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Abstract 

The use of Neural Networks in chemical engineering is well documented. There has 

also been an increase in research concerned with the explanatory capacity of Neural 

Networks although this has been hindered by the regard of Artificial Neural Networks 

(ANN’s) as a black box technology. 

 

Determining variable importance in complex systems that have many variables as 

found in the fields of ecology, water treatment, petrochemical production, and 

metallurgy, would reduce the variables to be used in optimisation exercises, easing 

complexity of the model and ultimately saving money. In the process engineering 

field, the use of data to optimise processes is limited if some degree of process 

understanding is not present. 

 

The project objective is to develop a methodology that uses Artificial Neural Network 

(ANN) technology and Multiple Linear Regression (MLR) to identify explanatory 

variables in a dataset and their importance on process outputs. The methodology is 

tested by using data that exhibits defined and well known numeric relationships. The 

numeric relationships are presented using four equations. 

 

The research project assesses the relative importance of the independent variables 

by using the “dropping method” on a regression model and ANN’s. Regression used 

traditionally to determine variable contribution could be unsuccessful if a highly non-

linear relationship exists. ANN’s could be the answer for this shortcoming.  

 

For differentiation, the explanatory variables that do not contribute significantly 

towards the output will be named “suspect variables”. Ultimately the suspect 

variables identified in the regression model and ANN should be the same, assuming 

a good regression model and network. 

 

The dummy variables introduced to the four equations are successfully identified as 

suspect variables. Furthermore, the degree of variable importance was determined 

using linear regression and ANN models. As the equations complexity increased, the 

linear regression models accuracy decreased, thus suspect variables are not 

correctly identified. The complexity of the equations does not affect the accuracy of 

the ANN model, and the suspect variables are correctly identified. 
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The use of R2 and average error in establishing a criterion for identifying suspect 

variables is explored. It is established that the cumulative variable importance 

percentage (additive percentage), has to be below 5% for the explanatory variable to 

be considered a suspect variable. 

 

Combining linear regression and ANN provides insight into the importance of 

explanatory variables and indeed suspect variables and their contribution can be 

determined. Suspect variables can be eliminated from the model once identified 

simplifying the model, and increasing accuracy of the model. 
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Glossary 

Backpropagation 

General mathematical notation was used, in the form:  

Where     represent the following: 

  can be one of the following 

x, to denote an external input 

h, to denote the internal output of a node being transformed nonlinearly 

z, to denote the activation of a node (output of a node) 

y, to denote the external output 

d, to denote the desired network output 

w, to denote the weight of a connection 

, to denote the bias 

 can be one of the following 

a number to stand for the identity of the layer; the number takes the values 1, 2 and 3 

for input, hidden and output layer respectively. This is used for the internal outputs 

and bias before and after transformation. 

P, to stand for the identity of a particular example. This is for external and internal 

outputs and for target output. 

  can be one of the following: 

i, to denote the identity of the node that the connection comes from originally 

ij, to denote i, the origin, and j, the termination, of the connection. This notation is 

only applicable to the weight notation. 

 
 
Linear and Multiple Regression 

Xi: input, predictor or explanatory variable. 
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Yi: output or criterion variable. 

a, bi: regression coefficients of regression. 

ε: residual error for linear regression. 

YI: model output. 

R: Pearson correlation. 

βi: value of regression coefficient corresponding to the data value b. 

t: the t-test for testing the null hypothesis. 

F: corresponding test to the t-test. 

P: test for assessing the consistency of the null hypothesis. 

ei: residual error for multiple linear regression. 

S2, ϭ: variance, standard deviation. 

_ 

Xi: average value of the input variable. 

_ 

Y i: average value of the output variable. 

ryk, 123: semi-partial correlations of Xi and Y in the multiple linear regression. 

Ryy
I: multiple correlation coefficient. 

SSreg: sum of squares for regression. 

SStot: total sum of squares. 

SSres: residual sum of squares. 

Ho: null hypothesis test for multiple regression. 
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1. INTRODUCTION 

The advent of computer use has brought about an avalanche of data, and the 

development of neural networks has afforded a promising technique to model data. 

Neural networks are seen as “universal approximators” as they can handle nonlinear 

multiple variable systems (Hornik, Stichcombe & White, 1989:360). The greatest 

advantage of artificial neural networks (ANN) is their user-friendliness, which hides 

from the user the complicated mathematical and computational network training 

procedure (Papadokonstantakis, Machefer, Schnitzlein & Lygeros, 2005:1647).  

In the field of process engineering, advances in information technology brought about 

an increase in the availability of processed data. However, the use of this data to 

optimise processes is limited if some degree of process understanding is not present. 

The use and application of neural networks in chemical engineering is well 

documented and the only limitation is the imagination of chemical engineers 

(Himmelblau et al., 2000:373). There has also been an increase in research on the 

explanatory capacity of neural networks, although this has been hindered by the fact 

that ANNs are regarded as a black box technology (Gevrey, 2003:259; Olden, 

2004:389). ANN modelling has been used successfully as a pre-processing stage, 

which can be instrumental in the development of a successful model.  

The data pre-processing stage is of great importance, especially in most process 

datasets with restricted quality and containing noise and faults (Hornik et al., 

1989:360). Determining variable importance as a pre-processing stage in data 

modelling in complex systems that have many variables, such as ecological, water 

treatment, petrochemical plants and bio-processing, would reduce the variables to be 

used in the optimisation processes, easing the complexity of the model and ultimately 

saving money (Bruns, 2002:366; Grieu, 2006:2 ;Martinez, 1999:102). 

The objective of this project is to develop a methodology that uses artificial neural 

network (ANN) technology and multiple linear regression to identify explanatory 

variables in a dataset and determine their importance for process outputs. The 

methodology is tested by using data that exhibit defined and well-known numeric 

relationships.  
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The research project assesses the relative importance of the independent variables 

by using the “dropping method” (Garson, 2007:6) on a regression model and ANNs. 

Regression used traditionally to determine variable contributions could be 

unsuccessful if a highly nonlinear relationship exists. ANNs have been shown to be 

highly competent approximators of many complex systems, and have been shown to 

have advantages over general linear models in predictive ability (Hastie, Tibishrani & 

Friedman, 2001:14), thus they could be the answer to this linear models shortcoming. 

However, the research does not advocate the use of ANN over linear regression, but 

rather a symbiotic relation. Linear regression is the well documented statistical 

methodology and ANNs are just beginning to be unravelled. The symbiosis already 

exists, as many statistical packages use ANN (Kemp, Zaradic & Hansen, 2007:326) 

For differentiation, the explanatory variables that do not contribute significantly to the 

output will be named “suspect variables”. 

The method used was as follows: 

A linear regression was run that modelled the data against a fixed but variable target, 

measured with the absolute least squares method  

The “dropping method” was used to identify suspect variables from the regression 

model 

The data gained were run through a trained neural network in order to enhance the 

match of the modelled data against the original data. 

The trained neural network was used to identify suspect variables. 

It was determined whether the regression model and the ANN identify the same 

suspect variables. 

Multiple regression attempts to model the relation between two or more independent 

variables (input) and the dependent variable (output) by fitting a linear equation to the 

observed data. 

The observed data are:  

             (1.1) 

And the model equation (also termed the regression line for k variables) is:  
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         (1.2) 

Using the least squares method (measured with the R2 value), the best fitting line 

(plane) from the data is calculated by minimising the sum of the squared residuals 

(ε).  

Multiple regression has three primary uses: 

Understanding which input variables have the greatest effect on the output. 

Knowing the direction of the effect of the input variable, e.g. increasing x1 

increases/decreases Y. 

Using the model simulated to predict future values of the input variables when only 

the output variables are known. 

To date it has been shown that multiple regression is able to establish that a set of 

independent variables contributes to the variance of a dependent variable to a 

significant extent. The significance of this contribution can be tested rigorously by the 

R2 value, using the “dropping method”. The importance can also be tested further by 

examining the beta weights attributed to each of the contributing and non-contributing 

variables.  

ANNs are composed of simple elements operating in parallel. These elements are 

inspired by biological nervous systems. As in nature, the network function is 

determined largely by the connections between elements. An ANN can be trained to 

perform a particular function by adjusting the value of the connections (weights) 

between elements, based on the complexity of a given problem (Demuth & Beale, 

2004:8). 

ANNs are trained so that a particular input leads to a specific target output. An input 

is presented to the network. The network compares the output to the target, and the 

network’s weights are adjusted on the basis of this comparison until the network 

output matches the target. The target and output pairs are essential to the training of 

the network and, typically, many such pairs are used in what is termed as ‘supervised 

learning’ in training the network. 
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An ANN, once trained, can predict targets from inputs that have not been  presented 

to the network before. It is on this premise that “suspect variables” should be 

identifiable, as the simulated output theoretically should not be affected when the 

“suspect variables” are altered. 

The observed data to be used for modelling comprises of randomly generated data. 

The data is set up using the following equations: 

Equation 1:  dummy variables x3, x4 

Equation 2:  dummy variables x2, x4 

Equation 3:  

Dummy variables are x3, x4, x7, x9 

The third equation is a combination of the first two equations. 

 

Equation 4:  

Dummy variables are x3, x4, x5 

The general equations are used for generating random data of a range between 1 

and 10. This can be done without loss of generality, since the data are produced at 

random. A number of matrices are constructed for all variables and then exported to 

Matlab. In general, the number of matrices created for each given equation is directly 

proportional to the number of input variables.  

