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ABSTRACT 

The experiment was conducted with the objectives of establishing effects of regulating 

hydroponic solution temperatures on the chlorophyll content and photosynthesis processes, 

accumulation of anthocyanins and flavonoids, nutrient uptake and growth and development of 

pregnant onion (Ornithogalum longibracteatum L.) in the glasshouse during winter periods in 

2009 and 2010. The plants were exposed to four hydroponic solution temperatures (control (10 - 

15°C), 26°C, 30°C and 34°C). The treatments were arranged in a complete randomized design. 

 

Results from this study conducted in the glasshouse in 2009 and verified in 2010 showed that 

photosynthesis rate (A) and the gas exchange parameters [stomata conductance (gs), 

intercellular CO2 concentration (Ci) and transpiration (E)] were significantly increased by 

elevating the hydroponic solution temperatures to 26-30°C compared with the control and then 

decreased significantly at 34°C.  Furthermore, increasing hydroponics solution temperature from 

26°C to 34°C significantly increased the levels of flavonoids and anthocyanins in roots, bulbs, 

shoots and flowers of O. longibracteatum in both years 2009 and 2010.  

 

Warming of the hydroponic solution to 26, 30 and 34oC significantly increased the uptake of (N, 

P, K, Ca, Mg, S, Na Fe, Cu Zn, Mn and B and Mo) in organs of O. longibracteatum (root, bulbs 

shoot, and whole plant) in 2009 and verified in 2010. The control treatments 10/15°C (day/night) 

had the lowest uptake of most nutrients. 

 

Results from the two years study also showed that plant growth parameters such as number of 

bulbs per plant, bulb circumference, flower stalk length, flower length, and dry and fresh weights 

of root, bulb, shoot and flower respectively were significantly increased by warming the 
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hydroponic solution. Elevating the hydroponic solution temperature to a range of 26 - 30°C 

induced best growth and produced the highest dry matter yield in O. longibracteatum under 

glasshouse conditions whereas further increase to 34°C resulted in reduced growth and yield.  
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Chapter 1 

 

1.0 Introduction and literature review 

 

1.1 Possible effects of regulating hydroponic water temperature on plant growth, 
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Abstract 

 

Water temperature can affect many physiological processes during plant growth and 

development. Temperatures below or above optimum levels may influence plant metabolic 

activities positively or negatively. This may include accumulation of different metabolites such 

as phenolic compounds, reactive oxygen species (ROS), nutrient uptake, chlorophyll pigment 

formation, and photosynthesis process and finally the growth and development of the plant.  

The optimum temperature of the growth medium can contribute to improving and optimising 

the ealier mentioned plant physiological processes. Information on how the temperature of 

hydroponic solution influences certain flowering plant production in glasshouses during the 

winter is limited. This review suggest the possible benefits of regulating temperatures in the 

hydroponic solution with the aim of optimising production of flower in the glasshouse during 

winter periods. 

 

Keywords: Chlorophyll pigmentation, nutrient uptake, phenolic compounds, photosynthesis 

rate, reactive oxygen species, regulated temperature. 
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1.2 Introduction 

 

 Temperature is the major environmental factor that influences the vegetative growth 

processes in plants from the initial stages of development to flower formation (Roh and 

Hong, 2007). During growth, optimum temperature is required below and above which may 

impair plant development (Summerfield et al., 1989). Very low or very high temperatures in 

the growth environment may be detrimental to various metabolic processes in plant tissues 

such as nutrient uptake, chlorophyll formation and photosynthesis (Taylor and Rowley, 1971; 

Rhee and Gotham, 1981; Markwell et al., 1986). Studies have shown that, when 

temperatures are lowered, the nutrient uptake, chlorophyll pigmentation and photosynthesis 

rate are negatively affected. However, at optimum levels the metabolism rates in plants are 

improved (Taylor and Rowley, 1971; Macduff et al., 1986; Engels et al., 1992; Kurek et al., 

2007) and increase the plant growth (Went, 1953; Gonzàlez-Meler et al., 1999; Frantz et al., 

2004). Furthermore, stress due to very low temperature may induce plants to produce 

different species of reactive oxygen species (ROS): such as superoxide (O2-), hydrogen 

peroxide (H2O2), oxygen (O2) and HO (hydrogen oxide) which may ultimately culminate into 

oxidative stress, thus, damaging the plant cells. Generally, an increase or decrease in 

temperature above or below the optimum level is known to alter several physiological 

processes in plants and damage the plant cells, thus, altering the growth (Wahid, 2007; Yang 

et al., 2009). 

 

The accumulation of other metabolites such as anthocyanins and flavonoids in plants may be 

influenced by temperature (Kleinhenz et al., 2003; Ling et al., 2007). Studies have shown 

that in several plants, increasing thermal stress slightly above or below the optimum range 

may induce the production and accumulation of phenolic compounds such as flavonoids and 

anthocyanins (Rivero et al., 2001; Taulavuori et al., 2004; Guy et al., 2008; Padda and 

Picha., 2008), a defensive mechanism employed by plants against this type of stress. In 

several plants, thermal regulation of hydroponic solution temperature may optimise the plant 

physiological processes mentioned earlier, thus, affecting the quality of the plant. 
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Due to a decrease in temperature, commercial growers experience a lower level of 

ornamental plant production during winter than in summer (Olivier, 1974; Mills et al., 1990). 

However, there is a high demand for flowers during winter season when temperatures are 

below optimum for flower production. During this period, the production levels are lower due 

to lowered temperature (Olivier, 1974; Mills et al., 1990).  By modifying irrigation water 

temperature to optimum levels, specific ornamental plants can be grown hydroponically in 

greenhouse during winter period. Heating of hydroponic solution in greenhouse production 

has shown success in other parts of the world in a variety of crops (Moorby and Graves, 

1980; Rovira, 2005; Kozai, 2006; Sethi and Sharma, 2007). This review exploits the potential 

of increasing production of flowers during winter season by regulating temperatures in the 

hydoponic solution to optimize plant growth. 

 

1.3 Effects of regulating hydroponic water temperature on profiling of secondary 

metabolites production such as flavonoid and anthocyanins. 

 

Phenolic compounds are the major molecules among plant secondary metabolites and they 

play a very important role in plant development (Ndakidemi and Dakora, 2003; Makoi and 

Ndakidemi, 2007). In the vacuole of a plant organ such as leaves and flowers, anthocyanins 

plays major role in flower colour and fragrance (Harborne, 1980; Schijlen et al, 2004). 

Anthocyanins and flavonoid accumulation in plants is influenced by environmental factors 

such as light, temperature, and other stress levels (Kleinhenz et al., 2003; Ndakidemi and 

Dakora 2003; Ling et al., 2007; Makoi et al., 2010). Like all other organisms, plants may 

exhibit the maximum rate of metabolite production at an optimum temperature for which they 

have adapted (Aldred et al., 1999).  

 

It has been reported that cultivation of crops under cold temperature decreases metabolites 

as a results of low rate of yield (Van Der Ploeg and Heuvelink, 2005; Thakur et al., 2010).  

Studies have shown that, the accumulation of phenolic compounds such as anthocyanins 
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and flavonoid by plants in winter can differ in comparison to summer due to temperature 

variations (Mori et al., 2005; Olsen et al., 2008; Kassim et al., 2009).  Different mechanisms 

are proposed. For example, variations in temperature may exert thermal stress on the plants 

tissues, consequently, interfering with the activity of the various plant enzymes and hence 

the production of metabolites. In this context, significant changes in phenolic compound 

metabolism may be affected by extended periods of low temperature which may result in 

chilling injury. Taulavuori et al. (2004) and Padda and Picha (2008) reported that, a plant 

exposed to low temperature resulted into increased content of phenolic compound in their 

tissues. Moreover, anthocyanins are highly water soluble and therefore produced under 

different stress levels, such as temperature stress.   

 

Research evidence suggests that, plants may exhibit the maximum rate of metabolite 

production at a given optimum temperature.  In most plants, increasing thermal stress slightly 

above the optimum range may induce the production and accumulation of metabolites such 

as flavonoids and anthocyanins (Rivero et al., 2001; Guy et al., 2008). Elevated 

temperatures above the optimum level similarly increases enzyme activity (Pearcy, 1977) 

and results in the production of different types of metabolites. The effect of thermal stress is 

often manifested by the appearance of physiological injuries into the plant tissues thus, 

resulting into the excessive production of secondary metabolites (Revero et al., 2001) a 

strategy used to protect the plant from further stress damage.  To verify this, Wahid (2007) 

reported that, accumulation of anthocyanins in Photinia spp and aster (Aster amellus) flower 

were increased with exposure to high temperature. Other studies involving Rehmannia 

glutinosa have reported decreased content of phenolic compounds at very high temperatures 

(Chung et al., 2006). 

  

Little information is available on the influence of hydroponic solution temperatures on the 

pigment formation for plants grown in the greenhouse conditions during winter. From this 

background, it is therefore important to establish the effects of temperature gradients on 
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metabolite production in plants grown in the hydroponic media with varied temperatures 

during winter period.  

 

1.4  Effects of regulating hydoponic water temperature on reactive oxygen species 

in different plant tissues. 

Reactive oxygen species (ROS) are warning signal for plants subjected to stress including 

cold stress (Nobuhiro and Ron, 2006). Reactive oxygen species such as superoxide (O2-), 

hydrogen peroxide (H2O2), oxygen (O2) and HO (hydrogen oxide) are toxic molecules 

producing oxidative damage to proteins, DNA and lipids which may finally affect plant growth 

and development (Ping et al., 2008). Excessive accumulation of ROS in plants occur when 

stress is severe and thus causing oxidative injury (Ling et al., 2007). It is likely that, ROS 

produced at low temperatures can cause damage to cellular components by disrupting 

metabolic function (Anderson et al, 1995). Some research evidence indicated that cold stress 

enhanced the transcription of protein and activity of different reactive oxygen species-

scavenging enzymes in plants (Nobuhiro and Ron, 2006).  

 

However, the exposure to low temperature may increase the amount of reactive oxygen 

species (Ping et al., 2008), an antioxidant strategic defence mechanism enabling plants to 

adapt in heat stressed environments. The ROS-scavenging mechanisms have an important 

role in protecting plants against temperature stresses (Miller et al., 2006). 

 

Accordingly, ROS production is increased by oxidative stress under unfavourable 

environmental conditions such as those involving temperature changes to extreme limits 

(Gechev et al., 2006).  The accumulation of ROS in plants can lead to many physiological 

injuries of tissues, loss of membrane integrity and chlorophyll bleaching (Xu et al., 2006; Liu 

and Pang, 2010). Furthermore, ROS is accredited for decreasing membrane stability and 

facilitate lipid peroxidation (Sairam et al., 2002).  
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Generally, most plants display their antioxidative enzyme activities at a temperature of 25°C 

(Peltzer et al., 2002). However, the exposure of plants to low temperature may increase the 

amount of ROS as an antioxidant strategic defence mechanism enabling plants to adapt in 

low temperature stressed environments (Ping et al, 2008). Studies conducted in low 

temperature environments revealed reductions in enzymatic activation energies due to 

production of ROS (Peltzer et al., 2002). 

 

Many scholars have indicated that high temperature may enhance the production of ROS 

including singlet oxygen (O2), superoxide radical (O2−), hydrogen peroxide (H2O2) and 

hydroxyl radical (OH−) (Liu and Huang, 2000; Suzuki and Mittler, 2006). These may cause 

lipid peroxidation and pigments membrane instability (Xu et al., 2006; Lopez-Vazquez et al, 

2007), then negatively affecting plant metabolism and limiting growth and yield (Sairam and 

Tyagi, 2004). In heated environments, the protection against oxidative stress is an important 

component in determining the survival of a plant under heat stress (Gong et al., 1997; Dat et 

al., 1998). Assessing the accumulation of ROS in glasshouse plants grown under different 

hydroponic temperature regimes will enable us to understanding how ROS can affect growth 

and development of such plants grown under a controlled environment during winter period. 

Further research is necessary to establish the mechanisms involved in the production of 

antioxidants in cells exposed to heat stress. 

 

1.5 Effects of regulating hydroponic water temperature on nutrient uptake and 

accumulation in plant tissues 

 

Plant nutrients have a great potential for increasing yield and the capable of promoting plant 

growth (Ndakidemi and Semoka, 2006). Nutrient uptake and accumulation in plant tissues 

may be influenced by various environmental factors including temperature (Reay et al., 1999; 

Aðalsteinsson and Jensén, 2006). Calatayud et al. (2008) revealed that in most plant 

species, nutrient uptake by roots decrease at low temperatures. Temperatures of growth 

media may influence chemical reaction rates of nutrients in the solution, nutrient transport in 
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the medium, physiological aspects related to ion uptake rate, and functioning of soil microbial 

communities (Pregitzer and King, 2005). Therefore, it is of paramount importance to regulate 

hydroponics solution temperatures in situations whereby plants are grown in controlled 

environment during winter months. Optimizing temperature in the growth medium can be 

achieved by warming the nutrient solution (Morgan et al., 1980). 

 

Studies have shown that, elevated temperatures increased nutrient uptake in cucumber 

(Cucumis sativus L.) and enhanced plant growth leading to significant increase in yield 

(Daskalaki and Burrage, 1998). Experiment involving Jojoba (Simmondsia chinensis) showed 

that, the uptake rate of N, P, K, Na, Fe, Mn and Zn were significantly  reduced at low 

temperatures compared with those exposed to temperatures as high as 33°C (Reyes et al., 

1977). Furthermore, nutrient concentrations in roots were similarly higher in plants grown at 

33°C than at 21 or 27°C (Reyes et al., 1977). Studies by Hood and Mills (1994) and Stoltzfus 

et al. (1998) showed that, increasing temperature from 15 to 29°C increased uptake of P, K, 

Ca, Mg, Fe, Mn, Zn and B and finally the plant growth. Nutrient uptake, especially N in pine 

(Pinus sylvestris L.) increased with increasing root temperature from 8°C to 16°C 

(Vapaavuori et al., 1992). In cucumber (Cucumis sativus L.), uptake of N, P, K, Ca, and Mg 

was increased when temperature was raised in closed hydroponic system from 12°C to 20°C 

(Daskalaki et al., 1998). 

 

On the other hand, low temperatures are known to induce B deficiency and leaf damage in 

crop plants (Huang et al., 2005). For example in cucumber, low temperature of (10°C) 

doubled nitrate accumulation in the root zone when compared with the root zone 

temperatures of 18°C and 26°C (Kim et al., 2002). This was probably due to restricted 

mobility and volatilisation of nitrates at low temperatures (Thomas and Kissel, 1970), 

depending on the type of nutrients. Nutrient uptake for plants grown in glasshouse may be 

positively and adversely affected by manipulating the hydroponic solution temperature to the 

optimum level. Studies should therefore be conducted to establish the optimum temperatures 

to meet nutrient uptake demands of specific plants during winter season. 
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1.6 Effects of varying hydroponic water temperature on chlorophyll pigmentation. 

 

Colour pigmentation in plants, especially the chlorophyll, is important to plant growth and 

development. The amount of chlorophyll formed in plants is strongly influenced by 

environmental factors including temperature changes (Hauvax and Lannoye, 1984; Tian et 

al., 1996; Shvarts et al., 1997; Yun et al., 1998; Kleinhenz et al., 2003). The influence of 

temperature on chlorophyll formation involves several mechanisms. At optimum 

temperatures, synthesis of metabolites such as carbohydrates may be enhanced, thus, 

leading to increased chlorophyll in the leaves (Reay et al, 1998; Al-Hamdani and Ghazal, 

2009). Scientific evidence points out that, plant subjected to various levels of stress (high 

temperatures) can damage their cells and eventually affecting chlorophyll quality (López-

Ayerra et al., 1998). Vu and Yelenosky (1987) reported that, the amount of chloroplast 

proteins tends to drop with increasing growth temperatures. The experiments involving 

testing of maize at various temperatures revealed that their exposure to higher temperatures 

triggered membrane damage and lowered the chlorophyll concentration in the plant tissues 

(Yang et al., 1996). In barley (Hordeum vulgare L.), other researcher (Ilík et al., 2000)  

reported plasmalema and chloroplast membrane damage, loss in cell permeability, 

thylakoids burst and the formation of condensed structures due to high temperature.  

