University of Technology

Crystal Engineering of Selected Phenolic Acids

by

Francoise Mystere Amombo Noa

Thesis submitted in fulfilment of the requirements for the degree

Master of Technology: Chemistry
in the Faculty of Applied Science

at the

CAPE PENINSULA UNIVERSITY OF TECHNOLOGY

Supervisor: Professor A. Jacobs

Cape Town
April 2014

TABLE OF CONTENTS

Declaration vi
Abstract vii-viii
Acknowledgements ix
Publication X
List of figures xi-xvi
List of tables xvii-xix
Abbreviations/Terms/Acronyms XX
Atom colour scheme xxi
CHAPTER 1: INTRODUCTION 1
1.1 Supramolecular Chemistry 1-2
1.2 Crystal Engineering 2-6
1.3 Supramolecular Interactions 6
1.3.1 Ion-Ion interactions 7
1.3.2 lon-dipole interactions 7
1.3.3 Dipole-dipole 7
1.3.4 Hydrogen bonding 8-9
1.3.5 Cation-m interactions 9-10
1.3.6 $\quad \pi-\pi$ Stackings 10-11
1.3.7 van der Waals 11
1.4 Co-crystals 11-13
1.5 Co-crystals and Salts 13-15
1.6 Nutraceuticals 15
1.7 Compounds under study 16
1.7.1 Caffeic acid 16
1.7.2 p-coumaric acid 16
1.7.3 trans-ferulic acid 17
1.7.4 Phenylacetic acid 17
1.7.5 4-hydroxyphenylacetic acid 17-18
1.7.6 3-chloro-4-hydroxyphenylacetic acid 18
1.7.7 Vanillic acid 18-19
1.7.8 2-phenylpropionic acid 19
1.7.9 2-phenylbutyric acid 20
1.8 Research Aim 21
REFERENCES 22-29
CHAPTER 2: EXPERIMENTAL METHODS AND MATERIALS 30
2.1 Materials 30
2.1.1 Compounds studied 30-32
2.1.2 Co-crystal formers 32-34
2.2 Methods 35
2.2.1 Crystal growth 35
2.2.2 Slurry conversion 35
2.2.3 Grinding 35
2.2.4 Thermal Analysis 35-36
2.2.5 Hot Stage Microscopy 36-37
2.2.6 Single Crystal X-ray diffraction 37-38
2.2.7 Powder X-ray diffraction 38-39
2.2.8 Non-Isothermal kinetics 39
2.2.9 Infra-red Spectroscopy 39-40
2.2.10 Selectivity Experiments 40
2.2.11 Computing Components 40-41
REFERENCES 42-44
CHAPTER 3: VA CO-CRYSTALS AND CO-CRYSTAL HYDRATES 45-46
3.1 Vanillic acid and acridine 46-47
3.1.1 Thermal Analysis 47-48
3.1.2 Hot Stage Microscopy 48-49
3.1.3 Infra-red Spectroscopy 49-50
3.1.4 Powder X-ray Diffraction 51-52
3.1.5 Structure determination 52-55
3.2 Vanillic acid and caffeine 55-56
3.2.1 Thermal Analysis 56-57
3.2.2 Hot Stage Microscopy 57-58
3.2.3 Infra-red Spectroscopy 58-59
3.2.4 Powder X-ray Diffraction 60-61
3.2.5 Structure Determination 61-64
3.3 Vanillic acid and isonicotinamide 64-65
3.3.1 Thermal Analysis 65-66
3.3.2 Hot Stage Microscopy 67
3.3.3 Infra-red Spectroscopy 68-69
3.3.4 Powder X-ray Diffraction 69-70
3.3.5 Structure Determination 70-75
3.4 Vanillic acid and nicotinamide 76
3.4.1 Thermal Analysis 77
3.4.2 Hot Stage Microscopy 78
3.4.3 Infra-red Spectroscopy 78-80
3.4.4 Powder X-ray Diffraction 80-81
3.4.5 Structure Determination 81-84
3.5 Vanillic acid and theobromine 84-85
3.5.1 Thermal Analysis 85-86
3.5.2 Infra-red Spectroscopy 87-88
3.5.3 Powder X-ray Diffraction 88-89
3.5.4 Structure Determination 89-94
3.6 Vanillic acid and theophylline 94-95
3.6.1 Thermal Analysis 95-96
3.6.2 Hot Stage Microscopy 96-97
3.6.3 Infra-red Spectroscopy 97-98
3.6.4 Powder X-ray Diffraction 99-100
3.6.5 Structure Determination 101-104
3.7 Vanillic acid and Urea 104-105
3.7.1 Thermal Analysis 105-106
3.7.2 Powder X-ray Diffraction 106-107
3.7.3 Structure Determination 107-111
REFERENCES 112-114
CHAPTER 4: PAA CO-CRYSTALS AND SALT HYDRATES 115
4.1 PAA and acridine 116
4.1.1 Thermal Analysis 117
4.1.2 Hot Stage Microscopy 118
4.1.3 Infra-red Spectroscopy 118-120
4.1.4 Powder X-ray Diffraction 120-121
4.1.5 Structure Determination 121-124
4.2 PAA and caffeine 124-125
4.2.1 Thermal Analysis 125-126
4.2.2 Infra-red Spectroscopy 126-127
4.2.3 Powder X-ray Diffraction 127-128
4.2.4 Structure Determination 128-131
4.3 PAA and cinchonidine 131-132
4.3.1 Thermal Analysis 132-133
4.3.2 Hot Stage Microscopy 134
4.3.3 Infra-red Spectroscopy 134-136
4.3.4 Powder X-ray Diffraction 136-137
4.3.5 Structure Determination 137-141
4.4 PAA and isonicotinamide 141-142
4.4.1 Thermal Analysis 142-143
4.4.2 Infra-red Spectroscopy 144-145
4.4.3 Powder X-ray Diffraction 145-146
4.4.4 Structure Determination 146-149
4.5 PAA and nicotinamide 150
4.5.1 Thermal Analysis 150-151
4.5.2 Hot Stage Microscopy 152
4.5.3 Infra-red Spectroscopy 152-154
4.5.4 Powder X-ray Diffraction 154-155
4.5.5 Structure Determination 155-158
4.6 PAA and quinidine 159
4.6.1 Thermal Analysis 160
4.6.2 Hot Stage Microscopy 161
4.6.3 Infra-red Spectroscopy 162-163
4.6.4 Powder X-ray Diffraction 163-164
4.6.5 Structure Determination 164-169
4.7 PAA and quinine 169-170
4.7.1 Thermal Analysis 170-171
4.7.2 Hot Stage Microscopy 172
4.7.3 Infra-red Spectroscopy 173-174
4.7.4 Powder X-ray Diffraction 174-175
4.7.5 Structure Determination 175-179
4.8 Selectivity Experiments 179-180
REFERENCES 181-182
CHAPTER 5: HPAA CO-CRYSTALS, SALTS AND SALT HYDRATES 183
5.1 HPAA and acridine 183-184
5.1.1 Thermal Analysis 185
5.1.2 Infra-red Spectroscopy 186-187
5.1.3 Powder X-ray Diffraction 187-188
5.1.4 Structure Determination 188-191
5.2 HPAA and cinchonidine 191-192
5.2.1 Thermal Analysis 192-193
5.2.2 Infra-red Spectroscopy 194-195
5.2.3 Powder X-ray Diffraction 195-196
5.2.4 Structure Determination 196-200
5.3 HPAA and cinchonidine 200-201
5.3.1 Thermal Analysis 201-202
5.3.2 Infra-red Spectroscopy 203-204
5.3.3 Powder X-ray Diffraction 204-205
5.3.4 Structure Diffraction 205-209
5.4 HPAA and isonicotinamide 209-210
5.4.1 Thermal Analysis 210-211
5.4.2 Infra-red Spectroscopy 211-213
5.4.3 Powder X-ray Diffraction 213-214
5.4.4 Structure Determination 214-217
5.5 HPAA and quinidine 217-218
5.5.1 Thermal Analysis 218-219
5.5.2 Infra-red Spectroscopy 220-221
5.5.3 Powder X-ray Diffraction 221-222
5.5.4 Structure Determination 222-226
5.6 HPAA and quinine 226-227
5.6.1 Thermal Analysis 227-228
5.6.2 Infra-red Spectroscopy 228-229
5.6.3 Powder X-ray Diffraction 230
5.6.4 Structure Determination 231-233
5.7 Selectivity Experiments 233
REFERENCES 10234
CHAPTER 6: CHPAA CO-CRYSTALS 10235
6.1 CHPAA 10235
6.1.1 Thermal Analysis 236
6.1.2 Structure Determination 237-239
6.2 CHPAA and acridine 2335240
6.2.1 Thermal Analysis 240-241
6.2.2 Infra-red Spectroscopy 241-242
6.2.3 Powder X-ray Diffraction 243
6.2.4 Structure Determination 243-246
REFERENCES 11247
CHAPTER 7: HYDROXYCINNAMIC ACID CO-CRYSTALS AND SALT HYDRATES 02048
7.1 Caffeic acid and isonicotinamide 278-249
7.1.2 Thermal Analysis 24思250
7.1.3 Structure Determination 250-255
$7.2 \quad p$-coumaric acid and nicotinamide 255-256
7.2.1 Thermal Analysis 256-257
7.2.2 Structure Determination 257-261
$7.3 \quad p$-coumaric acid and quinine 261-262
7.3.1 Thermal Analysis 262-263
7.3.2 Hot Stage Microscopy 264
7.3.3 Powder X-ray Diffraction 265
7.3.4 Non-isothermal kinetics 266
7.3.5 Structure Determination 266-271
7.4 trans-ferulic acid and isonicotinamide 271-272
7.4.1 Thermal Analysis 272-273
7.4.2 Structure Determination 273-277
REFERENCES 278
CHAPTER 8: RACEMIC COMPOUNDS 279
$8.1 \quad$ 2-PBA with cinchonidine 279-280
8.1.1 Thermal Analysis 280-281
8.1.2 Structure Determination 282-284
8.2 2-PPA with quinine 284-285
8.2.1 Thermal Analysis 285-286
8.2.2 Hot stage microscopy 286-287
8.2.3 Structure Determination 287-290
8.3 2-PPA with quinine 290-291
8.3.1 Thermal Analysis 291-292
8.3.2 Structure Determination 293-296
REFERENCES 297
CHAPTER 9: STRUCTURES COMPARISON 298-301
REFERENCES 302
CHAPTER 10: CONCLUSION 303-307
REFERENCES 308

DECLARATION

I, Francoise Mystere Amombo Noa, declare that the contents of this thesis represent my own work, and that the thesis has not previously been submitted for academic examination towards any qualification. Furthermore, it represents my own ideas and not necessarily those of the Cape Peninsula University of Technology.

Abstract

Crystal engineering based upon acid: base compounds have been studied in this thesis. Selected phenolic acids such as: vanillic acid (VA), phenylacetic acid (PAA), 4-hydroxyphenylacetic acid (HPAA), 3-chloro-4-hydroxyphenylacetic acid (CHPAA), caffeic acid (CFA), p-coumaric acid ($p \mathrm{CA}$), trans-ferulic acid (tFER), 2phenylpropionic acid (PPA) and 2-phenylbutyric acid (PBA) were the main compounds investigated. These phenolic acids have formed co-crystals/co-crystal hydrates, salts/salt hydrates and hybrid salt-co-crystals with acridine (ACRI), caffeine (CAF), cinchonidine (CIND), isonicotinamide (INM), isonicotinic acid (INA), nicotinamide (NAM), quinidine (QUID), quinine (QUIN), theobromine (THBR), theophylline (THPH) and urea (U).

The two racemic compounds 2-phenylpropionic acid (PPA) and 2-phenylbutyric acid (PBA) were used to study chiral discrimination leading to the understanding of separation enantiomers.

Compounds were prepared in different solvents (alcohols, ketone and distilled water) to investigate the relationship between solvents used and the crystalline product obtained. (If there is any effect on the crystalline compound obtained by changing the solvent).

The structures were elucidated using single crystal X-ray diffraction. Ground products of obtained compounds were characterized by powder X-ray diffraction (PXRD). Thermal analyses like thermogravimetry (TG), differential scanning calorimetry (DSC) and hot stage microscopy (HSM) were used for the determination of thermal character of the new compounds. IR was also performed to characterize the new compounds.

Non-isothermal TG was utilised to obtain kinetic parameters for the water and the methanol release in $\left(\boldsymbol{p C A}^{-}\right)\left(\mathbf{Q U I N}^{+}\right) \cdot p \mathrm{CA} \cdot \mathrm{MeOH} \cdot \mathrm{H}_{2} \mathbf{O}$.

A selective experiment was done in which quinidine and quinine were used to compete between selected phenolic acids (PAA and HPAA).

The comparison of the crystal structures determined showed that, changing the phenolic acid while using the same co-crystal former has a significant effect on the type of compounds obtained. The obtained crystal structures were either co-crystal/co-crystal hydrates, salts/salt hydrates or hybrid salt-co-crystals which formed network via means of supramolecular interactions.

ACKNOWLEDGEMENTS

I wish to thank Prof. Ayesha Jacobs for her patience and understanding, and for assisting me throughout my project, Prof. Luigi R Nassimbeni and Dr. Nikoletta Báthori for the continuous guidance and encouragement throughout my study. I have been privilege to work with them, especially my supervisor Prof. Ayesha Jacobs as she taught me to resolve problems throughout my project.

I will like to acknowledge and thank my parents, my closest family and friends for their constant support throughout the years of studies.

Last but not least the Cape Peninsula University of Technology.

PUBLICATION

Parts of this thesis have been published:

- Jacobs. A \& Amombo Noa. F. M. J. Chem. Crystallogr. 2014, 44 (2), 57-62.

LIST OF FIGURES

Figure 1.1: Comparison between the scope of molecular and supramolecular 2
chemistry according to Lehn
Figure 1.2.1: (a) Supramolecular homosynthon and (b) supramolecular 3
heterosynthon
Figure 1.3.1: Illustration of ion-ion interaction in tetrabutylammonium chloride 7
Figure 1.3.2: Dipole-dipole interaction between carbonyl groups 7
Figure 1.3.3: Illustration of the different types of geometries found in hydrogen 8
bonding
Figure 1.3.4: Hydrogen bond geometry description 9
Figure 1.3.5: Cation-m interactions 10
Figure 1.3.6: The off-set face-to-face $\pi-\pi$ stacking representation 10
Figure 1.3.7: Representation of edge-to-face stacking 11
Figure 1.4.1: Crystal structure of the triclinic form of quinhydrone 12
Figure 1.4.2: The Hoogsteen base-pair 13
Figure 1.5.1: Co-crystal representation 14
Figure 1.5.2: Representation of a salt 14
Figure 1.7.1: 3-(3,4-dihydroxyphenyl)-2-propenoic acid 16
Figure 1.7.2: 3-(4-dihydroxyphenyl)-2-propenoic acid 16
Figure 1.7.3: (E)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoic acid 17
Figure 1.7.4: Phenylacetic acid 17
Figure 1.7.5: 4-hydroxyphenylacetic acid 18
Figure 1.7.6: 3-chlo-4-hydroxyphenylacetic acid 18
Figure 1.7.7: 4-hydroxy-3-methhoxybenzoic acid 19
Figure 1.7.8: 2-phenylpropionic acid 19
Figure 1.7.9: Stereochemical representations of the $R-(-)$ and $S-(+)$ 19
enantiomers of 2-phenylpropionic acid
Figure 1.7.10: 2-phenylbutyric acid 20
Figure 1.7.11: Stereochemical representations of the R-(-) and $S-(+)$ 20
enantiomers of 2-phenylbutyric acid
Figure 2.1.1: Chemical structures of investigated compounds 30-31
Figure 2.1.2: Chemical structures of the co-crystal formers 33-34
Figure 3.1: \quad Numbering scheme of vanillic acid molecule 45
Figure 3.2: Numbering scheme of the second vanillic acid molecule when forming a 46
2:1 (vanillic acid: co-crystal former) ratio
Figure 3.1.1: VA•ACRI asymmetric unit with all the hydrogen atoms shown for 47
numbering clarity.
Figure 3.1.2: DSC curves vanillic acid (blue), acridine (green) and VA•ACRI 48
(red)Figure 3.1.3: HSM photography of VA•ACRI49
Figure 3.1.4: IR spectrums of (a) VA, (b) ACRI and (c) VA•ACRI 50
Figure 3.1.5: PXRD patterns of VA•ACRI (red), ground product (green), physical 52
mixture (purple) and slurry (blue)
Figure 3.1.6: Packing diagram of VA•ACRI down [001] with all hydrogen atoms 54
removedFigure 3.1.7: Hydrogen bonding in VA•ACRI55
Figure 3.2.1: Asymmetric unit of the VA•2CAF structure with all hydrogen atoms 56
shown for numbering clarity.
Figure 3.2.2: DSC curves of VA (green), CAF (blue) and VA•2CAF (red) 57
Figure 3.2.3: HSM photography of VA•2CAF 58
Figure 3.2.4: IR spectrums (a) VA•2CAF, (b) VA and (c) CAF 59
Figure 3.2.5: PXRD patterns of VA•2CAF (red), ground product after 30 min 61
(green), physical mixture (purple), ground product after 45 min (sky blue),ground product after 1 hr (orange) and slurry (blue)Figure 3.2.6: Packing diagram of VA•2CAF down [100] with all the hydrogen63
atoms removed
Figure 3.2.7: Hydrogen bonding in VA•2CAF 64
Figure 3.3.1: Asymmetric unit of the $2 \mathrm{VA} \cdot \mathbf{2 I N M} \cdot \mathbf{2} \mathbf{H}_{2} \mathrm{O}$ structure with all the 65
hydrogen atoms shown for numbering clarity
Figure 3.3.2: Thermal analysis of $\mathbf{2 V A} \cdot \mathbf{2 I N M} \cdot \mathbf{2 H} \mathbf{H}_{2} \mathrm{O}$ DSC (red), $\mathbf{2 V A} \cdot \mathbf{2 I N M} \cdot \mathbf{2} \mathbf{H}_{\mathbf{2}} \mathrm{O}$ 66
TG (blue), INM (purple) and VA (green)
Figure 3.3.3: HSM photography of $2 \mathrm{VA} \cdot \mathbf{2 I N M} \cdot \mathbf{2 H} \mathbf{H}_{\mathbf{2}}$ 67
Figure 3.3.4: IR spectrums (a) VA, (b) INM and (c) 2VA•2INM•2 $\mathbf{H}_{2} \mathbf{O}$ 69
Figure 3.3.5: PXRD patterns 2VA•2INM•2 $\mathrm{H}_{2} \mathrm{O}$ (red), ground product (green), 70
physical mixture (purple), slurry in methanol (sky blue) and liquid assisted ground product (blue)
Figure 3.3.6: (a) packing diagram of $\mathbf{2 V A} \cdot \mathbf{2 I N M} \cdot \mathbf{2 H} \mathbf{2} \mathbf{O}$ down [100] with all the 72-73
hydrogen atoms removed (b) packing diagram of $2 \mathrm{VA} \cdot \mathbf{2 I N M} \cdot \mathbf{2 H} \mathbf{H}_{2} \mathrm{O}$ showing VA
and INM molecules in layers down [010] parallel to [$\overline{3} 33$] and (c) cavities inwhich water molecules are located down [100]Figure 3.3.7: $\mathrm{C}-\mathrm{H} \cdot \bullet \cdot \pi$ interaction in $2 \mathrm{VA} \cdot 2 \mathrm{INM} \cdot 2 \mathrm{H}_{2} \mathrm{O}$73
Figure 3.3.8: Hydrogen bonding in 2VA•2INM•2 $\mathrm{H}_{2} \mathrm{O}$ down [100] 75
Figure 3.4.1: Asymmetric unit of VA•NAM with all the hydrogen atoms shown for 76
numbering clarity
Figure 3.4.2: DSC curves of VA•NAM (red), NAM (green) and VA (blue) 77
Figure 3.4.3: HSM photography of VA•NAM 78
Figure 3.4.4: IR spectrums (a) NAM, (b) VA and (c) VA•NAM 80
Figure 3.4.5: PXRD patterns of VA•NAM (red), ground product (green), physical 81
mixture (purple) and slurry (blue)
Figure 3.4.6: Packing diagram of VA•NAM down [100] with all the hydrogen 83
atoms removedFigure 3.4.7: Hydrogen bonding in VA•NAM84
Figure 3.5.1: Asymmetric unit of VA•THBR•2 $\mathrm{H}_{2} \mathrm{O}$ with all hydrogen atoms 85
shown for numbering clarity
Figure 3.5.2: Thermal analysis of VA•THBR•2 $\mathbf{H}_{2} \mathrm{O}$ DSC (red), VA•THBR•2 $\mathbf{H}_{\mathbf{2}} \mathbf{O}$ 86
TG (blue), THBR (purple) and VA (green)
Figure 3.5.3: IR spectrums (a) VA•THBR•2H2O, (b) VA and (c) THBR88
Figure 3.5.4: PXRD patterns of VA•THBR•2H2O (red), ground product (green), 89
physical mixture (purple) and assistance liquid ground product (blue)
Figure 3.5.5: Packing diagram of VA•THBR•2 $\mathbf{H}_{2} \mathrm{O}$ with all the hydrogen atoms 91-92
removed (a) down [100] (b) [010] and (c) cavities in which water molecules are located downFigure 3.5.6: Hydrogen bonding in VA•THBR•2 $\mathrm{H}_{2} \mathrm{O}$ down [010]94
Figure 3.6.1: Asymmetric unit of 2VA•THPH structure with all the hydrogen 95
atoms removed
Figure 3.6.2: DSC curves of 2VA•THPH (red), VA (green) and THPH (blue) 96
Figure 3.6.3: HSM photography of 2VA•THPH 97
Figure 3.6.4: IR spectrums (a) VA, (b) 2VA•THPH and (c) THPH 98
Figure 3.6.5: PXRD patterns of 2VA•THPH (red), ground product after 20 min 100
(green), ground product after 30 min (purple), slurry (sky blue) and physical mixture (blue)
Figure 3.6.6: Thermal analysis of 2VA•THPH•2H2O DSC (red) and 100
2VA•THPH•2 $\mathrm{H}_{2} \mathrm{O}$ TG (blue)
Figure 3.6.7: $\mathrm{C}-\mathrm{H} \cdot \bullet \bullet \pi$ interaction in 2VA•THPH. 102
Figure 3.6.8: Packing diagram of 2VA•THPH down [010] with all the hydrogen 103
atoms removed
Figure 3.6.9: Hydrogen bonding in 2VA•THPH 104
Figure 3.7.1: Asymmetric unit of 2VA•2U structure with all the hydrogen atoms 105
shown for numbering clarity 106
Figure 3.7.2: DSC curves of 2VA•2U (red), VA (green) and U (blue) 107
Figure 3.7.3: PXRD patterns 2VA•2U (red), ground product (green), physical 108
mixture (purple) assistance liquid ground product (sky blue) and slurry (blue)
Figure 3.7.4: Packing diagram of 2VA•2U down [010] with all the hydrogen109
atoms removed
Figure 3.7.5: Hydrogen bonding in 2VA•2U 111
Figure 4.1: \quad umbering scheme of PAA molecules 115
Figure 4.1.1: Asymmetric unit of the PAA•ACRI structure with all the hydrogen 116
atoms shown for numbering clarity
Figure 4.1.2: DSC curves of PAA•ACRI (red), PAA (blue) and ACRI (green) 117
Figure 4.1.3: HSM photography of PAA•ACRI 118
Figure 4.1.4: IR spectrums of (a) PAA, (b) ACRI and (c) PAA•ACRI 120
Figure 4.1.5: PXRD patterns of PAA•ACRI (red), ground product (green), 121
physical mixture (purple) and slurry (blue)
Figure 4.1.6: Packing diagram of PAA•ACRI down [100] with all the hydrogen 123
atoms removed
Figure 4.1.7: $\mathrm{C}-\mathrm{H} \cdots \bullet \pi$ interaction between PAA and acridine molecules 123
Figure 4.1.8: Hydrogen bonding in PAA•ACRI 124
Figure 4.2.1: Asymmetric unit of 2PAA•CAF structure with all the hydrogen 125
atoms shown for numbering clarity
Figure 4.2.2: DSC curves of 2PAA•CAF (red), CAF (green) and PAA (blue) 126
Figure 4.2.3: IR spectra (a) physical mixture of 2PAA•CAF and (b) slurry 127
product of 2PAA•CAF
Figure 4.2.4: PXRD patterns of 2PAA•CAF (red), ground product after 20 min 128
(green), ground product after 30 min (purple), physical mixture (sky blue) andslurry (blue)
Figure 4.2.5: Packing diagram of 2PAA•CAF down [010] with all the hydrogen 130
atoms removed
Figure 4.2.6: Hydrogen bonding in 2PAA•CAF 131
Figure 4.3.1: Asymmetric unit of ($\left.\mathrm{PAA}^{-}\right)\left(\mathrm{ClND}^{+}\right) \cdot \mathrm{H}_{2} \mathbf{O}$ structure with all the 132
hydrogen atoms shown for numbering clarity
Figure 4.3.2: Thermal analysis curves of ($\left.\mathrm{PAA}^{-}\right)\left(\mathrm{CIND}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}:$ DSC (red), TG 133
(blue), cinchonidine (green) and PAA (purple)
Figure 4.3.3: HSM photography of $\mathrm{PAA} \cdot \mathrm{CIND} \cdot \mathrm{H}_{2} \mathrm{O}$ 134
Figure 4.3.4: IR spectrums (a) PAA, (b) CIND^{2} and (c) $\left(\mathrm{PAA}^{-}\right)\left(\mathrm{CIND}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ 136
Figure 4.3.5: PXRD patterns of $\left(\mathrm{PAA}^{-}\right)\left(\mathrm{ClND}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ (red) and slurry (blue) 137
Figure 4.3.6: (a) Packing diagram of ($\left.\mathrm{PAA}^{-}\right)\left(\mathrm{CIND}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ down [010], (b) 139-140
cavities in which water molecules are located down [010]
Figure 4.3.7: Hydrogen bonding in $\left(\mathrm{PAA}^{-}\right)\left(\mathrm{CIND}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ 141
Figure 4.4.1: Asymmetric unit of the PAA•INM structure with all the hydrogen 142
atoms shown for numbering clarity
Figure 4.4.2: DSC curves of PAA (blue), INM (green) and PAA•INM (red) 143
Figure 4.4.3: IR spectrum (a) PAA, (b) INM and (c) PAA•INM 145
Figure 4.4.4: PXRD patterns of PAA•INM (blue), ground product after 30 min 146
(red), ground product after 40 min (purple), slurry (green) and physical mixture(sky blue)
Figure 4.4.5: $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction between PAA molecules 148
Figure 4.4.6:Packing diagram of PAA•INM down [010] with the hydrogen atoms 148
removedFigure 4.4.7: Hydrogen bonding in PAA•INM149
Figure 4.5.1: Asymmetric unit of 2PAA-2NAM structure with all the hydrogen 150
atoms shown for numbering clarity
Figure 4.5.2: DSC curves of 2PAA•2NAM (red), NAM (green) and PAA (blue). 151
Figure 4.5.3: HSM photography of 2PAA•2NAM 152
Figure 4.5.4: IR spectrum (a) 2PAA•2NAM, (b) NAM and (c) PAA 154
Figure 4.5.5: PXRD patterns of 2PAA•2NAM (red), ground product at 30 min 155
(green), physical mixture (purple) and slurry (blue)
Figure 4.5.6: Packing diagram of 2PAA•2NAM down [010] with the hydrogen 157
atoms removed.
Figure 4.5.7: Hydrogen bonding in 2PAA•2NAM down [010] 158
Figure 4.6.1: Asymmetric unit of (PAA $^{-}$)(QUID $\left.{ }^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ structure with all the 159
hydrogen atoms shown for numbering clarity
Figure 4.6.2: Thermal analysis curves of (PAA $^{-}$)(QUID $\left.{ }^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$: DSC (red), TG 160
(blue), QUID (green) and PAA (purple)
Figure 4.6.3: HSM photography of $\left(\mathrm{PAA}^{-}\right)\left(\right.$QUID $\left.^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ 161
Figure 4.6.4: IR spectrums (a) $\left(\right.$ PAA $\left.^{-}\right)\left(\right.$QUID $\left.^{+}\right) \cdot \mathbf{H}_{2} \mathbf{O}$, (b) QUID and (c) PAA 163
Figure 4.6.5: PXRD pattern of (PAA $\left.^{-}\right)\left(\right.$QUID $\left.^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ (red) and slurry (blue) 164
Figure 4.6.6: (a) Crystal packing of (PAA $^{-}$)(QUID $\left.{ }^{+}\right) \cdot \mathrm{H}_{2}$ Owith hydrogen atoms 167
removed down [100] (b) cavities in which water molecules are located down [100].Figure 4.6.7: Hydrogen bonding in (PAA $^{-}$)(QUID $\left.{ }^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$169
Figure 4.7.1: Asymmetric unit of $\left(\mathrm{PAA}^{-}\right)\left(\mathbf{Q U I N}{ }^{+}\right) \cdot \mathrm{H}_{2} \mathbf{O}$ with all the hydrogen 170
atoms shown for numbering clarity
Figure 4.7.2: Thermal analysis curves of ($\left.\mathrm{PAA}^{-}\right)\left(\mathrm{QUIN}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ DSC (red), TG 171
(blue), quinine (green) and PAA (purple)Figure 4.7.3: HSM photography of (PAA^{-}) $\left(\mathrm{QUIN}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$172
Figure 4.7.4: IR spectra (a) $\left(\right.$ PAA $\left.^{-}\right)\left(\right.$QUIN $\left.^{+}\right) \cdot \mathrm{H}_{2} \mathbf{O}$, (b) QUIN and (c) PAA 174
Figure 4.7.5: PXRD patterns of ($\left.\mathrm{PAA}^{-}\right)\left(\mathrm{QUIN}^{+}\right) \cdot \mathrm{H}_{2} \mathbf{O}$ (red) and slurry (blue). 175
Figure 4.7.6: (a) crystal packing of (PAA $\left.{ }^{-}\right)\left(\mathbf{Q U I N}^{+}\right) \cdot \mathrm{H}_{2} \mathbf{O}$ with hydrogen atoms removed down [100] and (b) cavities in which water molecules are located down 177-178 [100]
Figure 4.7.7: Hydrogen bonding in (PAA $\left.^{-}\right)\left(\mathbf{Q U I N}^{+}\right) \cdot \mathrm{H}_{2} \mathbf{O}$ 179
Figure 5.1: Atomic numbering of the HPAA molecule 183
Figure 5.1.1:Atomic numbering of the asymmetric unit in
(HPAA^{-})($\left.\mathrm{ACRI}^{+}\right) \cdot \mathrm{HPAA}^{-A C R I}$ with all the hydrogen atoms shown 184
Figure 5.1.2: DSC curves of HPAA (blue), acridine (green) and 185
(HPAA^{-})(ACRI^{+}) $\cdot \mathrm{HPAA} \cdot \mathrm{ACRI}^{(\mathrm{red})}$
Figure 5.1.3: IR spectra (a) HPAA, (b) (HPAA^{-})(ACRI $\left.^{+}\right)^{+} \cdot \mathrm{HPAA} \cdot \mathbf{A C R I}$ and (c) 187
ACRI
Figure 5.1.4: PXRD patterns of (HPAA $\left.{ }^{-}\right)\left(\mathrm{ACRI}^{+}\right) \cdot \mathrm{HPAA} \cdot \mathbf{A C R I}$ (red), ground 188
product (green), physical mixture (purple) and slurry (blue) 190
Figure 5.1.5: Packing diagram of (HPAA ${ }^{-}$)(ACRI $^{+}$) - HPAA•ACRI along [010] 191
Figure 5.1.6: Hydrogen bonding in (HPAA $\left.{ }^{-}\right)\left(\mathbf{A C R I}^{+}\right) \cdot \mathrm{HPAA}^{-A C R I}$ 192
Figure 5.2.1: Asymmetric unit of $\left(\mathrm{HPAA}^{-}\right)\left(\mathrm{CIND}^{+}\right)\left(0.5 \mathrm{H}_{2} \mathrm{O}\right)$ structure with all the 193
hydrogen atoms shown for numbering clarity
Figure 5.2.2: Thermal analysis curves of (HPAA^{-}) $\left(\mathrm{CIND}^{+}\right)\left(0.5 \mathrm{H}_{2} \mathrm{O}\right)$ DSC (red) 195
and TG (purple)
Figure 5.2.3: IR spectrums (a) HPAA, (b) CIND and (c) 196
(HPAA^{-})($\left.\mathrm{CIND}^{+}\right)\left(0.5 \mathrm{H}_{2} \mathrm{O}\right)$
Figure 5.2.4: PXRD patterns of (HPAA $\left.{ }^{-}\right)\left(\mathrm{CIND}^{+}\right)\left(0.5 \mathrm{H}_{2} \mathrm{O}\right)$ (red), ground product 198-199
(green), physical mixture (purple), assistance liquid ground product (sky blue)and slurry (blue)Figure 5.2.5: (a) Packing diagram of (HPAA^{-}) $\left(\mathrm{CIND}^{+}\right)\left(0.5 \mathrm{H}_{2} \mathrm{O}\right)$ with hydrogen200
atoms removed view down [010] (b) Cavities in which water molecules arelocated down [010].
Figure 5.2.6: Hydrogen bonding in (HPAA^{-})($\left.\mathrm{CIND}^{+}\right)\left(\mathbf{0 . 5 H}_{2} \mathrm{O}\right)$ 201
Figure 5.3.1: Asymmetric unit of (HPAA^{-})($\left.\mathrm{CIND}^{+}\right) \cdot \mid \mathrm{PA} \cdot \mathrm{H}_{2} \mathrm{O}$ structure with all the 202
hydrogen atoms shown for numbering clarity
Figure 5.3.2: Thermal analysis curves of (HPAA ${ }^{-}$)(CIND $\left.^{+}\right) \cdot I P A \cdot H_{2} \mathbf{O}$ DSC (red) 204
and TG (blue)
Figure 5.3.3: IR spectra (a) HPAA, (b) CIND and (c) (HPAA^{-})($\left.\mathrm{CIND}^{+}\right) \cdot I$ IPA• $\mathrm{H}_{2} \mathrm{O}$ 205
Figure 5.3.4: PXRD patterns of (HPAA^{-})($\left.\mathrm{CIND}^{+}\right) \cdot I \mathrm{PA} \cdot \mathrm{H}_{2} \mathrm{O}$ (red), ground product 207-208
(green), physical mixture (purple), slurry (sky blue) and liquid assisted groundproduct (blue)Figure 5.3.5: (a) packing diagram of (HPAA $\left.{ }^{-}\right)\left(\mathrm{CIND}^{+}\right) \cdot I \mathrm{PA} \cdot \mathrm{H}_{2} \mathrm{O}$ with hydrogen209
atoms removed down [100] (b) channels in which water and isopropanol
molecules are located down [100]
Figure 5.3.6: Connectivity in (HPAA $\left.{ }^{-}\right)\left(\right.$CIND $\left.^{+}\right) \cdot \mid$ PA $\cdot \mathrm{H}_{2} \mathrm{O} \quad 210$
Figure 5.4.1: HPAA-2INM asymmetric unit with all the hydrogen atoms shown 211 for numbering clarity
Figure 5.4.2: DSC curve of HPAA (blue), INM (green) and HPAA•2INM (red)
Figure 5.4.3: IR spectrum of (a) INM (b) HPAA and (c) HPAA-2INM
Figure 5.4.4: PXRD patterns of HPAA•2INM (red), ground product (green), 216
physical mixture (purple) and slurry (blue)
Figure 5.4.5: Crystal packing of HPAA-2INM with hydrogen atoms removed 217
viewed down [100]
Figure 5.4.6: Hydrogen bonding in HPAA•2INM 218
Figure 5.5.1: Asymmetric unit of (HPAA^{-})(QUID $\left.^{+}\right) \cdot \mathrm{H}_{2} \mathbf{O}$ with all the hydrogen 219
atoms shown for numbering clarity
Figure 5.5.2: Thermal analysis curves of (HPAA^{-})(QUID $\left.{ }^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ DSC (red) and 221
TG (blue)
Figure 5.5.3: IR spectra (a) QUID, (b) HPAA and (c) (HPAA $^{-}$)(QUID $\left.^{+}\right) \cdot \mathbf{H}_{2} \mathrm{O} 222$
Figure 5.5.4: PXRD patterns of (HPAA^{-})(QUID $\left.{ }^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ (red), ground product at 224
30 min (green), physical mixture (purple) and slurry (blue)
Figure 5.5.5: (a) Crystal packing diagram of (HPAA^{-}) $\left(\right.$QUID $\left.^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$, with 226
hydrogen atoms removed, down [100] and (b) cavities in which water molecules are located down [100]
Figure 5.5.6: Connectivity in (HPAA^{-})(QUID $\left.^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O} 227$
Figure 5.6.1: Asymmetric unit of ((PAA $^{-}$)(QUIN $^{+}$) with all the hydrogen atoms 228 shown for numbering clarity
Figure 5.6.2: DSC curves of (HPAA $^{-}$)(QUIN $^{+}$) (red), HPAA (blue) and quinine 229 (green)
Figure 5.6.3: IR spectra (a) QUIN, (b) HPAA and (c) (HPAA $^{-}$)(QUIN $^{+}$) 230
Figure 5.6.4: PXRD patterns of (HPAA ${ }^{-}$)(QUIN ${ }^{+}$) (red), ground product (green), 232 physical mixture (purple) and slurry (blue)
Figure 5.6.5: Crystal packing diagram of (HPAA^{-})(QUIN $^{+}$) down [100] 233
Figure 5.6.6: Hydrogen bonding in (HPAA $\left.{ }^{-}\right)\left(\right.$QUIN $\left.^{+}\right)$
Figure 6.1.1: (a) Asymmetric unit of CHPAA and (b) Thermal ellipsoid plot of 3-
chloro-4-hydroxyphenyl acetic acid at the 50\% probability level indicating the atomic numbering scheme
Figure 6.1.2: Thermal analysis results of CHPAA (red) and pure CHPAA (blue) 238
Figure 6.1.3: Crystal packing diagram of CHPAA along [001] with the hydrogen 239 atoms removed
Figure 6.1.4: Connectivity in CHPAA 240
Figure 6.2.1: Asymmetric unit of CHPAA•ACRI with all the hydrogen atoms 241
shown for numbering clarity
Figure 6.2.2: DSC curves of CHPAA•ACRI (red), CHPAA (blue) and acridine 242 (green)
Figure 6.2.3: IR spectrum of (a) Acridine, (b) CHPAA and (c) CHPAA•ACRI 243
Figure 6.2.4: PXRD patterns of CHPAA•ACRI (red), ground product (green), 245
physical mixture (purple) and slurry (blue)
Figure 6.2.5: Crystal Packing diagram of CHPAA•ACRI with the hydrogen 246
atoms removed down [010]
Figure 6.2.6: Hydrogen bonding in CHPAA•ACRI
Figure 7.1.1: Asymmetric unit of CFA•3INM with all the hydrogen atoms shown 250
Figure 7.1.2: DSC curves of CFA•3INM (red), isonicotinamide (green) and 252 caffeic acid (blue)
Figure 7.1.3: Packing diagram of CFA•3INM (a) down [100] and (b) down [010]
Figure 7.1.4: Connectivity in CFA•3INM (a) down [100] and (b) down [010] 256
Figure 7.2.1: pCA•NAM asymmetric unit with all the hydrogen atoms shown for 257 numbering clarity
Figure 7.2.2: DSC curves of $\boldsymbol{p C A}$ •NAM (red), nicotinamide (green) and p - 259 coumaric acid (blue)

Figure 7.2.3: Crystal packing diagram of pCA•NAM down [010]
260
Figure 7.2.4: Hydrogen bonding in pCA•NAM 261
Figure 7.2.5: pCA•NAM two one-dimensional strands (blue and green) cross- 262
linked by a series of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (dashed-lines)
Figure 7.3.1: Asymmetric unit of $\left(\right.$ pCA $\left.^{-}\right)\left(\right.$QUIN $\left.^{+}\right) \cdot p \mathrm{CA} \cdot \mathrm{MeOH} \cdot \mathrm{H}_{2} \mathrm{O}$ with all the 263
hydrogen atoms for numbering clarity
Figure 7.3.2: Thermal analysis curves of $\left(\right.$ ($\left.^{-} \mathrm{CA}^{-}\right)\left(\right.$QUIN $\left.{ }^{+}\right) \cdot p \mathrm{CA} \cdot \mathrm{MeOH} \cdot \mathrm{H}_{2} \mathrm{O}$ (red) 264
TG and (blue) DSC
Figure 7.3.3: HSM photographs of $\left(\right.$ pCA $\left.^{-}\right)\left(\right.$QUIN $\left.^{+}\right) \cdot p \mathbf{C A} \cdot \mathbf{M e O H} \cdot \mathrm{H}_{2} \mathbf{O}$: a $298 \mathrm{~K}, \mathbf{b}$ 265
347 K , c 373 K , d 426 K , e 429 K , f $433 \mathrm{~K}, \mathbf{g} 435 \mathrm{~K}$ and h 438 K
Figure 7.3.4: PXRD pattern of $\left(\right.$ pCA $\left.^{-}\right)\left(\right.$QUIN $\left.^{+}\right) \cdot p \mathrm{CA} \cdot \mathrm{MeOH} \cdot \mathrm{H}_{2} \mathrm{O}$ (red), slurry 266
(green), ground product (purple) and physical mixture (blue)
Figure 7.3.5: Plots of $-\log \beta$ versus 1/T 268
Figure 7.3.6: (a) Packing diagram of $\left(\mathrm{pCA}^{-}\right)\left(\right.$QUIN $\left.{ }^{+}\right) \cdot p \mathrm{CA} \cdot \mathbf{M e O H} \cdot \mathrm{H}_{2} \mathrm{O}$ down 269
[100] and (b) Cavities in which methanol and water molecules are located running down [100]
Figure 7.3.7: Hydrogen bonded rings in the hybrid salt-cocrystal solvate with 270
dashed lines indicating the $R_{4}^{2}(11)$ and the $R_{4}^{4}(24)$ ring motifs
Figure 7.3.8: Packing diagram of $\left(p \mathrm{CA}^{-}\right)\left(\mathbf{Q U I N}{ }^{+}\right) \cdot p \mathrm{CA} \cdot \mathrm{MeOH} \cdot \mathrm{H}_{2} \mathrm{O}$ along [100] indicating the hydrogen bonded ribbons running along [010]
Figure 7.4.1: Asymmetric unit of $t F E R \cdot 2 I N M$
Figure 7.4.2: DSC curves of $t F E R \cdot 2 I N M$ (red), INM (green) and FER (blue) 273 27

Figure 7.4.3: Packing diagram of $t F E R \cdot 2 I N M$ down [100]
Figure 7.4.4: (a) Packing diagram of tFER-2INM along [100] with the hydrogen atoms involved in the H -bonding shown and (b) Hydrogen bonding in

$t F E R \cdot 2 I N M$

Figure 8.1.1: Asymmetric unit of $\left(\mathrm{S}_{\left.-\mathrm{PBA}^{-}\right)\left(\mathrm{CIND}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O} \text { with all the hydrogen }}\right.$ atoms shown for clarity
Figure 8.1.2: Thermal analysis curves of (S-PBA $\left.{ }^{-}\right)\left(\mathrm{CIND}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ DSC (blue) and TG (red)
Figure 8.1.3: Crystal packing of $\left(\mathrm{S}_{\left.-\mathrm{PBA}^{-}\right)\left(\mathrm{CIND}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O} \text { with all the hydrogen }}\right.$ atoms removed down [100]
Figure 8.1.4: Hydrogen bonding in $\left(\mathrm{S}_{\left.-\mathrm{PBA}^{-}\right)}\right)\left(\mathrm{CIND}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$
Figure 8.2.1: The asymmetric unit of (R-2PPA $\left.{ }^{-}\right)\left(2\right.$ QUIN $\left.^{+}\right)$with all the hydrogen atoms shown for numbering clarity
Figure 8.2.2: DSC curves of (R-2PPA $\left.^{-}\right)\left(2\right.$ QUIN ${ }^{+}$) (red) and quinine (blue)
Figure 8.2.3: HSM photography of (R-2PPA $\left.{ }^{-}\right)\left(\mathbf{R Q U I N}^{+}\right)$
Figure 8.2.4: (R-2PPA $\left.^{-}\right)\left(2\right.$ QUIN ${ }^{+}$) packing diagram down [100] with all the hydrogen atoms removed
Figure 8.2.5: Hydrogen bonding in (R-2PPA $\left.{ }^{-}\right)\left(2\right.$ QUIN $\left.^{+}\right)$(a) along [100] and (b)
view illustrating that each PPA $^{-}$anion is hydrogen bonded to two QUIN ${ }^{+}$cations
Figure 8.3.1: Asymmetric unit of (R,S-PPA $\left.{ }^{-}\right)\left(\mathbf{Q U I N}{ }^{+}\right) \cdot \mathrm{H}_{2} \mathbf{O}$ with all the hydrogen
atoms shown for numbering clarity
Figure 8.3.2: Thermal analysis curves of $\left(R_{, ~ S-P P A ~}\right.$
and TG (red)
Figure 8.3.3: Crystal packing of $\left(R, S-P^{-}\right)\left(\right.$QUIN $\left.^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ with all the hydrogen atoms removed down [010]294

Figure 8.3.4: Hydrogen bonding in (R,S-PPA $)\left(\right.$ QUIN $\left.^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$
g.3.4: Hydrogen bonding in (R,S-PPA)(QUIN $) \mathrm{H}_{2} \mathrm{O}$ 296

LIST OF TABLES

Table 1.1: Crystal engineering time line 4-5
Table 1.2: Summary of supramolecular interactions 6
Table 2.1: Physical properties of the investigated compounds and their pK_{a} 32
values
Table 2.2: Physical properties of the co-crystal formers studied and their pK_{a} 33
values
Table 3.1: Thermal analysis data for VA•ACRI 47
Table 3.2: IR positions and assignments for the peaks in VA, VA•ACRI and ACRI 50
Table 3.3: VA•ACRI crystal data 53
Table 3.4: Hydrogen Bond parameters of VA•ACRI 55
Table 3.5: Thermal analysis data of VA•2CAF 57
Table 3.6: IR positions and assignments of peaks in VA, VA•2CAF and CAF 59
Table 3.7: VA•2CAF crystal data 62
Table 3.8: VA•2CAF hydrogen bonding parameters 64
Table 3.9: Thermal analysis data of $2 \mathrm{VA} \cdot 2 \mathrm{INM} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ 66
Table 3.10: IR positions and assignments of peaks in VA, $\mathbf{2 V A} \cdot \mathbf{2 I N M} \cdot \mathbf{2} \mathbf{H}_{2} \mathrm{O}$ and 68
INM
Table 3.11: 2VA•2INM•2 $\mathrm{H}_{2} \mathrm{O}$ crystal data 71
Table 3.12: Hydrogen bond parameters in 2VA•2INM•2H2O 75
Table 3.13: Thermal analysis data of VA•NAM 77
Table 3.14: IR positions and assignments of peaks in VA, VA•NAM and NAM 79
Table 3.15: VA•NAM crystal data 82
Table 3.16: VA•NAM hydrogen bonding parameters 84
Table 3.17: Thermal analysis data of VA•THBR•2H2O 86
Table 3.18: IR positions and assignments of peaks in VA, VA•THBR•2H2O and 87
THBR
Table 3.19: VA•THBR•2H2O crystal data 90
Table 3.20: VA•THBR•2 $\mathrm{H}_{2} \mathrm{O}$ hydrogen bonding parameters 93
Table 3.21: Thermal analysis data of 2VA•THPH 95
Table 3.22: IR positions and assignments of peaks in VA, 2VA•THPH and THPH 98
Table 3.23: Crystal data of 2VA•THPH 101
Table 3.24: 2VA•THPH hydrogen bonding parameters 103
Table 3.25: Thermal analysis data of 2VA•2U 105
Table 3.26: Crystal data of 2VA•2U 108
Table 3.27: 2VA•2U hydrogen bonding parameters 110
Table 4.1: Thermal analysis data for PAA•ACRI 117
Table 4.2: IR positions and assignments for the peaks in PAA, PAA•ACRI and 119
ACRI
Table 4.3: PAA•ACRI crystal data 122
Table 4.4: PAA•ACRI hydrogen bonding parameters 124
Table 4.5: Thermal analysis data of 2PAA•CAF 125
Table 4.6: 2PAA•CAF crystal data 129
Table 4.7: 2PAA•CAF hydrogen bonding parameters 130
Table 4.8: Thermal analysis data of PAA•CIND•H2O 133
Table 4.9: IR positions and assignments for the peaks in PAA, 135
(PAA^{-})($\left.\mathrm{CIND}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ and CIND
Table 4.10: (PAA^{-})($\left.\mathrm{CIND}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ crystal data 138
Table 4.11: $\mathrm{X}-\mathrm{H} \bullet \bullet \cdot \pi / \mathrm{C}-\mathrm{H} \bullet \bullet \bullet \pi$ parameters of (PAA^{-})($\left.\mathrm{CIND}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ 139
Table 4.12: $\left(\mathrm{PAA}^{-}\right)\left(\mathrm{CIND}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ hydrogen bonding parameters 141
Table 4.13: Thermal analysis data of PAA•INM 143
Table 4.14: IR positions and assignments of peaks in PAA, PAA•INM and INM 144
Table 4.15: PAA•INM crystal data 147
Table 4.16: PAA•INM hydrogen bonding parameters 149
Table 4.17: Thermal analysis data of 2PAA•2NAM 151
Table 4.18: IR positions and assignments of peaks in PAA, 2PAA•2NAM and 153
NAM
Table 4.19: 2PAA•2NAM crystal data 156
Table 4.20: 2PAA•2NAM hydrogen bonding parameters 158
Table 4.21: Thermal analysis data for (PAA^{-})(QUID $\left.{ }^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ 160
Table 4.22: IR positions and assignments of peaks in PAA, (PAA $\left.{ }^{-}\right)\left(\right.$QUID $\left.^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ 162
and QUID
Table 4.23: $\left(\mathrm{PAA}^{-}\right)\left(\mathrm{QUID}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ crystal data 165
Table 4.24: (PAA $^{-}$)(QUID $\left.{ }^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ hydrogen bonding parameters 168
Table 4.25: Thermal analysis data of $\left(\mathrm{PAA}^{-}\right)\left(\mathbf{Q U I N}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ 171
Table 4.26: IR positions and assignments of peaks in PAA, (PAA $\left.{ }^{-}\right)\left(\mathbf{Q U I N}^{+}\right) \cdot \mathbf{H}_{2} \mathrm{O}$ 173
and QUIN
Table 4.27: (PAA $\left.{ }^{-}\right)\left(\right.$QUIN $\left.^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ crystal data 176
Table 4.28: $\left(\mathrm{PAA}^{-}\right)\left(\mathrm{QUIN}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ hydrogen bonding parameters 179
Table 5.1: Thermal analysis data for (HPAA ${ }^{-}$)(ACRI ${ }^{+}$)•HPAA•ACRI 185
Table 5.2: IR positions and assignments for the peaks in HPAA, 186
(HPAA^{-})($\left.\mathrm{ACRI}^{+}\right) \cdot \mathrm{HPAA} \cdot \mathrm{ACRI}$ and ACRI
Table 5.3: (HPAA^{-})($\mathbf{A C R I}^{+}$) $\cdot \mathrm{HPAA} \cdot \mathbf{A C R I}$ crystal data 189
Table 5.4: $\left(\mathrm{HPAA}^{-}\right)\left(\mathbf{A C R I}^{+}\right) \cdot \mathrm{HPAA}^{-A C R I ~ h y d r o g e n ~ b o n d i n g ~ p a r a m e t e r s ~}$ 191
Table 5.5: Thermal analysis data of (HPAA $\left.{ }^{-}\right)\left(\mathrm{CIND}^{+}\right)\left(0.5 \mathrm{H}_{2} \mathrm{O}\right)$ 193
Table 5.6: IR positions and assignments for the peaks in HPAA, 194
(HPAA^{-})($\left.\mathrm{ClND}^{+}\right)\left(0.4 \mathrm{H}_{2} \mathrm{O}\right)$ and CIND
Table 5.7: Crystal data of (HPAA^{-})($\left.\mathrm{ClND}^{+}\right)\left(0.5 \mathrm{H}_{2} \mathrm{O}\right)$ 197
Table 5.8: hydrogen bonding parameters in (HPAA $\left.{ }^{-}\right)\left(\mathrm{CIND}^{+}\right)\left(0.5 \mathrm{H}_{2} \mathrm{O}\right)$ 200
Table 5.9: Thermal analysis data of (HPAA $\left.{ }^{-}\right)\left(\mathrm{CIND}^{+}\right) \cdot \operatorname{IPA} \cdot \mathrm{H}_{2} \mathrm{O}$ 202
Table 5.10: IR positions and assignments for the peaks in HPAA, 203
(HPAA^{-})($\left.\mathrm{CIND}^{+}\right) \cdot \mathrm{IPA} \cdot \mathrm{H}_{2} \mathrm{O}$ and CIND
Table 5.11: Crystal data of (HPAA ${ }^{-}$)(CIND $\left.{ }^{+}\right) \cdot{ }^{-1 P A \cdot H_{2} \mathrm{O}}$ 206
Table 5.12: Hydrogen bonding parameters in (HPAA^{-})($\left.\mathbf{C I N D}^{+}\right) \cdot \mid$ IPA $\cdot \mathrm{H}_{2} \mathbf{O}$ 209
Table 5.13: Thermal analysis data of HPAA•2INM 211
Table 5.14: IR positions and assignments of peaks in HPAA, HPAA•2INM and 212
INM
Table 5.15: Crystallographic data for the HPAA•2INM co-crystal 215
Table 5.16: HPAA•2INM hydrogen bonding parameters 217
Table 5.17: Thermal analysis data of (HPAA ${ }^{-}$)(QUID $\left.^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ 219
Table 5.18: IR positions and assignments of peaks in HPAA, (HPAA $^{-}$)(QUID $\left.{ }^{+}\right) \cdot \mathrm{H}_{2} \mathbf{O}$ 220
and QUID
Table 5.19: Crystal data of (HPAA^{-})(QUID $^{+}$) $\cdot \mathrm{H}_{2} \mathrm{O}$ 223
Table 5.20: Connectivity of the (HPAA ${ }^{-}$)(QUID $\left.^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ salt hydrate 225
Table 5.21: Thermal analysis results of (HPAA ${ }^{-}$)(QUIN ${ }^{+}$) 227
Table 5.22: IR positions and assignments of peaks in HPAA, (HPAA ${ }^{-}$)(QUIN ${ }^{+}$) 229
and QUIN
Table 5.23: Crystal data of (HPAA ${ }^{-}$)(QUIN $^{+}$) 231
Table 5.24: Hydrogen bonding parameters of (HPAA ${ }^{-}$)(QUIN ${ }^{+}$) 233
Table 6.1: Thermal analysis data of CHPAA 236
Table 6.2: CHPAA crystal data 237
Table 6.3: CHPAA hydrogen bonding parameters 239
Table 6.4: Thermal analysis data of CHPAA•ACR 240
Table 6.5: IR positions and assignments for the peaks in CHPAA, CHPAA•ACRI 242
and ACR
Table 6.6: CHPAA•ACRI crystal data 244
Table 6.7: CHPAA•ACRI hydrogen bonding parameters 246
Table 7.1: Thermal analysis data of CFA-3INM 249
Table 7.2: Crystal data of the 1:3 co-crystal of caffeic acid and isonicotinamide 251
(CFA•3INM)
Table 7.3: Hydrogen bonding parameters in CFA•3INM 254
Table 7.4: Thermal analysis data of p CA•NAM 256
Table 7.5: Crystal data of p CA•NAM 258
Table 7.6: Hydrogen bonding parameters in $\mathbf{p C A} \cdot N A M$ 260
Table 7.7: Thermal analysis data of $\left(p \mathrm{CA}^{-}\right)\left(\mathrm{QUIN}^{+}\right) \cdot p \mathrm{CA} \cdot \mathrm{MeOH} \cdot \mathrm{H}_{2} \mathrm{O}$ 263
Table 7.8: Crystal data of $\left(p \mathrm{CA}^{-}\right)\left(\mathrm{QUIN}^{+}\right) \cdot p \mathrm{CA} \cdot \mathrm{MeOH} \cdot \mathrm{H}_{2} \mathrm{O}$ 267
Table 7.9: Hydrogen bonding parameters in $\left(p \mathrm{CA}^{-}\right)\left(\mathrm{QUIN}^{+}\right) \cdot p \mathrm{CA} \cdot \mathrm{MeOH} \cdot \mathrm{H}_{2} \mathrm{O}$ 270
Table 7.10: Thermal analysis data of t FER-2INM 272
Table 7.11: Crystal data of t FER-2INM 274
Table 7.12: Hydrogen bonding parameters in $t F E R \cdot 2$ INM 276
Table 8.1: Thermal analysis data of $\left(\mathrm{S}^{-P_{B A}}\right)\left(\mathrm{CIND}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ 281
Table 8.2: Crystal data of (S-PBA $\left.{ }^{-}\right)\left(\mathrm{CIND}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ 282
Table 8.3: Hydrogen bonding parameters in (S-PBA $\left.{ }^{-}\right)\left(\mathrm{CIND}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ 284
Table 8.4: Thermal analysis data of (R-2PPA ${ }^{-}$)(2QUIN ${ }^{+}$) 286
Table 8.5: Crystal data of (R-2PPA $\left.{ }^{-}\right)\left(\right.$2QUIN $\left.^{+}\right)$ 288
Table 8.6: Hydrogen bonding parameters in (R-2PPA $^{-}$)(2QUIN ${ }^{+}$) 289
Table 8.7: Thermal analysis data of ($\mathrm{R}, \mathrm{S}-\mathrm{PPA}^{-}$)($\left.\mathbf{Q U I N}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ 292
Table 8.8: Crystal data of ($\mathrm{R}, \mathrm{S}-\mathrm{PPA}^{-}$)(QUIN $\left.{ }^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ 293
Table 8.9: Hydrogen bonding parameters in (R,S-PPA $\left.{ }^{-}\right)\left(\mathbf{Q U I N}^{+}\right) \cdot \mathbf{H}_{2} \mathrm{O}$ 295
Table 10.1: Summary of selected characteristics of the structures investigated 306
Table 10.2: Solvents used in the study 307

ABBREVIATIONS/TERMS/ACRONYMS

CSD	Cambridge Structural Database
TGA	Thermogravimetric Analysis
DSC	Differential Scanning Calorimetry
PXRD	powder X-ray diffraction
HSM	hot stage microscopy
SXRD	single x-ray diffraction
R	universal gas constant
$\mathrm{E}_{\text {a }}$	activation energy
$\Delta \mathrm{T}$	temperature difference
T	temperature
FT-IR	Fourier transform infra-red
IR	infra-red
$\mathrm{kJ} \mathrm{mol}^{-1}$	kilojoules per mole
Z	number of formula units per cell
\%	percentage
K	kelvin
-	degree
a,b,c	unit cell axes
α	alpha interaxial angle between b and c
β	beta interaxial angle between a and c
γ	gamma interaxial angle between a and b
min	minutes
hr	hour
ACRI	acridine
CAF	caffeine
CFA	caffeic acid
CHPAA	3-chloro-4-hydroxyphenylacetic acid
CIND	cinchonidine
HPAA	4-hydroxyphenylacetic acid
INM	isonicotinamide
NAM	nicotinamide
$p \mathrm{CA}$	p-coumaric acid
PAA	phenylacetic acid
QUID	quinidine
QUIN	quinine
THBR	theobromine
THPH	theophylline
tFER	trans-ferulic acid
VA	vanillic acid
U	urea
API	active pharmaceutical ingredients
Ton	onset temperature
R	correlation coefficient
k	rate constant
P	vapour pressure
1	liquid
g	gas
s	solid
2-PPA	(R, S)-2-phenylpropionic acid
R-PPA	(R)-(-)-2-phenylpropionic acid
2-PBA	(R, S)-2-phenylbutyric acid
S-PBA	(S)-(+)-2-phenylbutyric acid

ATOM COLOUR SCHEME

CARBON

HYDROGEN

NITROGEN

OXYGEN

CHLORINE

CHAPTER 1

INTRODUCTION

1.1 Supramolecular Chemistry

Jean-Marie Lehn has defined supramolecular chemistry as "chemistry beyond the molecule". The organisation of entities that results from associating two or more chemical compounds linked together by non-covalent interactions can also be defined as supramolecular chemistry. ${ }^{1-7}$

Supramolecular chemistry defined by Steed et al ${ }^{8}$ is the study of molecular systems that are made up of groups of molecules or ions that are bonded by non-covalent interactions. This type of chemistry is involved in diverse disciplines and fields, with complete control over supramolecules, molecular assemblies and materials. ${ }^{9}$

Complex systems of components which interact by non-covalent forces are developed by supramolecular chemistry as shown in Figure 1.1. ${ }^{9}$

Supramolecule (complex):
Degree of order
Interactions between subunits
Symmetry of packing
Intermolecular interactions
Figure 1.1: Comparison between the scope of molecular and supramolecular chemistry according to Lehn. ${ }^{9}$

1.2 Crystal Engineering

A sub-discipline within supramolecular chemistry is crystal engineering where interactions within crystalline solids and attempts to apply the knowledge gained in the rational design of novel materials are explored. ${ }^{10}$

Crystal engineering can be defined as the design and synthesis of molecular solidstate structures with desired properties, through knowledge of intermolecular interactions and supramolecular synthons. ${ }^{11,12}$

It is also defined by Desiraju as "the understanding of intermolecular interactions in which the crystal packing context and the utilization of such understanding of the design of new solids having desired physical and chemical properties." ${ }^{13,14}$

The term crystal engineering has advanced rapidly since its initial use in 1971 by Schmidt ${ }^{11,7}$ (Table 1.1) and relies upon systematic studies of known structures for the examination of recurring patterns of interactions between functional groups as a means of making general prediction about likely structural features. ${ }^{8}$ Recurring motifs within functional groups (-COOH and amine) are named supramolecular synthons as illustrated in Figure 1. 2. 1.

