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ABSTRACT 

 

It is important to quantify polymeric components in a coating because they greatly 

influence the performance of a coating. The difficulty associated with analysis of 

polymers by Fourier transform infrared (FTIR) analysis’s is that colinearities arise from 

similar or overlapping spectral features.  

A quantitative FTIR method with attenuated total reflectance coupled to multivariate/ 

chemometric analysis is presented. It allows for simultaneous quantification of 3 

polymeric components; a rheology modifier, organic opacifier and styrene acrylic binder, 

with no prior extraction or separation from the paint. The factor based methods partial 

least squares (PLS) and principle component regression (PCR) permit colinearities by 

decomposing the spectral data into smaller matrices with principle scores and loading 

vectors. 

For model building spectral information from calibrators and validation samples at 

different analysis regions were incorporated. PCR and PLS were used to inspect the 

variation within the sample set. The PLS algorithms were found to predict the polymeric 

components the best. The concentrations of the polymeric components in a coating 

were predicted with the calibration model. 

Three PLS models each with different analysis regions yielded a coefficient of 

correlation R2 close to 1 for each of the components. The root mean square error of 

calibration (RMSEC) and root mean square error of prediction (RMSEP) was less than 

5%.  The best out-put was obtained where spectral features of water was included (Trial 

3). The prediction residual values for the three models ranged from 2 to -2 and 10 to -

10. The method allows paint samples to be analysed in pure form and opens many 

opportunities for other coating components to be analysed in the same way.  
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Glossary 

EDX     Energy dispersive x-ray 

GC     Gas chromatography 

FTIR      Fourier Transform Infrared 

ATR     Attenuated total reflectance 

NIR     Near infrared spectroscopy 

IR     Infrared 

HPLC     High performance liquid chromatography 

HMPOE    hydrophobically modified polyoxythylene 

HUER     hydrophobically urethane ethoxylated thickener 

HASE hydrophobically modified anionic alkali swellable 

emulsion 

Ps Polystyrene 

MMa Methylmethacrylate 

CLS Classical least squares 

ILS Inverse least squares 

PLS Partial least squares 

PCR Principle component regression 

RMSEC/P Root mean square error of Calibration/ Prediction 

Chemometric Mathematical computational chemistry 
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 Introduction Chapter one 

1 Introduction 

Paint is considered merely for decorative purposes by the general public. Paint systems 

are very complex and presents analytical chemist in the coating industry with many 

headaches. The complexities are due to the combination of several inorganic, organic 

and volatile components. The paints final composition and application may it be for 

exterior or interior use depends on the specific type of binders, solvent, pigment, 

extenders and additives. Durability is influenced by having a high molecular weight 

polymer that forms the final film. In order to analyse paint a thorough knowledge on the 

use of analytical methodology is imperative. 

Separation methods of the various components of paint are easily achievable and 

analytical methods are documented in standards (such as ASTM) methods as well as in 

polymer handbooks. Many of the methods described require the paint to first be 

separated into its individual components, either by laborious extraction or centrifugation 

before analysis of the individual components. Solvents are currently being analysed 

after extraction by direct chromatography (GC) injection, headspace analysis as well as 

with solid phase micro extraction (SPME) Pigments and extenders are usually 

separated by centrifugation with highly volatile solvents or by ashing the paint samples. 

The inorganic matter are then analysed by EDX, Inductive coupled plasma (ICP) or 

atomic absorption spectroscopy (AA) (Ledger, 2002).  Organic components (such as 

binder and additives) can first be separated by multistage extraction (e.g. ASTM D-

3618).Presently Fourier transform infrared (FTIR) spectroscopy is used for qualitative 

identification of paint and paint components. Molecules have specific characteristic 

frequencies at which they absorb or transmit infrared radiation (Vandenberg, 1980). At 

present FTIR as well as many other analytical techniques are coupled with computer 

assisted software which enables one to manipulate and extract desired information. 

FTIR compared to other techniques, such as High Performance Liquid Chromatography 

and GC-pyrolysis presents an advantage in terms of cost effective operation and 

maintenance, as well as the minimum sample preparation especially with the use of an 

attenuated total reflectance (ATR) accessory.  
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Spectroscopy with computer assisted software and mathematical processing 

(chemometrics) is becoming very popular and is being used in a variety of industries. In 

the Polymer industry the technique has been used to follow; the monomer conversion 

under different conditions during a solution polymerization of styrene and butyl acrylate 

(Hong. Hua, 2003), the analysis of styrene copolymer composition by HPLC coupled to 

FTIR (Zengrong, et al., 2007), and copolymer characterization by UV spectroscopy, 

(Ulka, 1986). 

Literature is filled with FTIR coupled with chemometric techniques for the analysis of 

copolymers and monomers. Thus the analysis of polymers is clear; however the 

technique has not been used for the quantification of polymers in paint. The binder 

content which is normally the main polymeric component in paint is usually asked for 

and presently industry has no means for quantifying the polymeric components in paint. 

Difficulties arise especially if more than two components are present. Polymeric 

components are also very complex, they have low to high molecular weights, they exist 

in many forms and many are being developed. Polymeric components are also known 

to form associations with other components, have different solubilities and some with 

insoluble fractions (Ledger, 2002). The latter makes them difficult to have them in 

solution all at the same time. 

1.1 Significance of the Research: 

The aim of this study is to develop a FTIR method; using chemometrics for the 

polymeric quantities in paint. The availability of such a method will be beneficial for 

production scrutiny and quality control. It will also be a first step in realizing our 

analytical capabilities for analysing and understanding our in house products and a 

gradual improvement to have well defined and cost effective in house methods. 

 

The main focus of the study will be the quantification of three water soluble or 

dispersible polymeric components in emulsion paint. The polymeric components are a 
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rheology modifier, a styrene acrylic binder and an organic opacifier, each component 

contributing significantly to the paint system. 

1.2 Objectives: 

Use FTIR with chemometric processing software in order to simultaneously evaluate 

and quantify the three polymeric components in the paint, using the relevant 

chemometric technique.  

The following chapters will deliver the following: 

Chapter 2: will cover literature review which includes an overview of polymers 

and the analysis of polymers, Fourier transform infrared spectroscopy and the 

use of the chemometric techniques applied to FTIR. 

Chapter 3: will outline the experimental chapter, where the use of FTIR and 

chemometrics will be demonstrated and discussed. 

Chapter 4:  will contain the general findings and conclusions 

Chapter 5 contains the recommendation for future work 
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2 Polymers 

Polymers are described as high molecular weight species or classically termed as 

macro molecules which consist of repeating unit of the same molecule. The repeating 

units are typically homopolymers (in the case of one monomer) and copolymers when 

more than one monomer is present. The monomers impart their own specific 

functionality for example flexibility, high gloss, hardness, chemical resistance and 

durability. The polymeric binder in a waterbased coating is typically a copolymer. 

Polymers can be synthetic, natural or chemically modified, branched or crosslinked. The 

synthesis and chemistry plays a vital role for their end use. A monomer present in a 

copolymer has a distinct bearing on the properties of the polymer, thus the major factor 

that needs to be controlled and monitored in order to produce a satisfactory copolymer 

for a particular use (Crompton, 1993). 

2.1 Polymers for water based coatings 

Environmentally friendly coatings, more specifically known as waterborne coatings, 

have set forth many opportunities for polymer chemist and continues to do so. 

Advances have been made in terms of polymeric binders, dispersants, rheology 

modifiers and polymeric colloid stabilizers. The usefulness of polymers in waterborne 

coatings is due to certain functional groups, which gives a function of water solubility or 

dispersibility to a water insoluble polymer. The well known functional groups are 

carboxylic acid, sulphonic acid and tertiary amine groups.  The concentration of the 

functional groups influences the state of the final polymer, for example at high 

concentration of functional groups the polymer may be water soluble and at low it might 

only be water dispersible. The classification of aqueous polymers is very difficult due to 

the fact that there is no clear differentiation between the various polymer types. 

Polymers can be classified according to its synthetic procedure or according to its 

physical state (Padget, 1994). 
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2.1.1 Classification according to synthetic procedure 

Two main categories are discussed: 1. Polymer synthesized in the presence of water 

and 2. Polymer synthesized in bulk or in solution in an organic solvent, polymerization 

can occur by free radical or step growth polymerization. 

2.1.1.1 Synthesis performed in water:  

Emulsion polymerization (oil in water) is the most widely used accomplished 

procedure for producing water borne polymers. In emulsion polymerization a free 

radical water soluble initiator is typically used to polymerize a free radical 

polymerizable monomer (s) to give a water dispersible polymer. Particles of 

diameter 50 to 500nm can be accurately obtained and easily controlled. The 

particle stability is achieved by adsorbed surfactants (usually anionic) which have 

a stabilizing effect, Suspension polymerization also commonly uses monomer 

soluble free radical initiators to polymerize water insoluble monomers. The 

polymerizations take place in each monomer droplet. The molecular weight is 

inversely proportional to the initiator concentration and polymerization rate. 

Particles are stabilized through the use of adsorbed water soluble polymers like 

acrylic acid copolymers and partially hydrolyzed polyvinyl acetate. The particle 

size is generally in the range 0.01-0.1mm. Large particle size suspension 

polymers are not usually used in the form of aqueous dispersion due to 

settlement and film forming problems that would be expected as a result.  

Free radical solution polymerization is the process whereby the monomers, 

initiator and polymer are soluble in the continuous phase which may be water or 

a water and organic solvent mixture. This procedure is used for the preparation 

of dispersants and thickeners. Dispersants absorbs onto the pigment surface and 

imparts a stabilizing effect (avoiding the pigment particles from deflocculating) by 

introducing an electrical charge or steric hindrance on the pigment surface.  