Funamonto et al. (2003) also showed that in broccoli (Brassica oleracea); chlorophyll 

degradation by heat treatment was mainly due to the suppression of chlorophyll peroxidase 

activities in microsomes and cytosol.  

 

Low temperature treatments may also affect chlorophyll quality in plants as the cells are 

subjected to cold stress (López-Ayerra et al., 1998). Studies have shown that orange trees 

(Citrus sinensis L. Osbeck) grown under low temperature contained less chlorophyll than 

those grown at high temperatures (Vu and Yelenosky, 1987). In spinach (Spinacia oleracea 

L.) lipid peroxidation and chlorophyll levels were reduced by cold temperatures (López-

Ayerra et al., 1998) by a mechanism which involved shrinking and damaging of the elastic 
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cells due to cold stress. Generally, when plants are subjected to low temperature stress, the 

development of chlorotic bands on leaves may appear (Vu and Yelenosky, 1987). Under 

such circumstances, a decrease in chlorophyll content may be a consequence of oxidative 

stress which leads to chlorophyll deficiency (Bacelar et al., 2006). With regard to thermo 

regulation in hydroponic systems, no information is available on the influence of 

temperatures on the production of chlorophyll pigments in plants grown during the winter 

period. 

 

1.7 Possible effects of regulating hydroponic water temperature regimes on the 

photosynthesis rate  

 

Temperature is an important environmental factor to plants, which directly influences their 

photosynthetic functions (Vu and Yelenosky, 1987; Collatz et al., 1991; Williams and Black, 

1993; Ling et al., 2007). An increase in temperature to optimum levels may favourably shift 

electron transport and make the plant to synthesise adequate metabolites such as 

carbohydrates thus, leading to optimum growth (Piere and Urs, 2005). It is well known that, 

warm temperature conditions affect plant growth structures including all physiological 

processes in plants such as membrane structure, stomatal conductance and protein 

synthesis. The low temperature effects on photosynthesis may include changes in stomatal 

and non-stomatal characteristics (Pearcy, 1977; Berry and Bjorkman 1980; Vu and 

Yelenosky, 1987; Vierling, 1991; Calatayud et al., 2008). Studies on olive plants showed that 

low temperature decreased photosynthesis and this was correlated to its influence on 

stomatal closure (Bacelar et al., 2006). Temperatures above the optimum levels may also 

damage various cell functions, as the photosynthesis process is very sensitive to heat stress 

(Piere and Urs, 2005). Similarly, photosynthesis can also be affected negatively by low root 

temperature (Calatayud et al., 2008).  

 

According to Lambreva et al. (2005) stimulation of photosynthesis was observed at the 

growth temperature of 23°C but at 39°C the effects of elevated CO2 on photosynthesis was 
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induced downward. Generally, increased temperature above the optimum limit may reduce 

photosynthetic rate (Wahid et al., 2007).  For instance, in a study involving rice (Oryza sativa 

L.) plant, Mohammed and Tarpely (2009) indicated that high temperatures had negative 

effect on photosynthesis as well as various enzymes involved in the process. Uniformity of 

shoots and time to flower on plants is also increased by increasing photosynthetic photon 

flux (Quedado and Friend, 1978; Karlsson et al., 1989). However, information concerning the 

effects of hydroponics water temperature during winter on the photosynthesis rate on plants 

is rather limited in plants grown under glasshouse conditions. Therefore, it is important to 

document the influence of plants photosynthetic activities when exposed to hydroponic 

media of different temperature treatments. Such information could assist in developing 

adaptable hydroponics solution temperature for cultivating glasshouse plants with highly 

functional substances.   

 

1.8 Effects of temperature changes in hydroponic water on plant growth and 

development. 

  

Water temperature is an important growth factor that may influence plant development 

including plants growing in hydroponic system. Therefore, it is beneficial to study the 

optimum temperature requirements for different crops grown in climates with adverse winter 

conditions. 

   

Water temperature plays a vital role in plant development (Chung et al., 2006).  At optimum 

temperatures, water can nourish growth while at lower or high levels; plant growth can be 

negatively affected (He et al., 2002). In plants, water is required to maintain cell turgidity so 

as to ensure continuous column of moisture in the cells (Stewart and Dwyer, 1983; Noguchi 

and Terashima, 1997; Outlaw, 2003). It is also indispensable to the intracellular chemical 

processes that keep the plant growing (Outlaw, 2003; Yamori et al., 2006). Cold water may 

cause frost damage to plants by forming sharp-edged ice crystals, which puncture cell walls.  

Studies have shown that, at lower temperatures (10°C), flower abortion in different plant 
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occurred because pollen and ovule fertility were highly sensitive to cold temperature 

(Jakobsen and Martens, 1994; Dom´ınguez et al., 2005; Singh et al., 2008). In flower 

industry, these effects on flower physiology can lead to drastic reduction in economic yield 

(Diepenbrock, 2000; Thakur et al., 2010).  

 

Temperature may also affect many other growth physiological processes at different 

developmental stages of the plant. Studies have shown that, most tender plants will grow 

well in temperatures ranging from 6°C to 24 °C and half-hardy plants from 10°C to 18 °C 

whereas hardy plants may survive in temperature range of 7 °C to 16 °C (Bubel, 2007; Gesch 

and Forcella, 2007). Therefore, when water temperatures drop below 6°C in such type of 

plants, thermal modifications can be essential to sustain growth.  

 

The effects of temperature on vegetative growth and flower development of plant will vary 

depending on the growth stage of the plant (Selander and Welander, 1984). In a glasshouse 

experiment the effect of temperature on Primula vulgaris and  showed that, an increasing 

temperature up to 18°C delayed flower opening and decreased the number of flowering 

shoots, whereas at a lower temperature (12°C) inhibition of flower development was 

overcome (Selander and Welander, 1984). In other studies involving Aeschynanthus 

speciosus, increasing the temperature from 12°C to 21°C resulted in higher percentage of 

flowering plants with increased number of leaves formed (Welander, 1984). In separate 

studies, number of days to flowering of Centradenia inaequilateralis and flower formation was 

significantly affected by increasing temperature (Tromp, 1984; Friis and Christensen, 1989; 

Zhu et al., 1997; Roh and Hong, 2007). Other studies conducted in the glasshouse to test the 

effect of temperature in Primula vulgaris, showed that increasing the temperature up to 18°C 

delayed flower opening and decrease the number of flowering shoots whereas at 12°C flower 

development was enhanced and the plant performed well (Selander and Welander, 1984; 

Roussopoulos et al.,1998). Similarly, studies on a different plant (Chrysanthemum) showed 

that increasing temperature from 14°C to 26°C delayed flowering for more than 30 days 

(Karlsson et al., 1989). In Passion fruits (Passiflora edulis), temperature ranging from 25°C to 
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30°C limited flowering, while temperature ranging from 10°C - 15°C reduced the yield of 

vegetative growth (Menzel et al., 1987). Therefore, it is important to establish other possible 

effects of regulating temperatures in the hydroponic solution on plant growth and 

development in the glasshouse during winter periods. 

 

1.9 Conclusion 

 

 Temperature changes in hydroponic media temperature may affect development of plants. 

Most plants are unable to grow at sub optimum levels. When temperatures are not at 

optimum level, several physiological functions such as photosynthesis, chlorophyll formation 

and pigmentation, nutrient uptake, accumulation and synthesis of secondary metabolites in 

plants is affected. Thermo regulation of hydroponic solution in the glasshouse is a technique 

which can be used to optimise the production of flowers or flowering during winter periods. 
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Chapter 2 

 

2.0 Justification, research hypothesis and objectives of the study. 

 

2.1 Justification 

 

Production of plants such as O. longibracteatum in Western Cape during winter is difficult 

than in summer owing to lower temperatures experienced by growers during this period.  In 

winter season, irrigation water from taps is always available at lower temperatures ranging 

between 0 - 10°C as compared to summer. Plant production in winter period in the 

greenhouse can be achieved by modifying temperatures in hydroponic solution to optimum 

levels through use of specialised heaters. Successes in using such systems in different 

plants has been reported (Moorby and Graves,1980; Welander, 1984; Sethi and Sharma, 

2007)  

 

2.2 Research hypothesis 

 

Lower temperatures below the accepted limits in irrigation water in winter season may 

negatively impact the plant growth in different aspects. Increasing the temperature of 

irrigation water to optimum levels will positively influence growth, accumulation of metabolites 

and nutrients in O. longibracteatum. 

 

2.3 Overall aim of the study 

 

The aim of this study was to manipulate hydroponic temperatures to enhance the production 

of O. longibracteatum in the greenhouse.  

 

2.4 Objectives of the study were to: 

 

 Assess the effect of varying hydroponic solution temperature on chlorophyll synthesis 

and photosynthetic rate in O. longibracteatum in cold season. 

 To investigates the effects of hydroponics solution temperature on the concentrations 

of anthocyanins and flavonoids in different tissues of  O. longibracteatum  

 To assess the influence of different temperature treatments in the hydroponic cultures 

on nutrient uptake and accumulation in the tissues of O. longibracteatum.  
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 To establishing effects of regulating temperatures in the hydroponic solution on the 

growth and development of O. longibracteatum in the glasshouse during winter 

periods. 
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Chapter 3 

 

3.0 Chlorophyll pigmentation and photosynthetic parameters in Ornithogalum 

longibracteatum L. as affected by varying temperatures in hydroponics solution. 
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Abstract 

 

The effects of different temperature regimes of hydroponic solution temperature on the 

chlorophyll pigmentation and photosynthesis of O. longibracteatum L. were determined in the 

greenhouse for 10 weeks in year 2009 and 2010. The plants were irrigated with hydroponic 

solution heated to various temperatures (26, 30 and 34°C) via pumps connected to 4 sets of 

water tanks each maintained at the experimental temperatures using Dolphin aquarium 

heaters. Unheated water supplied from the forth tank served as control. All the plants were 

supplied with 1mg/L nutrient solution of Hortical Calcium Nitrate (Hortical Ca(NO3)2) and 

changed at weekly intervals. After 2 -10 weeks of experimentation, data showed that 

chlorophyll a, chlorophyll b and total chlorophyll were significantly increased by elevating the 

hydroponic solution temperature from 26 - 30°C and started decreasing at 34°C compared 

with the control in both 2009 and 2010. Photosynthesis rate (A) and the gas exchange 

parameters [stomata conductance (gs), intercellular CO2 concentration (Ci) and transpiration 

(E)] were significantly increased by elevating the hydroponic solution temperatures to 26-

30°C compared with the control and then decreased significantly at 34°C. The findings from 

this study suggest that controlled production of Ornithogalum longibracteatum L. during 

winter seasons is possible by heating the hydroponic solution up to 30°C beyond which there 

was impaired chlorophyll formation and reduced photosynthesis. 

 

Key words: Intercellular CO2 concentration, photosynthesis rate, stomata conductance, 

transpiration. 
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3.1 Introduction 

 

Ornithogalum longibracteatum L. is classified as a medicinal bulb used wildly in South Africa. 

The plant which is also commonly known as a pregnant onion is used as a medicinal plant by 

traditional healers (Kulkarni et al., 2005). From its potential as a medicinal plant, its on-farm 

and greenhouse cultivation is becoming popular. O. longibracteatum can be grown 

hydroponically in a greenhouse even during the adverse climatic conditions (Rosik-Dulewska 

and Grabda, 2002) provided that the harsh environmental factors are addressed. O. 

longibracteatum grows best at temperatures ranging from 22 to 27°C (Luria et al., 2002) and 

does not grow well in cold weather if temperatures are less than 11°C (Halevy et al., 1971).  

 
 
Temperature is an important factor affecting physiological processes in plants including 

photosynthetic rate and chlorophyll synthesis (Lambreva et al., 2005; Calatayud et al., 2008). 

Like other growth processes in plants, temperature changes in the soil and air may have 

positive or negative impacts on leaf photosynthetic rate and the chlorophyll synthesis (Vu 

and Yelenosky, 1987). For example, some of the photosynthetic parameters such as stomata 

conductance (Gs), intercellular CO2 concentration (Ci) and transpiration (E) are known to be 

influenced by the changes in temperature (Drake et al., 1970; Pearcy, 1977; Haldimann and 

Feller, 2004). In plants such as tomato (Lycopersicon esculentum L.), low temperature (1°C) 

reduced stomata conductance by 25% leading to decreased leaf chloroplast functioning 

(Martin et al., 1981). However, low temperature inhibits the rate of photosynthesis by 

approximately 60% as the result of the impairment of water oxidation mechanism (Martin et 

al., 1981). Other studies (Haldimann and Feller, 2004) have shown that increase in leaf 

temperature up to 45°C in oak (Quercus pubescens L.) plants reduced photosynthesis rate 

by 90%, and stomata conductance, but increased intercellular CO2 compared with when it 

was 25°C. 

 

According to Drake et al. (1970), high temperatures, ranging from 35 to 40°C, increased 

transpiration in leaves and low levels such as 5 and 10°C reduced transpiration of Xanthium 
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spp plants, ultimately affecting stomata conductance activities. In another study, 

temperatures above 25°C led to closure of stomata, thus reducing the transpiration in 

potatoes (Solanum tuberosum L.) a mechanism for adaptation to hot environment (Ku et al., 

1977).  In a study by Baig and Tranquillini (1980), it was reported that increasing temperature 

from 15 to 20°C increased transpiration rate in Pica abies and Pinus cembra to 65.8 % and 

63.6% respectively. Similarly, when temperature was further increased to 25°C, transpiration 

was also increased to 146.3% and 196.7% respectively.  

 

Research has revealed that at low temperatures (10oC), the peroxidation activities in the 

chloroplast membrane were lowered due to inhibition of the metabolic processes in the 

leaves of coffee seedlings (Gonçalves de Oliveira et al., 2009). It was also showed that low 

temperature (8°C) significantly reduced the chlorophyll levels in spinach leaves (Spinacea 

oleraceae L.) (Lopez- Ayera et al., 1998).  The findings of Ilík et al. (2000) strongly suggested 

that, an increase in temperature within the range of 25 to 75°C affect the chloroplast 

membrane which resulted to the burst of thylakoids and formed condensed structures in 

barley leaves. Temperature variations in the rooting zone are an important factor which may 

influence different metabolic processes in plants (Walker, 1969; Gur et al., 1972; Cooper, 

1973; Sattelmatcher., 1990). For instance, it is suggested that higher temperatures in the 

rooting zone above the optimum range could result into excessive consumption of carbon 

assimilation in photosynthesis (Huang and Gao, 2000; Xu and Huang, 2000a, b, 2001; Liu 

and Huang, 2001). Furthermore, research has shown that the disturbance of carbohydrate 

metabolism in roots was a major primary factor responsible for growth inhibitionat high soil 

temperature (Du and Tachibana, 1994; Chung et al., 2002). Therefore, it is worth 

establishing if any stress factor such as variations in temperature of the hydroponic solution 

will impair the physiological function of the plant such as those involving chlorophyll formation 

and photosynthetic processes. The purpose of this study was to determine the effect of 

changes in hydroponic solution temperature regimes on chlorophyll synthesis and 

photosynthetic rate so as to establish the optimum temperature for the growth of O. 

longibracteatum in cold season. 
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3.2 Materials and methods 

 

3.2.1 Site location and description 

 

The experiment was conducted at the greenhouse of the Cape Peninsula University of 

Technology, Cape Town, South Africa during the winter season of 2009 and 2010. A steel 

table (2.5 m x 1 m) was used as a flat surface, black plastic container (50 L), leca clay 

pebbles were supplied by Horticultural Department of Cape Peninsula University of 

Technology (CPUT), Cape Town, South Africa. Four (4) plastic gutters (2 m x 0.6 m), 4 

pumps, 20 ml black plastic pipe, cable tie and 3 Dolphin aquarium heaters were purchased 

from Builders Warehouse (Maitland, Cape Town), South Africa. Bulbs of pregnant onion (O. 

longibracteatum) used as planting material were obtained from the CPUT nursery. 