No. of matrices = no of input variables + 2         (1.3) 

At first, all input variables are utilised to calculate the regression values, after which 

variables are successfully removed from the input while creating new matrices. 
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The output variable remains constant for each equation, as it is determined by a fixed 

relationship.  

A neural network is created using the backpropagation algorithm. The matrices of the 

ANN are derived from the random data that are generated from the four equations in 

the range of 1 to 10. 

Xall comprises all the input variables x1, x2,……., xk. 

Yall comprises the output variable y 

The default training algorithm that was used is trainlm, a network training function 

that updates weight and bias values according to the Levenberg-Marquardt 

optimisation algorithm. The Levenberg-Marquardt optimisation is an algorithm for 

least squares estimation of nonlinear parameters that outperforms the gradient 

descent and conjugate algorithm. It does so by approaching the second order 

training speed by approximating the Hessian matrix as opposed to computing it. 

The trained network provides a platform for evaluating the effect of altering the 

values of input variables on the simulated output of the trained network. The trained 

network is represented with periodic alterations of all the variables that were used in 

the training network. The simulated output within each variable is compared to 

establish significant changes. The deficiency of change for the simulated output for a 

particular variable indicates that a specific variable does not contribute significantly to 

the output, and thus can be identified as a suspect variable.   
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2. LITERATURE REVIEW 

2.1 MULTIPLE LINEAR REGRESSION 

To define multiple linear regression it is best to first describe simpler linear 

regression. Linear regression attempts to find a relationship between the observed 

data  by finding the best linear correlation (Edwards, 1976:3). The 

independent (also named input, predictor, explanatory) variable is Xi and the 

dependent variable (also named output, criterion) is Yi. Linear regression models the 

data in the equation: 

         (2.1) 

thereby estimating the coefficients a and b, which are determined on condition that 

the   residual error is minimised.  

         (2.2) 

  
 

 

   

The correlation coefficient of Y and X is defined by the Pearson-R correlation: 

 


    
    
   

     (2.3) 

The value of the correlation coefficient R falls between the values 1 and -1. If the 

absolute value R2 is calculated, then the maximum value is 1. The absolute value of 

R2 provides an index of the degree to which a set of data points cluster around the 

proposed regression line.  
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If the points from the data fall along the regression line, the values of R2 are higher, 

and when R2 is 1 the points are exactly on the regression line. When the value of R2 

is small, the data points will show considerable scatter around the regression line, 

and the data points that are represented by the regression line determined will be 

very few. 

The value of the regression coefficient corresponding to the data value b is 

represented by β. The null hypothesis is used to determine if the Y values are linearly 

independent of the X values in the dataset, and thus if β = 0. The test normally used 

is the t test, which assumes that the null hypothesis is true.  

To apply the t test, let 

  
      (2.4) 

A table of the t distribution confidence interval can be used to determine the extent to 

which the two distributions differ from each other. For any t test there is a 

corresponding F test, such that 

  

      (2.5) 

The P test assesses the consistency of the null hypothesis. The smaller the P value, 

the more evidence there is that the null hypothesis is false. The higher the P value, 

the more evidence of the null hypothesis being true. A P value of 0.05 means that 

there is a 5% chance of observing a difference as large as observed, even if the sets 

of data are identical. 

Multiple linear regression is an extension of the above linear equation (2.1-2.5) to 

include multiple variables as the independent variables (input). Multiple regression 

attempts to model the relation between two or more independent variables (input) 
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and the dependent variable (output), by fitting the linear equation to the observed 

data. 

The observed data are: 

           (2.6) 

And the model equation is (also termed as the regression line for k variables)  

           (2.7) 

  

This line describes how Yi changes in response to the input Xi variables. 

Using the least squares method, the best fitting line (plane) from the data is 

calculated by minimising the sum of the squared residuals (ε).  

The fitted values take the equation 

                                          (2.8) 

The residual is then the difference between the observed values and the fitted value. 

                              (2.9) 

The least squares method chooses b0, b1, ……., bk to minimise the sum of the 

residuals. 

The next step is to minimise , which is also known as the residual sum of 

squares. 

The variance can be estimated by the equation 
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                                                                     (2.10) 

This is also known as the mean square error (MSE). 

The observed values are:  

                                               (2.11) 

The observed values may vary about their mean Yi and are assumed to have the 

same standard deviation . 

The fitted values b0, b1, ….., bk estimate the parameters β0, β1, ….., βk of the 

regression line. 

Multiple regression has three primary uses: 

Understanding which input variables make the greatest contribution towards the 

output. 

Knowing the direction of the effect, e.g. increasing X1 increases/decreases Y. 

Using the simulated model to predict future values of the input variables when only 

the output variables are known. 

Multiple regression is a technique going back to Professor Karl Pearson in 1908. 

Professor Pearson is considered to be one of the founders of modern statistics. 

To date it has been shown that multiple regression can establish that a set of 

independent variables contributes to the variance of a dependent variable to a 

significant degree (Edwards, 1979:39). The significance of this contribution can be 

tested rigorously using the R2 value. The importance of the contribution can be tested 

further by examining the beta weights attributed to each of the contributing and non-

contributing variables. The regression coefficient is then calculated as: 

              (2.12) 
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From the multiple regression equation it is possible to ascertain b0 and b1, b2,…, bk, 

which will result in the highest possible positive correlation between the observed 

value Y’ and the predicted value Y. When this is done, the resulting correlation 

coefficient will be Ry.123….k. 

As the number of X variables increases, the calculations become increasingly 

complex. 

                 (2.13) 

The values b1 and b2 can then be calculated as follows: 

   
  

                                                         (2.14) 

Following a similar procedure for b2: 

   
  

             (2.15) 

The general term bk must satisfy the following equation to minimise the mean square 

error: 

                                        (2.16)  

The square of the multiple correlation coefficient will be given by 

                 (2.17) 

SSreg: sum of squares for linear regression 

SStot: total sum of squares 
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SSres: residual sum of squares 

SStot is then defined by                                                       (2.18) 

                                                          (2.19) 

                                                                                               (2.20) 

Thus, the RYY’ 
2
 then is a combination of the above equations and becomes: 

 
  

   
                             (2.21) 

RYY’ 
2 can also be calculated from the partial correlation coefficients of say X1 and Y, 

X2 and Y generally Xi and Y. In the equation below, ry1, ry2,…, ryk stand for the semi-

partial correlations for X1 and Y , X2 and Y,…., Xk and Y. 

              (2.22) 

The argument is that if any of the variables X1, X2,…….., Xk are not contributing 

significantly to the output, then dropping these variables will not alter the correlation 

coefficient R much. Notice that ry1, ry2,…, ryk are obtained as if there were single 

variable models consisting of one input and one output variable. 

The significance for RYY’ 
2 is tested using the null hypothesis (H0). The t-test checks if 

β1 = β2 = ……….. βk = 0. To test if the null hypothesis is true and β1 = β2 = ……….. βk 

= 0, it is necessary to use the F-test: 

                               (2.23) 

If the null hypothesis is rejected, then β1 = β2 = ……….. βk   0  
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A large value of F indicates that the null hypothesis is not true, while small values are 

consistent with the null hypothesis. The F value can be any value between zero and 

infinity. Under the null hypothesis, F is expected to be small positive numbers. 

The P value in multiple regression represents a decreasing index of the reliability of a 

result (Brownlee, 1967: 570). The higher the P value, the less representative the 

sample data is of the entire set of data, and therefore it is not possible to take the 

observed relation between variables in the dataset to be reliable indicators of the 

relationship of the entire dataset. 

The P value is calculated in numerous ways, depending on the sampling distribution. 

It is determined by standardising, with the calculation of two or more sample test 

statistic. 

           (2.24) 

Once the test results are obtained, t is compared to the appropriate sampling 

distribution. 

2.2 NEURAL NETWORKS 

Neural networks are composed of simple elements operating in parallel. These 

elements are inspired by biological nervous systems. As in nature, the network 

function is determined largely by the connections between elements. We can train a 

neural network to perform a particular function by adjusting the value of the 

connections (weights) between the elements (Demuth & Beale, 2004). 

Neural networks are trained so that a particular input leads to a specific target output. 

The diagram below illustrates the mechanics of neural networks. An input is 

presented to the network, there is a comparison between the output and the target, 

and the network weights are adjusted on the basis of this comparison until the 

network output matches the target. The target and output pairs are crucial to the 

training of the network and, typically, many such pairs are used in what is termed as 

‘supervised learning’ in training the network. 
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Figure 2.1: Basic neural network (Demuth & Beale, 2004) 

2.2.1 Types of neural networks 

Neural networks comprise interconnected neurons. There are two general 

categorisations of neural networks: structural categorisation and learning algorithm 

categorisation (Pham, 1995:1) 

The structure of the neural networks is determined by how the inter-neuron 

connections are arranged and by the nature of the connections. The structural 

categorisation is further subdivided into feedforward networks and recurrent 

networks.  

The feedforward network neurons are grouped into layers. Signals flow from the input 

layer to the output layer in one direction through connections. Thus neurons are 

connected from one layer to the next, but not within the same layer. Examples of 

feedforward network are: multilayer perceptron (MLP) networks, learning vector 

quantisation (LVQ) networks, and group method of data handling (GMDH) networks. 