(a)
(b)

Figure 1.2.1: (a) Supramolecular homosynthon and (b) supramolecular heterosynthon. ${ }^{15}$

Table 1.1: Crystal Engineering Time Line.

Year Event

1921 W. H. Bragg relates the crystal structures of naphthalene and anthracene.
1935 J. D. Bernal advocates the study of groups of crystal structures. The forerunner of crystallographic databases.

1948 H. M. Powell describes the β-hydroquinone structure as a network.
1951 J. M. Robertson's paper on the crystal structures of polynuclear aromatic hydrocarbons.

1954 Crystal structure of the Hofmann complex by J. H. Rayner and H. M Powell.
1955 R. Pepinsky uses the term crystal engineering.
1959 R. Feynman's lecture on building a structure from bottom up. There's room at the bottom.

1964-G. M. J. Schimdt publishes a series of papers in Journal of the Chemical Society on the solid state chemistry of cinnamic acids and other alkenes. The topochemical principle.

1971 Schimdt formally introduces the term crystal engineering in his paper in Pure and Applied Chemistry.

1970- Development of organic solid-state chemistry in the Weizmann Institute (M. D. Cohen, M. Lahav, L. Leiserowitz), University of Illinois (D. Y. Curtin, I. C. Paul), University of Crystal structure determination of Prussian Blue by A. Ludi et al. published in Inorganic Chemistry.

First analysis of an interpenetrated organic solid. O. Ermer's paper in Journal of the American Chemical Society on adamantane-1, 3, 5, 7-tetracarboxylic acid.

1989 Robertson revisited. Paper by G. R. Desiraju and A. Gavezzotti entitled from molecular to crystal structure in Chemical Communications.

1989 G. R. Desiraju's book Crystal Engineering. The Design of Organic Solids is published signifying the beginning of modern organic crystal engineering. This is still the only single authored book on the subject.

1990 R. Robson's paper in Journal of the American Chemical Society on interpenetrated transition metal coordination compounds. The field of coordination polymers is born.
M. C. Etter identifies the hydrogen bond as an important design element in crystal construction in her review in Accounts of Chemical Research.
J. D. Dunitz terms the crystal as a supramolecule par excellence in his paper in Pure and Applied Chemistry.
J. D. Wuest introduces the concept of molecular tectonics. This term was originally introduced by N. N. Greenwood in 1984 in the context of polyhedral boron clusters. Trial of Glaxo's action against Novopharm, a Canada-based generic company, for infringement of one of Glaxo's patents covering the block-buster anti-ulcer drug Zantac. The importance of polymorphism in crystal engineering becomes apparent.

The relationship between crystal engineering and organic synthesis is highlighted in a review by G. R. Desiraju in Angewandte Chemie. Supramolecular retrosynthesis is introduced with the term supramolecular synthon.
O. M. Yaghi describes selective binding and removal of guest molecules in porous metal organic framework structures. Functional coordination polymers are launched. The first keynote lectures on crystal engineering in a Congress of the International Union of Crystallography are delivered by A. Gavezzotti and G. R. Desiraju in Seattle. The first scientific meeting devoted entirely to crystal engineering is organized by M. J. Zaworotko and K. R. Seddon in Nova Scotia.

Crystal engineering becomes a microsymposium topic for the first time in a Congress of the International Union of Crystallography in Glasgow.

The Royal Society launches the journal CrystEngComm with D. Braga as the chairman of the editorial board.

The American Chemical Society launches the journal Crystal Growth \& Design with R. D. Rogers as the editor-in-chief.
M. J. Zaworotko and Ö. Almarsson describe the importance of pharmaceutical cocrystals in a review in Chemical Communications.
S. Kitagawa describes third generation coordination polymers in which the cavities in the metal-organic framework structure are responsive to guest shape.

The first Gordon Research Conference in Crystal Engineering is held in New Hampshire.

The first textbook devoted exclusively to crystal engineering is published and is coauthored by G. R. Desiraju, J. J. Vittal and A. Ramanan.

Source: Desiraju. G. R, Vittal. J. J and Ramanan. A. Crystal Engineering: A Textbook. World Scientific Publishing Co. Pte. Ltd. 2011.

1.3 Supramolecular Interactions

In supramolecular chemistry, non-covalent interactions are the energies that hold together supramolecular components. These interactions are considerably weaker than covalent interactions which range between $150 \mathrm{~kJ} \mathrm{~mol}^{-1}$ to $450 \mathrm{~kJ} \mathrm{~mol}^{-1}$ for single bonds. ${ }^{7,8}$

By contrast, the range at which non-covalent bonds vary is from $2 \mathrm{~kJ} \mathrm{~mol}^{-1}$ for dispersion interactions to $300 \mathrm{kJmol}^{-1}$ for ion-ion interactions. The existence of a stable supramolecular species exists when non-covalent interactions are present. Table 1.2 describes in detail the term "non-covalent" comprising a wide range of attractions and repulsions.

Table 1.2: Summary of Supramolecular Interactions. ${ }^{8}$

Interaction	Strength $\left(\mathrm{kJmol}^{-1}\right)$	Example
Ion-ion	$200-300$	Tetrabutylammonium chloride
Ion-dipole	$50-200$	Sodium [15]crown-5
Dipole-dipole	$5-50$	Acetone
Hydrogen bonding	$4-120$	Guanine and Cytosine
Cation- π	$5-80$	$\mathrm{~K}^{+}$in benzene
$\pi-\pi$	$0-50$	Benzene and graphite
Van der Waals	<5 kJ mol ${ }^{-1}$ depending on	Argon; packing in molecular
Hydrophobic	surface area	Related to solvent-

1.3.1 Ion-Ion interactions

Ion-ion interactions are the strongest of these supramolecular interactions. ${ }^{16}$ They are non-directional as shown in Figure 1.3.1.

Figure 1.3.1: Illustration of ion-ion interaction in tetrabutylammonium chloride. ${ }^{8}$

1.3.2 Ion-dipole interactions

This type of interaction is seen both in the solid-state and in solution. For example the bonding of ions with polar molecules such as water. The term 'crown ether' is derived from complexes of alkali metal cations with macrocyclic ether. In the crown ether, ether oxygen has lone pairs of electrons that are attracted to positively charged ions.

Ion-dipole interactions are directional and the orientation aspects depend on the two entities which must be aligned such that the interactions occur in the most favourable direction. ${ }^{7,8}$

1.3.3 Dipole-dipole

Dipole-dipole interactions are the weakest directional interaction and occur when one dipole aligns with a neighbour. The interaction depends on a specific orientation of both components ${ }^{7,8}$ as illustrated in Figure 1.3.2.

Figure 1.3.2: Dipole-dipole interaction between carbonyl groups. ${ }^{7}$

1.3.4 Hydrogen Bonding

In supramolecular architectures, the most important non-covalent interaction is hydrogen bonding. This kind of non-covalent interaction has good strength and a high degree of directionality. ${ }^{17}$ Laurence and Berthelot ${ }^{18}$ have described a hydrogen bond as an attractive interaction between a hydrogen bond donor (DH) and the hydrogen bond acceptor in the same molecule or between different molecules.

The hydrogen atom and the attached electronegative atom (oxygen or nitrogen) form a hydrogen bond donor group. This interaction will form a dipole which includes the positively charged hydrogen (the hydrogen carrying a small positive charge is the atom which is chosen to form dipole interaction). Dipoles having electron withdrawing species where the interaction of positively charged hydrogen atoms occurs form hydrogen bond acceptors. There are different types of hydrogen bonding geometries as shown in Figure 1.3.3.

(a)

(d)

(b)

(e)

(c)

(f)

Figure 1.3.3: Illustration of the different types of geometries found in hydrogen bonding: (a) linear (b) bent (c) donating bifurcated (d) accepting bifurcated (e) trifurcated (f) three centre bifurcated. ${ }^{16,19}$

The hydrogen bond may also be described geometrically by the parameters d, D, θ and r (Figure 1.3.4).

Figure 1.3.4: Hydrogen bond geometry description. ${ }^{20}$
The properties of the donor and acceptor in hydrogen bonding determine the hydrogen bond length, D. ${ }^{21}$ Depending on the number of acceptors involved in the hydrogen bond, the distance D will vary. The bigger the number of acceptors, the shorter the D distance.

The influence of charged species on bond lengths illustrated by Taylor et al ${ }^{21}$ concluded that charged species are formed by shorter bonds. Longer bonds form uncharged groups.

The strength of the hydrogen bond is classified into three important categories.

- Very strong hydrogen bonds range from 62.8 to $167.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$. This interaction is between a conjugate base and its acid or involves a base and its conjugate acid. These bonds affect the crystal packing but their use in crystal engineering is not fully understood. ${ }^{22}$
- Strong hydrogen bonds, which are electrostatic interactions, have bond energies ranging from $16.7-62.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$. This interaction has recognisable effects on the crystal packing, control and modulates supramolecular structures and is useful in crystal engineering.
- Weak hydrogen bonds have bond energies less than $16.7 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The electrostatic nature is according to the character of the donor and acceptor groups, which influence dispersive and covalence components. The uses to crystal engineering are not much. This type of interaction has various effects on the crystal packing. ${ }^{20}$

1.3.5 Cation- $\boldsymbol{\pi}$ interactions

Cation- π interactions occur between a cation and the face of a simple π-system. These interactions deal with positively charged metal ions and are regarded as
electrostatic. There is attraction of the charged metal ion to the negative electrostatic face of the π-system. There is preferred binding of the smaller ions than bigger ions. lonic radius and binding energy have an association with the effect of ions on the binding strength. The electrostatic effect is the result of the sp^{2} carbon. This sp^{2} carbon is more electronegative than the hydrogen in the $\mathrm{C}^{\delta-}-\mathrm{H}^{\delta+}$ bond dipoles. Figure 1.3.5 illustrates a cation binding to benzene, thus giving it a negative charge.

Figure 1.3.5: Illustration of cation-m interactions diagram. ${ }^{23,24}$

1.3.6 $\quad \pi-\pi$ stacking

Interactions such as $\pi-\pi$ stacking are weak electrostatic interactions. These interactions occur between aromatic rings with one ring having a poor electron density and the other ring rich in electrons. ${ }^{7}$

Delocalisation of π-electrons is found in these interactions. The aromatic rings involved in the $\pi-\pi$ stacking interactions are flat. There are two types of $\pi-\pi$ interactions illustrates in Figure 1.3.6 and Figure 1.3.7 are face-to-face and edge-toface. ${ }^{7,8}$

Figure 1.3.6: The off-set face-to-face $\pi-\pi$ stacking representation. ${ }^{7,8}$

Figure 1.3.7: Representation of the edge-to-face stacking. ${ }^{7,8}$

Face-to-face interaction having parallel ring systems are often separated by approximately distance of $3.5 \AA$ and slightly offset so that oppositely charged areas of the compound are closest. ${ }^{25-27}$

Edge-to-face interactions have a positively charged hydrogen atom from one ring which interacts in perpendicular orientation with the negative centre of π-electron density of the other ring ${ }^{25-27}$ (Figure 1.3.7).

1.3.7 van der Waals

van der Waals interactions are dispersive intermolecular forces. ${ }^{25}$ They are also named London interactions, the exchange and repulsion interaction. They arise from fluctuations of the electron clouds of the interacting molecules.

These forces have a limited impact on supramolecular design and are nondirectional. Van der Waals strength depends on the polarisability of the molecule and their interactions are important in the formation of inclusion compounds where small organic guests are incorporated in crystal lattices or molecular cavities. ${ }^{28}$

1.4 Co-crystals

There is a debate about the definition of a co-crystal, ${ }^{29-31}$ broadly defined as a mixed crystal or crystal that contains two different molecules. ${ }^{30,32}$ It seems that the community at large cannot agree on whether it is "cocrystal" or "co-crystal", but most agree with the general statement "a co-crystal is a crystalline solid containing multiple components". Supramolecular chemistry and crystal engineering define a
co-crystal as a consequence of a molecular recognition event between different molecular species.

According to Aakeröy, co-crystals are prepared from reactants that are solids at ambient temperature. He also states that "all hydrates and other solvates are excluded which, in principle, eliminates compounds that are typically classified as clathrates or inclusion compounds (where the guest molecule is a solvent or a gas molecule)". ${ }^{33}$

In 1844, the first entry of a co-crystal was reported by Wöhler, the co-crystal of benzoquinone and hydroquinone. (Ref code: QUIDON, Figure 1.4.1). ${ }^{34}$

Figure 1.4.1: Crystal structure of the triclinic form of quinhydrone.
These two components were studied as organic molecular compounds ${ }^{35}$ and until the 1960's the structural information on co-crystals was absent and the term complexes arose. Different nucleic base complexes ${ }^{36-39}$ were reported in the 1960's and the term co-crystal was first used. ${ }^{40}$

A new base pair known as a "Hoogsteen base pair" (Figure 1.4.2) which is considered as the first prototypal co-crystal was reported in 1963 by K. Hoogsteen. ${ }^{36}$ The term "Hoogsteen base pair" refers to a co-crystal formed between 9methyladenine and 1 -methylthymine obtained by evaporation of an aqueous solution at room temperature (reported during the elucidation of DNA structures).

Figure 1.4.2: The Hoogsteen base-pair.
Co-crystals have applications in the pharmaceutical industry. ${ }^{15}$ Co-crystallization of pharmaceutically active molecules can enhance the physical properties of the active pharmaceutical ingredient (API) (the substance in a pharmaceutical drug or a pesticide that is biologically active) such as solubity, physical and chemical stability, dissolution rates and hygroscopicity. Co-crystals of poorly soluble drugs are sometimes used to improve the performance of the crystalline drugs solubility and bioavailability. ${ }^{41}$ Co-crystals also offer multiple opportunities to modify the chemical and the physical properties of an API without making or breaking covalent bonds.

1.5 Co-crystals and Salts

Pharmaceutical co-crystals (Figure 1.5.1) are generally formed between an acid and a base because many drugs are basic in nature. ${ }^{14}$ Co-crystals and salts are multicomponent crystals that can be recognised by the position of the proton between an acid and a base. The hydrogen bond ($\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$) is the operative interaction in co-crystal formation.

Figure 1.5.1: Co-crystal representation.
When the acidity and the basicity of two compounds are sufficiently different, proton transfer occurs across the hydrogen bond and a charge assisted hydrogen bond of the type $\mathrm{O}^{\circ} \cdots \mathrm{H}-\mathrm{N}^{+}$results.

The difference between a salt and a co-crystal is based on whether proton transfer occurs from an acid (A) to a base (B). ${ }^{42} \mathrm{~A}$ transfer of a proton from an acid to a base results in the formation of a salt (Figure 1.5.2): $A-H+B \rightarrow\left(A^{-}\right)\left(B^{+}-H\right) .{ }^{41}$

Figure 1.5.2: Representation of a Salt.

Salt formation is dependent on the difference in pK_{a} values of the two molecules. If the $\Delta \mathrm{pK}_{\mathrm{a}}\left(\Delta \mathrm{pK}_{\mathrm{a}}=\mathrm{pK}_{\mathrm{a}}(\right.$ base $\left.)-\mathrm{pK}_{\mathrm{a}}(\mathrm{acid})\right)$ is greater than 2 or 3 a salt is expected. ${ }^{43,44}$ Nangia ${ }^{45}$ noted, a smaller $\Delta \mathrm{pk}_{\mathrm{a}}$ (less than 0) will almost exclusively result in cocrystal formation, and when $\Delta \mathrm{pK}_{\mathrm{a}}$ is between 0 and 3 , it is a poor prediction of salt/co-crystal formation.

Co-crystals have two inherent advantages over salts, firstly co-crystal formation may potentially be employed with all active pharmaceutical ingredients (APIs), including acidic, basic and non-ionisable molecules. Secondly there is a large number of potential 'counter molecules' that may be considered to be non-toxic and there may be a possible increase in the scope of the pharmaceutical co-crystallisation over salt forms. ${ }^{46}$

Solution chemistry suggests that a pK_{a} difference between an acid and a base is needed to form a salt that is stable in water. ${ }^{47}$

Another interesting observation about co-crystals is that they provide a powerful means to tailor the desired solubility and dissolution of APIs, even when the API is a non-ionisable compound. ${ }^{48}$

Co-crystals and salts can also be distinguished by the proton location, ${ }^{49-51}$ bond lengths of atoms involved, eg. C-O distances of carboxyl groups or phenolic alcohol groups ${ }^{52,53}$ and bond angles ${ }^{54}$ obtained via single crystal X-ray diffraction analysis.

Spectroscopic analysis using infrared (IR) allows detecting the positions of $\mathrm{O}-\mathrm{H}, \mathrm{N}-$ H and COOH signals ${ }^{43,53,55-64}$ and allows identifying shifts due to hydrogen bonding. ${ }^{43,55,62-64}$

NMR spectroscopy observes carbon, nitrogen and phosphorus chemical shifts. ${ }^{60,61,65}$

1.6 Nutraceuticals

A nutraceutical can be described as being a medical or nutritional component which is present in food, plant or a naturally occurring material and can be used to improve health by prevention and treatment of diseases. ${ }^{66}$

For many years, food has been used for more than its nutritional value. This term (nutraceutical) was coined in 1976 by Dr. Stephen De Felice, ${ }^{67}$ founder and chairman of Foundation of Innovation in Medicine, to describe food or parts of food that can provide medical or health benefits which include prevention and treatment of diseases. ${ }^{66}$

Nutraceuticals have a role in preventing and treating many diseases, ${ }^{68}$ such as the common cold, weight problems and even cardiovascular diseases and cancer. ${ }^{69}$ Nutraceuticals include a wide range of products such as polyphenols (epigallocatechingallate (EGCG) from tea or resveratrol from red grapes), vitamins, oils from fish and flax, calcium fortified juices, theobromine from the cacao tree, caffeine from coffee leaves. ${ }^{66}$

1.7 Compounds under study

A diet rich in fresh fruit and vegetables is beneficial to our health. Fresh products are rich in various nutrients such as fibre, vitamins, minerals, organic substances and also phenolic compounds. Phenolic compounds are a class of naturally occurring compounds generally synthesized via many pathways. ${ }^{\text {70-84 }}$

1.7.1 Caffeic acid

Caffeic acid (Figure 1.7.1) is key in the biosynthesis of lignin, which is one of the principal source of biomass. This compound has antioxidant effects in vitro and might contribute to the prevention of cardiovascular diseases. ${ }^{85}$ Caffeic acid is a hydroxycinnamic acid derivative, that is distributed in plant derived food products. ${ }^{86}$ Caffeic acid inhibits the production of carcinogenic and mutagenic N -nitrosation compound. ${ }^{87}$ The phenolic acid also protects from DNA damages in vitro. ${ }^{88,89}$

Figure 1.7.1: 3-(3,4-dihydroxyphenyl)-2-propenoic acid.

1.7.2 p-coumaric acid

The molecule (Figure 1.7.2) is a hydroxy derivative of cinnamic acid, ${ }^{90}$ has antioxidant properties and is used in peroxidising lipid systems mediated by metamyoglobin. ${ }^{91}$ The demonstration of the antioxidant effects of LDL cholesterol has been shown and it also prevents atherosclerosis. ${ }^{92} p$-coumaric acid reduces the risk of having stomach cancer by the reduction of the formation of carcinogenic nitrosamines. ${ }^{91}$

Figure 1.7.2: 3-(4-hydroxyphenyl)-2-propenoic acid.

1.7.3 trans-ferulic acid

Ferulic acid (Figure 1.7.3) has concentration-dependent antioxidant effects in terms of inhibition of lipid peroxidation and reactive oxygen species. ${ }^{87}$ The above compound has shown photoprotective properties of human keratinocytes and helps to prevent damage by ultra-violet (UV) radiation and skin carcinogenisis. ${ }^{93,94}$ Ferulic acid effects on the proliferation of neutral stem/progenitor cells (NCS/NPCs) in vitro and in vivo was studied. ${ }^{95}$

Figure 1.7.3: (E)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoic acid.

1.7.4 Phenylacetic acid

Phenylacetic acid (Figure 1.7.4) has been found to be an active auxin (a type of plant hormone), ${ }^{96}$ found predominantly in fruits. This compound is an oxidation product of phenethylamine when acted on by the enzyme monoamine oxidase found in humans and many organisms. It is used in some perfumes with a honey-like odour in low concentration, in the production of penicillin G and in the treatment of hyperammonemia. ${ }^{97}$

Figure 1.7.4: Phenylacetic acid.

1.7.5 4-Hydroxyphenylacetic acid

The compound shown in Figure 1.7.5 is found in olive oil ${ }^{98}$ and also found in beer in bound form. ${ }^{99}$ It has anti-inflammatory activity for the treatment of arthritis, asthma,

Raynaud's disease, inflammatory bowel disorders, trigeminal or herpetic neuralgia, inflammatory eye disorders, psoriasis and have analgesic activity. ${ }^{100}$

Figure 1.7.5: 4-Hydroxyphenylacetic acid.

1.7.6 3-Chloro-4-Hydroxyphenylacetic acid

3-chloro-4-hydroxyphenylacetic acid (Figure 1.7.6) is a synthetic compound used to disrupt auxin influx. ${ }^{101}$

Figure 1.7.6: 3-chloro-4-hydroxyphenylacetic acid.

1.7.7 Vanillic acid

The chemical structure of vanillic acid is shown in Figure 1.7.7, which is a benzoic acid derivative used as a flavouring agent. This molecule is oxidized from vanillin produced during the conversion of vanillin to ferulic acid. ${ }^{102,103}$

Vanillic acid is found in high quantity in roots of Angelica sinensis which is a plant used in traditional Chinese medecine. ${ }^{104}$ It is one of the natural phenols in argan oil ${ }^{105}$ and one of the rich ingredients of açai palm fruit. ${ }^{106}$
This phenolic compound is also found in wine and vinegar ${ }^{107}$ and studies have reported that vanillic acid has a hepatoprotective effect, ${ }^{108}$ and that mice with dextran sodium sulphate (DSS) induced colitis (inflammatory of the inner lining of the colon) exhibit phenotypical characteristics similar to human acute and chronic UC. ${ }^{109}$

Figure 1.7.7: 4-hydroxy-3-methoxybenzoic acid.

1.7.8 2-Phenylpropionic acid

The compound 2-phenylpropionic acid (Figure 1.7.8) is an important group of nonsteroidal anti-inflammatory agents.

Figure 1.7.8: 2-phenylpropionic acid.

It exhibits optical activity originating from the chiral (asymmetric) centre to which functional group such as $-\mathrm{C}=\mathrm{O}$ is attached. 2-phenylpropionic acid exists as pairs of stereoisomers. When their optical activity is known these pairs are referred as (+) and (-), but when their absolute configuration is established, they are referred to as R and S according to the sequence rule (Figure 1.7.9). ${ }^{110}$

S- (+)

R- (-)

Figure 1.7.9: Stereochemical representations of the $R-(-)$ and $S-(+)$ enantiomers of 2-phenylpropionic acid.

1.7.9 2-Phenylbutyric acid

The molecule shown in Figure 1.7 .10 is a chiral compound with two configurations known as R and S (Figure 1.7.11). It is used as an anticholesteremic. The S enantiomer is a chiral building block and a resolving agent. ${ }^{111,112}$

Figure 1.7.10: 2-Phenylbutyric acid

(R)-2-Phenylbutyric Acid

(S)-2-Phenylbutyric Acid

Figure 1.7.11: Stereochemical representations of the $R-(-)$ and $S-(+)$ enantiomers of 2-phenylbutyric acid.

1.8 Research Aims

The main objective of this research was to form co-crystals or salts of the selected acids with organic amines or amides and comparisons of the obtained structures were made.

When the acid was chiral, its racemic modification employed and combined with a chiral base with a view to form diastereomeric salts. This would lead to an understanding of the mechanism of enantiomeric resolution.

The study will therefore use small amounts of the chosen compounds and a salt or co-crystal will be obtained depending on their pK_{a} differences.

To achieve the objectives, minor objectives of this study were to:

- Study the method of preparation of the compounds eg neat grinding, solvent assisted grinding, etc.
- Study the choice of solvent on the resultant product.
- Characterise the compounds and determine their thermal stability.
- Grow suitable crystals for single crystal X-ray diffraction.

The study was performed systematically and the same crystallisation method was used for most of the acid base combinations, and all under the same conditions. Alcohols, ketones and distilled water were chosen as solvents.

REFERENCES

1. Lehn. J. M. Struct. Bonding. 1973, 16, 1.
2. Lehn. J. M. Pure. Appl. Chem. 1978, 50, 871.
3. Lehn. J. M. Science. 1985, 227, 849.
4. Lehn. J. M, Atwood. J. L, Davies. J. E, MacNicol. D. D \& Vögtle. F. Comprehensive Supramolecular Chemistry. Pergamon: Oxford. 1996.
5. Vögtle. F. Supramolecular Chemistry. Wiley \& Sons, New York. 1991.
6. Lehn. J. M. Supramolecular Chemistry: Concepts and Perspectives. VCH: Weinheim. 1995.
7. Steed. J. W \& Atwood. J. L. Supramolecular Chemistry. John Wiley \& Sons. Chichester. 2000.
8. Steed. J. W, Turner. D. R \& Wallace. K. J. Core Concepts in Supramolecular Chemistry \& Nanochemistry. Singapore: John Wiley \& Sons. 2007.
9. Lehn. J. M. Angew. Chem. Int. Ed. Engl. (Nobel lecture). 1988, 27, 89-112.
10. Tiekink. E. R. T \& Vittal. J. J. Frontiers in Crystal Engineering. John Wiley \& Sons, Ltd, Chichester, UK. 2006.
11. Schmidt. G. M. J. Pure. Appl. Chem. 1971, 27, 647.
12. Brammer. L. Chem. Soc. Rev. 2004, 33, 476-489.
13. Desiraju. G. R. Amsterdam and New York: Elsevier Scientific Publishers. 1989.
14. Desiraju. G. R, Vittal. J. J \& Ramanan. A. Crystal Engineering: A Textbook. World Scientific Publishing Co. 2011.
15. Vishweshwer. P, Mc Mahon. J. A, Bis. J \& Zaworotko. M. J. J. Pharm. Sci. 2006, 95(3), 499-516.
16.Anslyn. E. V \& Dougherty. D. A. Modern Physical Organic Chemistry, University Sciences Book, Sausalito, CA, USA. 2006, 162-168.
17.Jeffrey. G. A. Introduction to Hydrogen Bonding. Oxford University Press, Oxford, UK. 1997.
16. Laurence. C \& Berthelot. M. Perspectives in Drug Discovery \& Design. 2000, 18(1), 36-60.
19.Desiraju. G. R. Hydrogen Bonding. Encyclopaedia of Supramolecular Chemistry (Eds). Atwood. J. L \& Steed. J. W, New York, Taylor \& Francis. 2004, 1, 658-664.
17. Clyburne. J. A. C, Hamilton. T \& Jenkins. H. A. Cryst. Eng. 2001, 4, 1-9.
18. Taylor. R \& Kennard. O. Acc. Chem. Res. 2002, 17, 320-326.
19. Desiraju. G. R. Chem. Commun. 1997, 1475-1482.
20. Ma. J. C \& Dougherty. Chem. Rev. 1997, 97, 1303-1324.
24.Dougherty. D. A. Cation-m Interaction. Encyclopaedia of Supramolecular Chemistry (Eds). Atwood. J. I \& Steed. J. W. 2004, 1, 214-218.
25.Hunter. C. A, Lawson. K. R, Perkins. J \& Urch. C. J. J. Chem. Soc, Perkin Trans. 2001, 2, 651-669.
26.Dance. I. $\pi-\pi$ Interactions: Theory and Scope. Encyclopaedia of Supramolecular Chemistry (Eds). Atwood. J. L \& Steed. J. W, New York, Taylor \& Francis. 2004, 2, 1076-1092.
27.Hunter. C. A \& Sanders. J. K. M. J. Am. Chem. Soc. 1990, 112, 5525-5534.
28.Schneider. H. J. Van der Waals Forces. Encyclopaedia of Supramolecular Chemistry (Eds). Steed. J. W \& Atwood. J. L, Marcel Dekker, New York, NY, USA. 2004, 2, 1550-1556.
21. Desiraju. G. R. CrystEngComm. 2003, 5, 466.
30.Dunitz. J. D. CrystEngComm. 2003, 5, 506.
22. Child. S. L, Stahly. G. P \& Park. A. Mol. Pharm. 2007, 4, 323.
23. Kitaigorodskii. A. I. Mixed Crystals. New York, Springer-Verlag. 1984.
24. Aakeröy. C. B. CrystEngComm. 2003, 5, 439-448.
34.Wöhler. F. Justus Liebigs Am. Chem. 1844, 51, 153.
25. Anderson. J. S. Nature. 1937, 140, 583-584.
36.Hoogsteen. K. Acta. Crystallogr. 1963, 16, 907.
26. Kim. S. H \& Rich. A. J. Mol. Biol. 1969, 42, 87.
27. Hoogsteen. K. Acta. Crystallogr. 1959, 12, 822.
28. O'Brien. E. J. Acta. Crystallogr. 1967, 23, 92.
29. Schmidt. J \& Snipes. W. Int. J .Radiat. Biol. 1967, 13, 101-109.
30. Serajuddin. A. T. M. Adv. Drug. Del. Rev. 2007, 59, 603-616.
42.Lide. D. R. CRC Handbook of Chemistry and Physics. $81^{\text {st }}$, CRC Press: Boca Raton. 2000, 2-55.
31. Huang. K. S, Britton. D, Etter. M. C \& Byrn. S. R. J. Mater. Chem. 1997, 7, 713-720.
32. Stahl. P. H \& Wermuth. C. G. Handbook of Pharmaceutical Salts: Properties, Selection and Use. International Union of Pure and Applied Chemistry, VHCA: Wiley-VCH: Weinheim, New York. 2002.
33. Bhogala. B. R, Basavoju. S \& Nangia. A. CrystEngComm. 2005, 7, 551-562.
34. Yadav. A. V, Sthete. A. S, Dake. A. P, Kulkanri. P. V \& Sakhare. S. S. India J .Pharm. Sci. 2009, 71(4), 359-370.
47.Serajuddin. A. T, Pudipeddi. M, Stahl. P. H \& Wermuth. C. G. Handbook of Pharmaceutical Salts. Weinheim: Wiley-VCH. 2002, 138.
35. Koji. S, Noriyuki. T, Ryusuke. T, Yoshiki. H \& Katsuhide. T. Pharm. Res. 2006, 23, 1144-1156.
49.Ratajczak. H \& Orville-Thomas. W. J. Molecular Interactions. John Wiley, Chichester [Engl], New York. 1980.
50.Lehtonen. O, Hartikainen. J, Rissanen. K, Ikkala. O \& Piehla. L. O. J. Chem. Phys. 2002, 116, 2417-2424.
36. Steiner. T. Angew. Chem. Int. 2002, 41, 49-76.
37. Majerz. I, Malarski. Z \& Sobczyk. L. Chem. Phys. Lett. 1997, 274, 361-364.
38. Aakeröy. C. B, Hussain. I \& Desper. J. Cryst .Growth. Des. 2006, 6, 474-480.
39. Bœnigk. D \& Mootz. D. J. Am. Chem. Soc. 1988, 110, 2135-2139.
40. Hamilton. W. C. Hydrogen Bonding in Solids: Methods of Molecular Structure Determination. Benjamin. W. A: New York. 1968.
41. Bellamy. L. J. The Infra-red Spectra of Complex Molecules, $2^{\text {nd }}$ ed; Methuen, Wiley: London, New York. 1958.
57.Bellamy. L. J. The Infra-red Spectra of Complex Molecules, ${ }^{\text {nd }}$ ed; Chapman \& Hall: London, New York. 1980, 1.
42. Williams. D, H \& Fleming. I. Spectroscopic Methods in Organic Chemistry, $2^{\text {nd }}$ Ed; McGraw-Hill: London, New York. 1973.
43. Gunnar. A \& Zundel. G. J. Chem. Soc, Faraday Trans. 1. 1984, 80, 553-561.
44. Etter. M. C \& Reutzel. S. M. J. Am. Chem. Soc. 1991, 113, 2586-2598.
61.Wojciechowski. G, Ratajczak-Sitarz. M, Katrusiak. A, Schilf. W, Przybylski. P \& Brzezinski. B. J.Mol. Struct. 2003, 650, 191-199.
45. Johnson. S. L \& Rumon. K. A. J. Phys. Chem. 1965, 69, 74-86.
46. Aakeröy. C. B, Desper. J \& Fasulo. M. E. CrystEngComm. 2006, 8, 586-588.
64.Pimentel. G. C \& McClellan. A. L. The Hydrogen Bond. Freeman. W. H, Reinhold Corp; New York, San Francisco. 1960.
65.Li. Z. J, Abramov. Y, Bordner. J, Leonard. J, Medek. A \& Trask. A. V. J. Am. Chem. Soc. 2006, 128, 199-210.
47. Lockwood. B. Nutraceuticals. Pharmaceutical Press: London, UK. 2007.
48. Mannion. M. Am. J. Nat. Med. 1998, 5, 30-33.
68.Espin. J. C, Garcia-Conesa. M. T \& Tomās-Barberān. F. A. Phytochemistry. 2007, 68, 2986-3008.
69.Jang. M, Cai. L, Udeani. G. O, Slowing. K. V, Thomas. C. F, Beecher. C. W. W, Fong. H. H. S, Farnsworth. N. R, Kinghorn. A. D, Mehta. R. G, Moon. R. C \& Pezzuto. J. M. Sci. 1997, 275, 218-220.
70.Bruneton. J. Pharmacognosy, Phytochemistry, Medicinal Plants, $2^{\text {nd }}$ ed.; Lavoisier: Paris, France. 1999.
49. Cartea. M. E, Francisco. M, Soengas. P \& Velasco. P. Molecules. 2010, 16, 251-280.
72.Ferretti. G, Bacchetti. T, Belleggia. A \& Neri. D. Molecules. 2010, 15, 69937005.
50. Sochor. J, Zitka. O, Skutkova. H, Pavlik. D, Babula. P, Krska. B, Horna. A, Adam. V, Provaznik. I \& Kizek. R. Molecules. 2010, 15, 6285-6305.
51. Sisa. M, Bonnet. S. L \& Ferreira. D. Van der Westhuizen, J. H. Molecules. 2010, 15, 5196-5245.
52. Ghasemzadeh. A, Jaafar. H. Z. E \& Rahmat. A. Molecules. 2010, 15, 79077922.
53. Kelsey. N. A, Wilkins. H. M \& Linseman. D. A. Molecules. 2010, 15, 77927814.
54. Rechner. A. R, Wagner. E, Van Buren. L, Van de Put. F, Wiseman. S \& RiceEvans. C. A. Free Radic. Res. 2002, 36, 1127-1135.
55. Gonzalez-Gallego. J, Garcia-Mediavilla. M. V, Sanchez-Campos. S \& Tunon. M. J. Br. J. Nutr. 2010, 104, S15-S27.
56. Galleano. M, Pechanova. O \& Fraga. C. G. Curr. Pharm. Biotechnol. 2010, 11, 837-848.
57. Fang. Z. X \& Bhandari. B. Trends. Food. Sci. Technol .2010, 21, 510-523.
81.Michalowicz. J, Duda. W. \& Pol. J. Environ. Stud. Pol. J. Environ. Stud. 2007, 16, 347-362.
58. Chen. H. L, Yao. J, Wang. F, Zhou. Y, Chen. K, Zhuang. R. S, Choi. M. M. F. \& Zaray. G. Sci. Total. Environ. 2010, 408, 1043-1049.
59. Shadnia. H \& Wright. J. S. Chem. Res. Toxicol. 2008, 21, 1197-1204.
84.Lepoittevin. J. P \& Benezra. C. Pharm. Weekblad-Sci. Ed. 1991, 13, 119-122.
85.Zhao. Z. H \& Moghadasian. M. H. Phytochem. Rev. 2010, 9, 133-145.
60. Clifford. M.N. J. Sci. Food Agric. 1999, 79, 362-372.
61. Kono. Y, Shibata. H, Kodama. Y \& Sawa. Y. Biochem. J. 1995, 312, 947-953.
62. Kasai. H, Fukada. S, Yamaizumi. Z, Sugie. S \& Mori. H. Food. Chem. Toxicol. 2000, 38, 467-471.
63. Shibata. H, Sakamoto. Y, Oka. M \& Kono. Y. Biosci. Biotechnol. Biochem. 1999, 63, 1295-1297.
64. Utsumi. H, Fujii. K, Irie. H, Furusaki. A \& Nitta. I. Bull. Chem. Soc. Jpn. 1967, 40, 426-426.
65. Castelluccio. C, Paganga. G, Melikian. N, Bolwell. G. P, Pridham. J, Sampson. J \& Riceevans. C. FEBS. Lett. 1995, 368, 188-192.
66. Sharma. R. D. Lipids. 1979, 14, 535-540.
67. Bingjiang. L, Wei. M \& Dan. L. J. Invest. Dermatol. 2010, 130, 796.
94.Zhang. L. W, Al-Suwayeh. S. A, Hsieh. P.W \& Fang. J.Y. Int. J. Pharm. 2010, 399, 44-51.
68. Yabe. T, Hirahara. H, Harada. N, Ito. N, Nagai. T, Sanagi. T \& Yamada. H. Neuroscience. 2010, 165, 515-524.
69. Wightman. F \& Lighty. D. L. Physiologia Plantarum. 1982, 55(1), 17-24.
70. Adams. R \& Tha. A. F. Phenylacetic acid. Org. Synth. 2: 59: Coll. 1992, 1, 436.
71. Papadopoulos. G \& Boskou. D. J. Am. Oil. Chem. Soc. 1991, 68 (9), 669.
72. Nardini. M \& Ghiselli. A. Food. Chem. 2004, 84, 137-143.
73. Johnson. G, Arbor. A, Mich, Michael F. R \& Branford. N. C. Substituted 4Hydroxyphenylacetic acid Derivatives Having Antiflammatory and Analgesic Activity. United States Patent, Patent number: 5,220,064. Jun. 15, 1993.
74. Laňkovă. M, Smith. R. S, Peŝek. B, Kubeŝ. M, Zazimalovă. E, Petrăsek. J \& Hoyerovā. K. J. Exp. Bot. 2010, 61(13), 3589-3598.
75. Lesage-Meessen. L, Delattre. M, Haon. M, Thibault. J. F, Ceccaldi. B. C, Brunerie. P \& Asther. M. J. Biotechnol. 1996, 50, 107-113.
76. Civolani. C, Barghini. P, Roncetti. A. R, Ruzzi. M \& Schiesser. A. Appl. Environ. Microbiol. 2000, 66, 2311-2317.
77. Duke. J. A. Handbook of Phytochemical Constituents of GRAS Herbs and other Economic Plants. 999 ${ }^{\text {th }}$ ed, CRC Press: Boca Raton, FL, USA. 1992.
78. Charrouf. Z \& Guillaume. D. Am.J. Food. Technol. 2007, 2, 679-683.
79. Pacheco-Palencia. L. A, Mertens-Talcott. S \& Talcott. S. T. J. Argri. Food. Chem. 2008, 58(12), 4631-4636.
80. Gālvez. M. C, Barroso. C. G \& Pérez-Bustamante. J. A. Zeitschrift für Lebensmitteluntersuhung und-Forshung. 1994, 199, 1, 29-31.
81. Itoh. A, Isoda. K, Kondoh. M, Kawase. M, Kobayashi. M, Tamesada. M \&Yadi. K. Biol. Pharm. Bull. 2009, 32, 1215-1219.
82. Okayasu. I, Hatakeyama. S, Yamada. M, Ohkusa. T, Inagaki. Y \& Nakaya. R. Gastroenterology. 1990, 98, 694-702.
83. Hutt. A. J. \& Caldwell, J. J. Pharm. Pharmacol. 1983, 35,693-704
84. SIGMA-ALDRICH life science: Where BIO Begins, Products for life science research. 2011-2012, 1419.
85. Yishan. L, Ping. H, Xiao-yan. L, Kaimin. S \& Ji-Dong. G. J. Hazard. Mater. 2011, 192, 1633-1640.

CHAPTER 2

EXPERIMENTAL METHODS AND MATERIALS

2.1 Materials

2.1.1 Compounds studied

Phenylacetic acid (PAA), 4-hydroxyphenylacetic acid (HPAA), 3-chloro-4hydroxyphenylacetic acid (CHPAA), vanillic acid (VA), 2-phenylpropionic acid (2PPA), 2-phenylbutyric acid (2-PBA), p-coumaric acid ($p \mathrm{CA}$), trans-ferulic acid (tFER) and caffeic acid (CFA) are molecules as shown in Figure 2.1.1 that have functional groups that can hydrogen bond to donor or acceptor compounds. The chosen phenolic acids have functional groups $(-\mathrm{COOH})$ acting as both hydrogen donor and acceptor moieties. Vanillic acid (VA) and trans-ferulic acid (tFER) both have ether oxygens which are potential hydrogen bond acceptors. The proton in the selected acids $(-\mathrm{COOH})$ can be transferred to a base to form a salt which result in a charge assisted hydrogen bond.

The physical properties of the chosen compounds and their pK_{a} values are illustrated in Table 2.1.

These phenolic acid molecules were purchased from Sigma Aldrich and have a purity of at least 99%. The compounds were used with no further purification.

Phenylacetic acid (PAA)

3-Chloro-4-Hydroxyphenylacetic acid (CHPAA)

4-Hydroxyphenylacetic acid (HPAA)

Vanillic acid (VA)

2-Phenylpropionic acid (2-PPA)

p-Coumaric acid (pCA)

2-Phenylbutyric acid (2-PBA)

trans-Ferulic acid (tFER)

Caffeic acid (CFA)
Figure 2.1.1: Chemical structures of investigated compounds.

Table 2.1: Physical properties of the investigated compounds ${ }^{1}$ and their pK_{a} values.

Compounds	Formula	$\mathbf{M r}\left(\mathrm{g} \cdot \mathrm{mol}^{-1}\right)$	$\mathrm{Bp}\left({ }^{\circ} \mathrm{C}\right)$	$\mathrm{Mp}\left({ }^{\circ} \mathrm{C}\right)$	pKa
Caffeic acid	$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}$	180.16		211-213	4.40^{2}
p-coumaric acid	$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{3}$	164.16		214	4.40
					9.35^{2}
trans-Ferulic acid	$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{4}$	194.18		168-172	4.80
					$9.40{ }^{2}$
Phenylacetic acid	$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{2}$	136.15		76-77	$4.31{ }^{3}$
4-Hydroxyphenylacetic acid	$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{3}$	152.15		148-151	$4.50{ }^{4}$
					10.20^{5}
3-Chloro-4-Hydroxyphenylacetic acid	$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClO}_{3}$	186.59		108-110	$8.50{ }^{5,6}$
Vanillic acid	$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{4}$	168.14	-	210-213	$4.50{ }^{7}$
Racemic 2-phenylpropionic acid	$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2}$	150.17	260-262		$4.50{ }^{8}$
Racemic 2-phenylbutyric acid		164.20	270-272	39-42	$4.66{ }^{9}$

2.1.2 Co-crystal Formers

Acridine (ACRI), caffeine (CAF), cinchonidine (CIND), isonicotinamide (INM), isonicotinic acid (INA), nicotinamide (NAM), quinidine (QUID), quinine (QUIN), theobromine (THBR), theophylline (THPH) and urea (U) were supplied by Sigma Aldrich.

The experimental aim was to use small and large molecules that have the potential to form hydrogen bonds with the phenolic acids listed in Table 2.1. Physical properties of the co-crystal formers and their pK_{a} values are given in Table 2.2. The chemical structures of the co-crystal formers are represented in Figure 2.1.2. All of the co-crystal formers were used as is without further purification.

Table 2.2: Physical properties of the co-crystal formers studied ${ }^{1}$ and their pK_{a} values.

Compounds	Formula	Mr (g.mol ${ }^{-1}$)	$\mathrm{Bp}\left({ }^{\circ} \mathrm{C}\right)$	$\mathrm{Mp}\left({ }^{\circ} \mathrm{C}\right)$	pK ${ }_{\text {a }}$
Acridine	$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~N}$	179.20	346	107	$5.60{ }^{10}$
Caffeine	$\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}$	194.20	178	238	14
					$0.6 \text { (amine) }^{11}$
Cinchonidine	$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}$	294.43	464.50	205	4.2(1 $\left.1^{\text {st }}\right)$
					$8.4\left(2^{\text {nd }}\right)^{12}$
Isonicotinamide	$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}$	122.13	334	155-157	14.96
					$3.67{ }^{13}$
Nicotinamide	$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}$	122.13	150-160	128-131	$0.50{ }^{14}$
					3.40
Quinidine	$\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}$	324.42	-	168-172	$4.2\left(1^{\text {st }}\right)$
					$8.3\left(2^{\text {nd }}\right)^{12}$
Quinine	$\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}$	324.42	-	176	$4.2\left(1^{\text {st }}\right)$
					$8.8\left(2^{\text {nd }}\right)^{12}$
Theobromine	$\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}_{2}$	180.16	-	290-295	0.7 (amine) ${ }^{15}$
					8.8
					10.1
					0.1
Theophylline	$\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}_{2}$	180.16	454.09 at	270-274	8.8^{15}
					0.7 (amine)
			mmHg		3.5^{16}
Urea	$\mathrm{CH}_{4} \mathrm{~N}_{2} \mathrm{O}$	60.06	-	133	$0.2{ }^{17}$

Nicotinamide (NAM)

Acridine (ACRI)

Isonicotinamide (INM)

Caffeine (CAF)

Theobromine (THBR)

Quinidine (QUID)

Cinchonidine (CIND)

Quinine (QUIN)

Theophylline (THPH)

Urea (U)

Figure 2.1.2: Chemical structures of the co-crystal formers.

2.2 Methods

2.2.1 Crystal Growth

The required molar ratios of the solid acid and solid base were dissolved in a suitable solvent, followed by gentle heating on a hot plate. The solvents were allowed to evaporate slowly at ambient temperature. For the liquid bases and acids, both components were mixed in calculated molar ratios with a common solvent. The diluted solutions were left to slowly evaporate at ambient temperature.

2.2.2 Slurry Conversion

Slurry conversion experiments were conducted using different solvents. $5-10 \mathrm{ml}$ of solvent was added to the known mixture of acid and base and the resulting suspensions stirred at room temperature overnight. The solid material was filtered and then characterized using PXRD.

2.2.3 Grinding

Molar ratios of the known mixture of acid and base were ground together manually with or without solvent using a mortar and pestle. The resultant product was analysed using PXRD.

2.2.4 Thermal Analysis

Thermal analysis was used to determine the thermal decomposition profiles of the resultant compounds.

- Differential Scanning Calorimetry (DSC)

The exposure of the sample and the reference material to a temperature programme and the heat flow was recorded as a function of time or temperature.

Samples (2-5 mg) were removed from their mother liquor, dried with the filter paper then crushed and analysed by heating at a constant rate of $10 \mathrm{~K} / \mathrm{min}$ with a nitrogen gas flow rate of $20 \mathrm{~mL} / \mathrm{min}$. The DSC curves indicated thermal events such as desolvation, phase transformations and melting.

The resultant thermal events were either endothermic (positive peaks) or exothermic (negative peaks). This method uses two identical $50 \mu \mathrm{l}$ crimped and vented aluminium pans, one containing a sample and the other is empty and used as a reference. DSC runs were performed using a Perkin-Elmer DSC6 instrument.

- Thermogravimetry (TGA)

Thermogravimetric analysis is used to study the chemical change in the cocrystal/salt; this is done via measurement of the sample weight as a function of temperature or time. A curve resulting from the TGA analysis is referred to as a mass loss curve, exception is made in the case where the sample reacts with the atmosphere, eg: oxidation. A number of events such as decomposition stages and fractional weight loss can be evaluated by TGA curves. ${ }^{18}$

In TGA (using a Perkin-Elmer PC6-series) analysis, samples were scooped out of the mother liquor, dried, crushed, weighed and analysed. These samples were heated at a constant rate typically $10 \mathrm{~K} / \mathrm{min}$ resulting in a mass loss as a function of temperature measurement as the compound degrades. Nitrogen is used as an inert gas with a flow rate of $20 \mathrm{~mL} / \mathrm{min}$. Measurements were taken from 303-573 K.

2.2.5 Hot Stage Microscopy (HSM)

A transmitted light microscope, MEIJI TECHNO EMZ-8TR, was used to observe the crystals; the images were recorded with a CANON DS126191 camera. A platinum hot stage ($\mathrm{T}_{\text {MAX }}: 400^{\circ} \mathrm{C}$) was provided with the microscope and a temperature controller LINKAM TMS 94 allowing the analysis of the morphology of the samples as function of temperature, using a controlled heating rate.

Most of the co-crystals/salts/hydrates obtained were analysed. The temperature program used was the same as that used for the DSC. Silicone oil was used to cover the crystals during the experiment and allow for the observation of bubbling.

However, since the temperature measuring device was not as close to the sample as in the DSC, the temperature associated with the thermal event (e.g. the melting of the crystals) was typically $10-20^{\circ} \mathrm{C}$ higher than the temperature registered in the DSC. Also for the HSPOM experiments whole crystals were placed on the heating
stage whereas for the TG/DSC measurements crushed crystals were used. This also affected the onset temperatures observed for the thermal events. The experiments were performed at ambient conditions because no nitrogen purge was available.

2.2.6 Single Crystal X-ray Diffraction

X-ray diffraction is a non-destructive analytical technique that determines the crystal and molecular structure of molecules. Information such as unit cell dimensions, details of site-ordering, bond-lengths and bond-angles in the molecule are obtained from this technique. In order to solve the crystal structure, data obtained from X-ray analysis have to be refined and interpreted. ${ }^{19}$

Single crystals of good quality and suitable size were selected for single crystal X ray diffraction for the determination of the crystal structure. This part of the experiment was completed at the University of Cape Town. The structure solution was completed at the Cape Peninsula University of Technology.

SHELXS- 97^{20} was the computer programme used to solve structures. These were run on a graphical user interface, X-SEED. ${ }^{21}$ SHELXL- 97^{22} was utilised for the refinement of the structures and uses full-matrix least-squares for the minimisation of the function $\left\{w \Psi_{0}^{2}-k F_{c}^{2}\right)$; The residual R is the link agreement between the observed F_{0} and the calculated F_{c} structure factors. The indirect measurement of the accuracy of the structure is the residual R and must be in lower value if the model is satisfactory. R_{1} (residual index) is the agreement between the observed and the calculated structure factors based on F (Eq. 1) and $w R_{2}$ (residual index) is the agreement based on F^{2}, (Eq. 2).

Equation 1: $\mathrm{R}_{1}=\frac{\sum| | \mathrm{F}_{0}|-| \mathrm{F}_{\mathrm{c}} \|}{\sum\left|\mathrm{F}_{0}\right|}$
$w R=\sqrt{\frac{\sum w \Psi_{0}^{2}-F_{c}^{2}{ }^{2}}{\left.\sum w \mathbf{G}_{0}^{2}\right)}}$

Where w is the weight allocated to the structure factor during the refinement.
$w=\frac{1}{\sigma^{2} F_{0}^{2}+\left(P^{2}, b P\right.}$
Eq. 3

Where $P=\frac{\max \left(\mathbb{Q}, F_{0}^{2} \dagger 2 F_{c}^{2}\right.}{3}$
Eq. 4

While a and b were also refined for each structure.
S (goodness of fit) was obtained for all the structures and is dependent on F^{2}, see Eq. 5.

$$
\mathrm{S}=\left(\frac{\sum \mathrm{w}\left(\mathbf{\epsilon}_{0}^{2}-\mathrm{F}_{\mathrm{c}}^{2}\right)^{2}}{\mathrm{n}-\mathrm{P}}\right)^{\frac{1}{2}}
$$

Eq. 5

Where n can be defined as the number of reflections and p as the total number of parameters refined.

Unit cell parameters were determined from intensity data measured on a Bruker DUO APEX $\|^{23,}{ }^{24}$ or Nonius Kappa $C C D^{25}$ diffractometer using graphitemonochromated Mo-Ka radiation of a wavelength of $0.7107 \AA$. The data was scaled and reduced using the DENZO-SMN ${ }^{26}$ program for Nonius Kappa CCD. For the Bruker APEX 2, the cell refinement and data reduction was achieved by using program SAINT. ${ }^{27}$ Hydrogen atoms (not hydroxyl or amine) in the crystal structures were placed and refined isotropically.

2.2.7 Powder X-ray Diffraction

The PXRD method was used for the identification of new phases and compounds as each compound shows a unique PXRD pattern due to its structural features. Unit cell dimensions ${ }^{28}$ can also be obtained from PXRD.

Samples were powdered manually and the sample was placed in a sample holder in the path of the X-ray beam. A D2 PHASER Bruker diffractometer with Cu-Ka radiation (1.54184 Å) was the instrument which measured the PXRD patterns of the
obtained products. The voltage tube and current were at 30 kV and 10 mA max, respectively with a scintillation counter, 1-dim LYNXEYE, Xflash detector. The samples were each scanned between $4-50^{\circ} 2 \theta$.

The experimental powder patterns were compared to both the PXRDs of the physical mixtures of the components and to the calculated patterns (generated from known structures using LAZYPULVERIX. ${ }^{29}$

2.2.8 Non-Isothermal Kinetics

Activation energies $\left(E_{a}\right)$ were obtained while kinetic studies were performed during the releasing of the solvent from the new compounds.

$$
\mathrm{H} \cdot \mathrm{G}_{(\mathrm{s})} \rightarrow \mathrm{H}_{(\mathrm{s})}+\mathrm{nG} \uparrow
$$

Kinetics of desolvation were investigated non-isothermally using a thermogravimetric technique. ${ }^{30}$

Crushed crystals were used for the kinetic studies.
The TGA rate can be obtained by the equation $d C / d T=A / \beta f(C) e^{-E a / R T} \quad$ Eq. 6
Where: C is the mass loss of the sample β is the heating rate

Equation 6 can be reduced to $d \log \beta / d(1 / T)=(0.457 / R) E_{a}$
The curves obtained were analysed by plotting $-\log \beta$ vs T^{-1}
Where T is the absolute temperature. A straight line with a slope: - $\left(0.457 \mathrm{E}_{\mathrm{a}}\right) / \mathrm{R}$ was obtained.

2.2.9 Infrared (IR) Spectroscopy

Fourier transform (FT) infrared spectra were gathered using a Perkin Elmer, FT-IR spectrum 1000 spectrometer in a dispersive mode with potassium bromide discs. The disc consists of 1 mg of the sample with 250 mg of potassium bromide.

One of the important advantages of this technique is that samples can be analysed in any state. ${ }^{31}$ The vibrations of the atoms in the molecule are the main interaction in which the infrared depends on, and their frequencies are characteristic of the functional groups.

The spectra obtained were recorded in the range of $440-4400 \mathrm{~cm}^{-1}$ at $2 \mathrm{~cm}^{-1}$ spectral resolution. The IR instrument version used was SPECTRUM V.5.3.1.