 

3.2.2 Experimental design 

 

A randomised complete block design, with four replicates, was conducted to study the effects 

of temperature on chlorophyll pigmentation and photosynthetic rate in O. longibracteatum L. 

Four white plastic gutters (2 m x 0.6 m) filled with leca clay pebbles were placed on a 2.5 m x 

1 m steel table. Water was supplied to the leca pebbles through pumps projecting from 4 

sets of black plastic containers (50 L) placed beneath the table. The water in the 3 containers 

was heated by using Dolphin aquarium heaters to maintain the temperatures at 26, 30 and 

34°C respectively. Unheated water supplied from the forth container served as a control. 

Using the thermometer, the temperature ranged between 10 and 15°C (day/night) throughout 

the experiment period. O. longebracteatum bulbs were planted in each gutter (10 bulbs per 

gutter) and supplied with nutrient solution immediately after transplanting. The nutrient 

solution was prepared according to Ocean HYDROGRO (2009) and Ocean HORTICAL 

(2009) respectively. Nutrient solution supplied from the pumps was recirculated back to the 
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black plastic container (50L) through a 20 ml black plastic pipe. The plants were left to grow 

for the period of 10 weeks. To prevent concentration of nutrients in the clay pebbles due to 

evaporation, water was drained from the gutters and refreshed after every 2 weeks.  

 

3.2.3 Determination of chlorophyll contents in plant leaves 

 

Chlorophyll concentration was extracted from the third leaf of the growing tip of each plant in 

the gutters using dimethyl sulphoxide (DMSO), as described by Hiscox and Israelstam 

(1979). The strap-like leaves were cut into small pieces, and a 100 mg of the middle portion 

of the leaf tissue was placed in a 15 ml vial containing 7 ml DMSO and incubated at 4°C for 

72 h. After the incubation, the extract was diluted to 10 ml with DMSO and 3 ml of extract 

was used to read the absorbance at 645 nm and 663 nm on a spectrophotometer (UV/Visible 

Spectrophotometer, Pharmacia LKB. Ultrospec II E) against DMSO blank. Chlorophyll levels 

were calculated using the following equations used by Arnon (1949) with a unit of mg.L-1 and 

is given thus: 

 
Chl a = 12.7D663 – 2.69D645 

Chl b = 22.9D645 – 4.68D663 

Total Chl = 20.2D645 + 8.02D663 

 

3.2.4 Measurement of photosynthesis in plant leaves 

 

At 52 days after planting, photosynthesis, stomata conductance, intercellular CO2 and 

evapotranspiration were measured in four young leaves (flag leaves) per gutter using a 

portable infrared red gas analyzer (LCpro+ 1.0 ADC, Bioscientific Ltd., Hoddesdon, 

Hertfordshire, UK). Measurements were made from 8 a.m to 11 a.m and from 2 p.m to 4 p.m 

for each replicate gutter per day. Leaves were allowed at least 5 min to acclimate to the light 

environment in the chamber. Under normal conditions, each measurement took 

approximately 2 min, which was the minimum time allowed for the readings to stabilize 
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before they were recorded. During measurements, the conditions in the leaf chamber were: 

photosynthetic photon flux density (PPFD) = 1100 μmol (quantum) m–2.s–1, relative humidity 

= 44%, leaf vapor pressure deficit = 1.83 kPa, flow rate = 400 μmol.s–1, reference CO2 = 400 

ppm, and leaf temperature = 25oC. 

 

3.2.5 Statistical analysis 

 

The experimental data collected were analysed by using a one-way analysis of variance 

(ANOVA). The analysis was performed using STASTICA Software Programme 2010 

(StatSoft Inc., Tulsa OK, USA). Where F-value was found to be significant, Fisher’s least 

significant difference (LSD) was used to compare the means at P≤0.05 level of significance 

(Steel and Torrie, 1980).  

  

3.3 Results 

 

3.3.1 Effect of temperature on chlorophyll content of leaves of Ornithogalum 

longibracteatum. 

 

Table 3.1 shows the effect of four different temperature treatments on chlorophyll content in 

the leaves of O. longibracteatum. Results showed that, relative to the control treatment, 

increasing the water temperature to 26, 30 and 34°C significantly increased the levels of 

chlorophyll a, chlorophyll b and total chlorophyll in 2009 and 2010. For instance, at 30°C, the 

level of chlorophyll a, chlorophyll b and total chlorophyll were significantly higher compared 

with all the other treatments (Table 3.1). However, as the temperature was increased to 

34°C, leaf chlorophyll content was significantly reduced compared with the other treatments 

in both 2009 and 2010. Although plants grown during 2010 season contained more 

chlorophyll than their counterparts grown in 2009, the influence of temperature showed 

similar trend across seasons.  
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3.3.2 Effect of temperature on photosynthesis and gas-exchange parameters of 

leaves of Ornithogalum longibracteatum. 

 

There was significant difference on the photosynthesis rate (A) and the gas exchange 

parameters (E, Ci and Gs) at different temperature treatments during 2009 and 2010 (Tables 

3.2, 3.3, 3.4, 3.5, 3.6 and 3.7). Generally, the photosynthesis rate and the gas exchange 

parameters were significantly increased by elevating the hydroponic solution temperatures to 

26, 30, and 34°C compared with the control. For example, results indicated that in week 2, 4, 

6, 8 and 10 the photosynthesis rate (A) values were consistently increased by modifying the 

temperature to 26 and 30°C but decreased significantly at 34°C. Data from this study showed 

that raising the temperature beyond 30°C, the photosynthesis rate (A) started experiencing 

significantly negative effects and the values were significantly maximized at 30°C in both 

years.  

 

The values for transpiration (E) recorded in weeks 2, 4, 6, 8 and 10 during 2009 and 2010 

indicated that there was significant increase in this parameter when temperatures were 

raised to 26°C, 30°C and 34°C compared with the control. Relative to the control treatment, 

increasing temperature to 26°C in weeks 2, 4, 6, 8 and 10 significantly increased E values in 

the average range of 21 - 159% in 2009 and  30 - 136% in 2010 (Tables 3.2, 3.3, 3.4, 3.5, 

3.6 and 3.7). Furthermore, compared with the control increasing temperature to 30°C in 

weeks 2, 4, 6, 8 and 10 significantly increased E values with the average range of 134 to 

206% in 2009 and 114 - 339% in 2009 and 2010 respectively. Generally, there were 

significantly reduction in E values  when the hydroponic solution temperature was raised to 

34°C compared with the 30°C treatment in both 2009 and 2010 (Tables 3.2, 3.3, 3.4, 3.5, 3.6 

and 3.7). The data showed that the best result for E was recorded in the 30°C treatment. 
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In this study, the intercellular CO2 concentration (Ci) values were significantly increased by 

elevating the hydroponic solution temperatures to 26, 30, and 34°C compared with the 

control. Data collected in weeks 2, 4, 6, 8 and 10 showed that (Ci)  values increased 

significantly when temperatures were raised from 26°C to 30 °C compared with the control 

during 2009 and 2010 (Tables 3.2, 3.3, 3.4, 3.5, 3.6 and 3.7) and started decreasing at 34°C. 

For example at 26°C, Ci values increased significantly between 21 to 45% in 2009, and 24 to 

73% in 2010. Raising temperature to 34°C, however, resulted into significant decrease in Ci 

values compared with 30°C treatments in both years. The overall results obtained during 

weeks 2, 4, 6, 8 and 10 showed that at 30°C, Ci was the highest. The average values 

ranging from 54% to 132% and 50 to 68% in 2009 and 2010 respectively. 

 

The value of stomata conductance (Gs)  increased significantly in weeks 2, 4, 6, 8 and 10 

when temperature was increased to 26, 30 and 34°C compared with the control in 2009 and 

2010 (Tables 3.2, 3.3, 3.4, 3.5, 3.6 and 3.7). For example at 26°C, results observed during 

weeks 2, 4, 6, 8 and 10 showed significantly (P≤0.05) greater Gs values and ranged from 38 

to 137% in 2009 and from 97 to 258% in 2010. During the two years of experimentation, best 

results for stomata conductance  were obtained at 30°C where their valued were increased 

significantly between 89% and 300%, in 2009 and 369% and 611% in 2010. There was 

however, a significant decline in the levels of Gs when temperature was increased to 34°C. 

  

3.4 Discussion 

 

Optimum temperature in hydroponics plays a crucial role in plant growth and other plant 

physiological characteristics including chlorophyll content. Exposure of plants to high or low 

temperatures may damage the chlorophyll membrane structures leading to low chlorophyll 

content (Ilík, 2000). Likewise, extreme temperatures may either stop or denature enzyme 

activities leading to reduced rate of A, gs, Ci) and E (Pearcy, 1977; Camejo et al., 2005). 

Maintaining optimum hydroponics temperature may be one way to ensure optimum 

chlorophyll content and increased A, Gs, Ci and E in such plants. In this study, the 
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chlorophyll content in the leaves of O. longibracteatum showed that by increasing the 

hydroponics water temperature to 26 and 30°C significantly increased the levels of 

chlorophyll a, chlorophyll b and total chlorophyll compared with the control, chlorophyll a 

content was 108, 201 and 51% at 26, 30 and 34oC respectively (Table 3.1). Similar trend was 

observed in 2010, where chlorophyll a content increased by 174, 297 and 41% by elevating 

temperatures to 26, 30 and 34oC respectively over the control (Table 3.1). Greater 

accumulation of the chlorophyll content in the leaves of O. longibracteatum L. at 30°C 

suggests that there was no damage in its physical chemical properties and its functional 

organization. However, as the hydroponics water temperature was raised to 34°C, leaf 

chlorophyll content was significantly decreased. The reduced leaf chlorophyll content 

suggests that this temperature altered its physical and chemical properties and its functional 

organization. This confirms the findings of Taylor and Craig (1971), Ferrini et al. (1995) and 

Ilik et al. (2000). 

 

Photosynthesis is considered as one of the most temperature sensitive processes, and may 

be completely inhibited by high temperatures above the optimum (Camejo et al., 2005). In 

this study, increasing the temperature from 26 to 30°C increased A, gs, Ci and E in the 

leaves of O. longibracteatum to the optimum level. That is the peak of these parameters was 

observed at 30°C. For example in the second week of 2009, the rate of photosynthesis was 

118, 144 and 38% at 26, 30 and 34°C respectively and in 2010, photosynthesis rate was 63, 

143 and 23% at 26,  30 and 34°C respectively over the control (Tables 3.2, 3.3, 3.4, 3.5, 3.6 

and 3.7). The increase in the rate of photosynthesis and the related parameters suggests 

that these temperatures were limiting A, Ci, Gs and E. The data also showed that as the 

temperature was increased to 34°C, A and the related parameters were significantly reduced 

(Tables 3.2, 3.3, 3.4, 3.5, 3.6 and 3.7). The diminution in the rate of photosynthesis at 34°C 

may be ascribed to disruption of structure and function of chloroplasts, reduction of 

chlorophyll accumulation (Table 3.1), enzyme denaturation due to oxidative stress, stomata 

closing or increased respiration rate (Xu et al., 1995; Dekov et al., 2000). These findings 

suggest that the rate of photosynthesis in plants growing at 35°C depends not on stomatal 
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opening but on biochemical factors of an enzymatic nature. Previous reports have indicated 

that increased temperature beyond optimum (30°C) in citrus plant (Ribeiro et al., 2004; Hu et 

al., 2007) and self-rooted cv. Trebbiano grapevines (Ferrini et al., 1995) was the reason for 

decreased carboxylation efficiency. In another study, Ku and Edwards (1977) revealed that 

increasing temperature resulted not only in reduced internal CO2 concentration in potatoes 

(Solanum tuberosum L.) but also the rate of photosynthesis was inhibited by 38%. 

 

In conclusion, increasing hydroponics water temperature to 30°C, lead to significantly 

positive increase of chlorophyll content in O longibracteatum, greater photosynthesis rate, 

stomata conductance, intercellular CO2 concentration and transpiration. However, increasing 

the temperature to 34°C resulted into possible structural and functional disruptions of 

chloroplasts and reduced chlorophyll accumulation leading to decreased rate of 

photosynthesis and related parameters in O. longibracteatum.   
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Table 3.1: Effect of temperature on chlorophyll content in leaves of O. longibracteatum  during 2009 and 2010.  

Treatment Chlorophyll a Chlorophyll b Chlorophyll total 

  (mg.L-1)  

2009    

Control (10 - 15 oC) 2.25±0.15d 0.51±0.03d 2.77±0.14d 

26oC 4.68±0.17b 1.89±0.07b 6.57±0.22b 

30oC 6.77±0.25a 3.65±0.05a 10.42±0.24a 

34oC 3.39±0.16c 1.42±0.05c 4.81±0.17c 

One - Way ANOVA (F-Statistic)    

Rep 109.63** 596.70** 271.07** 

2010    

Control (10 - 15 oC) 2.13±0.20d 0.56±0.04d 2.69±0.22d 

26oC 5.83±0.25b 2.95±0.14b 8.78±0.28b 

30oC 8.45±0.37a 5.02±0.38a 13.46±0.69a 

34oC 2.99±0.17c 1.99±0.21c 4.98±0.31c 

One - Way ANOVA (F-Statistic)    

Rep 123.38** 67.94*** 126.33** 

 

Values presented are means ± SE, n = 10. **; *** = significant at P≤0.01, P≤0.001 respectively, ns = not significant, SE = standard error. Means 

followed by dissimilar letters in a column are significantly different from each other at P≤0.05 according to Fischer least significance difference. 
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Table 3.2: Effect of temperature on photosynthesis and gas-exchange parameters of leaves of O. longibracteatum as measured from 

week 2 and 4 during 2009.  

Treatments WEEK 2  WEEK 4 

 A E Ci Gs  A E Ci Gs 

 
µmol 

CO2.m
-2.s-1 

mmol.m-2.s-1 
mmol 

CO2.mol -1 air 

mmol 

H2O.m-2.s-1 
 

µmol 

CO2.m
-2.s-1 

mmol.m-2.s-1 
mmol CO2.mol -1 

air 

mmol H2O.m-2.s-

1 

Control 

(10-15 oC) 
1.14±0.01d 0.38±0.01d 216.00±0.77d 0.02±0.00d  1.29±0.01d 0.52±0.03d 223.00±2.69d 0.03±0.00d 

26oC 2.48±0.10b 0.70±0.01b 261.30±5.19b 0.04±0.00b  2.63±0.05b 0.77±0.02b 274.60±5.01b 0.05±0.00b 

30oC 2.78±0.04a 0.89±0.02a 336.10±8.55a 0.06±0.00a  3.81±0.04a 1.30±0.07a 375.20±4.33a 0.07±0.00a 

34oC 1.57±0.02c 0.52±0.02c 240.70±7.51c 0.03±0.00c  2.29±0.02c 0.66±0.01c 248.10±4.68c 0.04±0.00c 

One - Way ANOVA (F-Statistic) 

Rep 194.00** 156.89** 68.34*** 74.73***  936.14** 75.16*** 244.11** 49.47*** 

Values presented are means ± SE, n = 10. **; *** = significant at P≤0.01, P≤0.001 respectively, ns = not significant, SE = standard 

error. Means followed by dissimilar letters in a column are significantly different from each other at P≤0.05 according to Fischer least 

significance difference.  
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Table 3.3: Effect of temperature on photosynthesis and gas-exchange parameters of leaves of O. longibracteatum as measured from 

week 6 and 8 during 2009.  