Thickeners are rheological (flow behaviour) additives and provide the balance for 

in can, applicator, spatter, flow and levelling as well as anti-settling properties for 

the paint (Padget, 1994).  
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Inverse emulsion polymerization entails the emulsification of an aqueous 

monomer solution in a bulk oil medium and making use of water in oil emulsifier 

and an oil-in-water soluble initiator which gives sub-micron swollen water 

polymer particles in oil. The process is widely used for high molecular weight 

flocculants. A flocculant also has a deflocculating effect like dispersants (keeps 

pigment particles apart). The flocculants additive molecule has pigment affinic 

groups at either side of the molecule, which forms a bridge between the pigment 

particles. The additive also increase the structure build up in the liquid which 

reduces sagging and settling (Scholtz, 1993 cited in Padget, 1994). 

Micellular polymerization is a process in which a surfactant is used to solubilise a 

water insoluble monomer to assist its copolymerization with a water soluble 

monomer (Turner, 1985 cited in Padget, 1994) have studied a polymerization 

reaction in which sodium laurel sulphate was used to solubilise a hydrophobic 

monomer butyl phenyl acryamide in a dissolved aqueous phase. Polymers made 

by this process are known as associative thickeners. Associative thickeners are 

molecules with hydrophobic elements and tend to interact with other hydrophobic 

elements in the paint, especially latex binders and opaque polymers; therefore 

the rheology of paint with these systems is influenced by a whole range of factors 

(Padget, 1994). 

 

2.1.1.2 Polymer synthesized in bulk or in solution in an organic solvent and 
subsequently added to water 

Binders for surface coatings are preparation as follow (Padget, 1994): 

• Free radical addition in the bulk to give a low or medium molecular weight 

polymer and the water solubilising groups are incorporated via one or more of the 

co-monomers, then followed by the addition of water or vice versa. 

• Free radical addition in the bulk with the introduction of the water solubilising 

group followed by the addition of water. 
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• Free radical addition in a water –miscible co-solvent or water co-solvent mixture 

with incorporation of the water solubilising group via one or more comonomers, 

followed by the addition of water. 

• Free radical addition, step-growth, or ionic polymerization in a solvent, with 

introduction of a water-solubilising group, followed by the addition of water. 

2.1.2 Classification according to physical state 

Polymers can be classified in terms of their physical state for example a system in 

which the polymer is highly water soluble in an entire pH range or a system in which the 

polymer is highly water in soluble. The polymer can exist as an aqueous dispersion 

because of its water solubilising group. The difference between polymers is due to 

smaller functional groups and molecules and it are these essential features that impart 

their unique characteristics (Hansen, 1996). 

The exact physical nature of the polymer systems obtained by the synthesized 

procedure is very dependent on a number of variables and can be related to the 

following: 

Polymer: Molecular weight, concentration and nature of solubilising groups 

Synthetic process: Shear and surfactant content 

Solution/ dispersion: pH. Polymer concentration and ionic strength 

Associating polymers are polymers with lyophilic and lyophobic groups in the chain; 

they may form associating structures in solution, are water soluble and consist mainly of 

hydrophilic groups with a low percentage of associating hydrophobic groups.  

Associating polymers are very prone towards surface active agents and additives, and 

the associating properties of the polymers give solutions with completely different 

properties from soluble polymers. Associations can be ascribed to a model where the 

polymer chains are thought to be linked in a dynamic network of mixed micelles of 

surfactants and parts of one or several polymers. Associating polymers of the water 

soluble type are used as traditionally as rheology modifiers by the coating industry. 

They exhibit good flow and good gloss properties. As the coating industries become 
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more environmentally conscious water base paints are more sought after. (Hansen et 

al. 1996) 

 Associating polymers are sub-divided into several main groups, according to their 

chemical composition. (Hansen, 1996) 

1. Hydrophobically modified poly(oxyethylene) (HMPOE) is prepared by the reaction of 

poly(oxyethylene) or ethylene oxide with aliphatic or aromatic isocyanates that contain a 

hydrophobic end group. The products are hydrophobically modified urethane 

ethoxylated (HUER) thickeners.  

2. Hydrophobically modified polyacrylic acid is produced by the free radical 

copolymerization of acrylic acid or methacrylic acid and a hydrophobically modified 

polyacrylic acid and a hydrophobically modified monomer. This substance is influenced 

by the electro-viscous effect and by the hydrophobic associations. The products are 

hydrophobically modified alkali swellable emulsion thickener (HASE).  

3. Hydrophobically modified cellulose compounds, commonly known as hydroxyethyl 

cellulose (HEC), are prepared by reacting alcohol groups in cellulose with alcohols or 

amines; (HEC) precipitates in hydrophobic associations and in traditional network 

formation because cellulose is high in molecular weight and a rigid polymer. 

2.2  Overview of acrylic polymers in acrylic paints 

Acrylic polymers are colourless, thermoplastic solids and are soluble in ketones, esters 

and aromatic solvents, and generally insoluble in aliphatic hydrocarbons. The acids 

acrylic, CH2=CH, COOH and CH2=C (CH3) COOH, and their esters can be polymerized 

to form long thermoplastic chains. Hydroxy functional acrylics are widely used in high 

performance coatings; these acrylic polymers offer exterior durability, very good light 

fastness and adhesion. Polyacrylate binders consist of copolymers of acrylate and 

methacrylate esters. The choice of additional monomers offers a wide variation of the 

physical and chemical properties of the resulting polymer property.  Methyl methacrylate 

promotes weather resistance, light fastness, hardness, gloss and gloss retention. 

Styrene improves hardness and resistance to water and chemicals but was found to 
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reduce light fastness and gloss retention while methacrylates promote flexibility and 

adhesion to metals. (Dieter, 1998) 

2.3 Analysis of polymers 

From an analytical standpoint the composition of the polymer is usually requested. The 

analysis of a polymer is quite complex and polymers are available in a wide range of 

compositions. The synthesis of many new polymers has become more complex with the 

different types and the increased number of new copolymers. Due to this, Analysis by 

pyrolysis which was able to give us lots of information is still possible; however 

interpretation has become more complicated. 

However pyrolysis is still described as the sought after technique for polymer analysis 

and many still find it suitable for characterizing insoluble polymers like cross linked 

material like used in lacquers. Some polymers are insoluble and non volatile which 

makes them unsuitable for their analysis by HPLC or GC (Bart, 2000.58-59). 

Many polymer analysis books contain analysis for the characterization of the different 

class of polymers namely. The different classes of polymers include condensation 

polymers, formaldehyde copolymers, natural resins or ether resins as well as for 

addition polymers. They do not describe the separation as well as the analysis of the 

same and different classes from one another (Ledger, 2002). 

Many techniques require the polymers to be present in pure form for the exact 

identification of the polymer. Chemical analysis was first used to determine monomer 

ratios of copolymers trace concentration of polymers and end group of polymers 

(Critchfield, 1961). The application of chemical methods to analyse polymers is made 

difficult by their limited solubility and chemical resistance. When Union Carbide 

chemicals Pty Ltd® introduced the ethylene – ethyl acrylate copolymer a saponification 

method was developed to determine how much of the ethyl acrylate was introduced into 

the polymer structure. After trial and error experiments and considerable investigation a 

solvent system was successfully developed in order to get both the polymer and KOH 

alkali in solution. The solution consisted of 2% water, 13% triethylene glycol, 30% 
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hexanol and 55% xylene. The technique was later used to calibrate a much easier 

Infrared method (Critchfield, 2002). 

2.4 Instrumental Techniques for the analysis of polymeric components 

The following paragraphs explain the existing analytical techniques which could be used 

to analyse polymeric components. 

2.4.1 UV – Visible spectroscopy  

UV spectroscopy based on the principle of absorption spectrophotometry, which 

involves the determination of a substance from its ability to absorb UV and Visible light 

at specific wavelengths. UV-Vis light is passed through the test sample and the amount 

of light absorbed by the sample is recorded against the wavelength. The above is in 

accordance with Beer-Lambert law which illustrates the linear relationship between light 

absorption and concentration:  

The adsorption by UV requires polymers to have chromophoric groups (double bonds). 

Chromophores are responsible for electronic absorptions undergoing transition from the 

ground state to the excited state. UV analysis has found application in analysis of 

residual monomer remaining in a polymer sample (Painter, 1997). 

Individual UV absorption spectra are taken for the styrene monomer, the monomer free 

polystyrene and the monomer-polymer mixture.  

This methodology was further applied to a styrene methyl methacrylate copolymer. A 

range of styrene/methyl methacrylate copolymer solutions were prepared in chloroform 

and a wavelength at which the copolymer and one homopolymer showed characteristic 

peaks at the same wavelength was sought after. A calibration curve was obtained by 

plotting the absorbance values versus the % concentrations of the homopolymer 

solutions. The concentrations values of the unknown copolymer solutions were obtained 

from the spectra. Only two monomer systems could be determined (Ramelow, 1986). 
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2.4.2 Nuclear magnetic resonance spectroscopy 

With NMR analysis a sample is placed in a magnetic field and irradiated with 

radiofrequency. The absorption’s are due to transitions from quantized energy states. 

Atoms have atomic nuclei and these nuclei have a residual magnetic moment which 

allows them to react with an applied magnetic field. The frequency, at which the nuclei 

absorb, depends on the magnetic field and neighbouring nuclei and the relative 

shielding or de-shielding effect. The chemical environment of the nuclei can alter the 

frequency and this change is known as the chemical shift, and structural data can be 

obtained from it. The most important nuclei for the chemical Industry are the hydrogen 

and carbon, but silicone, fluorine and phosphorous are also useful in special 

circumstances (Ledger, 2002). 

The technique is commonly used to identify and characterize copolymers; the HNMR 

has been used to study the copolymer methyl methacrylate (MMA) and hexyl 

methacrylate (HMA). Peaks were assigned to the alkyl methylene and methyl protons in 

the copolymer from range 0.5 to 2.5ppm and 3.6 and 3.9ppm to the three protons on the 

OCH3 group of the MMA and the two protons of the OCH2 of the HMA selectively. 

 

Figure 2.1. H1NMR spectrum of copolymer methyl methacrylate and hexyl methacrylate 

(Painter,, 1997) 
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The % MMA in the copolymer was then determined by the expression: Where A is the 

area under the specific peak. 