2.2.10 Selectivity Experiments

Two component competition experiments classified as competition between two base compounds were carried out on selected acid/base systems. These experiments were done using quinine and quinidine as base compounds and phenylacetic acid (PAA) and 4-hydroxyphenylacetic acid (HPAA) as the selected phenolic acids. Two experiments were performed, one where the QUIN: QUID: phenolic acid ratio $=1: 1: 1$ and another with the QUIN: QUID: phenolic acid ratio $=$ 1:1:2.

2.2 11 Computing Components

- Layer ${ }^{32}$: the intensity data of the crystal can be displayed as the simulated precession photographs of the reciprocal lattice levels and the investigation of the systematic absences which occur is allowed.
- Lazy Pulverix ${ }^{29}$: This software calculates the theoretical powder X-ray diffraction pattern from single crystal X-ray diffraction data.
- Section ${ }^{33}$: gives a graphical interpretation of the packing in the crystal structure by effectively cutting slices through the unit cell. Here, the guest molecules can be removed and the host shown with its van der Waals radii so that channels or cavities can be studied.
- PovRay ${ }^{34}$: renders graphics for structures.
- POVLabel ${ }^{35}$: a component of X-SEED used to edit the atomic labels of POVRay images.
- Xprep ${ }^{36}$: processing of Bruker diffraction data. SHELX input files can be set up and the space group determined.
- PLATON ${ }^{37}$: the structure molecular parameters are calculated by this software.
- MsRoll ${ }^{38}$: the program is utilised for the calculation of the void spaces in the structure and can calculate the solvent volume.
- ConQuest ${ }^{39}$: exploration of the Cambridge Structural Database for compound information.

REFERENCES

1. Windholz. M. Ed. The Merck Index: An Encyclopaedia for chemicals and drugs, Merck \& Co. Inc., New Jersey. 1976.
2. Conners. K. A \& Lipari. J. M. J. Pharm. Sci. 1976, 65, 380.
3. Dippy. J. F. J, Hughes. S. R.C, Rozanski. A. J. Chem. Soc. 1959, 2492-2498.
4. Qian Tao, Jia-Mei, Lei Ma \& Tong-Bulu. Cryst. Growth Des. 2012, 12, 31443152.
5. Kemp. L. R, Dunstan. M. S, Fisher. K, Warwicker. J \& Leys. D. Phil. Trans. R Soc B 368. 2012O323. 2013.
6. Mazon. H, Gábor. K, Ley. D, Heck. A. J. R, Van der Oost. J \& Van der Heuvel. R. H. H. J. Biol. Chem. 2007, 282(15), 11281-11290.
7. Washburn. E. W (Ed in Chief). International Critical Tables. New York, McGraw-Hill. 1929, 57, 335.
8. Dahab. A. A, Smith. N. W. J. Encapsulation Adsorpt Sci. 2012, 2, 48-59.
9. Yuichiro. A \& Motoo. H. Preparation of 2-phenylbutyric acids. Jpn. Kokai Tokyo Koho. 1998, 4.
10.Brown. H. C, Baude. E. A \& Nachod. F. C. Determination of Organic Structures by Physical Methods. Academic Press, New York. 1955.
10. Martin. A. N, et al. Physical Pharmacy ed. 2 p. 194, Philadelphia, Lea \& Febiger. 1969.
11. Perrin. D. D. Dissociation Constants of Organic Bases. London, Butterworths. 1965.
12. Sikorski. A \& Trzybiński. D. Tetrahedron Letters. 2013, 54, 1463-1466.
13. Gressel. P. D \& Galleli. S. F. J. Pharm. Sci. 1968, 57, 335.
14. Ballard. B. B \& Nelson. E. J. Pharmacol. Exp. Ther. 1962, 135, 120.
15. Wiseman. E. H, Schreiber. E. C \& Pinson. R. Biochem. Pharmacol. 1964, 13, 1421-1435.
16. McLean. W.M, Poland. D.M, Cohen. M.S, Penzotti. S. C \& Mattocks. A. M. J. Pharm. Sci. 1967, 56, 1614-1621.
17. Haines. P. J. Thermal Methods of Analysis. Blackie Academic \& Professional, London. 1995.
18. Brown. P. J. \& Forsyth. J. B. The crystal structure of solids. Edward Arnold Limited, London. 1973.
19. Sheldrick. G. M. A short history of SHELX, Acta. Crystallogr. Sect A: 112-122. 2008.
21.Barbour. L. J. X-Seed, graphical interface for SHELX program, J. Supramol. Chem. 2003, 1, 189.
20. Sheldrick. G. M. Program for Crystal Structure Determination. University of Göttingen, Germany. 1997.
21. APEX 2 v1.0-27, Bruker AXS Inc. Madison, Wisconsin, USA. 2005.
22. SAINT-Plus Version 7.12, Bruker AXS Inc. Madison, Wisconsin, USA. 2004.
23. COLLECT data collection software. Nonius, Delft, The Netherlands. 1998.
24. Otwinowski. Z \& Minor. W, Inc: Carter. W. Jr., sweet RM (eds). Methods in enzymology macromolecular crystallography, part A, vol 276. Academic Press, New York. 1997, 307.
25. Program SAINT, (2006), Version 7,60a, Bruker AXS Inc., Madison, WI, USA.
26. Karki. S, Fábián. L, Friśčić. T \& Jones. W. Powder X-ray Diffraction as an Emerging Method to Structurally Characterize Organic Solids, Organic Letters. 2007, 9, 3133-3136
27. Yvon. K.: Jeitschko. W. Parthe, E. Appl. Crystallogr. 1977, Vol.10. 73-74.
28. Flynn. J. H.: Wall. L. A. J. Polym. Sci; Part B: Polym. Lett. 1966,4323.
31.Stuart. B, George. B \& McIntyre. P. Modern Infrared Spectroscopy, John Wiley \& Sons, NewYork, USA. 1996.
29. Barbour. L. J. LAYER: A computer program for the graphic display of intensity data as simulated precession photographs: Appl. Crystallogr. 1999, 32, 351.
30. Barbour. L. J. SECTION: A computer program for the graphic display of cross sections through a unit cell: J. Appl. Crystallogr. 1999, 32, 353.
31. PoV-Ray for Windows: Version 3.le.watcom.win32: The persistence of Vision Development Team: © 1991-1999.
32. Barbour. L. J. X-Seed - A Software Tool for Supramolecular Crystallography, J. Supramol. Chem. 2001, 1, 189-191.
33. XPREP: Data Preparation \& Reciprocal Space Group Exploration: Version 5. IINT: © 1997: Bruker Analytical X-ray Systems.
34. Spek. A. L. PLATON: A multipurpose crystallographic tool: Version 10500: e 1980-2000.
35. Connolly. M. L. The molecular surface package. J. Mol. Graphics. 1993, 11, $139-141$.
36. Allen. F.H. Acta. Crystallogr. 2002, B58, 380-388.

CHAPTER 3: VANILLIC ACID CO-CRYSTALS AND CO-CRYSTAL HYDRATES

CHAPTER 3

VANILLIC ACID CO-CRYSTALS AND CO-CRYSTAL HYDRATES

According to the Cambridge Structural Database (CSD, version 5.34, November 2012), ${ }^{1}$ the compound vanillic acid (VA) was found to form a co-crystal with pyrazine-2carboxamide ${ }^{2}$ and ethenzamide. ${ }^{3}$ In this research, vanillic acid has been numbered as shown in Figure 3.1. In cases where there are two vanillic acid molecules in the asymmetric unit a suffix A was used for the parent C and O atoms as shown in Figure 3.2.

Figure 3.1: Numbering scheme of vanillic acid molecule.

CHAPTER 3: VANILLIC ACID CO-CRYSTALS AND CO-CRYSTAL HYDRATES

Figure 3.2: Numbering of the second vanillic acid molecule when forming a 2: 1 (vanillic acid: co-crystal former) ratio.

Vanillic acid has various functional groups $\left(-\mathrm{COOH},-\mathrm{OH}\right.$ and $\left.-\mathrm{OCH}_{3}\right)$ capable of forming hydrogen bonds. In this study vanillic acid formed co-crystals and co-crystal hydrates with acridine (ACRI), caffeine (CAF), isonicotinamide (INM), nicotinamide (NAM), theobromine (THBR), theophylline (THPH) and urea (U).

3.1 Vanillic acid and acridine (VA•ACRI)

Acridine, $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~N}$ is a heterocyclic molecule derived from anthracene by replacement of one meso-CH group by nitrogen. ${ }^{4}$

The vanillic acid acridine co-crystal shown in Figure 3.1.1 was obtained by dissolving a $1: 1$ ratio of both components in diethyl ether. The concentrated solution was left to crystallize by slow evaporation at ambient temperature. This acid-base combination resulted in a co-crystal not a salt due to the $\Delta \mathrm{pK}_{\mathrm{a}}$ (pK_{a} (base) -pK (acid) $)=\left(5.60^{5}\right.$ 4.50^{6}) $=1.1$. It is generally accepted that reaction of an acid with a base will be expected to form a salt if the $\Delta \mathrm{pK}_{\mathrm{a}}\left(\Delta \mathrm{pK}_{\mathrm{a}}=\mathrm{pK}_{\mathrm{a}}(\right.$ base $)-\mathrm{pK}_{\mathrm{a}}($ acid $\left.)\right)$ is greater than 2 or $3 .{ }^{7-10}$

CHAPTER 3: VANILLIC ACID CO-CRYSTALS AND CO-CRYSTAL HYDRATES

Figure 3.1.1: Asymmetric unit for the VA•ACRI structure with all the hydrogen atoms shown for numbering clarity.

3.1.1 Thermal Analysis

Thermal analysis data for the VA•ACRI co-crystal are given in Table 3.1 and the DSC results are shown in Figure 3.1.2. The melting point of the VA•ACRI co-crystal was found to be higher than the melting point of acridine and lower than the melting point of vanillic acid.

Table 3.1: Thermal analysis data for VA•ACRI.

Compounds	DSC Endo $_{\mathbf{1}}\left(\mathbf{T}_{\text {onset }, \mathbf{K}} \mathbf{K}\right.$	DSC Endo $_{\mathbf{2}} \mathbf{T}_{\text {onset, }} \mathbf{K}$)
Acridine	363.5	375.8
Vanillic acid	-	482.3
VA•ACRI	-	438.7

CHAPTER 3: VANILLIC ACID CO-CRYSTALS AND CO-CRYSTAL HYDRATES

Figure 3.1.2: DSC curves of vanillic acid (blue), acridine (green) and VA•ACRI (red).

3.1.2 Hot Stage Microscopy

The crystal was immersed in silicone oil and the crystal was monitored over a temperature range starting at 303 K . At 435 K crystal opacity is observed. However, the crystal started melting at 440 K and the entire crystal had melted at 460 K . The melting process of the crystal is shown in Figure 3.1.3.

CHAPTER 3: VANILLIC ACID CO-CRYSTALS AND CO-CRYSTAL HYDRATES

(a) 303 K

(c) 440 K

(b) 435 K

(d) 460 K

Figure 3.1.3: HSM photography of VA•ACRI (a) crystal immersed in silicone oil, (b) opacity of the crystal, (c) melting of the crystal and (d) crystal completely melts.

3.1.3 IR Spectroscopy

The co-crystal VA•ACRI was characterized using FT-infrared spectroscopy. IR positions and assignments are given in Table 3.2; the spectra of vanillic acid, acridine and the cocrystal are shown in Figure 3.1.4.

The spectra of the VA•ACRI confirmed that there is no new band within the range 1550$1650 \mathrm{~cm}^{-1}$ ($\nu \mathrm{C}-\mathrm{O}$ of COO^{-}) which indicates that no proton has been transferred. ${ }^{2}$ There is a shift of the COOH wavenumber of the VA•ACRI $\left(1733 \mathrm{~cm}^{-1}\right)$ which is $30 \mathrm{~cm}^{-1}$ less than the corresponding band of the vanillic acid ($1763 \mathrm{~cm}^{-1}$) indicating the participation of the hydrogen bonding in the co-crystal. A formation of a hydrogen bond, D-H $\cdots \mathrm{A}$ will cause the COOH peak to shift to a lower wavenumber. ${ }^{11}$ The free OH stretch (sharp

CHAPTER 3: VANILLIC ACID CO-CRYSTALS AND CO-CRYSTAL HYDRATES

peak) in vanillic acid is observed at $3480 \mathrm{~cm}^{-1}$, whereby the hydrogen bonded OH in the VA•ACRI co-crystal is obtained at $3190 \mathrm{~cm}^{-1}$ which is broader than the free OH stretch.

Table 3.2: IR positions and assignments for the peaks in VA, VA•ACRI and ACRI.

VA	VA•ACRI	ACRI	Proposed assignment
3480	-	-	Free OH stretch
3099, 2988	3190, 2970	-	Combination: OH and $\mathrm{C}-\mathrm{H}$ stretch
-	3056	3051	Aromatic ring stretch
1866	-	2285, 1815	Overtone or combination bands
1763, 1667	1733, 1647	-	$\mathrm{C}=\mathrm{O}$
$\begin{gathered} 1599,1524,1478, \\ 1454 \end{gathered}$	1593,1512, 1462	1617,1461, 1437	$\mathrm{C}=\mathrm{C}$ stretch
1275, 1202	1230, 1186	-	C-O stretch

Figure 3.1.4: IR spectrums (a) vanillic acid, (b) acridine and (c) VA•ACRI.

CHAPTER 3: VANILLIC ACID CO-CRYSTALS AND CO-CRYSTAL HYDRATES

3.1.4 Powder X-ray Diffraction

Vanillic acid and acridine were ground in a $1: 1$ ratio for 30 min and the powder X-ray diffraction (PXRD) spectrum was compared to that of the physical mixture and the calculated PXRD of the VA•ACRI obtained from LAZYPULVERIX. ${ }^{12}$ The PXRD pattern from the grinding experiment did not match the calculated and the physical mixture patterns. The calculated and the physical mixture PXRD patterns each had a peak at 2θ (approximately 7.83) for the calculated and at 2θ (approximately 7.27) for the physical mixture) at the beginning of their spectrum. These peaks are missing in the ground product PXRD pattern.

However, a slurry conversion experiment of a $1: 1$ ratio of both components in diethyl ether was in good agreement with the PXRD pattern of the calculated crystal structure (VA•ACRI). However, the height of the peak around 2θ (approximately 7.15) in the slurry conversion is very small compare to the one in the calculated pattern (2θ approximately 7.83).

The PXRD patterns of all the experiments utilized to characterize the co-crystal are shown in Figure 3.1.5.

Figure 3.1.5: PXRD patterns of VA•ACRI (red), ground product (green), physical mixture (purple) and slurry (blue).

3.1.5 Structure Determination

All the non-hydrogen atoms were found by direct methods and refined anisotropically. The hydrogen atoms involved in hydrogen bonding were located in the difference electron density map. The crystal data of VA•ACRI is reported in Table 3.3. The vanillic acid: acridine ratio found in the crystal structure was 1:1. The crystal selected for the single crystal data collection had size dimensions of $0.03 \mathrm{~mm} \times 0.08 \mathrm{~mm} \times 0.12 \mathrm{~mm}$. The structure solved successfully in the monoclinic space group $P 2_{1} / n$, with $Z=4$. The asymmetric unit contains one vanillic acid and one acridine molecule, all in general positions. The structure refined successfully to $R_{1}=0.0511$ with $w R_{2}=0.1045(R$ indices ([l>2sigma (I)]).

Table 3.3: VA•ACRI crystal data.

Compound	VA•ACRI
Structural Formula	$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{4} \cdot \mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~N}$
VA:ACRI ratio	1:1
Molecular Mass ($\mathrm{g} \mathrm{mol}^{-1}$)	347.36
Data collection temperature (K)	173(2)
Crystal system	Monoclinic
Space group	$P 2_{1} / n$
a (${ }_{\text {A }}$)	8.4690 (17)
$\mathrm{b}(\mathrm{A})$	22.621 (5)
$\mathrm{c}(\mathrm{A})$	8.9534 (18)
$\alpha\left({ }^{\circ}\right)$	90.00
$\beta\left({ }^{\circ}\right)$	90.68 (3)
$\mathrm{Y}\left({ }^{\circ}\right)$	90.00
Volume (${ }_{\text {A }}{ }^{3}$)	1715.2 (6)
Z	4
D_{c}, Calculated density ($\mathrm{g} \mathrm{cm}^{-3}$)	1.345
Final R indices [$1>2$ sigma(l]	$\mathrm{R}_{1}=0.0511$
	$\mathrm{wR}_{2}=0.1056$
R indices (all data)	$\mathrm{R}_{1}=0.1090$
	$\mathrm{wR}_{2}=0.1270$
Largest diff. peak and hole (e \AA^{-3})	0.235; -0.234

The packing diagram of the VA•ACRI structure down [001] is shown in Figure 3.1.6. The acridine molecules stabilize the structure via $\pi-\pi$ stacking interactions between their adjacent aromatic rings having a $\mathrm{Cg}-\mathrm{Cg}$ (distance between ring centroids) with a minimum distance of 3.656 Á. Layers of VA molecules [001] are sandwiched between layers of acridine molecules.

CHAPTER 3: VANILLIC ACID CO-CRYSTALS AND CO-CRYSTAL HYDRATES

Figure 3.1.6: Packing diagram of VA•ACRI down [001] with the hydrogen atoms removed.

One vanillic acid molecule is hydrogen bonded to two vanillic acid molecules and one acridine molecule. The structure is stabilized by (VA) O-H $\cdots \mathrm{O}$ (VA) with an $\mathrm{O} \cdots \mathrm{O}$ distance of $2.647(2) \AA$ and (VA) O-H $\cdots \mathrm{N}$ (ACRI) with an $\mathrm{O} \cdots \mathrm{N}$ distance of $2.560(2) \AA$, as shown in Figure 3.1.7. There are different types of motifs in this crystal structure. The first order graph set ${ }^{13}$ indicates a noncyclic chain C motif through $\mathrm{OH} \cdots \mathrm{O}$ hydrogen bonds. The second order graph set shows a noncyclic dimer D motif via $\mathrm{OH} \cdot \cdots \mathrm{N}$, $\mathrm{OH} \cdots \mathrm{O}$ and $\mathrm{OH} \cdots \mathrm{N}$ hydrogen bonds. The graph sets descriptors of the VA•ACRI cocrystal are:

- $\mathrm{N}_{1}=\mathrm{C}_{1}^{1}(8)$
- $\mathrm{N}_{2}=\mathrm{D}_{3}^{3}(15)$

The hydrogen bond parameters of VA•ACRI are given in Table 3.4.

CHAPTER 3: VANILLIC ACID CO-CRYSTALS AND CO-CRYSTAL HYDRATES

Table 3.4: Hydrogen Bond parameters of VA•ACRI.

COMPOUND	D-H $\cdots \mathrm{A}$	$\mathrm{D} \cdots \mathrm{A}(\AA)$	$\mathrm{D}-\mathrm{H}(\AA \AA)$	$\mathrm{H} \cdots \mathrm{A}(\AA)$	$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}\left({ }^{\circ}\right)$
VA•ACRI	$\mathrm{O} 3-\mathrm{H} 5 \cdots \mathrm{O} 2^{\mathrm{a}}$	$2.647(2)$	$0.925(3)$	$1.769(3)$	$157(3)$
	$\mathrm{O} 1-\mathrm{H} 1 \mathrm{~A} \cdots \mathrm{~N} 11^{\mathrm{b}}$	$2.562(2)$	$0.960(1)$	$1.605(3)$	$174(3)$
$a=x-1 / 2,-\mathrm{y}+1 / 2, \mathrm{z}+1 / 2 ;$	$b=-\mathrm{x}+1,-\mathrm{y},-\mathrm{z}+2$				

Figure 3.1.7: Hydrogen bonding in VA•ACRI.

3.2 Vanillic acid and Caffeine (VA•2CAF)

Caffeine (1, 3, 7- trimethyl purine-2, 6-dione), $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}$ is a xanthine derivative molecule which serves as a stimulant of the central nervous system and smooth muscle relaxant. It can also be employed as a formulation additive to analgesic remedies. ${ }^{14}$

The co-crystal was obtained by dissolving a 1: 1 ratio of both components in ethyl methyl ketone (EMK) and the solution was allowed to evaporate at room temperature. The resultant vanillic acid: caffeine ratio in the co-crystal was $1: 2$. The same co-crystal was also obtained when dissolving the acid: base (1: 1) combination in a 50/50 (v/v)

CHAPTER 3: VANILLIC ACID CO-CRYSTALS AND CO-CRYSTAL HYDRATES

chloroform/methanol mixture. The asymmetric unit of VA•2CAF with all the hydrogen atoms of the crystal structure shown is illustrated in Figure 3.2.1.

Figure 3.2.1: Asymmetric unit of the VA•2CAF structure with all the hydrogen atoms shown for numbering clarity.

3.2.1 Thermal Analysis

The melting point of VA-2CAF is lower than both individual components. Thermal analysis data are given in Table 3.5 and Figure 3.2.2 shows the DSC curves of the individual components and the co-crystal VA•2CAF.

CHAPTER 3: VANILLIC ACID CO-CRYSTALS AND CO-CRYSTAL HYDRATES

Table 3.5: Thermal analysis data of VA•2CAF.

Compounds	DSC Endo $_{1}\left(\mathbf{T}_{\text {onset, }}\right.$ K)	DSC Endo $_{2}\left(\mathbf{T}_{\text {onset, }}\right.$, \mathbf{K})
Caffeine	419.6	508.4
Vanillic acid	-	482.3
VA•2CAF	-	437.7

Figure 3.2.2: DSC curves of vanillic acid (green), caffeine (blue) and VA•2CAF (red).

3.2.2 Hot Stage Microscopy

A crystal was placed between two cover slips on a hot stage microscope at room temperature and one drop of silicone oil was added onto the crystal. The crystal

CHAPTER 3: VANILLIC ACID CO-CRYSTALS AND CO-CRYSTAL HYDRATES

becomes opaque at a temperature of 428.2 K and starts to melt at 445.3 K . (Figure 3.2.3).
(a) 295 K
(b) 428.2 K

(c) 445.3 K

(d) 449.1 K

Figure 3.2.3: HSM photography of VA•2CAF. a) crystal immersed in silicone oil, (b) crystal starts melting, (c) melting of the crystal and (d) crystal completely melts.

3.2.3 IR Spectroscopy

The spectra of the VA•2CAF co-crystal contains both components as shown in Figure 3.2.4, no new band was depicted between the range $1550-1650 \mathrm{~cm}^{-1}$ confirming no salt formation. ${ }^{2}$ There is confirmation of a co-crystal formation showing a lower shift of peaks of the $\mathrm{C}=\mathrm{O}$ wavenumber in VA•2CAF due to the hydrogen bond formation as reported in Table 3.6. The $\mathrm{C}=\mathrm{O}$ wavenumbers of vanillic acid and caffeine are higher than that of the co-crystal. The hydrogen bonded OH stretch (broad) in VA•2CAF was

CHAPTER 3: VANILLIC ACID CO-CRYSTALS AND CO-CRYSTAL HYDRATES

observed at $3400 \mathrm{~cm}^{-1}$ which is less than the free OH stretch $\left(3480 \mathrm{~cm}^{-1}\right)$ found in vanillic acid.

Table 3.6: IR positions and assignments of peaks in VA, VA•2CAF and CAF.

VA	VA•2CAF	CAF	Proposed assignment
3480,3099	3400	-	OH stretch
2988	3110,2954	3112,2954	C-C ring modes
1763,1667	1702,1654	1708,1658	C=O stretch
$1599,1524,1478$,	$1594,1552,1494$,	$1599,1549,1486$,	C=C stretch
1454	1478	1455	
1275,1202	1290,1264	1286,1239	C-O stretch

Figure 3.2.4: IR spectrums of (a) VA•2CAF, (b) vanillic acid and (c) caffeine.

CHAPTER 3: VANILLIC ACID CO-CRYSTALS AND CO-CRYSTAL HYDRATES

3.2.4 Powder X-ray Diffraction

The grinding experiment whereby a 1:2 ratio of vanillic acid and caffeine was ground for 30 min gave a PXRD pattern (Figure 3.2.5) which contained peaks found in the PXRD patterns of the co-crystal (calculated) and in the physical mixture, indicating that the reaction did not go to completion.

The mixture was ground for a further 15 min (total grinding time of 45 min) and again a further 15 min (total grinding time of 1 hr). These two PXRD patterns matched that of the co-crystal (calculated) indicating a successful experiment.

In the same context, the slurry experiment performed in ethyl methyl ketone was also successful and gave a PXRD pattern which was the same as the calculated PXRD obtained from LAZYPULVERIX. ${ }^{12}$

The PXRD patterns of the different type of experiments are shown in Figure 3.2.5.

CHAPTER 3: VANILLIC ACID CO-CRYSTALS AND CO-CRYSTAL

 HYDRATES

Figure 3.2.5: PXRD patterns of VA•2CAF (red), ground product after 30 min (green), physical mixture (purple), ground product after 45 min (sky blue), ground product after 1 hr (orange) and slurry (blue).

3.2.5 Structure Determination

The crystal data is reported in Table 3.7. Direct methods yielded all vanillic acid and caffeine non-hydrogen atoms and these were refined anisotropically. The hydrogen atoms involved in the hydrogen bonding were located in the difference electron density map. The structure refined successfully to $R_{1}=0.0540$ with $w R_{2}=0.1450$ ($[1>2$ sigma (I)]).

CHAPTER 3: VANILLIC ACID CO-CRYSTALS AND CO-CRYSTAL HYDRATES

Table 3.7: VA•2CAF crystal data.

Compound	VA-2CAF
Structural Formula	$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{4} \cdot 2 \mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}$
VA:CAF ratio	1:2
Molecular Mass ($\mathrm{g} \mathrm{mol}^{-1}$)	556.54
Data collection temperature (K)	173(2)
Crystal system	Triclinic
Space group	P-1
a (${ }_{\text {A }}$)	10.110 (2)
$\mathrm{b}(\mathrm{A})$	10.525 (2)
$\mathrm{c}(\mathrm{A})$	12.221 (2)
$\alpha\left({ }^{\circ}\right)$	77.69 (3)
$\beta\left({ }^{\circ}\right)$	81.26 (3)
$\mathrm{Y}\left({ }^{\circ}\right)$	82.69 (3)
Volume (${ }^{3}{ }^{3}$)	1249.7 (6)
Z	2
D_{c}, Calculated density ($\mathrm{g} \mathrm{cm}^{-3}$)	1.479
Final R indices [$1>2$ sigma (1)]	$\mathrm{R}_{1}=0.0540$
	$\mathrm{wR}_{2}=0.1450$
R indices (all data)	$\mathrm{R}_{1}=0.0780$
	$\mathrm{wR}_{2}=0.1607$
Largest diff. peak and hole (e \AA^{-3})	0.600; -0.265

The two components crystallize in a $1: 2$ ratio in the triclinic space group $P-1$, with $Z=2$. A crystal with dimensions of $0.10 \mathrm{~mm} \times 0.18 \mathrm{~mm} \times 0.51 \mathrm{~mm}$ was analyzed using single crystal X-ray diffraction. The asymmetric unit as shown in Figure 3.2.1 contains one vanillic acid and two caffeine molecules.

CHAPTER 3: VANILLIC ACID CO-CRYSTALS AND CO-CRYSTAL HYDRATES

The structure is stabilized via $\pi-\pi$ stacking interactions between the five membered ring and the six membered ring of caffeine molecules with a shortest distance of $3.420 \AA$ as shown in Figure 3.2.6 representing a packing diagram of VA•2CAF viewed down [100].

Figure 3.2.6: Packing diagram of VA•2CAF down [100] with the hydrogen atoms removed.

The hydrogen bonding of VA•2CAF (Figure 3.2.7) structure has one vanillic acid molecule bonded to two caffeine molecules as reported in Table 3.8. The hydrogen bond (VA) O-H $\cdot \bullet \mathrm{N}(\mathrm{CAF})$ has an $\mathrm{O} \cdot \cdots \cdot \mathrm{N}$ distance of 2.685 (2) \AA and an $\mathrm{O}-\mathrm{H} \cdot \bullet \cdot \mathrm{N}$ angle of 157 (3) \cong. This hydrogen bonding pattern can be described using Etter notation as D_{2}^{2} (11) motifs. The 1:2 acid: base ratio is further stabilized via (VA) O-H $\cdots \circ \mathrm{O}$ (CAF) hydrogen bonds with an O••O distance of 2.802 (2) Å and an O-H••OO angle of 157 (3) -。

CHAPTER 3: VANILLIC ACID CO-CRYSTALS AND CO-CRYSTAL HYDRATES

Table 3.8: VA•2CAF hydrogen bonding parameters.

COMPOUND	D-H $\cdots \mathrm{A}$	$\mathrm{D} \cdots \mathrm{A}(\AA)$	$\mathrm{D}-\mathrm{H}(\AA \mathrm{A})$	$\mathrm{H} \cdots \mathrm{A}(\AA \dot{A})$	$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}\left({ }^{\circ}\right)$
VA•2CAF	$\mathrm{O} 1-\mathrm{H} 1 \mathrm{~A} \cdots \mathrm{~N} 11 \mathrm{~A}^{a}$	$2.685(2)$	$0.852(3)$	$1.882(3)$	$157(3)$
	$\mathrm{O} 3-\mathrm{H} 5 \cdots \mathrm{O} 6$	$2.802(2)$	$0.825(3)$	$2.023(3)$	$157(3)$

$a=1-x,-y+2,-z+1$

Figure 3.2.7: Hydrogen bonding in VA•2CAF.

3.3 Vanillic acid and Isonicotinamide (2VA•2INM•2 $\mathrm{H}_{2} \mathrm{O}$)

Isonicotinamide (INM), $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}$ (pyridine-4-carboxamide) is a molecule based on the nicotinamide structure and has been investigated in relation to anti-inflammatory activity and Huntington's disease. ${ }^{15,16}$

A $1: 1$ ratio of both compounds was dissolved in methanol by slight heating on a hot plate. The solution was allowed to evaporate at ambient temperature. The obtained crystals contained a VA: INM: $\mathrm{H}_{2} \mathrm{O}$ ratio of 2: 2 : $2\left(\mathbf{2 V A} \cdot \mathbf{2} \mathbf{N M} \cdot \mathbf{2 H} \mathbf{H}_{2} \mathrm{O}\right)$. The same crystal was obtained when tetrahydrofuran was used as a solvent.

CHAPTER 3: VANILLIC ACID CO-CRYSTALS AND CO-CRYSTAL HYDRATES

The co-crystal hydrate is shown in Figure 3.3.1, where all the hydrogen atoms are illustrated for numbering clarity.

Figure 3.3.1: Asymmetric unit of the $2 \mathrm{VA} \cdot \mathbf{2 I N M} \cdot \mathbf{2 H} \mathbf{H}_{2} \mathrm{O}$ structure with all the hydrogen atoms shown for numbering clarity.

3.3.1 Thermal Analysis

The $\mathbf{2 V A} \cdot \mathbf{2 I N M} \cdot \mathbf{2 H} \mathbf{2} \mathbf{O}$ co-crystal hydrate has a melting point that is lower than both components as given in Table 3.9. This is an indication of a decrease in thermal stability of the co-crystal hydrate as compared to the starting material. The TG curve shows multiple mass loss steps. The first step of 5.0% corresponds to the loss of one water molecule (calc 5.9%). The second step is the melt of the crystal.

Thermal analysis curves of $\mathbf{2 V A} \cdot \mathbf{2} \mathbf{I N M} \cdot \mathbf{2} \mathbf{\mathbf { H } _ { \mathbf { 2 } } \mathbf { O } \text { , vanillic acid and isonicotinamide are }}$ illustrated in Figure 3.3.2.

CHAPTER 3: VANILLIC ACID CO-CRYSTALS AND CO-CRYSTAL HYDRATES

Table 3.9: Thermal analysis data of $2 \mathrm{VA} \cdot \mathbf{2 I N M} \cdot \mathbf{2 H} \mathrm{H}_{2} \mathrm{O}$.

Compounds	Vanillic acid	2VA•2INM•2 $\mathrm{H}_{2} \mathrm{O}$	Isonicotinamide
DSC Endo ${ }_{1}\left(\mathrm{~T}_{\text {onset, }} \mathrm{K}\right)$	-	356.3	382.1
DSC Endo ${ }_{2}\left(\mathrm{~T}_{\text {onset, }} \mathrm{K}\right.$)	482.3	410.2	428.4
TG calculated \% mass loss		5.9	
TG experimental \% mass loss	-	5.0	-
VA: INM: $\mathrm{H}_{2} \mathrm{O}$ ratio		2: $2: 2$	

Figure 3.3.2: Thermal analysis of $\mathbf{2 V A} \cdot \mathbf{2 I N M} \cdot \mathbf{2 H} \mathbf{H}_{2} \mathrm{O}$ DSC (red), $\mathbf{2 V A} \cdot \mathbf{2 I N M} \cdot \mathbf{2 H} \mathbf{2} \mathbf{O}$ TG (blue), isonicotinamide (purple) and vanillic acid (green).

CHAPTER 3: VANILLIC ACID CO-CRYSTALS AND CO-CRYSTAL HYDRATES

3.3.2 Hot Stage Microscopy

The first step in the thermal decomposition of $\mathbf{2 V A} \cdot \mathbf{2 I N M} \cdot \mathbf{2} \mathbf{H}_{2} \mathrm{O}$ is the release of water included in the crystal structure which was observed at 360 K . The crystal starts melting at 414 K and the melt is complete at 431 K as indicated in Figure 3.3.3.
(a) 295 K
(b) 360 K

(c) 414 K

(d) 431 K

Figure 3.3.3: HSM photography of $2 \mathrm{VA} \cdot \mathbf{2 I N M} \cdot \mathbf{2 H} \mathbf{2} \mathbf{O}$: (a) The crystal is immersed in silicone oil, (b) Release of water, (c) The crystal begins to melt and (d) vanillic acid melt is completed.

CHAPTER 3: VANILLIC ACID CO-CRYSTALS AND CO-CRYSTAL HYDRATES

3.3.3 IR Spectroscopy

The spectrum of the co-crystal hydrate $\mathbf{2 V A} \cdot \mathbf{2 I N M} \cdot \mathbf{2 H} \mathbf{2} \mathbf{O}$ shown in Figure 3.3.4 demonstrates the formation of a co-crystal by the presence of new bands observed at 3506 and $3166 \mathrm{~cm}^{-1}$. ${ }^{17}$ The band at $3166 \mathrm{~cm}^{-1}$ is assigned to the H-bonded NH_{2} stretching modes. The peak at $3506 \mathrm{~cm}^{-1}$ is assigned to the solvated water molecules in the crystal structure.

There is a shift in the $\mathrm{C}=\mathrm{O}$ vibration bands for the co-crystal hydrate $\mathbf{2 V A} \cdot \mathbf{2} \mathbf{I N M} \cdot \mathbf{2} \mathbf{H}_{2} \mathbf{O}$. These vibration bands are lower than vanillic acid and isonicotinamide $\mathrm{C}=\mathrm{O}$ bands.

Table 3.10: IR positions and assignments of peaks in VA, $\mathbf{2 V A} \cdot \mathbf{2 I N M} \cdot \mathbf{2} \mathbf{H}_{2} \mathrm{O}$ and INM.

VA	2VA•2INM•2H2O	INM	Proposed assignment
3480,3099	3506,3404	-	OH stretch
-	3404,3166	3370,3186	H-bonded NH_{2} stretching mode
2988	2832,2432	2783	C-C ring modes
1763,1667	1674	1680	$\mathrm{C=O}$
-	1631,1608	1624	Amide II band (NH2 scissor), C-N, C=O stretching mode combination
$1599,1524,1478$,	1556,1530,	1595,1551,	C=C stretch
1454	1450,1324	1402	1218
-	$1271,1242,1207$		Amide III band (C-N stretch, N-H bend $)$
1275,1202	C-O stretch		

Figure 3.3.4: IR spectrum (a) VA, (b) INM and (c) 2VA•2INM•2 $\mathbf{H}_{2} \mathrm{O}$.

3.3.4 Powder X-ray Diffraction

A 1: 1 mixture of VA and INM was ground for 30 min . The PXRD spectrum of the ground product matched that of the physical mixture (Figure 3.3.5).

A few drops of water were added to this mixture and the powder was ground for another 15 min . The water drop grind experiment showed good agreement to the calculated PXRD pattern obtained from LAZYPULVERIX. ${ }^{12}$

A slurry experiment was performed in methanol and the PXRD pattern recorded. A different PXRD pattern than the calculated spectrum was obtained. However, the PXRD of the slurry experiment still contained peaks found in the PXRD of the physical mixture but the overall pattern differs. Thus it can be concluded that the powder contained unreacted starting material and perhaps another form of the co-crystal or a different unknown compound.

CHAPTER 3: VANILLIC ACID CO-CRYSTALS AND CO-CRYSTAL

 HYDRATES

Figure 3.3.5: PXRD patterns of $\mathbf{2 V A} \cdot \mathbf{2 I N M} \cdot \mathbf{2} \mathbf{H}_{2} \mathrm{O}$ (red), ground product (green), physical mixture (purple), slurry in methanol (orange) and liquid assisted ground product (blue).

3.3.5 Structure Determination

The $\mathbf{2 V A} \cdot \mathbf{2 I N M} \cdot \mathbf{2 H}_{2} \mathbf{O}$ (Figure 3.3.1) structure crystallized in $P-1$ with two vanillic acid molecules, two isonicotinamide molecules and two water molecules in the asymmetric unit. The structure was solved using direct methods and refined by full matrix least squares with SHELX-97 ${ }^{18}$ refining on F^{2}. All non-hydrogen atoms were found in the difference electron density map and were refined anisotropically. The hydroxyl hydrogens of the VA and the hydrogens attached to nitrogen were located in the electron density map and allowed to refine isotropically. The graphical interface used was X -seed. ${ }^{19}$ The crystal data is given in Table 3.11.

Table 3.11: $2 \mathrm{VA} \cdot \mathbf{2 I N M} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ crystal data.

Compound	2VA•2INM•2 $\mathrm{H}_{2} \mathrm{O}$
Structural Formula	$2 \mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{4} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
VA:INM: $\mathrm{H}_{2} \mathrm{O}$ ratio	2: 2: 2
Molecular Mass ($\mathrm{g} \mathrm{mol}^{-1}$)	616.58
Data collection temperature (K)	173(2)
Crystal system	Triclinic
Space group	P-1
$\mathrm{a}(\mathrm{A})$	7.9000 (16)
$b(A)$	13.196 (3)
$c(A)$	13.735 (3)
$\alpha\left({ }^{\circ}\right)$	85.02 (3)
$\beta\left({ }^{\circ}\right)$	85.32 (3)
$Y\left({ }^{\circ}\right)$	78.68 (3)
Volume (${ }^{3}{ }^{3}$	1395.6 (5)
Z	2
D_{c}, Calculated density ($\mathrm{g} \mathrm{cm}^{-3}$)	1.467
Final R indices [l>2sigma(I)]	$\mathrm{R}_{1}=0.0503$
	$w R_{2}=0.1142$
R indices (all data)	$\mathrm{R}_{1}=0.0958$
	$w R_{2}=0.1366$
Largest diff. peak and hole (e ${ }^{-3}$)	0.212; -0.259

The face to face $\pi-\pi$ stacking interaction between the vanillic acid aromatic ring (C1 C 6) and the six membered ring of the isonicotinamide ($\mathrm{N} 9-\mathrm{C} 14$) has a $\mathrm{Cg}-\mathrm{Cg}$ (distance between ring centroids) distance of $3.668 \AA$. The packing diagram of the co-crystal hydrate is shown in Figure 3.3.6 (a). VA and INM molecules packing in layers in the general direction [101] down [010] (Figure 3.3.6 (b)). The cavities occupied by the water molecules are shown in Figure 3.3.6 (c) with a void volume of $20.20 \AA^{3}$ (1.4 \% of

CHAPTER 3: VANILLIC ACID CO-CRYSTALS AND CO-CRYSTAL HYDRATES

the unit cell). A probe radius of $1.0 \AA$ and a grid spacing of $0.70 \AA$ (contact surface) were used using Mercury ${ }^{20}$ software. The $2 \mathrm{VA} \cdot \mathbf{2 I N M} \cdot \mathbf{2 H} \mathbf{H}_{2} \mathrm{O}$ structure is also stabilized by a weaker $\mathrm{C}-\mathrm{H} \cdot \bullet \cdot \pi$ interaction between VA molecules shown in Figure 3.3 .7 with a distance of $2.645 \AA$ and a C-H $\cdot \bullet \pi$ angle of 148°.

(b)

CHAPTER 3: VANILLIC ACID CO-CRYSTALS AND CO-CRYSTAL HYDRATES

(c)

Figure 3.3.6: (a) Packing diagram of $2 \mathrm{VA} \cdot \mathbf{2 I N M} \cdot \mathbf{2} \mathbf{H}_{2} \mathrm{O}$ down [100] with the hydrogen atoms removed, (b) packing diagram of $2 \mathrm{VA} \cdot 2 \mathrm{INM} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ showing VA and INM molecules in layers down [010] in general direction [101] and (c) cavities in which water molecules are located down [100].

Figure 3.3.7: C-H $\cdot \cdot \pi$ interaction in $2 \mathrm{VA} \cdot 2 \mathrm{INM} \cdot \mathbf{2 H} \mathrm{H}_{2} \mathrm{O}$.

CHAPTER 3: VANILLIC ACID CO-CRYSTALS AND CO-CRYSTAL HYDRATES

The hydrogen bonding in $\mathbf{2 V A} \cdot \mathbf{2 I N M} \cdot \mathbf{2} \mathbf{H}_{\mathbf{2}} \mathrm{O}$ is very complex. All four hydrogen bond donor/acceptor sites of vanillic acid and isonicotinamide are utilized in the hydrogen bond network (Figure 3.3.8). The water molecule with oxygen labelled O 6 plays a bridging role connecting two vanillic acid molecules and one isonicotinamide molecule. However, the water with the oxygen labeled O5 links two vanillic acid molecules, only through these water molecules are three VA linked. This kind of hydrogen bonding where the water plays a bridging role has been reported by Jacobs et al. ${ }^{21}$

One of the vanillic acid molecules is hydrogen bonded to two isonicotinamide molecules via the COOH group ($\mathrm{O} 1-\mathrm{H} 1 \mathrm{~A} \cdots \mathrm{~N} 9$ and $\mathrm{N} 16 \mathrm{~A}-\mathrm{H} 5 \mathrm{G} \cdots \cdot \mathrm{O} 2$). The hydroxyl and the methoxy groups of the same VA molecule is involved in hydrogen bonding with water molecules. The carboxylic acid of the other vanillic acid is connected to one isonicotinamide molecule and one molecule of water. Both the OH and OCH_{3} groups are hydrogen bonded to two separate molecules of water.

The oxygen (O7A) in the second isonicotinamide molecule is a bifurcated acceptor because it is hydrogen bonded to two NH_{2} hydrogen atoms (H16A and H16B) belonging to two different INM molecules.

In the same context, the oxygen (O7) in the first isonicotinamide molecule is also a bifurcated acceptor. This oxygen (O7) is hydrogen bonded to one of the hydrogen atoms in the second isonicotinamide molecule (H6G) and one of the hydrogen atoms in the second water molecule (H6A).

There is a ring formation of hydrogen bonding between the two isonicotinamide molecules. The crystal structure has a $\mathrm{R}_{4}^{4}(20)$ ring motif involving two VA and two water molecules; $R_{4}^{4}(16)$ and $R_{4}^{2}(8)$ ring motifs are between four INM molecules via $\mathrm{N}-\mathrm{H} \cdot \cdots \mathrm{O}$; $R_{2}^{2}(8)$ ring is between two INM molecules and a $D_{2}^{2}(11)$ involving one water, one VA and one INM molecule. The hydrogen bond parameters of $\mathbf{2 V A} \cdot \mathbf{2 I N M} \cdot \mathbf{2} \mathbf{H}_{\mathbf{2}} \mathrm{O}$ are given in Table 3.12.

Table 3.12: Hydrogen bond parameters in $2 \mathrm{VA} \cdot \mathbf{2 I N M} \cdot 2 \mathrm{H}_{2} \mathrm{O}$.

COMPOUND	D-H...A	D \cdots ($($ Å)	D-H (A)	H $\cdots \mathrm{A}(\mathrm{Å})$	$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}\left({ }^{\circ}\right)$
2VA•2INM•2 $\mathrm{H}_{2} \mathrm{O}$	N16-H16B $\cdots{ }^{\text {O }}$ A ${ }^{\text {a }}$	2.899 (2)	0.998 (1)	1.906 (1)	172 (1)
	N16A-H6G \cdots O7 ${ }^{\text {b }}$	2.930 (2)	0.978 (1)	1.965 (1)	168 (1)
	O3-H5 $\cdots \mathrm{O}^{\text {b }}$	2.657 (2)	1.002 (1)	1.668 (1)	168 (1)
	O1-H1A \cdots N9	2.629 (2)	0.999 (2)	1.634 (2)	174 (2)
	O5-H5A \cdots O4	3.051 (2)	0.855 (3)	2.243 (3)	158 (2)
	O5-H5A \cdots O3	2.945 (2)	0.855 (3)	2.296 (2)	133 (2)
	O6-H6A $\cdots{ }^{\text {O }}{ }^{\text {c }}$	2.823 (2)	0.977 (3)	1.868 (3)	165 (2)
	N16-H16A…O7A ${ }^{\text {d }}$	3.002 (2)	0.948 (2)	2.190 (2)	143 (2)
	O5-H5B $\cdots{ }^{\text {O }}$	2.831 (2)	0.965 (3)	1.872 (3)	172 (3)
	O6-H6B \cdots O4A	2.983 (2)	0.844 (3)	2.210 (3)	152 (2)
	O6-H6B \cdots O3A	2.911 (2)	0.844 (3)	2.291 (3)	131 (2)
	N16A-H5G \cdots O2	3.044 (2)	0.932 (2)	2.112 (2)	178 (2)
	O1A-HIH \cdots N9A ${ }^{\dagger}$	2.604 (2)	1.003 (3)	1.605 (3)	173 (2)
	O3A-H6H $\cdots{ }^{\text {O }}{ }^{\text {a }}$	2.648 (2)	0.912 (3)	1.748 (3)	169 (2)

$a=1-x, y-1, z ; b=x, y+1, z ; c=-x,-y,-z+1 ; d=-x,-y+1,-z ; e=-x+1,-y+1,-z+2 ; f=x+1, y, z+1$

Figure 3.3.8: Hydrogen bonding in 2VA•2INM•2 $\mathbf{H}_{2} \mathrm{O}$ down [100].

CHAPTER 3: VANILLIC ACID CO-CRYSTALS AND CO-CRYSTAL HYDRATES

3.4 Vanillic acid and Nicotinamide (VA•NAM)

Nicotinamide ($\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}$) (also known as niacinamide and nicotinic acid amide, which is vitamin B_{3}) has demonstrated both anti-inflammatory actions beneficial to patients with inflammatory skin conditions. ${ }^{22}$

A 1:1 molar ratio of vanillic acid and nicotinamide was dissolved in ethyl methyl ketone by gently heating on a hot plate. The solution was allowed to evaporate at room temperature and platy crystals were obtained. The same crystal structure was obtained in acetone and methanol. The two $\Delta \mathrm{pkas}\left(\Delta \mathrm{pK}_{\mathrm{a} 1}=\mathrm{pK}_{\mathrm{a}}\right.$ (base) $-\mathrm{pK}_{\mathrm{a}} \mathrm{acid}=0.50^{23}-4.50^{6}=$ -4.00 and $\Delta \mathrm{pK}_{\mathrm{a} 2}=3.40^{23}-4.50=-1.10$) of this acid:base combination indicates the formation of a co-crystal.

The asymmetric unit of the co-crystal VA•NAM is shown in Figure 3.4.1.

Figure 3.4.1: Asymmetric unit of VA•NAM with all the hydrogen atoms shown for numbering clarity.

CHAPTER 3: VANILLIC ACID CO-CRYSTALS AND CO-CRYSTAL HYDRATES

3.4.1 Thermal Analysis

The DSC results for the compounds are given in Table 3.13 and the DSC curves are illustrated in Figure 3.4.2. The VA•NAM co-crystal has a melting point which lies inbetween that of the two starting components. ${ }^{24,25}$

Table 3.13: Thermal analysis data of VA•NAM.

Compounds	DSC Endo $_{1}\left(\mathbf{T}_{\text {onset, }} \mathbf{K}\right)$	DSC Endo $_{2} \mathbf{T}_{\text {onset }}$ K)
Nicotinamide	-	401.6
Vanillic acid	-	482.3
VA•NAM	407.6	417.1

Figure 3.4.2: DSC curves of VA•NAM (red), nicotinamide (green) and vanillic acid (blue).

CHAPTER 3: VANILLIC ACID CO-CRYSTALS AND CO-CRYSTAL HYDRATES

3.4.2 Hot Stage Microscopy

A single crystal was placed on a hot stage microscope at room temperature and immersed in silicone oil. Loss of transparency in the crystal is observed at a temperature of 405.6 K and the melt at 410.1 K . The melting process was not completed at a temperature of 421.4 K as shown in Figure 3.4.3.
(a) 295 K
(b) 405.6 K

(c) 410.1 K

(d) 421.4 K

Figure 3.4.3: HSM photography of VA•NAM: (a) Crystal immersed in silicone oil, (b)
Crystal loses transparency, (c) Crystal starts melting, (d) Crystal continuous to melt.

3.4.3 IR Spectroscopy

The spectra of VA•NAM in Figure 3.4.4 shows the formation of two new peaks at 3385 cm^{-1} and $3206 \mathrm{~cm}^{-1}$. These bands are assigned to the H -bonded NH_{2} stretching mode.

There is a shift in the OH stretch $\left(3206,3004 \mathrm{~cm}^{-1}\right)$ and $\mathrm{C}=\mathrm{O}\left(1673 \mathrm{~cm}^{-1}\right)$ of the VA•NAM co-crystal.

CHAPTER 3: VANILLIC ACID CO-CRYSTALS AND CO-CRYSTAL HYDRATES

The lack of shift in the vibrational frequencies for the $\mathrm{C}-\mathrm{N}$ stretch and $\mathrm{N}-\mathrm{H}$ bend in the co-crystal (1399 cm^{-1}) indicates that the patterns of molecular structure of the supramolecular synthon are not significantly different relative to those of the initial reactants. This indicates that the force constants of the homosupramolecular synthons (i.e., nicotinamide and vanillic acid) are not strongly changed upon formation of the heterosupramolecular synthon of the co-crystal). ${ }^{17}$

The infrared spectrum of vanillic acid is dominated by bands associated with oxygenhydrogen and carbon-hydrogen vibrational modes.

However, nicotinamide infrared spectrum has dominance in two stretching modes of the hydrogen-bonded NH_{2} group, one $\mathrm{C}-\mathrm{N}$ stretch and one strong $\mathrm{C}-\mathrm{H}$ stretching mode.

Table 3.14: IR positions and assignments of peaks in VA, VA•NAM and NAM.

VA	VA•NAM	NAM	Proposed assignment
3480,3099	3206,3004	-	OH stretch
-	3385,3206	3366,3163	H-bonded NH_{2} stretching mode
2988	3004,2960	3060,2360	C-C ring modes
1763,1667	1673	1683	$\mathrm{C}=\mathrm{O}$
-	1625	1619	Amide II band $\left(\mathrm{NH}_{2}\right.$ scissor), C-N, C=O stretching mode combination
$1599,1524,1478$,	1553,1522,	$1593,1574,1485$,	C=C stretch
1454	1457,1428	1426	Amide III band (C-N stretch, N-H bend $)$
-	1399	1230,1202	C-O stretch

Figure 3.4.4: IR spectrum (a) NAM, (b) VA and (c) VA•NAM.

3.4.4 Powder X-ray Diffraction

A 1:1 ratio of the acid: base combination was ground for 30 min and the resultant PXRD pattern was the same as that of the physical mixture. This result proved that the grinding experiment was not successful.

In the contrary, the slurry performed in ethyl methyl ketone was a success due to agreement with the calculated pattern from LAZYPULVERIX. ${ }^{12}$

CHAPTER 3: VANILLIC ACID CO-CRYSTALS AND CO-CRYSTAL HYDRATES

Figure 3.4.5: PXRD patterns of VA•NAM (red), ground product (green), physical mixture (purple) and slurry (blue).

3.4.5 Structure Determination

Non-hydrogen atoms were found in the difference electron density map. The hydroxyl hydrogens of the VA and the hydrogens attached to nitrogen were located in the difference electron density map and allowed to refine isotropically. The crystal data is given in Table 3.15.

Table 3.15: VA•NAM crystal data.

Compound	VA•NAM
Structural Formula	$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{4} \bullet \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}$
VA:NAM ratio	1:1
Molecular Mass ($\mathrm{g} \mathrm{mol}^{-1}$)	290.28
Data collection temperature (K)	173(2)
Crystal system	Triclinic
Space group	$P-1$
$\mathrm{a}(\mathrm{A})$	4.8723 (10)
$b(A)$	8.0058 (16)
$c(A)$	18.018 (4)
$\alpha\left({ }^{\circ}\right)$	78.85 (3)
$\beta\left({ }^{\circ}\right)$	84.50 (3)
$Y\left({ }^{\circ}\right)$	75.62 (3)
Volume (${ }^{3}{ }^{3}$	667.1 (2)
Z	2
D_{c}, Calculated density ($\mathrm{g} \mathrm{cm}^{-3}$)	1.445
Final R indices [l>2sigma(I)]	$\mathrm{R}_{1}=0.0434$
	$w R_{2}=0.1010$
R indices (all data)	$\mathrm{R}_{1}=0.0670$
	$w R_{2}=0.1131$
Largest diff. peak and hole (e \AA^{-3})	0.269; -0.286

The acid: base $1: 1$ ratio crystallizes in the triclinic space group $P-1$ and $Z=2$. The asymmetric unit contains one vanillic acid molecule and one nicotinamide molecule. The crystal size dimensions were $0.06 \times 0.15 \times 0.48 \mathrm{~mm}$. The crystal structure is stabilized by $\pi-\pi$ stacking interactions between the vanillic acid aromatic ring ($\mathrm{C} 1-\mathrm{C} 6$) and the nicotinamide molecule ($\mathrm{N} 9-\mathrm{C} 14$) with a minimum distance of $4.470 \AA$. The structure

CHAPTER 3: VANILLIC ACID CO-CRYSTALS AND CO-CRYSTAL HYDRATES

refined with $\mathrm{R} 1=0.0434$ [l>2sigma(I)]. The packing diagram down [100] is shown in Figure 3.4.6.

Figure 3.4.6: Packing diagram of VA•NAM down [100] with the hydrogen atoms removed.

The structure is mostly stabilized via (NAM) N-H $\cdots \mathrm{O}$ (VA) hydrogen bonds (Figure 3.4.7). One nicotinamide nitrogen atom labelled N 16 is connected to the oxygen (O 5) of a second nicotinamide molecule via the hydrogen H16A. The second hydrogen (H16B) of the nicotinamide molecule is connected to the oxygen (O3) of the vanillic acid. The hydrogen (H5) of the vanillic acid is hydrogen bonded to the nitrogen (N9) of the nicotinamide to give the $\mathrm{O} 3-\mathrm{H} 5 \cdots \cdots \mathrm{~N} 9$ connection.

There is a ring formation of hydrogen bonding between two vanillic acid molecules. This hydrogen bonding can be characterized as $R_{2}^{2}(8)$. A chain $C_{1}^{1}(4)$ motif is found between two NAM molecules. The list of dimers noncyclic motifs in the structure is: $D_{3}^{3}(9), D_{3}^{3}$ (13), $D_{3}^{3}(17)$ and D_{3}^{3} (19) which are observed between two VA and two NAM molecules. Another ring $R_{4}^{4}(16)$ motif found in the structure involved two VA and two NAM molecules. Only the ring motifs are represented in Figure 3.4.7. The hydrogen bond parameters are given in Table 3.16.

CHAPTER 3: VANILLIC ACID CO-CRYSTALS AND CO-CRYSTAL HYDRATES

Table 3.16: VA•NAM hydrogen bonding parameters.

COMPOUND	$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$	$\mathrm{D} \cdots \mathrm{A}(\AA \AA)$	$\mathrm{D}-\mathrm{H}(\AA \AA)$	$\mathrm{H} \cdots \mathrm{A}(\AA)$	$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}\left({ }^{\circ}\right)$
VA•NAM	$\mathrm{N} 16-\mathrm{H} 16 \mathrm{~A} \cdots \mathrm{O}^{\mathrm{a}}$	$2.847(2)$	$0.881(1)$	$1.996(1)$	$162(1)$
	$\mathrm{N} 16-\mathrm{H} 16 \mathrm{~B} \cdots \mathrm{OB}^{\mathrm{b}}$	$2.973(2)$	$0.921(1)$	$2.061(1)$	$170(1)$
	$\mathrm{O} 3-\mathrm{H} 5 \cdots \mathrm{NG}^{\mathrm{c}}$	$2.674(2)$	$0.912(1)$	$1.859(1)$	$148(1)$
	$\mathrm{O}^{\mathrm{H}}-\mathrm{H} 1 \mathrm{~A} \cdots \mathrm{O}^{\mathrm{d}}$	$2.604(2)$	$0.960(2)$	$1.648(5)$	$173(3)$

$\underline{a=x+1, y, z ; b=x-1, y, z ; c=-x+3,-y+1,-z ; d=-x+1,-y+1,-z+1.1 .}$

Figure 3.4.7: Hydrogen bonding in VA•NAM.

3.5 Vanillic acid and Theobromine (VA•THBR•2H2O)

Theobromine formerly known as xantheose ${ }^{26}$ is a bitter alkaloid of the cacao plant, found in chocolate as well as in many other foods such as leaves of the tea plant. It is a methylxanthine. ${ }^{27}$ This compound is used as a vasodilator (blood vessel widener) and heart simulant. ${ }^{26}$

CHAPTER 3: VANILLIC ACID CO-CRYSTALS AND CO-CRYSTAL HYDRATES

A 1:1 ratio of vanillic acid and theobromine was dissolved in distilled water via slightly heating the solution on a hot plate. The above solution was allowed to evaporate at room temperature and small needle-like crystals were obtained after two days. These crystals included the water from the solvent.

The co-crystal hydrate VA•THBR•2 $\mathbf{H}_{2} \mathrm{O}$ asymmetric unit is illustrated in Figure 3.5.1.

Figure 3.5.1: Asymmetric unit of VA•THBR• $2 \mathrm{H}_{2} \mathrm{O}$ with all the hydrogen atoms shown for numbering clarity.