Treatments WEEK 6  WEEK 8 

 A E Ci Gs  A E Ci Gs 

 
µmol 

CO2.m
-2.s-1 

mmol.m-2.s-1 
mmol 

CO2.mol -1 air 

mmol 

H2O.m-2.s-1 
 

µmol 

CO2.m
-2.s-1 

mmol.m-2.s-1 
mmol 

CO2.mol -1 air 

mmol 

H2O.m-2.s-1 

Control 

(10 - 15 oC) 
1.43±0.09d 0.62±0.00d 226.90±2.38d 0.03±0.00d  1.66±0.07d 0.74±0.01d 248.30±5.30d 0.04±0.00d 

26oC 3.38±0.07b 0.81±0.02b 292.70±1.51b 0.05±0.00b  3.29±0.05b 0.89±0.02b 333.60±6.12b 0.06±0.00b 

30oC 4.61±0.05a 1.59±0.05a 365.00±4.79a 0.07±0.00a  6.84±0.19a 1.91±0.02a 372.80±6.10a 0.08±0.00a 

34oC 2.33±0.07c 0.71±0.02c 266.30±7.70c 0.04±0.00c  2.59±0.08c 0.81±0.01c 273.30±8.31c 0.05±0.00c 

One - Way ANOVA (F-Statistic) 

Rep 367.21** 219.00** 150.20** 58.64***  412.46** 1022.03** 74.58*** 35.69*** 

Values presented are means ± SE, n = 10. **; *** = significant at P≤0.01, P≤0.001 respectively, ns = not significant, SE = standard 

error. Means followed by dissimilar letters in a column are significantly different from each other at P≤0.05 according to Fischer least 

significance difference.  
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Table 3.4: Effect of temperature on photosynthesis and gas-exchange parameters of leaves of O. longibracteatum as measured at 

week 10 during 2009.  

Treatments Week 10 

 A E Ci Gs 

 µmol CO2.m
-2.s-1 mmol.m-2.s-1 mmol CO2.mol -1 air mmol H2O.m-2.s-1 

Control (10 - 15 oC) 3.50±0.12d 0.69±0.08d 231.70±6.10d 0.04±0.00d 

26oC 5.39±0.09b 1.79±0.03b 335.60±2.25b 0.06±0.00b 

30oC 8.23±0.10a 2.12±0.02a 384.00±4.06a 0.08±0.00a 

34oC 4.59±0.12c 0.95±0.01c 284.90±3.39c 0.05±0.00c 

One - Way ANOVA (F-Statistic)     

Rep 334.78** 228.89** 244.90** 88.22*** 

 

Values presented are means ± SE, n = 10. **; *** = significant at P≤0.01, P≤0.001 respectively, ns = not significant, SE = standard 

error. Means followed by dissimilar letters in a column are significantly different from each other at P≤0.05 according to Fischer least 

significance difference.  
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Table 3.5: Effect of temperature on photosynthesis and gas-exchange parameters of leaves of O. longibracteatum as measured 

during Week 2 and 4 in 2010.  

Treatments WEEK 2  WEEK 4 

 A E Ci Gs  A E Ci Gs 

 
µmol 

CO2.m
-2.s-1 

mmol.m-2.s-1 
mmol 

CO2.mol -1 air 

mmol 

H2O.m-2.s-1 
 

µmol 

CO2.m
-2.s-1 

mmol.m-2.s-1 
mmol CO2.mol -

1 air 

mmol 

H2O.m-2.s-1 

Control 

(10 - 15 oC) 
1.15±0.01d 0.26±0.01d 154.90±7.17d 0.01±0.00d  1.19±0.02d 0.35±0.01d 227.70±4.74d 0.02±0.00d 

26oC 1.87±0.03b 0.42±0.02b 267.40±4.46b 0.03±0.00b  1.99±0.07b 0.82±0.07b 281.90±4.25b 0.06±0.00b 

30oC 2.79±0.03a 0.69±0.01a 359.50±7.68a 0.06±0.00a  3.30±0.06a 1.52±0.10a 351.30±11.49a 0.13±0.01a 

34oC 1.46±0.03c 0.35±0.02c 242.90±1.92c 0.03±0.00c  1.74±0.03c 0.57±0.02c 257.80±6.79c 0.04±0.00c 

One - Way ANOVA (F-Statistic) 

Rep 743.57** 113.70** 211.35** 71.02***  329.39** 61.94*** 50.69*** 66.87*** 

Values presented are means ± SE, n = 10. **; *** = significant at P≤0.01, P≤0.001 respectively, ns = not significant, SE = standard 

error. Means followed by dissimilar letters in a column are significantly different from each other at P≤0.05 according to Fischer least 

significance difference.  
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Table 3.6: Effect of temperature on photosynthesis and gas-exchange parameters of leaves of O. longibracteatum as measured 

during Week 6 and 8 in 2010.  

Treatments WEEK 6  WEEK 8 

 A E Ci Gs  A E Ci Gs 

 
µmol 

CO2.m
-2.s-1 

mmol.m-2.s-1 
mmol CO2.mol -

1 air 

mmol 

H2O.m-2.s-1 
 

µmol 

CO2.m
-2.s-1 

mmol.m-2.s-1 
mmol 

CO2.mol -1 air 

mmol 

H2O.m-2.s-1 

Control 

(10 - 15 oC) 
1.35±0.01d 0.41±0.01d 207.40±15.67d 0.03±0.00d  1.38±0.04d 0.50±0.02d 238.90±2.35d 0.03±0.00d 

26oC 2.55±0.09b 0.63±0.03b 334.00±16.31b 0.07±0.01b  3.07±0.09b 0.86±0.04b 308.00±9.61b 0.09±0.02b 

30oC 4.16±0.31a 0.88±0.03a 374.40±2.72a 0.15±0.01a  7.01±0.15a 1.54±0.06a 352.10±3.86a 0.17±0.01a 

34oC 1.89±0.02c 0.51±0.03c 258.80±12.23c 0.05±0.00c  2.35±0.11c 0.63±0.03c 267.30±1.99c 0.06±0.00c 

One - Way ANOVA (F-Statistic) 

Rep 55.43*** 69.15*** 33.51*** 97.51**  538.20** 152.33** 83.27*** 42.57*** 

Values presented are means ± SE, n = 10. **; *** = significant at P≤0.01, P≤0.001 respectively, ns = not significant, SE = standard 

error. Means followed by dissimilar letters in a column are significantly different from each other at P≤0.05 according to Fischer least 

significance difference.  
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Table 3.7: Effect of temperature on photosynthesis and gas-exchange parameters of leaves of O. longibracteatum as measured 

during Week 10 in 2010.  

Treatments Week 10 

 A E Ci Gs 

 µmol CO2.m
-2.s-1 mmol.m-2.s-1 mmol CO2.mol -1 air mmol H2O.m-2.s-1 

Control (10 - 15 oC) 3.55±0.03d 1.35±0.03d 241.90±13.20d 0.03±0.00d 

26oC 5.77±0.05b 1.76±0.03b 352.50±5.14b 0.06±0.00b 

30oC 8.33±0.17a 2.59±0.09a 378.50±1.97a 0.18±0.01a 

34oC 4.30±0.03c 1.54±0.05c 320.10±9.94c 0.04±0.00c 

One - Way ANOVA (F-Statistic)     

Rep 508.81** 96.43** 46.31*** 362.44** 

Values presented are means ± SE, n = 10. **; *** = significant at P≤0.01, P≤0.001 respectively, ns = not significant, SE = standard 

error. Means followed by dissimilar letters in a column are significantly different from each other at P≤0.05 according to Fischer least 

significance difference.  
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Abstract 

 

The effects of different temperature regimes of hydroponic solution temperature on 

profiling flavonoids and anthocyanins concentration in Ornithogalum longibracteatum L. 

were determined in the Cape Peninsula University of Technology (CPUT) laboratory in 

year 2009 and 2010. The plants were irrigated with hydroponic solution heated to 

various temperatures (26, 30 and 34°C) via pumps connected to 4 sets of water tanks 

each maintained at the experimental temperatures using Dolphin aquarium heaters. 

Unheated water supplied from the forth tank served as control. All the plants were 

supplied with 1mg/L nutrient solution of Hortical Calcium Nitrate (Hortical Ca(NO3)2) and 

changed at weekly intervals. After 60 days plants were sampled from each gutter and 

were carefully uprooted with their entire bulbs and root system, washed and divided into 

roots, bulbs, shoots, flowers. The plant parts were oven-dried at 65 C for 72 hrs, 

weighed, ground into a fine powder (0.85 mm) and stored prior to the bioassay for 

anthocyanins and flavonoids concentrations. The results showed that, compared with 

the control, increasing hydroponics water temperature from 26°C to 34°C significantly 

increased the levels of flavonoids and anthocyanins in roots, bulbs, shoots and flowers 

in 2009 and 2010. These results suggested that increasing temperatures from 26 to 

34°C induced the accumulation of flavonoids and anthocyanins concentration in roots, 

bulbs, shoots and flowers in O. longibracteatum.  

 

Key Words: metabolites, phenolic compounds 
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4.1  Introduction 

 

Anthocyanins and flavonoids are a group of biologically active non-nutrients phenolic 

compounds ubiquitous in many plant species (Havsteen 1983; Schahidi and Naczk 

1995). These secondary metabolites are not only important in plants growth and their 

physiological mechanisms but also are becoming increasingly important as antioxidants, 

food colorants, anti-allergenic, anti-inflammatory, anti-viral, anti-proliferative, anti-

oxidative and anti-carcinogenic (Stavric 1994; Rice-Evans et al. 1996; Robards et al. 

1999; Lillo et al., 2008). Furthermore, anthocyanins and flavonoids play an important role 

as materials for cell wall support, as colourful attractants for birds and insects during 

seed dispersal and plant pollination (Harborne; 1994), as defence mechanisms to plants 

against wounding, infection, excessive or harmful light as well as indicators of plant 

nutrient status (Bennet and Wallsgrove 1994, Dixon and Paiva 1995). However, these 

secondary metabolites have been reported to be affected by different biotic and abiotic 

environmental conditions such as non optimal temperature stress (Makoi and 

Ndakidemi, 2007; Guo et al., 2008).  For example, it was reported that accumulation of 

secondary metabolites in plants cell walls (i.e. suberin and lignin) was attributed to low or 

freezing temperature stress (Treutter, 2005). Their accumulation enabled the plant to 

respond better to photoinhibition and therefore protect the plants from stress due to 

freezing and/or low temperatures (Solecka, 1997). In a study involving grapevine (Vitis 

vinifera L.), Braidot et al. (2008) reported that there was greater accumulation of 

secondary metabolites during cold temperatures compared with when the temperatures 

were constant. It is also well documented by Rivero et al. (2001) that the accumulation of 

secondary metabolites in tomato (L. esculentum L.) was due to high temperatures above 
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optimum range (such as 35°C) although Mori et al (2007) showed increasing 

degradation rate in anthocyanins.  

 

O. longibracteatum, commonly known as pregnant onion, is widely used by traditional 

healers as a magical and medicinal plant in South Africa, and, is generally classified as a 

medicinal bulb (Kulkarni et al., 2005). The plant, which is commonly found growing in 

wild environments, is amongst the indigenous and horticultural plants with medicinal 

potential in South Africa. As a result of its potential medicinal value, its cultivation in the 

glasshouse hydroponically has recently gained momentum (Rosik-Dulewska and 

Grabda, 2002). Intensive cultivation of this plant hydroponically will not only increase 

production of this plant but also will be a potential source of income in urban areas 

(Larson et al., 1996). Medicinal plants have been reported to contain a plethora of 

secondary metabolites including anthocyanins and flavonoids. Although the effect of 

temperature on the growth of O. longibracteatum has been reported on different 

temperature ranges (Halevy et al., 1971; Luria et al., 2002), studies on the effect of 

hydroponics water temperature on the concentration of secondary metabolites are 

limited. Therefore, this study investigates the effects of hydroponics water temperature 

on the concentrations of anthocyanins and flavonoids which are probably believed to 

form the major part of its medicinal value. 

 

4.2 Materials and methods 

 

4.2.1 Site location and description 

 

The experiment was conducted at the greenhouse of the Cape Peninsula University of 

Technology, Cape Town, South Africa from July 2009 and July 2010. A steel table (2.5 
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m x 1 m) was used as a flat surface, black plastic container (50 L), leca clay pebbles 

were supplied by Horticultural Department of Cape Peninsula University of Technology 

(CPUT), Cape Town, South Africa. Four (4) plastic gutters (2 m x 0.6 m), 4 pumps, 20 ml 

black plastic pipe, cable tie and 3 Dolphin aquarium heaters were purchased from 

Builders Warehouse (Maitland, Cape Town), South Africa. Bulbs of pregnant onion (O. 

longibracteatum) used as planting material were obtained from the CPUT Nursery and 

Hortical Ca (NO3)2 was obtained from Stark Ayres all in Cape Town, South Africa. 

 

4.2.2 Experimental design 

 

A completely randomized design, with four replicates, was conducted to study the effects 

of temperature on profiling of anthocyanins and flavonoids concentration in O. 

longibracteatum. Four white plastic gutters (2 m x 0.6 m) filled with leca clay pebbles 

were placed on a 2.5 m x 1 m steel table. Water was supplied to the leca pebbles 

through pumps projecting from 4 sets of black plastic containers (50 L) placed beneath 

the table. The water in each of the 3 tanks was heated by using Dolphin aquarium 

heaters to maintain the temperatures at 26°C (A), 30°C (B) and 34°C (C) respectively. O. 

longibracteatum bulbs were planted in each gutter (i.e. 10 bulbs per gutter) and supplied 

with nutrient solution (1 mg.L-1 Hortical Ca (NO3)2) immediately after transplanting. 

Nutrient solution supplied from the pumps was re-circulated back to the black plastic 

container (50 L) through a 20 ml black plastic pipe. The plants were left to grow for the 

period of 10 weeks. To prevent concentration of nutrients in the clay pebbles due to 

evaporation, water was drained from the gutters and refreshed after every 2 weeks.  
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4.2.3 Preparation of plant materials for flavonoids and anthocyanins assay 

 

At 60 days after planting, 10 pregnant onion (O. longibracteatum) plants were sampled 

from each gutter. The plants were carefully uprooted with their entire bulbs and root 

system, washed and divided into roots, bulbs, shoots, flowers. The plant parts were 

oven-dried at 65 C for 72 hrs, weighed, ground into a fine powder (0.85 mm) and stored 

prior to the bioassay for anthocyanins and flavonoids concentrations.  

 

4.2.4 Determination of flavonoids and anthocyanins in plant parts 

 

Concentration of anthocyanins and flavonoid were assayed according to Lindoo and 

Caldwell (1978) as well as Mirecki and Teramura (1984). In this method, 0.1g of grinded 

plant material was weighed and placed in a centrifuge tube. 10 mLs of acidified 

methanol (A-MeOH) prepared from a ratio of 79:20:1 (MeOH:H2O:HCl) was added to the 

plant material. The solution was then incubated for 72 hrs in darkness. After the 

incubation period, the solution was filtered through Whatman paper No: 2. The 

absorbance of the clear supernatant fluid was measured spectrophotometrically at 

wavelengths (λ) of 300, 530, and 657 nm using A-Methanol as a standard (Mirecki and 

Teramura, 1984). The concentration of flavonoid compounds was expressed as: 

 

300

1 )( AbsDMgAbsFlavonoids
 

 

Anthocyanins content was calculated as described in Lindoo and Caldwell (1978) as: 

 

657530

1

3

1
)( AbsAbsDMgAbsnsAnthocyani
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4.2.5 Statistical analysis 

 

The experimental data collected were analysed by using a One-Way analysis of variance 

(ANOVA). The analysis was performed using STASTICA Software Programme 2010 

(StatSoft Inc., Tulsa OK, USA). Where F-value was found to be significant, Fisher’s least 

significant difference (LSD) was used to compare the means at P=0.05 level of 

significance (Steel and Torrie, 1980).  

 

4.3 Results 

 

4.3.1 Effect of hydroponics water temperature on flavonoids and anthocyanins in 

roots and bulbs of O. longibracteatum. 

 

Table 4.1 shows the effect of temperature on anthocyanins and flavonoids concentration 

in roots and bulbs of O. longibracteatum. Compared with the control, increasing 

hydroponics water temperature from 26 to 34°C significantly increased the levels of 

flavonoids in roots and shoots in both years 2009 and 2010 (Table 4.1). For example the 

data showed that, increasing the hydroponics water temperature from 26 to 34°C, the 

levels of flavonoids in root parts significantly increased by 38 and 55% in 2009, and 57 

and 98% in 2010. Similar trend was observed with the levels of anthocyanins when 

hydroponics temperature was increased from 26 to 34°C. The anthocyanins 

concentration increased by 13 and 107% in 2009 and 56 and 156% in 2010. 

