can lead to
inaccuracies by failing to account for real-world complexities like varying environmental

conditions or localized protective coatings. Such oversights may result in an inaccurate
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depiction of moisture dynamics, potentially leading to flawed predictions about the material’s
durability and performance. Ultimately, precise definition and realistic representation of
boundary conditions are essential for developing reliable models that reflect actual operational

environments, ensuring the safety and longevity of honeycomb structures.
3.12.3 Thermal Properties
3.12.3.1 Heat Transfer Coefficients

The variability of convective and radiative heat transfer coefficients plays a crucial role in
accurately modelling water ingress in honeycomb structures, as these coefficients directly
influence temperature gradients and moisture transport mechanisms. In real-world
applications, factors such as airflow patterns, surface roughness, and surrounding
environmental conditions can cause significant fluctuations in these coefficients, leading to
variations in heat transfer rates. If thermal models rely on fixed or averaged values for these
coefficients, they may fail to capture the dynamic interactions between heat and moisture,
resulting in inaccurate predictions of moisture behaviour and potential structural impacts. Such
inaccuracies can compromise the effectiveness of design and maintenance strategies, as they
may underestimate the risks of thermal-induced moisture ingress or overestimate the
material's resilience under fluctuating conditions. Consequently, incorporating realistic
variations in convective and radiative heat transfer coefficients is essential for developing
robust thermal models that reflect the complexities of real-life environments and enhance the

reliability of honeycomb structures.
3.12.3.2 Heat Capacity of Water

Water's heat capacity, which measures the heat required to change its temperature, is a critical
factor in modelling water ingress in honeycomb structures, as it directly influences how
moisture interacts with the surrounding material. Accurate estimation of heat capacity is
essential for predicting thermal behaviour, particularly during exposure to varying
temperatures, as it affects the rate of heat transfer and the subsequent evaporation or
condensation of moisture within the structure. Errors in estimating water's heat capacity can
lead to significant discrepancies in thermal models, resulting in flawed predictions of moisture
dynamics and potentially underestimating the thermal stresses that may cause material
degradation. Such inaccuracies can compromise the integrity of the honeycomb panels,
leading to unexpected failures and increased maintenance costs. Therefore, precise
characterization of water's heat capacity is vital for developing reliable models that ensure the

structural performance and longevity of honeycomb materials in real-world conditions.
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3.12.4 Air gap effects

Air gaps play a significant role in enhancing the thermal resistance of honeycomb structures,
as they provide an insulating effect that reduces heat transfer between layers. These gaps
can influence moisture dynamics by affecting how heat is distributed across the material,
thereby impacting evaporation and condensation processes. Neglecting the effects of air gaps
in thermal modelling can lead to substantial inaccuracies, as it may result in an overestimation
of heat transfer rates and an underestimation of moisture retention within the structure. This
oversight can misguide engineers in their assessments of thermal performance and moisture
ingress risks, potentially leading to premature material failure or inadequate design responses
to environmental conditions. Therefore, accurately accounting for air gaps is essential for
developing reliable models that reflect the true thermal behaviour of honeycomb panels and

ensure their durability in challenging environments.
3.12.6 Comparison with experimental data

Validating models against experimental results is essential when modelling water ingress in
honeycomb structures, as it ensures that theoretical predictions accurately reflect real-world
behaviour. This validation process helps identify discrepancies between model outputs and
actual performance, allowing engineers to refine their simulations and improve their predictive
capabilities. Without this crucial step, models may produce misleading results that overlook
critical factors influencing moisture dynamics, leading to design flaws and safety concerns.
Furthermore, experimental validation fosters confidence in the modelling approach, facilitating
better decision-making in material selection and maintenance strategies. Ultimately, this
iterative process of model validation enhances the reliability and effectiveness of simulations,
ensuring that honeycomb structures can withstand environmental challenges while

maintaining their structural integrity.

3.13 Conclusions

Detecting water in honeycomb sandwich airframes is a crucial inspection task in the aviation
industry. 3D modelling appears to be the most effective method for obtaining quantitative data
on water presence in honeycomb cells. This study quantitatively compares key parameters
such as signal-to-noise ratio, differential temperature signals, contrasts, and their observation
times across various test scenarios (horizontal, inclined, and vertical panels), as indicated in

Table 2. The findings from the numerical modelling suggest the following:
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Panel orientation does not significantly impact the SNR values observed during
modelling; in other words, the visibility of water trapped in the honeycomb cells is
largely unaffected by panel orientation.

No single post-processing algorithm yields optimal inspection results across all model
scenarios.

The results align with previous studies, confirming that the most effective detection

occurs when water or ice is in contact with the skin surface.
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CHAPTER 4:
EXPERIMENTAL WORK

4.1 Introduction

This chapter details the experimental protocol (Pulse Phase Thermography) used to validate
the predicted results from the mathematical model (ThermoCalc-3D) presented in Chapter 3.
It starts by introducing the two experimental techniques used in this work. The chapter
describes the materials used for the specimens, the procedure or experimental protocol used
in characterising the water ingress induced in the honeycomb panel (specimen), and the
image processing techniques. It also presents experimental results, mainly focusing on the
visual thermographic images (thermograms) and the raw data regarding delta temperatures,
thermal contrast, signal-to-noise ratio, and the optimum observation times for both AT and C,.
Different heating techniques (flash, halogen lamps, and hot air) were used during experiments,
and the results of various parameters were analysed. In addition, it presents the phenomenon
of water quantity determination in terms of parameter correlation. The quantitative results are

compared based on the techniques mentioned above.
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4.2 Experimental Protocol

4.2.1 Description of sample material

The sample materials in this work were the Nomex honeycomb core with fibreglass skin. The
fibreglass skin was made from the fibreglass (FG) plies (sheets) with a stacking sequence of 0°
/90°. Table 4.1 lists typical features of the materials. Three sets of seventy cells were filled with
water at 100%, 50%, and 25%

Table 4.1 Description of the specimens

Material Skin Type of the Number of Area of cell Total covered At adepth
thickness defect specimens (m?) area (m?) from top
(mm) surface
(mm)

Fibreglass  with

Nomex
127 cells

0.5 filled with 2 1.6x10°% 4.32x10° 5

25% water

honeycomb core
(4x4 mm cell (6
mm deep) size)

composite

Fibreglass with

Nomex
127 cells

0.5 filled with 2 1.6x10° 4.32x10° 3
50% water

honeycomb core
(4x4 mm cell (6
mm deep) size)

composite

Fibreglass with

Nomex 127 cells
honeycomb core filled with
0.5 2 1.6x10°% 4.32x10* 0.5
(4x4 mm cell (6 100%
mm deep) size) water
composite
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4.2.2 Selection of a heating mechanism

Three different heating modes were applied to sample material. 1) a flash lamp producing a
1.5 kJ square pulse for a duration of 5 ms, 2) one (0.5 kW) halogen lamp, and 3) a 3-kW hot
air blower for a duration of 10 s.