 
%𝑀𝑀𝐴 = 100 𝑥 

(𝐴3.6
3 )

(𝐴3.6
3 +  𝐴3.9

2 )
 

 

1 

 

2.4.3 Mass spectroscopy 

Ions are formed by bombardment of electrons, and introduction of sample molecules of 

methane occurring in a gas phase. Two ionization methods namely, electron impact and 

chemical ionization mechanisms exist, but the chemical ionization method is a softer 

technique for polymers because it produces less fragmentation. A number of mass 

fragmentation data are available on software libraries, or sample composition can be 

deduced from knowledge of elementary principles for interpretations. The technique 

relies on the reproducibility of the fragmentation and has  

proven to be reliable for the identification of polymer additives and copolymer 

composition determination (Ledger, 2002).  

The following is an example of a polymer polypropylene containing additives Irganox 

1330 and Irgafros 168 of about 0.15% and 0.05% respectively.  The molecular ions for 

Irganox m/z=774 and for Irgafros m/z=646 attributed to the oxide and m/z=441 side 

group. 
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Figure 2.2. Mass spectrum of polypropylene containing Irgafros168 and Irganox 1330  

(Painter, 1997) 

2.4.4 Pyrolysis 

Pyrolysis creates volatile components from high molecular weight and opaque particles. 

The process is based on free radical induced degradation, and the pyrolysis products 

are indicative of the original polymer. The polymers in the coating industry consist of 

monomers and small oligomers upon pyrolysis, which make the polymer easy to 

characterize. The procedure involves heating a small piece of solid or injection of a 

liquid into the pyrolyser and heating the sample rapidly to a high temperature usually 

between 600-800ºC. The sample is degraded to smaller compounds which can 

generally be analysed by an additional analytical technique like GC-MS or FTIR 

(Wampler, 2009). 

2.4.5 Chromatography  

A chromatographic separation method can be used to separate mixtures especially 

those of being chemically similar. It involves partitioning a sample between moving 

fluids or gas phase and a stationary phase within a column. There are a wide number of 

techniques suitable for polymer analysis and the methods all involve the separation of 

sample components. Current Plascon® test methods include quantification of  polymer 

additives and monomers, as well as determining the volatile organic components from 
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emulsions by GC analysis. GC can be coupled with other analytical techniques which 

can strengthen the identification of the eluted components (Ledger, 2002). 

 

2.4.6 High performance liquid chromatography (HPLC) 

HPLC involves injecting a sample into a mobile phase where it interacts with a 

stationary phase, as it flows down the column. The retention of the components 

depends on the components interaction with the stationary phase due to the different 

polarity. The eluted components are then detected commonly by ultraviolet or refractive 

detector. Two modes for analysis exist namely the reverse phase and normal phase. 

The reverse phase requires a stationary phase to be non polar and the mobile phase 

polar, the reverse is true for normal phase (Glockner, 1989).  

Size exclusion chromatography (SEC) also called gel permeation chromatography 

(GPC) is a chromatographic technique that provides valuable information regarding the 

molecular weight distribution of a polymer. The columns used for SEC are defined in 

terms of the molecular weight exclusion limit and are normally soft, semi rigid or rigid 

gels with varying porosity (Ledger, 2007). 

2.5 Fourier transforms infrared spectroscopy (FTIR) 

A molecule absorbs electromagnetic radiation and therefore the increase in total energy 

is due to vibrational, rotational and translational motions. The atom in the molecule has 

three degrees of freedom which corresponds to motions along the perpendicular x, y 

and z coordinates in space. Infrared spectroscopy is a study of transitions within these 

energy levels of a molecule, due to absorption of the infrared radiation.  Vibrational 

modes are classified as stretching and deformation modes, which correspond to 

changes in bond length and bond angles respectively. When a heteronuclear molecule 

absorbs energy it vibrates which results in a change in dipole moment because the 

inter-atomic distance between atoms changes. When this occurs the molecule is said to 

be infrared active, which is not the case in analysis of a homonuclear molecule because 

of its symmetry. When molecules, atoms or groups absorb at the same frequency the 
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vibrations are said to be degenerated because absorption bands overlap with the bands 

of atoms having identical frequencies and therefore the spectra of polymers may appear 

simple The vibrational energy of functional groups in a molecule is unaffected by 

surrounding functional groups and each functional group has specific frequencies also 

known as characteristic frequencies (Vanderberg, 1980). 

Attenuated infrared spectroscopy (ATR) is a different measuring technique and 

accessory for infrared spectroscopy, it measures what happens with a totally reflected 

infrared beam through a multi-bounce or single-bounce crystal when it comes in contact 

with a sample. The infrared interacts with the sample through a series of waves and 

these waves can penetrate the sample from 1 to 4micromenters in distance. 

Infrared analysis can be a great utility in quantitative analysis and literature is filled with 

references for quantitative analysis employed in the coating industry. FTIR is used in 

the quantitative infrared analysis of polymers, inorganic pigments, solvents and 

additives frequently found in coatings  

 

2.5.1 Quantitative FTIR analysis general methods 

The following procedures discuss the current quantitative methods that can be used, for 

the analysis of polymer components in paint. 

2.5.1.1 Direct calculation: 

The method is used when you have the concentration of one sample and would like to 

know the concentration of an unknown sample with the same sample matrix: 

 𝐶 =  
𝐴
𝑎𝑏

 

 

2 

 

The absorbtivity (𝑎) can be calculated from a known sample concentration with known 

sample concentration and known cell thickness (𝑏). The concentration of the unknown 
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can be determined directly from knowing the absorbance of the unknown and dividing 

the equation from the unknown by the known. 

 
𝐶 =  

𝐴𝑢𝐶𝑘

𝐴𝑘
 

 
 

3 

Au = Absorbance of unknown 

Ak = Absorbance of Known 

CK = Concentration of Known 

The method is limited to samples that can be measured in a liquid cell with constant 

path length, the absorption law is obeyed and there is a linear relationship between 

absorbance and concentration (Vanderberg, 1980). 

2.5.1.2 Working curve method: 

A calibration curve method is used when the concentration of an unknown sample 

concentration is expected over a wide range of concentration. The calibration curve is a 

function of concentration versus absorbance of known samples. The absorbance of the 

sample is then measured and the concentration read from the working curve 

(Vanderberg, 1980).  

In an infrared method, with a solution of St-co-BA in toluene, was analysed off-line in 

order to evaluate the ability of infrared analysis to determine the monomer conversion 

and polymer composition from spectral changes. According to Beer’s law the 

concentration of the various reaction components are proportional to the absorbencies 

measured from the corresponding peak heights. In applying Univariate analysis, 

characteristic absorbance bands for both monomers were identified and were used to 

track the reaction. The individual conversion rates of each monomer were determined 

by calculating the ratio of the absorbance’s (peak heights at a certain time over the peak 

height initially at their respective wavelengths.  The monomer conversion was monitored 

by following the change of certain characteristic peaks because it was assumed that the 

component concentration is proportional to the absorbance peak heights. (Hong. Hua, 

2003) 
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            x(mol %)   = 1 −
peak height at time t
peak height at t = 0

 X 100 

 

4 

 

The overall weight percentage conversion, X of the copolymer was also calculated 

using: 

         X(wt%) = wi
wi+wj

xi(mol%) + wj
wi+wj

xj(mol%) 

 

5 

X (wt%) = overall conversion X of the copolymerization 

Where wi
wi+wj

 is the weight fraction of monomers i fed into the reactor at time t = 0 

And 

 wj
wi+wj

  Is the weight fraction of monomers j fed into the reactor at time t = 0 

2.5.1.3 Standard addition method: 

An analytical band for the compound to be quantified is measured. Known amounts of 

the compound are added to the sample and the absorbance is measured after each 

addition. A plot of absorbance versus the amount of component added is constructed 

 The curve is extrapolated to zero absorbance. The intersection of the curve with the 

concentration axis indicates the original amount of the component present. The 

technique is most useful with samples that, obey the absorption law and when 

components are present in low concentration. The methods discussed above can be 

used for multicomponent analysis. Large errors may occur, if there are component 

interaction or when the wrong spectral bands are measured (Vanderberg, 1980). 
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Figure 2.3. Graphical presentation of the standard addition method 

(Zengrong, 2007) 

In Zengrong (2007) the standard addition method was applied to the quantification of 

bound styrene in copolymers. The quantification of bound styrene is important because 

it greatly affects the performance of the styrene-butadiene rubber with regards to 

friction, aging and decomposition. Prior to this method the bound styrene was measured 

by the refractive index, but the method is limited for 55% bound styrene copolymers 

(ASTM D5775-95, 2004 and ISO 2453:1991, 2003).  

Different quantities of polystyrene (Ps) were added to the sample in separate aliquots to 

obtain a series of mixtures with ratios of Ps to sample at 0/5 to 5/5. The samples were 

cast onto a KBR disc and the chloroform which was used to dissolve the samples was 

evaporated under an infrared light. The thickness of the film was controlled using the 

strongest peak height at a selected wave number (Zhang, 2007). 

2.5.1.4 Absorbance ratio method: 

The sample must meet the following criteria in order for the method to be successful: 

The components in the sample must obey Beer’s law. 

Absorbtivity for each component must be known. 
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Analytical band for each component must be known and must be free of 

interference from other components. 

Considering a three component system, the following equations can be applied: 

𝐶2 =  𝐴2
𝑎2𝑏2

   𝐶1 =  𝐴1
𝑎1𝑏1

   𝐶3 =  𝐴3
𝑎3𝑏3

   

 

6 

The three components must be the sum total of all components present in the system: 

𝐶1 + 𝐶2 + 𝐶3 = 1 

 

7 

The concentration of each component can be calculated by using the following 

expression and substituting equation 12: 

% 𝐶1 =  
𝐶1 (100)

𝐶1 + 𝐶2 + 𝐶3
 

 

8 

 

Figure 2.4. Working curve of the ratio method 

(Vandenberg, 1980) 

2.5.1.5 Internal standard method: 

The method is used to determine only one component in a multi component system; a 

known amount of material (internal standard) is added to a known amount of sample. A 
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band for the internal standard and the component to be quantified must be obtained. 