Furthermore, changing hydroponics water temperature significantly influenced the levels 

of anthocyanins and flavonoids in bulbs and flowers of O. longibracteatum (Table 4.2). 

For instance, in bulbs, increasing the hydroponics water temperature from the control 

(10-15°C) to 26, 30 and 34°C significantly increased the concentration of flavonoids by 
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14, 25 and 42% in year 2009, and by 25, 67 and 92% in 2010. Results also showed that 

anthocyanins in the bulb was significantly increased by 34, 80 and 118% in 2009 and by 

74, 124 and 153% in 2010 when hydroponics water temperature was increased from 

(10-15°C) to 26, 30 and 34°C.  

 

4.3.2 Effect of hydroponics water temperature on flavonoids and anthocyanins in 

the shoots and flowers of O. longibracteatum. 

 

There was significant effect of hydroponics water temperatures on the levels of 

anthocyanins and flavonoids in the shoots and flowers of O. longibracteatum (Tables 4.1 

and 4.2). By increasing the hydroponics water temperature from 26 to 34°C, the levels of 

flavonoids in shoot parts significantly increased by 13 and 32% in 2009, and 26 and 51% 

in 2010. Similar trend was observed with the levels of anthocyanins when hydroponics 

temperature was increased from 26 to 34°C. This concentrations increased by 249 and 

789% in 2009 and 63 and 744% in 2010 respectively. There was also significant effect of 

hydroponics water temperatures on the levels of anthocyanins and flavonoids in the 

flowers of O. longibracteatum.  The levels of flavonoids increased by 20, 51 and 85% in 

2009 and 31, 46 and 62% in 2010 when hydroponics water temperature was elevated to 

26, 30 and then 34°C, respectively relative to control. Following similar trend as shown in 

the flavonoids concentration, the levels of anthocyanins in the flowers significantly 

increased by 47, 129  and 162% in 2009 and 63, 264 and 441% respectively when the 

hydroponics water temperature was increased to 26, 30 and 34°C relative to control (10-

15°C).   
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4.4 Discussion 

 

Phenolic compounds play an important role in protecting plants from abiotic and biotic 

stress conditions such as adverse temperature conditions (Solecka, 1997; Königshofer 

and Lechner, 2002). Changes in temperature have been reported to be one of the major 

environmental factors influencing the accumulation of flavonoids and anthocyanins in 

plants (Wahid et al, 2007; Joakola and Hohtola, 2010). Some studies have reported 

increased accumulation of flavonoids and anthocyanins with decreasing temperatures 

(Zhang et al., 1997; Solecka et al., 1999; Leng et al., 2000; Havaux and Kloppstech, 

2001; Hasegawa et al., 2001; Romero et al., 2008 a and b). However, in this study, 

increasing the hydroponics solution temperature significantly elevated the accumulation 

of flavonoids and anthocyanins in O. longibracteatum. Results from this study showed 

that increasing temperatures to 26, 30 and 34°C significantly and progressively induced 

the accumulation of flavonoids in root, bulbs shoots and flowers in 2009 and in 2010 

compared with the control. Similar to the above trend, the anthocyanins concentration in 

roots, bulbs shoots and flowers were also increased when temperature was elevated to 

26, 30 and 34°C compared with the control. Comparison between organs showed that in 

O. longibracteatum more flavonoids were extracted from the flowers, followed by bulbs, 

roots and shoots. But, the anthocyanins concentration was generally higher in flowers, 

followed by shoots, bulbs and roots. In all instances, the data showed that greater 

concentrations of these biomolecules were significantly elevated in each organ when 

temperature in the hydroponic solution was increased to 34°C compared with all other 

treatments. Other researchers have similarly reported the induction of phenolic 

compounds in different plant species due to increased temperatures in the 

soil/hydroponic solution (Bilger et al., 2007; Mori et al, 2007) and attributed this to the 

strategy employed by plants in preventing them from heat stress (Chalker- Scott, 1999; 
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Rivero et al., 2001). Similar to our study, Wahid (2007), Rivero et al. (2001) and Guy et 

al. (2008) reported elevated accumulation of anthocyanins in Photinia spp, Aster amellus 

and Lycopersicon esculatum due to their exposure to high temperature.  Other 

researchers working on red clover (Trifolium pretense), Faba bean (Vicia faba L.) also 

reported increased levels in phenolic compounds at elevated soil/hydroponic 

temperature (Nasar-Abbas et al., 2009; Saviranta et al., 2010). Based on these profiles, 

one could target specific organ(s) of O. longibracteatum for the extraction of either 

flavonoids or anthocyanins for special purpose(s) and at the specified environmental 

conditions such as those used in this study. This is due to the fact that the accumulation 

of flavonoids and anthocyanins in the tissues was stimulated by changes in the 

hydroponic solution temperatures. 

 

In conclusion, temperature might affect the accumulation of flavonoids and anthocyanins 

in O. longibracteatum. In this study, results indicated that elevated temperature in the 

hydroponic solution increased the accumulation of flavonoids and anthocyanins in two 

years of experimentation. These bio-molecules are known to play important role in 

protecting the plants against stress and improving the medicinal value of the tissues. 

Future studies should focus on the qualitative aspects of the flavonoids and 

anthocyanins molecules produced at elevated temperatures such as those reported in 

this study. 
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Table 4.1: Effect of temperature on flavonoids and anthocyanins (Abs.g-1 DM) in shoots and roots of O. longibracteatum as 

measured during 2009 and 2010.  

 Roots Bulbs  Roots Bulbs 

 Flavonoids Anthocyanins Flavonoids Anthocyanins  Flavonoids Anthocyanins Flavonoids Anthocyanins 

 2009  2010 

Control 

(10 - 15 oC) 
1.70±0.10c 0.15±0.10c 12.55±0.42d 0.44±0.03d 

 
1.36±0.03d 0.16±0.01d 11.16±1.32d 0.34±0.03d 

26oC 2.34±0.04b 0.17±0.02c 14.27±0.52c 0.59±0.05c  2.14±0.03c 0.25±0.01c 13.99±0.79c 0.59±0.03c 

30oC 2.65±0.08a 0.24±0.10b 15.70±0.58b 0.79±0.04b  2.37±0.04b 0.37±0.01b 18.61±0.41b 0.76±0.04b 

34oC 2.64±0.08a 0.31±0.10a 17.77±0.42a 0.96±0.04a  2.69±0.06a 0.41±0.02a 21.39±0.49a 0.86±0.04a 

One - Way ANOVA (F-Statistic) 

Rep 33.96*** 33.70*** 20.66*** 34.98***  176.17** 126.69** 30.14*** 45.21** 

**: P≤0.01; ***: P≤0. 001. Values (Mean ± SE, n = 10) followed by dissimilar letters in a column are significantly different by Least 

Significant Difference test at P=0.05. 
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Table 4.2: Effect of temperature on flavonoids and anthocyanins (Abs.g-1 DM) of bulbs and flowers of O. longibracteatum as 

measured during 2009 and 2010.  

 Shoots Flowers  Shoots Flowers 

 Flavonoids Anthocyanins Flavonoids Anthocyanins  Flavonoids Anthocyanins Flavonoids Anthocyanins 

 2009  2010 

Control 

(10 - 15 oC) 
1.79±0.06c 0.37±0.03d 11.93±0.14d 0.34±0.02d 

 
1.71±0.07d 0.16±0.01d 12.53±0.50d 0.27±0.00c 

26oC 2.02±0.05b 1.29±0.04c 14.37±0.18c 0.50±0.03c  2.16±0.01c 0.26±0.01c 16.39±0.18c 0.44±0.01c 

30oC 2.30±0.05a 2.23±0.02b 18.02±0.42b 0.78±0.03b  2.34±0.03b 0.68±0.04b 18.31±0.54b 0.98±0.01b 

34oC 2.37±0.08a 3.29±0.08a 22.03±1.27a 0.89±0.02a  2.58±0.04a 1.35±0.05a 20.34±0.45a 1.46±0.27a 

One - Way ANOVA (F-Statistic) 

Rep 21.53*** 682.78** 42.30*** 97.94***  79.11*** 338.20** 56.88*** 15.64*** 

**: P≤0.01; ***: P≤0. 001. Values (Mean ± SE, n = 10) followed by dissimilar letters in a column are significantly different by Least 

Significant Difference test at P=0.05.
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Chapter 5 

5.0 Nutrient uptake in plant tissues of Ornithogalum longibracteatum L. as 

influenced by regulating the hydroponic solution temperature 

 

Submitted in:  International Journal of Physical Sciences 

 

 

 

 

S. Nxawe1, P. A  Ndakidemi 2,* C.P.  Laubscher1.  

 

 

 

 

 

1Faculty of Applied Science, Cape Peninsula University of Technology, Cape 

Town Campus, Keizersgracht, P.O. Box 652, Cape Town 8000, South Africa, 

2The Nelson Mandela African Institute of Science and Technology, Old Arusha - 

Moshi Rd, TENGERU, P.O. Box 447 ARUSHA. TANZANIA. 

*Corresponding author 

Tel: +255757744772 

 

 

Email: ndakidemipa@gmail.com  

 

 



 70 

Abstract 

 

The effects of different hydroponic solution temperature on wintertime nutrient uptake of 

pregnant onion (Ornithogalum longibracteatum) were evaluated in the glasshouse 

experiment, in Cape Town, South Africa. The aim of the study was to assess the 

influence of different temperature treatments in the hydroponic cultures on nutrient 

uptake and accumulation in the tissues of O. longibracteatum. Plants were exposed to 

four hydroponic solution temperatures (control (10 - 15°C), 26, 30 and 34°C) during 

wintertime by the manipulation of temperatures using Dolphin aquarium heaters to 

maintain the temperatures at 26, 30 and 34°C respectively. For the control treatment, 

unheated water was supplied directly from the tap and using the thermometer, the 

temperature ranged between 10 - 15°C (day/night) throughout the experiment period.  

Results showed that warming of the hydroponic solution with Dolphin aquarium heaters 

to 26, 30 and 34oC significantly increased the uptake of the following macronutrients and 

micronutrients (N, P, K, Ca, Mg, S, Na Fe, Cu Zn, Mn and B and Mo) in organs of O. 

longibracteatum (root, bulbs shoot, and whole plant) in 2009 and verified again in 2010. 

The control treatments 10 - 15°C (day/night) had the lowest uptake of most nutrients. 

The optimum uptake of most nutrients was achieved at 30°C. Further increase to 34°C 

resulted into the declining trend which in most cases was significantly lower than the 

30°C treatment. It was concluded that lower winter temperature in the hydroponic 

solution can result in reduced nutrient uptake capacity and growth rate during winter 

season. Heating of the hydroponic solution temperature in the controlled environments is 

recommended during winter season for optimum growth O. longibracteatum 
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5.1 Introduction 
 

Nutrient uptake and accumulation in plant tissues is very important for growth and 

development, and partly depends on their availability in the growth media. However, the 

uptake of these nutrients and their accumulation in plant organs may be affected by 

various environmental factors including exposure to high or low temperature, thus, 

affecting the overall plant performance (Reay et al., 1998; Aðalsteinsson and Jensén, 

2006). It is generally acknowledged that low temperatures are capable of decreasing 

nutrient uptake and accumulation in plants due to reduced metabolic activities which 

ultimately affects growth and development of the plant (Gavito et al., 2001). For instance, 

in cotton seedlings (Gossypium hirsutum L. cv Deltapine 70), uptake rate of N and P 

decrease at a low temperature of 12°C (Radin and Matthews, 1989). A study by 

Daskalaki and Burrage (1998) showed that increased nutrient uptake in cucumber 

(Cucumis sativus L.) was due to elevated temperature up to 28°C, leading to enhanced 

plant growth and yield. Some studies have similarly shown that increasing temperature 

from 15 to 29°C increased the uptake of P, K, Ca, Mg, Fe, Mn, Zn and B and finally the 

plant growth (Hood and Mills, 1994; Stoltzfus et al., 1998). Furthermore, nutrient uptake, 

especially N in pine (Pinus sylvestris L.) increased with increasing soil temperature from 

8°C to 16°C (Vapaavuori et al., 1992). Raising temperature from 12°C to 20°C in a 

closed hydroponic system induced the uptake of N, P, K, Ca and Mg in Cucumis sativus 

L (Daskalaki et al., 1998). 

 

Water temperature plays a vital role in plant development (Chung et al., 2006). At 

optimum temperature, water can nourish growth compared with low or high temperatures 

levels (He, et al., 2002). In plants, water is required to maintain cell turgidity to ensure 

continuous column of moisture in the cells (Stewart and Dwyer, 1983; Noguchi and 

http://www3.interscience.wiley.com/journal/119371077/abstract?CRETRY=1&SRETRY=0#c1#c1
http://www3.interscience.wiley.com/journal/119371077/abstract?CRETRY=1&SRETRY=0#c1#c1
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Terashima, 1997; Outlaw, 2003). Hence, growth media solution temperature is an 

important factor regulating nutrient uptake rate and thus, plant growth and development 

(Barrow and Shaw, 1975). Therefore, improving nutrient uptake under environmental 

stress condition through hydroponic water solution temperature management will not 

only determine the nutrient uptake but also will enhance better plant growth and 

development. This study assesses the influence of different temperature treatments in 

the hydroponic cultures on nutrient uptake and accumulation in the tissues of O. 

longibracteatum.  

 

5.2 Materials and methods 

 

5.2.1 Experimentation. 

 

The experiment was conducted at the greenhouse of the Cape Peninsula University of 

Technology, Cape Town, South Africa at the beginning of the month of July 2009 and 

repeated in July 2010. A completely randomised design, with four replicates, was 

conducted to study the effects of temperature on chlorophyll pigmentation and 

photosynthetic rate in O. longibracteatum. Four (4) white plastic gutters (2 m x 0.6 m) 

filled with leca clay pebbles were placed on a 2.5 m x 1 m steel table. Water was 

supplied to the leca pebbles through pumps projecting from 4 sets of black plastic 

containers (50 L each) placed beneath the table. The water in the 3 containers was 

heated by using Dolphin aquarium heaters to maintain the temperatures at 26, 30 and 

34°C respectively. Unheated water supplied from the fourth container served as control. 

Using the thermometer, the temperature ranged between 10-15°C (day/night) throughout 

the experiment period.  O. longibracteatum bulbs used as planting material were 

obtained from the CPUT Nursery and were planted in each gutter (i.e. 10 bulbs per 
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gutter) and supplied with nutrient solution immediately after transplanting. The nutrient 

solution was prepared according to Ocean HYDROGRO (2009) and Ocean HORTICAL 

(2009) respectively. Nutrient solution supplied from the pumps was re-circulated back to 

the black plastic container (50 L) through a 20 mL black plastic pipe. The plants were left 

to grow for the period of 10 weeks. To prevent concentration of nutrients in the clay 

pebbles due to evaporation, water was drained from the gutters and refreshed after 

every week.  

 

5.2.2 Preparation of plant materials for nutrient uptake and accumulation in plant 

tissues assay 

 

At 70 days after planting, 10 pregnant onion (O. longibracteatum) plants were sampled 

from each gutter. The plants were carefully uprooted with their entire bulbs and root 

system, washed and divided into roots, bulbs and shoots. The plant parts were oven-

dried at 65 C for 72 hrs, weighed, ground into a fine powder (0.85 mm) and stored prior 

to the bioassay for nutrient uptake and accumulation in plant tissues.  

 

5.2.3 Measurement of nutrients in plant tissue 

 

Measurements of P, K, Ca, Mg Fe, Cu, Zn, Mn, B and Al were determined by ashing 1 g 

of ground sample in a porcelain crucible at 500°C overnight. This was followed by 

dissolving the ash in 5 ml of 6 M HCl and placing it in an oven at 50°C for 30 min and 35 

ml of deionised water was added. The mixture was filtered through Whatman no. 1 filter 

paper. Nutrient concentration in plant extracts was determined using the inductively 

coupled plasma mass spectrometry (ICP-MS) (Giron, 1973). Sulphur (S) was determined 

by wet digestion procedure using 65% nitric acid. In each case, 1g of milled plant 
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material was digested overnight with 20 ml of 65% nitric acid in a 250 ml glass beaker. 

