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ABSTRACT 

 

Innovation in biotechnology research has resulted in a number of fungi being identified for 

diverse industrial applications. One such fungus, which is the subject of this study and has been 

one of the most intensively studied, is Phanerochaete chrysosporium. Much research has been 

done in developing optimized membrane bioreactor systems for the cultivation of these fungi 

because of their potent industrial applications. This research, however, has been hampered by the 

lack of a thorough understanding of the kinematics of flow, as well as the dynamics of the flow 

through these devices. Previous analyses of momentum transfer in membrane bioreactors have 

been entirely based on horizontally orientated bioreactor systems, and ignored the different 

modes of operations of membrane bioreactors. These models also ignored the osmotic pressure 

effects brought about by the retention of solutes on the membrane surface. 

 

In this study, analytical and numerical solutions to the Navier-Stokes equations for the 

description of pressure, velocity, and volumetric flow profiles in a single fibre capillary 

membrane bioreactor (SFCMBR) were developed. These profiles were developed for the lumen 

and shell sides of the SFCMBR, taking into account osmotic pressure effects, as well as gel 

and/or cake formation on the lumen surface of the membrane. The analytical models developed 

are applicable to horizontal and vertical systems, as well as dead-end, continuous open shell, 

closed-shell, and shell side crossflow modes. A numerical scheme was also developed to 

complement the analytical models. The partial differential Navier-Stokes equations were solved 

in steps of time using a revised form of the SIMPLE algorithm. The mathematical expressions 

developed were proposed as solutions to transient-state, laminar, incompressible, viscous and 

isothermal flow inside a membrane with a variable hydraulic permeability.  

 

The dimensionless form of the Navier-Stokes equations, after a consideration of the general 

applications of capillary membrane bioreactors, was shown to be a variant of Bessel’s differential 

equation. This generic equation was solved for the specific case of no angular variations of the 

flow profiles. These expressions were based on a similarity solution since the wall Reynolds 

number was much smaller than one (Rew<<1). The ‘no slip’ assumption was also imposed on the 
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analysis since the distortion of the velocity profile relative to that established in non-porous wall 

systems was also smaller than one (χL<<1). 

 

The proposed models were tested on a vertically orientated membrane bioreactor, with a constant 

shell side pressure, operated in the dead-end mode with P. chrysosporium immobilised on the 

outside of a capillary polysulphone membrane. The resulting solutions from these models gave 

similar results to those in previous publications when ignoring gravitational effects, osmotic 

effects, and gel formation. From a sensitivity analysis, it was shown that the osmotic pressure 

flattens the lumenal velocity profiles and reduces the transmembrane pressure. Hence, the 

osmotic pressure was shown to have a negative effect on the membrane bioreactor efficiency. 

This study also showed that in the limiting case of the hydraulic permeability approaching 

zero, 0→κ , the flow resembled that of a straight circular tube of constant cross section (Hagen 

Poiseuille flow). It was experimentally and theoretically shown that the hydraulic permeability of 

the polysulphone capillary membranes was a function of temperature. After monitoring the 

hydrostatic pressure profiles during operation, it was observed that the profiles follow a cycle 

similar to that of the growth phases of the P. chrysosporium fungus.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



DEDICATION vi 

DEDICATION 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To the memory of Mxokozeli Tylden Godongwana 

“Kuthe kanti uyiNdoda kwedini!” 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



ACKNOWLEDGEMENTS vii 

ACKNOWLEDGEMENTS 

 

I would like to express my sincere appreciation and gratitude to the following persons for their 

support during my Magister Technologiae research at Cape Peninsula University of Technology: 

 

• To my supervisors: Mrs Sheldon, for putting her faith in me, her guidance and motivation 

throughout the duration of my undergraduate and postgraduate studies. I will forever be 

grateful to her for nominating me for the Mandela-Rhodes scholarship, and providing me 

an opportunity to meet Mr Mandela. Dr Solomons, the brilliant mathematician, for 

making me realize that my mathematics is not so bad after all, and his priceless advice 

and support on mathematical principles covered in this thesis.  

 

• The Mandela-Rhodes Foundation for their financial assistance, and more importantly their 

personal interest in my private and professional development.  

• The National Research Foundation for financial support towards the completion of this 

research. 

• Dr Alna van der Merwe for her contribution in validating some of the mathematical 

techniques in this research.  

• Prof Rejoice Ngcongo for her continued support and encouragement in keeping me on 

track with my purpose.   

• The memory of Dr Winston Leukes who, though under immense demands, was always 

available to make constructive comments on some of the topics covered in this work.   

• Siphokazi Andries, Kashief Mohamed, Seteno Karabo Ntwampe, Fikiswa Majola, Simoné 

Collins, Debbie de Jager, and other colleagues in the biotechnology laboratory for all their 

assistance and advice. 

• Ayanda Bambiso, Sheku Kanu, Ncedo Ntloko and Dr Patrick Ndakidemi for their support 

and encouragement in making this journey a wonderful and memorable one. 

 

• Special thanks to Amanda Mokhatla, my dear sister Noluvuyo, and all my family and 

friends for helping me keep my mind off bugs and membranes when I couldn’t. 



RESEARCH OUTPUT viii 

RESEARCH OUTPUTS 

 

Articles submitted to accredited journals  

  

Godongwana, B., Sheldon, M.S. & Solomons, D.M. 2007. Momentum transfer inside a vertically 

orientated capillary membrane bioreactor. Journal of Membrane Science, 303: 86-99. 

 

Conference presentations 

 

Oral presentations 

 

Godongwana, B., Sheldon, M.S. & Solomons, D. 2006. Momentum transfer inside a vertically 

orientated capillary membrane bioreactor. SAIChE (Western Cape Branch) Annual R & D Day 

[Stellenbosch, South Africa, 23 June 2006]. 

 

Poster snapshot presentations  

 

Godongwana, B., Sheldon, M.S. & Solomons, D. 2005. Momentum transfer inside a vertically 

orientated capillary membrane bioreactor. 6
th 

WISA-MTD Symposium and Workshop [George, 

South Africa, 13-15 March 2005]. 

 

 

 



TABLE OF CONTENTS ix 

TABLE OF CONTENTS 

 

DECLARATION ........................................................................................................................... ii 

ABSTRACT .................................................................................................................................. iv 

DEDICATION .............................................................................................................................. vi 

ACKNOWLEDGEMENTS ........................................................................................................ vii 

RESEARCH OUTPUTS ............................................................................................................ viii 

TABLE OF CONTENTS ............................................................................................................. ix 

LIST OF FIGURES..................................................................................................................... xv 

LIST OF TABLES..................................................................................................................... xvii 

LIST OF SYMBOLS................................................................................................................ xviii 

ABBREVIATIONS..................................................................................................................... xxi 

 

1. INTRODUCTION ................................................................................................................. 1 

1.1 Background...................................................................................................................... 1 

1.2 Research Objectives ........................................................................................................ 3 

1.3 Overview ......................................................................................................................... 3 

1.3.1 The research topic........................................................................................................ 3 

1.3.2 Hypothesis ................................................................................................................... 4 

1.3.3 Collection of the relevant data..................................................................................... 4 

1.3.4 Analysis of the data and interpretation of the results .................................................. 4 

 

2. LITERATURE REVIEW ..................................................................................................... 5 

2.1 Introduction ..................................................................................................................... 5 

2.2 Phanerochaete chrysosporium and its properties............................................................ 5 

2.3 Applications of Phanerochaete chrysosporium .............................................................. 6 

2.4 Developments in bioreactor design for cultivation of Phanerochaete chrysosporium ... 7 

2.5 Membranes ...................................................................................................................... 9 

2.5.1 Characteristics of capillary and HF membranes.......................................................... 9 

2.5.2 Membrane materials and the polysulphone membrane ............................................... 9 

2.6 Modes and orientations of operation ............................................................................. 11 



TABLE OF CONTENTS x 

2.7 Mathematical models for momentum transfer............................................................... 14 

2.7.1 Significance of momentum transfer analysis in bioreactor design............................ 14 

2.7.2 Description of momentum transfer............................................................................ 14 

2.7.3 Previous models of momentum transfer.................................................................... 15 

2.8 Summary and significance of literature study ............................................................... 17 

 

3. THEORY.............................................................................................................................. 18 

3.1 Introduction ................................................................................................................... 18 

3.2 Differential equations of motion.................................................................................... 18 

3.2.1 Navier-Stokes and continuity equations .................................................................... 18 

3.2.2 The Stream function .................................................................................................. 20 

3.3 Flow through ultrafiltration membranes........................................................................ 21 

3.3.1 Darcy’s law................................................................................................................ 21 

3.3.2 The Hagen-Poiseuille model ..................................................................................... 22 

3.3.3 Hydraulic permeability of ultrafiltration membranes................................................ 23 

3.3.4 Concentration polarization ........................................................................................ 25 

 

4. NUMERICAL METHODS................................................................................................. 26 

4.1 Introduction ................................................................................................................... 26 

4.2 The finite difference method ......................................................................................... 26 

4.3 Computational fluid dynamics....................................................................................... 28 

4.4 Bessel functions............................................................................................................. 29 

 

5. MODEL DEVELOPMENT................................................................................................ 32 

5.1 Introduction ................................................................................................................... 32 

5.2 Model assumptions........................................................................................................ 32 

5.3 Dimensionless variables ................................................................................................ 34 

5.4 Boundary and initial conditions..................................................................................... 36 

5.5 Analytical model solutions ............................................................................................ 38 

5.5.1 The generic equation ................................................................................................. 38 

5.5.2 Vertical orientation (constant shell side pressure)..................................................... 39 

5.5.3 Vertical orientation (variable shell side pressure) ..................................................... 41 

5.5.4 Horizontal orientation (constant shell side pressure) ................................................ 43 



TABLE OF CONTENTS xi 

5.5.5 Horizontal orientation (variable shell side pressure)................................................. 44 

5.6 Finite difference scheme formulation............................................................................ 45 

 

6. MATERIALS AND METHODS........................................................................................ 48 

6.1 Introduction ................................................................................................................... 48 

6.2 Description of materials................................................................................................. 48 

6.2.1 Microorganism .......................................................................................................... 48 

6.2.2 Nutrient medium........................................................................................................ 48 

6.2.3 Polysulphone capillary membrane............................................................................. 49 

6.2.4 Air pump.................................................................................................................... 49 

6.2.5 Humidifier ................................................................................................................. 50 

6.2.6 Pressure transducers .................................................................................................. 50 

6.3 Description of experiments............................................................................................ 51 

6.3.1 Control experiments .................................................................................................. 51 

6.3.2 Biofilm growth experiments...................................................................................... 52 

6.3.3 Scanning electron microscope preparation................................................................ 53 

6.3.4 Hydraulic permeability .............................................................................................. 54 

 

7. EVALUATION OF MODEL PARAMETERS ................................................................ 55 

7.1 Introduction ................................................................................................................... 55 

7.2 Numerical scheme parameters....................................................................................... 55 

7.2.1 Stability analysis........................................................................................................ 56 

7.2.2 Grid independence..................................................................................................... 56 

7.2.3 Convergence of the numerical solver ........................................................................ 57 

7.3 Analytical model parameters ......................................................................................... 58 

7.3.1 Membrane hydraulic permeability ............................................................................ 58 

7.3.2 Concentration polarization layer ............................................................................... 59 

7.3.3 Osmotic pressure ....................................................................................................... 61 

7.3.4 Pressure drop across the membrane........................................................................... 62 

 

8. RESULTS AND DISCUSSION.......................................................................................... 64 

8.1 Introduction ................................................................................................................... 64 

8.2 Hydraulic permeability (without biofilm growth) ......................................................... 64 



TABLE OF CONTENTS xii 

8.2.1 Experimental and theoretical evaluation ................................................................... 64 

8.2.2 Membrane hydraulic permeability versus temperature ............................................. 65 

8.3 Biofilm thicknesses ....................................................................................................... 66 

8.4 Hydrostatic pressure drop.............................................................................................. 69 

8.4.1 Pressure drop along the membrane for the control experiments (without biofilm 

growth)................................................................................................................................... 69 

8.4.2 Pressure profiles during operation with biofilm growth............................................ 70 

8.4.3 Pressure predictions using developed model versus literature models ..................... 72 

8.4.4 Osmotic effects on pressure profile (without biofilm growth) .................................. 73 

8.5 Flow profiles (without biofilm growth)......................................................................... 74 

8.5.1 Velocity profiles ........................................................................................................ 74 

8.5.2 Streamlines ................................................................................................................ 76 

8.5.3 Volumetric flow......................................................................................................... 78 

8.6 Redox potentials and pH ............................................................................................... 79 

 

9. CONCLUSIONS.................................................................................................................. 81 

9.1 Summary........................................................................................................................ 81 

9.2 Future Work................................................................................................................... 82 

 

REFERENCES ............................................................................................................................ 84 

 

APPENDIX A............................................................................................................................... 93 

ANALYTICAL SOLUTION CALCULATIONS..................................................................... 93 

A.1. The generic equation ..................................................................................................... 93 

A.2 Vertical SFCMBR calculations (constant shell side pressure)...................................... 96 

A.2.1 Axial velocity inside the membrane lumen ............................................................... 96 

A.2.2 Radial velocity inside the membrane lumen............................................................ 100 

A.2.3 Velocity through the matrix..................................................................................... 101 

A.2.4 Volumetric flowrate in the lumen............................................................................ 102 

A.2.5 Pressure profiles in the membrane lumen................................................................ 103 

A.2.6 Axial velocity on the shell-side of the membrane ................................................... 104 

A.2.7 Volumetric flowrate in the shell side....................................................................... 106 

A.3 Horizontal SFCMBR calculations (constant shell side pressure)................................ 106 



TABLE OF CONTENTS xiii 

A.4 Stream function for vertical SFCMBR (constant shell side pressure)......................... 107 

A.4.1 Stream functions for the membrane lumen.............................................................. 107 

A.4.2 Stream functions for the membrane shell ................................................................ 108 

A.5 Vertical SFCMBR calculations (variable shell side pressure) .................................... 108 

A.5.1 Axial and radial velocities inside the membrane lumen.......................................... 108 

A.5.2 Axial velocity on the membrane shell ..................................................................... 109 

A.5.3 Radial velocity on the membrane shell.................................................................... 110 

A.5.4 Pressure profiles in the membrane shell .................................................................. 111 

A.6 Horizontal SFCMBR calculations (variable shell side pressure) ................................ 114 

A.7 Stream function for vertical SFCMBR (variable shell side pressure) ......................... 115 

 

APPENDIX B............................................................................................................................. 117 

NUMERICAL SCHEME CALCULATIONS ........................................................................ 117 

B.1 Axial velocity profile................................................................................................... 117 

B.2. Radial velocity profile ................................................................................................. 118 

 

APPENDIX C............................................................................................................................. 120 

GROWTH AND MAINTENANCE OF THE FUNGUS........................................................ 120 

C.1 Spore Inducing Medium .............................................................................................. 120 

C.2 Casting of the Agar...................................................................................................... 120 

C.3 Inoculation of P. chrysosporium onto Petri dishes...................................................... 121 

C.4 Spore solution preparation........................................................................................... 122 

C.5 Separation of spores from mycelium........................................................................... 122 

C.6 Determination of spore purity and concentration ........................................................ 122 

C.6.1 Spore purity ............................................................................................................. 122 

C.6.2 Spore concentration ................................................................................................. 122 

 

APPENDIX D............................................................................................................................. 124 

PREPARATION OF THE NUTRIENT SOLUTION............................................................. 124 

D.1 Trace element stock solution ....................................................................................... 124 

D.2 Basal III medium stock solution.................................................................................. 124 

D.3 10% Glucose stock solution ........................................................................................ 125 

D.4 0.1 M 2,2-dimethylsuccinate stock solution (pH 4.2) ................................................. 125 



TABLE OF CONTENTS xiv 

D.5 Thiamin-HCl................................................................................................................ 125 

D.6 Ammonium tartrate ..................................................................................................... 125 

D.7 0.02M Veratryl alcohol................................................................................................ 125 

D.8 Nutrient solution make-up ........................................................................................... 126 

 

APPENDIX E............................................................................................................................. 127 

AUXILIARY CALCULATIONS ........................................................................................... 127 

E.1 Hydraulic permeability of the membrane.................................................................... 127 

E.2 Schmidt Number of the nutrient solution .................................................................... 128 

E.3 Wall Reynolds Number of the nutrient solution.......................................................... 129 

 

APPENDIX F ............................................................................................................................. 131 

BESSEL FUNCTIONS ........................................................................................................... 131 

F.1 Bessel’s differential equation ...................................................................................... 131 

F.2 Zeros of Bessel functions ............................................................................................ 133 

F.3 Important integrals of Bessel functions ....................................................................... 133 

 

APPENDIX G ............................................................................................................................ 135 

CURVILINEAR COORDINATES......................................................................................... 135 

G.1 Cylindrical coordinates................................................................................................ 135 

G.2 Equations of motion for a Newtonian fluid ................................................................. 136 

G.2.1 Cartesian coordinates (x, y, z) ................................................................................. 136 

G.2.2 Cylindrical coordinates (r,θ , z)............................................................................... 136 

G.2.3 Spherical coordinates(r,θ ,φ ) .................................................................................. 137 

 

APPENDIX H ............................................................................................................................ 138 

MEMBRANE THICKNESSES .............................................................................................. 138 

H.1 Preparation of samples for SEM imaging ................................................................... 138 

H.2 Thickness measurements ............................................................................................. 139 



LIST OF FIGURES xv 

LIST OF FIGURES 

 

Figure 2-1: Flow diagram of the process of membrane manufacturing ........................................ 10 

Figure 2-2: A scanning electron microscope image of the PSu capillary membrane.................... 11 

Figure 2-3: Some modes of operation of hollow fibre devices ..................................................... 11 

Figure 2-4: Schematic of hollow fibres in an equilateral array ..................................................... 12 

Figure 2-5:  Convective recirculation in a membrane device........................................................ 13 

Figure 3-1:  An infinitesimal element model of flow.................................................................... 18 

Figure 3-2: Characteristic curve for flux through an ultrafiltration membrane as a function of 

transmembrane pressure ............................................................................................. 25 

Figure 4-1: A staggered grid.......................................................................................................... 27 

Figure 4-2: A flow chart of general CFD methodology ................................................................ 28 

Figure 5-1: The flow curve of the nutrient solution at 37ºC ......................................................... 33 

Figure 5-2: Hypothesised velocity distributions through the PSu capillary membrane ................ 37 

Figure 6-1: A schematic diagram of the single fibre capillary membrane bioreactor (SFCMBR) 50 

Figure 6-2: A pictorial view of the single-fibre capillary membrane bioreactor (SFCMBR)....... 52 

Figure 7-1: Convergence of the numerical solver as a function of grid spacing........................... 57 

Figure 7-2: Pressure profile (PL) as a function of hydraulic permeability (κ) .............................. 58 

Figure 7-3: An SEM of gel layer deposit on the surface of the membrane................................... 60 

Figure 7-4: An SEM of yeast cells agglomerating near the surface of the membrane.................. 60 

Figure 7-5: An SEM of yeast cells and gel layer forming a resistance layer to permeation ......... 60 

Figure 7-6: Dimensionless axial velocity profiles (UL) as functions of the radial spatial coordinate 

(R) for different dimensionless osmotic pressures (Π) .............................................. 62 

Figure 7-7: Dimensionless radial velocity profiles (VL) as functions of the radial spatial 

coordinate (R) for different dimensionless transmembrane pressures (TMP) ........... 62 

Figure 8-1: Hydraulic permeability of the capillary polysulphone membrane at 20°C ................ 65 

Figure 8-2: Hydraulic permeability of the capillary polysulphone membrane at 20°C and 37°C 66 

Figure 8-3: Average biofilm thickness along the length of the SFCMBR after 3 days of operation

.................................................................................................................................... 67 

Figure 8-4: A scanning electron microscope (SEM) image of the membrane with biofilm taken 

after 3 days of operation............................................................................................. 68 



LIST OF FIGURES xvi 

Figure 8-5: Average biofilm thickness of the SFCMBR as a function of time............................. 68 

Figure 8-6: Membrane axial pressure drop (∆P) versus membrane length for the horizontal and 

vertical orientations .................................................................................................... 69 

Figure 8-7: Pressure profiles of the vertical SFCMBR with P. chrysosporium (3×10
6 

spores) on 

the external surface of the membrane at a flowrate of 6.20ml/hr............................... 70 

Figure 8-8: Pressure profiles of the vertical SFCMBR with P. chrysosporium (3×10
6 

spores) on 

the external surface of the membrane at a flowrate of 6.20ml/hr............................... 71 

Figure 8-9: Pressure profiles of the vertical SFCMBR with P. chrysosporium (3×10
6 

spores) on 

the external surface of the membrane at a flowrate of 6.20ml/hr............................... 71 

Figure 8-10: A comparison of the developed model with literature models and experimental data

.................................................................................................................................... 73 

Figure 8-11: Dimensionless lumenal pressure profiles (PL) as functions of the axial spatial 

coordinate (Z) for different dimensionless osmotic pressures (Π)............................. 74 

Figure 8-12: Steady-state velocity profiles in the lumen (UL, VL) and matrix (VM) of the SFCMBR 

as a function of the radial spatial co-ordinate (R) ...................................................... 75 

Figure 8-13: Transient lumenal axial velocity profiles (UL) as a function of the radial spatial co-

ordinate (R)................................................................................................................. 75 

Figure 8-14: Transient lumenal radial velocity profiles (UL) as a function of the radial spatial co-

ordinate (R)................................................................................................................. 76 

Figure 8-15: Streamlines in the upper half of the capillary membrane operated in the dead-end 

mode (f = 0) ................................................................................................................ 77 

Figure 8-16: Streamlines in the upper half of the capillary membrane operated at f = 0.8 ........... 77 

Figure 8-17: Streamlines for the upper half of the polysulphone capillary membrane operated in 

dead-end filtration mode (f = 0) ................................................................................. 78 

Figure 8-18: Volumetric flow (ΩL) profile as a function of the axial spatial coordinate (Z) ........ 78 

Figure 8-19: Example of the average redox potentials of the permeate solution from the 

SFCMBR.................................................................................................................... 79 

Figure 8-20: Example of the average pH profile of the permeate solution from the SFCMBR ... 80 

Figure C- 1: A comparison of a Petri dish with growth and one without growth 121 

Figure F- 1: Bessel functions of the first and second kind of order 0 and 1, for 120 ≤≤ x ....... 131 

Figure G- 1: (a) Cylindrical coordinates and (b) Spherical coordinates...................................... 135 

Figure H- 1: A scanning electron microscope image of a capillary membrane with biofilm ..... 138 



LIST OF TABLES xvii 

LIST OF TABLES 

 

Table 5-1: The boundary, initial and steady-state conditions of the SFCMBR ............................ 36 

Table 5-2: Generic equation of flows with a low Rew through cylindrical surfaces ..................... 38 

Table 5-3: Discretization of the dimensionless Navier-Stokes equations ..................................... 45 

Table 6-1: The dimensions of the single fibre capillary membrane bioreactor............................. 51 

Table 7-1: Model parameter values used to test the developed models ........................................ 55 