The multilayer perceptron network is probably the best known type of feedforward 

network. The MLP generally has three layers: an input layer, an output layer and an 

intermediate or hidden layer. With regard to the output of a feedforward network, it is 
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important to note that, at a given instant, the output is a function only of the input at 

that instant. 

The recurrent networks, however, have a dynamic memory, so that the outputs at a 

given instant reproduce the current input as well as previous inputs and outputs. 

The learning algorithm is how the strengths of the connections are adjusted and 

trained to achieve a desired result. This category is further subdivided into the 

supervised learning algorithm, the unsupervised learning algorithm, and the 

reinforcement learning algorithm. The supervised learning algorithm adjusts the 

strengths (weights) of the inter-neuron connections according to the difference 

between the target output and the given input. The supervised learning requires a 

“teacher” to provide desired target output signals. Examples of supervised learning 

algorithms are the delta rule, the backpropagation algorithm (generalised delta rule), 

and the learning vector quantisation algorithm (LVQ).  
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Figure 2.2: ANN classification based on structure and learning algorithm 

The multi-layer perceptron (MLP) Networks is the best known of the feedforward 

networks. The MLP has three layers: an input layer, a hidden layer and an output 

layer. The neurons in the input layer act as a holding area in order to distribute the 

input signals to neurons in the hidden layer; thus the hidden layer conventionally is 

not counted as a layer.  

Each neuron, j, in the hidden layer acts as a sum up individual input signals xi after 

weighting the strengths of their connections wji from the input layer, while computing 

individual output yj as a function f. 

                (2.25)     

 f is a differentiable function that can be a sigmoidal or hyperbolic tangent or radial 

function. 

The output of the neurons in the output layer is computed similarly. 
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Figure 2.3: ANN general architecture with hidden layer (Pham, 1995). 

2.2.2 Historical background 

There are at least two ingredients that are essential for the successful advancement 

of a technology: conceptualisation and implementation (Hagan et al., 1995:89). The 

development of neural networks has progressed through conceptualisation and 

implementation, but this happened in fits and false starts rather than as a continuous 

evolution. The table below offers a summary of the progress in artificial neural 

networks over the years. 

Table 2.1: Historical development of ANN 

RESEARCHERS YEAR FIELD CONTRIBUTED 
Warren McCulloch  
Walter Pitts 1943 

Showed that ANN could, in principle, be used to compute any 
arithmetical or logical function. 

Donald Hebb 
1949 

Proposed that the classical condition (discovered by Pavlov) is present 
because of the properties of individual neurons. He then proposed a 
mechanism for learning in biological neurons. 
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Frank Rosenblatt 

1958 

First practical application of ANN. The invention of the perceptron 
network and associated learning rule. Demonstration that the 
perceptrons networks had ability to perform pattern recognition. 
Limitation: can only solve a limited class of problems. 

Benard Widrow Tedd 
Hoff 

1960 

Introduced the Widrow-Hoff learning rule, a new learning algorithm. It 
was used to train adaptive linear neural networks and was quite similar 
in structure to Rosenblatt's perceptron. Limitations: can only solve a 
limited class of problems. 

Marvin Minsky 
Seymore Papert 

1969 

Widely publicised the shortcomings of the proposed networks. This 
report, combined with the lack of powerful digital computers, led to a 
lull in ANN research, as many people believed there was no future in 
ANN. 

Teuvo Kohonen 
James Anderson 1972 

They independently and separately developed ANN that could act as 
memory. 

Paul Werbos 
1974 

Started work on a supervised learning technique used for ANN, 
groundwork for backpropagation. 

Stephen Grossberg 
1976 

Self-organising networks. 

John Hopfield 

1982 

The impediments presented by the lack of powerful computers were 
removed, thus great developments were possible in the field of ANN. 
He proposed the use of statistical mechanics to explain the operation 
of certain classes of recurrent networks; associative memory. 

David Rumelhart 
James McClelland 

1986 

Most influential publication on backpropagation algorithm for training 
multilayer perceptron networks. This answered Minsky and Papert 
criticism in the 1960s. 

The advances in neural networks have been propelled largely by the availability of 

powerful new computers and new concepts, such as innovative architecture and 

training rules. Neural networks seem to have taken a permanent place as an 

engineering tool, not just as a solution to any problem, but as a tool to be used in 

appropriate situations. 

There are a large number of applications of neural networks and the list seems to 

grow every day. 

Aerospace 

Automative 

Banking 

Defence 

Electronics 

Entertainment 

Financial 
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Insurance 

Manufacturing 

Medical 

Oil and gas exploration 

Robotics 

Speech 

Securities 

Telecommunication 

Transportation 

The application of ANN to chemical engineering is a wide and varied field. Here are 

examples of implementation and research:  

Bioprocess engineering: application of feedforward neural networks for system 

identification of a biochemical process 

Use of ANN in modelling of chemical processes 

Polymers, pulp and paper industry: modelling and optimisation of pulp and paper 

processing using neural networks 

Separation process: prediction of product quality parameters of a crude fractionation 

section of an oil refinery using neural networks; ANN has also been used extensively 

in the study of the crystallisation process and its dynamics 

Heat and mass transfer: a neural network approach to nonlinear Identification and 

control of a heat exchanger 

Thermodynamics: evaluation of the thermodynamic models Uniquac and Unifac 

using artificial neural networks 

Fluid dynamics: flow regime identification in air-water two-phase flow using neural 

networks – process control and design: closed loop nonlinear process identification 

using internally recurrent neural nets 

Catalysis: the application of neural networks in the development of an online model 

for a semi-regenerative catalytic reformer 

Chemical reactor design: use of neural networks for LPCVD reactor modelling 
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Process control and design: use of artificial neural networks to monitor faults and for 

troubleshooting in the process industries 

Unit operations of chemical engineering: HETP and pressure drop prediction for 

structured packing distillation columns using a neural network model 

Environmental engineering: modelling of activated sludge waste water treatment 

processes using integrated neural networks and a first principle model 

Transport phenomena: modelling of unsteady heat conduction fields by using 

composite recurrent neural networks 

These are among many examples of the applications of neural networks in chemical 

engineering. The range of interests and applications continues to grow every day in 

chemical engineering, as well as in all other fields. 

There are a number of advantages and disadvantages related to the use of neural 

networks. 

Advantages 

They have the ability to represent complex linear and nonlinear relationships; they 

learn this relationships from modelled data. 

There is no need to know the data relationships before building a neural network. 

Neural nets are general, thus they can handle problems with diverse parameters and 

are able to classify a very complex distribution. 

Simple elements operating in parallel permit solutions to problems where multiple 

constraints can be satisfied simultaneously. 

Graceful degradation and final presentation of results. 

Rules are implicit rather than explicit, thus eliminating the need for the user to 

formulate the rules. 

Disadvantages 

Neural networks take training data and generate opaque, complex models, thus it is 

very difficult to determine how the net is making its decision. 
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Because the opaque complex models are very diverse, no one network of the same 

problem is the same. 

The trained data may sometimes contain what are termed ‘chance effects’, but this is 

intrinsically built into the model where else this ‘chance’ may indeed never occur 

again e.g. Zuma announces his presidential candidacy, the stock market shifts. 

Neural networks are unable to manage imprecise or vague information. 

They are unable to handle linguistic information and thus unable to combine numeric 

data with linguistic data. 

There is heavy reliance on trial and error to determine the number of layers, number 

of nodes, transfer functions and training functions. 

2.2.3 Neural network feedforward backpropagation 

Backpropagation is also known as the backpropagation of errors, and was created by 

generalising the Widrow-Hoff learning rule, which is a gradient descent algorithm 

(Rumelhart & McClelland, 1986). The gradient descent algorithm is an optimisation 

algorithm to find a local minimum. The algorithm takes steps proportional to the 

negative of the gradient and thus the network weights are adjusted along the 

negative of the gradient. Backpropagation is used for feedforward networks that have 

no feedback or networks that do not have connections that loop. 

Backpropagation requires that transfer functions used in the hidden layer are 

differentiable, and backpropagation networks usually have multiple layers. The errors 

are said to propagate backwards from the outer nodes to the inner nodes, thus 

calculating the gradient of the error of the network with respect to the adjusted 

weights of the network. Although the standard backpropagation is a gradient descent 

algorithm, there are a number of variations on the basic algorithm, based on different 

methods of optimisation, such as the conjugate gradient and the Newton method. 

The input vectors and corresponding output vectors are presented to a chosen multi-

layered nonlinear network and are trained until the network can approximate a 

function that associates a specific input with a specific output. Properly trained 

backpropagation networks are capable of approximating any function and, once 

trained, give reasonable answers if they are presented with inputs they have never 

seen. 
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Neurons use any differentiable function to generate their output, but the commonly 

used transfer function is logsigmoid and tansigmoid. The transfer function calculates 

a layer’s output from the net input. 

                 (2.26) 

Feedforward networks have one or more layers of sigmoid neurons, followed by an 

output layer of linear neurons. The multiple layers of nonlinear transfer functions 

allow the network to train nonlinear and linear relations between the input and output. 

The linear output layer produces outputs of values between the range of 1 and -1. 

The logsigmoid, tansigmoid and purelin transfer functions are shown below: 

Purelin 

Purelin is a transfer function that calculates the output of a layer from its net input. 