The beaker containing the extract was then placed on a sand bath and gently boiled until 

approximately 1 ml of the extract was left. After that, 10 m of 4 M nitric acid was added 

and boiled for 10 min. The beaker was removed from the sand bath, cooled, and the 

extract washed completely in a 100 ml volumetric flask and the extract filtered through 

Whatman no. 2 filter paper. Sulphur in the sample was then determined (FSSA 1974) by 

direct aspiration on the calibrated simultaneous ICP-MS. Nutrient uptake (mg.plant-1) 

was then calculated as the product of nutrient concentration (mg.g-1, data not shown) 

and the weight of the plant part dry matter (g.plant-1).  

 

11

.

1 ... plantgODMgmgONplantmgN massdryconcuptake  

Where: Nuptake = Microelement uptake, ONconc = Organ nutrient concentration, Odry mass = 

Organ dry mass. 

 

Whole plant nutrient uptake (mg.plant-1) was calculated as the sum of the uptake of 

individual organs (i.e.roots, bulbs, shoots and whole plant). 

 

5.2.4 Statistical analysis 

 

The experimental data collected were analysed by using a One-Way analysis of variance 

(ANOVA). The analysis was performed using STASTICA Software Programme 2010 

(StatSoft Inc., Tulsa OK, USA). Where F-value was found to be significant, Fisher’s least 

significant difference (LSD) was used to compare the means at P=0.05 level of 

significance (Steel and Torrie, 1980).  
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5.3 Results 

 

5.3.1 Effect of varying hydroponics solution temperature on the uptake of 

macronutrients in roots of O. longibracteatum in 2009 and 2010. 

 

There were significant differences on the uptake of N, P, K, S and Na by varying 

hydroponic solution temperatures in the roots, of O. longibracteatum in 2009 and 2010 

(Table 5.1). Compared with the control, in the year 2009, the best uptake for all nutrients 

in the roots was recorded in a solution which was adjusted to 26oC. Furthermore, 

increasing the temperatures to 34oC significantly lowered the root uptake of N, P, K, S 

and Na compared with the control treatment. In the year 2010, elevating the hydroponic 

solution temperatures to 30oC resulted into significantly greater uptake of N, P, K, S and 

Na relative to the control. Similar to the results obtained in 2009, with the exception of N, 

increasing the temperatures from 30oC to 34oC slightly reduced the uptake of all other 

macronutrients measured in roots.   

 

5.3.2 Effect of varying hydroponics solution temperature on the uptake of 

macronutrients in bulbs of O. longibracteatum in 2009 and 2010. 

 

The modification of hydroponics solution temperature from 10oC to 34oC significantly 

increased the uptake of N, P, K, Ca, Mg, S and Na in bulbs of O. longibracteatum in 

2009 (Table 5.2). Similar trend appeared in bulbs grown in 2010 with an exception of K. 

In 2009, relative to the control treatment (10 - 15oC) elevating the hydroponic 

temperature to 26, 30 and 34oC significantly increased the uptake of all macronutrient in 

the bulbs. However, macronutrient uptake in the bulbs exposed within the temperature 

ranges of 26, 30 and 34oC were not significantly different from each other. The result for 
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2010 showed significant progressive increase in the uptake of N, P, Ca, Mg, S and Na in 

bulbs of O. longibracteatum with increased hydroponic temperature from 10oC to 34oC. 

The greater uptake of these macronutrients was observed at each level of elevating the 

hydroponic solution temperature. The maximum uptake was recorded in temperatures 

30 and 34oC and was significantly superior to 10oC and 26oC, respectively. 

 

5.3.3 Effect of varying hydroponics solution temperature on the uptake of 

micronutrients in roots of O. longibracteatum in 2009 and 2010. 

 

The effect of varying hydroponic solution temperature on the uptake of micronutrients in 

roots of O. longibracteatum in 2009 and 2010 is shown in Table 5.3. Compared with the 

control, raising the temperature to 26, 30 and 34oC significantly increased the uptake of 

Fe, Cu Zn and B in both 2009 and 2010. Generally, the greatest uptake in all 

micronutrients was observed at a temperature of 30oC. 

 

5.3.4 Effect of varying hydroponics solution temperature on the uptake of 

micronutrients in bulbs of O. longibracteatum in 2009 and 2010. 

 

The uptake of Zn, Mn and B in 2009 and Fe, Zn, Mn and B in 2010 into bulb were 

significantly different in hydroponic solution temperature treatments (Table 5.4). In 2009 

the uptake of Zn, Mn, and B were simila in hydroponic solution temperature of 26, 30 

and 34 oC and significantly higher than the control. The highest uptake of Fe, Zn, Mn and 

Bo was observed in hydroponic solution temperatureof 30 and 34oC, whereas control 

treatment had the lowest uptake of Fe, Zn, Mn and Bo in 2010. 
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5.3.5 Effect of varying hydroponics solution temperature on the uptake of 

macronutrients in shoots of O. longibracteatum in 2009 and 2010. 

 

The effect of temperature changes on the macronutrients uptake in shoots of O. 

longibracteatum in 2009 and 2010 is shown in Table 5.5. Relative to control, increasing 

the temperatures to 26, 30 and 34oC significantly enhanced the shoot uptake of N, P, K, 

Ca, Mg, S and Na in 2009 and 2010. Generally, comparing the control treatment with 30 

and 34oC in 2009, the uptake of N, P, K, Ca, Mg, S and Na increased steadily at each 

level of elevating the temperature. However, in the second year of experimentation the 

shoot uptake of N, P, K, Ca, Mg, S and Na were progressively increased at 26 and 30oC 

and then slightly decreased at 34oC treatment.  

 

5.3.6 Effect of varying hydroponics solution temperature on the uptake of 

macronutrients in whole plant of O. longibracteatum in 2009 and 2010. 

 

The whole plant uptake of macronutrients N, P, K, Ca, Mg, S and Na in O. 

longibracteatum were significantly altered by hydroponic solution temperature 

modifications in 2009 and 2010 (Table 5.6). Generally, control constently significantly 

had lower uptake for all the macronutrients than the other temperatures in 2009. 

Contrary to the above results, in 2010, raising the temperature above 30oC significantly 

reduced the uptake of N, P and S but increased those of K, Ca, Mg and Na. 
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5.3.7 Effect of varying hydroponics solution temperature on the uptake of 

micronutrients in shoots of O. longibracteatum in 2009 and 2010. 

 

The shoot micronutrient uptake (Fe, Cu, Zn, Mn and B) of O. longibracteatum in 2009 

and 2010 were significantly increased (Table 5.7) by adjusting the temperatures to 26, 

30 and 34oC compared with the control. In 2009, increasing the hydroponic solution 

temperature to 26, 30 and 34oC resulted into significant increased in the uptake of 

micronutrients. However, 26, 30 and 34oC had similar uptake for the macronutrients. In 

2010 the highest uptake was increased at 30oC. The control, 26 and 34oC had similar 

uptake of Fe and Cu whereas the control treatment and 26oC had similar uptake of Zn, 

Mn and Bo but significantly lower than those of 34oC.  

 

 

5.3.8 Effect of varying hydroponics solution temperature on the uptake of 

micronutrients in whole plants of O. longibracteatum in 2009 and 2010. 

 

The control treatment had similar uptake of Fe and Cu in the 34oC hydroponic solution 

temperature in 2009 (Table 5.8). 26 and 30oC which favoured uptake of Fe and Cu were 

also similar in 2009 for Zn, Mn, Bo, the control had lower uptake compare to the other 

treatments. Compared with the control, in 2009, increasing the temperature at all levels 

significantly increased the whole plant uptake of all micronutrients except that of Cu. The 

micronutrient uptakes in whole plants grown in 2010 were significantly elevated in the 30 

and 34oC treatments relative to the 26 and the control (10-15oC) treatments except Fe 

which declined at 34oC ydroponic solution. 
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5.4 Discussion 

 

It was well established that low growth medium temperature may reduce root growth and 

nutrient uptake in plants (Lal, 1974; Engels and Marschner, 1990, 1992; Delucia et al., 

1992; Pregitzer et al., 2000). In this study, warming of the hydroponic solution with 

Dolphin aquarium heaters to 26, 30 and 34oC significantly increased the uptake of the 

following macronutrients and micronutrients (N, P, K, Ca, Mg, S, Na Fe, Cu Zn, Mn and 

B and Mo) in organs of O. longibracteatum (root, bulbs shoot, and whole plant) grown in 

the glasshouse in 2009 and verified again in 2010. The temperature changes in the 

growth medium have been reported to be one of the major environmental factors 

influencing the plant growth (Pregitzer and King, 2005) and the uptake and accumulation 

of nutrients in their tissues (Lee et al., 2007). Controlled studies with other plants have 

reported decreased uptake of nutrients with decreasing temperatures in the growth 

medium (Menzel et al., 1987), a concept which was also proved in our study. In general, 

nutrient uptake in most plants was sensitive to temperature changes (Lahav and Turner, 

1985; Debusk and Reddy, 1987). Studies have shown that growth medium temperature 

may influence rate of chemical reactions, nutrient transport in the medium, and the 

important plant physiological aspects related to ion uptake and root growth (McMichael 

and Burke 1998; Pregitzer et al., 2000). Low temperatures below the optimum point in 

the growth medium may be associated with reduced rate of nutrient transport and hence 

their uptake. In this study, the optimum uptake of most nutrients was achieved at 30°C. 

Further increase to 34°C resulted into the declining trend which in most cases was 

significantly lower than the 30°C treatment. Similar to our study, Lal (1974) reported that 

increasing the soil temperature above 30°C significantly decreased the shoot and root 

growth and transpiration rate in maize, thus, decreasing the uptake of N, P, and K. Our 
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results were in line with the above mentioned facts from different authors that low or high 

temperatures in the hydroponic solution beyond optimum points reduced the root growth 

and decreased nutrient accumulation in different plant organs 

 
In conclusion, lower winter temperature in the hydroponic solution resulted into reduced 

growth rate and poor nutrient uptake during winter season. Heating of the hydroponic 

solution to 30oC temperature in the controlled environments is recommended during 

winter season for optimum nutrient uptake and the growth O. longibracteatum 
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Table 5.1: Effect of hydroponics solution water temperature on the uptake of macronutrients in roots of O. longibracteatum grown in 
the greenhouse in 2009 and 2010.  
 

Treatment N  P K Ca  Mg S Na 

    (mg.plant-1)    

2009        

Control  

(10 - 15 oC) 
56.05±8.32b 8.91±1.22c 67.61±10.64b 5.14±0.57a 1.64±0.26a 4.58±0.53b 1.71±0.57c 

26oC 216.17±43.60a 42.76±8.08a 229.99±40.13a 22.83±5.28a 6.60±1.70a 21.71±4.77a 29.37±7.31a 

30oC 155.34±44.42ab 37.03±11.22ab 157.00±41.44ab 19.43±5.66a 6.54±1.86a 22.72±7.41a 20.77±8.11ab 

34oC 90.29±32.16b 17.35±5.86b 98.57±37.88b 12.01±4.08a 3.08±0.96a 10.13±3.29ab 4.70±1.79b 

One - Way ANOVA (F-Statistic) 

 4.05* 4.51* 4.19* 3.24ns 3.41ns 3.56* 5.64* 

2010        

Control 

(10 - 15 oC) 
74.55±25.88b 12.84±4.59b 84.16±29.26b 6.54±1.69a 2.11±0.53a 6.06±2.10c 2.67±1.61d 

26oC 106.78±11.68ab 20.69±3.24ab 99.83±14.94b 10.41±0.52a 2.90±0.23a 11.08±0.89bc 13.57±3.15b 

30oC 143.37±31.99a 35.82±9.82a 163.63±41.85a 17.00±4.05a 5.66±1.46a 22.49±6.12a 18.93±7.37a 

34oC 153.66±29.66a 27.28±5.00a 156.76±33.55a 16.93±2.92a 4.26±0.94a 18.05±3.11ab 7.94±2.02c 

One - Way ANOVA (F-Statistic) 

 4.93* 4.49* 4.62* 3.78ns 2.93ns 4.06* 4.78* 

Values presented are means ± SE, n = 4. * = significant at P≤0.05, MSE = standard error of the mean. Means followed by dissimilar 

letters in a column are significantly different from each other at P=0.05 according to Fischer least significance difference.  
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Table 5.2: Effect of hydroponics solution water temperature on the uptake of macronutrients in bulbs of O. longibracteatum grown in 
the greenhouse in 2009 and 2010.  

Treatment N  P K Ca  Mg S Na 

    (mg.plant-1)    

2009        

Control 

(10 - 15 oC) 
57.39±12.02b 10.03±2.99b 57.72±12.78b 26.62±5.36b 8.78±1.98b 4.38±0.75b 1.63±0.22b 

26oC 239.56±44.72a 50.43±12.19a 237.28±35.80a 99.25±18.10a 32.07±6.63a 16.28±3.12ab 5.89±1.20a 

30oC 195.73±27.04a 40.82±5.47a 186.64±32.73a 92.50±18.54a 29.43±4.60a 19.51±3.98a 5.58±0.76a 

34oC 241.33±58.60a 56.98±13.69a 230.24±39.00a 108.33±21.85a 38.23±8.21a 27.56±7.21a 5.74±0.74a 

One - Way ANOVA (F-Statistic) 

 4.76* 4.61* 6.86** 4.72* 4.79* 4.74* 6.44** 

2010        

Control 

(10 - 15 oC) 
82.53±28.06c 16.14±4.78c 101.66±29.52a 40.86±12.04c 12.54±4.09c 5.54±1.86c 1.49±0.63c 

26oC 188.21±28.04b 35.70±4.61b 158.85±23.27a 76.41±9.36b 25.08±3.47b 13.88±1.64b 5.54±1.86b 

30oC 337.76±33.13a 70.11±7.71a 321.21±43.92a 168.94±20.86a 50.92±5.90a 36.02±3.34a 8.02±1.28a 

34oC 459.01±191.03a 93.93±44.26a 436.97±201.49a 216.26±90.90a 67.69±30.93a 45.92±21.24a 12.97±5.04a 

One - Way ANOVA (F-Statistic) 

 4.80* 4.34* 2.13ns 4.94* 3.43* 4.02* 5.98* 

Values presented are means ± SE, n = 4. *; ** = significant at P≤0.05, P≤0.01 respectively, MSE = standard error of the mean. 

Means followed by dissimilar letters in a column are significantly different from each other at P=0.05 according to Fischer least 

significance difference.  
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Table 5.3: Effect of hydroponics solution water temperature on the uptake of micronutrients in roots of O. longibracteatum grown in 
the greenhouse in 2009 and 2010. 

 Treatment Fe Cu  Zn  Mn B  

   (mg.plant-1)   

2009      

Control (10 - 15 oC) 1.05±0.31b 0.08±0.01c 0.10±0.01c 0.31±0.09a 0.04±0.01b 

26oC 9.49±1.18ab 0.29±0.05a 0.91±0.21a 0.99±0.22a 0.18±0.04a 

30oC 13.85±5.60a 0.24±0.05ab 1.02±0.34ab 1.03±0.35a 0.20±0.06a 

34oC 7.15±2.96ab 0.13±0.05bc 0.33±0.13bc 0.61±0.21a 0.08±0.03ab 

One - Way ANOVA (F-Statistic)      

 2.74* 4.68* 4.50* 2.08ns 3.56* 

2010      

Control (10 - 15 oC) 1.73±0.75c 0.15±0.06b 0.14±0.06b 0.62±0.29a 0.05±0.01b 

26oC 4.66±0.74b 0.15±0.03b 0.44±0.07ab 0.59±0.11a 0.09±0.01b 

30oC 8.48±2.64a 0.27±0.09a 0.95±0.28a 1.04±0.27a 0.20±0.05a 

34oC 7.87±2.00a 0.23±0.04a 0.66±0.19ab 1.21±0.20a 0.13±0.03ab 

One - Way ANOVA (F-Statistic)                                                                                                                                                                                                                                        

 3.24* 4.14* 3.84* 1.81ns 4.45* 

Values presented are means ± SE, n = 4. * = significant at P≤0.05, MSE = standard error of the mean. Means followed by dissimilar 

letters in a column are significantly different from each other at P=0.05 according to Fischer least significance difference.  
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Table 5.4: Effect of hydroponics solution water temperature on the uptake of micronutrients in bulbs of O. longibracteatum grown in 

the greenhouse in 2009 and 2010. 