3.5.1 Thermal Analysis

The thermal analysis results are listed in Table 3.17 and shown in Figure 3.5.2. The TG indicates a single mass loss step. The total mass loss of 9.3% corresponds to the release of 2 moles of water which is 1.0% less than the calculated mass loss (10.3\%), this falls within experimental error. The DSC curve shows three endotherms, the first one is due to the release of water; the second one is due to the melt of the co-crystal followed by decomposition.

CHAPTER 3: VANILLIC ACID CO-CRYSTALS AND CO-CRYSTAL HYDRATES

Table 3.17: Thermal analysis data of VA•THBR•2H2O.

Compounds	Vanillic acid	VA•THBR•2H2O	Theobromine
DSC Endo ${ }_{1}\left(\mathrm{~T}_{\text {onset, }} \mathrm{K}\right)$	-	362.9	-
DSC Endo ${ }_{2}\left(\mathrm{~T}_{\text {onset, }} \mathrm{K}\right.$)	482.3	467	623.7
DSC Endo ${ }_{3}\left(\mathrm{~T}_{\text {onset, }} \mathrm{K}\right.$	-	617.6	-
TG calculated \% mass loss		10.3	
TG experimental \% mass loss	-	9.3	-
VA:THBR: $\mathrm{H}_{2} \mathrm{O}$ ratio		1:1:2	

Figure 3.5.2: Thermal analysis of VA•THBR•2 $\mathrm{H}_{2} \mathrm{O}$ DSC (red), VA•THBR•2H2O TG (blue), theobromine (purple), and vanillic acid (green).

CHAPTER 3: VANILLIC ACID CO-CRYSTALS AND CO-CRYSTAL HYDRATES

3.5.2 IR Spectroscopy

In the IR spectra (KBr disk) of VA•THBR•2 $\mathrm{H}_{2} \mathrm{O}$ some bands were shifted relative to that of the starting components (Table 3.18). Shifts in both carbonyl and amine IR stretching frequencies indicated the formation of a new co-crystal phase. The OH stretching frequency at $3424 \mathrm{~cm}^{-1}$ is characteristic of VA•THBR• $2 \mathbf{H}_{2} \mathrm{O}$. The spectra of all components are shown in Figure 3.5.3.

Table 3.18: IR positions and assignments of peaks in VA, VA•THBR•2 $\mathbf{H}_{2} \mathrm{O}$ and THBR.

VA	VA•THBR•2H2O	THBR	Proposed assignment
3480,3099	3424	-	OH stretch
-	3100,3017	3114,3027	H-bonded NH_{2} stretching mode
2988	2788,2361	2827,2367	C-C ring modes
1763,1667	1690	1711	C=O
-	1556	1547	N-H bend
$1599,1524,1478$, 1454	1598	1593	C=C stretch
1275,1202	1226	1224	C-O stretch

Figure 3.5.3: IR spectrum (a) VA•THBR•2H2O, (b) VA and (c) THBR.

3.5.3 Powder X-ray Diffraction

The PXRD results of all the experiments are given in Figure 3.5.4. The grinding experiment did not work because the PXRD gave the same pattern as that of the physical mixture.

However, addition of a few drops of water with grinding gave VA•THBR•2H2O. The PXRD pattern of the liquid assisted ground product was in overall good agreement with that of the calculated PXRD pattern obtained from LAZYPULVERIX. ${ }^{12}$ The intensity of the first peak in the assistance liquid ground product is very small than the calculated pattern.

Figure 3.5.4: PXRD patterns of VA•THBR•2H2O (red), ground product (green), physical mixture (purple) and assistance liquid ground product (blue).

3.5.4 Structure Determination

Intensity data were collected by the standard phi scan and omega scan techniques scaled and reduced using SAINT-Plus. ${ }^{28}$ Direct methods were used to solve the structures, refinement was completed by full matrix least squares with SHELX-97, ${ }^{18}$ refining on F^{2}. X-Seed ${ }^{19}$ was used as a graphical interface. The hydroxyl hydrogens of the vanillic acid and the hydrogens attached to nitrogen atoms were located in the difference electron density map and refined isotropically. All the non-hydrogen atoms were found in the difference electron density map. The crystal data of VA•THBR•2 $\mathbf{H}_{2} \mathrm{O}$ is given in Table 3.19.

Table 3.19: VA•THBR•2H2O crystal data.

Compound	VA•THBR•2H2O
Structural Formula	$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{4} \cdot \mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
VA:THBR: $\mathrm{H}_{2} \mathrm{O}$ ratio	1:1:2
Molecular Mass ($\mathrm{g} \mathrm{mol}^{-1}$)	384.35
Data collection temperature (K)	173(2)
Crystal system	Triclinic
Space group	P-1
$\mathrm{a}(\mathrm{A})$	8.2148 (16)
$b(A)$	8.2504 (17)
$c(A)$	13.132 (3)
$\alpha\left({ }^{\circ}\right)$	102.82 (3)
$\beta\left({ }^{\circ}\right)$	97.46 (3)
$Y\left({ }^{\circ}\right)$	93.98 (3)
Volume (${ }^{3}$)	856.1 (3)
Z	2
D_{c}, Calculated density ($\mathrm{g} \mathrm{cm}^{-3}$)	1.491
Final R indices [l>2sigma(I)]	$\mathrm{R}_{1}=0.0415$
	$w R_{2}=0.1045$
R indices (all data)	$\mathrm{R}_{1}=0.0609$
	$w R_{2}=0.1156$
Largest diff. peak and hole (e \AA^{-3})	0.260; -0.236

VA•THBR•2 $\mathrm{H}_{2} \mathrm{O}$ (Figure 3.5.1) crystallized in the triclinic space group P-1 with one vanillic acid molecule, one theobromine molecule and two water molecules in the asymmetric unit. The crystal size dimensions were $0.05 \times 0.11 \times 0.53 \mathrm{~mm}$. The structure was successfully refined to $R_{1}=0.0415$ with $w R_{2}=0.1045$ ([l>2sigma (I)]). The cocrystal hydrate is stabilised via $\pi-\pi$ stacking interactions between theobromine fivemembered ring (N11 - C12) and vanillic acid six-membered ring (C1 - C6) with a shortest distance of 3.532 Å.

CHAPTER 3: VANILLIC ACID CO-CRYSTALS AND CO-CRYSTAL HYDRATES

There is a very weak $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction between the five membered ring of the theobromine molecule and the hydrogen atom (H 12) of another theobromine five membered ring with a minimum distance of $3.214 \AA$ and a C-H $\cdots \cdot \pi$ angle of 103°.
The packing diagrams and the cavities occupied by the water molecules obtained from Mercury ${ }^{20}$ software (contact surface, probe radius: $1.4 \AA$ and grid spacing $0.7 \AA$) are shown in Figure 3.5.5 (a), (b) and (c).
The void volume was found to be $52.57 \AA^{3}$ with a unit cell percentage volume of 6.10%.

(a)

(b)

CHAPTER 3: VANILLIC ACID CO-CRYSTALS AND CO-CRYSTAL HYDRATES

(c)

Figure 3.5.5: (a) Packing diagram of VA•THBR•2 $\mathrm{H}_{2} \mathrm{O}$ down [100] with the hydrogen atoms removed (b) Packing diagram of VA•THBR•2 $\mathbf{H}_{2} \mathrm{O}$ down [010] with the hydrogen atoms removed, (c) cavities in which water molecules are located.

The structure is further stabilized via (VA) O1-H1A…O8 (THBR) and (THBR) N17$\mathrm{H} 17 \cdots \mathrm{O} 2$ (VA) hydrogen bonds (Figure 3.5.6). This hydrogen bonding can be represented as $\mathrm{R}_{2}^{2}(8)$ ring motifs. The water molecule with the oxygen atom labelled O5 is a bifurcated acceptor where it connects to one hydrogen (H6B) atom of the second water molecule and the hydrogen (H 5) of the VA. O 5 is a also a bifurcated donor where it links a water molecule and a THBR molecule.

In addition, the hydrogen (H 5 A) of the water molecule is hydrogen bonded to the oxygen (O7) of the theobromine molecule. The other hydrogen (H5B) of the same molecule of water is connected to the oxygen (O6) of the second water molecule in the structure. Hydrogen bonds between four molecules of water result in an $\mathrm{R}_{4}^{4}(8)$ ring

CHAPTER 3: VANILLIC ACID CO-CRYSTALS AND CO-CRYSTAL HYDRATES

motifs. There is also the presence of a dimer $D_{2}^{1}(3)$ noncyclic motif which is between two water molecules and one VA. The other dimer noncyclic motifs $\left(D_{2}^{2}(4), D_{2}^{2}(5), D_{2}^{2}\right.$ (6), $D_{2}^{2}(7), D_{2}^{2}(8), D_{2}^{2}(10)$ and $\left.D_{2}^{2}(11)\right)$ in the crystal structure involve one VA molecule, one THBR molecule and one water molecule. The ring motifs are illustrated in Figure

3.5.6.

Thus all the hydrogen bond donor/acceptor sites of the theobromine molecule are utilized in the structure. Table 3.20 is listing the hydrogen bonding parameters.

Table 3.20: VA•THBR•2 $\mathrm{H}_{2} \mathrm{O}$ hydrogen bonding parameters.

COMPOUND	D-H..A	D $\cdots \mathrm{A}$ (${ }^{\text {A }}$)	D-H (${ }_{\text {A }}$)	H $\cdots \mathrm{A}(\mathrm{A}$)	D-H $\cdots \mathrm{A}\left({ }^{\circ}\right)$
VA•THBR•2 $\mathrm{H}_{2} \mathrm{O}$	O1-H1A…O8	2.652 (2)	0.939 (3)	1.719 (3)	172 (2)
	O3-H5 \cdots O5	2.719 (2)	0.881 (3)	1.859 (3)	165 (2)
	O6-H6B $\cdots{ }^{\text {O }}{ }^{\text {a }}$	2.868 (2)	0.853 (3)	2.064 (3)	157 (3)
	O6-H6A $\cdots \mathrm{N} 13^{\text {b }}$	2.901 (2)	0.899 (3)	2.013 (3)	169 (2)
	O5-H5A $\cdots{ }^{\text {O }}$	2.802 (2)	0.861 (3)	1.941 (3)	179 (3)
	O5-H5B $\cdots{ }^{\text {O }}{ }^{\text {d }}$	2.763 (2)	0.840 (2)	1.929 (3)	172 (2)
	N17-H17 \cdots O2	2.825 (2)	0.916 (2)	1.915 (2)	172 (2)

CHAPTER 3: VANILLIC ACID CO-CRYSTALS AND CO-CRYSTAL HYDRATES

Figure 3.5.6: Hydrogen bonding in VA•THBR•2H2O down [010].

3.6 Vanillic acid and Theophylline (2VA•THPH)

Theophylline (1, 3-dimethylxanthine) is used in the treatment of respiratory diseases and asthma. It is found in the cocoa bean. ${ }^{14}$

The two solid components, vanillic acid (VA) and theophylline (THPH) were dissolved in distilled water via slight heating on a hot plate in a 1:1 ratio. The solution was allowed to evaporate at ambient temperature and needle-like crystals with an acid: base ratio of 2: 1 was obtained. The asymmetric unit of 2VA•THPH is shown in Figure 3.6.1.

CHAPTER 3: VANILLIC ACID CO-CRYSTALS AND CO-CRYSTAL HYDRATES

Figure 3.6.1: Asymmetric unit of 2VA•THPH structure with all the hydrogen atoms shown for numbering clarity.

3.6.1 Thermal Analysis

The thermal stability of the 2VA•THPH co-crystal is reduced due to it lower melting point than the two starting materials. Thermal analysis data are given in Table 3.21 and the DSC curves are shown in Figure 3.6.2.

Table 3.21: Thermal analysis data of 2VA•THPH.

Compounds	DSC Endo $_{\mathbf{2}}\left(\mathbf{T}_{\text {onset, }}\right.$ K)
Theophylline	547.7
Vanillic acid	482.3
2VA•THPH	459.7

CHAPTER 3: VANILLIC ACID CO-CRYSTALS AND CO-CRYSTAL HYDRATES

Figure 3.6.2: DSC curves of 2VA•THPH (red), vanillic acid (green) and theophylline (blue).

3.6.2 Hot Stage Microscopy

Needle-like crystals were placed on a hot stage and immersed in silicone oil at ambient temperature. The crystals became opaque at a temperature of 452 K and started bubbling at 456 K . The crystals were completely melted at a temperature of 461 K . Figure 3.6 .3 shows the HSM photography of the crystals.

CHAPTER 3: VANILLIC ACID CO-CRYSTALS AND CO-CRYSTAL HYDRATES

Figure 3.6.3: HSM photography of 2VA•THPH: (a) Crystals immersed in silicone oil, (b) Crystals become opaque, (c) Crystals begin to melt, (d) Crystals completely melt.

3.6.3 IR Spectroscopy

There is a shift in the OH stretch frequency ($3420 \mathrm{~cm}^{-1}$) and the H -bonded NH_{2} stretching mode (3124 and $3010 \mathrm{~cm}^{-1}$) of the 2VA•THPH. This is an indication of cocrystal formation. The IR results are tabulated in Table 3.22.

Figure 3.6.4 shows the IR spectra of the starting material and the resultant co-crystal.
There is a shift in the OH stretch frequency ($3420 \mathrm{~cm}^{-1}$) and the H -bonded NH_{2} stretching mode (3124 and $3010 \mathrm{~cm}^{-1}$) of the 2VA•THPH. This is an indication of a cocrystal formation.

CHAPTER 3: VANILLIC ACID CO-CRYSTALS AND CO-CRYSTAL HYDRATES

Table 3.22: IR positions and assignments of peaks in VA, 2VA•THPH and THPH.

VA	2VA•THPH	THPH	Proposed assignment
3480,3099	3420	-	OH stretch
-	3124,3010	3347,3121	H-bonded NH_{2} stretching mode
2988	2810	2787,2598	C-C ring modes
1763,1667	1701,1672	1688	C=O
-	1558	1484	N-H bend
$1599,1524,1478$, 1454	1591	1570	C=C stretch
1275,1202	1227	1240	C-O stretch

Figure 3.6.4: IR spectrum (a) VA, (b) 2VA•THPH and (c) THPH.

CHAPTER 3: VANILLIC ACID CO-CRYSTALS AND CO-CRYSTAL HYDRATES

3.6.4 Powder X-ray Diffraction

For both the slurry and the grinding experiments 2 : 1 mixtures of VA: THPH were used. The slurry experiment performed in water and the ground products both after 20 and 30 min are similar and contain some of the peaks found in the PXRD of the physical mixture as illustrated in Figure 3.6.5. The PXRD spectra of the slurry and the ground mixtures do not match that of the co-crystal.

Thermal analysis was performed on the powdered sample obtained from the slurry and both the TG and DSC curves showed that the co-crystal hydrate had been prepared. The experiment mass loss of water in the slurry conversion powder was found to be 6.6 \% (Calc 5.8%) which corresponds to 2 moles of water (2VA•THPH•2H2O). The onset of both the release of water and the co-crystal are 336.3 K and 457.6 K respectively. The TG and DSC curves of the co-crystal hydrate are shown in Figure 3.6.6. Attempts at obtaining single crystals of the hydrate were unsuccessful. The assumption of the cocrystal hydrate $2 \mathrm{VA} \cdot \mathrm{THPH} \cdot \mathbf{2 \mathrm { H } _ { 2 } \mathrm { O }}$ was only confirmed via thermal analysis.

Figure 3.6.5: PXRD patterns of 2VA•THPH (red), ground product after 20 min (green), ground product after 30 min (purple), slurry (sky blue) and physical mixture (blue).

Figure 3.6.6: Thermal analysis curves: 2VA•THPH Hydrate DSC (red) and 2VA•THPH Hydrate (2VA•THPH•2H2O) TG (blue).

CHAPTER 3: VANILLIC ACID CO-CRYSTALS AND CO-CRYSTAL HYDRATES

3.6.5 Structure Determination

The positions of all the non-hydrogen atoms in the asymmetric unit including two vanillic acid molecules and one theophylline molecule were found by direct methods. The vanillic acid and theophylline molecules were located in general positions. The amine hydrogen was located in the difference electron density map. In the subsequent refinement all vanillic acid and theophylline non-hydrogen atoms were refined anisotropically.

Table 3.23: Crystal data of 2VA•THPH.

Compound	2VA•THPH
Structural Formula	$2 \mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{4} \bullet \mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}_{2}$
VA:THPH ratio	2: 1
Molecular Mass ($\mathrm{g} \mathrm{mol}^{-1}$)	515.45
Data collection temperature (K)	173(2)
Crystal system	Monoclinic
Space group	P2 $1_{1} \mathrm{C}$
a (A)	11.2741 (6)
b (A)	15.7712 (10)
$c(A)$	13.3746 (8)
$\alpha\left({ }^{\circ}\right)$	90.00 (0)
$\beta\left({ }^{\circ}\right)$	90.572 (2)
$\mathrm{Y}\left({ }^{\circ}\right)$	90.00 (0)
Volume (${ }^{\text {a }}{ }^{3}$)	2378.0 (2)
Z	4
D_{c}, Calculated density ($\mathrm{g} \mathrm{cm}^{-3}$)	1.440
Final R indices [l>2sigma(l)]	$\mathrm{R}_{1}=0.0472$
	$w R_{2}=0.1201$
R indices (all data)	$\mathrm{R}_{1}=0.0655$
	$w R_{2}=0.1305$
Largest diff. peak and hole (e \AA^{-3})	0.316; -0.242

CHAPTER 3: VANILLIC ACID CO-CRYSTALS AND CO-CRYSTAL HYDRATES

2VA•THPH crystallizes in the monoclinic crystal system. A crystal with dimensions of $0.16 \times 0.22 \times 0.50 \mathrm{~mm}$ was used. The structure was solved in the space group $P 2_{1} / c$. The structural formula of this co-crystal is $2 \mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{4} \cdot \mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}_{2}$. The structure refined successfully to $R_{1}=0.0472$ with $w R_{2}=0.1201$ [l>2sigma (I)]. The methoxy group of the second vanillic acid molecule is disordered. The site occupancy factors for the two VA molecules in the final refinement were 0.812 and 0.188 respectively. The structure is stabilised via $\pi-\pi$ stacking interactions between neighbouring vanillic acid molecules and between vanillic acid and theophylline molecules. The shortest distance of $3.401 \AA$ was observed between the aromatic ring (C1-C6) of a vanillic acid molecule and the six membered ring of a theophylline molecule (N9-C17). The crystal structure also contains a C-H $\cdots \pi$ interaction between the vanillic acid ring ($\mathrm{C} 1-\mathrm{C} 6$) and hydrogen atom (H9A) found in a second vanillic acid molecule with a distance of $2.877 \AA$ and a C-H $\cdots \cdots \pi$ angle of $162{ }^{\circ}$ (Figure 3.6.7). The packing diagram of 2VA•THPH is shown in Figure 3.6.8 with $Z=4$.

Figure 3.6.7: $\mathrm{C}-\mathrm{H} \cdot \bullet \bullet \pi$ interaction in $2 \mathrm{VA} \cdot \mathrm{THPH}$.

CHAPTER 3: VANILLIC ACID CO-CRYSTALS AND CO-CRYSTAL HYDRATES

Figure 3.6.8: Packing diagram of 2VA•THPH down [010] with the hydrogen atoms removed.

Each theophylline molecule is hydrogen bonded to four vanillic acid molecules as shown in Figure 3.6.9. Thus all of the hydrogen bond donor/acceptor sites of the theophylline molecule are utilized. The hydrogen bonding details are given in Table 3.24. There are $\mathrm{R}_{2}^{2}(9)$ and $\mathrm{R}_{3}^{3}(9)$ ring motifs between the (VA) O1-H1A…O6 (THPH) and (THPH) N13-H13 $\cdots \mathrm{O} 2(\mathrm{VA})$ connection. There is a weak C-H $\cdots \mathrm{O}(\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{O} A \mathrm{~A})$ hydrogen bond with a C $\cdots \mathrm{O}$ and $\mathrm{H} \cdots \mathrm{O}$ distances of $3.031 \AA$ and $2.182 \AA .{ }^{29,30}$

Table 3.24: 2VA•THPH hydrogen bonding parameters.

COMPOUND	$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$	$\mathrm{D} \cdots \mathrm{A}(\mathrm{A})$	$\mathrm{D}-\mathrm{H}(\mathrm{A})$	$\mathrm{H} \cdots \mathrm{A}(\AA)$	$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}\left({ }^{\circ}\right)$
2VA•THPH	$\mathrm{O} 3-\mathrm{H} 5 \cdots \mathrm{O}^{\mathrm{a}}$	$2.679(2)$	$0.876(3)$	$1.937(3)$	$142(3)$
	$\mathrm{N} 13-\mathrm{H} 13 \cdots \mathrm{O} 2$	$2.770(2)$	$0.955(2)$	$1.820(2)$	$173(2)$
	$\mathrm{O} 1-\mathrm{H} 1 \mathrm{~A} \cdots \mathrm{O} 6$	$2.645(2)$	$0.942(3)$	$1.704(3)$	$175(2)$
	$\mathrm{O} 3 \mathrm{~A}-\mathrm{H} 5 \mathrm{~A} \cdots 2^{\mathrm{b}}$	$2.616(2)$	$0.914(3)$	$1.712(3)$	$170(2)$
	$\mathrm{O} 1 \mathrm{~A}-\mathrm{H} 1 \mathrm{H} \cdots \mathrm{N} 11$	$2.679(2)$	$0.937(3)$	$1.772(3)$	$162(2)$
	$\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{O} 3 \mathrm{~A}$	$3.031(1)$	$0.950(1)$	$2.182(1)$	$148(1)$

$a=x, y-1, z ; b=-x+1, y+1 / 2,-z-1 / 2$

CHAPTER 3: VANILLIC ACID CO-CRYSTALS AND CO-CRYSTAL

 HYDRATES

Figure 3.6.9: Hydrogen bonding in 2VA•THPH.

3.7 Vanillic acid and Urea

Urea, $\mathrm{CH}_{4} \mathrm{~N}_{2} \mathrm{O}$ is used for the denaturation of proteins and as a mild solubilization agent for insoluble or denatured proteins. ${ }^{31,32}$

Both compounds (1:1 ratio of vanillic acid: urea) were dissolved in ethanol by gently heating on a hot plate. The solution was allowed to evaporate at room temperature and after 3 days crystals were obtained. Similar crystals were obtained when dissolving a 1:1 ratio of vanillic acid and urea in acetone.

The asymmetric unit of $\mathbf{2 V A} \cdot \mathbf{2 U}$ is shown in Figure 3.7.1.

CHAPTER 3: VANILLIC ACID CO-CRYSTALS AND CO-CRYSTAL HYDRATES

Figure 3.7.1: Asymmetric unit of $\mathbf{2 V A} \cdot \mathbf{2 U}$ structure with all the hydrogen atoms shown for numbering clarity.

3.7.1 Thermal Analysis

The thermal analysis results are listed in Table 3.25. The DSC of the co-crystal (Figure 3.7.2) shows a single endotherm which is in between the two starter materials. The $\mathbf{2 V A} \mathbf{2 U}$ co-crystal has a higher thermal stability than urea but, a lower thermal stability than vanillic acid.

Table 3.25: Thermal analysis data of $2 \mathrm{VA} \cdot \mathbf{2 U}$.

Compounds	DSC $^{\text {Endo }} \mathbf{2}_{\mathbf{(}} \mathbf{T}_{\text {onset }}$, \mathbf{K})
Urea	409.99
Vanillic acid	482.3
2VA•2U	435.56

Figure 3.7.2: DSC curves of $\mathbf{2 V A} \cdot \mathbf{2 U}$ (red), vanillic acid (green) and urea (blue).

3.7.2 Powder X-ray Diffraction

A 1:1 mixture of vanillic acid and urea was ground for 30 min . The PXRD pattern of the ground product resembled that of the physical mixture. A peak at 2θ (approximately 11.5) found in the PXRD of the co-crystal is also present in the PXRD of the ground product. A few drops of ethanol were added to the ground product and the PXRD pattern is similar to the one obtained from the slurry conversion experiment performed in ethanol. These two PXRD patterns (solvent drop ground product and slurry conversion) match that of the calculated pattern obtained from LAZYPULVERIX ${ }^{12}$ as illustrated in Figure 3.7.3.

Figure 3.7.3: PXRD patterns of $2 \mathrm{VA} \cdot 2 \mathrm{U}$ (red), ground product (green), physical mixture (purple), assistance liquid ground product (sky blue) and slurry (blue).

3.7.3 Structure Determination

Direct methods were used to solve the structures, refinement was completed by full matrix least squares with SHELX-97, ${ }^{18}$ refining on F^{2}. X-Seed ${ }^{19}$ was used as a graphical interface. All non-hydrogen atoms were found in the difference electron density map. The hydroxyl hydrogens of the VA and the hydrogens attached to nitrogen were located in the difference electron density map and were allowed to refine isotropically. The remaining hydrogens were placed with geometric constraints and refined isotropically. The crystal data is given in Table 3.26.

CHAPTER 3: VANILLIC ACID CO-CRYSTALS AND CO-CRYSTAL HYDRATES

Table 3.26: Crystal data of $2 \mathrm{VA} \cdot \mathbf{2 U}$.

Compound	2VA•2U
Structural Formula	$2 \mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{4} \cdot 2 \mathrm{CH}_{4} \mathrm{~N}_{2} \mathrm{O}$
VA:U ratio	2: 2
Molecular Mass ($\mathrm{g} \mathrm{mol}^{-1}$)	456.41
Data collection temperature (K)	173(2)
Crystal system	Triclinic
Space group	$P-1$
a (A)	6.9821 (14)
b (A)	10.232 (2)
$c(A)$	15.388 (3)
$\alpha\left({ }^{\circ}\right)$	99.68 (3)
$\beta\left({ }^{\circ}\right)$	95.37 (3)
$Y\left({ }^{\circ}\right)$	103.46 (3)
Volume (${ }^{\text {a }}$)	1043.8 (4)
Z	2
D_{c}, Calculated density ($\mathrm{g} \mathrm{cm}^{-3}$)	1.452
Final R indices [l>2sigma(I)]	$\mathrm{R}_{1}=0.0473$
	$w R_{2}=0.1015$
R indices (all data)	$\mathrm{R}_{1}=0.0844$
	$w R_{2}=0.1181$
Largest diff. peak and hole (e \AA^{-3})	0.215; -0.267

The acid: base combination crystallized in a 2 : 2 ratio, triclinic space group $P-1$ and $Z=2$.
The crystal use for the data collection had dimensions of $0.03 \mathrm{~mm} \times 0.14 \mathrm{~mm} \times 0.34$ mm where the vanillic acid and the urea molecules were located in general positions. The crystal structure was successfully refined to $R_{1}=0.0473$ with $w R_{2}=0.1015$ [l>2sigma (I)]. The co-crystal is stabilised via face to face $\pi-\pi$ stacking interactions between two vanillic acid molecules ($\mathrm{C} 1-\mathrm{C} 6$ and $\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}$) with a minimum distance

CHAPTER 3: VANILLIC ACID CO-CRYSTALS AND CO-CRYSTAL HYDRATES

of $3.601 \AA$. The packing diagram view down [010] of the $2 \mathrm{VA} \cdot \mathbf{2 U}$ co-crystal is shown in Figure 3.7.4.

Figure 3.7.4: Packing diagram of $2 V A \cdot 2 U$ down [010] with the hydrogen atoms removed.

The hydrogen bonding in $\mathbf{2 V A} \cdot \mathbf{2 U}$ is very complex. This is due to the fact that all of the urea hydrogen atoms are involved in hydrogen bonding. The oxygen O 5 in the first urea molecule is connected to two of the hydrogen atoms (H1G and H3G) in the second urea molecule and to the hydroxyl group in the first vanillic acid compound. The same connectivity is observed with the oxygen atom O5A in the second urea molecule with an exception that O5A is hydrogen bonded to H10B, H11B and the hydroxy group of the second vanillic acid molecule. The two urea molecules form an amide-amide homodimer synthon through an $\mathrm{R}_{2}^{2}(8)$ ring motif. This ring formation between the two urea molecules repeats itself in a chain and can also be characterized as C_{2}^{2} (8).

There is a homodimer synthon interaction between the two vanillic acid molecules through an $R_{2}^{2}(8)$ ring motif. The motifs observed are robust within the $\mathbf{2 V A} \cdot \mathbf{2 U}$ cocrystal. These interactions are between the acid and the amide molecules resulting in chains and rings which form networks that can be described with the graph sets of D_{2}^{1}
(3), $D_{2}^{2}(7), C_{2}^{1}(6), D_{2}^{2}(10), D_{2}^{2}(11)$ and $R_{4}^{4}(12)$. Hydrogen bonding details are given in

Table 3.27 and Figure 3.7.5 illustrates the connectivity in 2VA•2U down [010].

Table 3.27: 2VA•2U hydrogen bonding parameters.

COMPOUND	D-H...A	D \cdots ($\left({ }_{\text {A }}\right.$)	D-H (Å)	H $\cdots \mathrm{A}(\mathrm{A}$)	D-H $\cdots \mathrm{A}\left({ }^{\circ}\right)$
2VA•2U	N11-H11B \cdots O5A ${ }^{\text {a }}$	2.870 (3)	0.884 (2)	1.995 (2)	170 (2)
	N10-H10A \cdots O2A ${ }^{\text {b }}$	3.193 (3)	0.886 (2)	2.374 (2)	154 (2)
	N10-H10A \cdots O2 ${ }^{\text {c }}$	3.091 (2)	0.886 (2)	2.631 (2)	113 (1)
	N11-H11A…O2A ${ }^{\text {b }}$	3.274 (3)	0.861 (2)	2.483 (2)	153 (2)
	N11-H11A \cdots O2 ${ }^{\text {d }}$	2.981 (2)	0.861 (2)	2.556 (2)	112 (2)
	N10-H10B..O5A	2.864 (3)	0.843 (2)	2.027 (2)	172 (2)
	N10A-H1G ${ }^{\text {O }}{ }^{\text {a }}{ }^{\text {e }}$	2.961 (3)	0.924 (3)	2.048 (3)	170 (2)
	N10A-H2G ${ }^{\text {a }}$ O3A ${ }^{\dagger}$	3.036 (3)	0.881 (2)	2.248 (2)	149 (2)
	N10A-H2G \cdots O4A ${ }^{\dagger}$	3.196 (3)	0.881 (2)	2.580 (2)	128 (2)
	N11A-H3G..O5	2.976 (2)	0.904 (2)	2.079 (2)	172 (2)
	O3A-H6H \cdots O5A ${ }^{\text {a }}$	2.618 (2)	0.814 (3)	1.834 (3)	162 (3)
	O3-H5 \cdots O5 ${ }^{\text {g }}$	2.747 (2)	0.838 (3)	1.957 (3)	157 (3)
	O3-H5 \cdots O4	2.702 (2)	0.838 (3)	2.290 (3)	111 (2)
	N11A-H4G...O4A ${ }^{\dagger}$	3.167 (3)	0.875 (2)	2.548 (2)	129 (2)
	N11A-H4G \cdots O3 ${ }^{\text {h }}$	3.168 (3)	0.875 (2)	2.555 (2)	128 (2)
	N11A-H4G \cdots O3A ${ }^{\dagger}$	3.274 (3)	0.875 (2)	2.592 (2)	136 (2)
	O1A-H1H \cdots O2	2.663 (2)	0.988 (3)	1.676 (3)	178 (3)
	O1-H1A \cdots O2A	2.615 (2)	0.975 (3)	1.640 (3)	177 (3)

$a=x-1, y, z ; b=x, y-1, z ; c=-x+1,-y+1,-z ; d=-x,-y+1,-z ; e=x+1, y, z ; f=-x+1,-y+1,-z+1$ $g=-x+1,-y+2,-z ; h=x, y-1, z+1$

CHAPTER 3: VANILLIC ACID CO-CRYSTALS AND CO-CRYSTAL HYDRATES

Figure 3.7.5: Hydrogen bonding in 2VA•2U down [010].

REFERENCES

1. Allen. F.H. Acta. Crystallogr. 2002, B58, 380-388.
2. Adalder. T. K, Sankali. R \& Dastidar. P. Cryst. Growth Des. 2012, 12, 2533.
3. Aitipamula. S, Wang. A, B, H, Chow. P. S \& Tan. R. B. H. CrystEngComm. 2012, 14, 8515-8524.
4. Phillips. D. C, Ahmed. F. R \& Barnes. W. H. Acta. Crystallogr. 1960, 13, 365 377.
5. Brown. H. C, Baude. E. A \& Nachod. F. C. Determination of Organic Structures by Physical Methods. Academic Press, New York. 1955.
6. Washburn. E. W (ed in Chief). International Critical Tables. New York, McGrawHill. 1929, 57, 335.
7. Huang. K. S, Britton. D, Etter. M. C \& Byrn. S. R. J. Mater. Chem. 1997, 7, 713 720.
8. Stahl. P. H \& Wermuth. C. G. Handbook of Pharmaceutical Salts: Properties, Selection and Use. International Union of Pure and Applied Chemistry, VHCA: Wiley-VCH: Weinheim, New York. 2002.
9. Smith. M, March. J \& March. J. March's advanced organic chemistry: reactions, mechanisms, and structure, $5^{\text {th }}$ ed.; J.Wiley: New York. 2001.
10.Bhogala. B. R, Basavoju. S \& Nangia. A. CrystEngComm. 2005, 7, 551-562.
11.Lin-Vien. D, Colthup. N. B, Fateley. W. G \& Grasselli. J. G. The handbook of Infrared and Raman characteristic frequencies of organic molecules. Academic Press, San Diego. 1991.
10. Yvon. K, Jeitschko. W \& Parthe. E. Appl. Crystallogr. 1977, 10, 73 - 74.
11. Etter. M. C, MacDonald. J. C \& Bernstein. J. Acta. Crystallogr. 1990, B46, 256 262.
12. Gene. A Spiller. Caffeine. Taylor \& Francis. CRC. Press. 2010, 171.
13. Godin. A. M, Ferreira. W. C, Rocha. L. T. S, Seniuk. J. G. T, Paiva. A. L. L, Merlo. L. A, Nascimento. Jr. E. B, Bastos. L. F.S \& Coelho. M. M. Pharmacol. Biochem. Behav. 2011, 99, 782-788.
14. Sorolla. M. A, Nierga. C, Rodriguez-Colman. M. J, Reverter-Branchat. G, Arenas. A, Tamarit. J, Ros. J \& Cabiscol. E. Arch. Biochem. Biophys. 2011, 510, 27- 34.
15. Brittain. H. G. Cryst. Growth Des. 2009, 9 (5), 2492-2499.
16. Sheldrick G. M. SHELX-97, program for crystal structure refinement; University of Go"ttingen, Germany. 1997.
17. Barbour L. J. X-Seed, a software tool for supramolecular crystallography. J Supramol. Chem. 2001, 1,189-191.
18. Macrae. C. F, Eddington. P. R, McCabe. P, Pidcock. E, Shields. G. P, Taylor. R, Towler. M. \& van de Streek. J. Mercury: visualization and analysis of crystal structures. J. Appl .Crystallogr. 2006, 39, 453-457.
21.Jacobs. A, Amombo Noa. F. M \& Taljaard. J. H. J. Chem. Crystallogr. 2013, 43, 554-560.
19. Niren. N. M. Cutis. 2006, 77 (Suppl), 11- 6.
20. Gressel. P. D \& Galleli. S. F. J. Pharm. Sci. 1968, 57, 335.
21. Friščic'. T \& Jones. W. Faraday. Discuss. 2007, 136, 167 - 178.
22. Berry. D. J, Seaton. C. C, Clegg. W, Harrington. R. W, Coles. S. J, Horton. P. N, Hurst-House. M. B, Storey. R, Jones. W, Frišc'ic'. T \& Blagden. N. Cryst. Growth Des. 2008, 8, 1697 - 1712.
23. Malisoff. W. M. Dictionary of Bio-Chemistry and Related Subjects. Philosophical Library. 1943, 311, 530, 573.
24. Donald Merle. B \& Elsie Merle. P. Environment and Behavior. West view Press. 1997, 200.
25. SAINT v7.68A © Bruker Analytical X-ray systems. Madison, W I. 1997 - 2009.
26. Desiraju. G. R. Acc. Chem. Res. 1996, 29, 441 - 449.
27. Desiraju. G. R, Vittal. J. J \& Ramanan. A. Crystal Engineering: A Textbook. World Scientific Publiching Co, Pte, Ltd. 2011.
31.Smith. B. J. Methods. Mol. Biol. 1984, 1, 63.
28. SIGMA-ALDRICH life science: Where BIO Begins, Products for life science research. 2011-2012, 1867.

CHAPTER 4: PHENYLACETIC ACID CO-CRYSTALS AND SALTS

CHAPTER 4

PHENYLACETIC ACID CO-CRYSTALS AND SALTS

The compound phenyl acetic acid (PAA) has reportedly formed inclusion compounds with organic molecules such as benzamide, ${ }^{1}$ 2-pyridone, ${ }^{2}$ 3,3-(hydrazine-1,2diylidenedimethylylidene) pyridine, ${ }^{3}$ 4,4-(hydrazine-1,2-diylidenedimethylylidene) pyridine, ${ }^{4}$ adenine phenylacetate, ${ }^{5}$ 1-(carboxymethyl) pyridinium, ${ }^{6}$ and hexamethylenetetramine ${ }^{7}$ according to the data obtained from the Cambridge Structural Database (CSD, version 5.34, November 2012). ${ }^{8}$

In this chapter, the co-crystals of phenyl acetic acid (PAA) with acridine (ACRI), caffeine (CAF), isonicotinamide (INM) and nicotinamide (NAM) are described. PAA also formed salt hydrates with cinchonidine (CIND), quinidine (QUID) and quinine (QUIN).

The numbering system of phenyl acetic acid is represented in Figure 4.1.

Figure 4.1: Numbering scheme of phenyl acetic acid molecules.

CHAPTER 4: PHENYLACETIC ACID CO-CRYSTALS AND SALTS

4.1 Phenyl acetic acid and acridine (PAA•ACRI)

Phenyl acetic acid (PAA) formed a co-crystal with acridine in a 1: 1 ratio. The two components were dissolved in diethyl ether with gently heating on a hot plate. The solution was allowed to evaporate and crystals in the form of a block were obtained after a few days. The acid: base combination results in a co-crystal rather than a salt due to the $\Delta \mathrm{pK}_{\mathrm{a}}$ value (pK_{a} (base) $-\mathrm{pK}_{\mathrm{a}}$ (acid) $=5.60^{9}-4.31^{10}=1.29$). It is generally accepted that reaction of an acid with a base will be expected to form a salt if the $\Delta \mathrm{pK}_{\mathrm{a}}$ $\left(\Delta \mathrm{pK}_{\mathrm{a}}=\mathrm{pK}_{\mathrm{a}}\right.$ (base) $-\mathrm{pK}_{\mathrm{a}}($ acid $\left.)\right)$ is greater than $3 .{ }^{11-14}$

The co-crystal structure is illustrated in Figure 4.1.1.

Figure 4.1.1: Asymmetric unit of the PAA•ACRI structure with all the hydrogen atoms shown for numbering clarity.

4.1.1 Thermal Analysis

The result obtained from the DSC curves (Figure 4.1.2) shows a decrease in thermal stability of the co-crystal which is due to its low melting point compared to the starting components. Thermal analysis data are given in Table 4.1.

Table 4.1: Thermal analysis data for PAA•ACRI

Compounds	DSC Endo $_{1}\left(\mathbf{T}_{\text {onset, }} \mathbf{K}\right)$	DSC Endo $_{2}\left(\mathbf{T}_{\text {onset }} \mathbf{, K}\right.$)
Acridine	363.5	375.8
Phenyl acetic acid	-	351.8
PAA•ACRI	331.7	452.7

Figure 4.1.2: DSC curves of phenyl acetic acid (blue), acridine (green) and PAA•ACRI (red).

CHAPTER 4: PHENYLACETIC ACID CO-CRYSTALS AND SALTS

4.1.2 Hot Stage Microscopy

A block crystal of PAA•ACRI was placed onto a hot stage microscope with silicone oil at room temperature. The crystal started melting at a temperature of 314 K , melting continued at 333 K and the process was completed at 455 K . The wide melting range is not unusual due to the large crystal size. Figure 4.1 .3 shows the HSM photographs of PAA•ACRI.
(a) 295 K
(b) 314 K

(c) 333 K

(d) 455 K

Figure 4.1.3: HSM photography of PAA•ACRI: (a) crystal immersed in silicone oil, (b) crystal starts melting, (c) melting of the crystal and (d) crystal completely melts.

4.1.3 IR Spectroscopy

The IR spectrum of the co-crystal (Figure 4.1.4) shows IR absorption peaks of both components. There is a shift of the PAA•ACRI COOH wavenumber ($1698 \mathrm{~cm}^{-1}$) which is $1 \mathrm{~cm}^{-1}$ less PAA ($1699 \mathrm{~cm}^{-1}$). This shift indicates that the patterns of molecular

CHAPTER 4: PHENYLACETIC ACID CO-CRYSTALS AND SALTS

motion of the supramolecular synthon are not really significantly different to those of the initial reactants. This is an indication that the force constants of the homosupramolecular synthons (i.e., acridine and phenyl acetic acid) are not strongly changed upon formation of the heterosupramolecular synthon of the co-crystal. ${ }^{15}$

The PAA infrared spectrum is dominated by bands associated with OH and CH vibrational modes. The acridine infrared spectrum is dominated by $\mathrm{C}=\mathrm{C}$ and $\mathrm{C}-\mathrm{H}$ stretching modes.

IR positions and assignments are given in Table 4.2 and the spectra of each component are shown in Figure 4.1.4.

Table 4.2: IR positions and assignments for the peaks in PAA, PAA•ACRI and ACRI.

PAA	PAA•ACRI	ACRI	Proposed assignment
3123	3125	-	OH stretch
2750,2620	$3056,2990,2400$	3051	Aromatic ring stretch
1951	2058	2285,1815	Overtone or combination bands
1699	1698	-	C=O
$1498,1454,1407$	$1519,1496,1466$	$1617,1461,1437$	C=C stretch
1290,1243	1276,1198	-	C-O stretch

Figure 4.1.4: IR spectrums of (a) PAA, (b) acridine and (c) PAA•ACRI.

4.1.4 Powder X-ray Diffraction

The ground product (at 30 min) and the slurry conversion PXRD patterns (in diethyl ether) did not match the physical mixture PXRD pattern. Both ground and slurry PXRD patterns were a match with the calculated PXRD pattern obtained from LAZYPULVERIX. ${ }^{16}$

The PXRD patterns for the different types of experiments are illustrated in Figure 4.1.5.

CHAPTER 4: PHENYLACETIC ACID CO-CRYSTALS AND SALTS

Figure 4.1.5: PXRD patterns of PAA•ACRI (red), ground product (green), physical mixture (purple) and slurry (blue).

4.1.5 Structure Determination

All non-hydrogen atoms were found by direct methods and refined anisotropically. The PAA carboxylic acid hydrogen was located in the difference electron density map and allowed to refine isotropically. The structure refined to $R_{1}=0.0418$ with $w R_{2}=0.1050$ ([I>2sigma (I)]). The crystal data of PAA•ACRI is reported in Table 4.3.

Table 4.3: PAA•ACRI crystal data.

Compound	PAA•ACRI
Structural Formula	$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{2}{ }^{\circ} \mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~N}$
PAA:ACRI ratio	1:1
Molecular Mass ($\mathrm{g} \mathrm{mol}^{-1}$)	315.37
Data collection temperature (K)	173(2)
Crystal system	Triclinic
Space group	$P-1$
$\mathrm{a}(\mathrm{A})$	7.7375 (15)
$b(A)$	8.8544 (18)
$c(A)$	12.457 (3)
$\alpha\left({ }^{\circ}\right)$	85.72 (3)
$\beta\left({ }^{\circ}\right)$	85.73 (3)
$Y\left({ }^{\circ}\right)$	69.11 (3)
Volume (\AA^{3})	794.1 (3)
Z	2
D_{c}, Calculated density ($\mathrm{g} \mathrm{cm}^{-3}$)	1.319
Final R indices [l>2sigma(l)]	$\mathrm{R}_{1}=0.0418$
	$w R_{2}=0.1050$
R indices (all data)	$\mathrm{R}_{1}=0.0568$
	$w R_{2}=0.1145$
Largest diff. peak and hole (e \AA^{-3})	0.257; -0.205

The structure PAA•ACRI crystallizes in $P-1$ with $Z=2$. The asymmetric unit contains one PAA and one acridine molecule. The co-crystal has a structural formula of $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{2} \cdot \mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~N}$ with PAA and acridine molecules located in general positions. There are $\pi-\pi$ stacking interactions between adjacent acridine aromatic rings with a minimum distance of $3.736 \AA$. PAA aromatic rings are involved in $\pi-\pi$ stacking interactions with a shortest distance of $3.835 \AA$ as shown in Figure 4.1.6 representing packing diagram of PAA•ACRI down [100]. The structure is stabilized by C-H $\cdot \cdots \pi$ interactions between PAA
and acridine molecules with a C $\cdots \pi$ (centroid) distance of $3.210 \AA$ and a C-H $\cdots \pi$ angle of 154° as illustrated in Figure 4.1.7.

Figure 4.1.6: Packing diagram of PAA•ACRI down [100] with the hydrogen atoms removed.

Figure 4.1.7: $\mathrm{C}-\mathrm{H} \cdot \cdots \pi$ interaction between PAA and acridine molecules.
The main hydrogen bond connection found in PAA•ACRI is (PAA) O-H $\cdots \mathrm{N}$ (ACRI) with an $\mathrm{O} \cdots \mathrm{N}$ distance of 2.688 (2) $\AA, \mathrm{H} \cdots \cdot \mathrm{N}$ distance of 1.751 (1) \AA and an $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ angle of

CHAPTER 4: PHENYLACETIC ACID CO-CRYSTALS AND SALTS

164 (1) ${ }^{\circ}$. This connection can be characterized as $D_{1}^{1}(2)$ and is shown in Figure 4.1.8 with the hydrogen bond parameters given in Table 4.4.

Table 4.4: PAA•ACRI hydrogen bonding parameters.

COMPOUND	$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$	$\mathrm{D} \cdots \mathrm{A}(\AA)$	$\mathrm{D}-\mathrm{H}(\AA)$	$\mathrm{H} \cdots \mathrm{A}(\AA)$	$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}\left({ }^{\circ}\right)$
PAA $\cdot \mathrm{ACRI}$	$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{~N} 11 \mathrm{~A}^{\mathrm{a}}$	$2.688(2)$	$0.963(1)$	$1.751(1)$	$164(1)$

$a=-x,-y+1,-z+1$

Figure 4.1.8: Hydrogen bonding in PAA•ACRI.

4.2 Phenyl acetic acid and caffeine (2PAA•CAF)

A co-crystal was obtained by dissolving a 1: 1 ratio of both components in 50/50 (v/v) chloroform/methanol with slight heating on a hot plate. The solution was allowed to evaporate at room temperature and after a few days, needle-like crystals with a 2 : 1 ratio were obtained (2PAA•CAF). Similar crystals were also obtained when using distilled water as a solvent.

The asymmetry unit of 2PAA•CAF co-crystal is illustrated in Figure 4.2.1.

Figure 4.2.1: Asymmetric unit of 2PAA•CAF structure with all the hydrogen atoms shown for numbering clarity.

4.2.1 Thermal Analysis

The melting point of 2PAA•CAF was found to be in between the two starting materials melting points. ${ }^{17,18}$ This implies that the above co-crystal has a higher thermal stability than the PAA compound and a lower thermal stability than caffeine. Thermal analysis data of 2PAA•CAF are given in Table 4.5 and the DSC results are illustrated in Figure 4.2.2.

Table 4.5: Thermal analysis data of 2PAA•CAF.

Compounds	DSC Endo $_{1}\left(\mathbf{T}_{\text {onset, }} \mathbf{K}\right.$)	DSC Endo $_{2}\left(\mathbf{T}_{\text {onset }}, \mathbf{K}\right)$
Caffeine	419.6	508.4
Phenyl acetic acid	-	351.8
2PAA•CAF	-	359.9

Figure 4.2.2: DSC curves of 2PAA•CAF (red), caffeine (green) and phenyl acetic acid (blue).

4.2.2 IR Spectroscopy

A 2: 1 molar ratio of PAA and caffeine (CAF) was dissolved in $50 / 50(v / v)$ of chloroform/methanol and stirred at room temperature. The powder resulting from the experiment was analyzed using infrared spectroscopy (Figure 4.2.3). A broad band at $3430 \mathrm{~cm}^{-1}$ in the IR spectrum of the stirred product was assigned to the hydrogen bonding of the OH groups and the bands at 3221 and $3104 \mathrm{~cm}^{-1}$ were attributed to the $\mathrm{N}-\mathrm{H}$ stretching vibration.

In the physical mixture IR spectrum the $\mathrm{C}=\mathrm{O}$ bands at 1710,1698 and $1662 \mathrm{~cm}^{-1}$ are shifted to lower frequencies (1700,1678 and $1644 \mathrm{~cm}^{-1}$) in the slurry product.

Figure 4.2.3: IR spectra; (a): physical mixture of 2PAA•CAF, (b) slurry product of 2PAA•CAF.

4.2.3 Powder X-ray Diffraction

The PXRD patterns of the ground product at 20 and 30 min (Figure 4.2.4) did not match both the physical mixture and the calculated pattern obtained from LAZYPULVERIX. ${ }^{16}$ The grinding experiment was incomplete because the peak at 2θ (approximately 6.05) which is in the calculated pattern is missing and the peak at 2θ (approximately 7.68) is present in both patterns (ground product and calculated). The ground product pattern also has peaks that are found in the physical mixture which are 2θ (approximately 10.65 and 11.62).

The slurry conversion performed in 50/50 (V / v) chloroform/methanol unlike the ground products showed good agreement to that of the calculated PXRD pattern obtained from LAZYPULVERIX. ${ }^{16}$ The PXRD patterns is represented in Figure 4.2.4.

CHAPTER 4: PHENYLACETIC ACID CO-CRYSTALS AND SALTS

Figure 4.2.4: PXRD patterns of 2PAA•CAF (red), ground product after 20 min (green), ground product after 30 min (purple), physical mixture (sky blue) and slurry (blue).

4.2.4 Structure Determination

2PAA•CAF successfully refined to $R_{1}=0.0492$ with $w R_{2}=0.1116$ ([l>2sigma (I)]). All the non-hydrogen atoms were located by direct methods in the difference electron density map and refined anisotropically. The carboxylic acid hydrogen was located in the difference electron density map and the nitrogen atoms of the caffeine molecule were identified by the highest peak magnitude in the aromatic ring. The 2PAA•CAF crystal data are given in Table 4.6.

Table 4.6: 2PAA•CAF crystal data.

Compound	2PAA•CAF
Structural Formula	$2 \mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{2} \cdot \mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}$
PAA:CAF ratio	2: 1
Molecular Mass ($\mathrm{g} \mathrm{mol}^{-1}$)	466.49
Data collection temperature (K)	173(2)
Crystal system	Monoclinic
Space group	$P 2_{1} / \mathrm{c}$
a (A)	14.9707 (12)
b (A)	6.6629 (6)
$c(A)$	23.183 (2)
$\alpha\left({ }^{\circ}\right)$	90.00
$\beta\left({ }^{\circ}\right)$	102.338 (2)
$Y\left({ }^{\circ}\right)$	90.00
Volume (\AA^{3})	2259.1 (3)
Z	4
D_{c}, Calculated density ($\mathrm{g} \mathrm{cm}^{-3}$)	1.371
Final R indices [l>2sigma(I)]	$\mathrm{R}_{1}=0.0500$
	$w R_{2}=0.1141$
R indices (all data)	$\mathrm{R}_{1}=0.0916$
	$w R_{2}=0.1330$
Largest diff. peak and hole (e \AA^{-3})	0.277; -0.302

The 2:1 acid: base combination crystallized in the monoclinic space group $P 2_{1} / C$, with $Z=4$. PAA and CAF molecules are located in general positions with an asymmetric unit containing two PAA and one CAF molecules. The packing diagram of the co-crystal is shown in Figure 4.2.5.

Figure 4.2.5: Packing diagram of 2PAA•CAF down [010] with the hydrogen atoms removed.

The 2PAA•CAF co-crystal (Figure 4.2.6) is stabilized via (PAA) O-H $\cdot \cdots \mathrm{O}$ (PAA) with an $\mathrm{O} \cdots \mathrm{O}$ distance of $2.690(2) \AA$ and an $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ angle of $170(1) \cong$. The other hydrogen bond connection in the structure is via (PAA) O-H $\cdots \cdot \mathrm{N}$ (CAF) with an $\mathrm{O} \cdots \mathrm{N}$ distance of 2.669 (2) \AA A and an $\mathrm{O}-\mathrm{H} \cdot \cdots \mathrm{N}$ angle of 179 (1) ${ }^{\circ}$. The hydrogen bonding has graph sets of $D_{1}^{1}(2)$ and $D_{2}^{2}(6)$. The hydrogen bond parameters are given in Table 4.7.

Table 4.7: 2PAA•CAF hydrogen bonding parameters.

COMPOUND	D-H $\cdots \mathrm{A}$	$\mathrm{D} \cdots \mathrm{A}(\AA \AA)$	$\mathrm{D}-\mathrm{H}(\AA \dot{\mathrm{A}})$	$\mathrm{H} \cdots \mathrm{A}(\AA)$	$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}(\stackrel{0}{\circ})$
2PAA•CAF	$\mathrm{O} 1 \mathrm{~A}-\mathrm{H} 1 \mathrm{~A} \cdots \mathrm{O} 2$	$2.690(2)$	$0.920(1)$	$1.780(1)$	$170(1)$
	$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{~N} 11^{\mathrm{a}}$	$2.669(2)$	$1.015(1)$	$1.654(1)$	$179(1)$

$a=x,-y+1 / 2, z-1 / 2$

Figure 4.2.6: Hydrogen bonding in 2PAA•CAF.

4.3 Phenyl acetic acid and cinchonidine ($\left.\mathrm{PAA}^{-}\right)\left(\mathrm{CIND}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$

Cinchonidine, $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}$ is a cinchona alkaloid which is established as powerful chiral auxiliaries and favoured catalysts, effective in numerous asymmetric transformations. ${ }^{19-}$ ${ }^{25}$ This compound is a stereoisomer and pseudo-enantiomer of cinchonine.

PAA formed a salt hydrate with cinchonidine (CIND) by dissolving a $1: 1$ molar ratio of both components in isopropanol. The solution was allowed to evaporate at ambient temperature and needle-like crystals were obtained after a few days. Water was included in the structure $\left(\left(\mathrm{PAA}^{-}\right)\left(\mathrm{CIND}^{+}\right) \cdot \mathrm{H}_{2} \mathbf{O}\right)$.

The asymmetric unit of $\left(\mathrm{PAA}^{-}\right)\left(\mathrm{CIND}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ is illustrated in Figure 4.3.1.

Figure 4.3.1: Asymmetric unit of $\left(\mathrm{PAA}^{-}\right)\left(\mathrm{ClND}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ structure with all the hydrogen atoms shown for numbering clarity.

4.3.1 Thermal Analysis

Thermal analysis results of $\left(\mathrm{PAA}^{-}\right)\left(\mathrm{CIND}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ are shown in Figure 4.3.2. The TG curve shows a single mass loss step of 3.2 \% (calc. 4.0%) corresponding to the loss of water. In the DSC curve of $\left(\mathrm{PAA}^{-}\right)\left(\mathrm{CIND}^{+}\right) \cdot \mathrm{H}_{2} \mathbf{O}$, the first peak corresponds to the desolvation which is followed by the melt of the salt. Thermal analysis data is listed in Table 4.8.

Table 4.8: Thermal analysis data of PAA•CIND• $\mathrm{H}_{2} \mathrm{O}$.

Compounds	PAA	PAA•CIND $\cdot \mathbf{H}_{\mathbf{2}} \mathbf{O}$	Cinchonidine
DSC Endo $_{\mathbf{1}}\left(\mathbf{T}_{\text {onset, }}\right.$ K)	-	354.8	-
DSC Endo $\mathbf{T}_{\text {onset }}$ K)	351.8	419.6	478.6
TG calculated mass loss	-	4.0	-
TG experimental $\%$ mass loss	-	3.2	-
PAA $^{-}:$CIND $^{+}: \mathbf{H}_{\mathbf{2}} \mathbf{O}$		$1: 1: 1$	

Figure 4.3.2: Thermal analysis curves of $\left(\mathrm{PAA}^{-}\right)\left(\mathrm{CIND}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}: ~ \mathrm{DSC}$ (red), TG (blue), cinchonidine (green) and PAA (purple).

CHAPTER 4: PHENYLACETIC ACID CO-CRYSTALS AND SALTS

4.3.2 Hot Stage Microscopy

HSM photographs of $\left(\mathrm{PAA}^{-}\right)\left(\mathrm{CIND}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ are shown in Figure 4.3.3. Crystals were immersed in silicone oil at a temperature of 295 K and water was released at 356 K . At 425 K the salt started melting. The melt was completed at a temperature of 430 K .
(a) 295 K

(c) 425 K

(b) 356 K

(d) 430 K

Figure 4.3.3: HSM photography of $\mathrm{PAA} \cdot \mathrm{CIND} \cdot \mathrm{H}_{2} \mathrm{O}$: (a) crystal immersed in silicone oil, (b) release of the water, (c) melt of the crystal and (d) complete melt of the crystal.

4.3.3 IR Spectroscopy

IR spectrum of $\left(\mathrm{PAA}^{-}\right)\left(\mathrm{CIND}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ is shown in Figure 4.3.4. The salt hydrate has IR absorption peaks of both components. The IR data are given in Table 4.9. The peak at
$1570 \mathrm{~cm}^{-1}$ is broadened, which is within the range $1550-1650 \mathrm{~cm}^{-1}\left(\nu \mathrm{C}-\mathrm{O}\right.$ of $\left.\mathrm{COO}^{-}\right)$ indicating a transfer of a proton. ${ }^{26}$

The frequency at $3509 \mathrm{~cm}^{-1}$ can be attributed to the solvated water in the salt. The bands at 3396 and $3126 \mathrm{~cm}^{-1}$ can be assigned to the hydrogen bonding of the OH stretch. There is a broad band at $1384 \mathrm{~cm}^{-1}$ which is assigned to the C-O stretching mode.

Table 4.9: IR positions and assignments for the peaks in PAA, ($\left.\mathrm{PAA}^{-}\right)\left(\mathrm{CIND}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ and CIND.