The absorbance ratio is obtained from the working curve. The working curve is 

constructed by measuring the absorbance ratio for a number of samples with known 

concentration ratios. The following expressions can be used to determine the 

component of interest: 

𝐴𝑢 = 𝑎𝑢𝑏𝑢𝐶𝑢 
 

9 

𝐴𝑠 = 𝑎𝑠𝑏𝑠𝐶𝑠 
 

10 

𝐴𝑢
𝐴𝑠 

= 𝐾 
𝐶𝑢
𝐶𝑠

 

  
Cu = Concentrate of unknown 

Cs = Concentration of sample 

a = Absorbance activity 

b = path length 

11 

 

 

 

 

An internal standard must have the ability to not interact with the components in the 

sample; the absorbance bands should be strong and apparent and must not overlap or 

interfere with the component to be measured. The internal standard must be available in 

pure form (Vanderberg, 1980).   

The following is an example where the height of C-O peak at 1020 cm-1 due to the 

presence of vinyl acetate copolymer was divided by the height of C-H peak at 720 cm-1 

due to the presence of polyethylene (Bellamy, 2010). 
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Figure 2.5. Calibration curve of absorbance of the vinyl acetate peak at 1020 cm-1 versus percentage 
of vinyl acetate in the copolymer. 

A plot of the absorbance ratio versus the concentration ratios from the analyte and 

standard are also useful when the internal standard concentration is not constant. 
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2.6 Multivariate analysis  

The following is an introduction to multivariate analysis and its application to FTIR 

spectroscopy as well as an overview of the different techniques. 

In order to consider a cause and effect relationship, where the independent variable is 

the cause and the dependent variable the effect, least squares linear regression comes 

to mind. This is a method for predicting the value of a dependent variable Y from an 

independent variable X. In the case where there is only one independent variable it is 

called simple least squares regression. This is a mathematical model for the data when 

the variable y has a linear relationship to the independent variable x, when a xy scatter 

plot is linear residual (is the difference from the observed y and the predicted y) plot 

shows a random pattern. Linear regression analyses yield the straightest line that best 

represents observation in a bivariate data set.  

The regression line formulae are given by: 

 

𝑌 = 𝐵0 + 𝐵1𝑋 

 

12 

 

B0 is the constant  

B1 the regression coefficient 

 X and Y previously defined.  

The coefficient of determination (denoted by R2 is a key output of the regression 

analysis, it indicates the extent to which the dependent variable is predictable. The 

standard error is another important parameter, which measures the average amount 

that the regression equation over or under predicts. The standard error is found to be 

lower with the closer R2 is to 1 and then more accurate prediction is likely to be made. A 

software package like i.e. Microsoft excel® or a graphing calculator are used to compute 

the analysis, but can be done manually as well.  
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Multiple linear regressions are an extension of linear regression to several dimensions. 

Multivariate calibration enables rapid and simultaneous determination of each 

component in a complex mixture (Maggio, 2009).  

Chemometric techniques like classical least squares, inverse least squares, partial least 

squares (PLS) and principle component regression (PCR), are commonly used 

multivariate techniques. A required exercise in multivariate analysis is to thoroughly 

investigate the entire quantitative spectrum. Each wavelength element or digitized data 

point can be considered as a separate variable. The process is called chemometrics or 

computational chemistry. 

2.6.1 Chemometrics i.e. computational chemistry 

Spectroscopic data can generally be very complex due to the multitude of molecular 

absorbencies. Differences in similar chemical spectra often consist of merely a slight 

shift or small change in shape which makes it visually impossible to distinguish. It is for 

this reason that spectra are complimented with the aid of mathematical methods. 

Chemometric is a mathematical and statistical application for processing and 

interpreting large amount of chemical data (e.g. FTIR spectra). It finds a statistical 

correlation between spectral data and the known property using calibration. It allows 

one to predict desired parameters of unknowns if the correlations between calibration 

sets are systematic.  It utilizes a feature known as principle component analysis in 

which a large number of data is compressed without losing any important information, 

principle components are extracted which are statistically independent from one another 

and orthogonal relative to each other and can be imagined to be a point in space. In 

mathematical terms the point is equivalent to a vector with (500׀ ..…1׀).  

𝑙𝑛(𝑘) =< 𝑙𝑛(𝑘) > + � vin. (Ui(k)) + Rn
𝑚𝑎𝑥.𝑖

𝑖=1

  

 

13 
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<ln(k)> = mean spectrum 

Ui(k) = factors 

Vin = loadings which are weightings for each factor, describes the % variance from that 

factor 

Rn = Residuum which is the difference between the pre-treated and reconstructed 

spectrum. 

The loadings and the residuum are variables for each spectrum. The following figure 

shows the reconstruction of the spectrum and data reduction example. 

 

Figure 2.6. Spectrum reconstruction 
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Figure 2.7.  Example of data reduction from 500 points to 15 factor loadings and 1 residual 

(Figure 4 & 5 Adapted from Buchi NIR training manual) 

In layman’s terms it creates artificial spectra from the principle components or factors. 

This is done by creating a mean spectrum by averaging the intensity values at each 

wavelength. The mean centre of the new artificial coordinate system gets shifted to this 

point. The following equation is used for the reconstruction of the spectrum: 

 

2.6.2 Chemometric techniques 

The following is an overview on the different chemometric techniques 

2.6.2.1 Discriminant analysis 

The Discriminant analysis technique is used to determine a class or classes of known 

materials which are similar to unknown materials by computing the mahalonobis 

distance units. The mahalanobis distance is an algorithm for calculating the distance of 

a sample from the mean of a set of standards using the following equation. 

The method is typically used to screen incoming materials to determine if they are 

compound a, b or c. The method typically specifies at least two classes of known 

materials, but the method also works with only one class. Multiple standards may be 

used to describe each class and multiple regions of the spectrum may be used for the 

analysis. 

During calibration the software computes a mean spectrum and then generates a 

distribution model by estimating the variance at each frequency in the analysis range. 

When the method is used to analyse an unknown sample, the software performs a 

principle component analysis (one or more orthogonal vectors that describe spectral 

concentration variation in the Discriminant method) on the spectra of the standards and 

uses the results to determine score values (a measurement of the distance a standard 

projects onto a principle component) for the unknown sample spectrum. The score plots 

are then used to determine the mahalanobis distance values. The results of the method 
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is the name of the class that are most similar to the spectrum of the unknown, the closer 

the distance is to zero the better the match. 

2.6.2.2 Classical least squares (CLS) method  

The CLS method follows Beer’s law in which it assumes that the absorbance at each 

frequency is equal to the component concentration. In matrix notation assume m 

calibration standards which contain L chemical components with spectra of n digitized 

absorbance are given by:  

 

New coordinate systems are formed from the calibration spectra which is the pure 

component spectra l rather than the spectral frequencies n. The spectral intensities for 

each mixture in the new coordinate of the pure component is the concentration of the 

components, because the component concentration represent the amount (intensities) 

of the pure component spectra which make up any given mixture spectrum (Haaland, 

1980). 

Advantages of the CLS method: 

Improvements in precision 

Allows simultaneous fitting of baselines 

Pure component spectrum and full spectrum residuals are made available for 

interpretation. 

Disadvantages of CLS method: 

Method cannot handle unexpected impurities or components in a sample matrix 

 

2.6.2.3 Inverse least squares (ILS) method  

The  (ILS) method also assumes that concentration is a function of absorbance, the 

inverse of the Beer’s law with m calibration standards with spectra of n amounts of 

digitized absorbance’s is given by: 
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 Advantages of ILS method 

Spectral analysis can be performed if only one component is known in the 

calibration mixtures. The components not included in the model must be present 

and totally modelled during calibration. 

Disadvantage of ILS method 

Analysis regions restricted; equation 12 has the dimensions equal to the 

frequencies which cannot exceed the number of calibration mixtures used in the 

analysis. 

When frequencies becomes too large the precision of the results degrades, but sub 

optimal frequencies can result in poor baseline modelling, noise inflation and over fitting 

(Haaland, 1980). 

 

2.6.2.4 Partial least squares (PLS) and principle component analysis (PCA) 
models 

The general goals for PLS and PCA are similar, PCA is just a simple principal 

component analysis followed by a regression step. They are both factor analysis 

methods and they have the full spectrum advantage of the CLS method and the ILS 

advantage for being able to perform the analysis of only one chemical component at a 

time. PLS and PCA provides outlier detection from spectral residuals (difference 

between measured and estimated spectra) and limited chemically interpretable spectral 

information. PLS also has the advantage in the number of spectral frequencies that can 

be included in the analysis (Haaland, 1988). 

The role of PLS is to form principle components that capture most of the information 

from the x variables that will help in the prediction of y1......................y2. In doing so it 

also reduces the dimension in regression by using fewer components than the number 
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of x variables. A new full spectrum coordinate system is obtained from principle 

component and loading vectors. The prediction step involves calculating the spectral 

intensities of the new coordinate system and can be related to analyte concentration 

just like in the ILS method. 

2.6.2.4.1 Principle component analysis 

In principle component analysis each sample can be represented as a vector or point in 

multidimensional space. A principle component describes the most spectral variation 

and it can be seen as independent sources of variation. The approach can be 

expressed mathematically as the decomposition of the data matrix, D into the product of 

the two matrices P for scores and T for the transpose of the loadings. 

𝐷 = 𝑃Tt 

 

14 

D describes dimensions of samples by wavelengths, T is the loading matrix which and 

describes the dimensions of wavelength by principle components and contains the 

information from which it was constructed from. P is the score matrix and has 

dimensions of the samples by principle components and represents the samples in a 

new principle component space. The first three PC selected are said to contain most of 

the variation in the spectra and the others can be regarded as to contain minor 

characteristics or noise and thus can be ignored. PCA is used to make more defined 

groupings of the samples (Wold,1987). 