The first experimental session was performed to evaluate a suitable heating mode. Based on
the data indicated in Table 4.2, it was observed that the Halogen lamp revealed higher signal—
to-noise ratio (SNR) of 39.56 and delta temperature signal (-4.38°C). The thermal contrast is
relatively lower (69%) compared to Flash and hot airgun heating. It is for this reason that the

halogen lamp was a preferred heating technique.

Table 4.2. Optimum water detection parameters (heating techniques).

Heating technique/Test scenario  Signal-to-Noise Ratio (SNR) AT, (°C) Cn

Halogen lamp heating 39.56 -4.38 -0.69
Flash lamp heating 21.71 -1.34 -0.81
Hot air heating 22.49 -1.26 -0.87

4.2.3 Experimental protocol (AIRT)

Three sets of seventy (70) cells in a 100x200 mm specimen were filled with water according
to the indicated scenarios (100%, 50%, and 25%). Twenty specimen cells were opened and
filled with 50% and 25% water to analyse the effect of capillary forces on the internal surfaces
of the cells subjected to rotation. Most experiments were conducted by using the halogen
lamps for thermally stimulating the specimens (Figure 4.1b). As in Table 4.2, the hot air gun
and the flash lamp provided weaker temperature signals, especially for cells with low water

content (25%) under non-uniform heating.

The shiny glass fibre skin has a low emissivity of about 0.6, being slightly transparent toward
both IR radiation and visible light. A self-adhesive PVC film was applied to experimental
samples to enhance material emissivity. The stimulation was fulfilled using a single halogen
lamp, 1 kW, and the heating duration was 2, 3 and 5 seconds in all scenarios. The results
presented in the work are those of the 5s heating period. The thermal response was collected
by an Optris Pl 450i IR Camera (image format 382 x 288, temperature resolution 40 mK,
spectral range 7.5-13 pym). A series of 1000 digitised images with 382 x 288 pixels with 12-bit
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resolution collected by the camera with a sampling rate of 1 Hz were processed using the
ThermoFit Pro software from TPU.

4231 Experimental protocol for horizontally oriented structure.

The schematic diagram and the actual experimental set-up for the horizontal structure are
shown in the Figures. 4.1 and 4.2, the specimen was covered with black adhesive tape to
minimize reflection and increase emissivity. The correct water volume using a syringe (25%,
50%, and 100%) was injected in cells through the rear surface of the specimen. The adhesive

tape was used to protect water from exiting cells during orientation.

Control
box i L >
Laptop with
............................. _» therma|
Halogen lamp software

(1 kW)

N

Water in
2506w S0%w honeycomb
cells

Figure 4.1: Schematic diagram of the experimental set up for the infrared thermography testing

Specimen

Heat

source

I IR camera
\

Water bubbles (@) (b)

Figure 4.2: Honeycomb cells (a) and experimental setup (b)

After a comparison in terms of Signal-to-Noise ratio (SNR) between different heating
techniques (source), i.e. 300 kW halogen lamps, hot air gun (300W-50Hz-220V), and flash
lamp (1.4 kJ), the halogen lamp heating revealed relatively high SNR under similar
experimental conditions. So, the experiments were carried out using the halogen lamps.
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The heating took place on both surfaces. The top surface heating was used to investigate the
influence of air gaps (25% and 50%) in the detectability of water in cells. The SNR, the
differential temperature signals on the surface (AT), the surface temperature contrast ((C,,),
and observation time (t. and t,;) were used to differentiate between cells filled with water at
different levels.

The data were obtained as image sequences recorded using thermal lab software. Each pixel

is representing the phase at fixed frequency. In this case, 1Hz sampling rate frequency and
16Hz fixed phase frequency was used.
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Figure 4.3: Temperature evolutions on front of cells filled with water at 25 %(D1), 50% (D2) and 100%
(D3) in a 8 mm thick honeycomb structure: (a) front surface temperature versus time; (b) differential

temperature signals versus time; (c) running contrast versus time

The results of the image sequence of the horizontally oriented structure are presented by
images in Figure 4.4. The sequence had a total number of 500 images. In this case, images
185 and 224 were selected for analysis because they produce maximum and minimum
parameters (AT, Cm, tat, tcm, SNR). It can be observed that based on the heating power, the

temperature at the end of heating in a non-defect area (224,185 — a spot between D2 and D3)
is 8.7°C
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4.3 Image Processing Protocol

The image sequence was recorded using an Optris pi 450i IR Camera (image format 382 x
288, temperature resolution 40 mK, spectral range 7.5 — 13 um, frame rate 80Hz). The
ThermoFit Pro software from TPU was used to process them.

At first, the image sequence is converted from the “FS” file to disc image format which can be
used to create a scenario in the ThermoFit software. Normally, the first image of the scenario
is assumed to be that of ambient temperature and therefore, the background option on the
preview window is used to subtract the first image from the sequence to deal with excess
temperatures only. The sequence with a specified mask is spatial filtered before appropriate
processing algorithms are selected.