Table 7-2: Grid independence of the flow field ............................................................................ 57 

Table D- 1: Nutrient solution make-up........................................................................................ 126 

Table E- 1: Properties of the polysulphone membrane and water at 293K and 310K ................ 127 

Table E- 2: Atomic volumes........................................................................................................ 128 

Table F- 1: Numerical values of Bessel functions....................................................................... 132 

Table F- 2: Positive zeros n,υα , ny ,υ   of Bessel functions ( )xJυ , ( )xYυ , 1,0=υ ...................... 133 

 

 

 

 

 

 



LIST OF SYMBOLS xviii 

LIST OF SYMBOLS 

a dimensionless entrance pressure drop 

A pressure constant (bioreactor of variable shell side pressure) 

b dimensionless gravitational acceleration 

B  pressure constant (bioreactor of variable shell side pressure) 

c total concentration of ions in solution, kmol/m
3
 

Ci integration constants, i = 1, 2, 3… 

dw membrane wall thickness, m 

dg gel layer thickness in the membrane lumen, m 

D  pressure constant (bioreactor of variable shell side pressure) 

DAB diffusivity of the molecule A in the solvent B, m
2
/s 

e(x) local mass transfer coefficient, m
3
/m

2
s 

f fraction retentate 

f(R) arbitrary function of dimensionless radial coordinate  

f(Z) arbitrary function of dimensionless axial coordinate   

g gravitational acceleration, m/s
2
 

Hg pressure constant (bioreactor of variable shell side pressure) 

H pressure constant neglecting gravitational acceleration 

i horizontal grid coordinate 

j vertical grid coordinate 

J flux, m
3
/m

2
s  

Jn(α) Bessel function of order n of the first kind 

k hydraulic permeability, m
2
  

K function of dimensionless time 

L membrane length, m 

p pressure, Pa 

P dimensionless pressure 

q arbitrary constant 

Q volumetric flowrate, m
3
/s 

r radial coordinate, m  

rH membrane hydraulic radius, m 



LIST OF SYMBOLS xix 

R dimensionless radial coordinate 

R* Universal gas constant = 8.31451J/g-mol.K 

Rew wall Reynolds number (ρvwrH/µ) 

Reb bulk flow Reynolds number (ρvrH/µ) 

RL membrane inner radius, m 

S membrane resistance, m
-1

 

Sc Schmidt number (µ/ρDAB) 

t time, s 

T temperature, K 

U dimensionless axial velocity 

v velocity, m/s 

V dimensionless radial velocity  

Yn(α) Bessel function of order n of the second kind 

z axial coordinate, m 

Z dimensionless axial coordinate 

 

Greek letters 

 

αn is the n
th

 root of the Bessel function Jn(αnr) 

β dimensionless aspect ratio of the membrane (RL/L) 

χ distortion of the velocity profile, m
-1 

ε surface porosity 

φ slip coefficient 

Φ osmotic pressure, Pa 

γ shear rate, s
-1

 

Γ gamma function 

η viscous force, kg.m/s
2
 

ϕ association parameter (2.6 for water) 

κ dimensionless hydraulic permeability 

λ shear stress, Pa 

µ fluid dynamic viscosity, Pa.s      



LIST OF SYMBOLS xx 

Π dimensionless osmotic pressure 

θ angle in cylindrical coordinates, tan
-1

(y/x)  

Θ dimensionless function of the angle θ 

ρ fluid density, kg/m
3
 

τ dimensionless time 

ω arbitrary constant 

ϖ dimensionless function of bioreactor dimensions 

Ξ function of the radial coordinate   

ψ dimensionless stream function 

Ω dimensionless flowrate 

ζ dimensionless function of transitional velocity  

 

Subscripts 

 

0 membrane entrance 

1 membrane exit 

2 extra capillary space radius 

3 glass manifold inner radius 

∞ steady-state 

g gel layer 

in internal fouling 

L membrane lumen 

m membrane matrix 

S shell side of membrane  

Sbπ function of PS, Π and b 

τ transient-state 

w wall 

z, y, x rectangular spatial co-ordinates    

z, r, θ cylindrical spatial co-ordinates 

r, θ, φ spherical co-ordinates 

 



ABBREVIATIONS xxi 

ABBREVIATIONS 

 

BC   - Boundary condition 

CFD   - Computational fluid dynamics 

CTMP   - Chemi-thermomechanical pulping 

HF   - Hollow fibre 

IC   - Initial condition 

LiP   - Lignin peroxidase 

MnP   - Manganese peroxidase 

MBR   - Membrane bioreactor 

MGR   - Membrane gradostat reactor 

PAH   - Polycyclic aromatic hydrocarbons  

PCB   - Polychlorobiphenyls 

P. chrysosporium - Phanerochaete chrysosporium  

PSu   - Polysulphone  

RMP   - Refiner mechanical pulping 

SFCMBR  - Single fibre capillary membrane bioreactor 

SSC   - Steady state condition 

TMP   - Transmembrane pressure 

UF   - Ultrafiltration 

WRF   - White rot fungus 

 



INTRODUCTION 1 

1. INTRODUCTION 

1.1 Background 

 

The white-rot fungus (WRF), Phanerochaete chrysosporium, and its extracellular enzymes, 

Lignin Peroxidase (LiP) and Manganese Peroxidase (MnP), are promising for a number of 

industrial applications. This is as a result of this organism and its enzymes’ ability to degrade 

lignin found in woody plants and its ability to function at extreme conditions of high 

temperatures (up to 40°C) and low pH of 4.5 (Kirk & Fenn, 1979; Tien & Kirk, 1988). Usage of 

the fungus and its extracellular enzymes has been reported in the treatment of hazardous waste 

(McGrath & Singleton, 2000), the mining industry (Martin, 2000), the wine industry (Howard et 

al., 2003), and even in the biopulping of wood in the pulp and paper industry (Wall et al., 1993).  

  

Considerable research has been done in developing economically viable membrane bioreactor 

(MBR) systems for the cultivation of P. chrysosporium and the production of its ligninolytic 

enzymes (Willershausen et al., 1987; Venkatadri & Irvine, 1993; Moreira et al., 1997; Leukes, 

1999; Domίnguez et al., 2001). Leukes (1999) developed a membrane gradostat bioreactor 

(MGR), which uses to its advantage the nutrient gradients that are inherent of hollow fibre (HF) 

and capillary MBR’s, for the continuous production of extracellular enzymes, Lignin and 

Manganese peroxidase (LiP and MnP), from P. chrysosporium. This bioreactor more closely 

resembles the natural growing conditions of the fungus than submerged fermentations (Leukes, 

1999), and showed higher enzyme activities than previous and subsequent conventional 

bioreactor systems (Willershausen et al., 1987; Venkatadri & Irvine, 1993; Moreira et al., 1997; 

Domίnguez et al., 2001). Following from the work of Leukes (1999) a number of other 

investigations have demonstrated the suitability and viability of the capillary polysulphone (PSu) 

MGR for LiP and MnP production (Govender, 2000; Solomon, 2001; Garcin, 2002; Ntwampe, 

2005; Sheldon & Small, 2005). The capillary membranes used in constructing the MGR have 

been shown to offer many advantages over other membrane types. 

 

The performance of these types of bioreactors is determined in large by the transport rate of the 

key nutrients and/or wastes through the membranes (Kelsey et al., 1990; Catapano et al., 1990). 

It is therefore crucial to have a complete description of momentum as well as mass transfer 
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through these devices for an optimum bioreactor design. A number of experimental and 

theoretical investigations have been conducted with the aim of modelling the momentum transfer 

in HF and capillary membranes (Tharakan & Chau, 1986; Catapano et al., 1988; Bruining, 1989; 

Kelsey et al., 1990; Catapano et al., 1990; Moussy, 1999; Elshahed, 2004). Most of these 

investigations however were unsuccessful in providing adequate mathematical models for 

pressure and velocity profiles, which also account for the different modes and configurations of 

operation of membrane bioreactors. Kelsey et al. (1990) gave detailed mathematical models for 

velocity and pressure profiles, which also account for the different modes of operation. However, 

the models proposed by Kelsey et al. (1990) were restricted to the horizontally orientated 

bioreactor of varying shell hydrostatic pressure, ignored osmotic pressure effects that result from 

solute rejection on the membrane surface, and also ignored the additional resistance layers to 

permeation due to gel formation.  

 

The Navier-Stokes equations are regarded as the fundamental equations governing fluid motion. 

Although there are no analytical solutions for the complete Navier-Stokes equations, these 

equations can still be solved numerically to attain a more descriptive analysis than a simplified 

analytical solution. Damak et al. (2004) used an implicit finite difference method to numerically 

develop pressure and velocity fields of crossflow filtration. This model however does not take 

into account the different modes of operation of membrane bioreactors and also ignores osmotic 

pressure effects. 

  

Experimental work on LiP and MnP production by Garcin (2002) and Ntwampe (2005) has 

shown the vertically orientated single fibre capillary membrane bioreactor (SFCMBR) to be more 

suitable than the horizontal orientation. Currently there are no mathematical models to 

completely describe the momentum transfer through a vertically orientated capillary MGR, which 

also takes into account osmotic pressure effects, gel formation on the surface of the membrane, as 

well as the mode of operation of the bioreactor. This study is aimed at developing these 

mathematical models for the purpose of scaling up the MGR system for continuous LiP and MnP 

production.     
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1.2 Research Objectives 

 

This study will focus on an analytical and numerical solution of the governing differential 

equations for viscous flow for the derivation of mathematical models to predict pressure drops 

and velocity profiles, during the cultivation of P. chrysosporium in a vertically orientated 

SFCMBR. The specific objectives will be to:  

 

• Construct mathematical models for the momentum transfer inside a SFCMBR, which account 

for the different modes of operation, and compare results with those obtained from the 

literature. 

 

• Include osmotic pressure effects and gel formation in a vertically orientated SFCMBR 

operated in the dead-end mode, and compare theoretical results obtained from the developed 

vertical model with experimental data. 

 

• Test the validity of the developed models during operation with and without 

P. chrysosporium growth on the external surface of the membrane. 

 

• Simulate velocity and pressure profiles of nutrient through a SFCMBR using numerical 

techniques and compare results with experimental data. 

 

1.3 Overview 

  

1.3.1 The research topic 

 

Momentum transfer in capillary and HF membrane reactors has been a very extensively studied 

subject since the integration of the two disciplines of membrane technology and biotechnology in 

the early 1970’s, which gave rise to a new technology called MBR’s. An instructive review of the 

developments leading to this relatively new technology was given by Belfort (1989), and a 

summary of the momentum transfer models by Chatterjee and Belfort (1986). Unfortunately, 

most of these models and their later versions are restricted to specific conditions of operation, and 
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none of them were developed for a vertically orientated system. These models also tend to 

neglect the osmotic pressure effects, and gel formation on the surface of the membrane lumen.  

 

1.3.2 Hypothesis  

 

The premise of this research is to combine the Navier-Stokes equations and Darcy’s law, taking 

into account osmotic effects and gel formation in a vertically orientated SFCMBR, for the 

prediction of velocity and pressure profiles. The models will be adjusted to account for the 

different modes and configurations of operations of HF and capillary membrane bioreactors. 

 

1.3.3 Collection of the relevant data 

 

The nature and scope of the research topic only allow for a quantitative approach to the analysis. 

This will take the form of validating the developed model predictions against measured 

experimental data. The theoretical model predictions will be for axial and radial velocity profiles, 

volumetric flowrates, as well as pressure profiles along the length of the SFCMBR. The 

measured experimental data will include pressure measurements at the inlet and outlet of the 

SFCMBR, biofilm thickness, gel layer thickness, membrane hydraulic permeability, and redox 

potentials of the permeate solution during the cultivation of P. chrysosporium.  

 

1.3.4 Analysis of the data and interpretation of the results 

 

The collected experimental data will be compared to the developed model predictions, as well as 

other widely accepted literature models, and the discrepancies will be discussed. The emphasis 

will be on the effects brought about by the inclusion of gravitational acceleration, gel formation, 

and osmotic pressure on the momentum transfer study.    
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2. LITERATURE REVIEW 

2.1 Introduction 

 

Recent developments in biotechnology have led to a number of enzymes, secreted by bacteria and 

fungi, being identified for diverse industrial applications. In some applications the usage of these 

microbes is far more viable than conventional separation and/or processing techniques.                   

P. chrysosporium has been one of the most widely studied white-rot fungi (WRF). The properties 

and some of the most common applications of P. chrysosporium are detailed in this chapter.  

 

This chapter will also highlight the recent developments in bioreactor designs for the continuous 

production of enzymes from P. chrysosporium. The membrane gradostat (MGR) developed by 

Leukes (1999) will be described. Membrane bioreactors (MBR’s) can be operated in various 

modes, depending on the specific application. These different modes and their flow 

characteristics will be discussed in detail, as well as the most widely used momentum transfer 

models for flow through MBR’s.  

  

2.2 Phanerochaete chrysosporium and its properties 

 

P. chrysosporium is a genome of WRF, which are so named because they degrade brown lignin 

and leave behind white cellulose. WRF are the only microbes capable of efficient 

depolymerisation and mineralisation of lignin (Mielgo et al., 2003; JGI, 2004; Ferapontova et al., 

2006). P. chrysosporium has been one of the most intensively studied WRF (Hiratsuka et al., 

2005). This fungus, like all other WRF, secrete an array of peroxidases and oxidases that act non-

specifically via the generation of lignin free radicals, which then undergo spontaneous cleavage 

reactions. These peroxidases include: LiP, MnP, endoglucanases, glyoxal oxidase, xylanases, 

pyranose 2-oxidase, mannose-6-phosphatases and many others. The non-specific nature and 

exceptional oxidation potential of these enzymes has attracted considerable interest for 

application in bioprocesses, such as organopollutant degradation and fibre bleaching (JGI, 2004; 

Ferapontova et al., 2006). LiP and MnP are useful in the bioremediation of a wide variety of 

organic waste by-products including: textile dyes polyethylene, pesticides, herbicides, dynamite, 
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PAHs, polychlorobiphenyls (PCBs), and oil-contaminated soil (Dzul-Puc et al., 2005; Fungal 

Genomics Project, 2005; De et al., 2006; Chander & Arora, 2007). 

 

2.3 Applications of Phanerochaete chrysosporium  

 

P. chrysosporium has several features that have drawn attention for a number of possible uses. 

Firstly, unlike some WRF, it leaves the cellulose of wood virtually untouched. Secondly, it has a 

very high optimum temperature of 40°C (Kirk & Fenn, 1979; Tien & Kirk, 1988), which means it 

can grow on wood chips in compost piles that attain a very high temperature (JGI, 2004). This 

fungus also has an uncommon optimum pH of 4.5, making contamination of production cultures 

less of a problem (Kirk & Fenn, 1979). These characteristics point to possible applications in 

biotechnology. A number of studies have been conducted with the aim of exploiting some of 

these characteristics of P. chrysosporium and its ligninolytic enzymes, LiP and MnP, for various 

industrial applications such as:  

 

a) The biological delignification (biopulping) of wood for the pulp and paper industry. 

Biopulping, in turn, has been used as an alternative to thermomechanical pulping and chemi-

thermomechanical pulping (CTMP). This process involves the pre-treatment of wood chips 

with WRF prior to refiner mechanical pulping (RMP) or thermomechanical pulping. This 

process saves energy of up to 50% compared to CTMP, RMP or thermomechanical pulping 

without biological pre-treatment; it improves paper strength properties significantly as 

compared to the other processes without biological pre-treatment (Wall et al., 1993).  

 

b) Bioremediation, the process of using biological treatment systems to destroy or reduce the 

concentrations of hazardous waste from contaminated sites. During bioremediation, a variety 

of pollutant transformation products will be created, which may have toxic synergistic 

interactions and may not be detected by chemical analysis (McGrath & Singleton, 2000). The 

usage of P. chrysosporium on the bioremediation of soil, contaminated with the biocide 

Pentachlorophenol, has been reported (McGrath & Singleton, 2000). 

 

c) The disposal of highly polluted olive by-products. A major environmental threat in the olive 

industry is the aqueous liquor, which comes from the vegetation water and the soft tissues of 
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the fruits. P. chrysosporium has been used to depolymerize polyphenolic fractions less than 

8kDa and, with the use of LiP induction medium, polyphenolic fraction greater than 60kDa 

from olive mill wastewater (Sayadi et al., 2000).  

 

d) The recovery of wastewater contaminated with various heavy metals and organic pollutants 

for reuse in agricultural and other applications. The efficiency of water usage, especially in 

areas with fast population growth and industrial development, is becoming a major 

environmental issue. A number of studies have been performed with the aim of recovering 

water from process plants using P. chrysosporium and its extracellular enzymes MnP and LiP 

(Nilsson et al., 2006; Hai et al., 2006; Dhouib et al., 2006; Wu & Yu, 2007).   

 

e) The extraction of gold from damaged underground timber in the mining industry. A portion 

of the impregnated gold within the supporting timber, which results from blasting and 

crushing, is located so deep within the complex wood matrix that cyanidation on its own 

prove insufficient for recovery (Van der Plas, 1998). WRF can completely degrade the lignin, 

which forms 30% of woody plant tissues, by producing extracellular enzymes that catalyse 

the depolymerization of the lignin (Martin, 2000). 

 

f) The transformation of “lignocellulose waste” into value-added products such as Auxin and 

Abscisic acid (Unyayar et al., 2000), Vanillin and Gallic acid (Howard et al., 2003), using 

P. chrysosporium.  

 

2.4 Developments in bioreactor design for cultivation of Phanerochaete chrysosporium   

 

A MBR can be defined as a flow reactor within which membranes are used to separate cells or 

enzymes from the feed or product streams. A common characteristic of most MBR’s is that feed 

streams are delivered continuously. Products may be removed continuously, but in some 

applications they must be harvested intermittently or at the end of the run. Polymeric 

microfiltration (MF) or ultrafiltration (UF) membranes are most commonly used for the 

construction of MBR’s, although other types of membranes have been used including: ceramic, 

silicone rubber and ion exchange membranes (Asenjo & Merchuk, 1994).    
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The applications of P. chrysosporium and its ligninolytic enzymes that have potential industrial 

importance, have been the driving force for research in the design of continuous economically 

viable bioreactor systems. In initial attempts, Willershausen et al. (1987) demonstrated growth of 

the fungus in the form of mycelial mats inside a 1.0 litre vessel bioreactor. The bioreactor 

consisted of silicone tubing wrapped around 4 stainless steel sticks to form a spiral. Venkatadri 

and Irvine (1993) have demonstrated the viability of the use of HF and silicone membrane 

stirred-tank bioreactor systems for the cultivation of P. chrysosporium and the production of LiP. 

In the silicone membrane stirred-tank bioreactor, very similar to that of Willershausen et al. 

(1987), the membrane appeared to be an excellent support for attached fungal growth. In the case 

of the HF membrane reactor, the membrane provided a shear-free environment and convenient 

separation of LiP from the cells and replacement of the growth medium. Venkatadri and Irvine 

(1993) also achieved to generate LiP on a semi-continuous basis using the silicone membrane 

stirred tank bioreactor.  

 

One major problem inherent in MBR’s is that radial nutrient gradients within the biofilm have 

been shown to exist in these systems. This phenomenon occurs because when nutrients are 

supplied to the biofilm the organisms closest to the membrane have first access to it, while cells 

furthest away from the membrane surface are normally starved of nutrients. On the contrary, a 

major advantage of the HF bioreactor system over submerged culture bioreactors is that it 

simulates the native state of the fungus, which have evolved on a solid-air interface. Leukes 

(1999) developed a MGR, which uses a synthetic capillary UF membrane as support matrix, 

which exploits the phenomenon of nutrient gradients as a solution to the challenge of continuous 

secondary metabolite production. The MGR showed higher enzyme activities than previous and 

subsequent conventional continuous bioreactor systems (Willershausen et al., 1987; Venkatadri 

& Irvine, 1993; Moreira et al., 1997; Domίnguez et al., 2001). This has led to an interest in 

optimisation studies of the operation (Garcin, 2000) and design (Govender, 2002; Ntwampe, 

2005) of the MGR for LiP and MnP production. Other materials, such as ceramic membranes, 

have also been investigated for the supporting matrix of the MGR as an alternative to 

polysulphone (PSu) capillary membranes (Sheldon & Small, 2005).  
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2.5 Membranes 

 

2.5.1 Characteristics of capillary and HF membranes 

 

Capillary and HF membranes are examples of the tubular-type geometry UF membranes. HF 

membranes refer to very small diameter membranes. The most successful one has an outer 

diameter of only 93µm and is used for reverse osmosis (Perry et al., 1998). HF membranes 

usually have a microporous skin, 1 to 2µm in thickness, where bioseparation takes place and a 

macroporous spongy matrix, 50 to 100µm thick, supporting the thin layer. Capillary membranes 

on the other hand are slightly larger diameter membranes, typically 0.5 to 5 mm in diameter. 

Capillary and HF membrane modules offer the greatest surface area per volume and hence the 

most efficient type of membrane separation. Some of the properties of these membranes include: 

continuous removal of inhibitory wastes; high cell densities; decreased contamination risks; and 

higher volumetric productivities. These membranes allow the possibility for simultaneous 

reaction and separation of products or wastes (Tharakan & Chau, 1986; Belfort, 1989; Kelsey et 

al., 1990; Venkatadri & Irvine, 1993). Capillary and HF membranes are ideal for microbial 

growth because they provide a shear free environment, since the circulating medium does not 

come into direct contact with the cells immobilised on the external surface of the fiber (Belfort, 

1989; Venkatadri & Irvine, 1993).  

 

The structure of artificial membranes (HF, capillary, tubular, spiral wound, monolith, etc.) is 

generally referred to either as symmetric or asymmetric. Symmetric membranes have a uniform 

structure and are typically 10 to 30µm in thickness. Asymmetric membranes comprise a highly 

porous spongy support layer, often 50 to 500µm thick, with a thin layer about 0.5µm in depth that 

provides the permselective properties of the membrane. An asymmetric membrane provides less 

resistance to mass transfer than a comparable isotropic (symmetric) membrane but is more prone 

to mechanical damage (Asenjo & Merchuk, 1994).    

 

2.5.2 Membrane materials and the polysulphone membrane 

 

Membranes may be made from physical solids, organic or non-organic (metal, ceramic, etc.),  

homogeneous films (polymer, metal, etc.), heterogeneous solids (polymer mixes, mixed glasses,  

etc.), solutions (usually polymer) and liquids. Polymeric membranes dominate the membrane 
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separation field because they are well developed and competitive in separation performance and 

economics. Their usual final form is as HF or capillaries or as flat sheet, either of which is 

incorporated in a module (Perry et al., 1998). 

 

 

Figure 2-1: Flow diagram of the process of membrane manufacturing (Locatelli et al., 2003) 

 

A flow diagram of the general manufacturing process of polymeric membranes is shown in 

Figure 2-1. In principle a polymer has to be dissolved in a suitable solvent, pressed through a 

spinneret, and after the phase separation (membrane building) the membrane is washed and dried. 