 Treatment Fe Cu  Zn  Mn B  

   (mg.plant-1)   

2009      

Control (10 - 15 oC) 0.09±0.01a 0.01±0.00a 0.12±0.04b 0.12±0.04b 0.04±0.01b 

26oC 0.26±0.08a 0.04±0.00a 0.52±0.12a 0.62±0.13a 0.12±0.02a 

30oC 0.49±0.15a 0.03±0.01a 0.49±0.06a 0.51±0.10a 0.12±0.02a 

34oC 0.67±0.24a 0.05±0.02a 0.60±0.10a 0.77±0.19a 0.16±0.04a 

One - Way ANOVA (F-Statistic)      

 2.97ns 2.48ns 6.05** 4.84* 4.40* 

2010      

Control (10 - 15 oC) 0.13±0.04b 0.02±0.00a 0.16±0.06c 0.23±0.08c 0.04±0.02c 

26oC 0.22±0.04b 0.03±0.00a 0.39±0.06b 0.51±0.06b 0.10±0.02b 

30oC 0.75±0.16ab 0.07±0.02a 0.96±0.12a 0.97±0.10a 0.21±0.03a 

34oC 1.27±0.48a 0.08±0.03a 1.12±0.55a 1.39±0.66a 0.31±0.14a 

One - Way ANOVA (F-Statistic)      

 4.31* 2.58ns 5.64* 4.33* 4.76* 

Values presented are means ± SE, n = 4. *; ** = significant at P≤0.05, P≤0.01 respectively, MSE = standard error of the mean. 

Means followed by dissimilar letters in a column are significantly different from each other at P=0.05 according to Fischer least 

significance difference.  
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Table 5.5: Effect of hydroponics solution water temperature on the uptake of macronutrients in shoots of O. longibracteatum grown in 

the greenhouse in 2009 and 2010. 

Treatment N  P K Ca  Mg S Na 

    (mg.plant-1)    

2009        

Control 341.37±151.27c 41.10±15.35c 452.43±196.91c 110.18±47.68b 24.76±11.61c 13.00±5.40b 12.45±5.32b 

26oC 1025.36±217.70a 104.86±21.71b 1301.94±335.76b 423.07±110.96a 69.02±16.78b 37.80±8.29ab 37.73±6.40ab 

30oC 933.75±257.33a 96.85±27.52b 1055.80±323.96b 438.12±117.32a 70.43±19.88b 40.13±10.70ab 36.43±9.89ab 

34oC 1384.69±303.94a 150.20±30.31a 1747.43±410.65a 538.36±94.38a 103.81±20.86a 61.58±14.46a 64.25±16.58a 

One - Way ANOVA (F-Statistic) 

 8.27** 23.36*** 4.74* 3.69* 4.37* 3.75* 4.05* 

2010        

Control 242.54±26.79c 108.57±14.60d 27.44±5.55b 2321.15±382.94b 330.88±45.27c 2989.63±527.54c 9.20±3.99b 

26oC 926.77±158.64b 507.29±60.69c 212.14±83.38ab 7901.95±1154.66b 1011.43±180.91bc 14626.90±2821.90bc 51.50±6.09a 

30oC 2086.54±318.10a 1470.57±181.55a 326.54±57.06a 31217.45±7399.64a 2723.55±699.39a 39368.08±6156.23a 62.68±8.97a 

34oC 1333.00±119.98b 891.46±55.96b 288.15±71.84a 29320.45±9610.75a 1592.35±147.77ab 22178.00±4174.79b 56.82±10.86a 

One - Way ANOVA (F-Statistic) 

 16.81*** 33.66*** 4.59* 5.83* 7.53** 14.64*** 9.42** 

Values presented are means ± SE, n = 4. *; **, *** = significant at P≤0.05, P≤0.01, P≤0.001 respectively, MSE = standard error of the 

mean. Means followed by dissimilar letters in a column are significantly different from each other at P=0.05 according to Fischer least 

significance difference.  
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Table 5.6: Effect of hydroponics solution water temperature on the uptake of macronutrients in whole plant of O. longibracteatum 

grown in the greenhouse in 2009 and 2010. 

Treatment N  P K Ca  Mg S Na 

    (mg.plant-1)    

2009        

Control 454.81±159.22b 60.04±16.59b 577.76±204.13b 141.95±50.52b 35.18±12.76b 21.96±5.83b 15.80±5.89b 

26oC 1481.09±235.91a 198.05±28.68a 1769.22±360.63a 545.16±113.14a 107.69±19.99a 75.79±12.79a 72.99±11.97a 

30oC 1284.81±243.87a 174.69±22.88a 1399.44±321.10ab 550.05±125.81a 106.40±22.53a 82.36±6.99a 62.77±5.54a 

34oC 1716.32±359.19a 224.53±43.08a 2076.24±440.78a 658.70±111.89a 145.11±27.89a 99.27±20.57a 74.69±17.41a 

One - Way ANOVA (F-Statistic) 

 4.47* 6.04** 3.57* 4.74* 4.57* 6.67** 5.99** 

2010        

Control 394.66±35.77d 136.63±13.54d 206.49±30.80c 2368.12±391.60b 345.36±44.88c 3000.82±527.40c 13.18±3.96b 

26oC 1201.41±160.18c 560.17±60.50c 458.87±70.18bc 7986.88±1159.63b 1038.91±182.98bc 14649.94±2819.92bc 67.16±7.61a 

30oC 2573.96±348.44a 1576.31±188.45a 807.88±125.18ab 31403.38±7415.34a 2780.05±705.09a 39426.00±6157.95a 91.38±16.32a 

34oC 1907.63±183.45b 1007.29±46.22b 842.95±198.44a 29549.92±9578.47a 1663.33±128.00ab 22238.56±4170.63b 76.19±8.10a 

One - Way ANOVA (F-Statistic) 

 19.26*** 36.68*** 6.02** 5.91* 7.78** 14.68*** 11.42*** 

Values presented are means ± SE, n = 4. *; **, *** = significant at P≤0.05, P≤0.01, P≤0.001 respectively, MSE = standard error of the 

mean. Means followed by dissimilar letters in a column are significantly different from each other at P=0.05 according to Fischer least 

significance difference.  
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Table 5.7: Effect of hydroponics solution water temperature on the uptake of micronutrients in shoots of O. longibracteatum grown in 

the greenhouse in 2009 and 2010. 

Treatment Fe Cu  Zn  Mn B  

   (mg.plant-1)   

2009      

Control (10 - 15 oC) 0.57±0.23b 0.03±0.01b 0.33±0.13b 0.57±0.20b 0.34±0.16b 

26oC 2.66±0.58a 0.09±0.03a 1.31±0.30a 1.90±0.44a 1.12±0.29ab 

30oC 2.17±0.60ab 0.11±0.03a 1.48±0.41a 1.99±0.53a 1.33±0.35ab 

34oC 1.93±0.54ab 0.08±0.00a 1.45±0.26a 2.52±0.49a 2.04±0.47a 

One - Way ANOVA (F-Statistic)      

 4.10* 3.33* 4.46* 3.67* 4.38* 

2010      

Control (10 - 15 oC) 0.29±0.04b 0.01±0.00b 0.17±0.01c 0.32±0.01c 0.15±0.02b 

26oC 1.52±0.43b 0.06±0.02b 0.88±0.20bc 1.14±0.22bc 0.86±0.11b 

30oC 5.80±1.68a 0.17±0.03a 2.39±0.52a 3.36±0.45a 2.21±0.40a 

34oC 2.24±0.46b 0.08±0.03b 1.27±0.20b 1.82±0.29b 1.93±0.36a 

One - Way ANOVA (F-Statistic)      

 6.97** 9.06** 9.67** 20.15*** 12.08*** 

Values presented are means ± SE, n = 4. *; **, *** = significant at P≤0.05, P≤0.01, P≤0.001 respectively, MSE = standard error of the 

mean. Means followed by dissimilar letters in a column are significantly different from each other at P=0.05 according to Fischer least 

significance difference.  
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Table 5.8: Effect of hydroponics solution water temperature on the uptake of micronutrients in whole plant of O. longibracteatum 
grown in the greenhouse in 2009 and 2011. 

Treatment Fe Cu  Zn  Mn B  

   (mg.plant-1)   

2009      

Control (10 - 15 oC) 1.71±0.24b 0.12±0.01c 0.55±0.14b 0.99±0.17b 0.42±0.17b 

26oC 12.41±1.44a 0.43±0.06a 2.74±0.47a 3.51±0.62a 1.42±0.31ab 

30oC 16.51±5.04a 0.39±0.03ab 2.98±0.23a 3.53±0.32a 1.64±0.31a 

34oC 9.75±2.85ab 0.26±0.07bc 2.38±0.43a 3.90±0.76a 2.28±0.50a 

One - Way ANOVA (F-Statistic)      

 4.38* 9.13** 10.24** 6.53** 5.09* 

2010      

Control (10 - 15 oC) 2.08±0.77c 0.17±0.07a 0.46±0.06c 1.15±0.28b 0.24±0.02b 

26oC 5.35±0.96bc 0.22±0.03a 1.63±0.17bc 2.13±0.15b 1.03±0.11b 

30oC 14.97±2.49a 0.51±0.13a 4.27±0.80a 5.37±0.70a 2.61±0.45a 

34oC 9.23±1.15b 0.33±0.07a 2.87±0.60ab 4.16±0.88a 2.34±0.30a 

One - Way ANOVA (F-Statistic)      

 13.56*** 3.45ns 10.32** 10.74** 16.09*** 

Values presented are means ± SE, n = 4. *; **, *** = significant at P≤0.05, P≤0.01, P≤0.001 respectively, MSE = standard error of the 

mean. Means followed by dissimilar letters in a column are significantly different from each other at P=0.05 according to Fischer least 

significance difference. 
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Chapter 6 

6.0 Effects of temperature changes in hydroponic solution on growth and 

development of Ornithogalum longibracteatum L. 
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Abstract 

 

This experiment was conducted with the aim of establishing effects of regulating 

hydroponic solution temperatures on the growth and development of O. longibracteatum 

in the glasshouse during winter periods. The plants were exposed to four hydroponic 

solution temperatures (control (10 - 15°C), 26, 30 and 34°C). The treatments were 

arranged in a completely randomized design. After 10 weeks of experimentation, data 

showed that plant growth parameters such as number of bulbs per plant, bulb 

circumference, flower stalk length, flower length, and dry and fresh weights of root, bulb, 

shoot and flower were significantly increase by warming the hydroponic solution. 

Elevating the hydroponic solution temperature to a range of 26 - 30°C induced best 

growth and produced the highest dry matter yield in O. longibracteatum under 

glasshouse conditions. Elevated temperatures of 34°C resulted in diminished growth and 

yield.  

 

Key words: bulb circumference, dry matter yield, flower length, root growth, shoot 

growth. 
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6.1 Introduction 

 

Temperature has a significance influence on growth and yield development of plants 

(Midmore, 1988). As other environmental factors, temperature is known to affect many 

growth physiological processes at different developmental stages of the plant.  Modifying 

temperature of growth medium at optimum levels may result into the maximum growth 

and yield of plants (Chung et al., 2006; Nxawe et al., 2009). This may improve root 

growth (Vogelezang, 1990), shoot (Gosselin and Trudel, 1984) and flowering patterns.  

Recently, there has been growing interest of some pharmaceutical companies and 

certain researchers in traditional medicinal plants as a source of new commercial 

products including the pregnant onion (O. longibracteatum) (Verschaeve et al. 2004). 

This plant is bulbous plant which is widely used as a traditional medicine in rural areas of 

Eastern and Southern Africa for treating anti-inflammatory disorders (Mulholland et al., 

2004; Koorbanally et al., 2006). The supply of this plant throughout the year is therefore 

very important. However, the production of O. longibracteatum during winter season in 

South Africa is limited by low temperatures. Therefore, manipulating the growing 

conditions in the greenhouse during winter period by modifying temperature of growth 

medium including that of hydroponic solution at optimum levels may result into the 

maximum growth and yield of the O. longibracteatum. Studies have shown that the 

modifications of temperature in the growth media during cold seasons affected plant 

growth and yield on greenhouse plants (Cooper, 1973; Nxawe et al 2010). It is well 

established that increasing root temperature accelerated the vegetative growth and root 

development. In their study, Pregitzer et al., (2000) reported that low temperature limited 

the enzyme root process and resulted into poor growth, nutrient uptake and respiration. 

Increasing root temperature accelerated the vegetative growth and root development. In 

another study by Dunlap (1986), warming of the soil at 21, 27 and 32°C with 
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muskmelons showed greater yield increase when root temperature was accelerated to 

its optimum level. Conversely, low temperature may limit or reduce crop yield which 

prevent vegetative growth (Seiler, 1998). Research evidence showed that at 6°C the 

growth of Chrysanthemum morifolium Ramat was significantly reduced resulting into 

poor rooting system and decreased fresh and dry weight (Mortensen, 1982). In another 

study,  Gesch, (2007) documented that temperature below 0°C caused freezing injury to 

plants by developing sharp-edged ice crystals, which decreases cell size leading to plant 

physiological disorders associated with reduced growth. Other researchers (Jakobsen 

and Martens, 1994; Singh et al., 2008) found that at lower temperature (10°C), flower 

abortion occurred in different plant because pollen and ovule fertility were highly 

sensitive to cold temperature. In flower and pharmaceutical industries these effects on 

flower physiology can lead to drastic reduction in economic yield (Diepenbrock, 2000; 

Thakur et al., 2010). Therefore, it is anticipated that increasing the hydroponic water 

solution to its optimum temperature may enhance the glasshouse production of O. 

longibracteatum during winter periods through the modification of root zone temperature. 

This study was conducted with the objective of establishing effects of regulating 

temperatures in the hydroponic solution on the growth and development of O. 

longibracteatum in the glasshouse during winter periods. 

 

 6.2 Materials and methods 

 

6.2.1 Site location and description 

 

The experiment was conducted at the greenhouse of the Cape Peninsula University of 

Technology, Cape Town, South Africa from July 2009 and July 2010. The climate 

controlled greenhouse had temperatures ranging from 16 - 36°C during the days, and 10 
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- 18°C at night. The relative humidity of the glasshouse averaged 35%. There is a 40% 

Alunet shade cloth suspended 2 m above the ground of the glasshouse. The light 

intensities ranged from 030 lux to 600 lux, as measured by a Toptronic T630 light meter. 

Irrigation water was supplied from a Hager IP65 Water Filtration Plant de-ioniser, and 

had an average temperature of 16°C. 

 

6.2.2 Supply of experimental materials 

 

A steel table (2.5 m x 1 m) used as a flat surface, black plastic container (50 L), leca clay 

pebbles were supplied by Horticultural Department of Cape Peninsula University of 

Technology (CPUT), Cape Town, South Africa. Four (4) plastic gutters (2 m x 0.6 m), 4 

pumps, 20 ml black plastic pipe, cable tie and 3 Dolphin aquarium heaters were 

purchased from Builders Warehouse (Maitland, Cape Town), South Africa. Bulbs of 

pregnant onion (O. longibracteatum) used as planting material were obtained from the 

CPUT Nursery and Hortical Ca (NO3)2 was obtained from Stark Ayres all in Cape Town, 

South Africa. 