The differential temperature signals (AT,,) and running temperature contrast ( C,,, ) can directly

be determined on the preview window.
4.3.1 Signal-to-noise ratio (SNR)

SNR is a measure that compares the level of the desired signal to the level of background
noise. In this analysis, the signal is typically the response of heat flow in a sample specimen,
while noise refers to random fluctuations or errors in the measurement. In this analysis, high
SNR indicates that the signal is much stronger than the noise, suggesting high-quality data
with clear thermal events or transitions. Meanwhile, low SNR indicates that the noise level is
comparable to or exceeds the signal level, which indicates poor detection and visibility of water
in the cells. ThermoFit has built-in tools for SNR evaluation as indicated in Figure 4.5. As
indicated in previous research by Vavilov et al. (2020), an SNR greater than 10 is good quality

data suitable for analyses of subsurface defects.
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Figure 4.5. SNR of samples with water in cells at 25%, 50%, and 100%

In addition to section 4.6.5, image #74 from the horizontal samples specimen was selected for
processing, and the SNR of different algorithms were compared. It demonstrates the
effectiveness of different types of image-processing algorithms. The algorithm with relatively
high SNR was preferred. In this case, the Fourier phase (4™ harmonic) produces higher SNR
across all cells (25%,50% and 100%). The same procedure was done for the rest of the

images.
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D1 Source SNR=9.8 (No. 74, i.e. 4.6 s)

Chosen defect and non-defect areas are shown

D1 Fourier Phase SNR=13.0 (No.4)

D1 PCA (1) SNR=9.7

Correlogram SNR=24.19

Figure 4.6. Processed images for horizontal

Image

SNR

D1

D2

D3

Source

9.8 (No. 74,0r 4.6 s)

10.1 (no. 79, 0or 4.9 s)

10.4 (no. 84, or 5.3 s)

Fourier phase

69.9 (4" harmonic)

88.1 (4™ harmonic)

77.1 (4™ harmonic)

PCA

9.7 (15t component)

9.2 (1%t component)

9.7 (15t component)

Correlogram

24.9

16.2

18.7

4.4

Similarly, the same specimen was set in inclined positions (30°,45°,and 60°). To avoid non-

Experimental Protocol for an Inclined Specimen

uniform heating, the heating source was set perpendicular to the test sample. This section

forms a key part of the objectives of this work, which is to investigate the effect of the panel’s

inclination to the detectability and visibility of water ingress in honeycomb cells.

Practically, the fuselage has honeycomb panels at different orientations and cells partially

filled with entrapped water dictate the position of water in them. Therefore, detecting ingress

in a full spectrum of the fuselage plate orientations is necessary.
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The specimen is set as indicated in Figure 4.6, and a similar data acquisition technique and
procedure, as indicated in section 4.6.3, was used.

441 The sample specimen positioned at 30 degrees inclination.

In this scenario, the same sample was rotated and set at 30° inclination, and parameters like
those for the horizontal (180°) sample were recorded and analysed. Like a horizontal position,
the presence of an air gap provides heat resistance through cells. It can be observed that
based on the heating power, the temperature at the end of heating in a non-defect area
(224,185 — a spot between D2 and D3) is 10.0°C.

The absorbed power at this position is about 3 times less than in the horizontal position
(compare excess temperatures at the end of heating) and the processed images are
presented in figures 4.8
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Line Image Number: N=87, Ampl=2.94 Save As Text
Signalto-Noise Ratio; Amax=8.30, N=118: Amin=0412. N=3 Copy Graphics
SNR for D3. Note that there is no maximum to compare to the horizontal position

Figure 4.7. SNR for the 30-degree inclined sample

Image SNR
D1 D2 D3

Source 5.0 (No. 118, last in | 6.5 (no. 117, or 29.3 | 8.3 (No. 118, last in
the reduced | s) the reduced
sequence, i.e. 29.5 sequence, or 29.5 s)
s)

Fourier phase 9.0 (3™ harmonic) 13.3 (3 harmonic) | 48.5 (3" harmonic)

PCA 4.5 (1% component) | 5.2 (1% component) | 5.9 (1% component)

Correlogram 4.8 5.6 6.3
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* Note that if a sample is under 30° the water in D1 and D2 changed configuration to compare
to the horizontal position. Therefore, the defect areas D1 and D2 are not uniform in this case,
which contributes to the changed SNR.

From the data above, the Fourier phase algorithm provides a better SNR of 48.5 (3rd
harmonic) for cells D3(filled with 100% water). Also, it can be observed that the SNR is water
content (m) dependent because 25% water has a lower SNR than 100% water-filled cells. It
indicates that cells with 100% water content (contact with skin) can easily be visualised as
opposed to those with air gaps. The sample of the processed images is presented in Figure
4.8

D2

ND

D1: Source SNR=5.0 (No. 118, or 29.5 s) D1: Fourier Phase SNR=9.0 (3rd)
Chosen defect and non-defect areas are shown

D1: PCA (1st) SNR=4.5 D1: Correlogram SNR=4.8

Figure 4.8: results of image processing (30°)

4.4.2 Sample specimen positioned at 60 degrees inclination.

It can be observed that based on the heating power, the temperature at the end of heating in
a non-defect area (224,185 — a spot between D2 and D3) is 9.7°C.
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Figure 4.9. SNR for the 60-degree inclined sample

Image SNR
D1 D2 D3
Source 7.4 (No. 125, last in | 6.5 (no. 125, or 31.3 | 7.4 (No. 125, last in
the reduced | s) the reduced
sequence, or 31.3 s) sequence, or 31.3 s)
Fourier phase 16.8 (5" harmonic) | 21.9 (5" harmonic) | 26.2 (5" harmonic)
PCA 5.5 (1% component) | 5.4 (1% component) | 5.8 (1% component)
Correlogram 5.0 5.0 54

* Note that if a sample is under 60°, the water in D1 and D2 changed configuration compared
to the horizontal position. Therefore, the defect areas D1 and D2 are not uniform in this case,

contributing to a slightly higher end of heating temperature compared to the horizontal sample.

D3: Source SNR=7.4 (No. 125, or 31.3 s) D3: Fourier Phase SNR=26.2 (5th)
Chosen defect and non-defect areas are shown
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D3: PCA (1st) SNR=5.8 D3: Correlogram SNR=5.4

Figure 4.10. Results of image processing

4.4.3 Experimental protocol for the vertical inclination

In a vertical panel, water is in contact with the skin surface on both sides, and heat conduction
only occurs through 25% and 50% of the water in the cells. These cells reveal a similar trend
as that of 100% filled water. In fact, the significant deviation of the surface temperature
variation is due to the presence of air in cases of 25% and 50%. It can be observed that based
on the heating power, the temperature at the end of heating in a non-defect area (224,185 —
a spot between D2 and D3) is 11.0°C.