Membranes with unique morphologies can be produced by manipulating the various factors that 

control the wet-phase inversion manufacturing process by which most asymmetric membranes 

are formed (Locatelli et al., 2003).  

 

The PSu capillary UF membrane used in this study was developed by Jacobs and Leukes (1996) 

and Jacobs and Sanderson (1997), by adjustment of the membrane spinning solution formulation 

and fabrication protocol. This membrane offers many advantages when used in a MBR, such as 

low resistance to liquid transport and a large external surface area.   
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Drying 
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Figure 2-2:A scanning electron microscope image of the PSu capillary membrane (Solomon & Petersen, 2002) 

 

The microporous structure and hydrophilic surfaces of the externally unskinned PSu capillary 

membranes, as shown in Figure 2-2, allow free exchange of nutrients and metabolic products 

between the cells, immobilised on the outside of the membrane, and the circulating medium 

flowing within the membrane (Jacobs & Leukes, 1996; Jacobs & Sanderson, 1997). 

  

2.6 Modes and orientations of operation   

 

 

Figure 2-3: Some modes of operation of hollow fibre devices (Bruining, 1989) 



LITERATURE REVIEW 12 

The basic process of any membrane separation involves a feed mixture separated into a retentate 

(part of the feed that does not pass through the membrane) and a permeate (part of the feed that 

passes through the membrane) as shown in Figure 2-3. The basic design of HF and capillary 

membrane modules consists of a bundle of fibres, in an equilateral array as shown in Figure 2-4, 

sealed into a cylindrical casing forming a shell-and-tube configuration. Bruining (1989) described 

four of the most commonly utilised modes of operation of HF membrane devices by introducing 

the factor f, which denotes the ratio of the lumen side exit flow to the lumen side entrance flow. 

These modes of operation are shown schematically in Figure 2-3 and are: dead-end filtration, 

continuous open-shell mode, closed-shell mode and suction of permeate.  

 

   

Figure 2-4: Schematic of hollow fibres in an equilateral array (Kelsey et al., 1990) 

 

In dead-end filtration, the feed stream enters the lumen side of the membrane and a permeate 

leaves continuously in the shell side. In this mode there is no retentate as shown in Figure 2-3; 

therefore, the fraction retentate, f, is zero. In continuous open-shell ultrafiltration, the feed stream 

is still through the lumen and the permeate leaves through a shell side port. The retentate flows at 

the downstream end of the fibre, and hence the feed will be greater than the retentate flowrate by 

the amount of permeate through the membrane shell (0< f <1). The tube side pressure is always 

greater than the shell side pressure in both dead-end and continuous open shell modes (Tharakan 

& Chau, 1986).  

 

In closed-shell, there is no net volumetric solvent flow from the fibres to the shell; that is, the 

feed flowrate is equal to the retentate flowrate (f = 1). The transmembrane flux (flow between 

lumen and shell regions) for the first part of the membrane is directed towards the shell, and for 

the latter half of the membrane back to the lumen feed as shown in Figure 2-5. This phenomenon, 
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also referred to as convective recirculation or Starling recirculation flow, leads to non-uniform 

distribution of biomass in HF systems operated in the closed shell mode (Tharakan & Chau, 

1986; Bruining, 1989; Kelsey et al., 1990; Catapano et al., 1990).    

      

 

Figure 2-5:  Convective recirculation in a membrane device (modified from Kelsey et al., 1990) 

 

In suction of permeate/shell side crossflow mode, the feed stream is delivered to the shell side 

and distributed uniformly along the length of the fibre. The feed flows across the fibre bed while 

simultaneously permeating the fibre wall and exiting from the tube side of the membrane. The 

shell side pressure is kept greater than the lumen side, with a positive transmembrane flux 

towards the lumen side. The tube side pressure gradient is relatively insignificant, and the result 

is a more uniform transmembrane flux along the axis of the fibre unit (Tharakan & Chau, 1986).  

 

The different modes of operation of HF and capillary membranes have been shown, 

experimentally (Tharakan & Chau, 1986) and theoretically (Bruining, 1989; Kelsey et al., 1990), 

to exhibit different pressure distributions as elaborated earlier in this section. This information is 

important for choosing and designing an optimum bioreactor configuration for continuous 

enzyme production.  

 

MBRs are generally operated either horizontally or vertically depending on their application; 

however, other orientations are also in use. Recent results from experimental work on LiP and 

MnP production has shown the vertically orientated single fibre capillary membrane bioreactor 

(SFCMBR) to be more suitable than the horizontal orientation (Garcin, 2002; Ntwampe, 2005). 

This stems from the following observations: (a) in the horizontally orientated SFCMBR the PSu 
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capillary membrane tends to sag as the biofilm develops on the surface of the membrane, thus 

stretching the membrane which results in uneven growth; (b) the biofilm is denser, in both PSu 

and ceramic membranes, in the vertical configuration; (c) there is uneven growth of the biofilm in 

the horizontal configuration, with the biofilm thickest at the entrance of the membrane and 

gradually declines in thickness to almost no biofilm at the exit of the membrane; (d) higher 

glucose and ammonia consumption in the vertical configuration than in the horizontal; and (e) 

contamination of permeate is less of a problem in the vertical configuration as compared to the 

horizontal. 

 

2.7 Mathematical models for momentum transfer   

 

2.7.1 Significance of momentum transfer analysis in bioreactor design 

 

The optimum production of enzymes in MBR’s is influenced by a number of factors. One of the 

major factors is the pattern of flow of nutrients to the microorganisms or culture, which is 

regulated by the transmembrane flux. The flux of a membrane defines its productivity and 

therefore, largely influences the capital cost and the operating cost of a membrane unit operation 

(Perry et al., 1998). The axial lumenal pressure gradient adversely affects transmembrane flux, 

and is thought to be the limiting factor in bioreactor scale up (Garcin, 2002). In effect, the 

performance of MBR’s is largely dependent on the axial lumenal pressure gradient. It is also 

known that concentration polarization of dissolved solutes, which tends to depress membrane 

efficiencies, can be predicted and controlled at the membrane-solution interface through an 

understanding of the fluid mechanics and mass transfer (Chatterjee & Belfort, 1986). Thus, a 

momentum and mass transfer analysis are crucial for the purposes of enhancing MBR 

efficiencies. In some applications however, the momentum transfer can be solved independently 

of the mass transfer and vice-versa. The Schmidt number, Sc, is used to indicate the dominating 

transport phenomena as either momentum or mass transfer (Moussy, 1999). 

 

2.7.2 Description of momentum transfer 

 

The study of momentum transfer is concerned with the kinematics of flow (the description and 

visualisation of flow), as well as the dynamics of the flow (the forces necessary to produce the 

flow). Models of the fluid are necessary to visualize its path and to apply to it the fundamental 

principles of nature as it moves from one point to the next (Munson et al., 2006).  
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Generally, there are three models of flow: (a) the finite control volume; (b) the infinitesimal fluid 

element and (c) the kinetic theory model of flow. When Newton’s second law of motion is 

applied to any of the three models of flow mathematical equations can be extracted, which 

embodies the physical principle of Newton’s second law (Anderson, 1995). The resulting 

mathematical equations are the governing equations for momentum transfer, for the specific 

model of flow chosen. Theoretically, from these equations a complete momentum transfer 

analysis can be carried out. Velocity fields, pressure profiles and acceleration fields can be 

obtained for any specific fluid flow application. 

 

In this study, the infinitesimal fluid element model of flow was used, meaning the fluid was 

imagined to consist of infinitesimally small fluid elements with a differential volume. Moreover, 

the fluid element was assumed to be moving along a streamline with a velocity vector equal to 

the flow velocity at each point. 

 

2.7.3 Previous models of momentum transfer  

 

As an attempt to give a description of the flow behaviour, in particular momentum transfer, 

through MBR’s for the purposes of design, process optimisation and control, a number of 

mathematical models have been proposed. Most of these models stem from the governing 

differential equations for incompressible Newtonian fluids, the Navier-Stokes equations; however 

other approaches have also been followed. 

 

An excellent review was given by Chatterjee and Belfort (1986) of previously published models 

of flow through porous ducts of different cross-sectional geometries. These models were 

proposed as solutions to laminar, incompressible, steady-state flow. None of the tubular geometry 

models reviewed in this study takes into account the different modes of operation of MBR’s. 

Chatterjee and Belfort (1986) also developed analytical and numerical solutions for flow in an 

idealized spiral wound membrane module. A perturbation technique was used to solve the 

Navier-Stokes equations to obtain the analytical solutions. This study revealed that a similarity 

solution cannot be found for wall Reynolds numbers Rew > 1. Similarity in velocity profiles only 

exists for ‘fully developed’ flows. Tharakan and Chau (1986) gave a qualitative description of the 

pressure distribution in HF systems in different modes of operation. Their analysis included an 

explanation for the non-uniform distribution of biomass in HF systems operated in the closed and 
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open shell axial feed modes. No mathematical models were given with this analysis to give a 

sound quantitative account of the pressure and velocity distributions. On the other hand, 

Catapano et al. (1988) provided expressions for the axial and radial velocity components of a 

fluid flowing through a cell-loaded capillary membrane. These expressions were modifications of 

the Hagen-Poiseuille equation, taking into account the diminution of axial flow rate due to 

permeate flow. However, these expressions did not account for the mode of operation of the 

MBR or osmotic effects.  

 

Bruining (1989) described convective flow in HF membranes by developing equations for 

pressure drops and flows at various operating modes. However, Bruining’s models do not give 

information on velocity profiles in either the lumen or the shell sides. Kelsey et al. (1990) 

developed, from the Navier-Stokes equations, models for velocity and pressure profiles, which 

also accounts for the different modes of operations of HF and capillary membranes. Kelsey et al. 

(1990) also gave a visual description of the flow by means of streamlines. However, the treatment 

of Kelsey et al. (1990) was restricted to the horizontally orientated HF bioreactor system and 

does not consider osmotic pressure effects. Catapano et al. (1990) outlined the importance of 

convective fluxes in determining MBR performance. Their solutions were based on the analysis 

of Apelblat et al. (1974), with the estimate that the distortion of the velocity profile (relative to 

that established in non-porous walls) is negligible. Catapano et al. (1990) also established that, if 

the condition of no-slip velocity is assumed then the axial pressure profile can be assumed to be 

linear.  Moussy (1999) applied analytical solutions developed by Yuan and Finkelstein (1956) to 

characterise flow in the lumen of a continuous arteriovenous HF hemofilter, and also developed 

expressions for the radial and axial velocity profiles in the shell. The expressions also took into 

account the axial variations in lumen pressure, shell pressure, and osmotic pressure. These 

expressions were restricted to the open shell mode and do not consider the resistance brought 

about by gel formation on the membrane lumen. 

 

Diverging from the assumption of no-slip velocity, Elshahed (2004) developed velocity and 

pressure profiles for blood flows in capillaries under the Starling hypothesis. A perturbation 

technique was used to solve the Navier-Stokes and continuity equations. What is interesting to 

note in Elshahed’s research is the variation of the velocity profile with changes in the slip 

coefficient. When the slip coefficient is taken as zero (as in most studies) the axial velocity 

profile coincides with the no-slip profile. More recently, Damak et al. (2004) developed a fluid 
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dynamic model of crossflow filtration by coupling the Navier-Stokes equations and Darcy’s law. 

The model was solved using an implicit finite difference method, substituting the derivatives of 

flow equations with a second-order accurate central difference scheme (this method is explained 

in Section 4.2). Like many of its predecessors, this model does not take into account different 

modes of operation and ignores osmotic effects. This is in spite of studies (Patkar et al., 1994; 

Taylor et al., 1994; Taylor & Boukouris, 1995) that have shown that secondary fluid flows within 

the extra-capillary space of HF bioreactors, which tend to depress reactor productivity, can be 

minimised through manipulation of the osmotic pressure. 

 

2.8 Summary and significance of literature study 

 

The significance of this literature review is that it highlights developments made over the past 

years in studies of MBR designs, for the continuous production of enzymes from 

P. chrysosporium. Some of the properties that make this fungus one of the most intensively 

studied fungus were detailed. This literature review also highlighted the importance of a thorough 

momentum transfer analysis in the optimisation of a MBR. Some of the most widely used 

mathematical models for momentum transfer, with their short-comings, were discussed. 

 

Results from experimental work on LiP and MnP production has shown the vertically orientated 

SFCMBR to be more suitable than the horizontal orientation. This suggests the need for either 

modifications on the horizontal models or totally new mathematical models to account for the 

vertical orientation. All of the currently available literature on modelling momentum transfer is 

based on horizontally orientated MBR’s. These models also tend to neglect the osmotic pressure 

effects and gel formation on the surface of the membrane. Research on osmotic effects, however, 

has indicated that secondary fluid flows can be minimised through manipulation of the osmotic 

pressure.  

 

The models developed in this study were intended to fill these gaps; in particular models that 

account for the different modes of operations, applicable in both horizontal and vertical 

configurations, also taking into account osmotic effects and gel formation. 
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3. THEORY 

3.1 Introduction 

 

This chapter is concerned with the theory pertaining to fluid motion in a capillary membrane 

bioreactor (MBR) and its application will be elaborated in Chapter 5. Since a detailed knowledge 

of the pressure and velocity fields of the fluid, as it moves through the membrane, is required, a 

point-relationship has to be developed for both pressure and velocity profiles. This approach, of 

seeking a point relationship between flow variables, is referred to as the differential analysis of 

fluid motion. Unfortunately, this approach is quite complicated and a number of simplifying 

assumptions have to be made regarding the flow. The differential equations of motion with their 

general assumptions will be discussed. These equations are generally applicable for bulk flows 

contained in non-porous materials. For porous materials, such as capillary membranes, a number 

of models exist for predicting the flux. These models will be discussed, and the effect of flux 

deterioration as a result of concentration polarization will also be described.         

 

3.2  Differential equations of motion  

 

3.2.1 Navier-Stokes and continuity equations 

 

 

Figure 3-1:  An infinitesimal element model of flow (Anderson, 1995) 

 

The governing equations of momentum transfer, and the continuity equation, can be presented in 

various forms depending on the fluid model chosen. These mathematical expressions will either 

be in the conservation or non-conservation form depending on whether the fluid element chosen 
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is fixed in space or moving along with the bulk of the fluid as shown in Figure 3-1. The 

governing equations can also be presented as either partial derivatives or integrals depending on 

whether a finite control volume or infinitesimal fluid element is chosen to represent the fluid 

(Anderson, 1995).  

 

The differential equations that describe in detail the flow of incompressible Newtonian fluids are 

referred to as the Navier-Stokes equations. For the z, r, and θ components in cylindrical co-

ordinates (see Appendix G) the equations in non-conservation form are respectively (Bird et al., 

2002): 
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and the continuity equation: 
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In vector notation the Navier-Stokes equations are presented more compactly as: 

gvp
Dt

vD rrr
r

ρηρ +∇+∇−= 2
        3-5 

where the term DtvD
r

ρ  represents the mass of fluid element per unit volume times acceleration, 

p∇
r

 represents the pressure force on the fluid element per unit volume of element, v
r2∇η  

represents the viscous force on the element per unit volume, and g
r

ρ  the gravitational force on 

the element per unit volume. A principal difficulty in solving the Navier-Stokes equations is their 
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nonlinearity arising from the convective acceleration terms, on the left-hand-side of Equation 3-5. 

There are no general analytical methods for solving nonlinear partial differential equations, and 

each problem must be considered individually (Munson et al., 2006). Special methods have to be 

used in order to simplify and solve these equations, like defining stream functions and velocity 

potentials, etc. Bird et al. (2002) discuss these special methods in detail. The stream function will 

be explained in Section 3.2.2 of this thesis. It is widely accepted that if the ratio of the inertial to 

viscous forces at the wall (of the surface containing the flow) is much less than 1 then the inertial 

terms on the left-hand-side of Equations 3-1, 3-2, and 3-3 can be neglected (Berman, 1953; 

Kelsey et al., 1990; Moussy, 1999). In most viscous flows, normal stresses (e.g. 22 zzv ∂∂ in 

Equation 3-1) are much smaller than shear stresses and are often neglected (Anderson, 1995). 

 

3.2.2 The Stream function 

 

Although fluid motion can be quite complicated, there are various concepts that can be used to 

help in the visualization and analysis of flow fields. The stream function ψ is a convenient 

parameter of representing and solving plane two-dimensional flow. By plane, two-dimensional 

flow is meant that there are only two velocity components, such as vr and vz, with vθ = 0 and no θ 

dependence. When the fluid is incompressible, meaning its density, ρ, is not a function of 

pressure and temperature, the continuity equation (Equation 3-4) reduces to (Munson et al., 

2006):  
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         3-6 

 

Equation 3-6 contains two variables, vr and vz, which are related by a function ψ(r,z), called the 

stream function, defined such that it satisfies the two-dimensional continuity equation (Munson et 

al., 2006): 

dr

d

r
vz

ψ1
−=           3-7 

and   

dz

d

r
vr

ψ1
=           3-8 
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By defining a stream function, the two-dimensional analysis is simplified to only one unknown 

function ψ(r,z), instead of the two functions, vr(r,z) and vz(r,z). The stream function is very useful 

because its physical significance is that, in steady-state flow, lines defined by ψ = constant are 

the paths of fluid elements (or streamlines as they are commonly known). A stream function 

exists for all two-dimensional, steady incompressible flow, whether viscous or inviscid (Bird et 

al., 2002). 

 

3.3 Flow through ultrafiltration membranes 

 

3.3.1 Darcy’s law 

 

The combination of free flow and flow through porous media occurs in a wide range of fluid 

processes, such as membrane cross flow filtration. A fluid dynamic description of free flows is 

usually modelled using the Navier-Stokes equations described in Section 3.2.1. Darcy’s law for 

the representation of non-inertial, incompressible flows in porous media with a small porosity 

(normally in the range of 10 to 20%) is widely accepted and used (Damak et al., 2004). Darcy’s 

law, which states that the pressure gradient through a porous media is directly proportional to the 

flowrate, can be expressed mathematically as follows (Bird et al., 2002): 

( )gp
k

J m ρ
µ

−∇−=          3-9 

where µ is the fluid dynamic viscosity in Pa.s, km is the membrane hydraulic permeability in m
2
, 

ρ is fluid density in kg/m
3
, g is the gravitational acceleration in m/s

2
 and, ∇p is a vector called the 

“gradient of (the scalar) p” in Pa/m given by (Bird et al., 2002): 

dz

p

d

p

rdr

p
p

∂
+

∂
+

∂
=∇

θ

1r

        3-10 

where p is hydrostatic pressure in Pa and r, θ and z are spatial coordinates in m, and J is the 

volumetric flux of the solvent through the membrane in m
3
/m

2
s. The volumetric flux, J, can be 

defined as the volumetric productivity of a membrane unit per unit membrane area. Grouping of 

the terms in Equation 3-9, when assuming one dimensional flow through the pores of the 

membrane, results in: 

µ

ρ

µ
m

m

gk

S

p
J +

∆
=          3-11 
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where Sm is the clean membrane resistance in m
-1

. One oversight of using Darcy’s law for 

predicting flux is that this equation does not account for fouling and gel formation on the surface 

of the membrane lumen. A more rigour expression for predicting flux includes additional 

resistance from gel layers and internal pore fouling in the analysis, and is given by (Tu et al., 

2005): 
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where Sg, kg and Sin, kin are the resistance and hydraulic permeability of the gel layer and internal 

pore fouling respectively. Equation 3-12 is a more accurate expression for representing flux in 

ultrafiltration membranes, and may be written more explicitly as:  
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where pS and pL are the shell and lumenal side hydrostatic pressures in Pa respectively; Φ is the  

osmotic pressure in Pa; dw, dg, din and is the gel thickness, internal pore thickness, and membrane 

wall thickness in m respectively. 

 

3.3.2 The Hagen-Poiseuille model   

 

The Hagen-Poiseuille is another model often used to describe liquid flow through the pores of a 

membrane. When this model is applied to ultrafiltration membranes the assumptions are that all 

the pores in the membrane are of the same size and uniformly distributed and that no fouling and 

negligible concentration polarization occurs on the surface of the membrane (Brouckaert et al., 

1995). The Hagen-Poiseuille is expressed as:      

w

TMPpore

d

pd
J

µ

ε

32

)(
2

)(
=          3-14 

where J is the permeate volumetric flux in m
3
/m

2
s, ε is the surface porosity, pTMP is the applied 

transmembrane pressure in Pa, dpore is the mean pore diameter in m, and dw the membrane 

thickness in m. The transmembrane pressure (TMP) can be defined as the ‘force’ that drives 

liquid flow through the crossflow membrane. In tangential flow devices, the TMP is calculated as 
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an average related to the pressures of the inlet, outlet and permeate ports. The TMP can be 

expressed as:  

STMP p
pp

p −




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 +
=

2

10
        3-15 

where p0 and p1 are the inlet and outlet lumenal hydrostatic pressures, respectively. When real 

feed solutions are considered, the driving forces in both Darcy’s and the Hagen-Poiseuille laws 

should be replaced by the difference between the transmembrane hydrostatic pressure and the 

transmembrane osmotic pressure (Brouckaert et al., 1995). The inclusion of the osmotic pressure 

recognises that it is really the total thermodynamic potential that drives the transmembrane 

transport (Bird et al., 2002). For most work, the van’t Hoff approximation for osmotic pressure 

gives an adequate estimate (Perry et al., 1998): 

TRcw

∗=Φ           3-16  

where cw is the total concentration of ions at the wall-membrane interface on the feed side in 

kmol/m
3
, T is the absolute temperature of the solution in K, and R

*
 is the universal gas constant 

8.31451J/g-mol.K. When a number of macromolecular species are present then the osmotic 

pressure will be made up of contributions from the individual species: 

∑
=

=Φ
n

i

wii TRc
1

*ω          3-17 

 

3.3.3 Hydraulic permeability of ultrafiltration membranes 

 

The hydraulic permeability of an ultrafiltration membrane can be defined as the volumetric flow 

that the membrane allows to pass through an effective area of 1m
2
 when a transmembrane 

pressure of 1Pa is applied across the membrane at a specific time interval. As much as there are a 

number of models available for predicting the hydraulic permeability of a membrane there are 

also a wide variety of units used to express this parameter. Most models used to predict the 

hydraulic permeability are based on the Forchheimer equation (Moreira et al., 2004): 

2

21

J
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J
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w

ρµ
+=

∆
         3-18 
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where k1 (m
2
) and k2 (m) are referred to as Darcyan and non-Darcyan permeability parameters, 

respectively. These terms are assumed to be a function of the membrane characteristics only 

(Moreira et al., 2004). The Ergun (1952) correlation is the most widely used for the 

determination of k1 and k2, and was derived from the flow through granular beds (Moreira et al., 

2004): 
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where dpore is the pore diameter of the membrane in m. 