PAA	$\left(\right.$ PAA $^{-} \mathbf{) (\mathbf { C l N D } ^ { + }) \cdot \mathbf { H } _ { 2 } \mathbf { O }}$	CIND	Proposed assignment
3123	$3509,3396,3126$	3396	OH stretch
2750,2620	2590	$3072,3003,2939$, 2866,2720	C=C and C-H Stretching mode
1951	-	1941	Overtone or combination bands
1698	1570	-	C=O
$1498,1454,1407$	$1508,1495,1454$	$1636,1618,1590$, 1567,1508	C=C stretch
1290,1243	1384,1281	-	C-O stretch

Figure 4.3.4: IR spectrums (a) PAA, (b) CIND and (c) ($\left.\mathrm{PAA}^{-}\right)\left(\mathrm{CIND}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$.

4.3.4 Powder X-ray Diffraction

Grinding and liquid assisted grinding experiments were not possible. This was due to the paste-like product obtained when PAA and CIND were ground together. The slurry conversion PXRD pattern (performed in distilled water) did not match that of the calculated pattern obtained from LAZYPULVERIX. ${ }^{16}$ Thus the slurry conversion resulted in a different compound compared to crystallization.

The physical mixture of PAA and CIND was not done in this case because while mixing the two components, a paste like product sticking on the mortar is obtained.

PXRD patterns of both the slurry and the calculated are shown in Figure 4.3.5.

CHAPTER 4: PHENYLACETIC ACID CO-CRYSTALS AND SALTS

Figure 4.3.5: PXRD patterns of $\left(\mathrm{PAA}^{-}\right)\left(\mathrm{CIND}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}($ red $)$ and slurry (blue).

4.3.5 Structure Determination

The PAA non- hydrogen atoms were refined anisotropically. The aromatic and methyl hydrogen atoms were fixed in position. The hydrogen atoms involved in the hydrogen bonds were found in the difference electron density map.

The PAA^{-}ring $\mathrm{C}-\mathrm{C}$ distances was fixed due to the disorder of the aromatic ring. The crystal data of $\left(\mathrm{PAA}^{-}\right)\left(\mathrm{CIND}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ structure is summarized in Table 4.10.

Table 4.10: (PAA^{-}) $\left(\mathrm{CIND}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ crystal data.

Compound	(PAA^{-})($\mathrm{CIND}^{+}{ }^{+} \cdot \mathrm{H}_{2} \mathrm{O}$
Structural Formula	$\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{2}{ }^{-}\right)\left(\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$
$\mathrm{PAA}^{-}: \mathrm{CIND}^{+}: \mathrm{H}_{2} \mathrm{O}$ ratio	1: 1: 1
Molecular Mass ($\mathrm{g} \mathrm{mol}^{-1}$)	448.55
Data collection temperature (K)	173(2)
Crystal system	Monoclinic
Space group	C2
a (A)	28.525 (6)
$b(A)$	6.5303 (13)
$c(A)$	15.172 (3)
$\alpha\left({ }^{\circ}\right)$	90.00
$\beta\left({ }^{\circ}\right)$	120.24 (3)
$Y\left({ }^{\circ}\right)$	90.00
Volume (\AA^{3})	2441.6 (11)
Z	4
D_{c}, Calculated density ($\mathrm{g} \mathrm{cm}^{-3}$)	1.220
Final R indices [l>2sigma(l)]	$\mathrm{R}_{1}=0.0627$
	$w R_{2}=0.1572$
R indices (all data)	$\mathrm{R}_{1}=0.0900$
	$w R_{2}=0.1752$
Largest diff. peak and hole (e \AA^{-3})	0.507; -0.515

The acid: base combination has a 1:1:1 ratio including one water molecule. The structure was solved in the monoclinic space group C2. Both PAA and CIND ions were found in a general positions, thus $Z=4$.

There is transfer of a proton from the PAA anion to the nitrogen (N4) of CIND confirming a salt formation due to carboxylate C-O distances (C8-O1 = $1.245 \AA$ and C8-O2 $=1.245$ \AA A). The packing down [010] is shown in Figure 4.3.6 (a). The structure shows weak X$H \bullet \bullet \pi$ interactions between PAA and the hydrogen atom $(\mathrm{H} 3 \mathrm{~A})$ in the water molecule.

CHAPTER 4: PHENYLACETIC ACID CO-CRYSTALS AND SALTS

This X-H $\cdots{ }_{\pi}$ interaction has a distance of $3.358 \AA$ and an angle of 118°. C-H $\cdots \pi$ interaction is also observed between PAA and H 12 in the CIND cation having a distance of $2.761 \AA$ and an angle of 137°. The shortest C-H $\cdot \cdot \pi$ interaction in the structure is between CIND aromatic ring ($\mathrm{N} 2-\mathrm{C} 15$) and H 15 with a distance of $2.678 \AA$ and an angle of 144°. Table 4.11 lists the X-H $\cdots \pi /$ C-H $\cdots \pi$ interactions.

The cavities in which water molecules are located down [010] (Figure 4.3 .6 (a))have a void volume (contact surface) of $31.40 \AA^{3}$ and a unit cell volume percentage of 1.3% obtained while using Mercury ${ }^{27}$ software with a probe radius of $1.4 \AA$ and a grid spacing of $0.70 \AA$.

Table 4.11: X-H $\bullet \cdot \pi /$ C-H $\bullet \bullet \pi$ parameters of $\left(\mathrm{PAA}^{-}\right)\left(\mathrm{CIND}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$.

Figure 4.3.6: (a) Packing diagram of ($\left.\mathrm{PAA}^{-}\right)\left(\mathrm{ClND}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ down [010], (b) cavities in which water molecules are located down [010].

The structure interacts via hydrogen bonding (Figure 4.3.7) between (CIND) O5$\mathrm{H} 5 \mathrm{~A} \cdots \mathrm{O} 2(\mathrm{PAA})$ with a $\mathrm{O} \cdots \mathrm{O}$ distance of 2.646 (4) \AA and an $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ angle of 160 (4) ${ }^{\circ}$. The other interaction in the structure is between O3-H3A $\cdots \mathrm{O}_{2}$ with a $\mathrm{O} \cdots \mathrm{O}$ distance of 2.890 (6) Å and an O-H \cdots O angle of 148 (6) ${ }^{\circ}$. The oxygen atom labeled O2 forms a bifurcated acceptor due to the fact that it is connected to one hydrogen atom in the CIND cation and one hydrogen atom of the water molecules (H5A and H3A respectively).

The structure is further stabilized by the O3-H3B $\cdots \mathrm{O}$ connection with a $\mathrm{O} \cdots \mathrm{O}$ distance of 2.774 (6) \AA and an $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ angle of 171 (5) $\stackrel{\circ}{ }$, follow by the (CIND) $\mathrm{N} 4-\mathrm{H} 1 \cdots \mathrm{O}$ (PAA) with an N $\cdots O$ distance of 2.694 (4) A and an $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ angle of 167 (4) \because. The oxygen atom labeled O 1 also plays a bifurcated acceptor role because bonded to the protonated hydrogen (H1) and the second hydrogen (H3B) in the water molecule. The
graph sets involved in the structure are defined as $D_{1}^{1}(2), D_{2}^{1}(3), D_{2}^{2}(5), C_{2}^{2}(6)$ and C_{2}^{2} (9). Hydrogen data are given in Table 4.12.

Table 4.12: $\left(\mathrm{PAA}^{-}\right)\left(\mathrm{CIND}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ hydrogen bonding parameters.

COMPOUND	D-H \cdots A	D $\cdots \mathrm{A}(\mathrm{A})$	D-H (${ }_{\text {(}}$)	H $\cdots \mathrm{A}(\mathrm{A})$	$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}\left({ }^{\circ}\right)$
$\left(\mathrm{PAA}^{-}\right)\left(\mathrm{CIND}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$	N4-H1 \cdots O1	2.694 (4)	0.922 (4)	1.789 (4)	167 (4)
	O5-H5A $\cdots{ }^{\text {2 }}{ }^{\text {a }}$	2.646 (4)	1.070 (5)	1.616 (5)	160 (4)
	O3-H3B \cdots O1	2.774 (4)	0.953 (7)	1.830 (7)	171 (5)
	O3-H3A $\cdots{ }^{\text {a }}{ }^{\text {a }}$	2.890 (6)	0.747 (6)	2.227 (6)	148 (6)

$a=x, y-1, z$

Figure 4.3.7: Hydrogen bonding in ($\left.\mathrm{PAA}^{-}\right)\left(\mathrm{ClND}^{+}\right) \cdot \mathrm{H}_{2} \mathbf{O}$.

4.4 Phenyl acetic acid and isonicotinamide (PAA•INM)

A 1:1 ratio of both PAA and isonicotinamide (INM) was dissolved in ethyl methyl ketone with slight heating on a hot plate. The solution was allowed to evaporate at ambient temperature and plate-like crystals were obtained after a few days.

This acid: base combination formed a co-crystal due to the $\Delta \mathrm{pK}_{\mathrm{a}}$ (pK_{a} (base) $-\mathrm{pK}_{\mathrm{a}}$ (acid) $=3.67^{28}-4.31^{10}=-0.64$). The asymmetric unit of PAA•INM is shown in Figure 4.4.1.

Figure 4.4.1: Asymmetric unit of the PAA•INM structure with all the hydrogen atoms shown for numbering clarity.

4.4.1 Thermal Analysis

The melting point of the co-crystal was found to be in-between the two components. Thermal analysis data and curves are shown in Table 4.13 and Figure 4.4.2 respectively.

Table 4.13: Thermal analysis data of PAA•INM.

Compounds	DSC Endo ${ }_{1}\left(\mathrm{~T}_{\text {onset }}, \mathrm{K}\right)$	DSC Endo ${ }_{2}\left(\mathbf{T}_{\text {onset, }}, \mathrm{K}\right.$)
Isonicotinamide	382.1	428.4
Phenyl acetic acid	-	351.8
PAA.INM	-	363.1

Figure 4.4.2: DSC curves of phenyl acetic acid (blue), isonicotinamide (green) and PAA•INM (red).

4.4.2 IR Spectroscopy

The IR spectrum of PAA•INM has IR absorption peaks of both starting components. As illustrated in Figure 4.4.3. The formation of a co-crystal is particularly demonstrated by the presence of new bands observed at 3369 and $3158 \mathrm{~cm}^{-1}$ which can be assigned to the H -bonded NH_{2} stretching modes (Table 4.14).

There is a lack of shift in the vibrational frequencies for the C-N stretch and N-H bends in the co-crystal ($1399 \mathrm{~cm}^{-1}$). This indicates that the patterns of molecular motion of the supramolecular synthon are not significantly different to those of the initial reactants, which implies that the force constants of the homosupramolecular synthons (i.e., INM and PAA) are not strongly changed upon formation of the heterosupramolecular synthon of the co-crystal. ${ }^{15}$

Table 4.14: IR positions and assignments of peaks in PAA, PAA•INM and INM.
$\left.\begin{array}{|c|c|c|c|}\hline \text { PAA } & \text { PAA•INM } & \text { INM } & \begin{array}{c}\text { Proposed } \\ \text { assignment }\end{array} \\ \hline 3123 & 3158 & - & \text { OH stretch } \\ \hline- & 3369 & 3370,3186 & \begin{array}{c}\text { H-bonded NH }\end{array} \\ \text { stretching mode }\end{array}\right]$

Figure 4.4.3: IR spectrum (a) PAA, (b) INM and (c) PAA•INM.

4.4.3 Powder X-ray Diffraction

There is good agreement between the PXRD patterns of the ground products obtained at 30 and 40 min . Both of these PXRD patterns matched that of the slurry experiment. However, PXRD pattern both ground products and slurry conversion did not match either the physical mixture PXRD pattern or the calculated pattern obtained from LAZYPULVERIX. ${ }^{16}$ A conclusion was drawn that the slurry and grinding experiments resulted in another form of the PAA•INM co-crystal. Figure 4.4.4 illustrates the PXRD patterns for the various types of experiments.

CHAPTER 4: PHENYLACETIC ACID CO-CRYSTALS AND SALTS

Figure 4.4.4: PXRD patterns of PAA•INM (blue), ground product after 30 min (red), ground product after 40 min (purple), slurry (green) and physical mixture (sky blue).

4.4.4 Structure Determination

All the non-hydrogen atoms of PAA and INM were found in the difference electron density maps and refined via direct methods. The non-hydrogen atoms of PAA were refined anisotropically and both PAA and INM molecules were found in general positions. The asymmetric unit (Figure 4.4.1) consists of one PAA and one INM molecule. Crystal data details of PAA•INM are given in Table 4.15.

Table 4.15: PAA•INM crystal data.

Compound	PAA-INM
Structural Formula	$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}$
PAA:INM ratio	1:1
Molecular Mass ($\mathrm{g} \mathrm{mol}^{-1}$)	258.28
Data collection temperature (K)	173(2)
Crystal system	Monoclinic
Space group	C2/c
$\mathrm{a}(\mathrm{A})$	32.264 (7)
b ($\mathrm{A}_{\text {) }}$	4.3278 (9)
$c(A)$	22.602 (5)
$\alpha\left({ }^{\circ}\right)$	90.00
$\beta\left({ }^{\circ}\right)$	125.10 (3)
$\mathrm{y}\left({ }^{\circ}\right)$	90.00
Volume (${ }^{3}{ }^{3}$)	2582.0 (9)
Z	8
D_{c}, Calculated density ($\mathrm{g} \mathrm{cm}^{-3}$)	1.329
Final R indices [$1>2 \mathrm{sigma}(\mathrm{l})$]	$\mathrm{R}_{1}=0.0361$
	$\mathrm{wR}_{2}=0.0975$
R indices (all data)	$\mathrm{R}_{1}=0.0457$
	$\mathrm{wR}_{2}=0.1049$
Largest diff. peak and hole ($\mathrm{E} \AA^{-3}$)	0.225; -0.167

PAA•INM crystallized in the monocline space group $C 2 / c$ with $Z=8$. The co-crystal has a structural formula of $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}$ and a molecular mass of $258.27 \mathrm{~g} . \mathrm{mol}^{-1}$. The structure displays a very weak $\mathrm{C}-\mathrm{H} \cdot \cdot \cdot \pi$ interaction between a PAA aromatic ring and H7B in another PAA molecule having a C- π distance of 3.269 Å with a C-H $\cdots \pi$ angle of 110° as shown in Figure 4.4.5. The packing diagram of PAA•INM is represented in Figure 4.4.6.

CHAPTER 4: PHENYLACETIC ACID CO-CRYSTALS AND SALTS

Figure 4.4.5: $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction between PAA molecules.

Figure 4.4.6: Packing diagram of PAA•INM down [010] with the hydrogen atoms removed.

CHAPTER 4: PHENYLACETIC ACID CO-CRYSTALS AND SALTS

The carboxylic acid hydrogen of PAA forms a hydrogen bond with nitrogen (N9) of the isonicotinamide. Two INM molecules form a dimer which can be described as
$R_{2}^{2}(8)$, Figure 4.4.7.

The graph sets of the structure can be characterized as $D_{1}^{1}(2), C_{2}^{2}(11), D_{3}^{3}(9)$ and D_{3}^{3}
(15) . The hydrogen bond parameters of PAA•INM are given in Table 4.16.

Table 4.16: PAA•INM hydrogen bonding parameters.

COMPOUND	$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$	$\mathrm{D} \cdots \mathrm{A}(\AA \AA)$	$\mathrm{D}-\mathrm{H}(\AA \AA)$	$\mathrm{H} \cdots \mathrm{A}(\AA)$	$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}\left({ }^{\circ}\right)$
PAA•INM	$\mathrm{N} 16-\mathrm{H} 16 \mathrm{~A} \cdots \mathrm{O} 2$	$2.960(1)$	$0.890(1)$	$2.081(1)$	$169(1)$
	$\mathrm{N} 16-\mathrm{H} 16 \mathrm{~B} \cdots \mathrm{O}^{\mathrm{a}}$	$2.898(2)$	$0.867(1)$	$2.032(1)$	$178(1)$
	$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{Na}^{\mathrm{b}}$	$2.630(2)$	$0.939(1)$	$1.696(1)$	$173(1)$

$a=-x,-y+1,-z+1 ; b=-x, y-1,-z+1 / 2$

Figure 4.4.7: Hydrogen bonding in PAA•INM.

4.4.5 Phenyl acetic acid and nicotinamide (2PAA•2NAM)

The co-crystal was obtained by dissolving a 1: 1 ratio of both starting materials in acetone with gently heating on a hot plate. The solution was allowed to evaporate at room temperature and crystals with a molar ratio of 2:2 were obtained after a few days. Similar crystals were also obtained when using ethyl methyl ketone as a solvent. Cocrystal formation was predicted due to the $\Delta \mathrm{pK}_{\mathrm{a}}\left(\Delta \mathrm{pK}_{\mathrm{a} 1}=\mathrm{pK}_{\mathrm{a}}\right.$ (base) $-\mathrm{pK}_{\mathrm{a}}$ (acid) $)=0.50^{29}$ $-4.31^{10}=-3.81$ and $\mathrm{pK}_{\mathrm{a} 2}=3.40^{29}-4.31^{10}=-0.91$) of this acid:base combination

The asymmetric unit of the 2PAA•2NAM is illustrated in Figure 4.5.1.

Figure 4.5.1: Asymmetric unit of 2PAA•2NAM structure with all the hydrogen atoms shown for numbering clarity.

4.5.1 Thermal Analysis

The melting point of the 2PAA•2NAM co-crystal was found to be lower than both PAA and NAM. This indicates that there is decrease in the thermal stability of the cocrystal. ${ }^{17}$ Table 4.17 lists the thermal analysis data of 2PAA•2NAM.

Table 4.17: Thermal analysis data of 2PAA•2NAM.

Compounds	DSC $^{\text {Endo }} \mathbf{1}^{(} \mathbf{T}_{\text {onset }}$, \mathbf{K})
Nicotinamide	401.6
Phenyl acetic acid	351.8
2PAA•2NAM	344.5

Figure 4.5.2: DSC curves of 2PAA•2NAM (red), nicotinamide (green) and phenyl acetic acid (blue).

CHAPTER 4: PHENYLACETIC ACID CO-CRYSTALS AND SALTS

4.5.2 Hot Stage Microscopy

Figure 4.5.3 shows HSM photographs of 2PAA•2NAM. At a temperature of 295 K , needle-like crystals were immersed in silicone oil and placed on the hot stage microscope. The crystals started losing transparency at 332 K and the melt commenced at 348 K .
(a) 295 K
(b) 332 K
(c) 348 K

(d) 352 K

Figure 4.5.3: HSM photography of 2PAA-2NAM: (a) crystal immersed in silicone oil, (b) crystal loss of transparency, (c) crystal starts melting and (d) melting of the crystal.

4.5.3 IR Spectroscopy

The formation of a co-crystal leads to a broadening in the carbonyl band region around $1650 \mathrm{~cm}^{-1} .{ }^{15} \mathrm{~A}$ broad band at $1711 \mathrm{~cm}^{-1}$ in the IR spectrum of the 2PAA•2NAM (Figure
4.5.4) indicates co-crystal formation. There is perturbation of the force constants of the carbonyl group and the NH_{2} group of the amide group involve in the interaction. There is also formation of new bands at 3385 and $3160 \mathrm{~cm}^{-1}$.

There is a shift in the vibrational frequencies for the C-N stretch and N-H bends in the co-crystal ($1408 \mathrm{~cm}^{-1}$). This is an indication that the patterns of molecular motion of the supramolecular synthon are significantly different to those of the initial reactants, which implies that the force constants of the homosupramolecular synthons (i.e., NAM and PAA) are strongly changed upon formation of the heterosupramolecular synthon of the co-crystal. IR assignment of the co-crystal and the individual compounds are given in Table 4.18.

Table 4.18: IR positions and assignments of peaks in PAA, 2PAA•2NAM and NAM.

PAA	2PAA•2NAM	NAM	Proposed assignment
3123	3160	-	OH stretch
-	3385	3366,3163	H-bonded NH_{2} stretching mode
2750,2620	2788,2484	3060,2360	C-C ring modes
1699	1711,1631	1683	$\mathrm{C=O}$
-	1631	1619	Amide II band (NH2 scissor), C-N, C=O stretching mode combination
$1498,1454,1407$	$1595,1495,1454$	$1593,1574,1485$,	C=C stretch
-	1408	1426	Amide III band (C-N stretch, N-H bend $)$
1290,1243	1298	1230,1202	C-O stretch

Figure 4.5.4: IR spectrum (a) 2PAA•2NAM, (b) NAM and (c) PAA.

4.5.4 Powder X-ray Diffraction

There is overall agreement between the PXRD patterns of the ground product (30 min) and the physical mixture. The PXRD pattern of the slurry experiment also did not match that of the calculated pattern from LAZYPULVERIX. ${ }^{16}$ Thus the 2PAA•2NAM co-crystal could not be prepared from the grinding or the slurry experiments. PXRD patterns of all type of experiment are shown in Figure 4.5.5.

CHAPTER 4: PHENYLACETIC ACID CO-CRYSTALS AND SALTS

Figure 4.5.5: PXRD patterns of 2PAA•2NAM (red), ground product at 30 min (green), physical mixture (purple) and slurry (blue).

4.5.5 Structure Determination

The crystal structure of 2PAA•2NAM refined successfully in the monoclinic space group $\mathrm{P} 2_{1} / \mathrm{n}$ to $\mathrm{R}_{1}=0.0518$ with $\mathrm{wR}_{2}=0.1146$ ($[\mathrm{l}>2$ sigma (I$\left.]\right]$). All non-hydrogen atoms were found by direct methods in the difference electron density map and refined anisotropically. PAA and NAM molecules were located in general positions with a molar ratio of 2: 2. The crystal data and experimental conditions are given in Table 4.19.

Table 4.19: 2PAA•2NAM crystal data.

Compound	2PAA•2NAM
Structural Formula	$2 \mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{2} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}$
PAA:NAM ratio	2: 2
Molecular Mass ($\mathrm{g} \mathrm{mol}^{-1}$)	516.55
Data collection temperature (K)	173(2)
Crystal system	Monoclinic
Space group	$P 2_{1} / n$
$\mathrm{a}(\mathrm{A})$	12.389 (3)
$\mathrm{b}(\mathrm{A})$	5.0838 (10)
$c(A)$	41.803 (8)
$\alpha\left(^{\circ}\right.$)	90.00
$\beta\left({ }^{\circ}\right)$	95.79 (3)
$Y\left({ }^{\circ}\right)$	90.00
Volume (\AA^{3})	2619.3 (9)
Z	4
D_{c}, Calculated density ($\mathrm{g} \mathrm{cm}^{-3}$)	1.310
Final R indices [$1>2$ sigma(I$)$]	$\mathrm{R}_{1}=0.0518$
	$w R_{2}=0.1146$
R indices (all data)	$\mathrm{R}_{1}=0.0836$
	$w R_{2}=0.1289$
Largest diff. peak and hole (e \AA^{-3})	0.171; -0.200

The packing diagram of 2PAA•2NAM along the [010] direction is shown in Figure 4.5.6.

Figure 4.5.6: Packing diagram of 2PAA•2NAM down [010] with the hydrogen atoms removed.

Stabilization of the co-crystal structural network occurs via the hydrogen bonded $\mathrm{R}_{2}^{2}(8)$ ring motif between two NAM molecules. The same interaction occurs for the second NAM molecule in the asymmetric unit.

There is further stabilization between (PAA) O1-H1 $\cdots \mathrm{N} 9$ (NAM) and (NAM) N16H16A…O2 (PAA). The second PAA molecule has the same hydrogen bond connection which is between (PAA) O1A-H1A.••N9A (NAM) and (NAM) N16A-H5G••O2A (PAA) as shown in Figure 4.5.7. The graph sets of the 2PAA•2NAM network can be characterized as: $D_{1}^{1}(2), C_{2}^{2}(10), D_{3}^{3}(9)$ and $D_{3}^{3}(15)$. Hydrogen bonding parameters of 2PAA•2NAM are listed in Table 4.20.

Table 4.20: 2PAA•2NAM hydrogen bonding parameters.

COMPOUND	D-H*A	D $\cdots \mathrm{A}$ (${ }^{\text {A }}$)	D-H (Å)	H $\cdots \mathrm{A}$ (${ }^{\text {A }}$)	$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}\left({ }^{\circ}\right.$)
2PAA•2NAM	O1-H1 \cdots N9	2.604 (2)	0.996 (3)	1.614 (3)	172 (3)
	N16A-H5G…O2A ${ }^{\text {a }}$	2.973 (2)	0.872 (2)	2.110 (2)	171 (2)
	N16-H6G $\cdots{ }^{\text {O }}{ }^{\text {a }}$	2.885 (2)	0.908 (2)	1.978 (2)	177 (2)
	O1A-H1A \cdots N9A ${ }^{\text {b }}$	2.606 (2)	1.020 (3)	1.588 (3)	176 (2)
	N16-H16A $\cdots \mathrm{O}^{\text {c }}$	3.038 (2)	0.866 (2)	2.178 (2)	172 (2)
	N16-h16B \cdots O5 ${ }^{\text {d }}$	2.878 (2)	0.883 (2)	1.996 (3)	176 (2)

$\underline{a=-x+1,-y+1,-z ; b=-x+1,-y,-z ; c=x, y-1, z ; d=-x+2,-y,-z}$

Figure 4.5.7: Hydrogen bonding in 2PAA•2NAM down [010].

CHAPTER 4: PHENYLACETIC ACID CO-CRYSTALS AND SALTS

4.6 Phenyl acetic acid and quinidine $\left(\mathrm{PAA}^{-}\right)\left(\right.$QUID $\left.^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$

Quinidine, $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}$ is originally derived from the bark of the cinchona tree and it is a stereoisomer of quinine. Quinidine is an antimalarial agent ${ }^{30}$ and it is used as an antiarrythmatic agent with anti-muscarinic and α-adrenoceptor blocking proprieties ${ }^{31-33}$ or for the treatment of neurological disorders. ${ }^{34}$

A 1:1 ratio of PAA and a quinidine (QUID) was dissolved in acetone by gently heating on a hot plate. The solution was allowed to evaporate at room temperature and after a few days crystals were obtained. This crystal structure had a water molecule included. The same crystal was obtained when ethyl methyl ketone, tetrahydrofuran, isopropanol, ethanol and methanol were used as solvents.

The asymmetric unit of $\left(\mathrm{PAA}^{-}\right)\left(\right.$QUID $\left.^{+}\right) \cdot \mathrm{H}_{2} \mathbf{O}$ is shown in Figure 4.6.1.

Figure 4.6.1: Asymmetric unit of ($\left.\mathrm{PAA}^{-}\right)\left(\right.$QUID $\left.^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ structure with all the hydrogen atoms shown for numbering clarity.

CHAPTER 4: PHENYLACETIC ACID CO-CRYSTALS AND SALTS

4.6.1 Thermal Analysis

There is good agreement between the experimental and calculated percentage mass losses obtained for the TG results. The thermal analysis results are given in Table 4.21. The TG curve shows a single mass loss of 3.0 \% which corresponds to the loss of the water molecule. The first DSC endotherm observed corresponds to dissolution of the salt upon release of water and the second endotherm is the decomposition of the salt. Thermal analysis results are shown in Figure 4.6.2.

Table 4.21: Thermal analysis data for (PAA $\left.^{-}\right)\left(\right.$QUID $\left.^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$.

Compounds	PAA	(PAA $^{-}$)(QUID ${ }^{+}$) $\mathrm{H}_{2} \mathrm{O}$	Quinidine
DSC Endo ${ }_{1}\left(\mathrm{~T}_{\text {onset, }}, \mathrm{K}\right)$	-	374.7	-
DSC Endo ${ }_{2}\left(\mathrm{~T}_{\text {onset, }} \mathrm{K}\right)$	351.8	510.0	444.9
TG calculated \% mass loss	-	3.8	-
TG experimental \% mass loss	-	3.0	-
PAA $^{-}$: QUID ${ }^{+}$: $\mathrm{H}_{2} \mathrm{O}$	-	1:1:1	-

Figure 4.6.2: Thermal analysis curves of (PAA $\left.{ }^{-}\right)\left(\right.$QUID $\left.^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$: DSC (red), TG (blue), QUID (green) and PAA (purple).

4.6.2 Hot Stage Microscopy

A block-like crystal immersed in silicone oil was placed on the hot stage at a temperature of 295 K . Water included in the crystal structure was released at 349 K and the crystal started melting at 376 K . The melting process was obtained at a temperature of about 380 K as shown in Figure 4.6.3.
(a) 295 K

(c) 376 K

(b) 349 K

(d) 380 K

Figure 4.6.3: $\mathrm{HSM}_{\text {photography }}$ of $\left(\mathrm{PAA}^{-}\right)\left(\right.$QUID $\left.^{+}\right) \cdot \mathrm{H}_{2} \mathbf{O}$: (a) crystal immersed in silicone oil, (b) releasing of the water, (c) crystal starts melting and (d) melt of the crystal.

CHAPTER 4: PHENYLACETIC ACID CO-CRYSTALS AND SALTS

4.6.3 IR Spectroscopy

The IR spectrum of $\left(\mathrm{PAA}^{-}\right)\left(\right.$QUID $\left.^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ (Figure 4.6.4) shows a new broad band at $1587 \mathrm{~cm}^{-1}$ which indicates the formation of a salt ie. Transfer of a proton. ${ }^{26}$ The band at $3455 \mathrm{~cm}^{-1}$ can be assigned to the solvated water in the structure and $3210 \mathrm{~cm}^{-1}$ to the $\mathrm{N}-\mathrm{H}$ stretching vibration. The IR position and assignments are given in Table 4.22.

Table 4.22: IR positions and assignments of peaks in PAA, (PAA $^{-}$)(QUID $\left.^{+}\right) \cdot \mathbf{H}_{2} \mathbf{O}$ and QUID.

PAA	$\left.\mathbf{(P A A}^{-}\right)\left(\right.$QUID $\left.^{+}\right) \cdot \mathbf{H}_{\mathbf{2}} \mathbf{O}$	QUID	Proposed assignment
3123	3455	3448,3124	OH stretch
-	3210	-	N-H stretching mode
2750,2620	2878,2360	$2932,2868,2710$	C-C ring modes
1699	1670,1587	-	C=O
-	1619	1620	C-N, C=O stretching mode combination
$1498,1454,1407$	$1508,1473,1448$	$1589,1561,1549$,	C=C stretch
-	1399	1464	C-N stretch, N-H bend
1290,1243	1268	1282	C-O stretch

Figure 4.6.4: IR spectrums (a) (PAA $\left.^{-}\right)\left(\right.$QUID $\left.^{+}\right) \cdot \mathrm{H}_{2} \mathbf{O}$, (b) QUID and (c) PAA.

4.6.4 Powder X-ray Diffraction

There good agreement between the slurry conversion experiment performed in isopropanol and the calculated pattern obtained from LAZYPULVERIX ${ }^{16}$ as shown in Figure 4.6.5.

Grinding and solvent drop grinding experiments were not possible due to the formation of a paste obtained when PAA and QUID were ground together. The resultant product (paste) could not be analyzed using powder X-ray diffractometer.

CHAPTER 4: PHENYLACETIC ACID CO-CRYSTALS AND SALTS

Figure 4.6.5: PXRD pattern of (PAA $^{-}$)(QUID $\left.^{+}\right) \cdot \mathrm{H}_{2} \mathbf{O}$ (red) and slurry (blue).

4.6.5 Structure Determination

(PAA $^{-}$)(QUID $\left.^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ successfully refined to $\mathrm{R}_{1}=0.0340$ with $\mathrm{wR}_{2}=0.0859$ ([I>2sigma (I)]). All non-hydrogen atoms were located by direct methods in the difference electron density map and refined anisotropically. The nitrogen atoms of the QUID were identified by the highest peak magnitude in the rings. PAA and QUID ions were found in general positions. The crystal data is given in Table 4.23.

Table 4.23: $\left(\mathrm{PAA}^{-}\right)\left(\mathrm{QUID}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ crystal data.

Compound	(PAA $^{-}$)(QUID ${ }^{+}{ }^{-} \mathbf{H}_{\mathbf{2}} \mathbf{O}$
Structural Formula	$\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{2}^{-}\right)\left(\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$
PAA ${ }^{-}$:QUID ${ }^{+}$: $\mathrm{H}_{2} \mathrm{O}$ ratio	1:1:1
Molecular Mass ($\mathrm{g} \mathrm{mol}^{-1}$)	478.59
Data collection temperature (K)	173(2)
Crystal system	Monoclinic
Space group	$P 2_{1}$
a (A)	6.7225 (13)
$\mathrm{b}(\mathrm{A})$	19.648 (4)
$c(A)$	9.6505 (19)
$\alpha\left({ }^{\circ}\right)$	90.00
$\beta\left({ }^{\circ}\right)$	99.45 (3)
$Y\left({ }^{\circ}\right)$	90.00
Volume (\AA^{3})	1257.4 (4)
Z	2
D_{c}, Calculated density ($\mathrm{g} \mathrm{cm}^{-3}$)	1.264
Final R indices [l>2sigma(l)]	$\mathrm{R}_{1}=0.0340$
	$w R_{2}=0.0859$
R indices (all data)	$\mathrm{R}_{1}=0.0372$
	$w R_{2}=0.0885$
Largest diff. peak and hole (e \AA^{-3})	0.201; -0.217

(PAA $^{-}$)(QUID $\left.^{+}\right) \cdot \mathbf{H}_{2} \mathbf{O}$ crystallized in a 1:1:1 ratio in the monoclinic space group $P 2_{1}, \mathrm{Z}=$ 2. Proton transfer from PAA to QUID was observed. There is a single molecule of water trapped in the crystal system. The C-O distances of the PAA anion of the salt hydrate are such as:

- $\mathrm{C} 8-\mathrm{O} 1=1.265 \AA$
- $\mathrm{C} 8-\mathrm{O} 2=1.248 \AA$

CHAPTER 4: PHENYLACETIC ACID CO-CRYSTALS AND SALTS

These C-O distances are a confirmation of a proton transfer from the COOH group of PAA to one of the nitrogen atom (N10) in QUID to form a salt.

There are four $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions in the crystal structure; the first $\mathrm{C}-\mathrm{H} \cdot \cdots \pi$ interaction is between the PAA aromatic ring and the hydrogen atom (H2OB) in the QUID cation with a distance of $2.669 \AA$ and a C-H $\cdots \cdot \pi$ angle of 1499°. The second C-H $\cdots \cdot \pi$ interaction is between a quinidine ring ($\mathrm{C} 9-\mathrm{C} 17$) and the hydrogen atom (H 27 A) attached to the carbon atom (C27) in the QUID molecule. This interaction (C27-H27A $\cdots \pi$) is strong and has a distance of $3.052 \AA$ and a C-H $\cdots \pi \pi$ angle of $159 \stackrel{\circ}{\circ}$. The third $\mathrm{C}-\mathrm{H} \cdots \cdot \pi$ interaction is weak and it is between PAA ring $(\mathrm{C} 1-\mathrm{C} 6)$ and C28-H28B having a distance of $3.303 \AA$ and a C-H $\cdots \pi$ angle of $108 \cong$. The last $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction involved QUID ring (N5 C 14) and $\mathrm{C} 28-\mathrm{H} 28 \mathrm{C}$ with a distance of $3.176 \AA$ and a C-H $\cdots \pi$ angle of $112 \cong$.

The crystal packing is illustrated in Figure 4.6.6: (a) showing the carboxylate group of PAA directed towards a QUID cation. The cavities (contact surface) in which the water molecules are located down [100] have a volume of $14.25 \AA^{3}$ and a unit cell percentage of 1.10% using a probe radius of $1.2 \AA$ and grid spacing of $0.70 \AA$ as shown in Figure 4.6.6: (b). A probe size of $1.4 \AA$ supposed to be used but at that probe size there is no indication of the water voids that why a lower probe size of $1.2 \AA$ was used.

Figure 4.6.6: (a) Crystal packing of (PAA $\left.^{-}\right)\left(\right.$QUID $\left.^{+}\right) \cdot \mathrm{H}_{2}$ Owith hydrogen atoms removed down [100] (b) cavities in which water molecules are located down [100].

CHAPTER 4: PHENYLACETIC ACID CO-CRYSTALS AND SALTS

Hydrogen bonding in $\left(\mathbf{P A A}^{-}\right)\left(\mathbf{Q U I D}^{+}\right) \cdot \mathrm{H}_{2} \mathbf{O}$ is shown in Figure 4.6.7. There are several hydrogen bonds in the structure due to the water molecule trapped in the crystal system. The protonated hydrogen atom (H 10) attached to the nitrogen atom (N10) is involved in the hydrogen bonding. H 10 is connected to O 1 in the carboxylate group of PAA anion.

In the other hand, oxygen atom labeled O 1 plays a role of a bifurcated acceptor. O 1 is hydrogen bonded to the protonated hydrogen (H 10) and to one of the hydrogen atom labeled H6B in the water molecule. H6A in the water molecule is connected to the nitrogen atom labeled N5 in QUID cation.

The oxygen atom labeled O 2 in PAA is hydrogen bonded to the hydrogen atom (H 5 A) in QUID cation. Inspection of the lattice arrangement of the whole crystal structure interactions contains six graph sets: $D_{1}^{1}(2), D_{2}^{1}(3), D_{2}^{2}(5), D_{2}^{2}(9), C_{2}^{2}(9)$ and $D_{2}^{2}(10)$ that consolidate the hydrogen bonding. Hydrogen bonding parameters of the salt hydrate are listed in Table 4.24.

Table 4.24: $\left(\mathrm{PAA}^{-}\right)\left(\right.$QUID $\left.^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ hydrogen bonding parameters.

COMPOUND	D-H \cdots A	D $\cdots \mathrm{A}$ (Å)	D-H ((${ }^{\text {) }}$	H $\cdots \mathrm{A}(\mathrm{A})$	D-H $\cdots \mathrm{A}\left({ }^{\circ}\right)$
$\left(\right.$ PAA $\left.^{-}\right)\left(\right.$QUID $\left.^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$	N10-H10..-O1	2.682 (2)	0.912 (2)	1.776 (2)	172 (2)
	O5-H5A $\cdots{ }^{\text {2 }}{ }^{\text {a }}$	2.712 (2)	0.837 (2)	1.922 (2)	157 (2)
	O6-H6A $\cdots{ }^{\text {N }}$	2.904 (2)	0.784 (4)	2.121 (4)	177 (3)
	O6-H6B $\cdots \mathrm{O}^{\text {c }}$	2.871 (2)	0.905 (3)	1.969 (3)	175 (2)
$a=x+1, y, z ; b=-x+1, y-1 / 2,-z+1 ; c=x+1, y, z+1$					

Figure 4.6.7: Hydrogen bonding in $\left(\mathrm{PAA}^{-}\right)\left(\right.$QUID $\left.^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$.

4.7 Phenyl acetic acid and quinine $\left(\mathrm{PAA}^{-}\right)\left(\right.$QUIN $\left.^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$

Quinine is the most commonly used anti-malarial drug. The optically active derivatives of (-)-quinine are used in asymmetric synthesis. ${ }^{35}$ Quinine has been used as a resolving agent for acidic racemates through formation of diastereomeric salts. ${ }^{36}$

The salt hydrate was obtained by dissolving a $1: 1$ ratio of PAA and quinine (QUIN) in acetone with slight heating on a hot plate. The solution was allowed to evaporate at ambient temperature and after two days block-like crystals were obtained. Similar crystals were also obtained when ethanol, methanol, isopropanol, tetrahydrofuran and ethyl methyl ketone were used as solvents.

The asymmetric unit of $\left(P A A^{-}\right)\left(\right.$QUIN $\left.^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ is illustrated in Figure 4.7.1.

Figure 4.6.1: Asymmetric unit of $\left(\mathrm{PAA}^{-}\right)\left(\mathrm{QUIN}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ with all the hydrogen atoms shown for numbering clarity.

4.7.1 Thermal Analysis

The (PAA $^{-}$)(QUIN $\left.{ }^{+}\right) \cdot \mathrm{H}_{2} \mathbf{O}$ thermal analysis data is listed in Table 4.25. A single mass loss of 3.0% was observed in the TG curve and the DSC shows two endotherms at $T_{\text {on }}$ $=357.0 \mathrm{~K}$ and $\mathrm{T}_{\text {on }}=420.4 \mathrm{~K}$. The first endotherm is the release of the water molecule. The second sharp endotherm is due to the melt of the salt. Thermal analysis curves of the starter materials and the salt hydrate are shown in Figure 4.7.2.

Table 4.25: Thermal analysis data of $\left(\mathrm{PAA}^{-}\right)\left(\right.$QUIN $\left.^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$.

Compounds	PAA	$\left(\mathrm{PAA}^{-}\right)\left(\mathrm{QUIN}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$	Quinine
DSC Endo ${ }_{1}\left(\mathrm{~T}_{\text {onset, }}, \mathrm{K}\right)$	-	357.0	-
DSC Endo ${ }_{2}\left(\mathrm{~T}_{\text {onset, }} \mathrm{K}\right)$	351.8	420.4	449.8
TG calculated \% mass loss	-	3.8	-
TG experimental \% mass loss	-	3.0	-
PAA ${ }^{-}$:QUIN ${ }^{+}$: $\mathrm{H}_{2} \mathrm{O}$	-	1:1:1	

Figure 4.7.2: Thermal analysis curves of $\left(\mathrm{PAA}^{-}\right)\left(\mathrm{QUIN}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ DSC (red), TG (blue), quinine (green) and PAA (purple).

CHAPTER 4: PHENYLACETIC ACID CO-CRYSTALS AND SALTS

4.7.2 Hot Stage Microscopy

Hot stage microscopy of $\left(\right.$ PAA $\left.^{-}\right)\left(\right.$QUIN $\left.^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ was performed by immersing of a crystalline block in silicone oil at a temperature of 295 K . The release of water was observed at 350 K and the salt started melting at 418 K . A melt of the salt was obtained at $425 \mathrm{~K} . \mathrm{HSM}$ photographs of $\left(\mathbf{P A A}^{-}\right)\left(\mathbf{Q U I N}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ are illustrated in Figure 4.7.3.
(a) 295 K
(b) 350 K

(c) 418 K

(d) 425 K

Figure 4.7.3: $\mathrm{HSM}_{\text {photography }}\left(\mathrm{PAA}^{-}\right)\left(\mathbf{Q U I N}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$: (a) crystal immersed in silicone oil, (b) releasing of the water, (c) crystal starts melting and (d) melt of the crystal.

CHAPTER 4: PHENYLACETIC ACID CO-CRYSTALS AND SALTS

4.7.3 IR Spectroscopy

The ($\left.\mathrm{PAA}^{-}\right)\left(\mathbf{Q U I N}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ IR spectrum (Figure 4.7.4) has vibrational frequencies of both PAA and QUIN. IR results are given in Table 4.26. Similar to the (PAA $^{-}$)(QUID $^{+}$) $\cdot \mathrm{H}_{2} \mathrm{O}$ structure, the $\left(\mathbf{P A A}^{-}\right)\left(\mathbf{Q U I N}^{+}\right) \cdot \mathrm{H}_{2} \mathbf{O}$ salt has a broad band at $1590 \mathrm{~cm}^{-1}$ which is in the region of the $\mathrm{C}=\mathrm{O}$ stretching mode for salt formation. ${ }^{26}$ Another broad band is observed at $3206 \mathrm{~cm}^{-1}$ which can be attributed to N-H stretching vibration. The band at $3455 \mathrm{~cm}^{-1}$ is attributed to the solvated water in the structure.

Table 4.26: IR positions and assignments of peaks in PAA, ($\left.\mathrm{PAA}^{-}\right)\left(\mathrm{QUIN}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ and QUIN.

PAA	$\left(\right.$ PAA $^{-} \mathbf{) (Q U I \mathbf { N } ^ { + }) \cdot \mathbf { H } _ { \mathbf { 2 } } \mathbf { O }}$	QUIN	Proposed assignment
3123	3455	3451,3170	OH stretch
-	3206	-	N-H stretching mode
2750,2620	$2997,2974,2360$	$2936,2360,2342$	C-C ring modes
1699	1663,1590	-	C=O
-	1619	1624	C-N, C=O stretching mode combination
$1498,1454,1407$	$1509,1475,1446$	$1590,1508,1469$, 1449	C=C stretch
-	1374	1400	C-N stretch, N-H
bend			

Figure 4.7.4: IR spectra (a) (PAA $\left.^{-}\right)\left(\right.$QUIN $\left.^{+}\right) \cdot \mathrm{H}_{2} \mathbf{O}$, (b) QUIN and (c) PAA.

4.7.4 Powder X-ray Diffraction

The PXRD pattern of the slurry conversion performed in distilled water showed good agreement to that of the calculated PXRD pattern obtained from LAZYPULVERIX ${ }^{16}$ as illustrated in Figure 4.7.5.

Experiments such as grinding and solvent drop grinding were not possible due to the formation of the paste when PAA and QUIN were ground together. The ground product could not be analyzed using powder X-ray diffraction.

CHAPTER 4: PHENYLACETIC ACID CO-CRYSTALS AND SALTS

Figure 4.7.5: PXRD patterns of $\left(\mathrm{PAA}^{-}\right)\left(\mathrm{QUIN}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ (red) and slurry (blue).

4.7.5 Structure Determination

Direct methods yielded all PAA and QUIN non-hydrogen atoms which were refined anisotropically. The protonated hydrogen atom (H1) was located in the difference electron density map and has a N-H distance of $0.856 \AA$. The hydrogen atoms of the water molecule (H6A and H6B) were fixed in position with an O-H distance of $0.80 \AA$ each. The structure refined successfully to $\mathrm{R}_{1}=0.0395$ with $w \mathrm{R}_{2}=0.1024$ ([l>2sigma (I)]). The crystal data is reported in Table 4.27.

Table 4.27: (PAA^{-})(QUIN $\left.{ }^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ crystal data.

Compound	(PAA^{-})(QUIN ${ }^{+}$) $\mathrm{H}_{2} \mathrm{O}$
Structural Formula	$\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{2}^{-}\right)\left(\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$
PAA ${ }^{-}$:QUIN ${ }^{+}$: $\mathrm{H}_{2} \mathrm{O}$ ratio	1:1:1
Molecular Mass (mol^{-1})	478.59
Data collection temperature (K)	173(2)
Crystal system	Monoclinic
Space group	$P 2_{1}$
a (A)	6.5880 (13)
$\mathrm{b}(\mathrm{A})$	19.111 (4)
$c(A)$	10.230 (2)
$\alpha\left({ }^{\circ}\right)$	90.00
$\beta\left({ }^{\circ}\right)$	105.30 (3)
$\mathrm{Y}\left({ }^{\circ}\right)$	90.00
Volume (\AA^{3})	1242.3 (4)
Z	2
D_{c}, Calculated density ($\mathrm{g} \mathrm{cm}^{-3}$)	1.279
Final R indices [l>2sigma(1)]	$\mathrm{R}_{1}=0.0395$
	$\mathrm{wR}_{2}=0.1024$
R indices (all data)	$\mathrm{R}_{1}=0.0445$
	$\mathrm{wR}_{2}=0.1064$
Largest diff. peak and hole (e \AA^{-3})	0.277; -0.188

(PAA $\left.^{-}\right)\left(\right.$QUIN $\left.{ }^{+}\right) \cdot \mathrm{H}_{2} \mathbf{O}$ crystallized in the monoclinic space group P_{1} with $\mathrm{Z}=2$. The salt hydrate has a structural formula of $\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{2}^{-}\right)\left(\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ and a ratio of 1: 1: 1. There is a proton transfer from the PAA to the QUIN molecule.

Four weak $\mathrm{C}-\mathrm{H} \cdot \cdot \boldsymbol{\pi}$ interactions were observed in the structure; the first and second C $\mathrm{H} \cdots \pi$ interactions involves the PAA ${ }^{-}$ring ($\mathrm{C} 1-\mathrm{C} 6$) and C 14 and C 28 of the QUIN ${ }^{+}$ cation: $\quad d(C 14 \cdots \pi(C 1-C 6))=3.095 \AA$ Á, $\theta(C 14-H 14 \cdots \pi(C 1-C 6))=141 \stackrel{\circ}{\circ}$; d (C28 $\cdots \pi(C 1-$ $\mathrm{C} 6))=2.976 \AA, \theta(\mathrm{C} 28-\mathrm{H} 28 \mathrm{~B} \cdots \pi(\mathrm{C} 1-\mathrm{C} 6))=112 \circ$. The third and fourth $\mathrm{C}-\mathrm{H} \cdots \pi$

CHAPTER 4: PHENYLACETIC ACID CO-CRYSTALS AND SALTS
interactions have dimensions of : $d(C 14-H 14 \cdots \cdots \pi(C 9-C 17))=3.351 \AA, \quad \theta(C 14-$ $\mathrm{H} 14 \cdots \pi(\mathrm{C} 9-\mathrm{C} 17)=114{ }^{\circ}$ and $\mathrm{d}(\mathrm{C} 24-\mathrm{H} 24 \mathrm{~B} \cdots \pi(\mathrm{C} 9-\mathrm{C} 17))=3.053 \AA, \quad \theta(\mathrm{C} 24-$ H24B $\cdots \pi($ C9-C17 $)=118{ }^{\circ}$ respectively. The crystal packing shows that the carboxylate group of PAA face the QUIN molecule as illustrated in Figure 4.7.6 (a).

The void volume (contact surface) occupied by the water molecules (Figure 4.7.6 (b)) was found to be $27.51 \AA^{3}$ with a unit cell percentage of 2.20% and a probe radius of 1.0 \AA and a grid spacing of $0.70 \AA$.

(a)

(b)

Figure 4.7.6: (a) crystal packing of $\left(\mathrm{PAA}^{-}\right)\left(\right.$QUIN $\left.^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ with hydrogen atoms removed down [100] and (b) cavities in which water molecules are located down [100].

The hydrogen bonding in $\left(\right.$ PAA $\left.^{-}\right)\left(\right.$QUIN $\left.^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ (Figure 4.7.7) is similar to that found in the ($\left.\mathrm{PAA}^{-}\right)\left(\right.$QUID $\left.^{+}\right) \cdot \mathrm{H}_{2} \mathbf{O}$ crystal structure. The protonated hydrogen atom $\left(\mathrm{H}_{1}\right)$ acts as a bifurcated donor, connecting two oxygen atoms (O 1 and O 2) in the PAA^{-}anion.

Both oxygen atoms labeled O 1 and O 2 act as bifurcated acceptors. O 1 is hydrogen bonded to the protonated hydrogen $(\mathrm{H} 1)$ and H 6 B in the water molecule. The oxygen atom labeled O 2 is connected to H 1 and H 5 A in the QUIN ${ }^{+}$cation.

In addition, the hydrogen (H6A) is hydrogen bonded to the nitrogen atom (N1) in the QUIN ${ }^{+}$cation. The graph sets for the $\left(\mathrm{PAA}^{-}\right)\left(\right.$QUIN $\left.^{+}\right) \cdot \mathrm{H}_{2} \mathbf{O}$ structure are the same as in $\left(\right.$ PAA $\left.^{-}\right)\left(\right.$QUID $\left.^{+}\right) \cdot \mathbf{H}_{2} \mathbf{O}$. Hydrogen bond parameters of the salt hydrate are given in Table 4.28.

Table 4.28: $\left(\mathrm{PAA}^{-}\right)\left(\mathrm{QUIN}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ hydrogen bonding parameters.

COMPOUND	D-H.]A	D \cdots ($\left({ }^{\text {a }}\right.$)	D-H (Å) $^{\text {a }}$	H $\cdots \mathrm{A}(\mathrm{A})$	D-H $\cdots \mathrm{A}\left({ }^{\circ}\right)$
$\left(\right.$ PAA $\left.^{-}\right)\left(\right.$QUIN $\left.^{+}\right) \cdot \mathrm{H}_{2} \mathbf{O}$	O5-H5A $\cdots{ }^{\text {O }}{ }^{\text {a }}$	2.679 (2)	0.875 (3)	1.852 (3)	157 (2)
	O6-H6A \cdots N1	2.931 (2)	0.800 (1)	2.133 (1)	175 (3)
	O6-H6B $\cdots{ }^{\text {O }}{ }^{\text {b }}$	2.896 (2)	0.800 (1)	2.101 (1)	172 (3)
	$\mathrm{N} 2-\mathrm{H} 1 \cdots \mathrm{O} 1$	2.687 (2)	0.856 (2)	1.844 (2)	168 (2)

Figure 4.7.7: Hydrogen bonding in $\left(\mathrm{PAA}^{-}\right)\left(\mathrm{QUIN}^{+}\right) \cdot \mathrm{H}_{2} \mathbf{O}$.

4.8 Selectivity Experiments

This selectivity of PAA for a $50: 50$ mixture of QUIN: QUID was determined. Two ratios were set up, a 1: 1: 1 co-crystallization of PAA: QUIN: QUID and a 2: 1: 1 ratio of the same compounds. In this experiment, 50/50 (V / v) of hexane/acetone and $50 / 50(\mathrm{v} / \mathrm{V})$ hexane/ethyl methyl ketone were used as solvents.

In both experiments the PAA preferred to form a salt hydrate with QUIN instead of QUID. The crystals obtained were analyzed using DSC. Single x-ray diffraction was done on one suitable crystal and the same unit cells as $\left(\right.$ PAA $\left.^{-}\right)\left(\right.$QUIN $\left.^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ was obtained.

REFERENCES

1. Chaudhari. S. R \& Suryaorakask. N. J. Mol. Struct. 2012, 1016, 163.
2. Odani. T \& Matsumoto. A. CrystEngComm. 2002, 4, 467.
3. Arman. H. D, Kaulgud. T \& Tiekink. E. R. T. Acta. Crystallogr. Sect.E: Struct.Rep.Online. 2010, 66, o2684.
4. Arman. H. D, Kaulgud. T \& Tiekink. E. R. T. Acta. Crystallogr. Sect.E: Struct.Rep.Online. 2010, 66, o2629.
5. Sridhar. B \& Ravikumar. K. Acta. Crystallogr. Sect.C: Cryst. Struct. Comm. 2007, 63, 0415.
6. Dega-Szafran. Z, Jaskolski. M \& Szafran. M. J. Mol. Struct. 2000, 555, 191.
7. Mak. T. C. W, Chen Xiaoming, Shi kailiang, Yao Jiaxing \& Zheng Chaode. J. Crystallogr. Spectrosc. Res. 1986, 16, 639.
8. Allen. F.H. Acta. Crystallogr. 2002, B58, 380-388.
9. Brown. H. C, Baude. E. A \& Nachod. F. C. Determination of Organic Structures by Physical Methods. Academic Press, New York. 1955.
10. Dippy. J. F. J, Hughes. S. R.C \& Rozanski. A. J. Chem. Soc. 1959, 2492-2498.
11. Huang. K. S, Britton. D, Etter. M. C \& Byrn. S. R. J. Mater. Chem. 1997, 7, 713 720.
12. Stahl. P. H \& Wermuth. C. G. Handbook of Pharmaceutical Salts: Properties, Selection and Use. International Union of Pure and Applied Chemistry, VHCA: Wiley-VCH: Weinheim, New York. 2002.
13. Smith. M, March. J \& March. J. March's advanced organic chemistry: reactions, mechanisms, and structure, $5^{\text {th }}$ ed.; J.Wiley: New York. 2001.
14.Bhogala. B. R, Basavoju. S \& Nangia. A. CrystEngComm. 2005, 7, 551-562.
14. Brittain. H. G. Cryst. Growth Des. 2009, 9 (5), 2492 - 2499.
15. Yvon. K, Jeitschko. W \& Parthe. E. Appl. Crystallogr. 1977, 10, $73-74$.
16. Frišc 'ic'. T \& Jones. W. Faraday. Discuss. 2007, 136, 167 - 178.
17. Berry. D. J, Seaton. C. C, Clegg. W, Harrington. R. W, Coles. S. J, Horton. P. N, Hurst-House. M. B, Storey. R, Jones. W, Frišc'ic'. T \& Blagden. N. Cryst. Growth Des. 2008, 8, 1697 - 1712.
18. Kacprzak. K \& Gawroñski. J. Synthesis. 2001, 961-998.
19. Hoffmann. H. M. R \& Frackenpohl. J. Eur. J. Org. Chem. 2004, 4293-4312.
20. Tian. S-K, Chen. Y, Hang. J, Tang. L \& Deng. L. Acc. Chem. Res. 2004, 37, 621631.
21. Marcelli. T, Van Maarseveen. J. H \& Hiemstra. H. Angew. Chem. Int. Ed. 2006, 45, 7496-7504.
22. Connon. S. J. Chem. Comm. 2008, 2499-2510.
24.Cinchona Alkaloids in Synthesis and Catalysis, Ligands, immobilization and Organocatalysis; Song, C.E, Ed: Wiley-VCH: Weinheim, 2009.
23. Marcelli. T \& Hiemstra. H. Synthesis. 2010, 1229-1279.
24. Adalder. T. K, Sankali. R \& Dastidar. P. Cryst. Growth Des. 2012, 12, 2533.
25. Macrae. C. F, Eddington. P. R, McCabe. P, Pidcock. E, Shields. G. P, Taylor. R, Towler. M. \& van de Streek. J. Mercury: visualization and analysis of crystal structures. J. Appl. Crystallogr. 2006, 39, 453-457.
26. Sikorski. A \& Trzybiński. D. Tetrahedron Letters. 2013, 54, 1463-1466.
27. Gressel. P. D \& Galleli. S. F. J. Pharm. Sci. 1968, 57, 335.
30.Ashida. T. HBLS-V. The Universal Crystallographic Computing System-Osaka. The Computation Center, Osaka. Univ. Japan. 1973.
31.Wahbi. A. M, Moneed. M. S, Hewala. I. I \& Bahnasy. M. F. Chem. Pharm. Bull. 2008, 56, 787-79.
28. Kashino. S \& Haisa. M. Acta. Crystallogr. 1983, C39, 310-312.
29. Pniewska. B \& Suszko-Purzycka. A. Acta. Crystallogr. 1989, C45, 638-642.
34.Smith. R. A. Exp. Opin. Pharmacother. 2006, 7, 2581-2591.
30. Hubel. R, Polborn. K \& Beck. W. Eur. J. Inorg. Chem. 1999, 471-482.
31. Gjerløv. A. B \& Larsen. S. Acta. Crystallogr. Sect.C. 1997, C53, 1505-1508.