D2

ND
D3: Source SNR=7.4 (No. 125, or 31.3 s) D3: Fourier Phase SNR=50.3 (5th)

Chosen defects and non-defect areas are

shown

D3: PCA (1st) SNR=5.3 D3: Correlogram SNR=5.0

Figure 4.11 Results of image processing (90°)
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Image SNR
D1 D2 D3
Source 5.2 (No. 125, last in | 6.3 (no. 125, or 31.3 | 7.4 (No. 125, last in
the reduced | s) the reduced
sequence, or 31.3 s) sequence, or 31.3 s)
Fourier phase 17.5 (5" harmonic) | 20.2 (5" harmonic) | 50.3 (5" harmonic)
PCA 4.2 (1 component) | 4.9 (1% component) | 5.3 (1% component)
Correlogram 3.9 4.5 5.0

* Note that if a sample is in a vertical position, the water in D1 and D2 changed configuration
compared to the horizontal position. Therefore, the defect areas D1 and D1 are not uniform in
this case, which contributed to a slightly higher end of heating temperature compared to 30°

and 60° inclined samples.

4.5 Comparison of Results

The comparison between the SNR values for different specimen orientations is presented in
Table 4.3. Generally, the horizontal plate reveals higher SNRs for all applied logarithms, which
translates into better visibility of water-filled cells. On the contrary, the 30° and 60° sample
orientations are characterized by relatively low SNRs, and this could be explained by water
leakage through the adhesive seal tap during rotation. Furthermore, the vertical orientation

shows low SNR values, translating into image quality.

It was also observed that there is no particular algorithm which is the best for all scenarios

when performing image processing.

Table 4.3. Efficiency of experimental data processing

SNR (cells filled with 50% water)

Sample Source Fourier phase PCA Correlogram
orientation
Horizontal 10.1 88.1 9.2 16.2
300 6.5 13.3 5.2 5.6
60° 6.5 21.9 5.4 5.0
Vertical 6.3 20.2 4.9 4.5
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It is observed in Figure 4.10a, b that if a sample is positioned under 60°, the water in the
defects D1 and D2 changed configuration compared to the horizontal position. As indicated
previously, it could be because of leaks through the adhesive seal tap on the surface.
Therefore, the defect areas D1 and D2 are not uniform in this case thus contributing to lower

SNR values, see results presented in sections 4.6.5.1, 4.6.5.2, and 4.6.5.3.

(@) (b)

Figure 4.12: IR thermograms of the sample in different
positions: a) horizontal (180°), b) Inclined at 60°
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Table 4.4 Optimum water detection parameters (Fibreglass honeycomb, experimental results)

Scenario Delta (AT,,)°C Maximum Contrast Maximum
timet,, (AT,,)s €Cn) timet,, (C,,)ms
Cell filled with water (100%) in a
. -6.5 0.72 -0.7 5
Horizontal panel (t;, = 5s)
Cell filled with water (50%) in a Horizontal
-3.96 0.94 -0.59 1.94

o ’%‘ panel 180° (t, = 5s)
% o Cell filled with water (50 %) in a Vertical
== 0 -4.8 0.75 -0.55 2.5
o i panel 90° (t;, = 5s)
Q
8 2 Cell filled with water (50 %) in an inclined
573 -3.71 0.83 -0.58 1.76
n -lc—sl par‘lel 300 (th = 55)
g g Cell filled with water (50 %) in an inclined
T & panel 60° (t, = 5s) 45 0.72 -0.51 3

Cell filled with water (50%) in a Horizontal
S o -4.8 0.81 -0.69 2.75
== panel 180° (t;, = 5s)
5':/‘; Cell filled with water (50 %) in a Vertical
T < -4.8 0.75 -0.55 25
-ES' "é par‘lel 900 (th = 55)
= + Cell filled with water (50 %) in an inclined
S ® . -6.2 0.87 -0.72 1.32
8 c panel 30° (t, = 5s)
o)
7 © Cellfilled with water (50 %) in an inclined

[
§:§ panel 60° (¢, = 5s) -4.8 0.58 -0.67 1.56
o
4.6 Phase Change Evaluation

As indicated previously that when aircraft is under exploitation in high altitude, water ingress
freezes (volumetric expansion) and upon landing, due to temperature difference, frozen water
starts melting at 0°C. This process is critical in the detection of water ingress because water
in a solid phase absorbs more heat energy than in a liquid phase. The delta temperature and
contrast were higher with a shorter observation time(t,). The investigation of this
phenomenon can either be done through passive or active heating. This work presents the

results of both modes of heating.

The experimental procedure started by placing a sample with cells filled with water at 100%,
50% and 25% in a freezer for about 2 days for a complete phase change (liquid to solid). After
that, a sample was placed in a thermographic “black chamber” for passive heating, and the
surface temperature was monitored by an Optris pi 450i IR Camera. Passive heating is a
practical phenomenon when the aircraft has landed after exploitation. In this experiment, the
additional heat from the surroundings, the operators and other heat sources were avoided to

obtain meaningful results.
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The second step was to use active heating with double halogen lamps, 1kW each, producing
a square pulse phase of 1Hz. The sample was heated for about two minutes and 30 minutes
of cooling. It can be observed from Table 4.5 (a) that a cell filled with 100% water has higher
SNR across all processing algorithms for both heating techniques. It means that this cell is
better detected, as shown in Figure 4.12 Similarly, the data in Table 10 (b) show that this cell
(100% water) has the highest AT andC,,.

Table 4.5 (a). Optimum water ingress detection parameters (effect of phase change).