 

The Kedem-Katchalsky equation, derived from irreversible thermodynamics is generally used to 

experimentally evaluate the hydraulic permeability of membranes (Liao et al., 2005):    

( ) ( )1010 ssmm ccTRkppkJ −−−= ∗σ        3-21 

where J is the velocity, or volumetric flux, in m/s of the solvent leaving the surface of the 

membrane,  cs0 and cs1 are the solute concentrations in kg/m
3
 on each side of the membrane, R

*
 is 

the universal gas constant in J/g-mol.K, and σ is the reflection coefficient. The hydraulic 

permeability is obtained by running water through the lumen of the membrane, in which case the 

Kedem-Kathchalsky equation simplifies to:  

( )10 ppkJ m −=          3-22 

From Equation 3-22 the value of the hydraulic permeability km for a given membrane is the slope 

of the graph of the volumetric flux J versus the pressure difference of the inlet and outlet,  p0 - p1, 

(Liao et al., 2005). 

 

The effect of variations in temperature on membrane hydraulic permeability was studied by 

Garcin (2002) and more recently by Sharaf and Abo-Elmagd (2005). The results obtained in these 

studies indicated that the hydraulic permeability of the polymeric membranes was very much 

dependant on temperature whereas that of paper-type membranes was temperature independent 

(Sharaf & Abo-Elmagd, 2005). For a specific batch of polymeric membranes, the hydraulic 
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permeability at the specific operating temperature needs to be evaluated so as to more accurately 

evaluate pressure moduli and predict flux (Garcin, 2002). 

 

3.3.4 Concentration polarization  

  

Concentration polarization is the accumulation of retained solutes on the surface of a membrane  

to form a concentration boundary layer. Due to the transport of solutes from the bulk solution to 

the membrane surface and subsequent retention, the concentration of the retained 

macromolecules is maximal at the membrane surface and decreases back to the bulk 

concentration with distance from the membrane. This distance is known as the concentration 

boundary layer thickness (Moussy, 2000). Permeate flux deterioration due to fouling and 

concentration polarization greatly impacts the performance and economics of membrane 

processes, particularly in water treatment applications (Tu et al., 2005). Concentration 

polarization is caused by a combination of factors including TMP, solute concentration and 

crossflow velocity (Liao et al., 2005). The effect of this phenomenon is that during operation up 

to a certain TMP difference, the ultrafiltration flux increases almost linearly with the TMP 

difference. At higher pressures the concentration boundary layer grows in thickness as the TMP 

increases. The flux is then independent of the pressure (and in some extreme instances a negative 

response to pressure) as illustrated in Figure 3-2 (Perry et al., 1998; Moussy, 2000). 

 

 

Figure 3-2: Characteristic curve for flux through an ultrafiltration membrane as a function of 
transmembrane pressure (Perry et al., 1998) 
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4. NUMERICAL METHODS 

4.1 Introduction 

 

Mathematical models of many biochemical processes, such as the one considered in this study, 

give rise to systems of differential–algebraic equations. Very few of these equations can be 

solved analytically, and the majority of them are solved using numerical algorithms. Of the 

various techniques available for the numerical solution of governing differential equations of 

fluid flow, the following three types are most common: (a) the finite difference method, (b) the 

finite element (or finite volume) method, and (c) the boundary element method. In each of these 

methods the continuous flow field is described in terms of discrete values at prescribed locations. 

By this technique the differential equations are replaced by a set of algebraic equations that can 

be solved on a computer (Munson et al., 2006). This chapter describes the finite difference 

method of discretizing a differential equation and, in brief, the usage of computational fluid 

dynamics (CFD) techniques in solving flow problems. Bessel functions, which arise frequently in 

studies of applied mathematics, will also be discussed. The relevance and application of the 

theory discussed in this chapter is elaborated in Chapter 5.     

 

4.2 The finite difference method 

 

Analytical solutions of partial differential and/or integral equations involve closed-form 

expressions which give the variations of the dependant variable continuously throughout the 

domain. In contrast, numerical solutions can give answers at only discrete points in the domain, 

called grid points and the partial derivative/integral is said to be discretized. Discretization of 

partial differential equations is called finite differences, and discretization of integral equations is 

called finite volumes (Anderson, 1995).   

 

Most common finite-difference representations of derivatives are based on Taylor’s series 

expansion: 
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where ui,j and ui+1,j denotes the value of u at points (i,j) and (i+1,j) respectively.  
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Figure 4-1: A staggered grid 

 

Equation 4-1 can be algebraically manipulated to make the partial derivative ( ) jixu ,∂∂  the 

subject of the equation. Therefore, 

x

uu

x

u jiji

ji ∆

−
=









∂

∂
∴

+ ,,1

,

         4-2 

This is called a forward difference of first-order accuracy or a first-order forward difference. 

Referring to Figure 4-1, it can be seen that the finite difference expression uses information to the 

right of grid point (i,j); that is, it uses ui+1,j as well as ui,j. No information to the left of (i,j) is 

used, and hence the name forward difference. A similar expression can be obtained from 

Equation 4-1 by making use of grid points (i,j) and (i-1,j)   
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This is called a first-order rearward (or backward) difference. Often in CFD applications, first-

order accuracy is not sufficient (Anderson, 1995). A second-order finite difference quotient  



NUMERICAL METHODS 28 

makes use of information from both sides of the grid point located at (i,j); that is, it uses ui+1,j as 

well as ui-1,j:  
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Hence the finite difference quotient is called a second order central difference (Anderson, 1995). 

 

Once a differential equation has been discretized as described above, a number of algorithms are 

available to carry out the solution of the equation and this is the domain of a relatively new field 

called computational fluid dynamics. 

 

4.3 Computational fluid dynamics 

 

 

Figure 4-2: A flow chart of general CFD methodology (Munson et al., 2006) 

 

CFD entails breaking down a physical system, for example the lumen side of a membrane 

bioreactor or the air around an aircraft, into a large number of cells or control volumes (the mesh 

or grid). In each of these cells, the partial differential equations describing the fluid flow (the 

Navier-Stokes equations) are rewritten as algebraic equations that relate the pressure, velocity, 

temperature and other variables, such as species concentrations, to the values in the neighbouring 

cells (Munson et al., 2006). This procedure is referred to as discretization of the governing 
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equations (refer to Section 4.2). These equations are then solved numerically to obtain flow field 

values at the discrete points in space and/or time. 

 

Most applications of CFD take the same basic approach and can be summarized in the flowchart 

shown in Figure 4-2. Some of the differences in the approaches include problem complexity, 

available computer resources, available expertise in CFD, and whether a commercially available 

CFD package is used, or a problem-specific CFD algorithm is developed (Munson et al., 2006). 

Naturally, the first step is to define the problem and presenting it in a “well-posed manner”. In the 

context of CFD, a problem is said to be “well-posed” if: the solution to a partial differential 

equation exists and is unique, if the solution depends continuously upon the initial and boundary 

conditions (Anderson, 1995). In essence this means a thorough understanding of the physics of 

the flow. Once the problem is “well-posed” the next step in any CFD model is to create a 

geometry that represents the object being modelled. From this point, a mesh is generated which 

creates the cells or control volumes.  

 

Once the mesh is complete, the model input values are specified and the software then solves the 

equations of state for each cell until an acceptable convergence is achieved. When the model has 

been solved, the results can be analyzed both numerically and graphically (CFX, 2005).  

 

Even though computer codes have been developed to handle these equations, the definition of 

consistent initial conditions is an essential step to assure convergence of the numerical solvers. 

Generally, the definition of consistent initial conditions is the most difficult step in the solution of 

a DAE set (Resende et al., 2002).    

 

4.4 Bessel functions 

 

Bessel's differential equation can be expressed as follows:  

( ) 00222 ≥=−+′+′′ nunrurur    
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In mathematics Bessel functions are standard solutions of Bessel's differential equation. These 

functions arise frequently in advanced studies of applied mathematics, specifically in physical 

situations where there is cylindrical symmetry. This occurs in problems involving electric fields, 
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vibrations, heat conduction, optical diffraction and others. The general solution of Equation 4-5 is 

given by (Spiegel, 1974): 

( ) ( )rYcrJcu nn 21 +=          4-6 

The solution Jn(r), that has a finite limit as r approaches zero, is called a Bessel function of the 

first kind and order n. The solution Yn(r) that has no finite limit as r approaches zero is called a 

Bessel function of the second kind and order n or Neumann function. If the independent variable 

r in Equation 4-5 is changed to qr  where q is a constant, the resulting equation is: 

( ) 002222 ≥=−+′+′′ nunrqurur       4-7 

with general solution:  

( ) ( )rqYcrqJcu nn 21 +=         4-8 

where the Bessel function of the first kind of order n is defined as (Spiegel, 1974): 
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where Γ(n + 1) is the gamma function. If n is a positive integer, Γ(n + 1) = n!, Γ(1) =1. The 

Bessel function of the second kind of order n is defined as (Spiegel, 1974): 
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When n is zero in Equation 4-9 the series expansion becomes: 
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From Equation 4-11 the following relation can be extracted: 

( ) ( )rJrJ nn αα 10 −=′          4-12 

where αn is the n
th

 root of the Bessel function Jn(αnr). Bessel functions have many other 

interesting and important properties, among them being the following (Lowry et al., 1971): 
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d
rJrrJr

dr

d
n

n

n

n

n

n

n

n

11 , +
−−

− −==     4-13 
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( ) ( ) ( )mlrdrrJrJ mnl

x

n ≠=∫ ,0
0

αα       4-16 

The above properties of Bessel functions, Equations 4-13 to 4-16, demonstrate the orthogonality 

of these functions.         
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5. MODEL DEVELOPMENT 

5.1 Introduction 

 

This chapter presents both analytical and numerical solutions to the Navier-Stokes equations for 

the description of fluid motion through a SFCMBR. The theory discussed in Chapter 3 and 4 will 

be used in formulating pressure profiles, stream functions, as well as velocity and volumetric 

flow profiles through a SFCMBR device. The model solutions presented are intended for use in 

the scaling-up of a continuous bioreactor system, and hence all the model parameters will be 

defined as dimensionless variables. 

 

A major problem in solving the Navier-Stokes equations is that there are no general analytical 

methods for solving nonlinear partial differential equations, and this practically means that each 

problem must be solved from scratch. However, after a consideration of the general applications 

of capillary membrane bioreactors it is possible to develop a generic equation. This generic 

equation will be developed for laminar flows through cylindrical surfaces, and will be solved for 

the specific case where angular variations of the flow are negligible.  

 

5.2 Model assumptions 

 

The theoretical models to be developed will be based on the following conditions of operation 

and assumptions: 

 

• the system is isothermal. In essence this means that the energy equation has been 

decoupled from the momentum transfer. Darcy’s law, the continuity and Navier-Stokes 

equations were all that was necessary to solve the velocity and pressure fields.  

  

• the flow regime within the fiber lumen is fully developed, laminar, and homogeneous. 

Since the flow regime is very sensitive in the immobilisation of spores (i.e. high flowrates 

will lead to spores detached from the membrane, and poor mass transfer characteristics), 

in almost all HF and capillary membrane bioreactors the flow regime will be laminar. 
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Figure 5-1: The flow curve of the nutrient solution at 37ºC 

 

• physical and transport parameters (e.g. density, viscosity and diffusivity) are constant. 

This holds only if the nutrient solution is an incompressible Newtonian fluid, which is 

true for the nutrient solution used in this research as described by Tien and Kirk (1988). 

Figure 5-1 is a plot of shear stress λ versus shear rate γ of the nutrient solution, obtained 

from a Paar Physica MCR300 Rheometer, which illustrates the Newtonian behaviour of 

the nutrient solution used in this study. The slope of the graph is constant, as is the case 

for all Newtonian fluids. This is compatible with the initial assumption that the 

temperature T is constant, since dynamic viscosity is a function of temperature.    

 

• the membrane hydraulic permeability is uniform throughout. The PSu capillary 

membranes used in this study are asymmetric membranes, however, for simplicity in the 

model development they were assumed to be isotropic.  

 

• the entrance velocity to the membrane bioreactor is governed by Poiseuille’s equation.  

 

• the momentum transfer can be solved independently of the mass transfer. A useful 

dimensionless parameter for indicating whether or not the mass transfer can be decoupled 

from the momentum transfer analysis is the Schmidt number, Sc: 
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ABD
Sc

ρ

µ
=         5-1 

Sc larger than 1 indicate that the concentration boundary layer is much smaller than the 

momentum boundary layer (Moussy, 1999). The Sc for the nutrient solution used was 

much greater than 1 (see Appendix E).   

 

• no fungal growth occurs in the membrane lumen. The membrane has an internal UF skin 

preventing growth to the lumen side 

 

• in the dense and in the spongy layers of the membrane the flow is only one dimensional. 

That is, there are no axial components of the velocity profiles in the membrane matrix 

(see Figure 2-2).   

 

• The aspect ratio, β, of the membrane is much smaller than unity. The aspect ratio is the 

ratio of the membrane inner radius to the effective membrane length, and if it is much 

smaller than unity then normal stress effects are negligible.  

 

5.3 Dimensionless variables 

 

For the purpose of data correlation, model studies, and scale-up, there are many advantages of 

expressing the differential equations of motion and their solutions in dimensionless form as 

opposed to working with actual units. For the current study it is necessary to introduce the 

following dimensionless variables: 

( ) LRpp

v

v

v
U

L

z

z

z

µ4/2
100 −

==         5-2 

where U represents the dimensionless axial velocity of the membrane, p0 and p1 are the inlet and 

outlet hydrostatic pressures respectively, vz and vz0 are the axial velocities at a point z and at the 

entrance respectively, RL is the membrane inner radius and, L the length of the membrane.   

( ) LRpp

v

v

v
V

L

r

z

r

µ4/2
100 −

==         5-3 
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where V is the dimensionless radial velocity. The velocity components, U and V, are expressed as 

ratios of the maximum axial velocity at the membrane entrance. The maximum axial velocity at 

the membrane entrance is expressed by Poiseuille’s equation: 








 −
=

L

ppR
v L

z

10

2

0
4µ

         5-4 

Similarly, the volumetric flowrate, Ω , is taken to be a ratio of the maximum entrance volumetric 

flowrate:   

0zQ

Q
=Ω           5-5 

Again, the maximum axial volumetric flow at the membrane entrance is assumed to be expressed 

by Poiseuille’s law: 

( )
L

ppR
Q L

z
µ

π

8

10

4

0

−
=          5-6 

The pressures are given as ratios of the total pressure drop along the membrane lumen:   

( )10

4

pp −

Φ
=Π           5-7 

( )10

4

pp

p
P

−
=           5-8 

where Φ is the osmotic pressure, and p is the hydrostatic pressure. The spatial coordinates, z and 

r, are normalized about their axis:  

L

z
Z =            5-9 

LR

r
R =           5-10 

The dimensionless time, τ, is expressed as a ratio of viscous to inertial forces:  

2

LR

t

ρ

µ
τ =           5-11 

where ρ is the density of the fluid in the lumen, and t is the time. The dimensionless permeability:  

( )gwL

gm

ddR

kk
L

+














+

=

−

2

1

11

κ          5-12 
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where km is the membrane hydraulic permeability, kg is the permeability of the gel layer, dw and 

dg is the membrane wall and gel thickness respectively (pore fouling will not be considered); and 

( )10

4

pp

Lg
b z

−
=

ρ
          5-13 

where gz is gravitational acceleration.  

 

5.4 Boundary and initial conditions 

 

The boundary and initial conditions which match the imposed operating conditions, and 

necessary to solve the differential equations which arise in the modelling of the system are 

presented in Table 5-1. In the far left column of the table are the boundary conditions (B.C.), the 

initial condition (I.C.), and steady-state condition (S.S.C.). The second and third columns from 

left give the values of the independent and corresponding dependent variables, respectively.    

 

Table 5-1: The boundary, initial and steady-state conditions of the SFCMBR 

I.C./B.C./S.S.C. τ,τ,τ,τ, R, Z UL, US, VL, VS, PL, PS  Range Equation  

I.C. 
0ττ =  U = Uτ = U∞  0≤ R ≤1, 0≤ Z ≤1 

5-14a 

S.S.C 
∞≥ ττ  0==

∂

∂
τ

τ
U

U
 

0≤ R ≤1, 0≤ Z ≤1 5-14b 

B.C.1 R = 0 U = finite 0≤ Z ≤1 5-14c 

B.C.2 R = 1 U = 0 0≤ Z ≤1 5-14d 

B.C.3 R = 0 
0=

∂

∂

R

U
 

0≤ Z ≤1 5-14e 

 

B.C.4 R = 0 V = 0 0≤ Z ≤1 5-14f 

B.C.5 R = 1 V = VM τ = ∞ 5-14g 

B.C.6 Z = 0 PL = PL(0), aPL =′  0≤ R ≤1 5-14h 

B.C.7 Z = 0 US = 0, PS = PS(0) 0≤ R ≤1 5-14i 

B.C.8 R = R2 
0=

∂

∂

R

U S  
0≤ Z ≤1 5-14j 

B.C.9 R = R3 US = 0 0≤ Z ≤1 5-14k 

B.C.10 R = R2 VS = 0  0≤ Z ≤1 5-14l 

B.C.11 R = Rx VM = VS  0≤ Z ≤1 5-14m 

B.C.12 R = R2 US = finite 0≤ Z ≤1 5-14n 
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Figure 5-2: Hypothesised velocity distributions through the PSu capillary membrane 

 

Figure 5-2 is a representation of the hypothesised flow through the PSu capillary membrane, 

dictated by the boundary conditions specified by Equations 5-14a to 5-14n. Strictly speaking, the 

well known Beavers and Joseph condition should be used instead of the boundary condition 

given by Equation 5-14d. The Beavers and Joseph condition may be written as (Elshahed, 2004): 

10 ==+ RatU
dR

dU
φ         5-15 

where φ  is the slip coefficient. However, according to Catapano et al. (1990), the distortion of 

the velocity profile relative to that established in non-porous wall systems is measured by the 

parameter χL, where: 

3/4 Lm Rkµχ =          5-16 

 

In Equation 5-16 χ is in m
-1

 and km is in m/Pas, and if the value of χL is less than unity, the 

distortion of the velocity profile induced by the porous wall is negligible. This means the 

boundary condition given by Equation 5-14d is valid for bioreactor systems where χL is less than 

unity, as is the case for the current bioreactor system (χL = 0.02). The velocity profiles in Figure 

5-2 are for fully developed, axisymmetric, laminar flow, through a porous media.  
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5.5 Analytical model solutions 

 

5.5.1 The generic equation 

 

The dimensionless form of Equation 3-1 when ignoring the inertial terms (a valid assumption 

only for operations with small Rew) is:  
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
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2
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11
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     5-17 

If the solution of Equation 5-17 is assumed to be of the form: 

( ) ( ) ( ) ( )τθτθ ΚΘΞ= RRU L ,,         5-18   

and the following assumptions are made regarding the functions Θ and Κ : 

Θ−=
∂

Θ∂ 2

2

2

m
θ

          5-19 

Κ−=
∂

Κ∂ 2α
τ

          5-20 

then Equation 5-17 may be written as a generic equation of the form: 

( ) ( )τθα ,,222

2

2
2

ZfmR
dR

d
R

dR

d
R =Ξ−+

Ξ
+

Ξ
     5-21 

where:  
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( )

0,
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021

2
2
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+
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−
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GRe
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τα
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and  









−

∂

∂
= b

Z

P
G L

         5-23 

 

Table 5-2: Generic equation of flows with a low Rew through cylindrical surfaces  

αααα m f(Z,θθθθ,ττττ)  Resulting equation 

> 0 ≥ 0 = 0  Bessel’s equation 

= 0 > 0 > 0 Poisson’s equation 

= 0 > 0 = 0 Laplace’s equation 
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Equation 5-21 may be thought of as a generic equation for small Rew flows through cylindrical 

surfaces, because under the conditions specified in Table 5-2 it reduces to the familiar and 

extensively studied equations listed in the table, which arise frequently in studies of flow 

behaviour. The complete derivation of Equation 5-21 is given in Appendix A.   

 

5.5.2 Vertical orientation (constant shell side pressure) 

 

The solutions presented in this section assume m = 0 to be the applicable condition in solving 

Equation 5-21, and are only applicable to a system with a constant shell side hydrostatic pressure. 

The independence of the function Ξ on Θ (i.e. m = 0) corresponds to the assumption of circular 

symmetry about the z-axis of the capillary membranes used. Only the resulting mathematical 

expressions are presented, the complete analysis is given in Appendix A. The dimensionless axial 

velocity profile in the lumen side, UL, is therefore given by: 

( ) ( )
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where αn is the n
th

 root of the Bessel function Jn(αnR). The dimensionless radial velocity in the 

lumen side, VL, is: 
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the dimensionless lumenal flowrate, LΩ , is given by: 
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the dimensionless velocity profile through the matrix, VM, is: 

[ ]LSbM PPV −−= πκ          5-27 

the dimensionless axial velocity profile in the shell US  is: 
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where: 
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there is no radial shell velocity for the constant shell pressure SFCMBR (i.e., VS = 0), and the 

dimensionless shell volumetric flowrate, SΩ , is given by: 
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the dimensionless pressure profile inside the lumen of the membrane bioreactor is given by: 

( ) ( ) ( ) ππ κ
κ

κ SbSbL PZ
a

ZPPZP ++−= 4sinh
4

4cosh)( 0     5-31 

where: 

( ) ( )
( )[ ]

( )
( )[ ]κκ

κκ π

4cosh

1

4cosh

4sinh4 0

−

−
−

−

−
=

f

fb

f

PP
a

Sb
      5-32 

b
L

dd
PP

gw

SSb 






 +
−Π+=π         5-33 

From the definition of a stream function in Section 3.2.2, the equation for the stream function in 

the lumen side of the membrane is given by: 
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At steady state (i.e., at ∞= ττ ), Equation 5-34 reduces to: 
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the stream function in the shell side of the membrane is given by: 
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5.5.3 Vertical orientation (variable shell side pressure) 

 

The solutions presented in this section are applicable to a system with a shell side hydrostatic 

pressure that is a function of the axial position. The axial and radial velocity profiles as well as 

the volumetric flowrate in the lumen side are still governed by the same expressions as for a 

constant shell side pressure SFCMBR: 
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the axial and radial velocity profiles in the shell US  and VS are governed by respectively: 
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the dimensionless shell volumetric flowrate, SΩ , is given by: 
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The hydrostatic pressure profile in the shell is given by:  
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the corresponding lumenal pressure profile is:  
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where:  



MODEL DEVELOPMENT  42 

( )
( ) 







 −
=

x

xx

Rf

RRf
κω 162

        5-42 

( ) ( )































−−








−−−−−=

4
ln

24
ln

2
82

2

3

22

2

3

2

2

22

2

22

2

2

3

44

2
xxx

xxx

R

R

RRR

R

RR
RRRRRRRf  5-43 

( )( )
( )[ ]xx

SLx

RRf

PPRf
A

−

−
=

)0()0(

2ω
        5-44 

( ) ( )
( )[ ] ( )( ) ( )[ ]1cosh

sinh)0()0(

23

−+−−

−
=

fRfRfRRf

PPRf
B

xxxx

SLx

ω

ωω
     5-45 

( )

( )( )
( )[ ]xx

SLx

L
RRf

PPRf
PD

−

−
−=

)0()0(

0        5-46 

( )( )
( )[ ] ( )( ) ( )[ ]1cosh

sinh)0()0(

−+−−

−
+=

fRfRfRRf

PPRfR
bH

xxxx

SLxx

g
ω

ωω
    5-47 

the stream function in the lumen side of the membrane is still governed by the same expressions 

as for a constant shell side pressure SFCMBR: 
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the stream function in the shell side of the membrane is given by: 
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where:  
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5.5.4 Horizontal orientation (constant shell side pressure) 

 

For the horizontally orientated SFCMBR with a constant shell side pressure it is assumed that 

gravitational acceleration effects will be negligible (i.e. b = 0) as compared to other forces. The 

resulting mathematical expressions then become, for the dimensionless axial velocity profile UL 

in the lumen side: 
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the radial velocity profile in the lumen side VL is the same as in the vertically orientated 

SFCMBR: 
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the velocity profile through the matrix VM is 

[ ]LSM PPV −−= πκ          5-51 

there is no radial  or axial shell flow for the constant shell pressure horizontal SFCMBR (i.e.,     

VS = US = 0). The dimensionless lumenal flowrate, LΩ , is given by: 
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and the pressure profile inside the lumen of the membrane bioreactor is given by: 
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5.5.5 Horizontal orientation (variable shell side pressure) 

 

The treatment is exactly the same as for the vertical SFCMBR with variable shell side pressure, 

neglecting the gravitational acceleration terms. The axial and radial velocity profiles in the lumen 

side are still governed by the same expressions as for a horizontal constant shell side pressure 

SFCMBR: 
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 the shell side radial velocity profile US is given by: 
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the radial velocity profile on the shell side VS  is given by: 
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and the pressure profile on the shell side PS is: 
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the corresponding lumenal pressure profile will be given by:  
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where the constants A, B, and D are the same as in the vertically orientated SFCMBR, and H is 

given by:  
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5.6 Finite difference scheme formulation 

 

The numerical solutions of the two-dimensional Navier-Stokes equations were obtained by finite 

differencing the dimensionless partial differential equations as shown in Table 5-3. The complete 

analysis is given in Appendix B. These solutions are restricted to luminal flows only. 