2.6.2.4.2 Qualitative information from PLS and PCA: 

First weight loading vector 𝑤�  contains qualitative spectral information due to it being the 

first order approximation to the pure component spectrum of the analyte. It can be used 

to for making band assignments as well as to determine which regions of the spectrum 

are most relevant to a particular analyte. Vector of final calibration regression coefficient 

bf may contain interpretable information. It can be used to indicate which spectral 

regions are important for prediction related to pure component spectra it takes into 

account all interfering information, molecular interactions and baseline variation. 

Spectral residuals can provide chemical info and outlier detection. 
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PLS and PCR can model the number of new components necessary for predicting and 

are therefore called soft modelling systems (Haaland, D.M.1985). 

 

The following reviews are examples of how multivariate methods are used in 

combination with spectral analysis in the food industry, medicine and biological 

samples. 
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2.6.3 Multivariate methods for quantitative spectral analysis 

The following sections are examples of how multivariate methods are used in 

combination with spectral analysis. 

PCA and PLS have found their way into academics and various industries and for 

purpose of spectrometer calibrations, process modelling and quality control. Available 

software packages make the data analysis very easy, but it remains far from easily 

understood. Textbooks and journal articles give frequent explanations with a large 

amount of mathematics. The following paragraphs give an overview of the technique 

used in various other industries. 

A submitted tutorial by the Department of Chemical and Biological Engineering of Dublin 

City University provides non experts with a practical understanding by using simple 

examples and a few equations. Nine virtual calibrations were used to study how factor 

analysis can be used when dealing with signal drift, random noise, interaction between 

compounds & non linear responses. The virtual mixtures were three hypothetical 

compounds and artificially assumed spectra (Jonas Schenk et al cited in Brereton. RG, 

2007).  

 

Figure 2.8. Summary of the nine cases studied 

 

The examples studied have shown that factor analysis is superior to normal least 

squares regression methods in terms when the spectrometer signal is subjected to 

predictable drift and when compounds interact with each other, both methods performed 
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similar when facing random noise and none of them was able to predict the case in 

which absorbance was not linear with respect to concentration. Signal drift can also be 

overcome by correction methods like anchoring of Savitzky-golay filtering. The 

additional learning’s from the tutorial suggest that before setting up a calibration model 

one has to determine the validity of the samples in terms of lamberts beers law, and to 

determine the independence of the species present. Checking for linearity and 

interactions will also lead to a significant reduction in the calibration set and a simplified 

modelling approach (Brereton, 2007). 

The fundamental relationship between UV and IR spectral response and concentration 

is described by the Beers Lambert law.  

If more absorbing species are present it becomes  

𝐴𝑡𝑜𝑡 =  𝜀1𝜆𝐶1𝑏 +  𝜀12𝜆𝐶2𝑏 +  𝜀𝑛𝐶𝑛𝑏 

 

15 

 

Absorbtivity can be measured by measuring the absorbance of standard solutions of 

pure components at each wavelength. By applying simple matrix components the 

concentration of the pure component can be estimated. (Clark, 1993) 

The following mathematical illustration is an example of how simple least squares 

regression was used to determine the unknown concentration of UV spectral data. 10 

points was observed between 570 and 300 nm at two variables pH 2.2 and pH 2.5. 

𝐴 = 𝐸𝐶 

 

16 

With standards having a concentration of 1: 

𝐴 = 𝐸 

 

17 

E’ is the transpose of Absorbtivity E 
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𝐸′𝐴 = 𝐸′𝐸𝐶 

 

18 

(𝐸′𝐸)−1𝐸′𝐴 = (𝐸′𝐸)−1𝐸′𝐸𝐶 

 

19 

 

The concentration can be given by: 

𝐶 = (E′E)−1E′A 

 

20 

The synthetic spectrum (B) is calculated from: 

𝐵 = 𝐸𝐶 

 

21 

The residual spectrum is given by: 

𝑅 = 𝐴 − 𝐵 

 

22 

The residual variance is expressed by: 

𝑆2 =
𝑅′𝑅
𝑀 − 2

 

 

23 

The estimate of error is valuable because it is used as a weighting function allowing 

better estimate of the calculated concentration. 

The variance estimates of each concentration are given by the covariance matrix: 

𝑉 = (𝐸′𝐸)−1𝑆2 

 

24 

Partial least squares analysis (PLS) was applied to the analysis of fecal fat. Fecal fat 

were normally determined by a three stage principle: saponification, acid hydrolysis and 

extraction and then finally a titrimetric assay (Polonovski, Kumagawa and Manual cited 

in Franck et al, 1996), which was found to be very time consuming. FTIR measurements 

were done on a Mattson Galaxy FTIR 5020 spectrophotometer, 24 scans per 

interferograms were accumulated at a 4 cm-1 resolution. The samples were first applied 
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to a transparent plate and then measured using an ATR accessory equipped with a zinc 

selenide (ZnSe) crystal.  After data acquisition of the spectra, using adapted software 

(Win first v2.1 1994, ATI Mattson which have PLS-Quant v1.1 1993), PLS analysis a 

multicomponent method was applied.  

Analysis was conducted on standard stools used for calibrations and another set of 91 

independent stools were used as validations. A calibration matrix was built using lipid 

specific wave numbers from natural fatty solutions like butter, olive and sunflower oil. 

The performance of calibration was checked by cross validation which involves each 

standard in the calibration to be successively removed from the matrix calibration and 

considered as an unknown. External validation (accuracy) was based on the criteria to 

predict the concentration of the unknown sample and comparing the results with those 

obtained with the reference method. Repeatability, reproducibility and linearity were also 

studied. The choice of spectral regions for analysis included other spectral regions 

besides for the ones identified by the natural oils to better cope with variations in fecal 

matrix. A total of seven analytical regions were selected for analysis. The cross 

validation yielded coefficient of variation of (r=0.996), the standard error of calibration 

(SEC) was found to be 0.352%, the linearity range was 1-15% and the standard error of 

prediction is 1.07%. The reproducibility of samples which contained a lot of water was 

not good, due to water being a major interference in FTIR spectra (Franck, et al., 1996). 

Edible vegetable oils are predominantly mixtures of triglycerides, which differ only in 

relative amounts of each. Small differences in their composition can lead to large 

differences in the cost and health properties (Dupont, et al., 1991). Many patented and 

expensive analytical techniques exist for the classification and quantification of these 

oils, namely gas chromatography (GC) and high-performance liquid chromatography 

(HPLC), and they do not lend themselves to on-line analysis.  Drifting temperature is 

known to be a problem with both FTIR and NIR spectroscopy, often requiring careful 

thermostating of either the sample or the spectrometer. Chemometric classification and 

calibration techniques are very sensitive to instrumental variations and can therefore to 

greatly improve the robustness of the technique (Wang, 1992).   
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In one study the effectiveness of multiplicative signal correction (MSC) in correcting 

FTIR spectra for environmental variations was tested to see whether FTIR is capable of 

classifying edible oils according to their vegetable source, MSC was used to make 

corrections for temperature variations experienced while spectrum data were acquired 

(Donald, 1997). The calibration model was based on the assumption that the pathlength 

through the sample is constant, because PLS and principle component regression 

(PCR) techniques will fail when this assumption fails (Martens, 1989). Samples of oils 

were obtained from local suppliers in Anville Pennsylvania; spectra were acquired by 

FTIR on a Nicolet 5-Dx system at 4 cm-1 resolution, three to seven replicas were taken 

in a sealed NaCl cell with a fixed pathlength of 0.015mm. After each analysis the cells 

were cleaned with dichloromethane and dried with air.  

The resulting spectra were combined to form a data matrix by using algebraic MAT-LAB 

software package. The data contained of 1556 measurements in the region from 3600 

to 600 cm-1. The pre-treatment with MSC has resulted in the separation of most of the 

oils according to plant origin by using two principle components. Most of the resolution 

was due to PC1 which contained 79% of the variance in the system and was obtained 

through a negative relationship with the absorbance in the 3005 cm-1 region which was 

caused by the cis-vinyl C-H stretch. The second principle contained 16% of the variance 

and it was negatively correlated with the trans-vinyl C-H in-plane bend at 967 cm-1. The 

third principle component was responsible for separating the sesame oils from the 

canola oils and it contained 3.6% variance. The same frequencies were used for the 

Discriminant analysis. Frequencies corresponding to the cis-double bond content were 

predominantly responsible for this discrimination of the oils. (Donald, 1997). 

Several studies exist concerning the characterization, classification and authentication 

of edible fats and oils by using FTIR (Dobson, 2001), but in combining them with 

chemometric techniques, FTIR is proving to become an emerging analytical technique 

The PLS and PCR calibration model was built using 27 samples containing extra virgin 

olive oil and palm oil mixed in accurately weighted proportions of 1:50 wt/wt in 

chloroform, and an additional set of 32 prepared samples was used for validations. For 
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the Discriminant analysis extra virgin olive oil and palm oil mixtures were prepared; 15 

pure extra virgin olive oil standards and 27 mixed with palm oil. The samples were 

measured using an FTIR Nicolet 6700 from Thermo Nicolet® Corporation equipped with 

an attenuated total reflectance (ATR) accessory. FTIR spectra were recorded from 4000 

to 650 cm-1, co-adding 32 interferograms at a resolution of 4 cm-1. 

 The analysis was performed using software TQ analyst TM version 6. Upon analysing 

the pure spectra of extra virgin olive oil and palm oil, their entire spectra looked very 

similar with the naked eye which is due to similar chemical composition of the two oils 

which showed typical characteristics for common triglycerides. In closer examination of 

the spectra minor differences were found between the spectra which were observed at 

frequencies of 1402 cm-1 caused by =C-H bending vibration and 1030 cm-1 attributed to 

the C-O stretching. The spectral region, where most of the variations were, was in the 

finger print region and this region was chosen for the analysis. In fats and oils most of 

the peaks and shoulders are attributable to the specific functional groups (Bendini, et 

al., 2007).  The optimum number for PLS and PCR factors was determined by cross 

validation, cancelling one standard at a time and plotting the number of factors against 

the root mean square. The predictability was tested by the root mean square of error. 