Heating Image Signal-to-Noise Ratio (SNR)
Technique processing
algorithm 25% 50% 100%
Passive Correlation 30.2 37.4 50.2
Derivative 4.8 5.3 5.8
Fourier 27 28.2 75.8
PCA (3 108.8 114.4 143.1
Component)
Active Correlation 1.46 1.74 9.5
Derivative 3.54 5.83 10.9
Fitting 2 3.71 5.9 38.3
Fourier 3.47 5.52 28.9
PCA 3 5.39 7.94 44.82
Component)

Table 4.5 (b). Optimum temperature signals and temperature contrast

(phase change)

AT,°C Com
25% 50% | 100% | 25% | 50% 100%
Active Heating -17.53 | -21.43 | -2652 |-037 |-048 |[-053

Passive Heating -10.14 -10.65 -10.72 | -0.467 | -0.469 -0.473
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Figure 4.13: Phase change with passive heating a) raw image, b) Temperature variation

c) Delta temperature variation d) Contrast

Note: D1 (25%); D2 (50%); D3 (100%); ND (Non-defect area)

4.6.1 Image processing

This section focuses on the Image processing of the image sequence of the samples with
frozen water from passive and active heating. Initially, high-resolution thermal images are
captured using infrared cameras, ensuring consistent environmental conditions to minimize
noise and artifacts. Preprocessing steps such as noise reduction through Gaussian filtering
and calibration for emissivity differences are critical in enhancing the image quality. Image
processing algorithms such as Fourier phase, Principal component analysis (PCA), Time
gram, Tomogram, Correlogram, and Tomography (negative time gram, upper threshold). The
resulting images of these algorithms are compared and analysed.

The analysis of these cells with frozen water focuses on understanding their spatial
distribution, which can inform structural integrity assessments and thermal performance

evaluations. The processed images from the passive heating thermography (30s) of selected
algorithms are presented in Figure 4.13.
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Fourier phase#4

Principal component analysis

(component 2)

Time gram Upper threshold

Tomogram

Correlogram

Figure 4.14: Image processing (passive heating) a) raw image, b) removed background

4.6.2 Active heating

Active heating was applied when the sample was taken from the freezer with a time step of 1
second. The surface temperature evolution was recorded. The original raw image was

processed using similar algorithms as in passive heating. In this section, the raw image was
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processed, and the background was subtracted. The results and image processing
thermograms are presented in Figures 4.13 and 4.14.

s TR T Gd
I inis
30.98 z i
02 Ees
" 7]
23.88 =
JIIAN
16.78 }1 ﬁ‘r_,
Curves
a8 =
258 ~
-4.70 -
2" 86 170 254 338 422 506 590 674 758 B42 926 N
Line Image Number: N=212, Ampl-3 32 SavesTent | [ ]
Tempesstue Evolution, Amax=33 50, N=65; Amine-4 70, N=2 Copy Graphics |
T,°C ”
) s R Giid:
m rNal L T
2.41 0.053 bg ar IR T
g T i = i b e
JI7 o = ||, / munil
-0.001 ' 1§ i 0.035 Ny
: stz P2 —
g 012
241 T} " . T
Curves: J Curves:
-4.82 ] = | |02 =
X
2.2 lf {I S o208 W / =
-9.70 -0.388
2 86 170 254 338 422 506 590 674 758 842 926 N < 44 86 128 170 212 254 296 338 380 422 464 N
Line Image Number: N=214, Ampi=-4 64 SavehsTeat | |[ Image Number: N=129, Ampl=-0.241 Save As Text
Temperature Evolution: Amax=5 30, N=55: Amin=9.70, N=76 E—— Temperature Evolution: Amax=0.158, N=225; Amin=-0.388, N=63 P— CH

(c) (d)
Figure 4.15: Phase change with active heating a) raw image, b) Temperature variation c)

Delta temperature variation d) Contrast

Note: D1 (25%); D2 (50%); D3 (100%); ND (Non-defect area)

46.2.1 Image processing (active heating)

Due to high heating intensity in the active heating, the frozen water in cells melts quicker than
when the passive heating is applied. It can be observed in the processed images below that
with similar algorithms applied, the frozen water in cells is poorly detected and its visibility is
also poor.
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Fourier magnitude#3

. Fourier phase#3

Principal component analysis (1)

Figure 4.16: Image processing with active heating a) raw image, b) removed background and noise

4.7 Water Mass (Content) Determination Technique

This section presents a calibration curve using the experimental data to estimate water content
in the cells of honeycomb structures. The focus is on the depth and not in a lateral direction.
According to Vavilov et al. (2016), the actual estimation of water content in the honeycomb
cell is a challenging task. It requires water to be in contact with skin surface for estimation,
which means if the inspection is from a rear side of a 50% water filled cell, the estimation will
indicate that the cell is fully filled with water, which is not the case. If all cell walls (Nomex
paper) are removed, the area occupied by water increases which has little or no effect to the

temperature contrast and delta temperature.

However, in an aviation industry, the determination of the amount of water ingress in the
fuselage typically involves several estimation methods and procedures. Such methods include
visual Inspection whereby the aviation technicians and inspectors regularly visually inspect
the exterior of the fuselage for signs of water accumulation and its severity. Cells filled with
100% water will have bigger water stains, streaks, or discoloration on the exterior surfaces
opposed to partially water filled cells (25% and 50%). The Drainage and Collection technique
is also used whereby Some aircraft are equipped with drainage systems designed to collect
and expel water that enters the fuselage during flight or while on the ground. Water drained
from various spots (cells) is quantified.
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It has been proven that for cells with 100% water produce similar delta temperature regardless
of the water quantity in x and y directions. The cells with 50% filled with water (z-direction)
produce less delta temperature (AT, ) to that of 100% water. Therefore, it suggests that water
content (mass) has an effect to the delta temperature as well as the contrast (C,,). It was also
found that the cells walls have an insignificant effect in AT,,,. The comparison between delta
temperatures of the cell filled with100% water partitioned by walls, without walls, and the
increased water occupation area is presented in Table 4.6.

Table 4.6 Water mass justification

Scenario AT, (°C) tn(s)

100% water with

-56.17 6
walls
100% water with

-56.2 6
no walls
100% water with
increased water 57.57 6

occupation area

Based on the data provided, this section will only emphasise on the method and procedure of
guantifying water in cells (in z-direction) by introducing an approximate calibration curve of
water mass in percentage vs delta temperature (AT,,) is presented. This curve will be used as
a guideline on how to quantify water if cells are100%, 50%,25% filled with water or in between

depending on the recorded delta temperatures.