 

Table 5-3: Discretization of the dimensionless Navier-Stokes equations 
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The dimensionless form of the z-component of the Navier-Stokes equations, in cylindrical form, 

is given by the following: 
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and the dimensionless r-component is: 
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where Reb is the bulk fluid Reynolds number, which is different from the wall Reynolds number 

( Re
w

) that is calculated using the wall velocity. Re
b
 is defined as:  
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µ

ρ Lz
b

Rv 0Re =          5-62 

and β is the aspect ratio defined as: 

L

RL=β           5-63 

 

The corresponding axial and radial finite difference equations are, respectively:  
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Equations 5-64 and 5-65 were solved using a revised form of the semi-implicit method for 

pressure-linked equations (SIMPLE). The procedure for the SIMPLE algorithm is as follows 

(Anderson, 1995):  

 

1. Start the iterative process by guessing the pressure field. Denote the guessed pressures as 

(P
*
)
n
. 

2. Use the values of (P
*
)
n
 to solve for U

n
 and V

n
 from the momentum equations. Since these 

values are those associated with the values of (P
*
)
n
, denote them by (U

*
)
n 

and (V
*
)
n
. 

3. Since the values of (U
*
)
n 

and (V
*
)
n
 were obtained from guessed values of (P

*
)
n
, they will 

not necessarily satisfy the continuity equation. Hence, using the continuity equation, 

construct a pressure correction (P’)
n
 which when added to (P

*
)
n
 will bring the velocity 
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field more into agreement with the continuity equation. That is, the corrected pressure P
n
 

is given by 

( ) ( )nnn PPP ′+= ∗
        5-66 

4. Designate the new value of P
n
 in Equation 5-66 as the new value of (P

*
)
n
. Return to step 2 

and repeat the process until a velocity field which satisfies the continuity equation is 

obtained.   

 

In this study, the SIMPLE algorithm was simplified by using the expressions obtained from the 

analytical solution (Equation 5-31, 5-40, 5-41, 5-53, 5-57, and 5-58) to develop the pressure field 

in step 1. The pressure profile was assumed to exhibit an exponential decay with time to a steady-

state value. The velocity profiles obtained from this pressure field satisfy the continuity equation.  
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6. MATERIALS AND METHODS  

6.1 Introduction 

 

This chapter provides a description of the materials and methods that were used to validate the 

proposed theoretical models that were developed in Chapter 5. Only a summary of the procedures 

that were used to prepare the reagents and the fungus will be given. A complete description of the 

growth and maintenance of the fungus and the preparation of the nutrient solution is given in 

Appendix C and D, respectively. The experimental procedure that were followed to cultivate 

P. chrysosporium for continuous enzyme production, in a single fibre capillary membrane 

bioreactor (SFCMBR), was previously explained by Leukes (1999), Garcin (2000), Solomon 

(2001), Ntwampe (2005), and Sheldon and Small (2005).  

 

6.2 Description of materials 

 

6.2.1 Microorganism  

 

The WRF, P. chrysosporium strain BKM-F-1767 (ATCC 24725), was used in all the 

experiments. Cultures of the fungus were maintained on supplemented malt agar slants, and were 

grown on petri plates containing growth medium at 37ºC, according to Tien and Kirk (1988). The 

resulting mycelia was homogenised with sterile distilled water, to form a spore-mycelia mixture, 

which was then filtered to obtain a pure spore solution (see Appendix C: C1 - C5). The pure 

spore solution was freeze-dried to a temperature of -70ºC and stored at 4ºC. For an experimental 

run the freeze-dried spores were homogenised, with sterile distilled water, to make up the 

required spore solution concentration. For each biofilm growth experimental run 3×10
6
 spores 

were prepared (see Appendix C: C6) and inoculated onto the external skin of the capillary 

polysulphone membrane using reverse filtration as described in Govender et al. (2004).  

 

6.2.2 Nutrient medium 

 

A nutrient medium was used to provide the fungus with low-molecular mass nutrient sources, 

like carbon and nitrogen, and was also the standard medium as described by Tien and Kirk 

(1988). The nutrient medium contained (in 1 liter): 100ml Basal medium, 100ml of 10% glucose 
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stock solution, 100ml of 0.1M 2,2-dimethylsuccinate, 10ml thiamin, 25ml ammonium tartrate, 

100ml of 0.02M veratryl alcohol, 60ml trace elements, and 505ml of sterile distilled water (see 

Appendix D). The nutrient medium was supplied through the membrane lumen to the fungus, 

immobilized on the external skin of the capillary membrane, at a flow rate of 6.20ml/hr using a 

Watson Marlow 505S perilstatic pump (Dune Engineering, RSA). 

 

6.2.3 Polysulphone capillary membrane 

 

The capillary PSu membrane bioreactor that was used in this study was described by Jacobs and 

Leukes (1996); Leukes (1999); Solomon (2001); Sheldon and Small (2005). It consisted of a 

single capillary, made of surface modified polysulphone, encased in a glass bioreactor. The PSu 

capillary membranes were produced and supplied by the Institute of Polymer Science at the 

University of Stellenbosch (RSA). The membranes are characterized by an internally skinned and 

externally un-skinned region of microvoids, approximately 0.15mm long and 0.015mm thick, as 

shown in Figure 2-2. These membranes have inner diameters of approximately 1.395mm and 

outer diameters of 1.925mm.  

 

 

Figure 2-2:A scanning electron microscope image of the PSu capillary membrane (Solomon & Petersen, 2002) 

 

6.2.4 Air pump 

 

A Hailea ACO 9220 diaphragm air pump was used to supply the shell of the SFCMBR with a 

consistent throughput of humidified air at 240 L/hr. The air supplied by the pump was filter-

sterilised, using a 0.22µm Cameo filter, before being fed to the humidifier.  
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6.2.5 Humidifier 

 

A 500ml Schott bottle, half-filled with sterile distilled water, was used as a humidifier. The 

humidifier was connected to the SFCMBR and the diaphragm air pump by silicone tubing (ID = 

3cm; OD = 5cm). The air from the diaphragm pump was first filter-sterilised and humidified 

before being fed to the shell side of the SFCMBR.  

  

6.2.6 Pressure transducers 

 

 

Figure 6-1: A schematic diagram of the single fibre capillary membrane bioreactor (SFCMBR) 

 

The SFCMBR was fitted with two Vega (United Kingdom) pressure transducers (model: 

BAR14.X1CA1GV1), which were connected to a computer for online pressure readings. The two 

pressure transducers were connected at the inlet and outlet of the SFCMBR, as shown in Figure 

6-1. LabView®, a data acquisition programme developed by National Instruments, was utilised 



MATERIALS AND METHODS  51 

for acquiring, transforming and displaying the data from the pressure transducers. The 

transmembrane pressure (TMP) was calculated by: 

STMP p
pp

p −






 +
=

2

10         3-15  

The shell side pressure of the SFCMBR, pS, was at atmospheric pressure (101.325 kPa) for both 

the control and biofilm growth experiments. 

  

6.3 Description of experiments 

 

6.3.1 Control experiments 

 

Before performing the biofilm growth experimental runs, experiments with no biofilm growth 

were undertaken to serve as a control. The control experiments also involved validation of the 

properties of both the nutrient solution and PSu capillary membrane.   

 

Table 6-1: The dimensions of the single fibre capillary membrane bioreactor 

Membrane inner radius RL m 6.63×10
-04

 

Membrane outer radius rx m 9.10×10
-04

 

Extra capillary space radius r2 m 5.91×10
-03

 

Glass manifold inner radius r3 m 10.91×10
-03

 

Effective membrane length L m 0.29 

 

The dimensions of the SFCMBR are indicated in Table 6-1. The PSu capillary membrane, 

described in Section 6.2.3, was fixed to the centre of the glass reactor using epoxy glue, one side 

at a time, and left over night to dry. For the control runs, it was not necessary to autoclave the 

tubing and the distilled water that was used. Silicone tubing (ID = 3cm; OD = 5cm) was used to 

feed the bioreactor with distilled water. The one end of the bioreactor was clamped, to force the 

distilled water through the membrane (i.e. dead-end filtration). The tubing to and from the 

bioreactor was fitted with a splitter to allow pressure transducers to be connected, as shown in 

Figure 6-1. Distilled water was pumped at varying flowrates (refer to Section 6.3.4) from a 500ml 

bottle to the bioreactor using a Watson Marlow 505S peristaltic pump. The system was allowed 

to run for about an hour for all the tubing to be filled with water, before the inlet and outlet 

pressure readings were taken. Pressure readings were taken until the system reached steady-state.  
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The inlet and outlet pressure readings were used in the developed models to firstly validate the 

accuracy of the developed model, and secondly, to predict various model parameters such as 

membrane hydraulic permeability; the pressure and velocity profiles along the length of the 

membrane.         

 

6.3.2 Biofilm growth experiments  

 

When carrying out the biofilm growth experiments precautionary sterilisation measures had to be 

taken in all the preparation steps, to prevent contamination. It was important that the membranes 

were handled gently and with the minimum amount of distortion. All the tubing, glassware and 

bioreactors that were used were autoclaved for 20min at 120 ºC. A 4% formaldehyde solution 

was used to chemically sterilize the lumen side of the capillary membranes. The formaldehyde 

solution was run for 6 hours through the system, and thereafter the bioreactor was rinsed with 

autoclaved distilled water for 12hr to remove all the traces of formaldehyde. 

  

 

Figure 6-2: A pictorial view of the single-fibre capillary membrane bioreactor (SFCMBR) 
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After the sterilization and rinsing process, the membrane was inoculated with 3.0×10
6
 

P. chrysosporium spores. Inoculation was achieved by forcing the spore solution from the shell 

side of the membrane, through the membrane, to the lumen side (reverse filtration), as described 

in Govender et al. (2004). Immediately after the inoculation process, the system was fed with 

nutrients, supplied at a flow rate of 6.20ml/hr on the lumen side of the membrane. When more 

than one SFCMBR system was running, as shown in Figure 6-2, individual nutrient feeds were 

used so as to minimise the risk of contamination. The nutrient solution was allowed to fill-up the 

membrane lumen, before the pump was stopped and the system was left for 24hr for the spores to 

germinate and acclimatise to their new environment (referred to as the lag phase).  

 

Following the 24hr lag-period, the nutrient supply was continued, and the system was allowed to 

run with as little disturbance as possible. The mode of operation was dead-end; the nutrient was 

forced to permeate through the walls of the membrane, to the fungus immobilized on the external 

skin of the membrane. Permeate was collected daily using 50ml bottles. The pH and redox 

potential of the permeate solution was monitored daily, using a Hanna HI 8314 pH meter in order 

to check whether the reactors were biochemically similar. A redox potential of above 200mV was 

used as an indicator of LiP and MnP activity (Leukes, 1999). 

 

Humidified air was filter sterilized before being supplied on the shell side of the bioreactor at a 

flowrate of 240 L/hr, using a Hailea ACO 9220 diaphragm air pump. The system was fitted with 

pressure transducers at the inlet and outlet of the membrane, as shown in Figure 6-2. An 

experimental run consisted of 10 reactors connected to individual nutrient feeds as shown in 

Figure 6-2. 

 

6.3.3 Scanning electron microscope preparation 

 

After biofilm growth was visible in all the bioreactors, one bioreactor was stopped every 24hr 

and prepared for SEM imaging. Samples of the membrane, with biofilm growth, were cut with a 

sterile blade and placed into a 10% gluteraldehyde solution to preserve the biofilm. The samples 

were then taken through an alcohol dehydration series. This involved placing the samples in 

different concentrations of alcohol for at least 10 minutes each. This procedure is explained in 

APPENDIX H. Once the samples were in 100% alcohol they were taken to the Electron 

Microscopic Unit (EMU) at the University of Cape Town, where they were critical point dried 
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and sputter coated with gold/palladium for examination with the SEM. The SEM that was used 

was a fully analytical Leo S440 SEM. The SEM images were used to determine the biofilm 

thicknesses over time. 

 

6.3.4 Hydraulic permeability 

 

Two batches of membranes were used for all the experiments covered in this thesis, and the 

hydraulic permeability of each batch was determined experimentally. The hydraulic 

permeabilities were obtained by running distilled water through the lumen side of the SFCMBR 

at five different flowrates of 1.716ml/hr, 3.186ml/hr, 4.86ml/hr, 6.18ml/hr and 13.56ml/hr; and 

measuring the pressures at the inlet and outlet of the SFCMBR operated in the dead-end mode at 

20°C, as explained in Section 6.3.1. 

 

An investigation of the effect of temperature on the hydraulic permeability of the membranes was 

also performed. The hydraulic permeability of membranes at two differing temperatures of 20°C 

and 37°C was compared. For the bioreactor operated at 37°C the flowrates used were: 6.90ml/hr, 

13.56ml/hr, 20.28ml/hr, 26.94ml/hr and 33.66ml/hr. 
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7. EVALUATION OF MODEL PARAMETERS 

7.1 Introduction 

 

In any process design or optimisation it is always desirable to have a method of examining the 

effects of uncertainties in the forecasting of process output variables. This is simply because ‘if 

process behaviour can be predicted, then it can be controlled’. The study of how unknown 

variables might affect the overall performance of a unit operation is often referred to as a 

sensitivity analysis. In this chapter the effects of the different model variables, in both the 

numerical and analytical modelling of the momentum transfer of a SFCMBR, are evaluated.    

 

7.2 Numerical scheme parameters 

 

The sensitivity of the numerical and analytical models developed in this study was tested on a 

vertically orientated SFCMBR system, with a constant shell-side pressure, operated in the dead-

end mode. The model parameter values for this system are listed in Table 7-1.  

 

Table 7-1: Model parameter values used to test the developed models 

Model parameter Symbol Unit Basic value 

Fraction retentate f dimensionless 0 

Membrane hydraulic permeability km m
2
 1.74×10

-17
 

Membrane inner radius RL m 6.63×10
-04

 

Membrane outer radius rx m 9.10×10
-04

 

Extra capillary space radius r2 m 5.91×10
-03

 

Glass manifold inner radius r3 m 10.91×10
-03

 

Effective membrane length L m 0.29 

Inlet hydrostatic pressure p0 Pa 117.01×10
3
 

Outlet hydrostatic pressure p1 Pa 113.57×10
3
 

Osmotic pressure π Pa 100.00 

Nutrient flowrate  Q ml/hr 6.20 

Nutrient medium viscosity µ Pa.s 1.18×10
-3

 

Nutrient medium density ρ kg/m
3
 994.00 
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7.2.1 Stability analysis  

 

Difference equations can be solved by employing a number of techniques and these techniques 

fall into one of two different general approaches; the implicit or explicit approach. The difference 

equations developed and solved in this study, Equations 5-64 and 5-65, each contain only one 

unknown and can therefore be solved explicitly in a straightforward manner. The unknowns are 

1

,

+n

jiU  and 1

,

+n

jiV , since we assume that U and V are known at all grid points at time level n. By 

definition therefore, the solution of Equations 5-64 and 5-65 follows an explicit approach. 

Besides its simplicity compared to the implicit approach, a major disadvantage of an explicit 

approach is that there are restrictions on the values of the independent variables. Once ∆τ  is 

chosen, then ∆R is not an independent, arbitrary choice; rather ∆R is restricted to be equal or less 

than a certain value prescribed by a stability criterion. The von Neumann stability method is the 

most frequently used method to obtain the relationships between the independent variables of 

linear difference equations. 

  

Unfortunately, an exact stability analysis of the difference representation of the nonlinear Navier-

Stokes equations does not exist (Anderson, 1995). A trial-and-error approach was adopted to 

obtain a relationship between the independent variables of Equations 5-64 and 5-65. The 

relationship was found to be of the form:  

1
0007.0

<
∆×∆

≤∆
Rτ

τ          7-1 

A more rigour stability analysis for Equations 5-64 and 5-65 was developed by Godongwana 

et al. (2007).  

 

7.2.2 Grid independence  

 

A tenable solution of a differential equation, when using a finite difference scheme (or finite 

volume method), should be independent of the number of grid points (or volume cells) used. If 

this condition is not met then the solution is not stable. This means that the steady-state values of 

U and V should be independent of the time increment chosen. Generally, to remedy this situation, 

the number of grid points used must be increased, i.e., the time increment needs to be decreased. 

In Table 7-2, decreasing ∆τ  from 0.01 to 0.005 improves the numerical solution only marginally; 
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Table 7-2: Grid independence of the flow field 

∆τ ∆τ ∆τ ∆τ  U V  (Z ;R) 

0.1 2.33×10
-6

 9.74×10
-8

 (0.38; 0.09) 

0.05 2.29×10
-6

 1.38×10
-7

 (0.38; 0.09) 

0.01 2.26×10
-6

 1.70×10
-7

 (0.38; 0.09) 

0.005 2.26×10
-6

 1.75×10
-7

 (0.38; 0.09) 

0.001 2.25×10
-6

 1.78×10
-7

 (0.38; 0.09) 

Analytical solution 2.29×10
-6

 1.79×10
-7

 (0.38; 0.09) 

 

therefore the solution that uses ∆τ  equal to 0.01 is essentially grid-independent. The model 

parameter values corresponding to the velocity values in Table 7-2 are listed in Table 7-1, and the 

spatial increments ∆R and ∆Z were chosen to be 0.02.         

 

7.2.3 Convergence of the numerical solver  
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Figure 7-1: Convergence of the numerical solver as a function of grid spacing 

 

The rate of convergence of the numerical solution is influenced by a number of factors including: 

the aspect ratio; the Rew and the grid spacing. In Figure 7-1, the convergence is defined 

as n

n

U
U

1+
, and the solution is said to be converged when the value of the convergence is unity. 
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The influence of the grid spacing is that the rate of convergence increases with increasing grid 

spacing. This is demonstrated by a comparison of the time required for a grid spacing of 0.02 to 

converge to that of 0.0007, in Figure 7-1. On the other hand, the accuracy of the solution 

decreases with increasing grid spacing. The grid spacing required therefore and the corresponding 

accuracy will be dictated by the application of the numerical solver; and a trade off will have to 

be reached between a comprehensive solution that takes up more computing time and a less 

precise solution that is fairly quick to solve.   

 

7.3 Analytical model parameters 

 

7.3.1 Membrane hydraulic permeability 
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Figure 7-2: Pressure profile (PL) as a function of hydraulic permeability (κκκκ) 

 

When the model parameter values in Table 7-1 are fitted to Equation 5-31, for different hydraulic 

permeabilities (κ), it can be deduced that the pressure drop along the membrane decreases with 

decreasing membrane hydraulic permeability. By way of illustration, when the dimensionless 

permeability decreases from 5.82×10
-1

 to 5.82×10
-3

, as would be the case with increasing growth 

of the fungus, the dimensionless pressure drop, ∆PL, also decreases from 17.5 to 4. In Figure 7-2, 
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∆PL is the difference between PL at Z = 0 and at Z = 1. In the limiting case 0→κ , the pressure 

profile will resemble that of a straight circular tube of constant cross section (Poiseuille flow). 

This result is also expected, since the pressure drop in a vertically orientated SFCMBR is merely 

due to permeation of the lumenal fluid and gravity. Figure 7-2 also indicates that the pressure 

drop is only linear for very small hydraulic permeabilities of the membrane. This result was also 

observed by Kelsey et al. (1990) in the simulation of a HF membrane bioreactor operated in the 

closed-shell mode.  

 

7.3.2 Concentration polarization layer  

 

The hydraulic resistance of the concentration boundary layer includes any layer (e.g., gel layer or 

cake) that deposits on the membrane surface. For the specific SFCMBR described in this 

investigation there were three main sources of this resistance, namely: (a) a gel layer deposit on 

the surface of the membrane as shown on Figure 7-3; (b) yeast cells forming a continuous strand 

on the surface of the membrane as shown on Figure 7-4; and (c) a combination of the yeast cells 

and gel layer as shown on Figure 7-5. The gel layer deposit on the surface of the membrane is a 

function of both flux, which increases the mass rate of material retained at the membrane, and 

cross-flow velocity, which reduces polarization by enhancing feed-side mass transfer (Perry et 

al., 1998). If cross-flow velocity is insufficient, as is the case in dead-end mode operations, 

rejected solutes concentrate near the membrane to extremely high levels. This results in an 

increase in the osmotic pressure, which in turn acts negatively on the efficiency of the MBR.  

 

The effect of the osmotic pressure on the velocity field is described in Section 7.3.3. Under 

thoroughly sterile conditions the only resistance to permeate flux is the gel layer deposit of 

retained solutes. However, in some of the experiments performed in this study, SEM images 

revealed the existence of a layer of yeast cells forming near the surface of the membrane, as 

shown on Figure 7-4. The effect of these cells is twofold: firstly, they form a secondary or 

dynamic membrane (this is sometimes referred to as autofiltration). Secondly, this dynamic 

membrane retains micro-solutes that would otherwise permeate through the membrane, resulting 

in increased osmotic pressures.   
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Figure 7-3: An SEM of gel layer deposit on the surface of the membrane  

 

 

Figure 7-4: An SEM of yeast cells agglomerating near the surface of the membrane  

   

 

Figure 7-5: An SEM of yeast cells and gel layer forming a resistance layer to permeation 
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7.3.3 Osmotic pressure 

 

The composition of the nutrient solution that was used is tabulated in Table D- 1 of Appendix D. 