CHAPTER 5: 4-HYDROXYPHENYLACETIC ACID CO-CRYSTALS AND SALTS

CHAPTER 5

4-HYDROXYPHENYL ACETIC ACID CO-CRYSTALS AND SALTS

A search of the Cambridge Structural Database (CSD, version 5.34, November 2012) ${ }^{1}$ shows that 4-hydroxyphenyl acetic acid (HPAA) has formed a co-crystal with 4, 4bipyridine. ${ }^{2}$

HPAA was used as the main compound in this chapter and formed a co-crystal with isonicotinamide (INM). HPAA formed salt hydrates with cinchonidine (CIND), quinidine (QUID) and quinine (QUIN) and has also formed a hybrid salt-co-crystal with acridine (ACRI).

The numbering system of HPAA is illustrated in Figure 5.1.

Figure 5.1: Atomic numbering of the HPAA molecule.

5.1 HPAA and Acridine (HPAA^{-})(ACRI^{+})•HPAA•ACRI

The (HPAA $^{-}$)(ACRI $\left.^{+}\right) \cdot$ HPAA•ACRI hybrid salt-co-crystal was obtained by dissolving both HPAA and acridine (ACRI) (1: 1 ratio) in diethyl ether with slight heating on a hot

CHAPTER 5: 4-HYDROXYPHENYLACETIC ACID CO-CRYSTALS AND SALTS

plate. The solution was allowed to evaporate under ambient conditions and crystals were obtained after a few days. The resultant compound is interesting because the asymmetric unit contains one HPAA molecule, one ACRI molecule, one HPAA ${ }^{-}$anion and one ACRI^{+}cation (Figure 5.1.1).

Figure 5.1.1: Atomic numbering of the asymmetric unit in (HPAA^{-})($\left.\mathbf{A C R I}^{+}\right) \cdot \mathrm{HPAA}^{-A C R I}$ with all the hydrogen atoms shown.

CHAPTER 5: 4-HYDROXYPHENYLACETIC ACID CO-CRYSTALS AND SALTS

5.1.1 Thermal Analysis

The compound (HPAA^{-})($\left.\mathbf{A C R I}^{+}\right) \cdot \mathbf{H P A A} \cdot \mathbf{A C R I}$ did not show an improvement in the thermal stability compared to the pure components. The melting point of (HPAA^{-})($\left.\mathbf{A C R I}^{+}\right) \cdot \mathrm{HPAA}^{-A C R I}$ was determined using DSC (Figure 5.1.2) as indicated in Table 5.1, which is lower than the starter materials. ${ }^{3}$

Table 5.1: Thermal analysis data for ($\left.\mathrm{HPAA}^{-}\right)\left(\mathrm{ACRI}^{+}\right) \cdot \mathrm{HPAA}^{-A C R I}$.

Compounds	DSC Endo ${ }_{1}\left(\mathrm{~T}_{\text {onset, }} \mathbf{K}\right.$)	DSC Endo ${ }_{2}\left(\right.$ Tonset, $^{\text {, }}$)
Acridine	363.5	375.8
HPAA	-	425.1
$\left(\mathrm{HPAA}^{-}\right)\left(\mathrm{ACRI}^{+}\right) \cdot \mathrm{HPAA} \cdot \mathrm{ACRI}$	336.9	371.4

Figure 5.1.2: DSC curves of HPAA (blue), acridine (green) and $\left(\mathrm{HPAA}^{-}\right)\left(\mathrm{ACRI}^{+}\right) \cdot \mathrm{HPAA}^{-A C R I}$ (red).

CHAPTER 5: 4-HYDROXYPHENYLACETIC ACID CO-CRYSTALS AND SALTS

5.1.2 IR Spectroscopy

The (HPAA^{-})($\left.\mathbf{A C R I}^{+}\right) \cdot \mathrm{HPAA}^{-A C R I}$ IR spectrum (Figure 5.1.3) contains peaks found in both starter materials. There is confirmation of co-crystal formation with the shift of the $\mathrm{C}=\mathrm{O}$ frequency vibration at $1697 \mathrm{~cm}^{-1}\left(1711 \mathrm{~cm}^{-1}\right.$ for HPAA) and an indication of salt formation with the presence of a new band at $1566 \mathrm{~cm}^{-1}$ in the crystal structure. ${ }^{4}$ The broad band at $3280 \mathrm{~cm}^{-1}$ for the compound is assigned to the hydrogen bonding of the OH group. The IR results are shown in Table 5.2.

Table 5.2: IR positions and assignments for the peaks in HPAA, $\left(\mathrm{HPAA}^{-}\right)\left(\mathbf{A C R I}^{+}\right) \cdot \mathrm{HPAA} \cdot \mathbf{A C R I}$ and ACRI .

HPAA	$\left(\mathrm{HPAA}^{-}\right)\left(\mathrm{ACRI}^{+}\right) \cdot \mathrm{HPAA} \cdot \mathrm{ACRI}$	ACRI	Proposed assignment
3243	3280	-	OH stretch
2707, 2616	2987	3051	Aromatic ring stretch
1965, 1905	1938	2285, 1815	Overtone or combination bands
$\begin{gathered} \hline 1711,1618 \\ 1600 \end{gathered}$	1697, 1566	-	$\mathrm{C}=\mathrm{O}$
$\begin{gathered} \hline 1519,1446, \\ 1414 \end{gathered}$	1517,1480	1617,1461, 1437	$\mathrm{C}=\mathrm{C}$ stretch
1210	1246	-	C-O stretch

CHAPTER 5: 4-HYDROXYPHENYLACETIC ACID CO-CRYSTALS AND SALTS

Figure 5.1.3: IR spectra (a) HPAA, (b) (HPAA^{-})($\mathbf{A C R I}^{+}$) $\cdot \mathrm{HPAA} \cdot \mathbf{A C R I}$ and (c) ACRI.

5.1.3 Powder X-ray Diffraction

There is good agreement between the ground product at 30 min and the calculated PXRD pattern obtained from LAZYPULVERIX ${ }^{5}$ as illustrated in Figure 5.1.4. However, the peak at around $10.83(2 \theta)$ in the calculated pattern has a very low height compare to the peak at approximately 10.89 (2 2) in the ground pattern.

The slurry conversion performed in diethyl ether did not entirely match the PULVERIX trace due to the fact that the first peak at around 7.65 (20) in the calculated pattern is missing in the slurry conversion.

The peak at approximately 10 (20) has high intensity in the slurry (and ground product and physical mixture) but a very low intensity in the PULVERIX. This maybe a formation of a new compound or the reaction was not completed in the slurry conversion. None of the performed experiments were similar to the physical mixture pattern.

CHAPTER 5: 4-HYDROXYPHENYLACETIC ACID CO-CRYSTALS AND SALTS

Figure 5.1.4: PXRD patterns of (HPAA $\left.{ }^{-}\right)\left(\mathbf{A C R I}^{+}\right) \cdot \mathrm{HPAA}^{-A C R I}$ (red), ground product (green), physical mixture (purple) and slurry (blue).

5.1.4 Structure Determination

Direct methods yielded the positions of all non-hydrogen atoms. The hydroxyl hydrogen in HPAA and the hydrogen bonded to the nitrogen in the ACRI ${ }^{+}$cation were located in the difference electron density map. The nitrogen atoms of the acridine cation and molecule were identified by the highest peak magnitude in the aromatic rings. The crystal data of ($\left.\mathrm{HPAA}^{-}\right)\left(\mathbf{A C R I}^{+}\right) \cdot \mathbf{H P A A} \cdot \mathbf{A C R I}$ is given in Table 5.3.

CHAPTER 5: 4-HYDROXYPHENYLACETIC ACID CO-CRYSTALS AND SALTS

Table 5.3: $\left(\mathrm{HPAA}^{-}\right)\left(\mathrm{ACRI}^{+}\right) \cdot \mathrm{HPAA}^{-A C R I ~ c r y s t a l ~ d a t a . ~}$

Compound	(HPAA^{-})(ACRI^{+}) $\cdot \mathrm{HPAA} \cdot \mathrm{ACRI}$
Structural Formula	$\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{3}{ }^{-}\right)\left(\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}^{+}\right) \cdot \mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{3} \cdot \mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~N}$
HPAA: ACRI: HPAA^{-}: ACRI^{+}ratio	1:1:1:1
Molecular Mass ($\mathrm{g} \mathrm{mol}^{-1}$)	662.74
Data collection temperature (K)	173(2)
Crystal system	Triclinic
Space group	P 1
a (A)	8.0188(16)
b (A)	9.0116 (18)
$c(A)$	11.511 (2)
$\alpha\left({ }^{\circ}\right)$	87.52 (3)
$\beta\left({ }^{\circ}\right)$	86.68 (3)
$Y\left({ }^{\circ}\right)$	88.95 (3)
Volume (${ }^{\text {a }}$)	829.6 (3)
Z	1
D_{c}, Calculated density $\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.326
Final R indices [l>2sigma(l)]	$\mathrm{R}_{1}=0.0405$
	$w R_{2}=0.0938$
R indices (all data)	$\mathrm{R}_{1}=0.0630$
	$w R_{2}=0.1257$
Largest diff. peak and hole (e \AA^{-3})	0.213; -0.354

The hybrid salt-co-crystal was found to belong to the triclinic crystal system, space group $P 1$ which was confirmed by the successful refinement of the structure. The asymmetric unit has two molecules of each component all in general positions. The programme PLATON/ADDSYM ${ }^{6}$ suggested a centre of symmetry relating two ACRI molecules and two HPAA molecules. However the structure could not be solved in P-1, attempts at solving the structure in $\mathrm{P}-1$ resulted in an R-factor of 0.30 . The ADDSYM

CHAPTER 5: 4-HYDROXYPHENYLACETIC ACID CO-CRYSTALS AND SALTS

program does not take into account the hydrogen atoms thus do not distinguish the cocrystal from the salt. The structure solved in P1 with good thermal parameters. The structure refined successfully to $R_{1}=0.0405$ with $w R_{2}=0.0935$ ([l>2sigma (I)]).

Closer inspection of the structure showed that a pseudo centre of symmetry relates the neutral ACR and the ACR ${ }^{+}$cation as well as the neutral HPAA and the HPAA ${ }^{-}$anion. The packing diagram of $\left(\mathrm{HPAA}^{-}\right)\left(\mathbf{A C R I}^{+}\right) \cdot \mathrm{HPAA} \cdot \mathbf{A C R I}$ is shown in Figure 5.1 .5 with $\mathrm{Z}=$ 1. The structure is stabilized by face-to-face $\pi-\pi$ stacking interactions between a neutral ACRI molecule and an ACRI cation with a minimum distance of 3.723 Á.

Figure 5.1.5: Packing diagram of ($\left.\mathrm{HPAA}^{-}\right)\left(\mathbf{A C R I}^{+}\right) \cdot \mathbf{H P A A} \cdot \mathbf{A C R I}$ along [010].

The oxygen atom labeled O1A of the HPAA anion is a bifurcated acceptor. O1A is hydrogen bonded to the hydroxyl group of a second HPAA^{-}anion.

The neutral HPAA is hydrogen bonded to the nitrogen atom of the neutral ACRI molecule via (HPAA) O1-H1 $\cdots \mathrm{N} 11$ (ACRI) with an $\mathrm{O} \cdots \mathrm{O}$ distance of 2.697 (4) \AA And an $\mathrm{O}-\mathrm{H} \cdot \bullet \mathrm{N}$ angle of 163 (4) ${ }^{\circ}$.

CHAPTER 5: 4-HYDROXYPHENYLACETIC ACID CO-CRYSTALS AND SALTS

In addition, the protonated nitrogen $\left({ }^{+} \mathrm{N} 11-\mathrm{H} 1 \mathrm{~A}\right)$ is bonded to O 2 A as shown in Figure 5.1.6. The graph sets of the structure are: $D_{1}^{1}(2), C_{1}^{1}(9), D_{2}^{1}(3), D_{2}^{2}(10), D_{2}^{2}(12), D_{3}^{3}(12)$ and $D_{3}^{3}(14)$. The hydrogen bonding parameters are given in Table 5.4.

Table 5.4: ($\left.\mathrm{HPAA}^{-}\right)\left(\mathrm{ACRI}^{+}\right) \cdot \mathrm{HPAA} \cdot \mathrm{ACRI}$ hydrogen bonding parameters.

COMPOUND	D-H \cdots A	D $\cdots \mathrm{A}(\mathrm{Å})$	D-H (Å)	H $\cdots \mathrm{A}(\mathrm{Å})$	$D-H \cdots A$ ${ }^{\circ}$)
(HPAA^{-})(ACRI^{+}) $\mathrm{H}^{\text {H }}$	O3A-H4A \cdots O1A ${ }^{\text {a }}$	2.528 (4)	0.935 (6)	1.600 (6)	171 (5)
PAA•ACRI	O3-H4 \cdots O3A	2.769 (3)	0.918 (4)	1.859 (4)	171 (4)
PAA ACRI	$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{~N} 11^{\text {b }}$	2.697 (4)	0.776 (5)	1.944 (5)	163 (4)
	N11A-H1A $\cdots \mathrm{O}^{\text {A }}{ }^{\text {a }}$	2.603 (4)	0.861 (2)	1.745 (6)	175 (4)
$a=x-1, y, z ; b=x-1, y, z-1$					

Figure 5.1.6: Hydrogen bonding in (HPAA $\left.{ }^{-}\right)\left(\mathrm{ACRI}^{+}\right) \cdot \mathrm{HPAA}^{-A C R I}$.

5.2 HPAA and cinchonidine (HPAA^{-}) $\left(\mathrm{CIND}^{+}\right)\left(0.5 \mathrm{H}_{2} \mathrm{O}\right)$

The hemi hydrate salt was obtained by dissolving a $1: 1$ ratio of HPAA and cinchonidine (CIND) in ethyl methyl ketone with slight heating on a hot plate. The solution was

CHAPTER 5: 4-HYDROXYPHENYLACETIC ACID CO-CRYSTALS AND SALTS

allowed to evaporate at ambient temperature and needle-like crystals were obtained. In this crystal structure a hydrogen atom is transferred from the HPAA to the CIND. Thus the asymmetric unit contains one HPAA^{-}anion, one CIND^{+}cation and one half of a water molecule. The asymmetric unit of $\left(\mathrm{HPAA}^{-}\right)\left(\mathrm{CIND}^{+}\right)\left(0.5 \mathrm{H}_{2} \mathrm{O}\right)$ is represented in Figure 5.2.1.

Figure 5.2.1: Asymmetric unit of $\left(\mathrm{HPAA}^{-}\right)\left(\mathrm{CIND}^{+}\right)\left(0.5 \mathrm{H}_{2} \mathrm{O}\right)$ structure with all the hydrogen atoms shown for numbering clarity.

5.2.1 Thermal analysis

The TG experimental percentage mass loss was in good agreement with the calculated percentage mass loss as given in Table 5.5. The first broad DSC endotherm is due to the loss of a water molecule and the second endotherm corresponds to the dissolution of the salt. Thermal analysis curves are shown in Figure 5.2.2.

CHAPTER 5: 4-HYDROXYPHENYLACETIC ACID CO-CRYSTALS AND SALTS

Table 5.5: Thermal analysis data of ($\left.\mathrm{HPAA}^{-}\right)\left(\mathrm{CIND}^{+}\right)\left(0.5 \mathrm{H}_{2} \mathrm{O}\right)$.

Compound	(HPAA^{-})(CIND^{+})(0.5H2O)
HPAA $^{-}$: CIND ${ }^{+}$: $\mathrm{H}_{2} \mathrm{O}$	1:1:0.5
TG calculated \% mass loss	1.5
TG experimental \% mass loss	1.5
DSC Endo ${ }_{1}\left(\mathrm{~T}_{\text {onset }}, \mathrm{K}\right)$	359.8 (broad)
DSC Endo ${ }_{2}\left(\mathrm{~T}_{\text {onset }}, \mathrm{K}\right)$	443.0

Figure 5.2.2: Thermal analysis curves of (HPAA $\left.{ }^{-}\right)\left(\mathrm{ClND}^{+}\right)\left(0.5 \mathrm{H}_{2} \mathbf{O}\right) \mathrm{DSC}$ (red) and TG (purple).

CHAPTER 5: 4-HYDROXYPHENYLACETIC ACID CO-CRYSTALS AND SALTS

5.2.2 IR Spectroscopy

The IR spectra of the hemi hydrate salt and the starting materials are shown in Figure 5.2.3. The spectrum of $\left(\mathrm{HPAA}^{-}\right)\left(\mathrm{CIND}^{+}\right)\left(0.5 \mathrm{H}_{2} \mathrm{O}\right)$ is different from the pure components. The new band at $1640 \mathrm{~cm}^{-1}$ indicates salt formation according to Adalder et al. ${ }^{4}$ The new band illustrates a proton transfer and is within the expected range of 1550 to $1650 \mathrm{~cm}^{-1}$. The band at $3399 \mathrm{~cm}^{-1}$ is attributed to the OH group involved in hydrogen bonding.

Table 5.6: IR positions and assignments for the peaks in HPAA, $\left(\mathrm{HPAA}^{-}\right)\left(\mathrm{CIND}^{+}\right)\left(0.5 \mathrm{H}_{2} \mathrm{O}\right)$ and CIND .

HPAA	$\mathbf{(H P A A}^{-} \mathbf{) (C ^ { \prime } \mathbf { N D } ^ { + } \mathbf {) (0 . 5 H } \mathbf { 2 } \mathbf { O })}$	CIND	Proposed assignment
3243	3399	3396	OH stretch
2707,2616	2948	$3072,3003,2939$, 2866,2720	C=C and C-H Stretching mode
1965,1905	-	1941	Overtone or combination bands
$1711,1618,1600$	1667,1640	-	C=O
$1519,1446,1414$	$1537,1454,1448$	$1636,1618,1590$, 1567,1508	C=C stretch
1210	1237	-	C-O stretch

CHAPTER 5: 4-HYDROXYPHENYLACETIC ACID CO-CRYSTALS AND SALTS

Figure 5.2.3: IR spectrums (a) HPAA, (b) CIND and (c) (HPAA^{-})($\left.\mathrm{CIND}^{+}\right)\left(0.5 \mathrm{H}_{2} \mathrm{O}\right)$.

5.2.3 Powder X-ray Diffraction

The PXRD pattern of the ground product at 30 min matched that of the physical mixture, thus indicating no reaction.

Drops of water were added to the ground product and ground for 15 min as shown in Figure 5.2.4. The PXRD patterns of the liquid assisted ground product and that from the slurry conversion performed in distilled water were an excellent match with the calculated pattern obtained from LAZYPULVERIX. ${ }^{5}$

CHAPTER 5: 4-HYDROXYPHENYLACETIC ACID CO-CRYSTALS AND SALTS

Figure 5.2.4: PXRD patterns of (HPAA^{-})($\left.\mathrm{CIND}^{+}\right)\left(0.5 \mathrm{H}_{2} \mathrm{O}\right)$ (red), ground product (green), physical mixture (purple), assistance liquid ground product (sky blue) and slurry (blue).

5.2.4 Structure Determination

Non-hydrogen atoms were modeled anisotropically. The hydrogen atoms of the hydroxyl ion and the hydrogen atoms attached to the nitrogen in CIND^{+}were located in the difference electron density map, therefore their positional parameters refined freely. The water molecule sits on a two-fold axis at ($0, y, 0$). Only one hydrogen atom attached to the water molecule in general position is found and the oxygen atom has the occupancy 0.5 by virtue of its special position. The crystal data of $\left(\mathrm{HPAA}^{-}\right)\left(\mathrm{CIND}^{+}\right)\left(0.5 \mathrm{H}_{2} \mathrm{O}\right)$ is given on Table 5.7.

CHAPTER 5: 4-HYDROXYPHENYLACETIC ACID CO-CRYSTALS AND SALTS

Table 5.7: Crystal data of ($\left.\mathrm{HPAA}^{-}\right)\left(\mathrm{CIND}^{+}\right)\left(0.5 \mathrm{H}_{2} \mathrm{O}\right)$.

Compound	(PPAA^{-})(ClND^{+})($\left.0.5 \mathrm{H}_{2} \mathrm{O}\right)$
Structural Formula	$\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{3}{ }^{-}\right)\left(\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}^{+}\right) 0.5\left(\mathrm{H}_{2} \mathrm{O}\right)$
HPAA ${ }^{-}$: IIND $^{+}$: $\mathrm{H}_{2} \mathrm{O}$ ratio	1:1:0.5
Molecular Mass ($\mathrm{g} \mathrm{mol}^{-1}$)	455.54
Data collection temperature (K)	173 (2)
Crystal system	Monoclinic
Space group	C2
$\mathrm{a}(\mathrm{A})$	20.500 (4)
b (Å)	6.3585 (13)
$c(A)$	19.061 (4)
$\alpha\left({ }^{\circ}\right)$	90.00
$\beta\left({ }^{\circ}\right)$	111.60 (3)
$\mathrm{Y}\left({ }^{\circ}\right)$	90.00
Volume (${ }^{\text {a }}$)	2310.0 (8)
Z	4
D_{c}, Calculated density ($\mathrm{g} \mathrm{cm}^{-3}$)	1.311
Final R indices [$1>2$ sigma(l]]	$\mathrm{R}_{1}=0.0452$
	$\mathrm{wR}_{2}=0.0946$
R indices (all data)	$\mathrm{R}_{1}=0.0695$
	$\mathrm{wR}_{2}=0.1058$
Largest diff. peak and hole (e \AA^{-3})	0.188; -0.213

(HPAA^{-}) $\left(\mathrm{CIND}^{+}\right)\left(0.5 \mathrm{H}_{2} \mathrm{O}\right)$ crystallized in a monoclinic crystal system with C 2 as space group. The asymmetric unit contains one HPAA anion, one CIND cation and half water molecule. The crystal used for data collection has size dimensions of $0.05 \times 0.06 \times 0.52$ mm with $\mathrm{Z}=4$. One of the hydrogen in the carboxylic group on the HPAA is transferred to the nitrogen atom in the CIND cation. The crystal packing of the salt hydrate along [010] direction is illustrated in Figure 5.2.5 (a).

CHAPTER 5: 4-HYDROXYPHENYLACETIC ACID CO-CRYSTALS AND SALTS

Figure 5.2.5 (b) shows the cavities in which water molecules are located down [010] with a void volume of $18.70 \AA^{3}$ and a unit cell volume percentage of 0.80% using Mercury ${ }^{7}$ software at a probe of $1.40 \AA$ and a grid spacing of $0.70 \AA$.

(a)

CHAPTER 5: 4-HYDROXYPHENYLACETIC ACID CO-CRYSTALS AND SALTS

Figure 5.2.5: (a) Packing diagram of (HPAA^{-})($\left.\mathrm{CIND}^{+}\right)\left(0.5 \mathrm{H}_{2} \mathrm{O}\right)$ with hydrogen atoms removed view down [010] (b) Cavities in which water molecules are located down [010].

Both oxygen atoms on the carboxylate group play the role of a bifurcated acceptor. O1 is hydrogen bonded to H 1 the protonated hydrogen on the nitrogen atom (N4) and H 4 A from the water molecule. O 2 is connected to H 4 the hydroxyl group on the HPAA anion and H 5 A the hydroxyl group on the CIND cation as shown in Figure 5.2.6.

There are two chain motifs found in the structure and characterized as $\mathrm{C}_{1}^{1}(9)$ and $\mathrm{C}_{2}^{2}(9)$. The crystal structure also has D motifs distinguish as $D_{1}^{1}(2), D_{2}^{1}(3), D_{2}^{2}(5), D_{3}^{2}(12)$ and $\mathrm{D}_{3}^{3}(14)$.

Hydrogen bonding details of (HPAA^{-})($\left(\mathrm{CIND}^{+}\right)\left(0.5 \mathrm{H}_{2} \mathrm{O}\right)$ are given in Table 5.8.

CHAPTER 5: 4-HYDROXYPHENYLACETIC ACID CO-CRYSTALS AND SALTS

Table 5.8: hydrogen bonding parameters in (HPAA^{-}) $\left(\mathrm{CIND}^{+}\right)\left(0.5 \mathrm{H}_{2} \mathrm{O}\right)$.

COMPOUND	D-H $\cdots \mathrm{A}$	D \cdots A (${ }^{\text {A }}$)	D-H (Å)	H $\cdots \mathrm{A}(\mathrm{A})$	D-H $\cdots \mathrm{A}\left({ }^{\circ}\right)$
$\left(\mathrm{HPAA}^{-}\right)\left(\mathrm{CIND}^{+}\right)\left(0.5 \mathrm{H}_{2} \mathrm{O}\right)$	$\mathrm{N} 4-\mathrm{H} 1 \cdots \mathrm{O} 1$	2.633 (2)	0.900 (2)	1.754 (1)	164 (2)
	O5-H5A $\cdots \mathrm{O}^{\text {a }}$	2.770 (3)	0.908 (3)	1.907 (3)	158 (3)
	$\mathrm{O} 3-\mathrm{H} 4 \cdots \mathrm{O} 2{ }^{\text {b }}$	2.627 (3)	0.900 (2)	1.769 (3)	158 (2)
	O4-H4AA \cdots O1	2.794 (2)	1.043 (4)	1.760 (4)	170 (3)

$a=x, y-1, z ; b=-x+3 / 2, y-1 / 2,-z+2$

Figure 5.2.6: Hydrogen bonding in ($\left.\mathrm{HPAA}^{-}\right)\left(\mathrm{CIND}^{+}\right)\left(0.5 \mathrm{H}_{2} \mathrm{O}\right)$.

5.3 HPAA, cinchonidine and isopropanol (HPAA^{-})($\left.\mathrm{CIND}^{+}\right) \cdot \mid$ IPA $\cdot \mathrm{H}_{2} \mathrm{O}$

A $1: 1$ ratio of HPAA and CIND was dissolved in isopropanol by gentle heating on a hot plate. The solution was allowed to evaporate at room temperature and crystals were obtained. The asymmetric unit of (HPAA^{-})($\left.\mathrm{CIND}^{+}\right) \cdot \operatorname{IPA} \cdot \mathrm{H}_{2} \mathrm{O}$ is represented in Figure 5.3.1.

CHAPTER 5: 4-HYDROXYPHENYLACETIC ACID CO-CRYSTALS AND SALTS

Figure 5.3.1: Asymmetric unit of ($\left.\mathrm{HPAA}^{-}\right)\left(\mathrm{CIND}^{+}\right) \cdot I \mathrm{PA} \cdot \mathrm{H}_{2} \mathrm{O}$ structure with all the hydrogen atoms shown for numbering clarity.

5.3.1 Thermal Analysis

Thermal analysis results are shown in Figure 5.3.2. A single mass loss step of 14.7% is observed in the TG curve which corresponds to the release of both water and isopropanol. Two sharp peaks are observed in the DSC, the first corresponding to the loss of solvent ($\mathrm{T}_{\mathrm{on}}=360.4 \mathrm{~K}$) and the second due to the melt of the salt. The thermal analysis data is given in Table 5.9.

CHAPTER 5: 4-HYDROXYPHENYLACETIC ACID CO-CRYSTALS AND SALTS

Table 5.9: Thermal analysis data of (HPAA $\left.{ }^{-}\right)\left(\mathrm{CIND}^{+}\right) \cdot \mid \mathrm{PA} \cdot \mathrm{H}_{2} \mathrm{O}$.

Compound	$\left(\mathrm{HPAA}^{-}\right)\left(\mathrm{CIND}^{+}\right) \cdot I \mathrm{PA} \cdot \mathrm{H}_{2} \mathrm{O}$
HPAA ${ }^{-}$: CIND $^{+}$: IPA: $\mathrm{H}_{2} \mathrm{O}$ ratio	1:1:1:1
TG calculated \% mass loss	14.9
TG experimental \% mass loss	14.7
DSC Endo ${ }_{1}\left(\mathrm{~T}_{\text {onset }}\right.$, K)	360.4
DSC Endo ${ }_{2}\left(\mathrm{~T}_{\text {onset }}, \mathrm{K}\right.$)	444.9

Figure 5.3.2: Thermal analysis curves of (HPAA^{-})($\left.\mathrm{CIND}^{+}\right) \cdot \mid$ IPA• $\mathrm{H}_{2} \mathrm{O}$ DSC (red) and TG (blue).

CHAPTER 5: 4-HYDROXYPHENYLACETIC ACID CO-CRYSTALS AND SALTS

5.3.2 IR Spectroscopy

IR spectra are shown in Figure 5.3.3. The IR spectrum of the salt solvate shows a new band at $3142 \mathrm{~cm}^{-1}$ that can be attributed to the hydrogen bonded OH group. There are two new frequency vibrations at 1642 and $1613 \mathrm{~cm}^{-1}$ indicating a proton has been transferred in the crystal structure. IR results are given in Table 5.10.

Table 5.10: IR positions and assignments for the peaks in HPAA, $\left(\mathrm{HPAA}^{-}\right)\left(\mathrm{CIND}^{+}\right) \cdot I P A \cdot \mathrm{H}_{2} \mathrm{O}$ and CIND.

HPAA	(HPAA $^{-} \mathbf{(\mathbf { C l N D } ^ { + }) \cdot I P A \cdot \mathbf { H } _ { \mathbf { 2 } } \mathbf { O }}$	CIND	Proposed assignment
3243	3142	3396	OH stretch
2707,2616	2967,2590	$3072,3003,2939$, 2866,2720	C=C and $\mathrm{C}-\mathrm{H}$ Stretching mode
1965,1905	1935	1941	Overtone or combination bands
$1711,1618,1600$	$1685,1642,1613$	-	C=O
$1519,1446,1414$	1519,1454	$1636,1618,1590$, 1567,1508	C=C stretch
1210	1274	-	C-O stretch

CHAPTER 5: 4-HYDROXYPHENYLACETIC ACID CO-CRYSTALS AND SALTS

Figure 5.3.3: IR spectra (a) HPAA, (b) CIND and (c) ($\left.\mathrm{HPAA}^{-}\right)\left(\mathrm{CIND}^{+}\right) \cdot \mid \mathrm{IPA} \cdot \mathrm{H}_{2} \mathbf{O}$.

5.3.3 Powder X-ray Diffraction

There is good agreement between the PXRD pattern of the ground product at 30 min and the pattern of the physical mixture. Therefore the grinding experiment was unsuccessful.

The slurry conversion pattern performed in 50/50 (V / V) water/isopropanol did not match the calculated pattern of the inclusion compound. The slurry pattern was similar to (HPAA^{-})($\left.\mathrm{CIND}^{+}\right)\left(0.5 \mathrm{H}_{2} \mathrm{O}\right)$ calculated PXRD pattern.

However, drops of 50/50 (v / v) water/isopropanol were added to the ground product and after further grinding for another 30 min the PXRD pattern was recorded. The PXRD pattern resulting from the solvent drop grinding also did not match that of the calculated pattern obtained from LAZYPULVERIX. ${ }^{5}$

PXRD patterns of the different experiments are shown in Figure 5.3.4.

CHAPTER 5: 4-HYDROXYPHENYLACETIC ACID CO-CRYSTALS AND SALTS

Figure 5.3.4: PXRD patterns of (HPAA^{-})($\left.\mathrm{CIND}^{+}\right) \cdot \mid \mathrm{PA} \cdot \mathrm{H}_{2} \mathrm{O}$ (red), ground product (green), physical mixture (purple), slurry (sky blue) and liquid assisted ground product (blue).

5.3.4 Structure Determination

Table 5.11 provides a summary of the crystal data results. The non-hydrogen atoms were found in the difference electron density map and the aromatic hydrogens of HPAA ${ }^{-}$and CIND^{+}were placed with geometric constraints and refined isotropically. The HPAA $^{-}$anion, CIND^{+}cation, isopropanol and water molecules were located in general positions. The hydrogen atoms not involved in the hydrogen bond of (HPAA^{-})($\left.\mathrm{CIND}^{+}\right) \cdot \mathrm{IPA} \cdot \mathrm{H}_{2} \mathrm{O}$ were placed manually and refined isotropically.

CHAPTER 5: 4-HYDROXYPHENYLACETIC ACID CO-CRYSTALS AND SALTS

Table 5.11: Crystal data of (HPAA^{-})($\left.\mathrm{CIND}^{+}\right) \cdot \mathrm{IPA} \cdot \mathrm{H}_{2} \mathrm{O}$.

Compound	(HPAA^{-})(CIND^{+}) $\cdot \mathrm{IPA} \cdot \mathrm{H}_{2} \mathrm{O}$
Structural Formula	$\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{3}{ }^{-}\right)\left(\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}^{+}\right) \cdot \mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O} \cdot \mathrm{H}_{2} \mathrm{O}$
HPAA ${ }^{-}$CIND ${ }^{+}$:IPA: $\mathrm{H}_{2} \mathrm{O}$ ratio	1:1:1:1
Molecular Mass ($\mathrm{m} \mathrm{mol}^{-1}$)	524.67
Data collection temperature (K)	173(2)
Crystal system	Orthorhombic
Space group	$P 2_{1} 2_{1} 2_{1}$
a (\AA)	6.6247 (13)
$\mathrm{b}(\mathrm{A})$	15.335 (3)
$c(A)$	28.075(6)
$\alpha\left({ }^{\circ}\right)$	90.00
$\beta\left({ }^{\circ}\right)$	90.00
$\mathrm{Y}\left({ }^{\circ}\right)$	90.00
Volume (${ }^{\text {a }}$)	2852.2 (10)
Z	4
D_{c}, Calculated density ($\mathrm{g} \mathrm{cm}^{-3}$)	1.222
Final R indices [$1>2$ sigma(1)]	$\mathrm{R}_{1}=0.0418$
	$\mathrm{wR}_{2}=0.0888$
R indices (all data)	$\mathrm{R}_{1}=0.0612$
	$\mathrm{wR}_{2}=0.0973$
Largest diff. peak and hole (e \AA^{-3})	0.293; -0.200

(HPAA^{-})($\left.\mathrm{CIND}^{+}\right) \cdot \mathrm{IPA} \cdot \mathrm{H}_{2} \mathrm{O}$ crystallized in an orthorhombic crystal system with a space group $P 2_{1} 2_{1} 2_{1}$. The asymmetric unit contains one HPAA ${ }^{-}$anion, one CIND ${ }^{+}$cation, one isopropanol and one water with $Z=4$. The crystal used for data collection had crystal size dimensions of $0.05 \times 0.11 \times 0.43 \mathrm{~mm}$. There is proton transfer from the carboxylic group of the HPAA to the nitrogen atom (N4) in the CIND cation with an N-H distance of $0.970 \AA \AA$. The oxygen atoms (O 1 and O 2) in the carboxylate group are such that: $\mathrm{d}(\mathrm{C8}-$ O1) $=1.250 \AA$ and $\mathrm{d}(\mathrm{C} 8-\mathrm{O} 2)=1.264 \AA$ which indicates salt formation. The packing

CHAPTER 5: 4-HYDROXYPHENYLACETIC ACID CO-CRYSTALS AND SALTS

diagram of $\left(\mathrm{HPAA}^{-}\right)\left(\mathrm{CIND}^{+}\right) \cdot \mathrm{IPA} \cdot \mathrm{H}_{2} \mathbf{O}$ is shown in Figure 5.3 .5 (a) running in the [100] direction.

Channels (contact surface) in which the water and isopropanol molecules are located have a void volume of $443.64 \AA^{3}$ and a unit cell volume percentage of 15.60% at a probe radius of $1.40 \AA$ and a grid spacing of $0.70 \AA$ using Mercury ${ }^{7}$ software as shown in Figure 5.3.5 (b).

(a)

CHAPTER 5: 4-HYDROXYPHENYLACETIC ACID CO-CRYSTALS AND SALTS

(b)

Figure 5.3.5: (a) packing diagram of (HPAA^{-})($\left.\mathrm{CIND}^{+}\right) \cdot \mid \mathrm{PA} \cdot \mathrm{H}_{2} \mathrm{O}$ with hydrogen atoms removed down [100] (b) channels in which water and isopropanol molecules are located down [100].

The connectivity diagram of $\left(\mathrm{HPAA}^{-}\right)\left(\mathrm{CIND}^{+}\right) \cdot I \mathrm{PA} \cdot \mathrm{H}_{2} \mathrm{O}$ is shown in Figure 5.3 .6 in which the hydrogen bonds: (CIND $\left.{ }^{+}\right) \mathrm{OH} \cdots\left(\mathrm{HPAA}^{-}\right),(\mathrm{H} 2 \mathrm{O}) \mathrm{OH} \cdots\left(\mathrm{HPAA}^{-}\right)$, (IPA) $\mathrm{OH} \cdots \cdot(\mathrm{H} 2 \mathrm{O})$, (IPA) $\left.\mathrm{OH} \cdots\left(\mathrm{CIND}^{+}\right),\left(\mathrm{HPAA}^{-}\right) \mathrm{OH} \cdots \cdot{ }^{(P A}\right)$ and $\left(\mathrm{CIND}^{+}\right) \mathrm{NH} \cdots\left(\mathrm{HPAA}^{-}\right)$is noted. The two oxygen atoms (O 1 and O 2) in the carboxylate group play the role of bifurcated acceptors. Two chain motifs $C_{2}^{2}(6)$ and $C_{2}^{2}(9)$ are present. There are also D motifs involved in the graph set which can be characterized as $D_{1}^{1}(2), D_{2}^{1}(3), D_{2}^{2}(4), D_{2}^{2}$ (5) and $D_{2}^{2}(11)$. The metrics of the hydrogen bonding are given in Table 5.12.

CHAPTER 5: 4-HYDROXYPHENYLACETIC ACID CO-CRYSTALS AND SALTS

Table 5.12: Hydrogen bonding parameters in $\left(\mathrm{HPAA}^{-}\right)\left(\mathrm{CIND}^{+}\right) \cdot I \mathrm{PA} \cdot \mathrm{H}_{2} \mathrm{O}$.

COMPOUND	D-H.*A	D $\cdots \mathrm{A}(\mathrm{Å})$	D-H (${ }_{\text {A }}$)	H $\cdots \mathrm{A}(\mathrm{A})$	$\mathrm{D}-\mathrm{H} \cdots \mathrm{~A}$ $\left(\frac{0}{)}\right)$
$\left(\mathrm{HPAA}^{-}\right)\left(\mathrm{CIND}^{+}\right) \cdot \mathrm{IPA} \cdot \mathrm{H}_{2} \mathrm{O}$	$\mathrm{N} 4-\mathrm{H} 1 \cdots \mathrm{O} 2^{\text {a }}$	2.651 (2)	0.970 (1)	1.686 (3)	173 (2)
	O6-H6A…O4	2.717 (2)	0.809 (3)	1.928 (3)	165 (3)
	O5-H5A \cdots O1	2.627 (2)	0.951 (2)	1.683 (2)	171 (2)
	O4-H4A $\cdots{ }^{\text {2 }}{ }^{\text {b }}$	2.767 (2)	0.884 (4)	1.892 (4)	170 (3)
	O4-H4B $\cdots{ }^{\text {O }}{ }^{\text {c }}$	2.789 (2)	0.880 (4)	1.928 (4)	166 (3)
	O3-H4 ${ }^{\text {O }} \mathrm{O}^{\text {d }}$	2.686 (2)	0.812 (2)	1.885 (2)	169 (2)

Figure 5.3.6: Intermolecular connectivity in (HPAA^{-})($\left(\mathrm{CIND}^{+}\right) \cdot \mid \mathrm{PA} \cdot \mathrm{H}_{2} \mathrm{O}$.

5.4 HPAA and isonicotinamide (HPAA•2INM)

HPAA•2INM crystals were obtained by slow evaporation of a saturated solution of a 1:1 ratio of HPAA and isonicotinamide (INM) in acetone. The crystals were obtained after a

CHAPTER 5: 4-HYDROXYPHENYLACETIC ACID CO-CRYSTALS AND SALTS

few days. Similar crystals resulted when ethanol, methanol, isopropanol and tetrahydrofuran were used as solvents. The asymmetric unit of the co-crystal is illustrated in Figure 5.4.1.

Figure 5.4.1: HPAA•2INM asymmetric unit with all the hydrogen atoms shown for numbering clarity.

5.4.1 Thermal Analysis

The DSC curve of the co-crystal, as illustrated in Figure 5.4.2, exhibits an endotherm which does not correspond to that of the HPAA or INM melts. This is a confirmation of a new compound formation. The endotherm has a lower onset temperature than that of the two pure components indicating a decrease in thermal stability. Thermal analysis results are given in Table 5.13.

CHAPTER 5: 4-HYDROXYPHENYLACETIC ACID CO-CRYSTALS AND SALTS

Table 5.13: Thermal analysis data of HPAA•2INM.

Compounds	DSC Endo $_{1}\left(\mathbf{T}_{\text {onset, }} \mathbf{K}\right.$)	DSC Endo $_{2}\left(\mathbf{T}_{\text {onset }}, \mathbf{K}\right)$
Isonicotinamide	382.1 (minor)	428.4 (major)
HPAA	-	425.1
HPAA•2INM	-	403.1

Figure 5.4.2: DSC curve of HPAA (blue), INM (green) and HPAA•2INM (red).

5.4.2 IR Spectroscopy

Figure 5.4.3 shows the FTIR spectra of HPAA, INM and the co-crystal prepared in acetone. The stretching of the amide group in INM is represented by absorption bands at 3370 and $3180 \mathrm{~cm}^{-1}$ respectively, which was assigned to the free anti-NH

CHAPTER 5: 4-HYDROXYPHENYLACETIC ACID CO-CRYSTALS AND SALTS

(asymmetrical) and hydrogen-bonded NH (symmetrical) vibration. The absorption band at $1680 \mathrm{~cm}^{-1}$ was assigned to the carbonyl $(\mathrm{C}=\mathrm{O})$ stretching and the band at $1399 \mathrm{~cm}^{-1}$ to CN stretching.

The spectrum of the co-crystal showed changes in the peak positions of the carbonyl and amide groups, which suggested interactions between HPAA and INM. There is a shift in the carbonyl stretching bands for the co-crystal at 1673 and $1617 \mathrm{~cm}^{-1}$. Additionally, there is also a shift in the N-H vibration band at 3354 and $3182 \mathrm{~cm}^{-1}$. The new band at $3398 \mathrm{~cm}^{-1}$ can be attributed to the OH group involved in hydrogen bonding.
Table 5.14 shows the IR results.

Table 5.14: IR positions and assignments of peaks in HPAA, HPAA•2INM and INM.

HPAA	HPAA•2INM	INM	Proposed assignment
3243	3398	-	OH stretch
2707,2616	3354,3182	3370,3186	H-bonded NH_{2} stretching mode
2707,2616	2809	2783	C-C ring modes
$1711,1618,1600$	1673,1617	1680	$\mathrm{C=O}$
-	1604,	Amide II band (NH 2 scissor), C-N, C=O stretching mode combination	
$1519,1446,1414$	1553,1518,	1595,1551,	C=C stretch 1470,1414
1342	1399	Amide III band (C-N stretch, N-H bend)	
		1218	C-O stretch

CHAPTER 5: 4-HYDROXYPHENYLACETIC ACID CO-CRYSTALS AND SALTS

Figure 5.4.3: IR spectrum of (a) INM (b) HPAA and (c) HPAA•2INM.

5.4.3 Powder X-ray Diffraction

The dry grinding of a 1: 2 molar ratio of HPAA and INM produced a powdered material which showed a PXRD pattern containing peaks found both in the physical mixture and in the calculated pattern but mostly resembles the physical mixture. This indicates a partial conversion of the ground product.

The PXRD pattern of the slurry conversion performed in methanol showed good agreement to that of the calculated pattern obtained from LAZYPULVERIX ${ }^{5}$ as shown in Figure 5.4.4.

CHAPTER 5: 4-HYDROXYPHENYLACETIC ACID CO-CRYSTALS AND SALTS

Figure 5.4.4: PXRD patterns of HPAA-2INM (red), ground product (green), physical mixture (purple) and slurry (blue).

5.4.4 Structure Determination

All non-hydrogen atoms were found in the difference electron density map. H atoms on C atoms were refined isotropically. H atoms on the amine and carboxylic group were located from the difference-electron density map and refined freely. HPAA and INM molecules were found in general positions. Table 5.15 provides experimental details of the X-ray analyses.

CHAPTER 5: 4-HYDROXYPHENYLACETIC ACID CO-CRYSTALS AND SALTS

Table 5.15: Crystallographic data for the HPAA•2INM co-crystal.

Compound	HPAA-2INM
Structural Formula	$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{3} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}$
HPAA:INM ratio	1:2
Molecular Mass ($\mathrm{g} \mathrm{mol}^{-1}$)	396.40
Data collection temperature (K)	173(2)
Crystal system	Triclinic
Space group	$P-1$
a (A)	6.7760 (14)
$b(A)$	12.370 (3)
$c(A)$	12.686 (3)
$\alpha\left({ }^{\circ}\right)$	111.82 (3)
$\beta\left({ }^{\circ}\right)$	96.57 (3)
$Y\left({ }^{\circ}\right)$	99.53 (3)
Volume (${ }^{\text {a }}$)	955.4 (3)
Z	2
D_{c}, Calculated density ($\mathrm{g} \mathrm{cm}^{-3}$)	1.378
Final R indices [l>2sigma(l)]	$\mathrm{R}_{1}=0.0487$
	$w R_{2}=0.1283$
R indices (all data)	$\mathrm{R}_{1}=0.0683$
	$w R_{2}=0.1423$
Largest diff. peak and hole (e \AA^{-3})	0.554; -0.592

HPAA-2INM was solved in the triclinic space group P - 1 with one HPAA and two INM molecules in the asymmetric unit (Figure 5.4.1) with $Z=2$. The crystal packing view down [100] is shown in Figure 5.4.5.

CHAPTER 5: 4-HYDROXYPHENYLACETIC ACID CO-CRYSTALS AND SALTS

Figure 5.4.5: Crystal packing of HPAA•2INM with hydrogen atoms removed viewed down [100].

The crystal structure of HPAA-2INM displays an extensive hydrogen-bond network generated by amide-amide synthons. Each INM molecule is involved in two intermolecular $\mathrm{N}-\mathrm{O} \cdots \mathrm{H}$ hydrogen bonds (Figure 5.4.6). These units are linked together through a complementary amide dimer, formed by N16A-H5G‥O5 at (- $x,-y+2$, $z+2$).

The chains are linked through a second complementary interaction formed by N16AH6G \cdots O5 at (x, y, z), resulting in the formation of rings with a graph set $R_{2}^{2}(8)$. The ring $R_{4}^{4}(16)$ motif is formed between four isonicotinamide molecules and the graph set R_{4}^{4} (32) is between two molecules of each compound. N16A-H5G‥O5 interactions between two INM molecules are also revealed with a graph set $R_{4}^{2}(8)$. The structure is further stabilized by the (HPAA) O1-H1‥N9A (INM), (INM) N16-H16B $\cdots \mathrm{O}$ (HPAA) and (HPAA) O3-H4‥N9 (INM) hydrogen bonding connections. The $\mathrm{D}_{1}^{1}(2)$ motif is observed between two INM molecules. The other D motifs ($D_{2}^{2}(5), D_{2}^{2}(6), D_{2}^{2}(8), D_{2}^{2}(9)$ and $D_{2}^{2}(12)$ in the structure are between one molecule of HPAA and two molecules of INM. The hydrogen bonding parameters are given in Table 5.16.

CHAPTER 5: 4-HYDROXYPHENYLACETIC ACID CO-CRYSTALS AND SALTS

Table 5.16: HPAA•2INM hydrogen bonding parameters.

COMPOUND	D-H..A	D $\cdots \mathrm{A}$ (${ }^{\text {A }}$)	D-H (${ }_{\text {A }}$)	$\mathrm{H} \cdots \mathrm{A}(\mathrm{A})$	$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}\left({ }^{\circ}\right)$
HPAA-2INM	N16A-H6G \cdots O5	2.932 (2)	0.963 (1)	1.973 (1)	174 (1)
	N16-H16A‥O5A	2.877 (2)	0.912 (1)	1.977 (1)	169 (1)
	N16-H16B $\cdots \mathrm{O}^{\text {a }}$	2.881 (2)	0.871 (1)	2.017 (1)	171 (1)
	N16A-H5G ${ }^{\text {O }}$ O5 ${ }^{\text {b }}$	2.941 (2)	0.768 (2)	2.240 (2)	152 (2)
	O3-H4 \cdots N9 ${ }^{\text {c }}$	2.760 (2)	0.921 (3)	1.853 (3)	168 (2)
	O1-H1 \cdots N9A ${ }^{\text {d }}$	2.611 (2)	0.960 (1)	1.679 (1)	163 (2)

Figure 5.4.6: Hydrogen bonding in HPAA•2INM.

5.5 HPAA and Quinidine (HPAA^{-})(QUID ${ }^{+}$) $\cdot \mathrm{H}_{2} \mathrm{O}$

The salt hydrate was achieved from an equimolar mixture of HPAA and QUID in ethanol. The solution was allowed to evaporate at ambient temperature and after a few weeks crystals were obtained. Similar crystals were obtained when methanol, isopropanol and tetrahydrofuran were used as solvents.

CHAPTER 5: 4-HYDROXYPHENYLACETIC ACID CO-CRYSTALS AND SALTS

The asymmetric unit of (HPAA^{-})(QUID $\left.{ }^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ is shown in Figure 5.5.1.

Figure 5.5.1: Asymmetric unit of $\left(\mathrm{HPAA}^{-}\right)\left(\mathrm{QUID}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ with all the hydrogen atoms shown for numbering clarity.

5.5.1 Thermal Analysis

Thermal analysis results are given in Table 5.17. There is good agreement between the calculated and the experimental percentage mass loss. (HPAA $\left.{ }^{-}\right)\left(\right.$QUID $\left.^{+}\right) \cdot \mathbf{H}_{2} \mathbf{O}$ displays two mass loss steps in the TG curve (Figure 5.5.2) which shows a mass loss of 3.2 \% up to 410.4 K with a corresponding endotherm in the DSC.

CHAPTER 5: 4-HYDROXYPHENYLACETIC ACID CO-CRYSTALS AND SALTS

Table 5.17: Thermal analysis data of (HPAA^{-})(QUID $\left.^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$.

Compound	$\left(\right.$ HPAA $\left.^{-}\right)\left(\right.$QUID $\left.^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$
HPAA ${ }^{-}$:QUID ${ }^{+} \mathrm{H}_{2} \mathrm{O}$ ratio	1:1:1
TG calculated \% mass loss	3.6
TG experimental \% mass loss	3.2
DSC Endo ($\mathrm{T}_{\text {onset, }} \mathrm{K}$)	410.4

Figure 5.5.2: Thermal analysis curves of $\left(\mathrm{HPAA}^{-}\right)\left(\right.$QUID $\left.^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ DSC (red) and TG (blue).

CHAPTER 5: 4-HYDROXYPHENYLACETIC ACID CO-CRYSTALS AND SALTS

5.5.2 IR Spectroscopy

The $I R$ spectrum of $\left(\mathrm{HPAA}^{-}\right)\left(\right.$QUID $\left.^{+}\right) \cdot \mathbf{H}_{2} \mathbf{O}$ is different from the starter components as illustrated in Figure 5.5.3. There is a broad band at $3200 \mathrm{~cm}^{-1}$, which can be attributed to the combination of OH stretching and the $\mathrm{N}-\mathrm{H}$ stretch mode. The new frequency vibration at $1584 \mathrm{~cm}^{-1}$ confirms the formation of a salt according to Adalder et al due to the a proton being transferred from the carboxylic group of the HPAA molecule to the nitrogen atom (N10) of the QUID. The compound (HPAA^{-})(QUID $\left.{ }^{+}\right) \cdot \mathrm{H}_{2} \mathbf{O}$ is extremely stable and only release water at high temperatures.

Table 5.18: IR positions and assignments of peaks in HPAA, (HPAA $^{-}$)(QUID $\left.^{+}\right) \cdot \mathrm{H}_{2} \mathbf{O}$ and QUID.

HPAA	(HPAA $^{-}$)(QUID ${ }^{+}$) $\mathbf{H}_{\mathbf{2}} \mathbf{O}$	QUID	Proposed assignment
3243	3200	3448,3124	OH stretch
2707,2616	3200	-	N-H stretching mode
2707,2616	2977,2905	$2932,2868,2710$	C-C ring modes
$1711,1618,1600$	1584	-	C=O
-	1619	1620	C-N, C=O stretching mode combination
$1519,1446,1414$	$1513,1476,1454$	$1589,1561,1549$,	C=C stretch 1464
-	1380	1400	C-N stretch, N-H
bend			

CHAPTER 5: 4-HYDROXYPHENYLACETIC ACID CO-CRYSTALS AND SALTS

Figure 5.5.3: IR spectra (a) QUID, (b) HPAA and (c) (HPAA $^{-}$)(QUID $\left.^{+}\right)^{\bullet} \cdot \mathbf{H}_{\mathbf{2}} \mathbf{O}$.

5.5.3 Powder X-ray Diffraction

The neat grinding PXRD pattern did not match either the physical mixture or the calculated pattern of the salt hydrate. This may be another form of the co-crystal or the anhydrous compound (HPAA^{-})(QUID ${ }^{+}$), but crystallization of this form was unsuccessful.

The slurry conversion performed in ethanol also did not match the physical mixture and the calculated pattern obtained from LAZYPULVERIX ${ }^{5}$ and can be a formation of a new compound.

The PXRD patterns of the different experiments performed on the (HPAA^{-})(QUID $\left.{ }^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ are shown in Figure 5.5.4.

CHAPTER 5: 4-HYDROXYPHENYLACETIC ACID CO-CRYSTALS AND SALTS

Figure 5.5.4: PXRD patterns of $\left(\mathrm{HPAA}^{-}\right)\left(\right.$QUID $\left.^{+}\right) \cdot \mathrm{H}_{\mathbf{2}} \mathbf{O}$ (red), ground product at 30 min (green), physical mixture (purple) and slurry (blue).

5.5.4 Structure Determination

The crystal structure of (HPAA^{-})(QUID $\left.^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ was solved in the monoclinic space group $P 2_{1}$. . The hydroxyl hydrogen of the HPAA ${ }^{-}$anion and the hydrogen atom bonded to the nitrogen atom in the QUID ${ }^{+}$cation were located in the difference electron density map. The structure refined successfully to $R_{1}=0.0376$ with $w R_{2}=0.0933$ ([l>2sigma (I)]). The summary of the crystal data is given in Table 5.19.

CHAPTER 5: 4-HYDROXYPHENYLACETIC ACID CO-CRYSTALS AND SALTS

Table 5.19: Crystal data of (HPAA^{-})(QUID $^{+}$) $\cdot \mathrm{H}_{2} \mathbf{O}$.

Compound	(HPAA $^{-}$)(QUID $^{+}$) $\cdot \mathrm{H}_{2} \mathrm{O}$
Structural Formula	$\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{3}{ }^{-}\right)\left(\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$
HPAA ${ }^{-}$: UUID $^{+}$: $\mathrm{H}_{2} \mathrm{O}$ ratio	1:1:1
Molecular Mass ($\mathrm{g} \mathrm{mol}^{-1}$)	494.59
Data collection temperature (K)	173(2)
Crystal system	Monoclinic
Space group	P2 ${ }_{1}$
$\mathrm{a}(\mathrm{A})$	6.4974 (13)
$\mathrm{b}(\mathrm{A})$	19.303 (4)
$c(A)$	10.263 (2)
$\alpha\left({ }^{\circ}\right)$	90.00
$\beta\left({ }^{\circ}\right)$	105.29 (3)
$\mathrm{Y}\left({ }^{\circ}\right)$	90.00
Volume (${ }^{3}{ }^{3}$)	1241.6 (4)
Z	2
D_{c}, Calculated density ($\mathrm{g} \mathrm{cm}^{-3}$)	1.323
Final R indices [l>2sigma(1)]	$\mathrm{R}_{1}=0.0376$
	$\mathrm{wR}_{2}=0.0933$
R indices (all data)	$\mathrm{R}_{1}=0.0409$
	$w \mathrm{R}_{2}=0.0955$
Largest diff. peak and hole (e \AA^{-3})	0.264; -0.187

The crystal used for data collection had size dimensions of $0.07 \times 0.20 \times 0.45 \mathrm{~mm}$. The packing diagram of (HPAA^{-})(QUID $\left.^{+}\right) \cdot \mathrm{H}_{2} \mathbf{O}$ along the [100] direction is shown in Figure 5.5.5 (a). Cavities (contact surface) in which water molecules are located down [100] are illustrated in Figure 5.5 .5 (b) with a void volume of $7.09 \AA^{3}$ and percentage unit cell volume of 0.60% using a probe of $1.0 \AA$ and a grid spacing of $0.70 \AA$ Á. A probe size of $1.4 \AA$ supposed to be used for the hydrate but at that value, a void volume of $0.00 \AA^{3}$ is indicated.

CHAPTER 5: 4-HYDROXYPHENYLACETIC ACID CO-CRYSTALS AND SALTS

(a)

(b)

Figure 5.5.5: (a) Crystal packing diagram of (HPAA^{-}) $\left(\right.$QUID $\left.^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$, with hydrogen atoms removed, down [100], (b) cavities in which water molecules are located down [100].

CHAPTER 5: 4-HYDROXYPHENYLACETIC ACID CO-CRYSTALS AND SALTS

All the nitrogen atoms of the QUID ${ }^{+}$cation are involved in hydrogen bonding. The protonated ${ }^{+} \mathrm{N} 10-\mathrm{H} 10$ is connected to the oxygen atoms O 1 of the carboxylate group (Figure 5.5.6).

O1 is a bifurcated acceptor; it is linked to QUID ${ }^{+}$and to a water molecule. Each water molecule is connected to the nitrogen atom (N5) of the QUID ${ }^{+}$cation, the hydroxyl group of an HPAA^{-}anion and the carboxyl group of an HPAA^{-}anion. There are many graph sets involved in the crystal structure which are characterized as $D_{1}^{1}(2), D_{2}^{1}(3), D_{2}^{2}(4), D$ ${ }_{2}^{2}(5), D_{2}^{2}(9), C_{2}^{2}(9), D_{2}^{2}(10), D_{2}^{2}(11)$ and $C_{2}^{2}(11)$. Table 5.20 summarizes the details of the (HPAA $\left.{ }^{-}\right)\left(\right.$QUID $\left.^{+}\right) \cdot \mathrm{H}_{2} \mathbf{O}$ connectivity.

Table 5.20: Connectivity of the (HPAA^{-})(QUID $\left.{ }^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ salt hydrate.