Considering the active thermography experimental data presented in table 4.5(b), the critical
relationship between the water content in cells (in percentage of occupancy) and the optimum
temperature signals (AT °c). It can be observed that cells filled with 100% water reveal higher
(-ve) surface temperature signals as opposed to 25% and 50%. The approximate calibration
curve below could be of a great guiding tool for aviation engineers to estimate water content
in honeycomb cells. Please note that the estimation is only in z- direction (depth). In fact, the
water content in terms of mass and volume can be determined once the actual sizes of cells

(depth and width) as well as water properties such as density are known.
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Figure 4.17: Approximate calibration curve

The calibration curve (Figure 4.17) provides essential data for estimating water content,
illustrating the relationship between the intensity of the surface differential signal (AT, °C) and
water content. Among the two heating methods tested (Active and Passive), the active heating
technique shows a peak AT of 27°C, which corresponds to 100% water content, indicating
that the cells are fully saturated with water (water in contact with the skin). At a AT of 20°C,
the water content is approximately 32%, and at 25°C, it reaches around 80%. Water content

can be expressed either by mass or by volume.

In contrast, with passive heating, the calibration curve rises with increasing water content until
the AT reaches 12°C, corresponding to 34% water content. Beyond this point, the curve levels
off, even as water content continues to increase. This could be due to rapid thermal equilibrium

between the panel and its environment.

These results suggest that active heating yields a more dependable calibration curve, while

passive heating is more effective for detecting water ingress.

4.9 Conclusion of the Results Obtained

The aircraft fuselage is primarily made up of honeycomb panels arranged in different
orientations, and a one-sided thermographic inspection is typically performed after the aircraft

lands. Experimental results show that panel orientation does not influence the signal-to-noise
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ratio (SNR) values, indicating that the visibility of water trapped in the honeycomb cells
remains unaffected by panel orientation.

At high altitudes, the low temperatures cause water in the cells to freeze. Upon landing, a
sudden temperature change leads to melting, and during this process, experimental data
indicates that the differential signals and contrast are greater than those observed in cells
containing only water. Additionally, the observation times are shorter for cells with ice
compared to those with liquid water. The significance of image processing in reducing noise

and background irregularities has been highlighted to enhance water ingress detection.

Calibration curves for both active and passive heating suggest that cells with higher water
content produce stronger differential signals in shorter observation times. These curves can

serve as an effective method for estimating water content in the cells.
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CHAPTER 5:
DISCUSSION OF EXPERIMENTAL AND NUMERICAL WORK

5.1 Introduction

In this chapter, the results of the numerical modelling (ThermoCalc-3D), Image processing
(ThermoFit Pro) and the experiments using infrared thermography aimed at characterising
water ingress in the honeycomb panels are discussed. The correlation between the variation
of surface differential temperature signals over time, the running contrast, and their
observation times are comprehensively discussed. The concept of SNR during water ingress
detection and image processing is also discussed. Determining water content in honeycomb
cells is a serious concern to aviation engineers. Therefore, the approximate calibration curve
to estimate water content in cells is presented and discussed. For the numerical model
(presented in Chapter 3), the results were obtained by the ThermoCalc-3D software and the
ThermoDouble software for a 3D normalisation. The results from the experiments and the
adopted protocol are presented and described in Chapter 4; the results (temperature), which
were recorded by the infrared camera, are presented. The focus is on the presence of the
water ingress as observed by the surface differential temperature signals on the specimens,

running contrast, observation times and the SNR.
5.1.1 Numerical work (ThermoCalc 3D)
51.1.1 Presence of water ingress in honeycomb panels

To illustrate the effect of the presence of water in cells of honeycomb panel, the numerical
solutions of the surface differential temperature signals, running contrast, the observation
times, and the signal to noise ratio (SNR) profile on the surface area of the specimen over the
cells filled with water as well as the cells filled with air, were predicted during heating until the
maximum heating period was reached. It was observed that a model with cells full of water

(100%) can easily be detected, as shown in Figure 3.5 in Chapter 3.

5.1.1.2 Differential temperature signals (AT) and the running thermal contrast
(Crun)

The differential temperature signals on the surface of the model with water ingress at various
depths and orientations were plotted in the ThermoCalc-3D software. Similarly, the running
thermal contrast of the model with similar conditions as above were plotted as shown in figure
3.5 (b, c,d,e, and f) in Chapter 3. The difference in variation for differential temperature and
running thermal contrast was observed at various water content in cells (25%, 50% and 100%)

as indicated in the predicted results (sample figure 3.5 in chapter 3). The temperatures have
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shown a very good distinction between water and air-filled cells. The deviation is significant
because of the difference in thermal properties between water and air. The model was
uniformly heated and with no induced noise. However, during image/sequence processing,
there is an embedded noise, which can be observed through the signal-to-noise ratio factor.

As seen in Figure 3.14 in Chapter 3, the cell fully filled with water (with water in contact with
the skin on both sides) generates higher peak ATm signals and shorter observation times (tm).
A similar pattern is observed in the vertical panel, where both surfaces remain in contact with
water desPIRTe having a smaller mass compared to the fully water-filled cells. These results
align with previous studies, which found that observation time decreases with lower water
content, and the presence of air gaps between the water and the skin makes both Cm and tm
values more dependent on water content. When water is in contact with the skin, the

temperature signals show only a weak dependence on the thickness of the water layer.

5.2 Signal-To-Noise Ratio for Numerical Image Sequences

SNR is a critical parameter in image processing. The image sequence obtained from the
ThermCalc-3D numerical software was processed by several image processing algorithms in
ThermoFit, using the SNR as a figure of merit. The SNR for each scenario (orientation and
water content) was calculated. The horizontal plate generally produces higher SNRs across
all applied logarithms, resulting in better visibility of the water-filled cells. In contrast, the 30°
and 60° sample orientations exhibit relatively low SNRs, likely due to water leakage through
the adhesive seal during rotation. Additionally, the vertical orientation shows lower SNR
values, which affects the image quality. It was also noted that no single algorithm consistently
performs best across all scenarios during image processing. It was also observed that if a
sample is positioned under 60°, the water in the cells partially filled with water (25% and 50%)
changed configuration compared to the horizontal position. it could be because of leaks
through the adhesive seal tap on the surface. Therefore, the defect areas of these cells are

not uniform in this case, thus contributing to lower SNR values.