Since it is a linear transfer function, it simply returns the value passed to it according 

to the expression: 

f(n) = n                    (2.27) 

-5

-4

-3

-2

-1

0

1

2

3

4

5

-5 -4 -3 -2 -1 0 1 2 3 4 5

n

f(n
)

 
Figure 2.4: Purelin transfer function with f(n) = purelin (n) = purelin(Wp+b) 
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This transfer function is important, as it finds linear approximation to nonlinear 

functions. However, this does not mean that a linear network can be made to perform 

a nonlinear computation. 

Nonlinear transfer function 

Tansigmoid 

Tansigmoid is a transfer function that calculates the output of a layer from its net 

input, which can range from plus to minus infinity. It takes input and returns outputs 

squashed between -1 and 1, where f is an exponential function in the format: 

              (2.28) 
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Figure 2.5: Tansigmoid transfer function with f(n) = tansig(n) = tansig (Wp+b) 

  

Logsigmoid 
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Logsigmoid is a transfer function that calculates the output of a layer from its net 

input, which can range between plus and minus infinity. It takes input and returns 

each element of N squashed between 0 and 1 according to the expression: 

               (2.29) 
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Figure 2.6: Logsigmoid transfer function with f(n)= logsig(n) = logsig(Wp+b) 

 

2.2.4 Summary of the backpropagation algorithm  

The backpropagation algorithm learns to recognise and reproduce patterns 

iteratively, where weights are adjusted in order to minimise error with a pre-defined 

selected criterion. The four steps of the algorithm are summarised below: 

2.1.1.1 Initialise weights or start from random weight state 
 

2.1.1.2 The output of the network is evaluated (forward pass) 

The purpose of the nodes in the input layer is to transmit the received single 

external input to all nodes of the next layer. 

The output of the kth input of the pth example is shown in Figure 2.7. 
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Figure 2.7: Input layer in the forward pass (Tsaptsinos, 1995) 

This can be written as: 

                  (2.30) 
 

The function of any other node is to receive inputs, sum the weighted inputs plus the 

bias, nonlinearly/linearly convert the sums and transmit the outputs to the nodes in 

the next layer or to the external environment.  

O    - represents an input, hidden and output node 

W  - represents the bias, default value = 1 

  - represents the weights 

    - represents the unidirectional flow placed on the connections 

The output of the lth hidden layer is shown graphically in Figure 2.8. 

This is written as 

l l l llK            (2.31)  

 
1

l llk
                (2.32) 

The nonlinear transformation using the transfer function is represented as follows: 

 l                 (2.33) 
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Figure 2.8: Hidden layer in the forward pass (Tsaptsinos, 1995) 

The equations 2 to 4 represent one hidden layer, but for more than one hidden layer 

the equations are similarly derived, although for different numbers of layers. 

The output layer of the mth output node is shown graphically in Figure 2.8. 

It can be written as  

                             (2.34) 

 
  
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Figure 2.9: Output layer in the forward pass (Tsaptsinos, 1995) 

Then  

                (2.35) 

2.1.1.3 The error is calculated (error criterion) 

The error criterion E measures the difference between the actual outputs of the 

output node of the network ( py m ) and the desired outputs ( ). 

This is given by: 

                (2.36) 

The total error for all can be summed up by the following equation: 

                  (2.37) 
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A tolerance level t can be determined for the outputs: 

If the required output is zero, any network output below t is considered correct. If the 

required output is one, any network output greater than 1-t is considered correct. If 

there is a continuous output, the generated output is considered correct if it lies within 

t of the desired value.   

2.1.1.4 The weights are adjusted (backward pass) 

In order to minimise E, which depends on the weights and biases, the 

backpropagation uses gradient steepest descent in order to locate appropriate 

weights and biases. The gradient descent algorithm works in such a way that it 

changes each weight by an amount proportional to the gradient of the error criterion 

at the present weight location. 

The backward pass is symbolised by the following equation: 

                                          (2.38) 

The gradient  can be found using the following equation: 

                           (2.39) 

Where n determines the step size the descent takes and is negative, as the aim is to 

decrease the error. 

The generalised delta rule can be summarised after much derivation and is given by: 

                (2.40) 

n: learning rate 

: “delta term” representing the error 

x: represents the incoming inputs to a particular node 
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Weights on the connection between the hidden layer and the output layer 
( )  

These weights are adjusted with the following summarised equations. The 

derivations are left out with generic node and weight one at a time, thus summation is 

dropped: 

                 (2.41) 

py m   is the output of the output layer node; then 

             (2.42) 

The gradient is then given as: 

          (2.43) 

Weights on the connection between the input layer and the hidden layer 
 

The weights are adjusted for the backpass with the following summarised equations. 

There is one generic node and weight at a time, and the summation is therefore 

dropped for the purposes of simplification: 

                (2.44) 

 is effectively the input of the first hidden layer. 
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  

                  (2.45) 

Simplifying the equation above, 

             (2.46) 

The gradient is then: 

              (2.47) 

Where the delta ( ) term of this layer is represented by: 

              (2.48) 

Notice the delta term for the input hidden layer uses the delta term for the hidden 

output layer, as they are interconnected. 

The new weights for the input hidden layer and the hidden output layer are calculated 

by means of the following two equations: 

              (2.49) 

           (2.50) 

The summary of these steps, namely forward pass, error criterion and 
backward pass, is the following: 

1. Initialise all weights 

Present the input variables to the nodes in the input layer. 

Calculate the output of every input variable with the following equation 
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                                          (1a) 

Calculate the output of every hidden node using the transfer function chosen; in this 

case a logsigmoid function was used. The output of a hidden layer is a nonlinear 

transformation of the sum of the product of incoming inputs from the previous layer 

and the associated weights, plus the bias. 


                                        (1b) 

Calculate the output of every output node using the following equation, which also 

utilises the logsigmoid function as the transfer function. The output of a node from the 

output layer is a nonlinear transformation of the sum of the product of incoming 

inputs from the previous layer and the associated weights, plus the bias.  


                             (1c) 

Calculate the error, which is the difference between the target values and the values 

generated by the network, multiplied by 0.5. 

                (1d) 

 

2. Accumulate the total error. 

                   (2a) 

3. If the total error is satisfactory, stop; otherwise continue to the next step. 

4. For each layer and for the input/output pair, calculate the following: 

Delta values, using the following equation: 

              (4a) 

                (4b) 
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Calculate the change required for each weight using the following equations;  

represents the steepness parameter, and is usually set to 0.5 or to 1: 

                        (4c) 

                                                                      (4d)  

                                                                             (4e) 

          (4f) 

For each weight, amass the total change required. 

5. Adjust the weights using the following equations: 

                                                                           (5a) 

                                                                                        (5b) 

                                                                                          (5c)                                            

                                   (5d)

     

6. Continue from step 1 until step 3 is satisfactory.  



 32

3. RESEARCH METHODOLOGY 

3.1  DATA 

The data used were generated randomly in Microsoft Excel. The range was set so 

that every term in the set equation contributed within the set range. After a review of 

the literature and a comparative study, the range of 1 to 10 was chosen. For a proper 

comparative study to be done, four equations were set to generate the random 

values. When the random values were generated, the missing variables were added 

as dummy variables. 

Equation 1 with 5 input variables: 

 dummy variables: x3, x4 

Equation 2 with 5 input variables: 

 dummy variables: x2, x4 

Equation 3 is a combination of equation 1 and equation 2, with 10 input variables: 

 

dummy variables: x3, x4, x7, x9 

Equation 4 has seven input variables: 

 dummy variables: x3, x4, x5 

This was done for 1 000 observations. The purpose was to check if these dummy 

variables inserted in the equation contributed any significant difference to the 
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regression value and to check if they were detected by the ANN as suspect 

variables. 

3.2 MATLAB REGRESSION 

The general equations were used for generating random data of a range between 1 

and 10. A number of matrices were constructed for all variables and exported to 

Matlab. 

In general, the number of matrices created for each given equation is directly 

proportional to the number of input variables.  

Number of matrices = number of input variables + 2 

The output variable remains constant for each equation, as it is determined by the 

equation. At first, all input variables are utilised in calculating the regression values, 

and then one variable is successfully removed from the input while creating new 

matrices. 

All matrices in Matlab for the command regression have to be formatted with a 

column of ones. The column of ones is for estimating the y intercept of the linear 

model. The y intercept in the equation below is represented by  and it is the only 

standalone constant. 

The command in Matlab: 

                 (3.1) 

returns the least squares fit of Yall on Xall by solving the linear model where 

                                                                                                    (3.2) 

                  (3.3) 

for  where: 
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 is an n-by-1 vector of output variables  

 is an n-by-p matrix of input variables   

  is a p-by-1 vector of parameters   

 is an n-by-1 vector of random disturbances 

 
                (3.4) 

The command above provides an estimate of  in b. Since a column of one has 

been added to the Xall matrix, there is a p-by-1 vector of  estimates from the least 

squares fit. b constants, which are estimates of the βi of the equation 

 

 is a p-by-2 vector gives for all datasets (Xall, Yall) with a range in which 95% of 

the bi values lie. In other words, 95% of the β estimates lie within a classified multiple 

of the respective standard deviation. 

The residuals are defined as 

                 (3.5) 

This is returned in r and which is a n-by-1 vector 

 is an n-by-2 vector is a p-by-2 vector gives for all datasets (Xall, Yall) with a 

range in which 95% of the ri values lie. In other words, 95% of the residuals lie within 

a classified multiple of the respective standard deviation. 