COMPOUND	D-H \cdots A	D $\cdots \mathrm{A}$ (${ }^{\text {A }}$)	D-H (Å)	H $\cdots \mathrm{A}(\mathrm{A})$	D-H $\cdots \mathrm{A}\left({ }^{\circ}\right)$
(HPAA^{-})(QUID^{+}) $\mathrm{H}_{\mathbf{2}} \mathbf{O}$	N10-H10‥O1	2.747 (2)	0.915 (2)	1.853 (2)	165 (2)
	O6-H6A \cdots N5	2.826 (2)	0.922 (3)	1.919 (3)	168 (2)
	O5-H5A $\cdots{ }^{\text {O }}{ }^{\text {a }}$	2.679 (2)	0.847 (2)	1.876 (2)	158 (2)
	O6-H6B $\cdots{ }^{\text {O }}{ }^{\text {b }}$	2.828 (2)	0.840 (3)	1.992 (3)	173 (3)
	O3-H4 ${ }^{\text {O }} 6^{\text {c }}$	2.723 (2)	0.845 (3)	1.883 (3)	172 (3)

CHAPTER 5: 4-HYDROXYPHENYLACETIC ACID CO-CRYSTALS AND SALTS

Figure 5.5.6: Connectivity in (HPAA^{-})(QUID $\left.{ }^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$.

5.6 HPAA and Quinine (HPAA^{-})(QUIN $^{+}$)

The salt was obtained by dissolving a 1: 1 ratio of both compounds in methanol. The solution evaporated at room temperature and after a few weeks crystals were obtained. Similar crystals were obtained when ethanol, isopropanol and tetrahydrofuran were used as solvents.

The asymmetric unit of the salt is represented in Figure 5.6.1.

CHAPTER 5: 4-HYDROXYPHENYLACETIC ACID CO-CRYSTALS AND SALTS

Figure 5.6.1: Asymmetric unit of (HPAA $\left.{ }^{-}\right)\left(\right.$QUIN $\left.^{+}\right)$with all the hydrogen atoms shown for numbering clarity.

5.6.1 Thermal Analysis

Table 5.21 gives the thermal analysis results of (HPAA $^{-}$)(QUIN $^{+}$). There is an increase in the thermal stability of the salt, ${ }^{3}$ because its melting point is higher than that of either pure compound as shown in Figure 5.6.2.

Table 5.21: Thermal analysis results of (HPAA $\left.{ }^{-}\right)\left(\right.$QUIN $\left.^{+}\right)$.

Compounds	DSC Endo(T onset $^{\text {K K }}$)
QUIN	449.8
HPAA	425.1
(HPAA $^{-}\left(\right.$QUIN $\left.^{+}\right)$	489.8

CHAPTER 5: 4-HYDROXYPHENYLACETIC ACID CO-CRYSTALS AND SALTS

Figure 5.6.2: DSC curves of ($\left.\mathrm{HPAA}^{-}\right)\left(\right.$QUIN $\left.^{+}\right)$(red), HPAA (blue) and quinine (green).

5.6.2 IR Spectroscopy

IR spectra of the salt and the individual components are shown in Figure 5.6.2. For the IR spectrum of the salt there is a new broad absorption peak at $3451 \mathrm{~cm}^{-1}$ assigned to the OH group involved in the hydrogen bonding. A new band at $3085 \mathrm{~cm}^{-1}$ is observed and is attributed to the $\mathrm{N}-\mathrm{H}$ stretch. The band at $1577 \mathrm{~cm}^{-1}$ is attributed to the COO^{-} group and the shift indicates that a proton has been transferred. ${ }^{4}$ The IR results are given in Table 5.22.

CHAPTER 5: 4-HYDROXYPHENYLACETIC ACID CO-CRYSTALS AND SALTS

Table 5.22: IR positions and assignments of peaks in HPAA, (HPAA ${ }^{-}$)(QUIN $^{+}$) and QUIN.

HPAA	(HPAA $^{-} \mathbf{(\mathbf { Q U I N } ^ { + })}$	QUIN	Proposed assignment
3243	34551	3451,3170	OH stretch
2707,2616	3085	-	N-H stretching mode
2707,2616	2950,2360	$2936,2360,2342$	C-C ring modes
$1711,1618,1600$	1577	-	C=O
-	1619	1624	C-N, C=O stretching mode combination
$1519,1446,1414$	$1511,1469,1434$	$1590,1508,1469$, C=C stretch 1449	C-N stretch, N-H bend
1210	1388	1260	C-O stretch

Figure 5.6.3: IR spectra (a) QUIN, (b) HPAA and (c) (HPAA $\left.{ }^{-}\right)\left(\right.$QUIN $\left.^{+}\right)$.

CHAPTER 5: 4-HYDROXYPHENYLACETIC ACID CO-CRYSTALS AND SALTS

5.6.3 Powder X-ray Diffraction

The salt PXRD patterns are shown in Figure 5.6.4. The dry ground product did not correspond to either the physical mixture or the calculated pattern from LAZYPULVERIX. ${ }^{5}$

The slurry conversion experiment was performed in isopropanol and the resultant product PXRD pattern was different from the physical mixture and the calculated pattern from the salt. The exact identity of this pattern is still unknown and may be a solvate of the salt or a different form of the salt hydrate.

Figure 5.6.4: PXRD patterns of (HPAA^{-})(QUIN $^{+}$) (red), ground product (green), physical mixture (purple) and slurry (blue).

CHAPTER 5: 4-HYDROXYPHENYLACETIC ACID CO-CRYSTALS AND SALTS

5.6.5 Structure Determination

The structure was solved by direct methods and all hydrogen atoms except those from the vinyl groups were found in the subsequent difference electron density map. All nonhydrogen atoms were refined anisotropically. The final refinement converged at $R_{1}=$ $0.0404, w_{2}=0.0887$ ([I>2sigma (I)]). Table 5.23 gives the crystal data of (HPAA^{-})(QUIN ${ }^{+}$).

Table 5.23: Crystal data of (HPAA^{-})(QUIN $^{+}$).

Compound	$\left(\mathrm{HPAA}^{-}\right)\left(\right.$QUIN $\left.^{+}\right)$
Structural Formula	$\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{3}^{-}\right)\left(\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}\right)$
HPAA ${ }^{-}$QUIN ${ }^{+}$ratio	1:1
Molecular Mass ($\mathrm{g} \mathrm{mol}^{-1}$)	476.54
Data collection temperature (K)	173(2)
Crystal system	Orthorhombic
Space group	$P 2_{1} 2_{1} 2_{1}$
a (A)	8.4540 (17)
$b(A)$	13.900 (3)
c (${ }_{\text {A }}$)	21.579 (4)
$\alpha\left({ }^{\circ}\right)$	90.00
$\beta\left({ }^{\circ}\right)$	90.00
$Y\left({ }^{\circ}\right)$	90.00
Volume (\AA^{3})	2535.8 (9)
Z	4
D_{c}, Calculated density ($\mathrm{g} \mathrm{cm}^{-3}$)	1.248
Final R indices [$1>2$ sigma(I$)$]	$\mathrm{R}_{1}=0.0404$
	$w R_{2}=0.0887$
R indices (all data)	$\mathrm{R}_{1}=0.0533$
	$w R_{2}=0.0952$
Largest diff. peak and hole (e \AA^{-3})	0.221; -0.151

CHAPTER 5: 4-HYDROXYPHENYLACETIC ACID CO-CRYSTALS AND SALTS

The salt structure crystallizes in orthorhombic space group $P 2_{1} 2_{1} 2_{1}$ with $Z=4$. The asymmetric unit (Figure 5.6.1) consists of one ion of both compounds and the structural formula of the crystal structure is as $\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{3}{ }^{-}\right)\left(\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}\right)$. The carboxylic group of the HPAA^{-}acts as a proton donor with respect to the quinuclidine (N 1) atom of one of the QUIN ${ }^{+}$cations. The packing diagram of the salt along [100] is illustrated in Figure 5.6.5.

Figure 5.6.5: Crystal packing diagram of (HPAA^{-})($\mathbf{Q U I N}^{+}$) down [100].

The carboxylate group of the HPAA ${ }^{-}$anion is hydrogen bonded to the quinine cation via the nitrogen atom N 2 . This connection between the oxygen atom labeled O 1 in carboxylate group and the protonated nitrogen gives the ${ }^{+} \mathrm{N} 1-\mathrm{H} 1$. The oxygen atom O 2 is hydrogen bonded to the hydroxyl group $(\mathrm{O} 3-\mathrm{H} 4)$ of a HPAA^{-}anion.

In addition, two QUIN ${ }^{+}$cations are linked via the $\mathrm{O} 5-\mathrm{H} 5 \mathrm{~A} \cdots \mathrm{~N} 1$ connection. There are two chain motifs, $\mathrm{C}_{1}^{1}(7)$ between two QUIN ${ }^{+}$cations and $\mathrm{C}_{1}^{1}(9)$ linking HPAA^{-}anions. D ${ }_{3}^{3}(14)$ and $D_{3}^{3}(16)$ motifs are between two ions of each component. The hydrogen

CHAPTER 5: 4-HYDROXYPHENYLACETIC ACID CO-CRYSTALS AND SALTS

bonding parameters of the salt are given in Table 5.24 and their connectivity is shown in
Figure 5.6.6.
Table 24: Hydrogen bonding parameters of (HPAA $\left.{ }^{-}\right)\left(\mathbf{Q U I N}^{+}\right)$.

COMPOUND	$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$	$\mathrm{D} \cdots \mathrm{A}(\AA \AA)$	$\mathrm{D}-\mathrm{H}(\AA \AA)$	$\mathrm{H} \cdots \mathrm{A}(\AA)$	$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}\left({ }^{\circ}\right)$
(HPAA $\left.^{-}\right)\left(\right.$QUIN $\left.^{+}\right)$	$\mathrm{N} 2-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{a}}$	$2.656(2)$	$1.027(2)$	$1.630(2)$	$176(2)$
	O5-H5A $^{\mathrm{N}} \mathrm{N1}^{\mathrm{a}}$	$2.722(2)$	$0.965(3)$	$1.758(3)$	$178(2)$
	O3-H4 $\cdots \mathrm{O}^{\mathrm{b}}$		$2.624(2)$	$0.906(3)$	$1.720(3)$
	$175(3)$				

$a=-x+2, y+1 / 2,-z+1 / 2 ; b=x+1, y, z$

Figure 5.6.6: Hydrogen bonding in ($\left.\mathrm{HPAA}^{-}\right)\left(\mathbf{Q U I N}^{+}\right)$.

5.7 Selectivity Experiment

A selectivity experiment was performed by preparing two set of ratios. A 1: 1: 1 cocrystallization of HPAA: QUIN: QUID and a 2: 1: 1 ratio of the same compounds. In this experiment, 50/50 (v / v) of hexane/acetone and 50/50 (v / v) hexane/ethyl methyl ketone were used as solvents. Crystals were obtained after three days and were analyzed onto the DSC and a suitable crystal was chosen a single x-ray diffraction. The compound found was (HPAA ${ }^{-}$)(QUID $\left.{ }^{+}\right) \cdot \mathbf{H}_{2} \mathbf{O}$ due to the same unit cell dimensions.

CHAPTER 5: 4-HYDROXYPHENYLACETIC ACID CO-CRYSTALS AND SALTS

REFERENCES

1. Allen. F.H. Acta. Crystallogr. 2002, B58, 380-388.
2. Jian-Feng. L \& Guo-Liang. Z. Acta. Crystallogr. Sect. E. Struct. Rep. Online. 2010, 66, 01455.
3. Friščić. T \& Jones. W. Faraday. Discuss. 2007, 136, 167 - 178.
4. Adalder. T. K, Sankali. R \& Dastidar. P. Cryst. Growth Des. 2012, 12, 2533.
5. Yvon. K, Jeitschko. W \& Parthe. E. Appl. Crystallogr. 1977, 10, 73-74.
6. Spek. A. L. PLATON: A multipurpose crystallographic tool: Version 10500: e 1980-2003.
7. Macrae. C. F, Eddington. P. R, McCabe. P, Pidcock. E, Shields. G. P, Taylor. R, Towler. M. \& van de Streek. J. Mercury: visualization and analysis of crystal structures. J. Appl. Crystallogr. 2006, 39, 453-457.

CHAPTER 6: 3-CHLORO-4-HYDROXYPHENYLACETIC ACID COCRYSTALS

CHAPTER 6

3-CHLORO-4-HYDROXYPHENYL ACETIC ACID CO-CRYSTALS

A Cambridge Structural Database (CSD, version 5.34, November 2012) ${ }^{1}$ search on 3-chloro-4-hydroxyphenylacetic acid (CHPAA) shows that there are no reported structures involving this molecule.

6.1 CHPAA

Crystals of CHPAA were obtained by dissolving CHPAA in ethanol by slightly heating on a hot plate. The CHPAA asymmetric unit and thermal ellipsoid plot are shown in Figure 6.1.1 (a) and (b).

(a)

(b)

Figure 6.1.1: (a) Asymmetric unit of CHPAA and (b) Thermal ellipsoid plot of 3-chloro-4-hydroxyphenyl acetic acid at the 50% probability level indicating the atomic numbering scheme.

CHAPTER 6: 3-CHLORO-4-HYDROXYPHENYLACETIC ACID COCRYSTALS

6.1.1 Thermal Analysis

The pure CHPAA has a melting point of 379.3 K which is 6 K higher than the CHPAA crystal found in ethanol as shown in Figure 6.1.2. Table 6.1 gives the thermal analysis data of CHPAA.

Table 6.1: Thermal analysis data of CHPAA.

Compounds	DSC Endo($\mathbf{T}_{\text {onset }, \mathbf{K} \text {) }}$
CHPAA	379.3
CHPAA pure compound	373.3

Figure 6.1.2: Thermal analysis results of CHPAA (red) and pure CHPAA (blue).

CHAPTER 6: 3-CHLORO-4-HYDROXYPHENYLACETIC ACID COCRYSTALS

6.1.2 Structure Determination

The structure was solved by direct methods. Both OH hydrogens were located in the difference electron density map and refined isotropically. All other hydrogen atoms were fixed in idealized positions. All non-hydrogen atoms were refined using anisotropic thermal parameters. The refinement details of CHPAA are listed in Table 6.2.

Table 6.2: CHPAA crystal data.

Compound	CHPAA
Structural Formula	$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{3} \mathrm{Cl}$
Molecular Mass ($\mathrm{g} \mathrm{mol}^{-1}$)	186.59
Data collection temperature (K)	173(2)
Crystal system	Triclinic
Space group	P-1
a (A)	7.5147(15)
$\mathrm{b}(\mathrm{A})$	7.6302 (15)
$c(A)$	7.8110 (16)
$\alpha\left({ }^{\circ}\right)$	94.87 (3)
$\beta\left({ }^{\circ}\right)$	95.76 (3)
$\mathrm{Y}\left({ }^{\circ}\right)$	113.12 (3)
Volume (A^{3})	406.04 (14)
Z	2
D_{c}, Calculated density ($\mathrm{g} \mathrm{cm}^{-3}$)	1.526
Final R indices [$1>2$ sigma(I$)$]	$\mathrm{R}_{1}=0.0370$
	$w R_{2}=0.0819$
R indices (all data)	$\mathrm{R}_{1}=0.0527$
	$w R_{2}=0.0912$
Largest diff. peak and hole (e \AA^{-3})	0.249; -0.216

CHAPTER 6: 3-CHLORO-4-HYDROXYPHENYLACETIC ACID COCRYSTALS

The CHPAA structure was solved in the triclinic space group $P-1$. The asymmetric unit contains one CHPAA molecule as illustrated in Figure 6.1.1 (a). The packing diagram for the CHPAA structure along [001] is shown in Figure 6.1.3.

Figure 6.1.3: Crystal packing diagram of CHPAA along [001] with the hydrogen atoms removed.

The hydrogen bonding details are given in Table 6.3. The molecule has intermolecular O3-H4••Cl1 contacts. ${ }^{2-4}$ The hydroxyl group on CHPAA compound is connected to the oxygen atom labeled O 2 of another CHPAA molecule. O 2 plays the role of a bifurcated acceptor due to the fact it is hydrogen bonded to two hydrogen atoms H 1 and H 4 . The carboxylic acid moiety of CHPAA forms a ring dimer through a homosynthon with a graph set $R_{2}^{2}(8)$. A bigger ring with a graph set $R_{2}^{2}(18)$ is obtained via the hydroxyl and the carboxylic acid group (Figure 6.1.4). Chain motifs involved in the crystal structure are characterized as $C_{2}^{1}(11), C_{2}^{2}(13)$ and $C_{4}^{3}(24)$.

CHAPTER 6: 3-CHLORO-4-HYDROXYPHENYLACETIC ACID COCRYSTALS

Table 6.3: CHPAA hydrogen bonding parameters.

COMPOUND	$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$	$\mathrm{D} \cdots \mathrm{A}(\AA)$	$\mathrm{D}-\mathrm{H}(\AA \AA)$	$\mathrm{H} \cdots \mathrm{A}(\AA)$	$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}\left({ }^{\circ}\right)$
CHPAA	$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{a}}$	$2.669(2)$	$0.875(3)$	$1.797(3)$	$174(2)$
	$\mathrm{O} 3-\mathrm{H} 4 \cdots 2^{\mathrm{b}}$	$2.847(2)$	$0.841(3)$	$2.146(3)$	$141(2)$

$a=-x,-y+1,-z+2 ; b=-x,-y+2,-z+1$

Figure 6.1.4: Connectivity in CHPAA.

6.2 CHPAA and acridine (CHPAA•ACRI)

The acid: base (1:1) combination was dissolved in diethyl ether by heating the mixture on a hot plate. The solution was allowed to evaporate at room temperature and crystals were obtained after a few days.

The asymmetric unit of the co-crystal is illustrated in Figure 6.2.1.

CHAPTER 6: 3-CHLORO-4-HYDROXYPHENYLACETIC ACID COCRYSTALS

Figure 6.2.1: Asymmetric unit of CHPAA•ACRI with all the hydrogen atoms shown for numbering clarity.

6.2.1 Thermal Analysis

The melting point of the CHPAA•ACRI co-crystal is higher than both pure components as given in Table 6.4; therefore, there is an increase of the thermal stability of the cocrystal. ${ }^{5}$ The DSC curves of the acid: base combination is shown in Figure 6.2.2.

Table 6.4: Thermal analysis data of CHPAA•ACRI.

Compounds	DSC Endo ${ }_{1}\left(\mathrm{~T}_{\text {onset, }} \mathbf{K}\right.$)	DSC Endo ${ }_{\mathbf{2}}\left(\mathrm{T}_{\text {onset, }} \mathbf{K}\right.$)
Acridine	363.5	375.8
CHPAA	-	379.3
CHPAA•ACRI	-	402.3

CHAPTER 6: 3-CHLORO-4-HYDROXYPHENYLACETIC ACID COCRYSTALS

Figure 6.2.2: DSC curves of CHPAA•ACRI (red), CHPAA (blue) and acridine (green).

6.2.2 IR Spectroscopy

The CHPAA•ACRI IR spectrum as illustrated in Figure 6.2.3. There is confirmation of the formation of a new compound due to the new band at $3110 \mathrm{~cm}^{-1}$ indicating hydrogen bonded OH stretch mode. The peak at 1708 and $1613 \mathrm{~cm}^{-1}$ in the co-crystal spectrum can be attributed to the $\mathrm{C}=\mathrm{O}$ stretch. IR results are listed in Table 6.5.

CHAPTER 6: 3-CHLORO-4-HYDROXYPHENYLACETIC ACID COCRYSTALS

Table 6.5: IR positions and assignments for the peaks in CHPAA, CHPAA•ACRI and ACRI.

CHPAA	CHPAA•ACRI	ACRI	Proposed assignment
3449,3103	3110	-	OH stretch
2923,2749	2919	3051	Aromatic ring stretch
1873	1870	2285,1815	Overtone or combination bands
1703,1614	1708,1613	-	C=O
$1577,1500,1423$	$1563,1518,1464$, 1423	$1617,1461,1437$	C=C stretch
1295,1257	1293,1247	-	C-O stretch

Figure 6.2.3: IR spectrum of (a) Acridine, (b) CHPAA and (c) CHPAA•ACRI.

CHAPTER 6: 3-CHLORO-4-HYDROXYPHENYLACETIC ACID COCRYSTALS

6.2.3 Powder X-ray Diffraction

The neat grinding experiment was unsuccessful; its PXRD pattern (Figure 6.2.4) did not match the pattern of the co-crystal. The slurry conversion product pattern performed in diethyl ether did not match both the physical mixture and the calculated pattern obtained from LAZYPULVERIX. ${ }^{6}$ The PXRD pattern contained some peaks found in the physical mixture.

Figure 6.2.4: PXRD patterns of CHPAA•ACRI (red), ground product (green), physical mixture (purple) and slurry (blue).

6.2.4 Structure Determination

The crystal that was used for the data collection had approximate dimensions of 0.07 x $0.20 \times 0.39 \mathrm{~mm}$. The structure was solved using direct methods and all the hydrogen

CHAPTER 6: 3-CHLORO-4-HYDROXYPHENYLACETIC ACID COCRYSTALS

atoms were found in the difference electron density map. The crystal data of the structure is given in Table 6.6.

Table 6.6: CHPAA•ACRI crystal data.

Compound	CHPAA•ACRI
Structural Formula	$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{3} \mathrm{Cl} \cdot \mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~N}$
CHPAA:ACRI ratio	1:1
Molecular Mass ($\mathrm{g} \mathrm{mol}^{-1}$)	365.81
Data collection temperature (K)	173(2)
Crystal system	Triclinic
Space group	$P-1$
a (A)	7.3891(5)
b (A$)$	8.5830 (6)
$c(A)$	14.256 (9)
$\alpha\left({ }^{\circ}\right)$	72.730 (2)
$\beta\left({ }^{\circ}\right)$	87.9130 (10)
$Y\left({ }^{\circ}\right)$	81.0200 (10)
Volume (\AA^{3})	852.71 (10)
Z	2
D_{c}, Calculated density $\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.425
Final R indices [$1>2$ sigma(I$)$]	$\mathrm{R}_{1}=0.0377$
	$w R_{2}=0.0922$
R indices (all data)	$\mathrm{R}_{1}=0.0509$
	$w R_{2}=0.0994$
Largest diff. peak and hole (e \AA^{-3})	0.282; -0.243

The assignment of $P-1$ as space group results from successful solution of the structure with $Z=2$. There are face-to-face $\pi-\pi$ stacking interactions between acridine aromatic rings with a minimum distance of 3.742 Á. The pyridine ring is planar with a C10-N11C 12 bond angle of 118.6° is 1.6° larger than those pyridine compounds ($\sim 117{ }^{\circ}$).

CHAPTER 6: 3-CHLORO-4-HYDROXYPHENYLACETIC ACID COCRYSTALS

This can be caused by the stronger interaction between (H4) and (N11) atoms in hydrogen bond. The packing diagram of the co-crystal along [010] is shown in Figure 6.2.5.

Figure 6.2.5: Crystal Packing diagram of CHPAA•ACRI with the hydrogen atoms removed down [010].

CHPAA molecules are linked by means of $\mathrm{O}-\mathrm{H} \cdots \cdot \mathrm{O}$ hydrogen bonds with $\mathrm{O} \cdots \mathrm{O}$ distance of 2.669 (2) Á. This forms a ring dimer of the carboxylic group in CHPAA with a graph set of $R_{2}^{2}(8)$ as shown in Figure 6.2.6. O-H $\cdot \bullet \mathrm{N}$ hydrogen bond between the hydroxyl group of CHPAA and the nitrogen atom on an aromatic six-membered ring in the acridine is observed with two graph sets $D_{1}^{1}(2)$ and $D_{3}^{3}(21)$. Table 6.7 gives hydrogen bonding parameters of CHPAA•ACRI.

CHAPTER 6: 3-CHLORO-4-HYDROXYPHENYLACETIC ACID COCRYSTALS

Table 6.7: CHPAA•ACRI hydrogen bonding parameters.

COMPOUND	$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$	$\mathrm{D} \cdots \mathrm{A}(\AA)$	$\mathrm{D}-\mathrm{H}(\AA \AA)$	$\mathrm{H} \cdots \mathrm{A}(\AA)$	$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}(\stackrel{0}{ })$
CHPAA•ACRI	$\mathrm{O} 3-\mathrm{H} 4 \cdots \mathrm{~N} 11^{\mathrm{a}}$	$2.718(2)$	$0.901(2)$	$1.824(2)$	$171(2)$
	$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 2^{\mathrm{b}}$	$2.669(2)$	$0.847(2)$	$1.825(2)$	$174(2)$

$a=-x,-y+2,-z+1 ; b=-x-1,-y,-z+2$

Figure 6.2.6: Hydrogen bonding in CHPAA•ACRI.

CHAPTER 6: 3-CHLORO-4-HYDROXYPHENYLACETIC ACID COCRYSTALS

REFERENCES

1. Allen. F.H. Acta. Crystallogr. 2002, B58, 380-388.
2. Otwinowski. Z \& Minor. W, Inc: Carter. W. Jr., Sweet RM (eds). Methods in enzymology macromolecular crystallography, part A, vol 276. Academic Press, New York. 1997, 307.
3. Taylor. R \& Kennard. O. J. Am. Chem. Soc. 1982, 104, 5063 - 5070.
4. Lommerse. J. P. M, Stone. A. J, Taylor. R \& Allen. F. H. J. Am. Chem. Soc. 1996, 118, 3108-3116.
5. Chang. C-H, Yang. D. S. C, Yoo. C. S, Wang. B-C, Pletcher. J, Sax. M \& Terrence. C. F. Acta. Crystallogr. B38. 1982, 2065-2067.
6. Yvon. K, Jeitschko. W \& Parthe. E. Appl. Crystallogr. 1977, 10, 73 - 74.

CHAPTER 7: HYDROXYCINNAMIC ACID CO-CRYSTALS AND SALT HYDRATES

CHAPTER 7

HYDROXYCINNAMIC ACID CO-CRYSTALS AND SALT HYDRATES

Caffeic acid (CFA), p-coumaric acid (pCA) and trans-ferulic acid (tFER) are the nutraceutical compounds studied in this chapter.

A search of the Cambridge Structural Database ${ }^{1}$ (CSD, version 5.34, November 2012) revealed only one co-crystal structure of caffeic acid (CFA) with nicotinamide. ${ }^{2}$

However, p-coumaric acid ($p \mathrm{CA}$) has formed a co-crystal with caffeine ${ }^{3}$, two co-crystals with theophylline ${ }^{3}$ and a co-crystal hydrate with caffeine ${ }^{3}$ according to the CSD.

Trans-ferulic acid (tFER) on another hand formed co-crystals with 3, 5-dinitrobenzoic acid and isonicotinamide, ${ }^{4}$ 2, 3, 5, 6-tetramethylpyrazine, ${ }^{5}$ a hemihydrate with baclofen, ${ }^{6}$ and a monohydrate with isonicotinamide and nicotinamide. ${ }^{2}$

7.1 Caffeic acid with Isonicotinamide

The co-crystal was obtained by dissolving a $1: 1$ ratio of caffeic acid and isonicotinamide in acetone by slightly heating the solution on a hot plate. Block-like crystals were obtained the same day having a 1:3 ratio (CFA•3INM). The asymmetric unit of the CFA-3INM is illustrated in Figure 7.1.1.

CHAPTER 7: HYDROXYCINNAMIC ACID CO-CRYSTALS AND SALT HYDRATES

Figure 7.1.1: Asymmetric unit of CFA•3INM with all the hydrogen atoms shown.

7.1.1 Thermal Analysis

The thermal analysis data is listed in Table 7.1 and the resultant DSC curves are shown in Figure 7.1.2. The melting point of the CFA•3INM co-crystal is lower than both starter materials; therefore there is a decrease in thermal stability of the co-crystal.

Table 7.1: Thermal analysis data of CFA•3INM.

Compounds	DSC Endo $\mathbf{(T}_{\text {onset }}$,K)	DSC Endo $_{\mathbf{2}}\left(\mathbf{T}_{\text {onset, }}\right.$ K)
Isonicotinamide	382.1	428.4
CFA	-	490.2
CFA•3INM	-	420.3

CHAPTER 7: HYDROXYCINNAMIC ACID CO-CRYSTALS AND SALT HYDRATES

Figure 7.1.2: DSC curves of CFA•3INM (red), isonicotinamide (green) and caffeic acid (blue).

7.1.2 Structure Determination

Single crystal X-ray diffraction measurements of the 1:3 co-crystal of caffeic acid and isonicotinamide were refined using SHELXL-97. ${ }^{7}$ Direct methods were used for primary atom site locations and secondary atom site locations were found from the difference electron density map. The crystal data is given in Table 7.2.

CHAPTER 7: HYDROXYCINNAMIC ACID CO-CRYSTALS AND SALT HYDRATES

Table 7.2: Crystal data of the 1:3 co-crystal of caffeic acid and isonicotinamide (CFA•3INM).

Compound	CFA-3INM
Structural Formula	$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4} \bullet 3 \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}$
CFA:INM ratio	1:3
Molecular Mass ($\mathrm{g} \mathrm{mol}^{-1}$)	546.54
Data collection temperature (K)	173(2)
Crystal system	Triclinic
Space group	$P-1$
a (A)	8.8282 (18)
b (A)	9.6946 (19)
$c(A)$	15.702 (3)
$\alpha\left({ }^{\circ}\right)$	78.60 (3)
$\beta\left({ }^{\circ}\right)$	74.27 (3)
$Y\left({ }^{\circ}\right)$	74.27 (3)
Volume (\AA^{3})	1233.9 (4)
Z	2
D_{c}, Calculated density ($\mathrm{g} \mathrm{cm}^{-3}$)	1.471
Final R indices [l>2sigma(l)]	$\mathrm{R}_{1}=0.0481$
	$w R_{2}=0.1400$
R indices (all data)	$\mathrm{R}_{1}=0.0609$
	$w R_{2}=0.1708$
Largest diff. peak and hole (e \AA^{-3})	0.415; -0.403

The 1: 3 molar ratio co-crystal crystallized in the triclinic system, space group P-1 with four molecules in the asymmetric unit. The packing diagrams are represented in Figure 7.1.3 (a) and (b).

CHAPTER 7: HYDROXYCINNAMIC ACID CO-CRYSTALS AND SALT HYDRATES

(a)

(b)

Figure 7.1.3: Packing diagram of CFA•3INM (a) down [100] and (b) down [010].
Two INM molecules form a hydrogen bonded ring, $\mathrm{N}_{1}=\mathrm{R}_{2}^{2}$ (8). The phenolic OH groups of caffeic acid form weak hydrogen bonds, [N16A-H5G••OO = 3.349 (2) Å, N16A-H5G-

CHAPTER 7: HYDROXYCINNAMIC ACID CO-CRYSTALS AND SALT HYDRATES

$\mathrm{O} 3=145(0)^{\circ}$ and N16A-H5G $\cdots \mathrm{O} 4=3.162$ (2) Å, N16A-H5G-O4 = 154 (0) ${ }^{\circ}$] with the nitrogen atom of the second INM molecule. The carboxylic acid OH group forms strong hydrogen bonds with the nitrogen atom of the second INM molecule, [O1-H1 $\cdots \mathrm{N9B}=$ 2.498 (2) \AA and $\mathrm{O} 1-\mathrm{H} 1-\mathrm{N} 9 \mathrm{~B}=175$ (3) ${ }^{\circ}$]. The carboxylic acid carbonyl group forms moderate hydrogen bonds, [N16B-H12G $\cdots \mathrm{O} 2=2.880$ (2) \AA and N16B-H12G-O2 $=171$ (2) ${ }^{\circ}$] with the nitrogen atom of the third INM molecule.

The connectivity of N16B-H11G••O7B in the crystal structure repeats itself and forms a ring. There is a strong hydrogen bonding formation between one of the phenolic OH groups of the caffeic acid, $\left[\mathrm{O} 4-\mathrm{H} 5 \cdots \mathrm{O}=2.385\right.$ (2) \AA and $\mathrm{O} 4-\mathrm{H} 5-\mathrm{O} 7=176$ (3) $\left.{ }^{\circ}\right]$ and the carbonyl group of the first INM molecule. The other phenolic OH group of the CFA is strongly hydrogen bonded to the nitrogen atom in the second INM molecule, [O3$\mathrm{H} 4 \cdots$ N9A $=2.455$ (2) \AA and $\mathrm{O} 3-\mathrm{H} 4-\mathrm{N} 9 \mathrm{~A}=159$ (2) ${ }^{\circ}$]. The hydrogen bonding in the crystal structure can be described using several graph sets. These sets ${ }^{8}$ are complex because of the three INM molecules in the asymmetric unit and are listed as:

- $N_{1}=D_{1}^{1}(2)$.
- $N_{1}=R_{2}^{2}(8)$.
- $N_{2}=D_{2}^{2}(6), D_{2}^{2}(8), D_{2}^{2}(9), D_{2}^{2}(11), D_{2}^{2}(12), D_{2}^{2}(13), D_{3}^{3}(9)$ and $D_{3}^{3}(15)$.
- $\mathrm{N}_{2}=\mathrm{R}_{4}^{4}(22)$.

The hydrogen bonding details of the co-crystal are listed in Table 7.3 and the connectivity of CFA•3INM down [100] and down [010] is illustrated in Figure 7.1.4 (a) and (b) respectively.

CHAPTER 7: HYDROXYCINNAMIC ACID CO-CRYSTALS AND SALT HYDRATES

Table 7.3: Hydrogen bonding parameters in CFA•3INM.

COMPOUND	D-H...A	D $\cdots \mathrm{A}(\mathrm{A}$)	D-H (Å)	H $\cdots \mathrm{A}(\mathrm{A})$	D-H $\cdots \mathrm{A}\left({ }^{\circ}\right.$)
CFA-3INM	N16A-H5G‥O4	3.162 (2)	0.886 (1)	2.342 (1)	154 (1)
	N16A-H5G‥O3	3.349 (2)	0.886 (1)	2.585 (1)	145 (1)
	N16B-H11G ${ }^{\text {O O }}$ OB ${ }^{\text {a }}$	2.782 (2)	0.835 (3)	1.952 (3)	172 (3)
	N16A-H6G \cdots N9 ${ }^{\text {b }}$	2.793 (3)	0.874 (3)	1.931 (3)	169 (2)
	N16B-H12G $\cdots{ }^{\text {O }}{ }^{\text {c }}$	2.880 (2)	0.879 (3)	2.008 (3)	171 (2)
	O3-H4 \cdots N9A ${ }^{\text {d }}$	2.455 (2)	0.872 (3)	1.622 (3)	159 (2)
	O1-H1 $\cdots \mathrm{N}^{\text {B }}{ }^{\text {e }}$	2.498 (2)	0.820 (3)	1.680 (3)	175 (3)
	O4-H5 \cdots O7	2.385 (2)	0.842 (3)	1.545 (3)	176 (3)
	N16-H16A \cdots O7A †	2.557 (2)	0.837 (3)	1.781 (3)	153 (3)

$a=-x+1,-y+1,-z+1 ; b=x-1, y+1, z ; c=-x,-y,-z+1 ; d=x-1, y, z ; e=x, y-2, z ;=-x+1,-y+1,-z$

(a)

CHAPTER 7: HYDROXYCINNAMIC ACID CO-CRYSTALS AND SALT HYDRATES

(b)

Figure 7.1.4: Connectivity in CFA•3INM (a) down [100] and (b) down [010].

7.2 -Coumaric acid and nicotinamide (pCA•NAM)

A 1: 1 molar ratio of both components was dissolved in acetone by heating the mixture on a hot plate. The solution was allowed to evaporate and crystals were obtained after four days. Similar crystals were obtained upon dissolution of the same molar ratio in ethyl methyl ketone. The asymmetric unit of p CA•NAM is shown in Figure 7.2.1. This structuture has already been reported by McClurg et al. ${ }^{9}$

CHAPTER 7: HYDROXYCINNAMIC ACID CO-CRYSTALS AND SALT HYDRATES

Figure 7.2.1: pCA•NAM asymmetric unit with all the hydrogen atoms shown for numbering clarity.

7.2.1 Thermal Analysis

The pCA•NAM co-crystal has a higher melting point than nicotinamide and lower than p-coumaric acid. The melting points of the co-crystal, nicotinamide and p-coumaric acid are listed in Table 7.4. The DSC curves of the individual components and the obtained co-crystal are shown in Figure 7.2.2.

Table 7.4: Thermal analysis data of $p \mathrm{CA} \cdot \mathrm{NAM}$.

Compounds	DSC Endo $_{\mathbf{1}}\left(\mathbf{T}_{\text {onset, }} \mathbf{K}\right.$)
Nicotinamide	401.6
p-coumaric acid	493.2
pCA•NAM	432.7

CHAPTER 7: HYDROXYCINNAMIC ACID CO-CRYSTALS AND SALT HYDRATES

Figure 7.2.2: DSC curves of p CA•NAM (red), nicotinamide (green) and p-coumaric acid (blue).

7.2.2 Structure Determination

The structure was solved by direct methods without incident. Unless otherwise noted, coordinates of all -OH and -NH hydrogens were refined. All other hydrogens were riding in idealized positions. Unless otherwise noted, all non-hydrogen atoms were refined using anisotropic thermal parameters. Refinement details for the co-crystal are listed in Table 7.5.

CHAPTER 7: HYDROXYCINNAMIC ACID CO-CRYSTALS AND SALT HYDRATES

Table 7.5: Crystal data of p CA•NAM.

Compound	pCA•NAM
Structural Formula	$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{3} \cdot \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}$
pCA: NAM ratio	1:1
Molecular Mass ($\mathrm{g} \mathrm{mol}^{-1}$)	286.29
Data collection temperature (K)	296 (2)
Crystal system	Monoclinic
Space group	$P 2_{1} / \mathrm{C}$
a (A)	15.6003 (17)
$\mathrm{b}(\mathrm{A})$	6.3227 (7)
$c(A)$	14.2456 (15)
$\alpha{ }^{(}{ }^{\circ}$	90.00
$\beta\left({ }^{\circ}\right)$	106.309 (3)
$Y\left({ }^{\circ}\right)$	90.00
Volume (${ }^{3}$)	1348.6 (3)
Z	4
D_{c}, Calculated density ($\mathrm{g} \mathrm{cm}^{-3}$)	1.410
Final R indices [l>2sigma(I)]	$\mathrm{R}_{1}=0.0392$
	$w R_{2}=0.0942$
R indices (all data)	$\mathrm{R}_{1}=0.0525$
	$w R_{2}=0.1024$
Largest diff. peak and hole (e ${ }^{-3}$)	0.268; -0.223

Unit cell parameter of $\boldsymbol{p C A \cdot N A M}$ were previously reported. ${ }^{9}$
The co-crystal crystallized in a 1: 1 molar ratio, monoclinic space group $P 2_{1} / c$ with $Z=4$.
The asymmetric unit contains one molecule of each component (Figure 7.2.1). The packing diagram of $\mathbf{p C A} \cdot \mathbf{N A M}$ running along [010] is shown in Figure 7.2.3.

CHAPTER 7: HYDROXYCINNAMIC ACID CO-CRYSTALS AND SALT HYDRATES

Figure 7.2.3: Crystal packing diagram of pCA•NAM down [010].

In the crystal structure, the hydrogen bond diagram is generated as shown in Figure 7.2.4 forming two chains $\mathrm{C}_{2}^{2}(6)$ and $\mathrm{C}_{2}^{2}(16)$. The $\mathrm{C}_{2}^{2}(6)$ motif is through $\mathrm{O}_{1}-\mathrm{H}_{1} \cdots \cdots \mathrm{O}_{5}$ and along the carbonyl, nitrogen and the hydrogen atom attached to it in the nicotinamide molecule.

The second chain C_{2}^{2} (16) is along the $\mathrm{OH} \cdots \cdot \mathrm{N}$ and $\mathrm{NH} \cdots \mathrm{O}$ hydrogen bonds respectively. The phenol moiety of p-coumaric acid forms an $\mathrm{O}-\mathrm{H} \cdots \cdots \mathrm{N}(\mathrm{O} 3-\mathrm{N} 9,2.704$ (2) \AA) hydrogen bond with the nitrogen atom of nicotinamide, while the hydroxyl moiety forms an $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}(\mathrm{O} 1-\mathrm{O} 5,2.544$ (1) \AA) hydrogen bond with the carbonyl group of the nicotinamide molecule and the carboxylic acid group forms an $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}(\mathrm{N} 16-\mathrm{O} 2,2.910$ (2) \AA) hydrogen bond with the nitrogen atom of the nicotinamide.

This connectivity between the carboxylic acid, hydroxyl moieties of p-coumaric acid, the carbonyl group and the nitrogen atom including one of the hydrogen atom attached to it in the nicotinamide molecule form a ring motif $R_{2}^{2}(8)$.

CHAPTER 7: HYDROXYCINNAMIC ACID CO-CRYSTALS AND SALT HYDRATES

The planar assembly similar to the hydrogen bonding network observed in a reported cocrystal of nicotinamide and 4-hydroxybenzoic acid ${ }^{10}$ gives rise to alternating wavelike, one-dimensional strands (Figure 7.2.5). Table 7.6 summarises the hydrogen bonding parameters in $\mathbf{p C A} \cdot \mathbf{N A M}$.

Table 7.6: Hydrogen bonding parameters in pCA•NAM.

COMPOUND	D-H \cdots A	D $\cdots \mathrm{A}$ (${ }^{\text {A }}$)	D-H (Å)	H $\cdots \mathrm{A}(\mathrm{A})$	D-H $\cdots \mathrm{A}\left({ }^{\circ}\right)$
pCA•NAM	N16-H16A $\cdots \mathrm{O}^{\text {a }}$	2.910 (2)	0.917 (2)	2.006 (2)	168 (2)
	N16-H16B $\cdots{ }^{\text {O }}{ }^{\text {b }}$	2.957 (2)	0.878 (2)	2.104 (2)	164 (2)
	O3-H4 $\cdots{ }^{\text {N }}{ }^{\text {c }}$	2.704 (2)	0.913 (2)	1.824 (2)	161 (2)
	$\mathrm{O} 1-\mathrm{H} 1 \cdots 5^{\text {a }}$	2.544 (1)	0.938 (2)	1.623 (2)	166 (2)

Figure 7.2.4: Hydrogen bonding in $\mathbf{p C A} \cdot \mathbf{N A M}$.

CHAPTER 7: HYDROXYCINNAMIC ACID CO-CRYSTALS AND SALT HYDRATES

Figure 7.2.5: pCA•NAM two one-dimensional strands (blue and green) cross-linked by a series of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (dashed-lines).

7.3 p-Coumaric acid and Quinine $\left(p \mathrm{CA}^{-}\right)\left(\mathrm{QUIN}^{+}\right) \cdot p \mathrm{CA} \cdot \mathrm{MeOH} \cdot \mathrm{H}_{2} \mathrm{O}$

The hybrid salt-co-crystal solvate was obtained by dissolving a $1: 1$ molar ratio of p coumaric acid and quinine in a $50 / 50(\mathrm{v} / \mathrm{v})$ solution of methanol/water by heating the mixture on to a hot plate. The solution was allowed to evaporate at room temperature and after one week crystals were obtained. For the quinine and p-coumaric acid system the calculated $\Delta \mathrm{pKa} \approx 4$, thus salt formation was expected.
The asymmetric unit of the compound is illustrated in Figure 7.3.1 and contains one pcoumarate anion, one quininium cation, one neutral p-coumaric acid molecule, methanol and water. This structure has been published by Jacobs et al. ${ }^{11}$

CHAPTER 7: HYDROXYCINNAMIC ACID CO-CRYSTALS AND SALT HYDRATES

Figure 7.3.1: Asymmetric unit of $\left(p \mathrm{CA}^{-}\right)\left(\mathrm{QUIN}^{+}\right) \cdot p \mathrm{CA} \cdot \mathrm{MeOH} \cdot \mathrm{H}_{2} \mathrm{O}$ with all the hydrogen atoms for numbering clarity.

7.3.1 Thermal Analysis

The first endotherm in the DSC curve and the first mass loss in the TG curve that occurs at 373.4 K are assigned to the loss of both water and methanol molecules (methanol mass loss of 4.40% and 2.60% for water). The second mass loss and endotherm in the DSC and TG curves respectively can be correlated to the melt. The overall experimental mass loss obtained (both methanol and water) is close to the theoretical value as listed in Table 7.7. Thermal analysis curves are shown in Figure

7.3.2.

CHAPTER 7: HYDROXYCINNAMIC ACID CO-CRYSTALS AND SALT HYDRATES

Table 7.7: Thermal analysis data of ($p \mathrm{CA}^{-}$)(QUIN $\left.{ }^{+}\right) \cdot p \mathrm{CA} \cdot \mathrm{MeOH} \cdot \mathrm{H}_{2} \mathrm{O}$.

Compounds	pCA	$\left(p \mathrm{CA}^{-}\right)\left(\right.$QUIN $\left.{ }^{+}\right) \cdot p \mathrm{CA} \cdot \mathrm{MeOH} \cdot \mathrm{H}_{2} \mathrm{O}$	QUIN
$\begin{aligned} & \text { DSC } \\ & \text { Endo }_{1}\left(\mathrm{~T}_{\text {onset }} \mathrm{K}\right) \end{aligned}$	-	373.4	-
$\begin{aligned} & \text { DSC } \\ & \text { Endo }_{2}\left(\mathrm{~T}_{\text {onset }}, \mathrm{K}\right) \end{aligned}$	493.2	420.6	449.8
TG calculated \% mass loss	-	7.1	-
TG experimental \% mass loss	-	7.0	-
pCA$:$ QUIN ${ }^{+}$: pCA: MeOH: $\mathrm{H}_{2} \mathrm{O}$		1:1:1:1:1	

Figure 7.3.2: Thermal analysis curves of $\left(p \mathrm{CA}^{-}\right)\left(\mathrm{QUIN}^{+}\right) \cdot p \mathrm{CA} \cdot \mathrm{MeOH} \cdot \mathrm{H}_{2} \mathrm{O}$ (red) TG and (blue) DSC.

CHAPTER 7: HYDROXYCINNAMIC ACID CO-CRYSTALS AND SALT HYDRATES

7.3.2 Hot Stage Microscopy

Figure 7.3.3 shows the HSM photographs of the hybrid salt-co-crystal and revealed its thermal stability. At 373 K (Figure 7.3.3 c) the rod-shaped crystals are still intact and the first visible indication of desolvation is at 426 K (Figure 7.3.3 d) which continues until 433 K (Figure 7.3.3 f). The crystal melt at 435 K (Figure 7.3.3 g).

Figure 7.3.3: HSM photographs of (pCA $\left.{ }^{-}\right)\left(\mathbf{Q U I N}^{+}\right) \cdot p \mathbf{C A} \cdot \mathbf{M e O H} \cdot \mathrm{H}_{2} \mathbf{O}$: a $298 \mathrm{~K}, \mathbf{b} 347 \mathrm{~K}$, c $373 \mathrm{~K}, \mathbf{d} 426 \mathrm{~K}, \mathbf{e} 429 \mathrm{~K}, \mathrm{f} 433 \mathrm{~K}, \mathbf{g} 435 \mathrm{~K}$ and h 438 K.

CHAPTER 7: HYDROXYCINNAMIC ACID CO-CRYSTALS AND SALT HYDRATES

7.3.3 Powder X-ray Diffraction

A 2: 1 molar ratio of p-coumaric acid and quinine was ground for 30 min . The ground product PXRD pattern contains some of the peaks found in the physical mixture.

The PXRD pattern of the slurry conversion performed in 50/50 (v / v) methanol/water did not match that of the physical mixture, the calculated pattern ${ }^{12}$ or the grinding experiment. Attempts at preparing single crystals of the powder obtained from the slurry experiment were unsuccessful and thus its identity is unknown. Figure 7.3 .4 shows the individual PXRD patterns.

Figure 7.3.4: PXRD pattern of $\left(p \mathrm{CA}^{-}\right)\left(\mathrm{QUIN}^{+}\right) \cdot p \mathrm{CA} \cdot \mathrm{MeOH} \cdot \mathrm{H}_{2} \mathrm{O}$ (red), slurry (green), ground product (purple) and physical mixture (blue).

CHAPTER 7: HYDROXYCINNAMIC ACID CO-CRYSTALS AND SALT HYDRATES

7.3.4 Non-isothermal Kinetics

Non-isothermal kinetics was used to study the desolvation of $\left(p \mathrm{CA}^{-}\right)\left(\mathrm{QUIN}^{+}\right) \cdot p \mathrm{CA} \cdot \mathrm{MeOH} \cdot \mathrm{H}_{2} \mathrm{O}$ using the Ozawa, ${ }^{13}$ Flynn and Wall ${ }^{14}$ model free method. TG mass loss curves at heating rates of 1,2 and $6 \mathrm{~K} / \mathrm{min}$ were analysed. The TG experiments at selected scan rates gave a series of $-\log \beta$ vs $1 / \mathrm{T}\left(\mathrm{K}^{-1}\right)$ curves, where β is the heating rate as shown in Figure 7.3.5. The series gave an activation energy range of $210-272 \mathrm{~kJ} \mathrm{~mol}^{-1}$, calculated from the slopes of the linear graphs. The high activation energy is due to the extensive hydrogen bonding linking methanol molecules to both p-CA and $\mathrm{p}-\mathrm{CA}^{-11}{ }^{11}$

Figure 7.3.5: Plots of $-\log \beta$ versus $1 / \mathrm{T}$.

7.3.5 Structure Determination

A suitable single crystal was chosen for X-ray structure analysis which resulted in successful determination of the structure. The $\mathrm{C}-\mathrm{O}$ distances of the carboxylate moiety have nearly equal bond lengths (C9AA-O1A $=1.263 \AA$ and C9AA-O2A $=1.268 \AA$). The

CHAPTER 7: HYDROXYCINNAMIC ACID CO-CRYSTALS AND SALT HYDRATES

structure was successfully refined to $R_{1}=0.0454$ with $w R_{2}=0.1002$ (final R indices). Crystal data is given in Table 7.8.

Table 7.8: Crystal data of $\left(p \mathrm{CA}^{-}\right)\left(\mathrm{QUIN}^{+}\right) \cdot p \mathrm{CA} \cdot \mathrm{MeOH} \cdot \mathrm{H}_{2} \mathrm{O}$.

Compound	$\left(p \mathrm{CA}^{-}\right)\left(\mathrm{QUIN}{ }^{+}\right) \cdot p \mathrm{CA} \cdot \mathrm{MeOH} \cdot \mathrm{H}_{2} \mathrm{O}$
Structural Formula	$\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{O}_{3}^{-}\right)\left(\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}^{+}\right) \bullet \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{3} \bullet$
	$\mathrm{CH}_{4} \mathrm{O} \cdot \mathrm{H}_{2} \mathrm{O}$
$p \mathrm{CA}^{-}$:QUIN ${ }^{+}$: pCA : $\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}$ ratio	1: 1: 1: 1: 1
Molecular Mass ($\mathrm{g} \mathrm{mol}^{-1}$)	702.80
Data collection temperature (K)	173 (2)
Crystal system	Monoclinic
Space group	P2 ${ }_{1}$
a (A)	6.4061 (4)
$b(A)$	26.232 (2)
$c(A)$	10.9639 (8)
$\alpha\left({ }^{\circ}\right)$	90.00
$\beta\left({ }^{\circ}\right)$	103.707 (2)
$Y\left({ }^{\circ}\right)$	90.00
Volume (A^{3})	1790.0 (2)
Z	2
D_{c}, Calculated density ($\mathrm{g} \mathrm{cm}^{-3}$)	1.304
Final R indices [l>2sigma(I)]	$\mathrm{R}_{1}=0.0454$
	$w R_{2}=0.1002$
R indices (all data)	$\mathrm{R}_{1}=0.0595$
	$w R_{2}=0.1074$
Largest diff. peak and hole (e \AA^{-3})	0.172;-0.186

CHAPTER 7: HYDROXYCINNAMIC ACID CO-CRYSTALS AND SALT HYDRATES

The compound crystallized in the monoclinic space group $P 2_{1}$ with $Z=2$. The asymmetric unit contains one quininium cation (QUIN ${ }^{+}$), one p-coumarate anion ($p-\mathrm{CA}^{-}$), one molecule of $p-C A$, one water molecule and one methanol molecule.

The crystal packing diagram is illustrated in Figure 7.3.6 (a). The calculated void volume contact surface at a probe radius of $1.4 \AA$ and a grid spacing of $0.7 \AA$ was found to be $46.81 \AA^{3}$ with a unit cell volume percentage of 2.6% using Mercury ${ }^{15}$ software as shown in Figure 7.3.6 (b).

(a)

CHAPTER 7: HYDROXYCINNAMIC ACID CO-CRYSTALS AND SALT HYDRATES

(b)

Figure 7.3.6: (a) Packing diagram of ($p \mathrm{CA}^{-}$)(QUIN $\left.{ }^{+}\right) \cdot p \mathrm{CA} \cdot \mathrm{MeOH} \cdot \mathrm{H}_{2} \mathrm{O}$ down [100] and (b) Cavities in which methanol and water molecules are located running down [100].

One p-CA anion and one neutral p-CA molecule are linked via methanol and water bridges to form a ring-like hydrogen bonded network which can be described in graph set notation ${ }^{8}$ as R_{4}^{4} (24).
The hybrid salt-co-crystal solvate also has a connection between two p-CA anions, one QUIN ${ }^{+}$cation and a water molecule to form a smaller hydrogen bonded ring of the type $R_{4}^{2}(11)$ as shown in Figure 7.3.7. ${ }^{14}$

The tertiary amine is protonated forming a charge assisted hydrogen bond $\left(\mathrm{N}^{+} \cdots \mathrm{OH}^{-}\right)$to the $\mathrm{p}-\mathrm{CA}$ anion and the quinoline nitrogen forms a hydrogen bond ($\mathrm{N} \cdots \mathrm{OH}$) to the neutral p-CA molecule. The hydrogen bonding parameters are listed in Table 7.9 and the hydrogen bond diagram is illustrated in Figure 7.3.8.

CHAPTER 7: HYDROXYCINNAMIC ACID CO-CRYSTALS AND SALT HYDRATES

Figure 7.3.7: Hydrogen bonded rings in the hybrid salt-cocrystal solvate with dashed lines indicating the R_{4}^{2} (11) and the R_{4}^{4} (24) ring motifs.

Table 7.9: Hydrogen bonding parameters in $\left(p \mathrm{CA}^{-}\right)\left(\mathbf{Q U I N}{ }^{+}\right) \cdot p \mathrm{CA} \cdot \mathrm{MeOH} \cdot \mathrm{H}_{2} \mathbf{O}$.

COMPOUND	D-H \cdots A	D $\cdots \mathrm{A}(\mathrm{Å})$	D-H (Å)	H $\cdots \mathrm{A}(\mathrm{Å})$	$\begin{aligned} & \text { D- } \\ & \text { H } \cdots \mathrm{A} \\ & (\underline{(0}) \\ & \hline \end{aligned}$
$\left(p \mathrm{CA}^{-}\right)\left(\mathrm{QUIN}^{+}\right) \cdot p \mathrm{CA} \cdot$ $\mathrm{MeOH} \cdot \mathrm{H}_{2} \mathrm{O}$	O5-H5A \cdots O1A	2.645 (2)	0.916 (3)	1.731 (3)	176 (3)
	O3-H4‥O6 ${ }^{\text {a }}$	2.682 (3)	0.896 (3)	1.808 (3)	164 (2)
	$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{~N} 1^{\text {b }}$	2.630 (2)	0.948 (4)	1.702 (4)	165 (3)
	O3A-H4A \cdots O $7^{\text {b }}$	2.662 (3)	0.872 (3)	1.793 (3)	174 (3)
	N2-H1A \cdots O2A ${ }^{\text {c }}$	2.707 (2)	0.891 (2)	1.830 (2)	168 (2)
	O6-H6BB $\cdots{ }^{\text {O }}{ }^{\text {d }}$	2.734 (2)	0.816 (3)	1.927 (3)	170 (3)
	O6-H6AA \cdots O1A ${ }^{\text {c }}$	2.776 (2)	1.012 (4)	1.781 (4)	167 (4)
	O7-H7B $\cdots{ }^{\text {O }}{ }^{\text {e }}$	2.712 (3)	0.758 (4)	1.956 (4)	175 (4)

CHAPTER 7: HYDROXYCINNAMIC ACID CO-CRYSTALS AND SALT HYDRATES

Figure 7.3.8: Packing diagram of ($p \mathrm{CA}^{-}$) $\left(\mathrm{QUIN}^{+}\right) \cdot p \mathrm{CA} \cdot \mathrm{MeOH} \cdot \mathrm{H}_{2} \mathrm{O}$ along [100] indicating the hydrogen bonded ribbons running along [010].

$7.4 t$-Ferulic acid and isonicotinamide (tFER•2INM)

A 1:1 molar ratio of trans-ferulic acid and isonicotinamide was dissolved in ethanol and the solution was slightly heated on a hot plate. The solution was allowed to evaporate at room temperature and crystals were obtained the same day with a ratio of 1:2 (one trans-ferulic acid molecule and two isonicotinamide molecules). The asymmetric unit of tFER•2INM is illustrated in Figure 7.4.1.

CHAPTER 7: HYDROXYCINNAMIC ACID CO-CRYSTALS AND SALT HYDRATES

Figure 7.4.1: Asymmetric unit of $t F E R \cdot 2 I N M$.

7.4.1 Thermal Analysis

The tFER-2INM co-crystal has a melting point that is lower than both trans-ferulic acid and isonicotinamide as listed in Table 7.10. The DSC curves of the individual components are shown in Figure 7.4.2.

Table 7.10: Thermal analysis data of $t F E R \cdot 2 I N M$.

Compounds	DSC Endo ${ }_{1}\left(\mathrm{~T}_{\text {onset, }} \mathbf{K}\right.$)	DSC Endo ${ }_{\mathbf{2}}\left(\mathrm{T}_{\text {onset, }} \mathbf{K}\right)$
Isonicotinamide	382.1	428.4
tFER	-	444.7
tFER•2INM	-	422.4

CHAPTER 7: HYDROXYCINNAMIC ACID CO-CRYSTALS AND SALT HYDRATES

Figure 7.4.2: DSC curves of t FER-2INM (red), INM (green) and FER (blue).

7.4.2 Structure Determination

The structure was solved using direct methods and the refinement was completed by full-matrix least squares with SHELXL-97. ${ }^{7}$ All non-hydrogen atoms were found in the difference electron density map and refined anisotropically. All of the hydrogens except the hydroxyl hydrogens and the hydrogen attached to the nitrogen were placed with geometric constraints and allowed to refine isotropically. The crystal data is given in Table 7.11.

CHAPTER 7: HYDROXYCINNAMIC ACID CO-CRYSTALS AND SALT HYDRATES

Table 7.11: Crystal data of tFER-2INM.