Only glucose, thiamin and ammonium tartrate were considered as contributing species in solving 

Equation 3-17, for the osmotic pressure; for the simple reason that they were the only solutes 

with a molecular weight considered to be retainable by the membrane. The concentration of the 

species retained at the surface of the membrane, cw, is related to the bulk concentration, cb, by a 

material balance of the solute, when assuming total retention of the solute (Moussy, 2000): 

( ) ( )




=

b

w

c
c

xexJ ln
         7-2 

where J(x) is the local filtrate flux (or wall velocity) in m
3
/m

2
s, and e(x) is the local mass transfer 

coefficient also in m
3
/m

2
s. The local mass transfer coefficient e(x), for laminar flows in a circular 

tube, is evaluated from the Leveque relation (Perry et al., 1998): 

( )
33.0

2

62.1 







=

Ld

vD
xe AB

         7-3 

and the filtrate flux J(x) is given by (Perry et al., 1998): 

( )
33.0

3

2









=

Ld

QD
xJ AB

         7-4 

where Q is the volumetric flowrate in m
3
/s, and DAB is the solute diffusity in m

2
/s. Combining of 

Equations 7-2 to 7-4 results in the following expression for cw:  

( )








=

62.1

4/
exp

33.0
π

bw cc         7-5   

 

Equation 7-5 was formulated on the assumption of complete solute retention. During actual 

operation of the SFCMBR, however, this assumption is only valid after prolonged periods of 

operation. Solute retention on the surface of the membrane will increase with operation time of 

the membrane. To illustrate the effect of osmotic pressure on the axial velocity profiles, 

Equation 7-5 was substituted into Equation 3-17 for different hypothetical solute retentions. The 

resulting velocity profiles for the different osmotic pressures are shown in Figure 7-6. 
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In Figure 7-6, when the dimensionless osmotic pressure (Π) is zero, the velocity profile is 

maximal. However, an increase in the osmotic pressure, following an increase in cw, results in the 

flattening of the axial velocity profiles and hence poor momentum transfer characteristics of the 

MBR.     
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Figure 7-6: Dimensionless axial velocity profiles (UL) as functions of the radial spatial coordinate (R) for 

different dimensionless osmotic pressures (ΠΠΠΠ) 

 

7.3.4 Pressure drop across the membrane 
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Figure 7-7: Dimensionless radial velocity profiles (VL) as functions of the radial spatial coordinate (R) for 

different dimensionless transmembrane pressures (TMP) 
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Figure 7-7 is a plot of dimensionless radial velocity profiles (VL) for different dimensionless 

TMP’s for the model parameter values listed in Table 7-1, when using Equation 5-25. The 

numerical values of the dimensionless radial velocities (VL), at R equal to one, correspond to the 

wall velocities of the membrane. As expected, an increase in the TMP results in higher wall 

velocities through the membrane.  
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8. RESULTS AND DISCUSSION 

8.1 Introduction  

 

In this chapter the experimental results, from the materials and methods described in Chapter 6, 

will be presented and discussed, with the aim of correlating the experimental data to the research 

objectives, as was stipulated in Chapter 1. These results include an evaluation of the hydrostatic 

pressure drops along and across the membrane; biofilm thicknesses; flow profiles; and hydraulic 

permeabilities. As stated in Chapter 1, the objective of this study was to present a detailed 

momentum transfer analysis of the nutrient solution in the membrane lumen, for a SFCMBR, 

operated continuously for LiP and MnP production. Although the models presented were 

developed for a SFCMBR in different modes of operation and orientations, these models were 

only tested for a vertically orientated SFCMBR, with an open-shell, operated in the dead-end 

filtration mode.       

 

8.2 Hydraulic permeability (without biofilm growth) 

 

8.2.1 Experimental and theoretical evaluation  

 

Two batches of membranes were used for all the experiments covered on this thesis, and the 

hydraulic permeability of each batch was determined both experimentally and theoretically (using 

Equation 3-18). The data for the experimental evaluation was obtained by running distilled water 

through the lumen of a SFCMBR, with the dimensions listed in Table 7-1, at five different 

flowrates and measuring the pressures at the inlet and outlet of the SFCMBR, operated in the 

dead-end mode. This data was fitted to Equation 3-22, to obtain a profile such as the one in 

Figure 8-1. For the first batch of membranes, the numerical value obtained for km at 20°C was 

found to be 1.09×10
-10

m/Pa.s (2.62×10
-17

m
2
), as shown in Figure 8-1. For the second batch, km at 

20°C was found to be 7.26×10
-11

m/Pa.s (1.74×10
-17

m
2
), as shown in Figure 8-2. To convert from 

m/Pa.s to m
2
 the hydraulic permeability in m/Pa.s was multiplied by the product of the viscosity 

of the fluid and the membrane thickness ( wdµ ).  

 



RESULTS AND DISCUSSION 65 

The Forchheimer equation with the correlation proposed by Ergun (1952) gives fairly accurate 

predictions of the value of km (see Appendix E). This model gives a prediction of 3.93×10
-17

m
2
 

for km at 20°C and 4.68×10
-17

m
2
 at 37°C. This translated to a percentage error of <30%. The 

percentage error was calculated as: (the experimental value – theoretical value)/(experimental 

value). The Forchheimer equation was used to predict values of km when the fungus was 

immobilised on the surface of the membrane.  
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Figure 8-1: Hydraulic permeability of the capillary polysulphone membrane at 20°°°°C 

 

8.2.2 Membrane hydraulic permeability versus temperature 

 

As mentioned in Section 3.3.3, the hydraulic permeability of polymeric membranes is dependant 

on the operating temperature. This dependency was studied by Garcin (2002) and Sharaf and 

Abo-Elmagd (2005). Figure 8-2 confirms that, for this study, an increase in temperature resulted 

in an increase in the membrane hydraulic permeability. In Figure 8-2, the hydraulic 

permeabilities of two PSu membranes, operated at two different temperatures of 20°C and 37°C 

are compared. For the bioreactor operated at 20°C the flowrates used were: 1.72ml/hr, 3.19ml/hr, 
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4.86ml/hr, 6.20ml/hr, and 13.6ml/hr. For the MBR operated at 37°C the flowrates used were: 

6.90ml/hr, 13.6ml/hr, 20.3ml/hr, 26.9ml/hr, and 33.7ml/hr. 
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Figure 8-2: Hydraulic permeability of the capillary polysulphone membrane at 20°°°°C and 37°°°°C 

 

8.3 Biofilm thicknesses 

 

As a preliminary study to linking the biofilm growth to the momentum transfer analysis, 

experiments aimed at correlating the biofilm thickness to the membrane spatial coordinates and 

operational time were performed. The method used in the preparation of the biofilm for SEM 

imaging is described in Appendix H. The respective results of these experiments are shown in 

Figure 8-3 to Figure 8-5. Figure 8-3 represents the average biofilm thicknesses from 3 MBR’s 

operated at a nutrient flowrate of 6.20ml/hr for 72 hr of operation. The general trend in Figure 8-3 

is that the biofilm was thickest at the inlet and middle sections of the SFCMBR, and it gradually 

decreased towards the end of the membrane. This phenomenon was also observed by Sheldon 

and Small (2005), and was attributed to axial concentration gradients.   
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On average, biofilm growth was visible on the outside of the membrane after 72hr of operation. 

An SEM image of the biofilm development, on the membrane, is shown in Figure 8-4. As 

observed in Figure 8-5, the biofilm thicknesses increased with time. Figure 8-5 illustrates the 

biofilm thickness profile for 8 days of operation, when 3×10
06 

spores were inoculated on the 

capillary membrane. The thickest biofilms for the inlet, middle, and outlet sections were 

measured after 120hr (day 5) of operation.  

  

Theoretically, the growth cycle of the fungus for a batch system consists of: (a) the lag phase; (b) 

the accelerated growth phase; (c) the exponential growth phase; (d) the decelerated growth phase; 

and (e) the stationary phase (Ntwampe, 2005; Ntwampe & Sheldon, 2006). The first 24hr in 

Figure 8-5 correspond to the lag phase of acclimatisation. After 24hr up to 96hr the first 

exponential growth was observed, and after 96hr a second exponential growth phase, referred to 

as biphasic growth, was observed (Kodama et al., 1969; Meunier et al., 1999).  
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Figure 8-3: Average biofilm thickness along the length of the SFCMBR after 3 days of operation  
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Figure 8-4: A scanning electron microscope (SEM) image of the membrane with biofilm taken after 3 days of 

operation 

 

0

200

400

600

800

1000

1200

1400

0 24 48 72 96 120 144 168 192 216

Time (hr)

B
io

fi
lm

 t
h
ic

k
n
e

s
s
 (

µ
m

)

Inlet 

Middle 

Outlet

 

Figure 8-5: Average biofilm thickness of the SFCMBR as a function of time 
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8.4 Hydrostatic pressure drop 

 

8.4.1 Pressure drop along the membrane for the control experiments (without biofilm growth) 

 

An evaluation of changes in the pressure drop along the membrane for different membrane 

lengths, at varying flowrates, was performed. These experiments were aimed at comparing 

pressure drops between the vertical and horizontal orientations for different reactor lengths. 

Figure 8-6 is a plot of the results from these experiments. Distilled water was used as the liquid 

medium running through the membrane with no growth on the surface. From the experimental 

data of the 3 different membrane lengths used (0.233m, 0.29m and 0.55m) at 3 different flowrates 

(10.20ml/hr, 6.60ml/hr, and 3.54ml/hr) it was found that the axial pressure drop along the 

membrane, from inlet to outlet, for the vertical SFCMBR increased linearly with membrane 

length. The pressure also decreases linearly along the length of the membrane, as expected. On 

the contrary, the pressure drop on the horizontal SFCMBR generally remained constant with 

increasing length, as shown on Figure 8-6.  
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Figure 8-6: Membrane axial pressure drop (∆∆∆∆P) versus membrane length for the horizontal and vertical 
orientations  
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The differences in the pressure drops between the horizontal and vertical SFCMBR, for the same 

operating conditions, highlight the error of using models developed for the horizontal 

configuration in the vertical orientation. These differences highlight the significance of the 

contributions of gravitational effects on the hydrostatic lumenal pressure profile in the vertical 

SFCMBR. As can be extrapolated from Figure 8-6, the difference will increase even further with 

an increase in the membrane length, and therefore at longer membrane lengths most of the 

published models will not be suitable for modelling the pressure profile of a vertical SFCMBR. 

 

8.4.2 Pressure profiles during operation with biofilm growth 

 

A series of experiments were performed to investigate the effect of the P. chrysosporium biofilm 

development on the pressure profile. As can be seen in Figure 8-7 to Figure 8-9, initially there is 

a linear increase in both inlet and outlet hydrostatic pressures with time. In Figure 8-7 this linear 

increase in pressure continues to the end of the experiment (108hr of operation). In Figure 8-8 

and Figure 8-9, however, this linear pressure increase continues up to ±120hr of operation. After 

this period an exponential increase in the pressures can be seen. The difference in hydrostatic 

pressures between the inlet and outlet generally remained constant throughout the duration of the 

experiments (± 3kPa for a flowrate of 6.20ml/hr). 
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Figure 8-7: Pressure profiles of the vertical SFCMBR with P. chrysosporium (3××××106 spores) on the external 
surface of the membrane at a flowrate of 6.20ml/hr  
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Figure 8-8: Pressure profiles of the vertical SFCMBR with P. chrysosporium (3××××106 spores) on the external 
surface of the membrane at a flowrate of 6.20ml/hr 
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Figure 8-9: Pressure profiles of the vertical SFCMBR with P. chrysosporium (3××××106 spores) on the external 
surface of the membrane at a flowrate of 6.20ml/hr 
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The exponential increase in the pressures, as observed in Figure 8-8 and Figure 8-9, can be 

attributed to the growth phases of the fungus. This exponential increase is presumed to be as a 

result of the secondary exponential growth phase that was previously shown in Figure 8-5 and 

discussed by Ntwampe and Sheldon (2006). Because the operation is continuous, the fungus 

immediately goes into a secondary exponential growth phase after the deceleration phase. An 

exponential increase in biofilm growth will result in higher resistances of the membrane to 

permeation. Because the mode of operation is dead-end, this increase in resistance has to be 

accompanied by an increase in TMP for a constant flux system.  

 

8.4.3 Pressure predictions using developed model versus literature models 

 

A comparison of Equation 5-31 with two of the most widely used models for predicting pressure 

profiles in HF and capillary membrane devices is shown in Figure 8-10. The model parameter 

values used for this comparison are listed in Table 7-1, and this simulation was done for a 

vertically orientated SFCMBR. Figure 8-10 clearly shows the divergence of the Bruining (1989) 

and Kelsey et al. (1990) models from the experimental data. The developed model gives an 

average percentage error of 0.5%, whereas the Bruining (1989) and Kelsey et al. (1990) models 

give percentage errors of 1.5% and 3% respectively. This discrepancy is amplified with 

increasing membrane length, as shown on Figure 8-10. The difference between Equation 5-31 

and the Bruining (1989) and Kelsey et al. (1990) models is that this model accounts for osmotic 

pressure and gravitational force, whereas the others do not. Equation 5-31 indicates a linear 

decline in the hydrostatic pressure along the length of the membrane. This result is in agreement 

with Catapano’s (1990) contention that the axial pressure profile is linear when there is ‘no-slip’ 

velocity. 

 

The challenge that still remains, however, in validating the accuracy of Equation 5-31 is devising 

a means of experimentally obtaining the pressure profiles within the membrane lumen. Only the 

inlet and outlet pressures to the SFCMBR could be measured experimentally. Quaile and Levy 

(1975) used a hot wire anemometer to experimentally obtain the velocity profiles in a porous tube 

of 9.4mm inner diameter (7 times bigger than the one used in this study) with wall suction. From 

such a profile, it is possible to obtain a pressure profile of the flow, and this could be used to 

validate the theoretical predictions. Another alternative would be to use ultrasonic velocimeters 
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Figure 8-10: A comparison of the developed model with literature models and experimental data 

 

(custom made for the size of capillary membranes used) or magnetic resonance imaging to obtain 

the velocity profiles, and from these profiles determine the pressure profiles. The major hindrance 

in using the commonly available instruments for measuring the pressures is the small sizes of the 

capillary membranes used. 

 

8.4.4 Osmotic effects on pressure profile (without biofilm growth) 

 

The osmotic pressure plays a very significant role in influencing the hydrodynamics of a MBR. 

To evaluate this function, four different hypothetical osmotic pressures were fitted to       

Equation 5-31 for a MBR with the dimensions listed in Table 7-1. As can be seen on Figure 8-11, 

an increase in the osmotic pressure tends to depress the lumenal pressure profile (and hence the 

TMP). Osmotic pressure in a SFCMBR was as a result of solutes being rejected on the surface of 

the membrane, thereby creating a concentration polarization layer (this phenomenon was 

explained in Section 3.3.4). Only significantly high concentrations (i.e., high osmotic pressures) 

will have a significant influence on the lumenal pressure profile, as can be seen on Figure 8-11.  

This result has very important consequences in the optimisation of capillary MBR, in particular 
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Figure 8-11: Dimensionless lumenal pressure profiles (PL) as functions of the axial spatial coordinate (Z) for 

different dimensionless osmotic pressures (ΠΠΠΠ) 

 

minimising secondary flows within the extra-capillary space. Taylor and Boukouris (1995) 

theoretically demonstrated that secondary (Starling) flows within the extra-capillary space of HF 

bioreactors can be reduced by increased osmotic pressures on the shell-side of the bioreactor.    

 

8.5 Flow profiles (without biofilm growth) 

 

8.5.1 Velocity profiles 

 

The steady-state lumenal and matrix velocity distributions, as calculated from Equations 5-24,    

5-25 and 5-27, are shown on Figure 8-12. It is noted that as the dimensionless radial coordinate    

(R) increases, the dimensionless axial velocity (UL) decreases, until it reaches zero at R = 1 (at the 

membrane wall). This result is consistent with the ‘no slip’ condition of Equation 5-14d. The 

radial velocity (VL), which is zero in Poiseuille flow, has a finite magnitude except at R = 0 (at the 

membrane centre) where it is zero. These solutions assume similarity in the velocity profiles 

since the Rew <1 (see Appendix E). Similarity in velocity profiles only exists for ‘fully developed 
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flows’. In the current experimental set-up, the flow entering the SFCMBR was fully developed 

and hence there was similarity of the profiles.  
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Figure 8-12: Steady-state velocity profiles in the lumen (UL, VL) and matrix (VM) of the SFCMBR as a function 

of the radial spatial co-ordinate (R) 
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Figure 8-13: Transient lumenal axial velocity profiles (UL) as a function of the radial spatial co-ordinate (R) 
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Figure 8-14: Transient lumenal radial velocity profiles (UL) as a function of the radial spatial co-ordinate (R) 

 

The resulting transient-state axial and radial velocity profiles from the developed analytical 

models, Equations 5-24 and 5-25, respectively, are plotted in Figure 8-13 and Figure 8-14. As can  

be seen from both figures, in the limiting case ∞→τ , the velocity profiles approach steady-

state. For the model parameter values listed in Table 5-1 this corresponds to a τ = 1000 (7.5min). 

 

8.5.2 Streamlines 

 

The method of producing a streamline from Equation 5-35 is to set Lψ  equal to an arbitrarily 

chosen constant and plotting the R versus Z curve. Other streamlines are obtained by setting Lψ  

equal to various other constants. To obtain R for a given Z value in Equation 5-35 is an iterative 

process. Unfortunately, the solver algorithm used (Microsoft solver®) does not converge for the 

range Z = 0 to Z = 1. However, the shape of the streamlines can still be extracted by recognising 

that the function of the streamline is a polynomial of the 4
th

 degree in R. Several of the 

streamlines are plotted in Figure 8-15, for a choice of the model parameter values in Table 5-1. 

For the same parameter values, and for a different fraction retentate (f = 0.8), the streamlines take 

the form shown in Figure 8-16. These profiles are similar to those developed by Kelsey et al. 

(1990). The streamlines indicate that the fluid tends to curl towards the membrane surface, away 
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from the membrane centre, during dead-end filtration. The functions f(Z) and f(R) are functions of 

the dimensionless axial and radial spatial coordinates respectively, and were derived from     

Equation 5-35. 

 

An alternative method to produce the streamlines is to plot 3-dimensional lumenal axial velocity  

profiles for different radial coordinates. When using this method, the streamlines for the upper 

half of the membrane are shown in Figure 8-17. This method also produces a similar result of 

lines (representing flow path) curling towards the membrane surface in the dead-end filtration 

mode.  
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Figure 8-15: Streamlines in the upper half of the capillary membrane operated in the dead-end mode (f = 0) 
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Figure 8-16: Streamlines in the upper half of the capillary membrane operated at f = 0.8 
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Figure 8-17: Streamlines for the upper half of the polysulphone capillary membrane operated in dead-end 

filtration mode (f = 0) 

 

8.5.3 Volumetric flow  
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Figure 8-18: Volumetric flow (ΩΩΩΩL) profile as a function of the axial spatial coordinate (Z) 
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The dimensions of the experimental SFCMBR used to generate the profile in Figure 8-18 were 

listed in Table 7-1. From Equation 5-26, if the dimensionless lumenal pressure profile, PL, is 

linear, then the dimensionless lumenal volumetric flowrate, ΩL, will also be linear, as shown in 

Figure 8-18. The volumetric flow profile, illustrated in Figure 8-18, is for a SFCMBR operated in 

the dead-end mode. At Z = 1 (at the membrane exit) there is zero flow of the lumenal fluid. This 

profile is in contrast with that developed by Kelsey et al. (1990) for a closed-shell mode 

bioreactor. In the closed-shell mode, Kelsey et al. (1990) noted that the volumetric flowrate was 

nearly constant along the length of the bioreactor. This was attributed to Starling flow that occurs 

in the closed-shell mode. This theoretical consideration of the flowrate is an important 

consideration in the design, and more specifically the choosing of the appropriate mode of 

operation, of a MBR.  

 

8.6 Redox potentials and pH  
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Figure 8-19: Example of the average redox potentials of the permeate solution from the SFCMBR 

 

Although the exact mechanism for pH changes were not known, Leukes (1999) and Solomon 

(2001) established that pH changes are related to LiP and MnP production in a SFCMBR. These 
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researchers also reported that enzyme activity was detected above redox potential (mV) values of 

200. In the current study, the pH and redox potential values were monitored for the full duration 

of an 8 day experimental run, and the average results are shown in Figure 8-19 and Figure 8-20 

respectively. As shown in Figure 8-19, the redox potential increased from 196 mV after 24hr to 

peak at 218 mV after 96hr of operation. As shown in Figure 8-20, the pH decreases gradually 

during the operation, from 3.7 after 24hr to 3.45 after 216hr. 

 

3.35

3.4

3.45

3.5

3.55

3.6

3.65

3.7

3.75

3.8

3.85

0 24 48 72 96 120 144 168 192 216 240

Time (hr)

p
H

 

Figure 8-20: Example of the average pH profile of the permeate solution from the SFCMBR 
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9. CONCLUSIONS  

9.1 Summary 

 

The purpose of this study was to develop momentum transfer models for the nutrient on the 

lumen side of a capillary polysulphone membrane in a SFCMBR, operated continuously for 

enzyme production, which incorporate osmotic pressure effects and account for the different 

modes and orientations of membrane operations. These models were developed, and from a 

comparison of the developed analytical models with experimental data and some of the widely 

used models from literature, the predictive capabilities of the developed models were validated. A 

sensitivity analysis was performed on all the input variables in the developed model. The 

developed analytical flow profiles were for the hydrostatic pressures, axial and radial velocities, 

and volumetric flows in the lumen and shell-sides of the SFCMBR. 

 

A numerical scheme, restricted to lumenal profiles, was also developed. It was shown that a 

comprehensive solution for the numerical scheme required a finer grid, which required more time 

computations, and the accuracy of the scheme decreased with increasing grid spacing. 

 

A polarization deposit layer was observed inside the lumen of some of the membranes after day 4 

to day 5 of operation, however due to the inconsistency in the occurrence of this layer, the 

resulting osmotic pressure effects could only be studied hypothetically. The osmotic pressure was 

shown to have a negative effect on both the pressure and velocity profiles. An increase in osmotic 

pressure was shown to reduce the radial and axial velocity profiles, while decreasing the TMP at 

the same time.       

 

A comparison of the axial hydrostatic pressure drop between a vertically and a horizontally 

orientated MBR illustrated the significance of accounting for gravitational force in the vertical 

orientation. It was found that the pressure drop increased linearly with membrane length for the 

vertical SFCMBR, whereas it remained fairly constant in the horizontal. These experiments 

justified the development of the new models for the vertically orientated MBR’s. 
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The hydraulic permeability of the PSu capillary membranes, used in this study, was shown to be 

a function of temperature. At 20°C the average permeability was found to be 9.08×10
-11 

m/Pas
 

(2.18×10
-17

 m
2
) compared to 1.43×10

-10 
m/Pas (3.38×10

-17
m

2 ) at 37°C. 

 

Observations of the biofilm development showed that the biofilm thickness increased with time. 