The vector stats contains the R2 statistic along with the F and p values for the 

regression. 
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Equation 1:  dummy variables x3, x4 

The first matrix, Xall, will contain ones and the input variables X1, X2, X3, X4, X5, a 1 

000 by 6 matrix, while Yall will have the output variable, a vector with 1 000 rows. 

The second matrix, Xno1, will contain ones and the input variables X2, X3, X4, X5 , a 1 

000 by 5 matrix, while Yno1 will have the output variable, a vector with 1 000 rows.  

The third matrix, Xno2, will contain ones and the input variables X1, X3, X4, X5 , a 1 000 

by 5 matrix, while Yno2 will have the output variable, a vector with 1 000 rows.  

The fourth matrix, Xno3, will contain ones and the input variables X1, X2, X4, X5 , a 1 

000 by 5 matrix while Yno3 will have the output variable, a vector with 1 000 rows. 

The fifth matrix, Xno4, will contain ones and the input variables X1, X2, X3, X5 , a 1000 

by 5 matrix, while Yno4 will have the output variable, a vector with 1 000 rows.  

The sixth matrix, Xno5, will contain ones with input variables X1, X2, X3, X4  , a 1000 by 

5 matrix,  while Yno5 will have the output variable, a vector with 1 000 rows.  

The seventh matrix created removes the dummy variables X3 and X4. It is called Xno34 

and has ones and the input variables X1, X2, X5 ,   a 1000 by 4 matrix. The output 

variable is Yno34  and will have a vector with 1 000 rows. 

Most importantly, the output vector remains constant for comparison, because the 

dummy variables X3, and X4 do not contribute to the output and thus the regression 

value should not be altered by their presence. 

Thus, this set of data has seven matrices in total. These are the matrices that were 

created in Excel spreadsheets and exported to Matlab for the regression for the first 

dataset. 

Actual commands in Matlab 

 [b,bint,r,rint,stats] = regress(Yall,Xall); 

[bno1,bintno1,rno1,rintno1,statsno1] = regress(Yno1,Xno1); 
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[bno2,bintno2,rno2,rintno2,statsno2] = regress(Yno2,Xno2); 

[bno3,bintno3,rno3,rintno3,statsno3] = regress(Yno3,Xno3); 

[bno4,bintno4,rno4,rintno4,statsno4] = regress(Yno4,Xno4); 

[bno5,bintno5,rno5,rintno5,statsno5] = regress(Yno5,Xno5); 

 [bno34,bintno34,rno34,rint34,stats34] = regress(Yno34,Xno34); 

STATS = [stats; statsno1; statsno2; statsno3; statsno4; statsno5; statsno34] 

B = [bno1 bno2 bno3 bno4 bno5] 

Equation 2:  dummy variables x2, x4 

 

The first matrix, Xall, will contain ones and the input variables X1, X2, X3, X4, X5, a 1 

000 by 6 matrix, while Yall will have the output variable, a vector with 1 000 rows. 

The second matrix, Xno1, will contain ones and the input variables X2, X3, X4, X5, a 

1000 by 5 matrix, while Yno1 will have the output variable, a vector with 1000 rows.  

The third matrix, Xno2, will contain ones and the input variables X1, X3, X4, X5, a 1000 

by 5 matrix, while Yno2 will have the output variable, a vector with 1000 rows.  

The fourth matrix, Xno3, will contain ones and the input variables X1, X2, X4, X5, a 

1000 by 5 matrix, while Yno3 will have the output variable, a vector with 1000 rows.  

The fifth matrix, Xno4, will contain ones and the input variables X1, X2, X3, X5, a 1000 

by 5 matrix, while Yno4 will have the output variable, a vector with 1000 rows.  

The sixth matrix, Xno5, will contain ones and the input variables X1, X2, X3, X4, with 

1000 by 5 matrix, while Yno5 will have the output variable, a vector with 1000 rows.  

The seventh matrix removes the dummy variables X2 and X4, is called Xno24 and has 

ones and input variables X1, X2, X5, a 1000 by 4 matrix. The output variable is Yno24 

and will have a vector with 1000 rows. 
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Most importantly, the output vector remains constant for comparison, because the 

dummy variables X2, and X4 do not contribute to the output and thus the regression 

value should not be altered by their presence. 

Thus, this set of data has seven matrices in total. These are the matrices that were 

created in Excel spreadsheets and exported to Matlab for the regression for the 

second dataset. 

Actual commands in Matlab 

[b,bint,r,rint,stats] = regress(Yall,Xall); 

[bno1,bintno1,rno1,rintno1,statsno1] = regress(Yno1,Xno1); 

[bno2,bintno2,rno2,rintno2,statsno2] = regress(Yno2,Xno2); 

[bno3,bintno3,rno3,rintno3,statsno3] = regress(Yno3,Xno3); 

[bno4,bintno4,rno4,rintno4,statsno4] = regress(Yno4,Xno4); 

[bno5,bintno5,rno5,rintno5,statsno5] = regress(Yno5,Xno5); 

 [bno24,bintno24,rno24,rint24,stats24] = regress(Yno24,Xno24); 

STATS = [stats; statsno1; statsno2; statsno3; statsno4; statsno5; statsno24] 

B = [bno1 bno2 bno3 bno4 bno5] 

Equation3:  

Dummy variables are x3, x4, x7, x9 

The third equation is a combination of the first two equations. 

The first matrix, Xall, will contain ones and the input variables X1, X2, X3, X4, X5, X6, 
X7, X8, X9, X10, a 1000 by 11 matrix, while Yall will have the output variable, a vector 

with 1000 rows. 

The second matrix, Xno1, will contains ones and the input variables X2, X3, X4, X5, X6, 
X7, X8, X9, X10, a 1000 by 10 matrix, while Yno1 will have the output variable, a vector 

with 1000 rows.  
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The third matrix, Xno2, will contain ones and with input variables X1, X3, X4, X5, X6, X7, 
X8, X9, X10, a 1000 by 10 matrix, while Yno2 will have the output variable, a vector with 

1000 rows.  

The fourth matrix, Xno3, will contain ones and input variables X1, X2, X4, X5, X6, X7, X8, 
X9, X10, a 1000 by 10 matrix, while Yno3 will have the output variable, a vector with 

1000 rows.  

The fifth matrix, Xno4, will contain ones and the input variables X1, X2, X3, X5,  X6, X7, 
X8, X9, X10, a 1000 by 10 matrix, while Yno4 will have the output variable, a vector with 

1000 rows.  

The sixth matrix, Xno5, will contain ones and the input variables X1, X2, X3, X4, X6, X7, 
X8, X9, X10, a 1000 by 10 matrix, while Yno5 will have the output variable, a vector with 

1000 rows. 

The seventh matrix, Xno6, will contain ones and the input variables X1, X2, X3, X4, X5, 
X7, X8, X9, X10, a 1000 by 10 matrix, while Yno5 will have the output variable, a vector 

with 1000 rows. 

The eighth matrix, Xno7, will contain ones and input variables X1, X2, X3, X4, X5, X6, X8, 
X9, X10, a 1000 by 10 matrix, while Yno5 will have the output variable, a vector with 

1000 rows. 

The ninth matrix, Xno8, will contain ones and input variables X1, X2, X3, X4, X5, X6, X7, 
X9, X10, a 1000 by 10 matrix, while Yno5 will have the output variable, a vector with 

1000 rows. 

The tenth matrix , Xno9, will contain ones and input variables X1, X2, X3, X4, X5, X6, X7, 
X8, X10, a 1000 by 10 matrix, while Yno5 will have the output variable, a vector with 

1000 rows. 

The eleventh matrix, Xno10, will contain ones and input variables X1, X2, X3, X4, X5, X6, 
X7, X8, X9, a 1000 by 10 matrix, while Yno5 will have the output variable, a vector with 

1000 rows. 
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The twelfth matrix, Xno3479, will contain ones and input variables X1, X2, X4, X5, X6, X8, 
X10, a 1000 by 8 matrix, while Yno5 will have the output variable, a vector with 1000 

rows. 

Thus, this set of data has 12 matrices in total. These are the matrices that were 

created in Excel spreadsheets and exported to Matlab for the regression for the third 

dataset. 

Actual commands in Matlab 

[b,bint,r,rint,stats] = regress(Yall,Xall); 

[bno1,bintno1,rno1,rintno1,statsno1] = regress(Yno1,Xno1); 

[bno2,bintno2,rno2,rintno2,statsno2] = regress(Yno2,Xno2); 

[bno3,bintno3,rno3,rintno3,statsno3] = regress(Yno3,Xno3); 

[bno4,bintno4,rno4,rintno4,statsno4] = regress(Yno4,Xno4); 

[bno5,bintno5,rno5,rintno5,statsno5] = regress(Yno5,Xno5); 

[bno6,bintno6,rno6,rintno6,statsno6] = regress(Yno6,Xno6); 

[bno7,bintno7,rno7,rintno7,statsno7] = regress(Yno7,Xno7); 

[bno8,bintno8,rno8,rintno8,statsno8] = regress(Yno8,Xno8); 

[bno9,bintno9,rno9,rintno9,statsno9] = regress(Yno9,Xno9); 

[bno10,bintno10,rno10,rintno10,statsno10] = regress(Yno10,Xno10); 

[bno3479,bintno3479,rno3479,rintno3479,statsno3479]=regress(Yno3479,Xn

o3479); 

STATS = [stats; statsno1; statsno2; statsno3; statsno4; statsno5; statsno6; statsno7; 

statsno8; statsno9; statsno10; statsno3479] 

B = [bno1 bno2 bno3 bno4 bno5 bno6 bno7 bno8 bno9 bno10] 

Equation 4:  

Dummy variables are x3, x4, x5 

The first matrix, Xall, will contain ones and the input variables X1, X2, X3, X4, X5, X6, 
X7, a 1000 by 8 matrix, while Yall will have the output variable, a vector with 1000 

rows. 
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The second matrix, Xno1, will contain ones and the input variables X2, X3, X4, X5, X6, 
X7, a 1000 by 7 matrix, while Yno1 will have the output variable, a vector with 1000 

rows.  