Compound	tFER•2INM
Structural Formula	$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{4} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}$
tFER: INM ratio	1:2
Molecular Mass ($\mathrm{g} \mathrm{mol}^{-1}$)	438.44
Data collection temperature (K)	173 (2)
Crystal system	Triclinic
Space group	$P-1$
a (A)	8.8446 (5)
b (A)	9.4888 (6)
$c(A)$	13.3992 (8)
$\alpha\left({ }^{\circ}\right)$	98.3530 (10)
$\beta\left({ }^{\circ}\right)$	96.8250 (10)
$Y\left({ }^{\circ}\right)$	106.7480 (10)
Volume (${ }^{\text {a }}$)	1049.96 (11)
Z	2
D_{c}, Calculated density ($\mathrm{g} \mathrm{cm}^{-3}$)	1.387
Final R indices [l>2sigma(l)]	$\mathrm{R}_{1}=0.0414$
	$w R_{2}=0.0957$
R indices (all data)	$\mathrm{R}_{1}=0.0618$
	$w R_{2}=0.1088$
Largest diff. peak and hole (e \AA^{-3})	0.170; -0.229

Trans-Ferulic acid and isonicotinamide crystallised in a 1: 2 ratio in the triclinic space group $P-1$ with $Z=2$. The asymmetric unit comprises one trans-ferulic acid molecule and two isonicotinamide molecules. The packing diagram of the co-crystal down [100] is represented in Figure 7.4.3 where layers of both trans-ferulic and isonicotinamide are running along [011̄]. .

CHAPTER 7: HYDROXYCINNAMIC ACID CO-CRYSTALS AND SALT HYDRATES

Figure 7.4.3: Packing diagram of $\boldsymbol{t F E R}$ •2INM down [100].

Only the hydroxyl and carboxylic acid moieties of the trans-ferulic acid are involved in hydrogen bonding. The COOH hydroxyl moiety in trans-ferulic acid is connected to the nitrogen atom (N9) of one isonicotinamide and the carbonyl group to the hydrogen atom (H16A) of another isonicotinamide molecule.

The phenol moiety of the trans-ferulic acid is hydrogen bonded to the nitrogen atom (N9A) of the third isonicotinamide molecule. An $R_{2}^{2}(8)$ ring motif is formed between the two isonicotinamide molecules in the asymmetric unit.

The other hydrogen bonds present in the crystal structure can be described using the graph sets : $D_{1}^{1}(2), D_{2}^{2}(5), D_{2}^{2}(6), D_{2}^{2}(8), D_{2}^{2}(9), C_{2}^{2}(11), D_{2}^{2}(12)$ and D_{2}^{2} (13). Hydrogen bonding parameters are listed in Table 7.12 and Figure 7.4.4 (a) and (b) shows the hydrogen bonding involved in the co-crystal.

CHAPTER 7: HYDROXYCINNAMIC ACID CO-CRYSTALS AND SALT HYDRATES

Table 7.12: Hydrogen bonding parameters in $t F E R \cdot 2 I N M$.

COMPOUND	D-H \cdots A	D $\cdots \mathrm{A}\left({ }^{\text {(}}\right.$)	D-H (A)	H $\cdots \mathrm{A}(\mathrm{A}$)	D-H $\cdots \mathrm{A}\left({ }^{\circ}\right)$
tFER-2INM	N16-H16A \cdots O2	2.999 (2)	0.899 (2)	2.111 (2)	169 (2)
	N16-H16B \cdots O7A	2.850 (2)	0.956 (2)	1.901 (2)	171 (2)
	N16A-H5G‥O7	2.954 (2)	0.963 (2)	1.994 (2)	174 (2)
	O4-H4 \cdots N9A ${ }^{\text {a }}$	2.683 (2)	1.003 (2)	1.767 (2)	150 (2)
	N16A-H6G \cdots O4 ${ }^{\text {b }}$	3.143 (2)	0.914 (2)	2.355 (2)	144 (2)
	O1-H1 \cdots N9 ${ }^{\text {c }}$	2.631 (2)	0.988 (2)	1.659 (3)	167 (2)

$a=x+1, y-1, z+1 ; b=x, y+1, z-1 ; c=x-1, y, z$

(a)

CHAPTER 7: HYDROXYCINNAMIC ACID CO-CRYSTALS AND SALT HYDRATES

(b)

Figure 7.4.4: (a) Packing diagram of $t F E R 2 I N M$ along [100] with the hydrogen atoms involved in the H -bonding shown and (b) Hydrogen bonding in $\boldsymbol{t F E R} \cdot 2$ INM.

CHAPTER 7: HYDROXYCINNAMIC ACID CO-CRYSTALS AND SALT HYDRATES

REFERENCES

1. Clarke. H. D, Arora. K. K, Bass. H, Kavuru. P, Tien Teng Ong, Pujari. T, Wojtas. L \& Zaworotko. M. J. Cryst. Growth Des. 2010, 10, 2152.
2. Allen. F.H. Acta. Crystallogr. 2002, B58, 380-388.
3. Schultheiss. N, Roe. M \& Boerrigter. S. X. M. CrystEngComm. 2011, 13, 611.
4. Aakeröy. C. B, Beatty. A. M \& Helfrich. B. A. Angew. Chem. Int. Ed. 2001, 40, 3240.
5. Zaiyou. T, Erjia. Z, Lin. L, Zhuohui. L \& Ruisi. Y. Acta. Crystallogr. Sect.E: Struct. Rep. Online. 2011, 67, 0424.
6. Kavuru. P, Aboarayes. D, Arora. K. K, Clarke. H. D, Kennedy. A, Marshall. L, Tien Teng Ong, Perman. J, Puraji. T, Wojtas. L \& Zaworotko. M. J. Cryst. Growth Des. 2010, 10, 3568.
7. Sheldrick GM. SHELX-97, program for crystal structure refinement; University of Göttingen, Germany. 1997.
8. Etter. M. C, MacDonald. J. C \& Bernstein. J. Acta. Crystallogr. 1990, B46, 256262.
9. McClurg. R. B \& Smit. J. P. Pharm. Technol. Eur. 2013, 37, 56-61.
10. Arenas-García. J. I, Herrera-Ruiz. D, Mondragón-Vàsquez. K, Morales-Rojas. H \& Höpfl. H. Cryst. Growth Des. 2010, 10, 3732 - 3742.
11.Jacobs. A \& Amombo Noa. F. M. J. Chem. Crystallogr. 2014, 44 (2), 57-62.
11. Yvon. K, Jeitschko. W \& Parthe. E. Appl. Crystallogr. 1977, 10, 73-74.
12. Ozawa. T. Bull. Chem. Soc Jpn. 1965, 38, 1881 - 1886.
13. Flynn. J. H \& Wall. L. A. J. Polym. Sci. 1966, 4, 323 - 328.
14. Macrae. C. F, Eddington. P. R, McCabe. P, Pidcock. E, Shields. G. P, Taylor. R, Towler. M. \& van de Streek. J. Mercury: visualization and analysis of crystal structures. J. Appl. Crystallogr. 2006, 39, 453-457.

CHAPTER 8: RACEMIC COMPOUNDS

CHAPTER 8

RACEMIC COMPOUNDS

In this chapter, racemic 2-phenylbutyric acid (PBA) and racemic 2-phenylpropionic acid (PPA) were the two chiral compounds investigated.

A search of the Cambridge Structural Database (CSD, version 5.34, November 2012) ${ }^{1}$ showed that (RS)-2-phenylbutyric acid and its enantiomers all formed co-crystals with isonicotinamide. ${ }^{2}$

According to the Cambridge Structural Database (CSD, version 5.34, November 2012), 1 (RS)-2-phenylpropionic acid formed a co-crystal with isonicotinamide, ${ }^{2} \quad(R)$-2phenylpropionic acid formed a co-crystal with acridine ${ }^{3}$ and isonicotinamide. ${ }^{2}$

The chiral resolution of racemic 2-phenylbutyric acid and racemic 2-phenylpropionic acid has also been reported using (1R,2S)-2-amino-1,2-diphenylethanol. ${ }^{4}$

8.1 2-Phenylbutyric acid with cinchonidine $\left(\mathrm{S}^{\left.-\mathrm{PBA}^{-}\right)\left(\mathrm{CIND}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}}\right.$

The salt was obtained by dissolving a 1: 1 ratio of (RS)-2-phenylbutyric acid (PBA) and cinchonidine (CIND) in ethanol by slightly heating the solution on a hot plate. Needlelike crystals were obtained after one week with a 1: 1: 1 ratio (PBA $^{-}$: $\mathbf{C I N D}^{+}: \mathbf{H}_{2} \mathbf{O}$). 2phenylbutyric acid crystallized in the (S) configuration and water was included in the structure $\left(\left(S_{-P B A^{-}}\right)\left(\mathrm{CIND}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}\right)$. Thus CIND successfully resolved the racemic 2 phenylbutyric acid. The asymmetric unit of the $\left(S-\mathrm{PBA}^{-}\right)\left(\mathrm{CIND}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ is illustrated in Figure 8.1.1.

Figure 8.1.1: Asymmetric unit of $\left(S-\mathrm{PBA}^{-}\right)\left(\mathrm{ClND}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ with all the hydrogen atoms shown for clarity.

8.1.1 Thermal Analysis

Thermal analysis results are shown in Figure 8.1.2. A single mass loss step of 3.2 \% (calc 3.8%) was observed in the TG curve which corresponds to the release of water. Three peaks were observed in the DSC, the first peak corresponding to the loss of surface water ($\mathrm{T}_{\text {on }}=306.1 \mathrm{~K}$), this is due to the fact that the crystals were not properly dried for the TG analysis. The second peak is due to the loss of the included water and the simultaneous melt ($\mathrm{T}_{\mathrm{on}}=362.2 \mathrm{~K}$) of the salt. The third peak is due decomposition. ($\mathrm{T}_{\text {on }}=485.2 \mathrm{~K}$). The thermal analysis data is given in Table 8.1.

CHAPTER 8: RACEMIC COMPOUNDS

Table 8.1: Thermal analysis data of (S-PBA $\left.{ }^{-}\right)\left(\right.$CIND $\left.^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$.

Compound	$\left(\mathbf{S - P B A}^{-}\right)\left(\right.$CIND $\left.^{+}\right) \cdot \mathbf{H}_{\mathbf{2}} \mathbf{O}$
PBA $^{-}:$CIND $^{+}: \mathbf{H}_{\mathbf{2}} \mathbf{O}$ ratio	$1: 1: 1$
TG calculated \% mass loss	3.8
TG experimental \% mass loss	3.2
DSC Endo $_{1}\left(\mathbf{T}_{\text {onset }}, \mathbf{K}\right)$	306.1
DSC Endo	$\left(\mathbf{T}_{\text {onset }}, \mathbf{K}\right)$

Figure 8.1.2: Thermal analysis curves of $\left(S-\mathrm{PBA}^{-}\right)\left(\mathrm{CIND}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ DSC (blue) and TG (red).

CHAPTER 8: RACEMIC COMPOUNDS

8.1.2 Structure Determination

All non-hydrogen atoms were refined with anisotropic displacement parameters. The OH and NH hydrogen atoms were located in the difference electron density map. Crystallographic data for ($\mathrm{S}^{\left.-\mathrm{PBA}^{-}\right)\left(\mathrm{CIND}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O} \text { is given on Table 8.2. }}$

Table 8.2: Crystal data of $\left(\mathrm{S}_{\left.-\mathrm{PBA}^{-}\right)\left(\mathrm{CIND}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}}\right.$.

Compound	(S-PBA ${ }^{-}$)(ClND^{+}) $\cdot \mathrm{H}_{2} \mathrm{O}$
Structural Formula	$\left(\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}_{2}^{-}\right)\left(\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$
PBA ${ }^{-}$: CIND^{+}: $\mathrm{H}_{2} \mathrm{O}$ ratio	1:1:1
Molecular Mass ($\mathrm{g} \mathrm{mol}^{-1}$)	476.60
Data collection temperature (K)	173(2)
Crystal system	Orthorhombic
Space group	$P 2_{1} 2_{1} 2_{1}$
$\mathrm{a}(\mathrm{A})$	6.6163 (10)
b (Å)	15.457 (2)
$c(A)$	24.868 (4)
$\alpha\left({ }^{\circ}\right)$	90.00
$\beta\left({ }^{\circ}\right)$	90.00
$\mathrm{Y}\left({ }^{\circ}\right)$	90.00
Volume (${ }^{\text {a }}$)	2543.3 (7)
Z	4
D_{c}, Calculated density ($\mathrm{g} \mathrm{cm}^{-3}$)	1.245
Final R indices [$1>2$ sigma(l]]	$\mathrm{R}_{1}=0.0524$
	$\mathrm{wR}_{2}=0.0960$
R indices (all data)	$\mathrm{R}_{1}=0.0957$
	$\mathrm{wR}_{2}=0.1115$
Largest diff. peak and hole (e \AA^{-3})	0.157; -0.198

$\left(S_{-P_{B A}}{ }^{-}\right)\left(\right.$CIND $\left.^{+}\right) \cdot \mathrm{H}_{2} \mathbf{O}$ crystallized in the orthorhombic space group $P 2_{1} 2_{1} 2_{1}$ with $\mathrm{Z}=4$. The crystal used for data collection has approximate dimensions of $0.06 \mathrm{~mm} \times 0.08 \mathrm{~mm}$

CHAPTER 8: RACEMIC COMPOUNDS

$x 0.52 \mathrm{~mm}$. There is proton transfer of the hydrogen atom in the carboxylic group on the PBA to the aliphatic tertiary nitrogen (N4) atom in the CIND ${ }^{+}$cation. The packing
 [100] in Figure 8.1.3 , the water molecules lie in isolated sites.

Figure 8.1.3: Crystal packing of $\left(S-\mathrm{PBA}^{-}\right)\left(\mathrm{CIND}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ with all the hydrogen atoms removed down [100].

The hydrogen bonding in (S-PBA $\left.{ }^{-}\right)\left(\mathrm{ClND}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ is illustrated in Figure 8.1.4 and consists of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ interactions. The oxygen atom labelled O 1 in PBA^{-} plays the role of bifurcated acceptor, O 1 is connected to H 1 attached to N 4 in CIND^{+} and H3B attached to the water molecule. The graph sets ${ }^{6}$ of the structure can be characterized as: $D_{1}^{1}(2), D_{2}^{1}(3), D_{2}^{2}(4), D_{2}^{2}(5), C_{2}^{2}(6)$ and $D_{2}^{2}(8)$. Hydrogen bonding details are listed in Table 8.3.

Table 8.3: Hydrogen bonding parameters in $\left(S-\mathrm{PBA}^{-}\right)\left(\mathrm{CIND}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$.

COMPOUND	D-H..A	D \cdots ($\left({ }^{\text {a }}\right.$)	D-H (Å)	H $\cdots \mathrm{A}(\mathrm{A})$	D-H $\cdots \mathrm{A}\left({ }^{\circ}\right)$
$\left(S-\mathrm{PBA}^{-}\right)\left(\mathrm{CIND}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$	N4-H1 \cdots O1	2.699 (3)	0.964 (2)	1.738 (3)	174 (2)
	O3-H3A $\cdots{ }^{\text {O }}{ }^{\text {a }}$	2.731 (3)	0.900 (3)	1.841 (4)	170 (3)
	O3-H3B \cdots O1	2.707 (3)	0.890 (3)	1.837 (4)	165 (3)
	O5-H5A $\cdots{ }^{\text {O }}$	2.693 (3)	0.810 (3)	1.887 (3)	174 (3)
$a=x+1, y, z ; b=x-1, y, z$					

Figure 8.1.4: Hydrogen bonding in $\left(S-\mathrm{PBA}^{-}\right)\left(\mathrm{CIND}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$.

8.2 2-Phenylpropionic acid with quinine (R-2 $^{2} \mathrm{PPA}^{-}$)(2QUIN ${ }^{+}$)

The 2: 2 salt ratio ($R-$ PPA $^{-}$: QUIN $^{+}$) was obtained by dissolving a 1: 1 molar ratio of (RS)-2-PPA and quinine (QUIN) in acetonitrile on a hot plate. Crystals in the form of blocks were obtained after one week. The absolute configuration of quinine is known and the chirality of the 2-phenylpropionic acid was found relative to the quinine. The asymmetric unit of $\left(\right.$ R-2 $\left.^{2} \mathrm{PPA}^{-}\right)\left(\mathbf{2 Q U I N}^{+}\right)$is shown in Figure 8.2.1.

Figure 8.2.1: The asymmetric unit of $\left(\right.$ R-2PPA $\left.^{-}\right)\left(2\right.$ QUIN $\left.^{+}\right)$with all the hydrogen atoms shown for numbering clarity.

8.2.1 Thermal Analysis

Thermal analysis data of (R-2PPA $\left.{ }^{-}\right)\left(\mathbf{2 Q U I N}^{+}\right)$are listed in Table 8.4. The sharp peak at 443.6 K is the melt of the salt. Decomposition of (R-2 PPA $\left.^{-}\right)\left(\mathbf{2 Q U I N}^{+}\right)$is obtained at 464.9 K. Figure 8.2.2 shows DSC curves of ($\left.\boldsymbol{R - 2 P P A}^{-}\right)\left(\mathbf{2 Q U I N}^{+}\right)$and quinine.

CHAPTER 8: RACEMIC COMPOUNDS

Table 8.4: Thermal analysis data of ($\left.\boldsymbol{R}^{2} \mathbf{2 P P A}^{-}\right)\left(\mathbf{2 Q U I N}^{+}\right)$.

Compounds	DSC Endo $_{1} \mathbf{(T}_{\text {onset, }} \mathbf{K}$)	DSC Endo $_{\mathbf{2}}\left(\mathbf{T}_{\text {onset }}\right.$, \mathbf{K})
Quinine	-	449.8
2-PPA	-	-
$\left(\right.$ R-2PPA $^{-}$)(2QUIN ${ }^{+}$)	443.6	464.9

Figure 8.2.2: DSC curves of ($\left.\boldsymbol{R}^{-2 P_{P A}}{ }^{-}\right)\left(\mathbf{2 Q U I N}^{+}\right)$(red) and quinine (blue).

8.2.2 Hot Stage Microscopy

The hot stage microscopy experiment (Figure 8.2.3) was performed by immersing a crystalline block in silicone oil at a temperature of 295 K . The crystal started melting at approximately 439 K and the melt was completed at 450 K .

CHAPTER 8: RACEMIC COMPOUNDS

(a) 295 K
(b) 439 K

(c) 446 K

(d) 450 K

Figure 8.2.3: HSM photography of ($\left.\boldsymbol{R}^{2} \mathbf{2 P P A}^{-}\right)\left(\mathbf{2 Q U I N}^{+}\right)$: (a) crystal immersed in silicone oil, (b) crystal starts melting, (c) melt of the crystal and (d) complete melt of the crystal.

8.2.4 Structure Determination

All non-hydrogen atoms were refined anisotropically. The OH and NH hydrogen atoms were located in the difference electron density map. Table 8.4 indicates the crystal data of (R-2PPA $^{-}$)(2QUIN ${ }^{+}$).

CHAPTER 8: RACEMIC COMPOUNDS

Table 8.5: Crystal data of (R-2PPA $^{-}$)(2QUIN ${ }^{+}$).

Compound	(R-2PPA $^{-}$)(2QUIN ${ }^{+}$)
Structural Formula	$\left(2 \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{O}_{2}{ }^{-}\right)\left(2 \mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}^{+}\right)$
PPA ${ }^{-}$: QUIN ${ }^{+}$: ratio	2: 2
Molecular Mass ($\mathrm{g} \mathrm{mol}^{-1}$)	949.16
Data collection temperature (K)	173(2)
Crystal system	Monoclinic
Space group	$P 2_{1}$
a (A)	6.5192 (5)
b (A)	19.2336 (17)
$c(A)$	19.9300 (18)
$\alpha\left({ }^{\circ}\right)$	90.00
$\beta\left({ }^{\circ}\right)$	91.639 (2)
$Y\left({ }^{\circ}\right)$	90.00
Volume (${ }^{\text {a }}$)	2498.0 (4)
Z	2
D_{c}, Calculated density ($\mathrm{g} \mathrm{cm}^{-3}$)	1.262
Final R indices [l>2sigma(I)]	$\mathrm{R}_{1}=0.0513$
	$w R_{2}=0.1213$
R indices (all data)	$\mathrm{R}_{1}=0.0759$
	$w R_{2}=0.1362$
Largest diff. peak and hole (e \AA^{-3})	0.351; -0.247

(\boldsymbol{R}^{2} PPA $^{-}$)(2QUIN ${ }^{+}$) was solved in the monoclinic space group $P 2_{1}$ with $Z=2$. The asymmetric unit contains two ions of each component. The crystal used for the single crystal X-ray experiment had size dimensions of $014 \mathrm{~mm} \times 0.31 \mathrm{~mm} \times 0.46 \mathrm{~mm}$. Both PPA $^{-}$anions had transferred a proton to both QUIN ${ }^{+}$cations in the structure. The (\boldsymbol{R} $\left.\mathbf{2 P P A}^{-}\right)\left(\mathbf{2 Q U I N}{ }^{+}\right)$crystal packing along [100] is shown in Figure 8.2.4.

CHAPTER 8: RACEMIC COMPOUNDS

Figure 8.2.4: $\left(\right.$ R-2PPA $\left.^{-}\right)\left(\mathbf{2 Q U I N}^{+}\right)$packing diagram down [100] with all the hydrogen atoms removed.

The hydrogen bonding in $\left(\boldsymbol{R}^{-2 P_{P A}}{ }^{-}\right)\left(\mathbf{2 Q U I N}{ }^{+}\right)$is shown in Figure 8.2.5. Each PPA^{-} anion is hydrogen bonded to two QUIN ${ }^{+}$cations. The carboxylate group interacts with both the hydroxyl and the tertiary amine of two different QUIN ${ }^{+}$cations . The graph sets ${ }^{6}$ found in the structure can be described as: $\mathrm{D}_{1}^{1}(2)$ and $\mathrm{C}_{2}^{2}(9)$. The hydrogen bonding parameters of the salt are listed in Table 8.6.

Table 8.6: Hydrogen bonding parameters in ($\boldsymbol{R - 2 P P A}^{-}$)(2QUIN ${ }^{+}$).

COMPOUND	D-H.*A	D \cdots A (Å)	D-H (Å)	H $\cdots \mathrm{A}(\mathrm{A})$	D-H $\cdots \mathrm{A}\left({ }^{\circ}\right.$)
($\mathbf{R - 2 P P A}^{-}$)(2QUIN ${ }^{+}$)	N2-H1 \cdots O1	2.594 (2)	0.849 (3)	1.778 (3)	161 (2)
	$\begin{aligned} & \mathrm{N} 2-\mathrm{H} 1 \mathrm{~A} \cdots \mathrm{O} 1 \\ & \mathrm{O} 5-\mathrm{H} 5 \mathrm{~A} \cdots 2^{\mathrm{a}} \\ & \mathrm{O} 5-\mathrm{H} 3 \mathrm{~B} \cdots \mathrm{O}^{\mathrm{a}} \end{aligned}$	$\begin{aligned} & 2.589(3) \\ & 2.642(2) \\ & 2.649(2) \end{aligned}$	$\begin{aligned} & 0.900(3) \\ & 0.847(3) \\ & 0.996(3) \end{aligned}$	$\begin{aligned} & 1.690(3) \\ & 1.796 \text { (3) } \\ & 1.656 \text { (3) } \end{aligned}$	$\begin{aligned} & 177(3) \\ & 176(3) \\ & 175(3) \end{aligned}$

 illustrating that each PPA ${ }^{-}$anion is hydrogen bonded to two QUIN $^{+}$cations.

8.3 2-phenylpropionic acid with quinine $\left(R, S-\mathrm{PPA}^{-}\right)\left(\mathrm{QUIN}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$

A 1: 1 molar ratio of ($R S$)-2-phenylpropionic acid and quinine was dissolved in ethyl methyl ketone by heating the mixture on a hot plate. The solution was allowed to evaporate and crystals were obtained after one week. The configuration of the PPA in the structure was found to be $70 \%(R)$ and $30 \%(\mathrm{~S})$ with water included in the crystal structure $\left(\left(R, S-\right.\right.$ PPA $\left.^{-}\right)\left(\right.$QUIN $\left.\left.^{+}\right) \cdot \mathbf{H}_{2} \mathbf{O}\right)$. The asymmetric unit of $\left(R, S-\right.$ PPA $\left.^{-}\right)\left(\right.$QUIN $\left.^{+}\right) \cdot \mathbf{H}_{2} \mathbf{O}$ is represented in Figure 8.3.1.

CHAPTER 8: RACEMIC COMPOUNDS

Figure 8.3.1: Asymmetric unit of $\left(\right.$ R,S-PPA $\left.^{-}\right)\left(\right.$QUIN $\left.^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ with all the hydrogen atoms shown for numbering clarity.

8.3.1 Thermal Analysis

Thermal analysis curves are shown in Figure 8.3.2 and the thermal analysis data is given in Table 8.7. The TG experiment indicates the loss of water at approximately 327 K ; the mass loss is rapid corresponding to an experimental value of 3.8%. The DSC curve of (R,S-PPA $\left.{ }^{-}\right)\left(\mathbf{Q U I N}^{+}\right) \cdot \mathrm{H}_{2} \mathbf{O}$ shows three peaks, where the first peak indicates the loss of water, the second and third peaks correspond to the melt of the salt.

CHAPTER 8: RACEMIC COMPOUNDS

Table 8.7: Thermal analysis data of (R,S-PPA $\left.{ }^{-}\right)\left(\right.$QUIN $\left.^{+}\right) \cdot \mathbf{H}_{2} \mathbf{O}$.

Compound	$\left(\right.$ R,S-PPA $\left.{ }^{-}\right)\left(\right.$QUIN $\left.^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$
PPA ${ }^{-}$: QUIN ${ }^{+}$: $\mathrm{H}_{2} \mathrm{O}$ ratio	1:1:1
TG calculated \% mass loss	3.7
TG experimental \% mass loss	3.8
DSC Endo ${ }_{1}\left(\mathrm{~T}_{\text {onset }}, \mathrm{K}\right)$	344.0
DSC Endo ${ }_{2}\left(\mathrm{~T}_{\text {onset }}, \mathrm{K}\right)$	404.3
DSC Endo ${ }_{3}\left(\mathrm{~T}_{\text {onset }}, \mathrm{K}\right)$	427.2

Figure 8.3.2: Thermal analysis curves of (R,S-PPA $\left.{ }^{-}\right)\left(\right.$QUIN $\left.^{+}\right) \cdot \mathbf{H}_{2} \mathbf{O}$ DSC (blue) and $T G$ (red).

CHAPTER 8: RACEMIC COMPOUNDS

8.3.2 Structure Determination

The structure was solved via direct methods and the OH and NH hydrogen atoms were located in the difference electron density map. All non-hydrogen atoms were refined anisotropically. The crystal data is given in Table 8.8.

Table 8.8: Crystal data of $\left(R, S-\right.$ PPA $\left.^{-}\right)\left(\right.$QUIN $\left.^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$.

Compound	(R,S-PPA ${ }^{-}$)(QUIN $\left.{ }^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$
Structural Formula	$\left(\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{O}_{2}{ }^{-}\right)\left(\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$
PPA ${ }^{-}$: QUIN ${ }^{+}$: $\mathrm{H}_{2} \mathrm{O}$ ratio	1:1:1
Molecular Mass ($\mathrm{g} \mathrm{mol}^{-1}$)	492.60
Data collection temperature (K)	173(2)
Crystal system	Monoclinic
Space group	C2
a (A)	28.087 (6)
$\mathrm{b}(\mathrm{A})$	6.7429 (13)
$c(A)$	15.476 (3)
$\alpha{ }^{(}{ }^{\circ}$	90.00
$\beta\left({ }^{\circ}\right)$	118.09 (3)
$Y\left({ }^{\circ}\right)$	90.00
Volume ($\left.{ }^{3}{ }^{3}\right)$	2585.7 (12)
Z	4
D_{c}, Calculated density ($\mathrm{g} \mathrm{cm}^{-3}$)	1.265
Final R indices [l>2sigma(l)]	$\mathrm{R}_{1}=0.0467$
	$w R_{2}=0.0983$
R indices (all data)	$\mathrm{R}_{1}=0.0637$
	$w R_{2}=0.1077$
Largest diff. peak and hole (e \AA^{-3})	0.538; -0.227

CHAPTER 8: RACEMIC COMPOUNDS

The salt hydrate crystallized in the monoclinic space group $C 2$ with $Z=4$. The asymmetric unit contains one PPA^{-}anion, one QUIN ${ }^{+}$cation and one molecule of water. The structural formula of $\left(\boldsymbol{R}, \mathrm{S}_{-} \mathrm{PPA}^{-}\right)\left(\mathbf{Q U I N}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ was found to be $\left(\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{O}_{2}^{-}\right)\left(\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ with a molecular mass of $492.60 \mathrm{~g} . \mathrm{mol}^{-1}$. The structure refined successfully to $R_{1}=0.0467$ with $w R_{2}=0.0983$ [l>2sigma (1)].

The PPA^{-}anion is disordered with the site occupancy factors for the final refinement: $0.70(R)-2-$ PPA $^{-}$and $0.30(S)$-2-PPA respectively. The crystal packing along [010] with all the hydrogen atoms removed is illustrated in Figure 8.3.3. The water molecules occupy isolated sites.

Figure 8.3.3: Crystal packing of $\left(\boldsymbol{R}, \mathbf{S}-\mathrm{PPA}^{-}\right)\left(\mathbf{Q U I N}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ with all the hydrogen atoms removed down [010].

Hydrogen bonding in (R,S-PPA $\left.{ }^{-}\right)\left(\mathbf{Q U I N}^{+}\right) \cdot \mathbf{H}_{2} \mathbf{O}$ has three atoms playing the role of bifurcated donor. The hydrogen atom labelled H 1 connected to the nitrogen atom (N2) in QUIN ${ }^{+}$cation is a bifurcated donor. H 1 is hydrogen bonded to O 2 and O2A of the

CHAPTER 8: RACEMIC COMPOUNDS

PPA^{-}anion. The hydrogen atom labelled H3AA attached to the water molecule acts as a bifurcated donor due to the fact that it is connected to O 2 and O2A found in the PPA^{-} anion. H3BB also acts as a bifurcated donor because it has a connection with O1 and O1A (PPA ${ }^{-}$anion). The hydroxyl group in the QUIN ${ }^{+}$cation is hydrogen bonded to the oxygen (O3) of the water molecule (Figure 8.3.4). Etter ${ }^{6}$ notation of the structure (R,SPPA $\left.^{-}\right)\left(\right.$QUIN $\left.^{+}\right) \cdot \mathbf{H}_{2} \mathbf{O}$ can be characterized by: $D_{1}^{1}(2), D_{2}^{1}(3), D_{2}^{2}(4), R_{1}^{2}(4), D_{2}^{2}(5)$ and D_{2}^{2} (8) . The hydrogen bonding parameters of $\left(\boldsymbol{R}, \mathbf{S}-\mathrm{PPA}^{-}\right)\left(\mathbf{Q U I N}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ are given in Table 8.9 .

Table 8.9: Hydrogen bonding parameters in (R,S-PPA $\left.{ }^{-}\right)\left(\mathbf{Q U I N}^{+}\right) \cdot \mathrm{H}_{2} \mathbf{O}$.

COMPOUND	D-H...A	D \cdots (${ }^{\text {a }}$)	D-H (Å)	H $\cdots \mathrm{A}$ (${ }^{\text {A }}$)	$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}\left({ }^{\circ}\right.$)
$\left(\right.$ R,S-PPA $\left.{ }^{-}\right)\left(\right.$QUIN $\left.^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$	$\mathrm{N} 2-\mathrm{H} 1 \cdots \mathrm{O} 2$ _ ${ }^{\text {a }}$	2.710 (1)	0.919 (3)	1.795 (3)	173 (2)
	N2-H1 \cdots O2A_ ${ }^{\text {a }}$	2.710 (2)	0.919 (3)	1.799 (4)	171 (2)
	O5-H5A \cdots O3	2.649 (2)	0.796 (3)	1.878 (3)	163 (3)
	O3-H3AA \cdots O2_a	2.693 (2)	0.801 (1)	1.940 (3)	156 (5)
	O3-H3AA \cdots O2A_b	2.745 (3)	0.801 (1)	1.994 (4)	156 (5)
	O3-H3BB \cdots O1_a ${ }^{\text {a }}$	2.717 (1)	0.802 (1)	2.346 (3)	109 (2)
	O3-H3BB \cdots O1A ${ }_{\text {A }} \mathrm{b}^{\text {a }}$	2.523 (1)	0.802 (1)	2.607 (3)	75 (2)

Figure 8.3.4: Hydrogen bonding in ($\left.\boldsymbol{R}, \mathbf{S}-\mathrm{PPA}^{-}\right)\left(\mathbf{Q U I N}^{+}\right) \cdot \mathrm{H}_{2} \mathbf{O}$.

REFERENCES

1. Allen. F.H. Acta. Crystalllogr. 2002, B58, 380-388.
2. Lemmerer. A, Bathori.N. B \& Bourne. S. A. Acta. Crystallogr. 2008, B64, 780.
3. Koshima. H, Nakagawa. T \& Matsuura. T. Tetrahedron. Lett. 1997, 38, 6063.
4. Kinbara, Kobayashi \& Saigo. J. Chem. Soc. Perkin Trans. 1998, 2.
5. Macrae. C. F, Eddington. P. R, McCabe. P, Pidcock. E, Shields. G. P, Taylor. R, Towler. M. \& van de Streek. J. Mercury: visualization and analysis of crystal structures. J. Appl. Crystallogr. 2006, 39, 453-457.
6. Etter. M. C, MacDonald. J. C \& Bernstein. J. Acta. Crystallogr. 1990, B46, 256262.

CHAPTER 9

STRUCTURE COMPARISON

This chapter illustrates a variety of supramolecular networks found in the studied structures. It had been found that by changing phenolic acids (VA, PAA, HPAA, CHPAA, CFA, pCA and tFER) while using the same co-crystal former, there is an effect on the type of crystal structures obtained.

Compounds such as VA, PAA and CHPAA formed co-crystals with acridine (ACRI) in a 1: 1 ratio. A hybrid salt-co-crystal was formed between HPAA and ACRI containing a
 ether was used as a solvent for these new compounds. PAA•ACRI and CHPAA•ACRI were solved in the triclinic space group $P-1$ but (HPAA^{-})($\left.\mathbf{A C R I}^{+}\right) \cdot \mathrm{HPAA}^{-A C R I}$ crystallized in the space group $P 1$.

VA•ACRI was solved in the monoclinic space group $P 2_{1} / c$ with layers of VA molecules parallel to the ac plane, sandwiched between layers of acridine molecules. $\pi-\pi$ interactions are found between adjacent ACRI rings (3.656 Å).

However, for PAA•ACRI, the $\pi-\pi$ stacking interactions are different from that of VA•ACRI. These interactions in PAA•ACRI involve adjacent acridine rings ($3.736 \AA$) and PAA molecules ($3.835 \AA$ A). For PAA•ACRI also presented with a C-H $\cdot \bullet \pi$ interaction between PAA and ACRI molecules with a C $\cdots \bullet \pi$ (centroid) distance of $3.210 \AA$ and an angle of 154°.
$\left(\mathrm{HPAA}^{-}\right)\left(\mathrm{ACRI}^{+}\right) \cdot \mathrm{HPAA} \cdot \mathbf{A C R I}$ and CHPAA•ACRI show similar packing with $\pi-\pi$ stacking interactions in both structures between acridine rings with a shortest distance of $3.723 \AA\left(\left(\mathrm{HPAA}^{-}\right)\left(\mathbf{A C R I}^{+}\right) \cdot \mathbf{H P A A} \cdot \mathbf{A C R I}\right)$ and $3.742 \AA(\mathbf{C H P A A} \cdot \mathbf{A C R I})$.

Caffeine (CAF) formed a co-crystal with VA and PAA when used as a co-crystal former. The two co-crystals of caffeine differ in ratio. A 1: 2 molar ratio results between VA and CAF (VA•2CAF) with a $2: 1$ between PAA and CAF (2PAA•CAF).

VA-2CAF crystallized in the triclinic space group $P-1$ with $\pi-\pi$ stacking interactions between the five membered and six membered rings of adjacent CAF molecules (3.420 Å).

2PAA-CAF was solved in the monoclinic space group $P 2_{1} / c$. No $\pi-\pi$ interactions were found in this crystal structure.

Isonicotinamide (INM) formed co-crystals with PAA, HPAA, CFA and tFER, but a cocrystal hydrate with VA. All of the new compounds with INM crystallised in the triclinic space group $P-1$, except for the co-crystal found between PAA and INM (monoclinic space group C2/c). A different ratio was found for each INM co-crystal/co-crystal hydrate.

Water molecules were involved in the co-crystal formed between VA and INM resulting in a 2: 2: 2 ratios ($\mathbf{2} \mathrm{VA} \cdot \mathbf{2 I N M} \cdot \mathbf{2} \mathbf{H}_{\mathbf{2}} \mathbf{O}$). The water molecules present in the structure play a bridging role and makes the hydrogen bonding in $\mathbf{2 V A} \cdot \mathbf{2 I N M} \cdot \mathbf{2} \mathbf{H}_{2} \mathrm{O}$ very complex. The structure is stabilised via face to face $\pi-\pi$ stacking interactions between VA and INM rings (3.668 A) and also involved weaker C-H $\cdots \pi$ interactions between VA molecules (distance of $2.645 \AA$ and an angle of $148{ }^{\circ}$). 2VA•2INM•2H2O shows VA and INM molecules in layers parallel to [$\overline{3} 33$]. The ring motifs found in the structure are $R_{2}^{2}(8), R$ ${ }_{4}^{2}(8), R_{4}^{4}(16)$ and $R_{4}^{4}(20)$.

PAA and INM crystallized in a 1:1 molar ratio (PAA•INM). The structure also exhibited very weak C-H $\cdots{ }_{\pi}$ interactions between the PAA aromatic ring and H 7 B in a neighbouring PAA molecule (distance of $3.269 \AA$ and an angle of 110°). The structure only displayed one ring motif R_{2}^{2} (8).

On the other hand, there is a 1:2 ratio between HPAA and INM (HPAA•2INM). The crystal structure does not involve any $\pi-\pi$ stacking interactions or $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions. HPAA•2INM displayed ring motifs such as $R_{2}^{2}(8), R_{4}^{2}(8), R_{4}^{4}(16)$ and R_{4}^{4} (32).

In addition, CFA and INM crystallized in a 1:3 ratio (CFA•3INM). This ratio may be due to the various functional groups (-COOH and two -OH) in CFA capable of forming hydrogen bonds. The structure has two ring motifs $R_{2}^{2}(8)$ and $R_{4}^{4}(22)$.

The same ratio obtained in HPAA•2INM, was found between $t F E R$ and INM (tFER•2INM). The structure displayed a hydrogen bonded ring motif which can be described as $\mathrm{R}_{2}^{2}(8)$.

Nicotinamide (NAM) formed co-crystals with VA, PAA and pCA. The co-crystal obtained between VA and NAM has a 1: 1 ratio (VA•NAM) which was similar to the co-crystal between p CA and NAM ($\boldsymbol{p C A} \cdot N A M$). VA•NAM was solved in the triclinic space group P 1 with VA and NAM molecules involved in $\pi-\pi$ stacking interactions (4.470 Å). The hydrogen bonding in VA•NAM resulted in two ring motifs $R_{2}^{2}(8)$ and $R_{4}^{4}(16)$.

The co-crystal obtained between PAA and NAM has a 2: 2 ratio. 2PAA•2NAM crystallized in the monoclinic space group $P 2_{1} / n$. Both 2PAA•2NAM and p CA•NAM displayed ring motifs $R_{2}^{2}(8)$.

Cinchonidine (CIND) formed salt hydrates with PAA and HPAA. When using a different solvent with HPAA, CIND formed a salt solvate.
$\left(\mathrm{PAA}^{-}\right)\left(\mathrm{CIND}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ and $\left(\mathrm{HPAA}^{-}\right)\left(\mathrm{CIND}^{+}\right) \cdot \mathbf{0} \cdot \mathbf{5 \mathrm { H } _ { 2 } \mathrm { O }}$ were solved in the monoclinic space group $C 2$. $\left(\mathrm{PAA}^{-}\right)\left(\mathrm{CIND}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ displayed two chains motifs $\mathrm{C}_{2}^{2}(6)$ and $\mathrm{C}_{2}^{2}(9)$. For both structures $\left(\mathrm{PAA}^{-}\right)\left(\mathrm{CIND}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ and ($\left.\mathrm{HPAA}^{-}\right)\left(\mathrm{CIND}^{+}\right) \cdot \mathbf{0 . 5} \mathrm{H}_{2} \mathrm{O}$ the water molecules are located in cavities and link two anions.

For (HPAA^{-})($\left.\mathrm{CIND}^{+}\right) \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ and $\left(\mathrm{PAA}^{-}\right)\left(\mathrm{CIND}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ and $\left(\mathrm{HPAA}^{-}\right)\left(\mathrm{CIND}^{+}\right) \cdot \mid \mathrm{PA} \cdot \mathrm{H}_{2} \mathrm{O}$, a proton is transferred from the acid to the tertiary amine of the CIND.
 $P 2_{1} 2_{1} 2_{1}$. Both the isopropanol and the water molecules are included in the crystal structure and are located in channels. The lattice arrangement of $\left(\mathrm{HPAA}^{-}\right)\left(\mathrm{CIND}^{+}\right) \cdot I \mathrm{IPA} \cdot \mathrm{H}_{2} \mathrm{O}$ reveals two chain motifs differentiated as $\mathrm{C}_{2}^{2}(6)$ and $\mathrm{C}_{2}^{2}(9)$.

Quinidine (QUID) formed 1: 1: 1 ratio salt hydrates with PAA and HPAA. Both (PAA $^{-}$)(QUID $\left.^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ and ($\left.\mathrm{HPAA}^{-}\right)\left(\right.$QUID $\left.^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ crystallized in the monoclinic space group $P 2_{1}$. There are $\pi-\pi$ stacking interactions between the PAA^{-}anion and the QUID ${ }^{+}$ cation (4.601 \AA) stabilizing (PAA^{-})($\left.\mathbf{Q U I D}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ and various $\mathrm{C}-\mathrm{H} \cdots \cdot \pi$ interactions as illustrated in chapter 4. Both quinidine salts show similar packing with the water molecules located in cavities. There is one chain $\mathrm{C}_{2}^{2}(9)$ motif in $\left(\mathrm{PAA}^{-}\right)\left(\mathrm{QUID}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ instead of two chains motifs $\mathrm{C}_{2}^{2}(9)$ and $\mathrm{C}_{2}^{2}(11)$ found in ($\left.\mathrm{HPAA}^{-}\right)\left(\right.$QUID $\left.^{+}\right) \cdot \mathrm{H}_{2} \mathbf{O}$.

Quinine (QUIN) formed a salt hydrate with PAA, a salt with HPAA and a hybrid salt-cocrystal solvate with $p \mathrm{CA}$. The salt hydrate and the hybrid salt-co-crystal solvate were solved in the monoclinic space group P_{1}. Hydrogen bonding and chain motifs in $\left(\right.$ PAA $\left.^{-}\right)\left(\mathbf{Q U I N}^{+}\right) \cdot \mathrm{H}_{2} \mathbf{O}$ are similar to that in ($\left.\mathrm{PAA}^{-}\right)\left(\right.$QUID $\left.^{+}\right) \cdot \mathrm{H}_{2} \mathbf{O}$. The water molecules in $\left(\mathrm{PAA}^{-}\right)\left(\mathrm{QUIN}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ are located in cavities.
(HPAA $^{-}$)(QUIN ${ }^{+}$) crystallized in the orthorhombic space group $P 2_{1} 2_{1} 2_{1}$. Chain motifs in this structure can be characterized as: $\mathrm{C}_{1}^{1}(7)$ and $\mathrm{C}_{1}^{1}(9)$.

For $\left(p \mathrm{CA}^{-}\right)\left(\mathrm{QUIN}^{+}\right) \cdot p \mathrm{CA} \cdot \mathrm{MeOH} \cdot \mathrm{H}_{2} \mathrm{O}$ with the methanol and water molecules are located in cavities. Methanol and water molecules play bridging roles by connecting one $\mathrm{p}-\mathrm{CA}{ }^{-}$anion and one neutral p-CA molecule. ${ }^{1}$ This hydrogen bonded network forms a bigger ring which can be described in graph set notation ${ }^{2}$ as R_{4}^{4} (24). A smaller ring between two p-CA anions, one QUIN $^{+}$cation and a water molecule can be characterized as R_{4}^{2} (11).

REFERENCES

1. Jacobs. A \& Amombo Noa. F. M. J.Chem.Crystallogr. 2014, 44 (2), 57-62.
2. Etter. M. C, MacDonald. J. C \& Bernstein. J. Acta. Crystallogr. 1990, B46, 256 262.

CHAPTER 10

CONCLUSION

The field of crystal engineering has grown over the last ninety years, and the design of novel materials and functionality are currently being explored. ${ }^{1}$

In this research, selected phenolic acids were chosen for the formation of salts/cocrystals depending on the $\Delta \mathrm{pK} \mathrm{K}_{\mathrm{a}}$ with various organic amines/amides.

Successful resolution of racemic compounds (2-PPA and 2-PBA) was attained. Quinine resolved racemic 2-PPA by capturing the R isomer ((R-2PPA $\left.{ }^{-}\right)\left(\mathbf{2 Q U I N} \mathbf{N}^{+}\right)$) and cinchonidine (CIND) on the other hand was able to resolve (RS)-2-PBA (capturing the S isomer((S-PBA $\left.\left.\left.{ }^{-}\right)\left(\mathbf{C l N D}^{+}\right) \cdot \mathrm{H}_{2} \mathbf{O}\right)\right)$. By changing the solvent in the salt preparation of $(R S)$ -2-PPA with QUIN, there was a change in the chirality of the obtained compound (capturing 70% of the (R) isomer and 30% of the (S) isomer ((R,S-PPA $\left.\left.{ }^{-}\right)\left(\mathbf{Q U I N}^{+}\right) \cdot \mathbf{H}_{2} \mathbf{O}\right)$).

Elucidation and refinement of the obtained structures were done using single crystal Xray diffractometry as illustrated in Table 10.1. Analytical techniques such as PXRD, thermal methods (TG, DSC and HSM) and IR spectroscopy were used to characterize the new compounds.

A non-isothermal kinetics experiment was done to obtain the activation energy range $\left(210-272 \mathrm{kJmol}^{-1}\right)$ for the loss of methanol in ($p \mathrm{CA}^{-}$)(QUIN $\left.{ }^{+}\right) \cdot p \mathrm{CA} \cdot \mathbf{M e O H} \cdot \mathrm{H}_{2} \mathbf{O}$.

Mixtures of QUID and QUIN were used in selectivity experiments with HPAA and PAA respectively. Two ratios were selected for this experiment (QUIN: QUID: PAA/HPAA and QUIN: QUID: 2PAA/2HPAA). This kind of experiment was already reported with methylparaben where preferential co-crystallisation with QUID was observed. ${ }^{2}$

Solvents used for the crystallization experiments appeared to play a role in the interaction of amine/amide and the phenolic acids. This was observed with the two structures of HPAA and CIND. Completely different structures of HPAA and CIND were obtained from two solvents, (HPAA^{-})($\left.\mathrm{CIND}^{+}\right) \cdot \mathbf{0} \cdot \mathbf{5} \mathbf{H}_{\mathbf{2}} \mathbf{O}$ from ethyl methyl ketone (EMK) and (HPAA^{-})(CIND $\left.{ }^{+}\right) \cdot \mathbf{I P A} \cdot \mathrm{H}_{2} \mathrm{O}$ from isopropanol.

A comparison of the structures involving the same amide/amine has been discussed in chapter 9.

An interesting situation was observed concerning the assignment of the space group for $\left(\mathrm{HPAA}^{-}\right)\left(\mathbf{A C R I}^{+}\right) \cdot \mathrm{HPAA}^{-A C R I}$. The programme PLATON/ADDSYM ${ }^{3}$ suggested a centre of symmetry relating two ACRI and two HPAA molecules. There was a centre of symmetry relating the ACRI molecules (disregarding the hydrogens) but not for HPAA due to the conformation of the two molecules in the asymmetric unit and the difference in torsion angles. Initial attempts to solve the structure in $P-1$ resulted in a high R-factor of 0.30 . However, the ($\left.\mathrm{HPAA}^{-}\right)\left(\mathbf{A C R I}^{+}\right) \cdot \mathrm{HPAA}^{-A C R I}$ structure was solved in $P 1$ and resulted in a good refinement with $R_{1}=0.0405$ and $w R_{2}=0.0935$ ([l>2 sigma (I)]).

Both PAA and HPAA contain the - COOH functional group but HPAA has an additional OH group capable of forming hydrogen bonds. The salt formed between PAA and QUIN had water included in the structure, $\left(\mathrm{PAA}^{-}\right)\left(\mathbf{Q U I N}^{+}\right) \cdot \mathbf{H}_{2} \mathbf{O}$. The salt formed between HPAA and QUIN did not include any water. This result can be explained by the -OH group in HPAA which is involved in the hydrogen bonding in (HPAA^{-})($\mathbf{Q U I N}^{+}$). The water molecule included in the structure $\left(\mathbf{P A A}^{-}\right)\left(\mathbf{Q U I N}^{+}\right) \cdot \mathbf{H}_{2} \mathbf{O}$ compensates for the absence of the -OH group in the PAA molecule.

In the selectivity experiment involving mixtures of QUIN/QUID with PAA , the PAA chose QUIN instead of QUID in the two experiment settings (1:1:1 and 1: 1: 2 ratios (QUIN: QUID: PAA)). HPAA in contrast chose QUID instead of QUIN. Further investigations are needed to determine possible reasons for the selectivity.

The co-crystal between VA and theophylline (THPH) has a 2: 1 ratio (VA: THPH) with the methoxy group of the second VA being disordered. The site occupancy factors for the methoxy group in the final refinement were 0.812 and 0.188 respectively.

A PXRD experiment involving 2VA•THPH showed that the ground product patterns (20 and 30 min) and the slurry pattern were similar and resulted in the hydrate $\mathbf{2 V A} \cdot \mathrm{THPH} \cdot 2 \mathrm{H}_{2} \mathrm{O}$. Attempts at obtaining crystals of $2 \mathrm{VA} \cdot \mathrm{THPH} \cdot \mathbf{2} \mathrm{H}_{\mathbf{2}} \mathrm{O}$ for structure solution were not successful.

Compounds formed with VA and the selected co-crystal formers mostly contained ring motifs in their structures, eg. VA•THBR• $2 \mathrm{H}_{2} \mathrm{O}$ has $\mathrm{R}_{2}^{2}(8)$ and $\mathrm{R}_{4}^{4}(8)$ as ring motifs and 2VA•THPH with $R_{2}^{2}(9)$ and $R_{3}^{3}(9)$. The hydrogen bonding in VA•2CAF does not contain a ring motif. Ring motifs were also found in the new compounds where isonicotinamide and nicotinamide were used as co-crystal formers (2VA•2INM•2H2O, VA•NAM, PAA•INM, 2PAA•2NAM, HPAA•2INM, CFA•3INM, p CA•NAM and tFER•2INM).

When using Mercury ${ }^{4}$ software for the location of the solvent in the structure, it was found out that water molecules were located in cavities for most of the new compounds except for the (HPAA^{-})($\left.\mathbf{C I N D}^{+}\right) \cdot \mathbf{I P A} \cdot \mathrm{H}_{2} \mathbf{O}$ structure (isopropanol and water molecules were located in channels).

Changing the solvent as illustrated in chapter 3, 4, 6 and 7 did not have an effect on the crystalline products obtained. However in chapter 5, a solvent change in the preparation of HPAA and CIND salts resulted in two different crystal structures. (HPAA^{-})($\left.\mathrm{ClND}^{+}\right)^{-0.5} \mathrm{H}_{2} \mathrm{O}$ was formed upon dissolution of HPAA and CIND in ethyl methyl ketone whereas (HPAA^{-})($\left.\mathbf{C I N D}^{+}\right) \cdot I \mathrm{PA} \cdot \mathrm{H}_{2} \mathbf{O}$ was prepared in isopropanol.

The same observation was made in chapter 8 with the enantiomeric resolution of PPA. A salt, (($\left.\boldsymbol{R}^{2} \mathbf{P P A}^{-}\right)\left(2 \mathbf{Q U I N}^{+}\right)$) was obtained when both components racemic PPA and QUIN were dissolved in acetonitrile and a salt hydrate ((R,S-PPA $\left.\left.{ }^{-}\right)\left(\mathbf{Q U I N}^{+}\right) \cdot \mathbf{H}_{2} \mathbf{O}\right)$) crystallised in ethyl methyl ketone. Table $\mathbf{1 0 . 2}$ lists the solvents used in the study.

Various methods for the preparation of the compounds were attempted including neat grinding of the starting components, slurry conversion; solvent drop grinding and liquid assisted grinding. The PXRD patterns obtained were compared to the calculated PXRD patterns obtained from LAZYPULVERIX. ${ }^{5}$

However, the grinding experiment of PAA with the alkaloid compounds (CIND, QUID and QUIN) was not possible due to the formation of a paste-like product when PAA was ground with any of the alkaloids.

Table 10.1: Summary of selected characteristics of the structures investigated.

Complex	Bases	Complex ratio	Space group
VA•ACRI	Acridine	1:1	$P 2_{1} / n$
VA-2CAF	Caffeine	1: 2	$P-1$
2VA•2INM- $2 \mathrm{H}_{2} \mathrm{O}$	Isonicotinamide	2: 2: 2	$P-1$
VA•NAM	Nicotinamide	1:1	$P-1$
VA•THBR-2 $\mathrm{H}_{2} \mathrm{O}$	Theobromine	1:1:2	$P-1$
2VA•THPH	Theophylline	2: 1	$P 2_{1} / \mathrm{c}$
2VA-2U	Urea	2: 2	$P-1$
PAA•ACRI	Acridine	1:1	$P-1$
2PAA•CAF	Caffeine	2: 1	$P 2_{1 / c}$
$\left(\mathrm{PAA}^{-}\right)\left(\mathrm{CIND}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$	Cinchonidine	1: 1: 1	C2
PAA•INM	Isonicotinamide	1:1	C2/c
2PAA-2NAM	Nicotinamide	2: 2	$P 2_{1} / n$
$\left(\mathrm{PAA}^{-}\right)\left(\mathrm{QUID}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$	Quinidine	1:1:1	$P 2_{1}$
(PAA^{-})(QUIN $\left.{ }^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$	Quinine	1: 1: 1	$P 2_{1}$
(HPAA ${ }^{-}$)(ACRI^{+}) $\cdot \mathrm{HPAA} \cdot \mathrm{ACRI}$	Acridine	1: $1: 1: 1$	P1
(HPAA^{-})($\left.\mathrm{CIND}^{+}\right) \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$	Cinchonidine	1: $1: 1$	C2
$\left(\mathrm{HPAA}^{-}\right)\left(\mathrm{CIND}^{+}\right) \cdot I \mathrm{PA} \cdot \mathrm{H}_{2} \mathrm{O}$	Cinchonidine	1:1:1:1	$P 2_{1} 2_{1} 2_{1}$
HPAA-2INM	Isonicotinamide	1:2	$P-1$
$\left(\mathrm{HPAA}^{-}\right)\left(\right.$QUID $\left.^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$	Quinidine	1:1:1	$P 2_{1}$
$\left(\mathrm{HPAA}^{-}\right)\left(\right.$QUIN ${ }^{+}$)	Quinine	1:1:1	$P 2_{1} 2_{1} 2_{1}$
CHPAA	CHPAA	-	$P-1$
CHPAA•ACRI	Acridine	1: 1	$P-1$
CFA•3INM	Isonicotinamide	1:3	$P-1$
$p C A \cdot N A M$	Nicotinamide	1:1	$P 2_{1} / \mathrm{c}$
$\left(p \mathrm{CA}^{-}\right)\left(\mathrm{QUIN}^{+}\right) \cdot p \mathrm{CA} \cdot \mathrm{MeOH} \cdot \mathrm{H}_{2} \mathrm{O}$	Quinine	1:1:1:1:1	$P 2_{1}$
tFER-2INM	Isonicotinamide	1;2	$P-1$
$\left(\right.$ R,S-PPA $\left.{ }^{-}\right)\left(\right.$QUIN $\left.^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$	Quinine	!: 1:1	C2
(R-2PPA ${ }^{-}$)(2QUIN ${ }^{+}$)	Quinine	2: 2	$P 2_{1}$
$\left(\mathrm{S}-\mathrm{PBA}^{-}\right)\left(\mathrm{CIND}^{+}\right) \cdot \mathrm{H}_{2} \mathrm{O}$	Cinchonidine	1: 1:1	$P 2_{1} 2_{1} 2_{1}$

Table 10.2: Solvents used in the study.

Solvent names	Molecular formula	Mol wt $\left(\mathrm{g} \cdot \mathrm{mol}^{-1}\right)$	$\mathrm{Bp}\left({ }^{\circ} \mathrm{C}\right)$
Acetonitrile	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}$	41.05	$81-82$
Acetone	$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$	58.08	56
Chloroform	CHCl_{3}	119.38	61.20
Diethyl ether	$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$	74.12	34.60
Ethanol	$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$	46.07	78.37
Ethyl methyl	$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$	72.11	79.64
ketone			
Isopropanol	$\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$	60.10	82.5
Methanol	$\mathrm{CH}_{4} \mathrm{O}$	32.04	65.00
Tetrahydrofuran	$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$	72.11	66.00
Water	$\mathrm{H}_{2} \mathrm{O}$	18.02	100.00

REFERENCES

1. Tiekink. E. R. T \& Vittal. J. J. Frontiers in Crystal Engineering. John Wiley \& Sons, Ltd, Chichester, UK. 2006.
2. Khan. M, Enkelmann. V \& Brunklaus. G. J.Am.Chem. Soc. 2010, 132, 5254 5263.
3. Spek. A. L. PLATON: A multipurpose crystallographic tool: Version 10500: e 1980-2003.
4. Macrae. C. F, Eddington. P. R, McCabe. P, Pidcock. E, Shields. G. P, Taylor. R, Towler. M. \& van de Streek. J. Mercury: visualization and analysis of crystal structures. J. Appl. Crystallogr. 2006, 39, 453-457.
5. Yvon. K, Jeitschko. W \& Parthe. E. Appl. Crystallogr. 1977, 10, 73 - 74.