5.3 3D Normalisation

3D normalisation is a scientific procedure where the numerical image is used as a mask image
to enhance water ingress detection in the experimental images or sequence. ThermoDouble
numerical software was used to generate 3D normalised images. Typical results are shown in
Chapter 3, Figures 3.24 and 3.25. It was observed that there was an improvement in terms of
water ingress detection and visibility. Figure 5.1 depicts the experimental image before and

after the 3D normalisation.
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Experimental imagines(3s) Calculated images with image 3D  normalisation  images
#7 (ThermoDouble)

Figure 5.1: 3D normalization of the experimental

5.4 Experimental Work

5.4.1 Detection of water ingress in cells

The image sequence was recorded using an Optris pi 450i IR Camera (image format 382 x
288, Noise Equivalent Temperature Difference (NETD) 40 mK, spectral range 7.5 — 13 um,

frame rate 80Hz). The ThermoFit Pro software from TPU was used to process them.

At first, the image sequence is converted from the “FS” file to disc image format, which can be
used to create a scenario in the ThermoFit software. Normally, the first image of the scenario
is assumed to be that of ambient temperature and therefore, the background option on the
preview window is used to subtract the first image from the sequence to deal with excess
temperatures only. The sequence with a specified mask is spatial filtered before appropriate
processing algorithms are selected.

The differential temperature signals (AT,,) and running temperature contrast ( C,,, ) can directly

be determined on the preview window.
5.4.2 Differential temperature signals (AT) and the running contrast (C.un)

The experimental results for these two parameters, shown in Table 5.1 extracted from Chapter
4, closely align with the theoretical data derived from the model with the same panel orientation
(180° with air gap). Notably, the cells fully filled with water exhibit the highest values for both
differential temperature signals (AT = -3.54°C) with the shortest observation time (8.8
seconds), and thermal contrast (C = 64.1%) with a somewhat longer observation time of 24.8
seconds. It is important to note that, as anticipated, the maximum temperature signals for the
fully water-filled cells occur earlier than those for cells with air gaps. However, the thermal

contrast behaves in a more complex manner, reaching its peak at a later time.
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Table 5.1. Optimum water detection parameters

(horizontal panel with air gap, experimental results).

Defect AT,, (°C) tm(ATon), s Cn tn(Cm), s
25% (D1) 2.7 11.6 0.45 27.4
50% (D2) 3.4 15.6 0.55 9.8
100% (D3) 35 8.8 0.64 24.8

5.4.3 Signal-to-noise ratio for experimental image sequences

During the data processing of the numerical image sequence, SNR was used as a key
parameter for detecting and visualizing water trapped in the cells of the honeycomb model. It
was found that the SNR was higher in cells completely filled with water (100%) compared to
both the sound areas and cells with 25% and 50% water content. Additionally, the SNR values
for the vertical, horizontal, and inclined models were similar, indicating that the orientation of

the structure had minimal impact on the detectability of water trapped in the cells.

Furthermore, it was observed that SNR values varied depending on the processing algorithm

used, suggesting that no single algorithm is optimal for all scenarios.

The SNR data presented in Chapter 3 (Table 3.2) compares different orientations of a sample
with cells filled to 50% with water. This also highlights the issue of uniform versus non-uniform
heating, which is crucial in real-world scenarios such as water ingress assessment in aircraft
fuselages. These results are compared with those from a sample with cells fully filled with
water (100%).

5.5 Implication of the Study

The study of water ingress detection in honeycomb structures has significant implications for
the aviation industry, particularly in ensuring aircraft safety, durability, and performance.
Honeycomb structures are commonly used in aerospace due to their lightweight and high-
strength properties, essential for reducing fuel consumption and enhancing the overall
efficiency of aircraft. However, when water enters these structures, it can lead to a range of

issues that can compromise the integrity and safety of the aircraft.

Water ingress in these structures has broad and far-reaching implications for the structural

integrity and safety of the aircraft. Water ingress can weaken the structural strength of
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honeycomb panels, potentially leading to delamination, corrosion, and other forms of material
degradation. Over time, this can compromise the overall safety of the aircraft, especially in

critical components like fuselages, wings, and tail sections.

This study focused on the numerical and experimental characterisation of water ingress in the
cells of honeycomb structures, in particular, the structures at various orientations as well as
specific water content in the cells. The findings from this study are scientifically contributing to
improving maintenance practices in the aviation industry by enhancing predictive maintenance
capabilities. Detecting and quantifying water ingress before it causes significant damage could
reduce the need for extensive inspections and allow for more proactive maintenance

scheduling, lowering costs and improving operational efficiency.

Therefore, by advancing methods to detect and manage water ingress as demonstrated in
this work, the industry can improve the reliability and longevity of critical aircraft components,

ensuring a safer and more cost-effective aviation environment.

5.6 Conclusions

Detecting water in honeycomb sandwich airframes is a crucial inspection task in the aviation
industry. Among the available techniques, 3D modelling is the most effective method for
obtaining quantitative data on water detection within honeycomb cells. This study used a
guantitative comparison of key parameters, such as SNR, differential temperature signals,
contrasts, and their corresponding observation times, across various test scenarios
(horizontal, inclined, and vertical panels). Based on the results, the following conclusions were

drawn:

e Panel orientation has minimal impact on the SNR values observed during experimental
testing. In other words, the orientation of the panels does not significantly affect the
visibility of water trapped within the honeycomb cells.

e Based on the comparison of SNR of various image processing algorithms across all
computational and experimental test scenarios ( orientations), it was observed that no
single post-processing algorithm was found to provide optimal inspection results

e The findings align with previous studies, confirming that water or ice in direct contact
with the skin surface is most effectively detected.

e The use of an appropriate heating technique is critical to achieving the best inspection
parameters.

e The experimental data can be used to estimate water content in the cells by introducing

a parameter calibration curve.
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e Theissue of frozen water volume expansion, which could potentially damage cell walls,

warrants further investigation.
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CHAPTER 6:
THESIS CONCLUSIONS

6.1 Introduction

This study conducted qualitative and quantitative analysis using computational methods and
IRT to detect water within honeycomb structures. It used key parameters, such as SNR,
running contrast, differential signal temperature, and observation times. The chapter begins
with a summary of the previous work and a report on the key findings from the numerical and
experimental analyses. General conclusions are drawn from these two approaches,
highlighting the insights gained. The chapter also addresses the critical challenges
encountered throughout the study. Given the significance of this research for the aviation

industry, the final section outlines additional areas that warrant further investigation.