The third matrix, Xno2, will contain ones and the input variables X1, X3, X4, X5, X6, X7, 

a 1000 by 7 matrix, while Yno2 will have the output variable, a vector with 1000 rows.  

The fourth matrix, Xno3, will contain ones and input variables X1, X2, X4, X5, X6, X7, a 

1000 by 7 matrix, while Yno3 will have the output variable, a vector with 1000 rows.  

The fifth matrix, Xno4, will contain ones and the input variables X1, X2, X3, X5,  X6, X7, a 

1000 by 7 matrix, while Yno4 will have the output variable, a vector with 1000 rows.  

The sixth matrix, Xno5, will contain ones and the input variables X1, X2, X3, X4, X6, X7, a 

1000 by 7 matrix, while Yno5 will have the output variable, a vector with 1000 rows. 

The seventh matrix, Xno6, will contain ones and the input variables X1, X2, X3, X4, X5, 
X7, a 1000 by 7 matrix, while Yno5 will have the output variable, a vector with 1000 

rows. 

The eighth matrix, Xno7, will contain ones and input variables X1, X2, X3, X4, X5, X6, a 

1000 by 7 matrix, while Yno5 will have the output variable, vector with 1000 rows. 

The ninth matrix, Xno345, will contain ones and input variables X1, X2, X6, X7, a 1000 by 

5 matrix, while Yno5 will have the output variable, vector with 1000 rows. 

Thus, this set of data has nine matrices in total. These are the matrices that were 

created in Excel spreadsheets and exported to Matlab for the regression for the 

fourth dataset. 

Actual commands in Matlab 

[b,bint,r,rint,stats] = regress(Yall,Xall); 

[bno1,bintno1,rno1,rintno1,statsno1] = regress(Yno1,Xno1); 

[bno2,bintno2,rno2,rintno2,statsno2] = regress(Yno2,Xno2); 

[bno3,bintno3,rno3,rintno3,statsno3] = regress(Yno3,Xno3); 

[bno4,bintno4,rno4,rintno4,statsno4] = regress(Yno4,Xno4); 
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[bno5,bintno5,rno5,rintno5,statsno5] = regress(Yno5,Xno5); 

[bno6,bintno6,rno6,rintno6,statsno6] = regress(Yno6,Xno6); 

[bno7,bintno7,rno7,rintno7,statsno7]=regress(Yno7,Xno7); 

[bno345,bintno345,rno345,rintno345,statsno345]=regress(Yno345,Xno345); 

STATS = [stats; statsno1; statsno2; statsno3; statsno4; statsno5; statsno6; statsno7; 

statsno345] 

B = [bno1 bno2 bno3 bno4 bno5 bno6 bno7] 

3.3 NEURAL NETWORK 

3.3.1 Backpropagation Algorithm 

There are many variations of the backpropagation algorithm, depending on the 

different methods of optimisation. The simplest is the generalisation of the steepest 

descent method (Rumelhart & McClelland, 1986) applied to a feedforward neural 

network. The network learning updates the weights and biases in the negative 

direction in which the performance function decreases most rapidly. The architecture 

that is commonly used for the feedforward backpropagation algorithm is a multilayer 

network as represented in Figure 10 below. 
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Figure 3.1: Structure of a feedforward neural network with two transfer functions 

The neural network model is made up of three layers: input, hidden and output. 

The system learns by adjusting its weights, Wj,k, while the inputs and outputs are 

presented to the model in a normalised format. During the fitting process, there are a 

number of network parameters that can be adjusted to give a better approximation of 

the output. The parameters are: 

Number of neurons in the various layers 

Number of layers 

Transfer functions chosen in each of those layers 

The learning parameters: rate of change of damping/accelerating factor 

The rate of learning 

Optimisation method chosen (search algorithms) 
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Figure 3.1 shows three layers: input, hidden and output. Each layer comprises weight 

matrix, summation units, the bias vector b, the transfer function boxes and the output 

vector a. The inputs are represented by xp1, xp2,…., xpR, where R is the number of 

elements in the input vector. The inputs are each assigned a weight: w1,1, w1,2….w1,R. 

The input elements enter the network and are represented as a matrix W. 

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

R

R

S S S R

w w w
w w w

w w w

 
 
   
  
 

M M M
                 (3.6) 

Each element in the input vector y is connected to each neuron through the weight 

matrix W, and each neuron has a bias bi, a summation, a transfer function f and an 

output ai. All together, the outputs yi give the output vector y. 

                                                         (3.7) 

This equation is written in the matrix form: 

                                                                                                             (3.8) 

In the equation above, the neuron has a bias b, which is summed with the weighted 

inputs to form the equation. Generally the summation units find the net value once 

the inputs are fed to the neuron; this net value is calculated by finding the product of 

each input value and the corresponding connection weights. 

The two neuron output can be written as: 

                                                                                                 (3.9) 

                                                                                          (3.10) 

In this particular case,  

   and                                                              (3.11) 
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Thus, from Figure 10, the output a becomes: 

                                                                        (3.12) 

All together, the equation for output for our particular system is: 

                                                     (3.13) 

3.3.2 Creating a neural net using backpropagation. 

The following steps were followed in creating a neural net. 

3.3.2.1 Build matrix 

The matrix for the neural net was derived from the random data that were generated 

from the four equations in the range of 1 to 10. 

Xall comprises all the input variables x1, x2,……., xk. 

Yall comprises the output variable y 

3.3.2.2 Invert the matrix 

The Xall and Yall matrices were inverted, with xall and yall becoming the inverted 

matrices respectively. The inversion is important, as all matrix operations in the 

Matlab neural net are row operations, while the operations in Excel are done in 

columns. 

3.3.2.3 Separate the set into training, validation and test set 

Training set: The dataset for the training set comprises a quarter of the dataset to 

form a training subset. 

Validation set: The dataset for the validation set comprises a quarter of the dataset to 

form a validation set 

Test set: The dataset for the test set comprises half of the remaining data, which then 

forms the test set. 
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All the sets were set as equally spaced points throughout the original dataset. 

3.3.2.4 Scale the training set 

The input training subset was rearranged from minimum values to maximum values 

using the command minmax. 

Pr = minmax(input training subset)                                                                   (3.14) 

The command minmax takes the input training subset, an R x Q matrix, and returns 

an R x 2 matrix, Pr. This has minimum and maximum values for each row of the input 

training subset. 

The purpose of arranging the training subset from minimum to maximum is to 

determine the range of the inputs to be used in creating the network. 

3.3.2.5 Create the net 

The first step in creating the net is to set the feedforward structure in which each 

layer only receives inputs from the previous layers. The function newff creates the 

feedforward network. 

Initially, when training a feedforward network, it is vital to create the network object. 

This requires four inputs and returns the network object, which are as follows: 

The first input is an R by 2 matrix of minimum and maximum values for each of the R 

elements of the input vector that were created previously. 

The second input is a range containing the sizes of each layer. This is the number of 

neurons, including weights and bias, a summing junction and an output transfer 

function.  

The third input is a group that contains the names of the transfer functions to be used 

in each layer.  

The final input contains the name of the training function to be used. 

There are a number of transfer functions that could be used and tansigmoid is the 

default transfer function of Matlab. Tansig, as it is known in short in Matlab, is used 

frequently, as it is differentiable and is a prerequisite in the hidden layer in 
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backpropagation. The training function serves the purpose of mapping the net output 

of the neurons (or layers) according to their actual output. 

The training functions are created in Matlab to provide a training algorithm for the 

feedforward backpropagation. The different algorithms use the gradient of the 

performance function to determine how to adjust the weights to reduce performance. 

The task of the training algorithms is to reduce the mean square error (mse), which is 

the average squared error between the network outputs and the target output. The 

default performance function is mse (mean square error). 

All the algorithms use the gradient of the performance function to determine weight 

adjustments to minimise the mean square error. The gradient determination provides 

the name, backpropagation – a technique that executes computations through the 

network backwards. 

The several different backpropagation training algorithms have a variety of different 

computational and capacity requirements, and no one algorithm is best suited to all 

situations. Examples of backpropagation training functions used by Matlab include 

trainlm, trainbfg, trainrp and traingd. The transfer functions can be any differentiable 

transfer function, such as tansig, logsig or purelin.  

A caution is issued when using trainlm as the default training function, because it is 

very fast and therefore requires a lot of memory to run. 

The default training algorithm used is trainlm, a network training function that updates 

weight and bias values according to Levenberg-Marquardt optimisation. The 

Levenberg-Marquardt optimisation is an algorithm for least squares estimation of 

nonlinear parameters that outperforms gradient descent and conjugate algorithms by 

approaching the second order training speed through approximating the Hessian 

matrix rather than computing it. 