The biofilm was thickest at the inlet and middle sections of the membrane and gradually 

decreased towards the end. Biphasic growth was observed in the growth pattern of the fungus. 

After 96hr of operation (following the first exponential growth phase) a second exponential 

growth phase was observed. The hydrostatic pressure profiles were monitored immediately after 

24hr of inoculation with 3×10
06 

spores of P. chrysosporium. It was observed that both inlet and 

outlet pressures to the SFCMBR increased linearly until day 4 to day 5 of operation. After this 

period, a brief exponential increase in the pressure profiles was observed. This period was 

followed by another linear increase in the pressures. These pressure patterns were presumed to be 

as a result of the growth phases of the fungus.  

    

Furthermore, it was shown that while the pH gradually decreased with biofilm development on 

the membrane, the redox potential increased and peaked at 218mV.    

 

9.2 Future Work 

 

• A nutrient volumetric flowrate of 6.20ml/hr was used in all the biofilm growth 

experiments of this study, however, more experiments are needed to define an optimum 

flowrate for enzyme production. 

 

• A correlation is needed between the biofilm development of P. chrysosporium and the 

hydraulic permeability of the membranes.  

 

• A means of experimentally obtaining the pressure profiles within the membrane lumen 

has to be developed. Only the inlet and outlet pressures to the SFCMBR could 

experimentally be measured. Quaile and Levy (1975) used a hot wire anemometer to 

experimentally obtain the velocity profiles. From such a profile, it is possible to obtain a 

pressure profile of the flow, and this could be used to validate the theoretical predictions. 
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Another alternative would be to use ultrasonic velocimeters (custom made for the size of 

capillary membranes used) or magnetic resonance imaging to obtain the velocity profiles, 

and from these profiles determine the pressure profiles. 

 

• The developed analytical models can be broadened to include angular variation effects 

(i.e., the case when m ≠ 0 in Equation 5-21). 

 

• Finally, a commercially available CFD software package (such as CFX or Fluent) has to 

be used to further validate the accuracy of the developed numerical scheme.  
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APPENDIX A 

ANALYTICAL SOLUTION CALCULATIONS 

 

A.1. The generic equation 

 

The z component of momentum transfer in cylindrical coordinates (see Appendix G), as given by 

the Navier-Stokes equations, in non-conservation form is:  
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This equation may be reduced by considering the fact that for small Rew (see Appendix E) the 

inertial terms will be negligible (Berman, 1953; Kelsey, 1990; Moussy, 1999). The inertia-free 

form of Equation 3-1 is:  
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In most viscous flows normal stress effects 
2

2

z

vz

∂

∂
 are not as important as shear stresses 

(Anderson, 1995) and are negligible when the aspect ratio RL/L is less than 10
-2

, a condition that 

is satisfied in almost all HF and capillary membrane devices (Kelsey et al., 1990). Equation A1 

then simplifies to: 
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Equation A2 may be written in dimensionless form by introducing the following dimensionless 

groups: 

( ) LRpp

v

v

v
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L

z

z
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==         5-2 
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z
Z =            5-9 
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r
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Multiplying Equation A2 by ( )10/4 ppL −  gives:  
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Considering Equations A3 – A5, Equation A6 above may be rewritten in terms of the 

dimensionless variables as:  
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where:  

( )10

4

pp

Lg
b z

−
=

ρ
          A 8 

To solve for Equation A7 we make use of separable partial differential equations. This technique 

works by guessing the form of the solution of the partial differential equation which turns the 

equation into partial ordinary differential equations, which are easier to treat. The solution of A7 

is assumed to be of the form: 

( ) ( ) ( ) ( )τθτθ ΚΘΞ= RRU L ,,         A 9 

Substitution of Equation A9 into A7 and dividing by ( ) ( ) ( )τθ ΚΘΞ R  gives: 
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where: 
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To solve Equation A10 it is necessary that the partial derivatives in this equation are with respect 

to only one variable, and this is done by assuming the following relations:  

Θ−=
∂

Θ∂ 2

2

2

m
θ

          A 12 

Κ−=
∂

Κ∂ 2α
τ

          A 13 

The bases of these assumptions are apparent when considering their solutions, which in their 

respective order are: 

θθ mAmA sincos 21 +=Θ         A 14 

τα 2

0

−=Κ eB           A 15 

The physical meaning of Equation A14 is that the function Θ  has cylindrical symmetry, because 

as the argument θm  approaches 2π then Θ  approaches a constant value, A1. The term τα 2−
e  in 

Equation A15 is a dampening factor, and the physical significance of this term is that as τ 

approaches infinity the function K approaches a steady-state value, 0B . Substituting Equations 

A12 – A15 back into Equation A10 yields: 
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Multiplying Equation A16 by Ξ2R  and rearranging the terms gives: 
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If the R.H.S of Equation A17 is replaced with ( )τθ ,,Zf , it is very interesting to note the resulting 

familiar Equations in Table 5-2 from Equation A17 for the different conditions listed in the table. 
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Table 5-2: Generic equation of flows with a low Rew through cylindrical surfaces  

αααα m f(Z,θθθθ,ττττ)  Resulting equation 

> 0 ≥ 0 = 0  Bessel’s equation 

= 0 > 0 > 0 Poisson’s equation 

= 0 > 0 = 0 Laplace’s equation 

 

A.2 Vertical SFCMBR calculations (constant shell side pressure) 

 

A.2.1 Axial velocity inside the membrane lumen 

 

The solutions presented here are only applicable to a system with a constant shell side hydrostatic 

pressure, and assume m = 0 to be the applicable condition in solving Equation A17. The 

independence of the function Ξ  on Θ  corresponds to the assumption of circular symmetry about 

the z-axis of the capillary membranes used (see Figure G-1 in Appendix G). In this special case 

Equation A17, when applied to the lumen side of the SFCMBR, reduces to: 
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L α        A 18 

It is presumed that the system will attain a steady-state velocity U∞  at some time τ∞, and hence 

the solution of Equation A18 will be of the form: 

ττ UUUor −=Ξ−Ξ=Ξ ∞∞        A 19 

where U∞ and Uτ are the steady-state and transient axial velocity distributions respectively, ∞Ξ  

and τΞ  are functions of U∞ and Uτ  respectively. Equation A18 may therefore be written as:  
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In terms of the function Ξ , the steady-state condition Equation 5-14b may be written as:  

( ) ∞∞ ≥=Ξ=Ξ−Ξ ττα ττ for02
        A 21 

Also, since the steady-state function ∞Ξ  is not dependant on τ : 

∞∞ ≤≤=Ξ τττα 0

2 0 for       A 22 

The function ∞Ξ  can therefore be evaluated by substituting the steady-state condition A21 into 

Equation A20 to give: 
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Integrating Equation A23 with respect to R, assuming G is not a function of R, gives: 
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C1 is evaluated from B.C.3 (Equation 5-14e) 

01 =∴C           A 25 

Substituting C1 back into Equation A24 and integrating again with respect to R gives: 
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C2 is evaluated from B.C.2 (Equation 5-14d) 

∞Κ
−=

1

2
4

1

A

G
C          A 27 

The ‘no slip’ assumption of B.C.2 and B.C.9 is based on the fact that the parameter χL is 0.02 for 

the SFCMBR system used. Substituting C2 back into Equation A26 gives the function of the 

steady-state lumenal axial velocity profile: 
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Substituting Equations A11 and A28 into Equation A9 gives the steady-state lumenal axial 

velocity profile:  
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Substituting Equations A15, A22 and A28 back into Equation A20 results in: 

0,
1

0
01

2 22

≠




 −=Ξ+







 Ξ
∞ Bee

BA

G

dR

d
R

dR

d

R

τατα
τ

τ α    A 30 

The constant 1A  can be arbitrarily put equal to unity without loss of generality. The transient 

velocity function τΞ  is finite for τ < τ∞, but as ∞τ  approaches infinity the function τΞ  is 
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undefined in Equation A30, therefore 
0B

G
 has to be zero in this equation. This condition is only 

met if 0B  is very large. Equation A30 then simplifies to:   

0
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Equation A31 is a special case of Bessel’s equation (Equation 4-5) and therefore should have a 

solution of the form:  

( ) ( )RYBRJB αατ 0201 +=Ξ         A 32 

where B1, and B2 are constants and J0 and Y0 are Bessel functions of zero order of the first kind 

and second kind respectively. Because the function ( )RY α0  tends to minus infinity as R goes to 

zero, B2 in A32 has to be zero. Imposing the ‘no slip condition’ Equation 5-14d, the axial lumenal 

velocity UL should be equal to zero at R = 1, Ξ  must therefore also vanish at R = 1. Since B1 

cannot be set equal to zero without obtaining the trivial solution 0=Ξτ ,  the Bessel function  

( )RJ α0  must be set equal to zero: 

( ) 00 =∴ RJ α           A 33 

But Equation A33 has an infinite number of roots α (often called eigenvalues) which will satisfy 

the boundary conditions of Equation A32. The first three of these roots are α1 = 2.405, α2 = 

5.520, α3 = 8.654, etc (see Appendix F). Hence, there are many solutions ( )RJB nn ατ 01=Ξ  with 

n = 1,2,3,…∞, which will satisfy Equation A31 and the corresponding boundary conditions. 

Substituting Equations A15 and A32 into Equation A9, and considering the above arguments 

results in the following expression for τU : 
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where: 

nn BBB 10=           A 35 

The initial condition, Equation 5-14a stipulates that at τ = 0, Uτ = U∞, therefore: 
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Equation A36, in which a known function is expressed as a linear combination of Bessel 

functions, is called a Fourier-Bessel series. The constant Bn in the Fourier-Bessel series is 

evaluated by multiplying Equation A36 by J0(αmR)R and integrating from 0 to 1: 
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On the assumption that the integral and summation signs may be interchanged, Equation A37 

becomes: 
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The L.H.S of Equation A38 is evaluated by making use of the property of Bessel functions in 

Equation 4-15: 
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Equation A39 may further be simplified by considering the property of Bessel functions in 

Equation 4-12: 
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The integral on the R.H.S of Equation A38 may be evaluated with the help of the Lommel 

integrals: 
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where ( )xJ mn α′  is the derivative of ( )xJ mn α . Equation 4-16 shows that the Bessel functions of 

the first kind of integer order form an orthogonal set with respect to the eigenvalues mα , lα  on 

the interval 0< r <x. The importance of this property in evaluating the R.H.S of Equation A38 is 

that the only term that contributes (in the summation term) is that for which m = n. The R.H.S of 

Equation A38 then becomes: 
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Making use of the property of Bessel functions in Equation 4-12, Equation A41 then becomes: 
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However, from Equation A33, the eigenvalues mα  are such that ( ) 00 =mJ α . Accordingly the 

last term on the R.H.S of Equation A42 is zero. Substituting Equations A40 and A42 in the L.H.S 

and R.H.S of Equation A38 respectively, results in the following expression for Bm:   
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Substituting Bm into Equation A34 gives: 
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Substituting the solutions of both the steady-state and transient axial velocity distributions, 

Equations A28 and A44, back into Equation A19 gives:    
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Equation A45 is an expression for the lumenal axial velocity distribution as a function of the 

axial and radial spatial coordinates as well as time. 

 

The method used above in solving the linear partial differential equations (using the method of 

separation of variables and superposition of solutions) is often referred to as Fourier’s method. 

 

A.2.2 Radial velocity inside the membrane lumen 

 

The continuity equation in cylindrical coordinates is given by:  
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When considering two-dimensional flow of constant density (i.e. 0=
∂

∂

t

ρ
) Equation 3-4 becomes:   
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Introducing a dimensionless radial velocity VL: 
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Equation A46 may be rewritten in dimensionless form as:  
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The R.H.S. of Equation A47 may be evaluated from Equation A45 as:  
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Substituting Equation A49 into A47 and integrating with respect to R, making use of the property 

of Bessel functions in Equation 4-13, gives: 

( )
( ) 32

2

1 1

4

1
22

2

8
2

1
24

1
C

dZ

Pd
e

J

RRJRR
RV L

n nn

n

L
n +







−







−= ∑

∞

=

− τα

αα

α

    

A 50 

C3 is evaluated from B.C.4 (Equation 5-14f) 

03 =∴C           A 51 

Substituting C3 back into Equation A50 gives: 
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A.2.3 Velocity through the matrix 

 

The volumetric flux through the matrix of the membrane is given by Equation 3-13: 
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Pore fouling, which is an irreversible process caused by the deposition and adsorption of solutes 

to the membrane pores, will not be considered in this analysis and therefore Equation 3-13 

reduces to: 
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Since the volumetric flux J is the same as the matrix velocity vM, Equation A53 may be written in 

dimensionless form by introducing the following dimensionless groups: 
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Considering Equations 5-7, 5-8, 5-12 and A54, Equation A53 may be written in terms of the 

dimensionless variables as: 

[ ]
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π
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A.2.4 Volumetric flowrate in the lumen 
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To evaluate the volumetric flowrate in the lumen QL of the SFCMBR, it is necessary to consider 

the flow as passing through a differential area ( )drrdA π2= , in which case: 

( )drrvdQ zL π2=          A 57 

and therefore: 

∫=
LR

zL rdrvQ
0

2π          A 58 

The dimensionless form of Equation A58 is: 

RdRU LL ∫=Ω
1

0

4          A 59 

Substituting Equation A45 in Equation A59 and integrating between the limits 0 and 1 results in 

the following expression for the lumenal volumetric flowrate: 
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A.2.5 Pressure profiles in the membrane lumen 

 

To solve for the lumenal pressure profile PL in Equation A55 we make use of B.C.5, and this 

substitution results in: 

πκκ SbL

L PP
dZ

Pd
1616

2

2

−=−         A 61 

By assuming that the pressure profile will not be a function of the radial spatial coordinate the 

partial derivative expression can be written as a total derivative expression. Equation A61 is a 

simple ordinary differential equation (O.D.E) and may be solved using Laplace transforms with 

B.C.6, and has a solution of the form:  

( ) ( ) ( ) ππ κ
κ
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a
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4
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( ) ( ) ( )ZaZPP
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L κκκ π 4cosh4sinh4 0 +−=∴     A 63 



APPENDIX A 104 

Defining a fraction retentate at steady-state as (Bruining, 1989): 
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U
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The transient-state axial velocity profile given by Equation A45, simplifies at steady-state and at 

Z = 0 to: 
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where:  
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Similarly at steady-state and at Z = 1, Equation A45 simplifies to: 
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Substituting Equations A65 and A69 into Equation A64 gives: 
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A.2.6 Axial velocity on the shell-side of the membrane 

 

The treatment for the axial velocity profile on the shell-side is identical to that of the lumenal 

axial velocity profile; only the mathematics is more involving. Since the pressure is constant 

along the length of the membrane on the shell-side of the SFCMBR: 
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the expression for G in Equation A17 reduces to: 
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The steady-state shell axial velocity profile ( )∞τ,RU S   is then given by:  
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Integrating Equation A73 with respect to R and making use of B.C.8 gives: 
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integrating Equation A74 again with respect to R and making use of B.C.9 to solve for the 

integration constant results in:  
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The transient-state axial velocity profile is obtained using Fourier’s method as before (and some 

standard integrals of Bessel functions in Appendix F) to give:  
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and Bn is given by:  
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Substituting the solutions of both the steady-state and transient axial velocity profiles, Equations 

A75 and A76, into Equation A19 gives:    
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There is no radial velocity on the shell-side of the membrane for a constant shell side pressure 

SFCMBR:  
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0=∴ SV           A 79 

 

A.2.7 Volumetric flowrate in the shell side 

 

Following the same argument as for the lumenal flowrate, the shell side volumetric flowrate SQ  

is evaluated from the expression: 

RdRU SS ∫=Ω
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4          A 80 

Substituting Equation A78 in Equation A80 and integrating between the limits 0 and 1 results in 

the following expression for the lumenal volumetric flowrate: 
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A.3 Horizontal SFCMBR calculations (constant shell side pressure) 

 

As in the case of the vertical SFCMBR, the starting point is the Navier-Stokes equation but this 

time assuming gravitational acceleration effects will be negligible (i.e. ρgz = 0). The treatment is 

exactly the same as for the vertical SFCMBR and the resulting mathematical expressions then 

become for: the dimensionless axial velocity profile in the lumen side, UL: 
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the velocity in the lumen side, VL, is the same as in the vertical orientated SFCMBR: 
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the velocity profile through the matrix, VM, is 

[ ]LSM PPV −−= πκ          A 83 

where:  

Π+= SS PP π           A 84 
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and the pressure profile inside the lumen of the membrane bioreactor: 

( ) ( ) ( ) ππ κ
κ

κ SSL PZ
a

ZPPZP ++−= 4sinh
4

4cosh)( 0     A 85 

where: 

( ) ( )
( )[ ]κ

κκ π

4cosh

4sinh4 0

−

−
=

f

PP
a S

       A 86 

 

There is neither radial nor axial shell flow for the constant shell pressure horizontal SFCMBR: 

0== SS UV           A 87 

 

A.4 Stream function for vertical SFCMBR (constant shell side pressure) 

 

A.4.1 Stream functions for the membrane lumen 

 

A stream function is defined such that: 
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Substituting Equation A45 into Equation A88 and integrating with respect to R between the limits 

0 and 1 gives: 
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Similarly, the substitution of Equation A52 into Equation A89 results in: 
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The equation of the stream function is obtained by combining Equations A90 and A91: 
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At steady state (i.e., at ∞= ττ ), Equation A92 reduces to: 
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A.4.2 Stream functions for the membrane shell 

 

Substituting A75 into Equation A88 and integrating with respect to R between the limits R2 and 

R3 gives: 
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Substituting VS into Equation A89 and integrating with respect to Z between the limits 0 and 1 

results in: 
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The equation of the stream function is obtained by combining Equations A94 and A95: 
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A.5 Vertical SFCMBR calculations (variable shell side pressure) 

 

A.5.1 Axial and radial velocities inside the membrane lumen  

 

The treatment and the solutions for the lumenal flow profiles is exactly the same as for a constant 

shell-side pressure SFCMBR: 
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A.5.2 Axial velocity on the membrane shell 

 

The steady-state Navier-Stokes equations, neglecting the inertial terms and considering only two-

dimensional flow, when applied in the shell of the membrane bioreactor simplify to:   
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In dimensionless form this equation becomes 
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Integrating the above equation with respect to R and assuming PS not to be a function of R, gives: 
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C4 is evaluated from B.C.8  
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Substituting C4 back into Equation A99 gives: 
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Integrating this equation again with respect to R and making use of B.C.9 to solve for the 

integration constant yields: 
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The method of obtaining the transient-state axial shell velocity profile was described in Section 

A.2.6. the only difference, however, is that: 
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Equation A78 then becomes: 
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( )
( )

( )
( ) ( )

( )












−















++








−

Γ
+








+−=

3

1

2312

2

2

03

2

2

2

1
2

1
ln

22

1

44

1
ln

2

1

2

2

n

n

nnn

n

n

n

n

J
JRJ

R
JR

R

J
B

α

α
ααα

α
α

α
 

           A 105 

 

A.5.3 Radial velocity on the membrane shell 

 

The shell radial velocity profile can be obtained by making use of the axial profile in conjunction  

with the continuity equation: 
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Substituting Equation A107 in Equation A106 and integrating gives: 
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C5 is evaluated from B.C.10 
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Substituting C5 back into Equation A108 gives: 
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A.5.4 Pressure profiles in the membrane shell 

 

Recalling B.C.11 (i.e. at R = Rx, VM = VS): 
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If we substitute:  
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Then Equation A111 becomes: 
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Equation A113 combined with Equation A61, with the corresponding boundary and initial 

conditions, are all that is required to solve for the pressure field on the lumen and shell sides of 

the membrane. 
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Combining Equation A113 with Equation A61 gives: 
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Taking the second derivative of Equation A113 results in 
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Substituting Equation A114 in Equation in A115 gives 
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Then if we replace the function of Rx with   
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This is a simple O.D.E. if we resolve it by making 
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Y S=  in Equation A118 to obtain:  
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From Equation A114 it can be seen that if the second and third derivatives of the lumenal 

pressure at entrance to the membrane are A
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second and third derivatives of the shell-side pressure at the point of entrance will be 
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If we make use of Equations A120 and A121 as initial conditions to solve Equation A119 the 

result is: 
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Integrating Equation A123 twice with respect to Z gives: 
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where Hg and D are integration constants. The corresponding lumenal pressure profile is given 

by:  
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Hg is evaluated from B.C.7 
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Recalling the definition of the fraction retentate 
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and noting that the lumenal velocity profiles on the SFCMBR with a variable pressure on the 

shell side will still be given by the same expressions (as for a constant shell pressure SFCMBR):  
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Equation A64 then becomes: 
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We have so far two equations (Equation A126 and Equation A128) and 4 unknowns (A, B, D, and 

Hg). The two other equations necessary to solve for the unknowns arise from B.C.7   
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Solving the 4 equations simultaneously results in: 
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A.6 Horizontal SFCMBR calculations (variable shell side pressure) 

 

The treatment is exactly the same as for the vertical SFCMBR with variable shell side pressure, 

neglecting the gravitational acceleration terms. The lumenal profiles are therefore given by:  
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The resulting mathematical expressions then become for: the dimensionless axial velocity profile 

in the shell, US: 
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VS is the same as in the vertical orientated SFCMBR: 
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the velocity profile through the matrix, VM, is 

( )LSM PPV −−= πκ          A 136 

the pressure profile inside the lumen of the membrane bioreactor: 
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and the pressure profile in the shell side of the membrane:  

( ) ( )
DHZ

Rf

ZBR

Rf

ZAR
P

x

x

x

x

S +++=
32

sinhcosh

ω

ω

ω

ω
      A 138 

where: 

 

( )( )
( )[ ]xx

SLx

RRf

PPRf
A

−

−
=

)0()0(

2ω
        A 131 

( ) ( )
( )[ ] ( )( ) ( )[ ]1cosh

sinh)0()0(

23

−+−−

−
=

fRfRfRRf

PPRf
B

xxxx

SLx

ω

ωω
     A 132 

( )

( )( )
( )[ ]xx

SLx

L
RRf

PPRf
PD

−

−
−=

)0()0(

0        A 134 

( )( )
( )[ ] ( )( ) ( )[ ]1cosh

sinh)0()0(

−+−−

−
=

fRfRfRRf

PPRfR
H

xxxx

SLxx

ω

ωω
     A 139 

 

A.7 Stream function for vertical SFCMBR (variable shell side pressure) 

 

The stream function in the lumen of the variable shell side pressure SFCMBR is the same as for 

the constant shell side pressure SFCMBR, and is given by: 
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The stream function in the shell is obtained by substituting Equation A102 into Equation A88 and 

integrating with respect to R between the limits R2 and R3 to give: 
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Substituting Equation A110 into Equation A89 and integrating with respect to Z between the 

limits 0 and 1 results in: 
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The equation of the stream function is obtained by combining Equations A140 and A141: 
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where:  
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APPENDIX B 

NUMERICAL SCHEME CALCULATIONS 

 

B.1 Axial velocity profile 

 

The starting point is the z-component of the Navier-Stokes equation in cylindrical coordinates (in 

non-conservation form). 
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The dimensionless variables are the same as for the analytical solutions in Appendix A, there is 

however one additional parameter and that is the aspect ratio, β: 
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Defining Reb as: 
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Equation B2 above can be written in dimensionless form as: 
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Equation B4 will be discretized by forward differencing the time derivative and pressure terms 

and central differencing the spatial derivatives:  
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Equation B4 then becomes: 
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The superscript n in Equations B5 – B9 above is referred to as the running index for the marching 

variable, τ in this case. The velocity profile given by Equation B10 is solved in steps of time and 

the progressive time steps are represented by n, n+1, n+2, n+3 … 

 

B.2. Radial velocity profile 

 

The solution of the radial profile is extracted from the r-component of the Navier-Stokes equation 

in cylindrical coordinates (in non-conservation form): 
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The treatment is exactly the same as for the axial profile. Equation 3-2 in dimensionless form 

becomes: 
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and the resulting finite-difference quotient is: 
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APPENDIX C 

GROWTH AND MAINTENANCE OF THE FUNGUS 

 

C.1 Spore Inducing Medium (Tien & Kirk, 1988) 

 

Cultures of P. chrysosporium strain BKMK-1767 (ATCC 24725) were maintained on 

supplemented malt agar slants. To prepare the spore-inducing medium for the cultures, the 

following procedure was followed. The ingredients listed below were added in the order into a 

1000 ml bottle:  

 

Glucose  10g 

Malt extract  10g 

Peptone  2g 

Yeast extract  2g 

Asparagine  1g 

KH2PO4  2g 

MgSO4.7H2O  1g 

Thiamin-HCl  1mg 

Agar-agar  20g 

 

The mixture was filled up to the 1L mark with distilled water, and stirred to dissolve the powder. 