 

6.2.3 Experimental design 

 

A completely randomized design, with four replicates, was conducted to study the effects 

of temperature on growth and development in O. longibracteatum. Four white plastic 

gutters (2 m x 0.6 m) filled with leca clay pebbles were placed on a 2.5 m x 1 m steel 

table. Water was supplied to the leca pebbles through pumps projecting from 4 sets of 

black plastic containers (50 L) placed beneath the table. The water in each of the 3 tanks 

was heated by using Dolphin aquarium heaters to maintain the temperatures at 26, 30 

and 34°C respectively. Unheated water supplied from the fourth container served as 
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control. Using the thermometer, the temperature ranged between 10 - 15°C (day/night) 

throughout the experiment period.  O. longibracteatum bulbs were planted in each gutter 

(i.e. 10 bulbs per gutter) and supplied with nutrient solution (1 mg.l-1 Hortical Ca (NO3)2) 

immediately after transplanting. Nutrient solution supplied from the pumps was re-

circulated back to the black plastic container (50 l) through a 20 ml black plastic pipe. 

The plants were left to grow for the period of 10 weeks. To prevent concentration of 

nutrients in the clay pebbles due to evaporation, water was drained from the gutters and 

refreshed after every 2 weeks.  

 

6.2.4 Collecting and analyzing data 

 

After 10 weeks of transplanting, O. longibracteatum was determined by taking 

measurements of root mass, bulb mass, shoot mass, flower mass, bulb circumference, 

flower stalk length flower height (mm) and enumeration of leaf numbers at harvesting. 

Total root, bulb, shoot and flower mass (g) was determined by weighing. The bulb 

circumference was measured with a veneer calliper. Flower stalk length and flower 

length were measured with a ruler. 

  

6.2.5 Statistical analysis 

 

The experimental data collected were analysed by using a One-Way analysis of variance 

(ANOVA). The analysis was performed using STASTICA Software Programme 2010 

(StatSoft Inc., Tulsa OK, USA). Where F-value was found to be significant, Fisher’s least 

significant difference (LSD) was used to compare the means at P≤0.05 level of 

significance (Steel and Torrie, 1980).  
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6.3 Results 

 

6.3.1 Effect of hydroponics water temperature on yield in root mass (fresh 

weight) of O. longibracteatum 

 

Table 6.1 shows the effect of four different temperature treatments on root mass of O. 

longibracteatum. Raising hydroponics’ water temperature from 26 to 30°C significantly 

increased the root mass and decreases at 34°C compared with the control. Root mass 

significantly increased by 353, 790 and 180% in 2009 and by 273, 479 and 110% in 

2010 by raising the temperature to 26,  30 and 34°C respectively relative to the control. 

In the heated system, maximum root mass was obtained at 30°C and was significantly 

decreased at 34°C in both years. 

 

6.3.2 Effect of hydroponics water temperature on yield in bulb mass (fresh 

weight) of O. longibracteatum 

 

The effect of hydroponic water temperature on bulb mass is shown in Table 6.1. The 

data showed that bulb mass of O. longibracteatum increased significantly when 

temperatures was raised from 26 to 34°C but the mass was significantly reduced at 

34°C. For instance, increasing hydroponics’ water solution temperature from 26, 30 and 

34°C significantly increased the bulb mass by 273, 389 and 131% in 2009 and 268, 532 

and 208% in 2010 compared with the control. From the heated treatments, the maximum 

bulb mass was obtained at 30°C and was significantly decreased at 34°C in both years. 
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6.3.3 Effect of hydroponics water temperature on yield in shoot mass (fresh 

weight) of O. longibracteatum 

 

There was a significance effect on hydroponic water temperature on the shoot weights of 

O. longibracteatum (Table 6.1). Relative to the control treatment, results showed that 

increasing temperature to 26, 30 and 34°C significantly increased the shoot mass of O. 

longibracteatum by 1180, 1988, and 683% in 2009 and 215, 384 and 129% in 2010. 

Generally, in the heated treatments, shoot mass was significantly decreased when 

temperature was increase from 30 to 34°C. The data showed that best results for root 

mass were recorded at 30°C. 

 

6.3.4 Effect of hydroponics water temperature on flower fresh weight of O. 

longibracteatum 

 

There was a significance difference in flower mass of O. longibracteatum at different 

temperature treatments during 2009 and 2010. Flower mass was significantly increased 

by elevating hydroponic temperature to 26, 30 and 34°C compared with the untreated 

water or control. Relative to the control, increasing the hydroponics solution temperature 

from 26, 30°C and 34°C fresh flower weight increased  by 479, 1091,316% in 2009 and 

725, 981,532% in 2010 respectively. Generally, highest flower mass were recorded at 

elevated temperature of 30°C in both 2009 and 2010. 
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6.3.5 Effect of hydroponics water temperature on bulb circumference (mm), 

flower stalk length (mm) and flower length (mm) of O. longibracteatum 

 

There was a significant increase in bulb circumference, flower stalk length and flower 

length when temperature was raised from 10oC to 26, 30 and 34°C.  Bulb circumference 

increased by 151, 238 and 87% in 2009 and by 41, 80 and 24% in 2010 respectively by 

increasing the temperature to 26, 30 and 34°C compared with the control. Similar trend 

was observed in flower stalk length. The flower length stalk increased significantly by 

367, 481 and 54% in 2009 and in 2010 it increased by 417, 514 and 319% respectively. 

Flower stalk length was greater at 30°C but slightly increased at 34°C in both years 

relative to the control. As shown in Table 6.1, raising the hydroponic solution 

temperatures to 26 and 30°C significantly increased the flower length by 987% and 

1560% but at 34°C it was decreases by -27% in 2009 compared with the control, while in 

2010 raising temperatures to 26, 30 and 34°C resulted into increased flower length by 

671, 1900 and 350% respectively.  

 

6.3.6 Effect of hydroponics water temperature on number of bulbs of O. 

longibracteatum 

 

Results (Table 6.1) showed that, relative to the control, increasing hydroponic water 

temperature to 26, 30 and 34°C significantly increased the number of bulbs. 

Hydroponics solution temperature of 30°C the number of bulbs was higher by 155%, 

followed by 77% at 26 °C and slightly increased by 25% in 2009 at 34°C compared with 

the control. In 2010, raising temperature to 34°C resulted into significant increases in 

number of bulblets by 21% compared with the control. However, greater increases in 
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number of bulbs of 99 and 216% occurred at the temperatures of 26 and 30°C 

respectively relative to the unheated control.  

 

 

6.3.7 Effect of hydroponics water temperature on total dry weight (root, bulb, 

shoot and flower) of O. longibracteatum 

 

Table 6.2 showed the effect of hydroponic water temperature on dry yield matter in roots, 

bulb, shoots and flowers of O. longibracteatum. Compared with the control, increasing 

the hydroponic temperatures to 26, 30 and 34°C significantly increased the dry yield 

matter yield of root, bulb, shoots and flowers. Dry root yields increased by 153, 408 and 

70% in 2009 increased by 104, 236 and 104% by raising temperatures to 26, 30 and 

34°C respectively. Similar trend was also observed in dry yield of bulbs. Raising 

temperature to 26, 30 and 34°C increased the bulb weight by 197,440 and 111% in 2009 

and 215, 494 and 147% in 2010 respectively. Furthermore, increasing hydroponic water 

temperature influenced the dry matter yield of shoots by 376, 1026 and 182% in 2009 

and by 393, 863 and 164% in 2010 relative to the control. Results also showed that 

elevating hydroponic solution temperatures to  26, 30 and 34°C significantly increased 

the dry matter yield in flowers by 963,1665 and 690% in 2009 and by 609,1100 and 

500% in 2010 compared with the control . Generally, optimum dry matter yield was 

recorded at the elevated temperature of 30°C. However, when temperature was 

increased to 34°C dry matter yield in roots, bulbs, shoots and flowers started decreasing. 
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6.4 Discussion 

 

The results from this study suggested that the optimum hydroponic solution temperature 

to grow O. longibracteatum under glasshouse conditions is 30°C. Most plant growth 

parameters such as number of bulbs per plant, bulb circumference, flower stalk length, 

flower length, and dry and fresh weights of root, bulb, shoot and flower were increased 

by warming the hydroponic solution. Relative to the control treatment, increasing the 

hydroponic temperatures to 26°C improved all plant growth parameters measured in this 

study to a certain degree. However, further increase to 30°C resulted into optimum plant 

growth in all parameters measured. Temperature above 30°C resulted into reduced 

growth and yield. In this study, the higher yields obtained with elevated hydroponic water 

temperature compared to the control suggests the great potential of this practice in 

inducing positive growth of O. longibracteatum and other related plants during cold 

winter season under the glasshouse conditions. As temperature is one of the factors 

which influence growth, heating of the hydroponic solution was important. It is evident 

that, elevated temperatures improved and accelerated chlorophyll production, net 

photosynthesis, and respiration rate in O. longibracteatum (Nxawe et al., 2011) which 

may have contributed to higher carbon fixation that was reflected in improving plant 

growth and the fresh and dry matter yield in different plant organs. Other researchers 

have proposed that increased growth at optimum temperature was due to optimization of 

various physiological process such as water (Kramer 1983) and nutrient (Engels, 1993) 

uptake.  

 

On the other side, elevated temperatures of 34°C resulted in diminished chlorophyll 

synthesis and reduced photosynthesis, and respiration (Nxawe et al., 2011). This 

ultimately resulted in reduced growth and yield. Similar to this study, Xu and Huang 
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(2000), Huang et al., (2001), Lyons et al., (2007) reported reduced plant growth at 

elevated soil temperature above optimum in creeping bentgrass (Agrostis palustris) by 

reducing the fresh weight and number of roots per plant thus affecting the synthesis and 

transport of metabolites in the plant.   

 

In conclusion, these results suggest that plant growth parameters such as number of 

bulbs per plant, bulb circumference, flower stalk length, flower length, dry and fresh 

weights of root, bulb, shoot and flower were increased by warming the hydroponic 

solution. Elevating the hydroponic solution temperature to a range of 26- 30°C induced 

best growth and produced the highest dry matter yield in O. longibracteatum under 

glasshouse conditions. Elevated temperatures of 34°C resulted in diminished growth and 

yield.  
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Table 6.1:Effect of temperature on growth of O. longibracteatum (fresh mass) during 2009 and 2010.  

Treatments RM BM SM FM  BC FSL FL  NoB 

 g  mm  

Year 2009           

Control 

(10 - 15 oC) 
28.7±2.4d 75.53±5.10d 54.84±8.73d 13.6±1.5d 

 
24.0±0.6d 175.0±14.4d 37.5±4.3c 

 
16.0±1.2d 

26oC 130.1±2.9b 281.84±5.23b 702.21±24.53b 78.7±6.3b  60.3±2.1b 817.5±114.8b 407.5±32.8b  28.3±1.8b 

30oC 255.3±13.9a 369.18±15.12a 1145.19±24.36a 162.0±14.4a  81.0±2.7a 1017.5±13.8a 622.5±47.9a  40.8±1.5a 

34oC 80.3±6.1c 174.77±9.32c 429.34±24.38c 56.6±6.7c  44.8±1.5c 270.3±27.0c 27.5±4.1d  20.0±2.0c 

One - Way ANOVA (F-Statistic) 

 154.86*** 176.71*** 452.20*** 52.96***  157.26*** 47.31*** 100.32***  44.28*** 

Year 2010           

Control 

(10 - 15 oC) 
44.9±4.7d 56.3±15.5d 246.92±7.36d 7.9±0.9d  39.8±5.1d 167.5±4.3d 35.0±2.9d 

 
14.5±1.5d 

26oC 167.5±5.8b 207.1±33.3b 777.55±32.77b 65.2±7.6b  56.3±4.5b 866.3±48.8b 270.0±37.2b  28.8±6.2b 

30oC 259.8±25.6a 355.6±13.9a 1195.99±80.70a 85.4±6.0a  71.8±2.7a 1029.0±17.8a 700.0±27.2a  45.8±4.4a 

34oC 94.3±13.3c 173.5±10.3c 565.16±20.70c 49.9±5.1c  49.3±4.9c 701.3±52.3c 157.5±20.3c  17.5±3.6c 

One - Way ANOVA (F-Statistic) 

 39.48*** 36.83*** 78.55*** 35.58***  9.31** 102.42*** 131.82***  10.93*** 

Values (Mean ± SE, n = 4) followed by dissimilar letters in a column are significantly different at **: P≤0.01; ***: P≤0.01. RM=Root 

mass, BM=Bulb mass, SM=Shoot mass, FM=Flower mass, BC=Bulb circumference, FSL=Flower stalk length, FL=Flower length, 

NoB=Number of bulblets 
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Table 6.2: Effect of temperature on growth of O. longibracteatum (dry mass) during 2009 and 2010.  

Treatment Root  Bulb  Shoot  Flower  

 g 

2009     

Control (10 - 15 oC) 1.46±0.03d 1.77±0.16d 5.70±0.26d 0.49±0.02d 

26oC 3.70±0.32b 5.26±0.45b 27.13±1.08b 5.21±0.28b 

30oC 7.42±0.39a 9.55±0.21a 64.16±3.13a 8.65±0.36a 

34oC 2.48±0.08c 3.74±0.42c 16.07±0.88c 3.87±0.24c 

One - Way ANOVA (F-Statistic)     

 102.13** 96.07** 220.41** 173.73** 

2010     

Control (10 - 15 oC) 1.63±0.09c 1.61±0.07d 5.13±0.44d 0.47±0.02d 

26oC 3.33±0.22b 5.07±0.38b 25.29±1.64b 3.33±0.21b 

30oC 5.48±0.34a 9.57±0.28a 49.41±2.30a 5.64±0.42a 

34oC 3.33±0.25b 3.98±0.15c 13.56±0.99c 2.82±0.30c 

One - Way ANOVA (F-Statistic)     

 41.56*** 180.76** 161.62** 57.35*** 

Values (Mean ± SE, n = 10) followed by dissimilar letters in a column are significantly different at *P≤0.05; **: P≤0.01; ***: P≤0. 001. 
 



 

 

Chapter 7 

7.0 General Discussion and Conclusion 

In South Africa, low temperatures may limit growth and production of certain crops 

during winter period. The cold environments may affect all stages of plant growth and 

specifically the chlorophyll production, photosynthesis, accumulation of plant metabolites 

such as flavonoids and anthocyanins, nutrient uptake and finally the dry matter yield of 

roots, shoots and flowers. 

 

Results from this study conducted in the glasshouse in 2009 and verified in 2010 have 

shown that photosynthesis rate (A) and the gas exchange parameters [stomata 

conductance (gs), intercellular CO2 concentration (Ci) and transpiration (E)] were 

significantly increased by elevating the hydroponic solution temperatures to 26-30°C 

compared with the control and then decreased significantly at 34°C.  Furthermore, 

increasing hydroponics solution temperature from 26°C to 34°C significantly induced 

increased the levels of flavonoids and anthocyanins in roots, bulbs, shoots and flowers 

of O. longibracteatum in both years 2009 and 2010.  

 

Warming of the hydroponic solution to 26, 30 and 34oC significantly increased the uptake 

of the following macronutrients and micronutrients (N, P, K, Ca, Mg, S, Na Fe, Cu Zn, 

Mn and B and Mo) in organs of O. longibracteatum (root, bulbs shoot, and whole plant) 

in 2009 and in 2010. The control treatments 10 - 15°C (day/night) had the lowest uptake 

of most nutrients. 

 

Results from the two years study also showed that plant growth parameters such as 

number of bulbs per plant, bulb circumference, flower stalk length, flower length, and dry 
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and fresh weights of root, bulb, shoot and flower were significantly increase by warming 

the hydroponic solution. Elevating the hydroponic solution temperature to a range of 26- 

30°C induced best growth and produced the highest dry matter yield in O. 

longibracteatum under glasshouse conditions. Elevated temperatures of 34°C resulted in 

diminished growth and yield.  

 

In conclusion, these findings suggest that controlled production of O. longibracteatum 

during winter seasons is possible by heating the hydroponic solution up to 30°C beyond 

which there was impaired plant growth in most parameters which were measured. More 

studies on other physiological growth characteristics of O. longibracteatum should be 

investigated to explore the required growth conditions during winter seasons in the 

controlled settings such as glasshouses. 
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