The trainlm of the training function has the following default values:  

100 epochs: presentation of the set of training input and target pairs to a network and 

the calculation of new weights and biases. This is done in batch 

Minimum performance gradient of  
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A factor of 1 to use for memory/speed 

Performance goal of zero 

A weight/bias learning function, 'learngdm' which is a gradient descent weight and 

bias learning function with momentum. 

3.3.2.6 Train the net 

Once the feedforward backpropagation network has been created, the net can be 

trained, using the command: 

net,TR,Y] = train(net,P,T,Pi,Ai,val,test)                                                             (3.15) 

The command net, takes the seven inputs, which are: 

The neural network net 

P, the network inputs  

T, the network targets 

Pi, which has a default value of zero, the initial input delay conditions 

Ai, which also has a default value of zero, the initial layer delay conditions 

val, which is the structure of the validation vectors  

test, the structure of the test vectors 

The command train then returns the three outputs as follows: 

Net, a new network  

TR, the training record (showing epoch and performance ‘mse’)  

Y, the network outputs  

3.3.3 Mutual net for the four equations 

The general equations are used for generating random data of a range between 1 

and 10. A matrix with inputs and output is constructed for all variables and then 

exported to Matlab. 
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The matrix Xall will contain all the input variables X1, X2, X3, X4, X5 etc., while Yall will 

have the output variable, a vector with 1 000 rows. These are exported from Excel to 

Matlab, and these matrices are transposed on xall and yall respectively. 

A network is created with a two-layer network, a tansigmoid transfer function in the 

hidden layer, and a purelin linear transfer function in the output layer. 

An initial guess is made of the number of neurons in the hidden layer. It is usually 

prudent to start the initial guess according to the following equation: 

 

The dataset has one output, thus the network should have one output neuron. The 

Levenberg-Marquardt algorithm is used for training. 

The actual commands are: 

xall = Xall’;                              %transposes Xall 

yall = Yall’;                               %transposes Yall     

iitst = 2:4:1000;                         %space 4 starting 2nd column 

iival = 4:4:1000;                        %space 4 starting 4th column 

iitr = [1:4:1000 3:4:1000];                   %space 4 starting at multiple area 

val.P = xall(:,iival); val.T = yall(:,iival); %validation set ¼ of the data 

test.P = ptrans(:,iitst); test.T = tn(:,iitst);%test set ¼ of the data 

ptr = ptrans(:,iitr); ttr = tn(:,iitr);              %training set ½ of the data 

net=newff(minmax(ptr),[noofneuronsinhiddenlayer,noofneuronsintheouter 

layer],{'tansig' 'purelin'},'trainlm'); 

 

%create a feedforward backpropagation network with two layers and     

%tansigmoid, purelin as the transfer functions 

%the training function is trainlm, the Levenberg-Marquardt optimisation 

% the training set from the input dataset is used  
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 [net,tr]=train(net,ptr,ttr,[ ],[ ],val,test); 

%a net is created with default zero values for input delay conditions and input  

%layer delay conditions. The training function utilises the training data subset   

%to return a new net, giving a record of the epochs.  

%The training will stop after a number of iterations when errors increase. 

plot(tr.epoch,tr.perf,tr.epoch,tr.vperf,tr.epoch,tr.tperf) 

legend('Training','Validation','Test',-1);    

ylabel('Squared Error'); xlabel('Epoch')    

The above 3 commands are for plotting training, validation and test errors to check 

the progress of training. 

a = sim(net,xall);                                  

Simulates the network to return the simulated y values 

[m,b,r] = postreg(a, yall)                       % 

Regression analysis of Yall (target) and ‘a’ which is the Y values as simulated by the 

network. This gives a feel of how accurate or good a fit is the simulated model 

estimating the actual model. 

3.3.3.1 Equation 1:  dummy variables x3, x4 

The matrix Xall will contain all the input variables X1, X2, X3, X4, X5, thus a 1 000 by 5 

matrix, while Yall will have the output variable, a vector with 1000 rows. These are 

exported from Excel to Matlab, and these matrices are transposed to xall and yall 

respectively 

In Equation 1, a network is created with a two-layer network, a tansigmoid transfer 

function in the hidden layer, and a purelin linear transfer function in the output layer. 

An initial guess is made of the number of neurons in the hidden layer, which is five. 

The dataset has one output, thus the network should have one output neuron. The 

Levenberg-Marquardt algorithm is used for training. 
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The actual commands are: 

xall = Xall’; 

yall = Yall’; 

iitst = 2:4:1000; 

iival = 4:4:1000; 

iitr = [1:4:1000 3:4:1000]; 

val.P = xall(:,iival); val.T = yall(:,iival); 

test.P = ptrans(:,iitst); test.T = tn(:,iitst); 

ptr = ptrans(:,iitr); ttr = tn(:,iitr); 

net = newff(minmax(ptr),[5 1],{'tansig' 'purelin'},'trainlm'); 

[net,tr]=train(net,ptr,ttr,[ ],[ ],val,test); 

plot(tr.epoch,tr.perf,tr.epoch,tr.vperf,tr.epoch,tr.tperf) 

legend('Training','Validation','Test',-1); 

ylabel('Squared Error'); xlabel('Epoch') 

a = sim(net,xall); 

[m,b,r] = postreg(a, yall) 

3.3.3.2 Equation 2:  dummy variables 
x2, x4 

The matrix Xall will contain all the input variables X1, X2, X3, X4, X5, thus a       1 000 

by 5 matrix, while Yall will have the output variable, a vector with 1 000 rows. These 

are exported from Excel to Matlab, and these matrices are transposed to xall and yall 

respectively 

In Equation 2, a network is created with a two-layer network, a tansigmoid transfer 

function in the hidden layer, and a purelin linear transfer function in the output layer. 

An initial guess is made of the number of neurons in the hidden layer, which is five. 

The dataset has one output, thus the network should have one output neuron. The 

Levenberg-Marquardt algorithm is used for training. 

The actual commands are: 

xall = Xall’; 

yall = Yall’; 
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iitst = 2:4:1000; 

iival = 4:4:1000; 

iitr = [1:4:1000 3:4:1000]; 

val.P = xall(:,iival); val.T = yall(:,iival); 

test.P = ptrans(:,iitst); test.T = tn(:,iitst); 

ptr = ptrans(:,iitr); ttr = tn(:,iitr); 

net = newff(minmax(ptr),[5 1],{'tansig' 'purelin'},'trainlm'); 

[net,tr]=train(net,ptr,ttr,[ ],[ ],val,test); 

plot(tr.epoch,tr.perf,tr.epoch,tr.vperf,tr.epoch,tr.tperf) 

legend('Training','Validation','Test',-1); 

ylabel('Squared Error'); xlabel('Epoch') 

a = sim(net,xall); 

[m,b,r] = postreg(a, yall) 

3.3.3.3 Equation 3: 

 

Dummy variables are x3, x4, x7, x9 

The third equation is a combination of the first two equations. The matrix Xall will 

contain all the input variables, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, thus a 1 000 by 

10 matrix, while Yall will have the output variable, a vector with 1 000 rows. These are 

exported from Excel to Matlab, and these matrices are transposed to xall and yall 

respectively 

In Equation 2, a network is created with a two-layer network, a tansigmoid transfer 

function in the hidden layer, and a purelin linear transfer function in the output layer. 

An initial guess is made of the number of neurons in the hidden layer, which is 10. 

The dataset has one output, thus the network should have one output neuron. The 

Levenberg-Marquardt algorithm is used for training. 

The actual commands are: 

xall = Xall’; 

yall = Yall’; 

iitst = 2:4:1000; 



 52

iival = 4:4:1000; 

iitr = [1:4:1000 3:4:1000]; 

val.P = xall(:,iival); val.T = yall(:,iival); 

test.P = ptrans(:,iitst); test.T = tn(:,iitst); 

ptr = ptrans(:,iitr); ttr = tn(:,iitr); 

net = newff(minmax(ptr),[10 1],{'tansig' 'purelin'},'trainlm'); 

[net,tr]=train(net,ptr,ttr,[ ],[ ],val,test); 

plot(tr.epoch,tr.perf,tr.epoch,tr.vperf,tr.epoch,tr.tperf) 

legend('Training','Validation','Test',-1); 

ylabel('Squared Error'); xlabel('Epoch') 

a = sim(net,xall); 

[m,b,r] = postreg(a, yall) 

3.3.3.4 Equation 4:  

Dummy variables are x3, x4, x5 

The matrix Xall will contain all the input variables, X1, X2, X3, X4, X5, X6, X7, a    1 000 

by 7 matrix, while Yall will have the output variable, a vector with 1 000 rows. These 

are exported from Excel to Matlab, and these matrices are transposed to xall and yall 

respectively 

In Equation 2, a network is created with a two-layer network, a tansigmoid transfer 

function in the hidden layer, and a purelin linear transfer function in the output layer. 

An initial guess is made of the number of neurons in the hidden layer, which is seven. 

The dataset has one output, thus the network should have one output neuron. The 

Levenberg-Marquardt algorithm is used for training. 