PLS and PCR calibration in the first derivative spectra yielded the highest R2 with a 

value of 0.999 and the lowest RMSECV of 0.285 and RMSEP of 0.616 (Rhoman, et al., 

2010). 

A multivariate calibration model combined with IR spectroscopy was set up to follow the 

monomer concentration changes under different conditions during a solution 

polymerization of styrene and butyl acrylate in toluene (50 to 65 wt %). A calibration 

model was built from twenty nine samples. Spectral regions from 1800 to 700 cm-1 were 

included in the analysis. PLS in linear combination approximated the original spectra by 

reducing the calibration spectra to a smaller number of key spectra called factors; factor 

analysis was used to determine the optimal number of factors (In this study 4) which 

explained most of the variance. The PLS model was used to establish the predictive 

relationship between the spectral data set and the monomer concentrations. The 

correlation coefficient for the model predictions for styrene and butyl acrylate was found 
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to be 0.9966 and 0.9961 respectively suggesting a good agreement between the model 

prediction and actual measurements (Hong, 2003).  

The use of chemometrics techniques to analyse FTIR (Zhang, 2007) was once again 

demonstrated with the analysis or the determination of styrene copolymer concentration 

& composition. A method was demonstrated whereby SEC is coupled to an on line 

Fourier transform infrared detector an of line viscometer detector. The method was 

applied to several types of styrene copolymers. Styrene, methyl methacrylate and 

butadiene were considered the three components. The training set was composed of 27 

standards ranging 0 to 100% styrene weight fraction and 24 standards with different 

concentration was used as validation standard. As a full spectrum method they have 

found that PLS gives better predictions when you narrow the spectrum down to a few 

absorption bands. 

 

This chapter has described the standard analytical methods and techniques that are 

commonly used to determine polymers. The same applications were applied to the 

analysis of the three polymeric components. The features that stood out was the fact 

that the predictions with the PLS method was very close to the original values. The 

commonality between these methods was that great care has been taken to prepare 

accurate calibration and validation standards. The FTIR coupled to chemometric 

technique have shown to be successful in various applications. The combination of 

FTIR with chemometrics makes it possible to analyse multicomponent with severe 

spectral overlapping and component interactions. The former will be applied to a 

pigment extender (PE) free coating, in hope of quantifying three polymeric components. 

The experimental will be outlined in the following chapter.  
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3 Experimental: Analysis of the three polymeric components in paint by FTIR 
and partial least squares. 

3.1 Introduction: 

Paint is a complex system consisting of organic and inorganic materials offering special 

challenges to the analytical chemist. It consists of many opaque and very high 

molecular weight constituents. The identification and quantification of the polymeric 

component for example the binder, organic opacifiers, dispersant or rheology modifiers 

in a coating are usually required for analytical scrutiny, quality assurance or competitor 

analysis. Many polymers are also very complex and many industrial synthesized 

polymers exist, they are also known to form associations with other components. 

 A variety of analytical techniques has been applied to the identification and 

classification of polymers; the techniques include GC - pyrolysis and HPLC, but are very 

costly and time consuming. Infrared spectroscopy is widely used as an analytical tool for 

the qualitative and quantitative analysis of materials. The development in recent years 

gave FTIR spectrometers a significant advantage over traditional dispersive 

instruments. FTIR coupled with computerized techniques allowed the manipulation of 

digital data and access to more information which was previously not possible. 

Researchers’ has applied the techniques of differentiation and regression analysis to 

infrared analysis in order to obtain more information on component analysis and to 

predict significant properties of samples. (Osborne, 1981). The methods are based on 

multivariate statistical analysis or more specifically factor analysis. It has found 

numerous uses, which includes the determination of the number of components in a 

sample, the separation of the pure component spectra from spectra of a mixture, 

spectral identification of unknown mixtures, signal drift, random noise, interaction 

between components and non linear responses (Malinowski, 1980). 

FTIR based on computerized data processing like chemometric classification and 

calibration techniques has found application in many fields, such as medical, petroleum 

and agricultural industries. Applications in the coatings industry are very limited. This 

study reports a multicomponent technique whereby the quantification of the polymeric 
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can be determined without extraction and the quantity predicted to a good degree of 

accuracy.  

3.2 Materials 

Biocide: Ammonia  

 Three polymeric components consisting: 

• a polymeric opacifier (Plascon),  

• Styrenated Acrylic emulsion 

• HASE – polyurethane anionic rheology modifier from Rohm & Haas, 

The three polymeric components will be named component A, B and C respectively.  

Component A: The organic opacifier is a spherical polymer particle that has a multitude 

of aerated micro voids within the polymer shell. The voids cause effective light 

scattering comparable to that of TiO2 – pigment, the polymer particles can successfully 

replace TiO2 for this reason (Stewart, 1993). They are produced by emulsification 

whereby an organic phase containing an unsaturated polyester resin and styrene 

monomer is emulsified with an aqueous phase. A polyamine is added to achieve 

absorption of water inside the organic phase and this water is replaced with air when it 

evaporates (Gous, 2003) 

Component B: The polymeric binder is a styrene acrylic binder, prepared by suspension 

polymerization. It is one of the major components in paint which forms a tough coherent 

film when the solvent evaporates. 

Component C: The rheology modifier is an anionic thickener or better known as a 

hydrophobic modified alkali swellable emulsion. It influences the low shear viscosity 

properties of paint. 

The extraction solvent was a mixture of 1:1 by volume. Dimethyl formamide and 

Tetrahydrofuran. The former as well as Heptane obtained from Sigma chemicals. 
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3.3 Equipment  

Oven maintained at 105°C for 2 hrs, data obtained by Nicolet® 380 FTIR spectrometer 

equipped with Omnic® 6 and TQ analyst professional® edition 8 and software for data 

capturing and processing. Transmission spectra were obtained with FTIR by using 

Silver bromide (AgBr) halide discs and ATR spectra were obtained with a diamond 

crystal. 

Table 3.1. FTIR Instrument parameters used in experimental work 

No of scans: 128 

Resolution: 4 cm-1 

Spectral range:  400 – 4000 cm-1  

Gain parameter: 1 

Gain velocity 0.416 

Background correction: subtracted after each run 
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3.4 Method Parameters 

The parameter selected provides the optimal performance index (how well a calibrated 

method can quantify the validation standards). 

Table 3.2. TQ analysts PLS - Method parameters: showing the parameters used for each trial 

TQ analyst set up tabs Trial 1 Trial 2 Trial 3 

Description 
PLS - by transmission 

FTIR PLS by ATR PLS by ATR 

Pathlength 
assumed to be 

constant Constant Constant 

Components Analysis limits – on Analysis limits – on Analysis limits – on 

Spectra no subtraction no subtraction no subtraction 

Data Format Original spectra Original spectra Original spectra 

Smoothing none none none 

Regions and type Spectrum range /cm-1 Spectrum range /cm-1 Spectrum range /cm-2 

  2761.73 – 3393.17 1051.01 - 662.43 1773.64 - 999.39 

  1687.41 – 938.76 1746.71 – 1057.28 3720.05 - 2832.87 

  1687.41 – 1677.41     

  1074.32 – 678.34     

  1687.41 – 1834.19     

Fit value algorithm simple simple simple 

concentration weighted 

PLS No Yes Yes 

PLS factors No 

Yes 

 yes 
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3.4.1 TQ analyst: PLS overview 

The PLS method was applied to the raw data. PLS is a statistical and quantitative 

technique, it examines the specified region/ regions of the calibration spectra to 

determine which areas are varying statistically as a function of component 

concentration. The calibration model uses spectral and concentration information from 

the standards as well as intensity and wavelength information. PLS was used because 

the measurable peak of the pure components overlaps severely. PLS is capable of 

quantifying sample components when the correlation between concentration and 

absorbance is very complex. PLS is also good when there are interactions between 

component peaks in the mixture, which causes the peaks to broaden or shift or when 

component are present when concentrations are not known. The method can be set up 

to measure all components in a region or you can specify which components to 

measure in which region. Up to 50 components can be specified. 

The TQ analyst method development software is very user friendly, and has several 

tabs in which parameters can be defined for optimum quantification of a method. The 

software also has a unique suggest wizard, which can be used when the parameter 

option is not known. The parameters used for the PLS calibration in this study are 

defined as follows: 

•  Pathlength: in Trial 1, transmission spectra were collected by using Silver 

Bromide halide discs. The Pathlength (sample thickness) of the sample 

could not be verified, and therefore the suggest wizard evaluated the 

spectra from a zero spectra off which the constant pathlength could be 

ascribed. A constant pathlength for trail 2 & 3 was selected because ATR 

was used, and is known to have a constant pathlength. 

• Components: Concentration limits affects analysis limits significantly. The 

upper and lower limits of a component have been specified for both 

methods. This also affects the performance index and indicates how well 

the method can quantify the validation standards. 
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• No spectral subtraction for the two methods was required and the data 

analysis was done on the original spectra. Data analysis can be 

conducted by selecting the first and second derivative spectra. The first 

derivative shows the rate of change across the entire spectrum, which 

means shoulders on peaks become narrower and is therefore easier to 

see. The second derivative shows the change in the rate across the 

spectrum, which result in complex curve with narrower bands. It is useful 

for finding exact peak locations, but increases baseline noise. 

• No smoothing was selected. Spectra smoothing improve spectra that 

might contain random noise obscurities, which can decrease the error in 

the method.  

• The spectra were corrected with calibration and correction standards to 

correct the linearity of the method component. Error handling was set on 

constant across measured range. The first trial was normalized by 

selecting the mean centering technique. Trial two were normalized by 

selecting both the mean centering and the variance scaling techniques. 