When the powder was completely dissolved, the bottle was covered with tinfoil to prevent 

contamination and autoclaved for 20 minutes at 121°C to ensure sufficient sterilization. After 

removing from the autoclave, the mixture was allowed to cool to a workable temperature, under a 

laminar flow hood. The Agar solution was then cast into Petri dishes.   

 

C.2 Casting of the Agar  

 

The casting of the Agar was done under a laminar flow hood using the flaming technique (flame 

after opening and before closing the bottle). Each Petri dish was filled with the still hot agar to a 

thickness of about 1 cm.  The Agar flask outlet was flamed before and after the agar was poured 

into a Petri dish to avoid any possible transferred contamination. The lids were left slightly open 
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for a short while to prevent moisture forming (condensation) underneath the lids.  After the Agar 

was cooled down sufficiently, it became stiff with a consistency of jelly. This was followed by 

the inoculation of P. chrysosporium spores on the Petri dishes. 

 

C.3 Inoculation of P. chrysosporium onto Petri dishes 

 

 

Figure C- 1: A comparison of a Petri dish with growth and one without growth 

 

The inoculation of the spores was done under an operating laminar flow hood and a clean surface 

sterilized thoroughly with 70% alcohol. A platinum rod was used as the tool to transfer spores. 

The platinum rod was flamed under a Bunsen burner and cooled down before dipping it into the 

fresh agar located on the rim of the Petri dish. A square piece (about 1 cm) of the inoculation 

culture was cut out and placed in the middle of the fresh Petri dish. The dish was sealed with 

Parafilim M (Pechiney, USA), before it was stored upside down in an incubator at 37 °C, until 

there was visible growth of the spores as shown (on the left plate) in Figure C- 1. 
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C.4 Spore solution preparation 

 

The following equipment was autoclaved; 

• 1000 ml distilled water in a schott bottle 

• 60 ml syringe with glass wool 

• 250 ml flask 

• 100 ml schott bottles 

 

5 ml of cooled sterile distilled water was poured into each Petri dish containing spores and 

mycelium, under sterile conditions. The dish lid was closed and the water shaken in rotational 

movements for about a minute, to ensure that all spores were in solution.  The washing solution 

was transferred from the Petri dishes into a sterile 100 ml bottle, this was repeated three to four 

times on one agar slant.  This procedure was continued until there was enough spore solution. 

This solution was in fact a spore/mycelium solution, which needed to be separated.  

 

C.5 Separation of spores from mycelium 

 

A heat sterilized (autoclaved) syringe with glass wool was used to separate the spores from the 

mycelium solution. The solution was filtered through a 0.22µm filter into a 250 ml flask.   

 

C.6 Determination of spore purity and concentration 

 

C.6.1 Spore purity 

 

Under sterile conditions, a small drop of spore solution was placed onto a slide and covered with 

a cover slip to be observed under a light microscope at ×100 magnification. Undamaged, uniform 

oval spores with a small size distribution and no or very few visible mycelium pieces should be 

observed.   

 

C.6.2 Spore concentration  

 

The spore solution concentration was determined by measuring absorbance at 650 nm with a  
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spectrophotometer. The spectrophotometer was ‘blanked’ by using distilled water, that is, the 

concentration of the spore solution was measured against that of distilled water. An absorbance of 

1.0 cm
-1

 is approximately 5 x 10
6
 spores/ml (Tien and Kirk, 1988). 
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APPENDIX D 

PREPARATION OF THE NUTRIENT SOLUTION 

 

D.1 Trace element stock solution 

 

Dissolve 1.5 g Nitrilotriacetate in 800ml distilled water. Trace element solution is a light yellow 

colour. After dissolving the Nitrilotriacetate completely, adjust the pH to 6.5 with 1M KOH 

(28g/500ml). Add each of the following components sequentially:   

 

MgSO4   3g (6.14 g MgSO4*7H2O) 

MnSO4   0.5g (0.56 g MnSO4*H2O) 

NaCl    1g 

FeSO4.7H2O   0.1g 

CoCl2    0.1g (0.187 g CoCl2*6 H2O) 

ZnSO4.7H2O   0.1g 

CuSO4    0.1g 

AlK(SO4)2.12H2O  10mg (0.01g) 

H3BO3    10mg (0.01g) 

Na2MoO4.2H2O  10mg (0.01g) 

 

Make up to 1L with autoclaved distilled water. Filter sterilise the solution into an autoclaved 

bottle using a 0.22 µm filter (do not autoclave). 

 

D.2 Basal III medium stock solution  

 

KH2PO4   20g 

MgSO4   5g (10.23 mg MgSO4.7H2O) 

CaCl2    1g (1.32 g CaCl2*2 H2O) 

Trace element solution  100ml (see D1 above) 
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Make up to 1L with autoclaved distilled water. Filter sterilise through a 0.22µm filter into a 

sterile bottle and store at 4°C (do not autoclave). 

 

D.3 10% Glucose stock solution 

 

Glucose   100g 

 

Make up to 1L with autoclaved distilled water. Autoclave for 20 minutes and store at 4°C. 

 

D.4 0.1 M 2,2-dimethylsuccinate stock solution (pH 4.2) 

 

2,2-dimethylsuccinate 13.045ml in 1L autoclaved distilled water. 

 

Autoclave for 20 minutes and store at 4°C. A sodium acetate buffer can also be used as an 

alternative when large amounts of medium are required. 

 

D.5 Thiamin-HCl  

 

Thiamin-HCl   100mg/L stock   

 

Filter sterilise through a 0.22µm filter into a sterile bottle and store at 4° (do not autoclave). 

 

D.6 Ammonium tartrate 

 

Ammonium tartrate  8g 

 

Make up to 1L with autoclaved distilled water. Autoclave for 20 minutes and store at 4°C. 

 

D.7 0.02M Veratryl alcohol  

 

Veratryl alcohol  2.907ml in 1L 
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Filter sterilise through a 0.22µm filter into a sterile bottle and store at 4°C (do not autoclave). 

Store in a dark place when not in use (veratryl acohol is light sensitive). 

 

D.8 Nutrient solution make-up 

 

Table D- 1: Nutrient solution make-up 

Component Volume (ml) % of total volume Chemical Formula 

Basal 3 medium 100.00 10.00 … 

10% Glucose stock solution 100.00 10.00 
6126 OHC  

0.1 M 2,2 Dimethylsuccinate 100.00 10.00 
4106 OHC  

Thiamin 10.00 1.00 HClOSClNHC •41712  

Ammonium tartrate 25.00 2.50 
62124 ONHC  

0.02 M veratryl alcohol 100.00 10.00 
3129 OHC  

Trace elements 60.00 6.00 … 

Distilled water 505.00 50.5 OH 2  

 

The make-up of the final nutrient solution is a combination of the above components in the 

proportions listed in Table D- 1. 
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APPENDIX E 

AUXILIARY CALCULATIONS 

 

E.1 Hydraulic permeability of the membrane 

 

The Forchheimer equation with the proposed correlation by Ergun (1952) was used to estimate 

the hydraulic permeability km of the membranes. This model was used because it was difficult to 

determine km experimentally when there was growth on the surface of the membrane. To 

determine the accuracy of the Forchheimer model in predicting values of km, model prediction 

values were compared to experimentally determined values at 20°C and at 30°C when there was 

no growth on the surface of the membrane. The experimental values are presented in Table E- 1.  

 

Table E- 1: Properties of the polysulphone membrane and water at 293K and 310K  

(K) µwater ×10
3 

(Pa.s) 
ρwater (kg/m

3
) dpore (m) dw (m) km(experimental) 

(m
2
) 

ro (m) ri (m) 

293 0.8937 998 0.000011 0.0002475 2.18× 10
-17

 0.0009625 0.0006625 

310 0.682 994 0.000011 0.0002475 3.38× 10
-17

 0.0009625 0.0006625 

 

The Forchheimer equation was introduced in Section 3.3.3 as  

2

21

J
k

J
kd

p

w

ρµ
+=

∆
         3-18 

where k1 (m
2
) and k2 (m) are referred to as Darcyan and non-Darcyan permeability parameters 

respectively, and k1 represents the membrane hydraulic permeability km. Ergun (1952) proposed 

the following expressions for k1 and k2, for granular beds (which are assumed to be applicable to 

the polysulphone membrane): 

( )2

23

1
1150 ε

ε

−
=

pored
k       3-19 

( )ε

ε

−
=

175.1

3

2

pored
k          3-20 

The average inlet and outlet pressures p0 and p1 at a permeate volume flux of 8.53×10
-7

m/s are 

respectively 130.67kPa and 122.66kPa for the 55cm membrane bioreactor operated at 20°C. 
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Substituting these values into Equation 3-18 with the water properties specified in Table E- 1 

gives: 

2

10

1

10
7 1027.71063.7

1023.3
kk

−− ×
+

×
=×       E 1 

Both unknowns k1 and k2 in Equation E1 are functions of the surface porosity ε, and can be 

obtained by varying values of ε until the right hand side equals the left hand side in Equation E1. 

This operation is easily executed by the Microsoft solver® algorithm. The resulting porosity is 

0.03 and the corresponding values of k1 and k2 at 20°C are 2.36×10
-17

m
2
 and 1.78×10

-10
m 

respectively. The values of k1 and k2 were predicted using this method for a 23.3cm membrane, a 

29cm membrane, and a 55cm membrane. The average value of the membrane hydraulic 

permeability k1 of the 3 membrane lengths was found to be 3.93×10
-17

m
2
 which compares well 

with the experimental value of 2.18×10
-17

m
2
. The Forchheimer equation predicts a k1 value of 

4.68×10
-17

m
2
 at 37°C and the experimental value is 3.38×10

-17
m

2
. 

  

E.2 Schmidt Number of the nutrient solution 

 

Table E- 2: Atomic volumes (Geankoplis, 1993) 

Element Atomic volume (m
3
/gmol) Element Atomic volume (m

3
/gmol) 

C 0.0148 N 0.0156 

H 0.0037 Cl 0.0216 

O 0.0074 S 0.0256 

 

The Schmidt number Sc of a solution is given by Equation 5-1: 

ABD
Sc

ρ

µ
=          5-1 

and the diffusivity DAB for solutes with a molecular weight less than 1000g/mol is given by the 

Wilke-Chang equation (Geankoplis, 1993): 

( )
6.0

2
11610173.1

AB

BAB
V

T
MD

µ
ϕ−×=        E 2 

where ϕ is an association parameter and has a value of 2.6 when water is the solvent, MB is the 

molecular weight of the solvent in g/mol, VA is the solute molar volume at its normal boiling 
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point in m
3
/gmol, and T is the solution final temperature in K. The solute molar volume VA is 

calculated from the chemical formula by making use of the atomic volumes in Table E- 2. 

 

The molar volume of Glucose is calculated from the chemical formula as follows 

( ) ( ) ( ) ( )

( ) gmolmV

V

OHCeGlu

eGlu

eGlu

/1776.0

0074.060037.0120148.06

cos

3

cos

cos

6126

=

++=

→

 

The overall molar volume VA is the sum of the individual molar volumes of the components of 

the nutrient solution:  

( ) ( ) ( ) ( ) ( )olVerylalcohtartrateAmmoniumThiaccinateDimethylsueGluA VVVVVV 1.0025.001.01.01.0 mincos ++++=  E 3 

 

The viscosity of water µB at 37°C (310K) is 0.000682Pa.s (Geankoplis, 1993), and its molecular 

weight MB is 18.02g/mol. The Wilke-Chang equation predicts diffusivities with a mean deviation 

of 20% for aqueous solutions. The corrected diffusivity DAB therefore is 1.594×10
-09

m
2
/s. The 

viscosity of the nutrient solution at 37°C is 1.18×10
-03 

Pas. Taking the density ρ of the nutrient 

solution as that of water at 37°C (i.e. 994kg/m
3
), the Sc of the solution is given by: 

7.744
10594.10.994

1018.1
09

03

=
××

×
=

−

−

Sc  

 

E.3 Wall Reynolds Number of the nutrient solution 

 

The wall Reynolds Rew number is defined as  

µ

ρ Hw
w

rv
=Re          E 4 

where rH is the hydraulic radius of the membrane ro – ri in m, ρ is the density of the nutrient 

solution in kg/m
3
 taken as that of water at 37°C (see Table E- 1), and µ is the dynamic viscosity 

of the solution at the same temperature (0.00118Pa.s). The wall velocity vw is defined as  

( ) ( )
( ) 











−

+

−Φ+
−= g

dd

ppkk
v

gw

LSgm

w ρ
µ

.
       E 5 
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where Φ  is the osmotic pressure due to the solutes on the surface of the membrane lumen in Pa,  

pS is the hydrostatic pressure on the shell side of the membrane in Pa, pL is the hydrostatic 

pressure on the lumen side of the membrane, and dw is the membrane wall thickness in m, kg is 

the hydraulic permeability of the gel layer in m
2
 (equal to 0 for a clogged membrane and equal to 

1 for a clean membrane), and dg is the gel layer thickness in m. The osmotic pressure Φ  is 

obtained from the solute concentrations by making use of Equation 3-17:  

∑
=

=Φ
n

i

wii TRc
1

*ω          3-17 

For the model parameters listed in Table 7-1 the Rew was found to be: 

( ) 04
06

10133.3
00118.0

00066250009625.01024.1994
Re −

−

×=
−××

=w  

 

The Rew is well below 1 and therefore the assumptions of similarity in the velocity profiles and 

negligible inertial contributions are justified.  
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APPENDIX F 

BESSEL FUNCTIONS 

 

F.1 Bessel’s differential equation (Zwillinger, 1996) 

 

Bessel’s differential equation is:  

( ) 00222 ≥=−+′+′′ υυ uxuxux       F 1 

The solutions of Equation F1 are denoted with the functions ( )xJυ  and ( )xYυ , which are referred 

to as ordinary Bessel functions: 

( ) ( )xYcxJcu υυ 21 +=          F 2 

When υ  is an integer, the following relation exists:  

( ) ( ) ( ) K,3,2,1,0,1 =−=− nxJxJ n

n

n      F 3 

 

 

Figure F- 1: Bessel functions of the first and second kind of order 0 and 1, for 120 ≤≤ x  
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The numerical values of the Bessel functions plotted in Figure F- 1 are tabulated in Table F- 1. 

 

Table F- 1: Numerical values of Bessel functions (Abramowitz & Stegun, 1964) 

x  ( )xJ 0  ( )xJ1  ( )xJ 2  ( )xY0  

0 1.00000000 0.00000000 0.00000000 ∞−  

0.2 0.99002497 0.09950083 0.00498335 -1.08110532 

0.4 0.96039823 0.19602658 0.01973466 -0.60602457 

0.6 0.91200486 0.28670099 0.04366510 -0.30850987 

0.8 0.84628735 0.36884205 0.07581776 -0.08680228 

1 0.76519769 0.44005059 0.11490349 0.08825696 

1.2 0.67113274 0.49828906 0.15934902 0.22808350 

1.4 0.56685512 0.54194771 0.20735590 0.33789513 

1.6 0.45540217 0.56989594 0.25696775 0.42042690 

1.8 0.33998641 0.58151695 0.30614354 0.47743171 

2.0 0.22389078 0.57672481 0.35283403 0.51037567 

2.2 0.11036227 0.55596305 0.39505869 0.52078429 

2.4 0.00250768 0.52018527 0.43098004 0.51041475 

2.6 -0.09680495 0.47081827 0.45897285 0.48133059 

2.8 -0.18503603 0.40970925 0.47768550 0.43591599 

3.0 -0.26005195 0.33905896 0.48609126 0.37685001 

3.2 -0.32018817 0.26134325 0.48352770 0.30705325 

3.4 -0.36429560 0.17922585 0.46972257 0.22961534 

3.6 -0.39176898 0.09546555 0.44480540 0.14771001 

3.8 -0.40255641 0. 01282100 0.40930431 0.06450325 

4.0 -0.39714981 -0.06604333 0.36412815 -0.01694074 

4.2 -0.37655705 -0.13864694 0.31053470 -0.09375120 

4.4 -0.34225679 -0.20277552 0.25008610 -0.16333646 

4.6 -0.29613782 -0.25655284 0.18459311 -0.22345995 

4.8 -0.24042533 -0.29849986 0.11605039 -0.27230379 

5.0 -0.17759677 -0.32757914 0.04656512 -0.30851763 
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F.2 Zeros of Bessel functions (Zwillinger, 1996) 

 

For 0≥υ  in Equation F1, the zeros n,υα , ny ,υ  of ( )xJυ  and ( )xYυ  can be arranged as sequences: 

∞=<<<<<
∞→

n
n

n ,,3,2,1, lim, 0 υυυυυ ααααα KK      F 4 

∞=<<<<<
∞→

n
n

n yyyyy ,,3,2,1, lim, 0 υυυυυ KK      F 5 

Between two consecutive positive zeros of ( )xJυ , there is exactly one zero of ( )xJ 1+υ . 

Conversely, between two consecutive positive zeros of ( )xJ 1+υ , there is exactly one zero of 

( )xJυ . The same holds for the zeros of ( )xYυ . Moreover, between each pair of consecutive 

positive zeros of ( )xJυ , there is exactly one zero of ( )xYυ , and conversely.  

 

Table F- 2: Positive zeros n,υα , ny ,υ   of Bessel functions ( )xJυ , ( )xYυ , 1,0=υ . 

n  n,0α  n,1α  
ny ,0  ny ,1  

1 2.40483 3.83171 0.89358 2.19714 

2 5.52008 7.01559 3.95768 5.42968 

3 8.65373 10.17347 7.08605 8.59601 

4 11.79153 13.32369 10.22235 11.74915 

5 14.93092 16.47063 13.36110 14.89744 

6 18.07106 19.61586 16.50092 18.04340 

7 21.21164 22.76008 19.64131 21.18807 

 

F.3 Important integrals of Bessel functions (Abramowitz & Stegun, 1965) 

 

1. ( ) ( ) 0,

0

1 >=∫ − vzJzdrrJr v
v

z

v
v      F 6 

2. ( )
( )

( )zJz
v

drrJr v

v

v

z

v

v −
+

− −
+Γ

=∫ 12

1

0

1     F 7 

3. ( ) ( )zJdrrJ

z

0

0

1 −=∫         F 8 
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4. 
( )

( ) ( ) 0,12
2

12 12

10

2 >−−= −

=

∑∫ nzJk
zr

drrJ
n k

n

k

z

n     F 9  

5. ( ) ( ) ( ) 0,2

0

1

0

1 >−= ∫∫ −+ nzJdrrJdrrJ n

z

n

z

n     F 10 
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APPENDIX G 

CURVILINEAR COORDINATES 

 

G.1 Cylindrical coordinates (Bird et al., 2002) 

 

Although formal derivations are usually made in Cartesian coordinates, for working problems it 

is often more natural to use curvilinear coordinates. The two most commonly occurring 

curvilinear coordinate systems are the cylindrical and the spherical.  

 

 

Figure G- 1: (a) Cylindrical coordinates and (b) Spherical coordinates 

 

In cylindrical coordinates, instead of designating the coordinates of a point by x, y, z, a point is 

located by giving the values of r,θ , z. These coordinates are shown in Figure G- 1(a). They are 

related to the Cartesian coordinates  by:  


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y
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arctansin

cos 22

θθ

θ

     G 1   

To convert derivatives of scalars with respect to x, y, z into derivatives with respect to r, θ , z, the 

‘chain rule’ of partial differentiation is used. The derivative operators are readily found to be 

related thus:  
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With these relations, derivatives of any scalar functions with respect to x, y, and z can be 

expressed in terms of derivatives with respect to r,θ , z.  

 

G.2 Equations of motion for a Newtonian fluid  

 

G.2.1 Cartesian coordinates (x, y, z) 
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G.2.2 Cylindrical coordinates (r,θ , z) 
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G.2.3 Spherical coordinates(r,θ ,φ ) 
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APPENDIX H 

MEMBRANE THICKNESSES 

 

H.1 Preparation of samples for SEM imaging 

 

After the experiment was stopped samples of the membrane with biofilm were cut using a sterile 

blade and placed into a 10% gluteraldehyde solution for 24hrs. The samples were then taken 

through an alcohol dehydration series (this replaces all the water in the sample with alcohol). 

This involved placing the samples in different concentrations of alcohol for at least 10 minutes. 

The concentrations used were: 30%, 50% 70% 80% 90% 95% 100%. Once the samples were in 

100% alcohol they were taken to the Electron Microscopic Unit (EMU), University of Cape 

Town (RSA). At the EMU, they were critical point dried (CPD), this process involved replacing 

the alcohol with liquid carbon dioxide and eventually gaseous carbon dioxide. The samples were 

then dry and were mounted on small aluminium SEM stubs. They were then sputter coated with 

gold/palladium and were ready for examination with the SEM. Figure H- 1 is in image taken with 

the fully analytical Leo S440 SEM.  

 

 

Figure H- 1: A scanning electron microscope image of a capillary membrane with biofilm 
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H.2 Thickness measurements 

 

The SEM images of the membrane portions with P. chrysosporium growth are presented as TIFF 

files with the magnification, electron high tension (EHT), and aspect ratio provided at the bottom 

of the image as shown in Figure H- 1. Five representative measurements of the biofilm thickness 

were taken out of each SEM image, and the average of these values was taken to be the true 

biofilm thickness of that specific SEM image.      

 

Representative samples of the membrane inlet, middle, and membrane outlet (with growth) were 

cut and prepared as was described in Section H.1., before thickness measurements were taken. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