6.2 Work Reported in This Thesis

This work was motivated by the real need for an effective technique or combination of
techniques to detect and quantify water ingress in the honeycomb structures in the aircraft
fuselage. This process requires a user-friendly method with high accuracy and low cost and
can be used in complex structures at various orientations. In this context, the numerical
modelling using ThermoCalc-3D software as a predictive technigue and infrared
thermography (Active and Passive) appeared to be a perfect match for characterising water
ingress in a honeycomb structure. ThermoCalc-3D uses finite difference algorithms, which
results in high accuracy in the differential temperature signals. Infrared thermography is a
preferred thermal non-destructive testing method that allows for the control of a full spectrum

of material during testing.
6.2.1 Numerical modelling and Image processing

A 3D heat conduction problem was analysed using ThermoCalc-3D. The model had cells filled
with water at various depths (25%,50%, and 100%). The heat flux was applied on the top,
front surface of this model when set at various inclinations (30°,45°, 60°, 90°, and 180°). In
some instances, non-uniform heating was applied to the model, which aimed at introducing
practical or real conditions on the aircraft fuselage. The comparison of the critical parameters
(differential temperature signals, running contrast, observation times, and the SNR between
cells with no water, partially filled and fully filled with water was presented. The image
sequences obtained from ThermoCalc-3D were processed using ThermoFit Pro software. The

results of this model, presented in Chapter 3, achieved the following:
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It was noted that the orientation of the panel has minimal effect on the SNR values during
modelling, meaning the visibility of water trapped in the honeycomb cells is largely
independent of panel orientation.

¢ It was found that 3D normalisation improves the detection of water ingress.

¢ No single post-processing algorithm produces the best inspection results for all model

scenarios.

¢ The findings are consistent with previous research, confirming that the most accurate

detection occurs when water or ice is in direct contact with the surface.

6.2.3 Infrared thermography testing and image processing

The primary focus was on active infrared thermography testing of honeycomb panels with
water ingress at varying depths and orientations. Additionally, passive infrared thermography
testing was performed on structures with frozen water. This approach is crucial for detecting
water ingress, as water in its solid state absorbs more heat energy than in its liquid form. The
temperature difference (delta T) and contrast are more pronounced with shorter observation
times (t,). As outlined in Chapter 4, key parameters were recorded and analysed, with the

results presented in Table 4.4.

The surface temperature profiles observed on the thermograms (image sequence) were
obtained during the heating and cooling process. Data from a heating pulse of 2s,3s, and 5s
were recorded. The comparison between the output parameters of various orientations was
presented and a general observation was that cells with water filled at 100% revealed high (-
ve) differential temperature signals (AT) and running contrast (C,,) with shorter observation
times for both AT and C,,.In the case of frozen water in cells, both the AT and C,, were

recorded as maximum and shortest observation times.

The image sequences obtained from both experimental procedures were processed using
algorithms in the ThermoFit Pro software in terms of SNR. The algorithm with the highest SNR
is the preferred for image processing for that scenario. The SNR of various image processing
algorithms were compared, and the highest SNR was identified. In thermography, a higher
SNR results in clearer images with less random noise interference, enhancing the ability to
detect small variations, such as temperature differences between a defected and a non-

defected area.
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In general, after validation, the differential temperature signals and the running contrast are
greatly influenced by the cell's structure, the quantity of water in cells, the phase of water
(liquid or solid), and the experimental set-up standards.

A calibration curve was developed to quantify water ingress in honeycomb panels using both
active and passive infrared thermography data. This curve establishes a relationship between
the panel's thermal response (temperature differential signals) and the amount of water
trapped within the cells. In active infrared thermography (heating), it was observed that the
temperature differential signal increases with higher water content. As discussed in Chapter
4, cells completely filled with water (100%) exhibited the highest temperature differential signal
of 27°C, while those with 50% water content showed a lower signal of 25°C. These variations
indicate that the temperature changes are influenced by both the presence and the quantity
of water in the cells. Similarly, in passive infrared thermography (without external heating),
temperature variations due to environmental conditions were recorded, with the presence of
water affecting heat transfer and cooling rates. The calibration curve reached a maximum
temperature differential signal of 11°C at 37% water content, beyond which the signal

remained constant.

Based on these observations, the active (heating) infrared thermography curve proved to be
more reliable than the passive (heating) infrared thermography. By correlating the thermal
data with known water content from experimental results, the calibration curve was
established, enabling the quantification of water ingress in the panel. This allows for accurate

detection and assessment of water content within the honeycomb structure's cells.

6.3 Research Work Challenges

As discussed in previous chapters, this research primarily focuses on both numerical and
experimental aspects. The numerical simulations were conducted using software developed
at Tomsk Polytechnic University (TPU) in Russia, including ThermoCalc-3D, ThermoFit Pro,
and ThermoDouble. The experimental component involved active and passive thermography.

During this study, several challenges were encountered:

e Water injection in the cells: The honeycomb specimens were injected with water
through the rear surface, with adhesive tape applied to prevent leakage. However, in
some cases, water leakage occurred, which impacted the results.

e Experimental setup: Active thermography requires uniform heating, meaning the
centre of the heat source must be aligned perpendicularly with the centre of the

specimen. This proved challenging for a first-time operator.
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o Positioning of test samples: Setting the test samples at specific inclined angles (e.g.,

30°, 45°, 60°) was also difficult due to the challenge of achieving accurate angles.

6.4 Future Work

This research primarily focused on thermal non-destructive testing (NDT) to both qualitatively
and quantitatively characterise water ingress in honeycomb cells. However, an important
aspect that requires further investigation is the phenomenon of frozen water volume
expansion, which may potentially cause damage to the cell walls. Additionally, the long-term
effects of water ingress on the overall lifespan of the panel, as well as the potential for physical
damage due to water absorption and freezing, also warrant further study. Understanding how
these factors influence the durability and structural integrity of honeycomb panels is crucial for
developing more effective maintenance and design strategies in applications where water

exposure is a concern.
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