Mean centering calculates the average spectrum and subtract it from each 

calibration spectrum, it also calculates the average concentration value for 

each component and subtracts the average value from the concentration 

value of each calibration spectrum. Variance scaling specifies whether the 

calibration data will be scaled so that all of the data contribute equally to 

the calibration model. It estimates the standard deviation (SD) at the 

intensity values and divides each spectral data point by its estimated SD. 

A simple fit value algorithm was applied to both methods which measures 

the validation spectrum to a zero spectrum. It is used when the 

concentration of the standards in a method spans over a large range of 

concentration relative to the concentration you expect in the samples. A 

sensitive fit measures the validation spectrum relative to a mean spectrum 

for all the calibration standards.  
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• Concentration weighted PLS was applied to trial two, to see whether it can 

reduce the uncertainty in the lower concentration ranges. 

3.5 Calibration and Validation set 

Design of calibration set: A full experimental design for 3 components and 3 levels 

would involve 33 = 27 standards, TQ analyst reduce the number of standards by 

introducing factors from principle components with variable correlation. Standards were 

prepared according to the standard matrix that was modelled as required by TQ analyst 

software after the three polymeric components were specified. Each standard had had 

the three components in varied amounts but all added up to 100%. Each standard and 

sample spectrum was evaluated for baseline correction and total absorbing peaks 

before the spectral data was transferred to the TQ analyst processing methods. 

3.6 Samples 

The concentration ranges from the three polymeric components in 4 simple PE free 

formulation are as follows: A 10 – 75%; B 10 -75% and C 0 – 5%, But the calibration 

model covers the range from 0 to 100% for all components.  

3.7 Experimental 

• Trial 1: The initial experiment was used to see if one can extract the three 

polymeric components from the paint and quantifying the extracts via TQ analyst. 

The PE free paints were formulated varying in three polymeric components three 

times. Paints with unknown polymeric content were also prepared and used for 

external validation. The polymeric components were extracted using ASTM method 

D3168 which requires weighing 1 to 2 g of paint into a glass beaker and allowing 

the paint to dry in an oven at 105°C for 2hrs. Subsequently, it was washed with 

water to remove the emulsifiers and protective colloids, 50 ml of heptane was 

added to remove the emulsified plasticizers’ and oils and other insoluble non 

polymeric organic materials. 10ml of the extraction mixture was added to extract 

the polymeric from the pigment. The extract was filtered through fine filter paper 

55 
 



 Research Results Chapter three 

and solvent evaporated leaving only the polymeric which could then be applied to a 

crystal halide and sample and standards were acquired by FTIR transmission.  

• Trial 2: After a good correlation of the calibration model for trial 1 (R2 close to 1.and 

realizing one cannot extract all of the polymeric components with the ASTM 3618 

method. The FTIR spectra of the extract were that of styrene acrylic only, 

regardless of the concentration used in the formulation. set; TQ analyst PLS was 

applied to analyse the paint for quantification of the polymeric components without 

prior extraction. The polymeric was not extracted; the standards and sample 

spectra were obtained by ATR using a diamond crystal. 

• Trial 3: The following trial was conducted to determine reproducibility of the lower 

end concentration for component C. Following a similar route to trial 1, standards 

and validation samples were prepared by rationing the components to add up to 5. 

The unit required by the component tab was left out, and the decimal places were 

reduced to 2. Furthermore different analysis region compared to trial 1 and 2 were 

selected for processing. 

 

3.8 Results & Discussion 

The results of the PLS calibration and validation results for each trial are displayed, 

followed by a discussion of the calibration results and validation results respectively.  
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3.8.1 Calibration 

  

Figure 3.1 Overlay of FTIR spectra of 3 components; Component A –purple, B- green and C – 
red, showing the spectral differences in the fingerprint region. 

 

The entire range of the calibration spectra looks very similar for the standards 

containing the three polymeric components because of highly overlapping and 

associating peaks. But on closer inspection of the spectra one notices minor differences 

associated with spectral shifts of the shoulder bands. Figure 3.1 shows the minor 

differences. The spectral regions where the differences occurred were chosen for the 

analysis region.  
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Table 3.3. Calibration results for the PLS model: showing the performance index, Coefficient of 

variation, standard deviations and the factors calculated for each trial. 

      EQUATION 

R 2 RMSEC RMSEP FACTORS Trial  P-INDEX COMP CAL 

1 81.2 A Y= 1 x + 0 0.9973 2.41 6.53 4 

    B Y = 1x+0 0.9998 0.58 4.42 5 

    C Y = 1x + 0 0.9933 3.94 2.02 3 

2 79.9 A Y=0.98x+1.88 0.9927 4.24 5.63 4 

    B Y=0.99x+0.9 0.9916 4.29 6.21 5 

    C Y=0.9x+0.94 0.9901 4.47 2.33 5 

3 N/A A Y= 1 x + 0 1.0000 1.85E+05 2.52 10 

    B Y = 1x+0 1.0000 4.82E+05 0.843 10 

    C Y = 1x + 0 1.0000 3.65E+05 0.593 10 

  

58 
 



 Research Results Chapter three 

The following figures are example of the calibration output for Trials 2 and 3; data 

presented in Table 3.3, were obtained from the figures below (TQ analyst 8). 

A  

B  

C  

Figure 3.2 Actual versus calculated plot (left) and percent difference plots (right) for Trial 2:  For 
component A, B & C 
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TQ analyst® 8 

A  

B  

C  

Figure 3.3 Actual versus calculated plot (left) and percent difference plots (right) for Trial 2:  For 
component A, B & C 
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Figure 3.4 Pure component spectra obtained from PLS calibration relative to the Pathlength 

PLS can also be used to evaluate the pure spectra from a mixture of spectra  

3.8.1.1 The calibration results discussion 

The calibration sets consisted of 16 samples and 2 validation samples. The PLS 

method displays the calibration and validation results such as in figure 3.2 and 3.3. The 

calculated versus the actual plot compares the concentration value to the actual 

concentration value for each standard that contains the selected component. The % 

difference plot shows the differences between the calculated and the actual 

concentration, relative to the actual values. A typical % difference plot shows data 

points randomly distributed around the zero lines similar to figure 3.2. The plots are 

characteristic of a good calibration output. An ideal output displays the data points for 

the calculated versus the actual concentrations on an exact 45º line from both axes and 

the percent difference plot will form a horizontal line at exactly zero, obtained by trial 3 

see figure 3.3.  

Validation standards represent the accuracy of the method better than the calibration 

set, because the calibration set is used to create the model and validations are not. The 

root mean square error of prediction (RMSEP) is determined by the validation standards 

and it is the standard deviation for each measured component (). Coefficient correlation 
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values close >0.9 and 1 were obtained with trial 1, 2 and 3 respectively. This is an 

indication of the linear relationship between the actual and calculated values. The root 

mean square error of calibration (RMSEC) shows the uncertainty of the calibration. The 

RMSEC was found to be below 5% and RMSEP was found to be below 7% for trial 1 

and 2. Trial 3 yielded RMSEC and RMSEP below 3%. The results obtained from PLS 

calibration models are presented in table 3.3. 

 

Figure 3.5 Example of principle component spectra (vectors) in a dimensional space  

 

Principle component (PC) is one or more vectors in a multidimensional space at right 

angles to each other which explains much of the variation in that space. The software 

condenses the concentration and spectral information into a set of factors and therefore 

each factor represents an independent variation. 
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Figure 3.6 Principle components are used to reconstruct a spectrum with the factors which 
contain the % variance  

 

Factors are ranked by the amount of variance they describe, therefore the first factor 

contains most of the variance and the ones that follow are more specific to small 

variations (see Figure 3.6). 

The predicted residual square sum error (PRESS) The PRESS value for a factor is the 

sum of the (residual values) 2 over the removed standards. The PRESS changes as the 

number of factors used to calibrate each component in the active method increase It is 

a measure on how well the calibration predicts the concentration left out during cross 

validation, an indication of the calibration error. In order to validate the method, cross 

validation using leave one out technique was used. Cross validation evaluates the data 

by excluding selected samples in the regression model and then constructing a model 

for the remaining samples  

Increasing a factor reduces the error and the PRESS value decrease at some point 

where the PRESS reaches a minimum. The PRESS plot flats off or increase more 

factors are added at this flat off point and the model becomes an over fit.  
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Table 3.4.  “PRESS” value for the selected component: changes as the number of factor increases. 

PRESS value for component A during Trial 3 selected as an example 

 

Factor PRESS RMSECV 

0 27.43827 1.65645 

1 25.00983 1.58145 

2 20.9393 1.44704 

3 31.76976 1.78241 

4 17.8287 1.33524 

5 18.00691 1.3419 

6 8.20821 0.90599 

7 3.53608 0.59465 

8 3.67108 0.60589 

9 3.67837 0.6065 

10 3.66982 0.60579 

 

Table 3.4 shows no clear minimum it continues to decrease as soon as another factor is 

added. The factors used for trial 3 were 10, but from the table above the optimum 

number one can use is the first minimum which is 8. After 8 factors the model flats off 

and when more factors are added after this point the model may become an over fit. 

The RMSECV limits the number to require a specified level of error, in other words it is 

the minimum uncertainty value you require. For this study the RMSECV was left on 

default which is zero because of the not so stringent uncertainty requirements for each 

component. The relative estimated precision for each factor is given by the RMSECV. 
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Table 3.5. Example of the principle components:  for component “A” showing contribution of each 

PC in concentration, full spectrum and analysis region.  

 

Eigen values       

Principal Component Concentration  Full Spectrum  Analysis Region  

1 53.9129 84.7338 83.0193 

2 98.4419 94.8564 93.4721 

3 100 97.6897 97.1285 

4 100 99.2393 99.0806 

5 100 99.7089 99.6882 

6 100 99.8451 99.8531 

7 100 99.9602 99.9757 

8 100 99.9883 99.9891 

9 100 99.9946 99.9948 

There is sufficient variability for this method   

        

 

The Eigen value diagnostic showed that the component concentrations of the standards 

are evenly distributed over the analysis range and that the principle components’ have 

enough spectral variation 
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3.8.2 External Validation and quantification 

 

During each model a few samples were left out namely “unused set”. The Accuracy and 

precision of the model were tested with the unused set and paint samples prepared. 

Table 3.6. Mean values of the standard error of prediction (SEP) and % relative error are shown; for 

each component for the three trials. 

Trial  Component A Component B Component C 

  % Relative error SEP % Relative error SEP % Relative error SEP 

1 12.6 1.07 2.68 0.18 14.97 4.25 

2 13.33 16.95 18.41 13.07 12.85 0.18 

3 19.38 0.17 19.99 0.12 27.91 0.1 

 

Table 3.7. The expected error with probability of 68% = a range of mean ± SEP, which means 68% 

of data for the application, should fall in this range: Table showing the percentage of data in the range 

for each component in each trial. 

Component Trial 1 Trial 2 Trial 3 

A 60% 75% 55% 

B 60% 75% 55% 

C 60% 62% 55% 
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The following nine illustrations are % difference plots; showing the residual values for 

each component for the three trials for each component relative to the actual value. 

 

Figure 3.7 Component A-1: showing residual values between 5 and -5 

 

Figure 3.8 Component B-1: showing residual values between 1 and -2 

 

 

Figure 3.9 Component C-1: showing residual values between 5 and -5 
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Figure 3.10 Component A-2: showing residual values between 10 and -10 

 

Figure 3.11 Component B-2: showing residual values between 10 and -10 

 

Figure 3.12 Component C-2: showing residual values between 5 and -5 
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Figure 3.13 Component A-3: showing residual values between 2 and -2 

 

Figure 3.14 Component B-3: showing residual values between 2 and -2 

 

Figure 3.15 Component C-3: showing residual values between 1 and -1 
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Table 3.8. The quality output for the un-used set; coefficient correlation, regression equation and 

number of outliers for each component. 

  Trial R 2 Equation no obs no outliers 

A 

1 0.9819 y=0.841x +0.783 5 2 

2 0.919 y=1.14x - 0.338 8 2 

3 0.715 y=1.791x + 1.3 9 4 

    

    

B 

1 0.9996 y=1.01x - 0.817 5 2 

2 0.958 y=1.13x + 0.985 8 2 

3 0.712 y=1.46x - 0.46 9 4 

    

    

C 

1 0.9906 y=1.05x - 2.5 5 2 

2 0.334 y=0.95x + 0.13 8 3 

3 0.642 y=-1.48 + 1.2 9 4 
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Table 3.9. Reproducibility; showing the mean, SD and % RSD for components A, B and C during 

Trial 3 

  Component A Component B Component C 

No observations 10 10 10 

mean 4.3375 1.66 0.44 

SD 0.99 0.38 0.28 

% RSD 22.90 23.15 63.49 

True value 3 1.5 0.5 

    

Table 3.10. Residual and %RSD data for components quantified in the simple paint formulation using 

equation obtained by PLS calibration curve. 

 

Component A 

Y=0.98x+1.88 

Component B 

Y=0.99x+0.9 

 

Component C 

Y=0.9x+0.94 

 

 

Actual Residual % RSD Actual Residual % RSD Actual Residual % RSD 

1 73.88 0.40 0.38 13.91 0.76 3.76 0.96 0.84 43.18 

2  41.14 1.06 1.79 64.30 0.26 0.28 0.96 0.84 43.18 

3 41.14 1.06 1.79 44.30 0.46 0.72 0.95 0.85 43.53 

4 52.50 0.83 1.11 47.50 -0.46 0.71 0 0.94 141.42 
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3.8.2.1  The validation discussion 

Additional samples were left out during each trial and were later used for external 

validation to test for precision and accuracy of the technique. The samples were 

quantified by the relevant method for each trial. 

Table 3.16 shows the relative error and standard error of prediction (SEP) obtained by 

subtracting the predicted concentration from the real concentration divided by the 

number of samples subtracted by one sample. It was found that the components can be 

quantified with a relative error of below 20%, except for component C measured during 

trial 3 which gave an error of 27%. Trial 3 contained significantly lower concentration 

because it was originally included to test the reproducibility of the lower end 

concentration of C. Component B showed an error of 2.68% which were significantly 

lower than the rest. The majority of the error lies between 12 to 20%. The standard error 

of prediction for trial one and three were found to be lower than 2% The SEP for trial 2 

was significantly higher. It was found when quantifying samples left out during trial two 

an error message appeared stating that the spectral parameters for the standards and 

samples were not the same. 

One can never be certain of the accuracy of any method therefore an acceptable 

allowable error must be stated beforehand,  For any application the expected error with 

a probability of 68% are mean ± SEP. Table 3.7 indicates the amount of data found in 

the range for the different trials. The amount of data outside the range was, considered 

as outliers. 75% of the trial 2 data fell into the range, even though its prediction error 

was very weak. Only 60% and 55% of trial 1 and 3 data were found to be in the range of 

mean ±SEP, respectively. When the outliers are excluded the SEP and %relative errors 

was significantly reduced.  

Figure 3.7 to figure 3.15 are the residual plots showing the difference relative to the 

actual components A, B and C for trial 1 – 3 respectively. These plots gave an idea of 

the accuracies that can be obtained with the technique. 
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The regression line was calculated for each of the components. Trial 1 showed good 

correlation with R2 of 0.9818 for A, 0.9996 for B and 0.9906 for C. Trial 2 also had good 

linear correlation with R2 of 0.919 and 0.958 for components A and B respectively. The 

regression was not so good for component C as well as for trail 3. A less accurate 

regression was expected with trial C due to the non-linear range of the samples tested. 

As mentioned previously trail C was done to check the reproducibility of the method at 

the lower end concentration of C. The samples for trial C was prepared to represent the 

concentration of the components found in the paint. The rheology modifier – component 

C is normally present in concentration lower than 1%.  

Three simple paint formulations with known polymeric concentration and one blind 

unknown formulation were quantified using the regression equation obtained from PLS 

in trial 1. The paints and blind samples were predicted with a %RSD of less than 5% for 

component A and B. Component C had concentration ranges of less than 1% and could 

therefore not be accurately calculated and gave a %RSD of 40 (refer to Table 3.10). 
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3.9 Conclusion 

The calibration models for all three trials were very good with R2 close to 1 and RMSEC 

and RMSEP of less than 5%. The best calibration model was trail 3 with all points lying 

on zero in the percentage difference plot. Actual versus predicted value plots resulted in 

an exact 45 degrees line running through 0 on both axes. Two analysis regions were 

selected for trail 3, which were the finger print region as well as the region where water 

absorbs. The styrene acrylic had a solid content of 50% and therefore the 50% water in 

the component played a crucial role in the quantification of the standards to its degree 

of accuracy. The external validations for trial 1 and 3 were found to be significantly 

better with R2 close to 1 and a slope of 1, intercepting at 0. The analysis regions for trial 

1 and 3 were found to be optimum for the quantification of polymeric components in 

paint. The accuracy and precision of the method can be further increased with the 

meticulous development of the calibration and validation set as well as increasing the 

linear range of the external validation. The reproducibility will also be better with a 

higher concentration mean The PLS method could predict the higher concentration 

components A and B better than the lower (less than 1%) component C in trial 3. 
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4 General discussion and conclusion 

Fourier transform infrared spectroscopy has been used as the technique of choice, 

although it has its limitations. Spectroscopy i.e. FTIR coupled with computer assisted 

software enables one to manipulate and extract the desired information. It is also a very 

cost effective technique, fast and requires minimal sample preparation especially with 

the ATR accessory and allows for on line investigation 

The development of the method involved in accurately preparing calibration and 

validation standards of the three components as well as a simple paint formulation. 

Before, only classification of the binder could be ascertained, by FTIR (using functional 

group analysis) after extraction by ASTM D3168 standard method for the polymeric 

extraction from paint. At the time it was believed that all polymeric can be extracted 

using this method, but from Trial 1 we learned that only the binder gets extracted, which 

is true cause one cannot expect all the polymeric to be extracted due to their different 

polarities.  

Initially transmission spectra were taken and later ATR was conducted because the 

Pathlength through the sample could not be established and is important to know for 

quantification. Having the polymers extracted in different solvents was soon proposed, 

but realized that by doing this was only going to complicate the model.  

The next objective was soon realized, to have the polymeric components in the paint 

analysed as is. The use of ATR and the Strength of PLS made the analysis possible, 

because for ATR one can apply the paint sample and PLS model can handle 

unexpected components and when chemical matrices are not well known.  

Chemometric models were set-up via CLS, PCR and PLS. The standards were entered 

and calibrated. PLS was found to yield the best performance index off all with prediction 

errors of less than 6%. CLS and PCR gave poorer prediction equations. CLS requires 

one analysis region for each component and with the case of severe overlapping in this 

study that was not possible. In PCR the regression step is done after the principle 

components is selected and therefore not weighed towards the concentration 

information. 
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4.1 Limitations of the FTIR-PLS model 

The method is limited to sub micro concentration, not as sensitive as GC-MS or HPLC. 

It requires careful preparation of calibration and validation samples. It cannot be used to 

quantify a total unknown, unless all the components in the sample has been previously 

been analysed and set-up as standards. Component regions and Pathlength must be 

well defined.  

4.2 Conclusion 

A cost effective technique capable of analysing complex multicomponent infrared 

spectra with good precision and accuracy for samples higher than 1% was achieved. 

The PLS model can be used to predict polymeric components in a coating without prior 

extraction and an acceptable degree of error must be established beforehand. 
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4.3 Recommendations 

With the advent of proper data base building of all the raw materials available by ATR, 

will benefit the further development of the method for the quantification of all 

components in paint. This will allow discriminant methods to be used in conjunction with 

Partial least squares methods for qualification as well as quantification of unknowns. 

Thorough analysis that expands deeper into the Binder or polymeric systems can also 

be investigated using these techniques. The possibility seems endless, but one has to 

weigh the possibility of what’s important in terms of cost effectiveness for the company 

and the possibility of success. 
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