The actual commands are: 

xall = Xall’; 

yall = Yall’; 

iitst = 2:4:1000; 

iival = 4:4:1000; 

iitr = [1:4:1000 3:4:1000]; 

val.P = xall(:,iival); val.T = yall(:,iival); 
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test.P = ptrans(:,iitst); test.T = tn(:,iitst); 

ptr = ptrans(:,iitr); ttr = tn(:,iitr); 

net = newff(minmax(ptr),[7 1],{'tansig' 'purelin'},'trainlm'); 

[net,tr]=train(net,ptr,ttr,[ ],[ ],val,test); 

plot(tr.epoch,tr.perf,tr.epoch,tr.vperf,tr.epoch,tr.tperf) 

legend('Training','Validation','Test',-1); 

ylabel('Squared Error'); xlabel('Epoch') 

a = sim(net,xall); 

[m,b,r] = postreg(a, yall) 

3.3.3.5 Using the trained net to check for suspect variables 

The creation and testing of the net was discussed in the previous section, and the 

assumption is that the net is a good fit for the proposed model and that the 

regression constant for simulated Y values and actual values is greater than 98%. 

Thus, if the network is presented with previously unseen values for inputs, would the 

network actually give a good estimate of the outputs? Would we be able to pick up 

trends enforced in the input in the simulated output? 

Bearing this questions in mind, we set out to use the trained network to simulate 

outputs and check whether the simulated outputs pick up suspect variables. 

3.3.3.6 Same matrix as created for the net 

The same matrices as above were used, as we were not recreating a new network 

but rather using the trained net. 

3.3.3.7 Create data in ascending order 

The matrices that were used previously were arranged in ascending order, using the 

Excel function of sorting the columns of x1, x2, x3, etc. in ascending order. 

3.3.3.8 Extract input quantiles from the ascending matrix 

Quantiles are a set of 'cut points' that divide a sample of data into groups containing 

(as far as possible) equal numbers of observations. For the data, a 20%, 50% and 

80% quantile were chosen, as they best represent the data and create a fair 

statistical sample. 
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3.3.3.9 Calculate average of the input variables from the matrix created 

The calculated average is used to form a new matrix of input quantiles, averages. 

The matrix will have the following number of rows and columns: 

 

The aim is to report the quantile for the one input variable while keeping the other 

input variables constant by reporting the average for the rest of the input variables. 

Below is an example, of three variables in the format they were to be presented for 

training in the neural net: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

This matrix is exported to Matlab, and transposed. 

3.3.3.10 Simulation 

Once the new matrix is formed, the network that was created before is used to 

simulate new output values, Ysim (the output from the net, which is the simulated 

output). 

The simulated output for where the dummy variables are should not change as the 

input changes. This is because the dummy variables do not contribute to the output 

and therefore do not alter the simulated output. The variables that do not show any 



 55

significant change in the simulated output can then be declared suspect variables. 

The new simulated matrix will be in the form: 

 

3.3.3.11 Check if the Ysim changes 

The output of the new simulation is then exported to Excel and a comparison is made 

to see if there is actual change in the Ysim compared to the input. 
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4. RESULTS  

Linear regression is the most commonly used method to analyse process data, and 

is a method that has been tested thoroughly and is known universally. The success 

of linear regression stems from its ability to be predictive and provide explanatory 

results (Gevrey, 2003:259). Linear regression, however, is unable to model complex 

nonlinear systems, therefore the use of ANN in process data is justified, as the 

relationships between variables are often nonlinear. Linear regression may have 

another shortcoming in that one has to examine the final values of R2 and the beta 

weights to determine variable importance. A methodology is needed for determining 

the hierarchy of the “importance” of the variables, and variable contribution. The ANN 

models are able to make good predictions, although methods need to be developed 

to clarify the black-box approach to ANNs. 

The four equations were modelled using the Matlab regression function and a neural 

net was developed. 

4.1 Equation 1 

4.1.1 Matlab regression values using “dropping method” 

The results for Equation 1 after regression show R2 to be 93.31%. This is a good 

model. When X1 is left, the R2 value drops to 53.65%, and when X5 is left out, R2 is 

still low at 55.11%. When X2 was left out R2 values drops to 80.25%, while when X3 

and X4 was left out, R2 values were not altered from 93%. 
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Figure 4.1: Equation 1, R2 values obtained in Matlab with successive variables 
explanatory variables left out. 

The dummy variables added were X3 and X4, and the result of R2 when these two 

variables were left out show that they are insignificant to the regression value for the 

whole equation. 

4.1.2 Matlab regression model  

The actual data for Equation 1 were plotted together with the regression model data. 

The output from Matlab provides an output with R2, beta values and P values. The 

beta values are used to determine the models output using the following equation: 
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Figure 4.2: Equation 1, comparison of actual data with the Matlab regression model 

data. 

The model is a good estimate of the actual data, although the simulated model 

underestimates where actual data spikes sharply. The comparison of the actual 

output values and the simulated output values yields a regression value of 93.31%. 

4.1.3 Neural network feedforward backpropagation 

The created network has two layers with five neurons in the first layer and one 

neuron in the second layer. 
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Figure 4.3: Equation 1, comparison of actual data with the neural network model data 

The model of the created network is a perfect estimate of the actual data and this is 

demonstrated by the high regression value comparing the actual data and the 

simulated, of 99.96%.  

4.1.4 Ysim from previously unseen data 

The matrix, consisting of quantiles and averages, was presented to the trained 

network above. The network provided an output, Ysim. The table below consists of 

the matrix presented to the network and the output that was simulated. The 

explanatory variables X1, X2 and X5 show a marked change in their output, while the 

X3 and X4 simulated outputs remain relatively constant at . 
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Table 4.1: Quantiles of Equation 1 

 

All the input variables have a fair variation of quantiles in the matrix represented 

below, although the output for X3 and X4 does not indicate this. 

4.2 Equation 2 

4.2.1 Matlab regression values using “dropping method” 

The results for Equation 2 after regression show R2 to be 92.91%. This is a good 

regression model. When X1 is left out, the R2 value drops to 53.01%, and when X5 is 

left out, R2 is still low at 50.32%. This shows that X1 and X2 are the most important 

explanatory variables due to their contribution to the output. When X3 was left out R2 

drops to 81.48%, while the R2 values are not altered from 93% when X2 and X4 are 

left out. 
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Figure 4.4: Equation 2, R2 values obtained in Matlab with successive explanatory 
variables left out. 

The dummy variables added were X2 and X4, and the result of R2 when these two 

variables are left out show that they are insignificant for the regression value of the 

whole equation. 

4.2.2 Matlab regression model 

The actual data for Equation 2 were plotted together with the regression model data. 

The output from Matlab provides an output with R2, beta values and P values. The 

beta values are used to determine the value of the models output using the following 

equation: 
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Figure 4.5: Equation 2, comparison of actual data with the Matlab regression model 

data. 

The comparison of the actual data and the simulated data yields an R2 value of 

92.91%. This is a good regression model, but it falls short where the actual data 

increase or decrease sharply; for example, at observation (record) 499, the actual Y 

output was -0.08 while the simulated Y was -1.34, yielding an error of 1600%. The 

occurrence of high errors at some points is compensated for by the number of 

records, with 1 000 data points. 

4.2.3 Neural network feedforward backpropagation 

The network was created with two layers. The first layer had five neurons and the 

second layer had one neuron. The transfer function was: tansigmoid in the first layer 

and purelin in the second layer. 

The model of the created network is a perfect estimate of the actual data and this is 

demonstrated by the high regression value comparing the actual output data and the 

simulated output data, namely 99.91%. 
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Figure 4.6: Equation 2, comparison of actual data with the neural network model data. 

The data points that were underestimated in the regression model were estimated 

well with the network that was created, thus the R2 value also increases to a 

satisfactory value. 

4.2.4 Ysim from previously unseen data 

The matrix consisting of quantiles and averages was presented to the trained 

network above. The network provided an output, Ysim. The table below consists of 

the matrix presented to the network and the output that was simulated. The 

explanatory variables X1, X3 and X5 showed a marked change in their output, while 

the simulated output of X2 and X4 remained relatively constant at . All the input 

variables had a fair variation of quantiles in the matrix represented below, although 

the output for X2 and X4 does not indicate this. 
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Table 4.2: Quantiles of Equation 2 

 

4.3 Equation 3 

4.3.1 Matlab regression values using “dropping method” 

The results for Equation 3 after regression show R2 to be 48.45%. This is a poor 

regression model and would give a poor fit to the actual data. When X8 is left out, the 

R2 value drops to 12.73% – the largest change in R2 among all the input variables. 

When the other input variables are left out, there is a small change in the value of R2, 

with X1 at 44.61% and X6 at 44.83%. Dropping X10 yields R2 at 45.61%, and X5 

dropped follows closely at 46.61%. For the remaining input variables, X3, X4, X7 and 

X9, R2 remains unaltered at 49.4%.  
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Figure 4.7: Equation 3, R2 values obtained in Matlab with successive explanatory 

variables left out. 

The regression model had an unacceptably low R2 value. To enable differentiation in 

the variable contribution, a better model had to be developed. However, a trend 

emerged when the scale of the R2 value was scaled down to between 40% and 50%. 

The dummy variables added X3, X4, X7 and X9, the R2 value does not change when 

compared to when none of the variables were left out. The result for R2 when these 

variables were left out showed that they were insignificant for the regression value for 

the whole equation. 

4.3.2 Matlab regression model 

The actual data for Equation 3 were plotted together with the regression model data. 

The output from Matlab provided an output with R2, beta values and P values. The 

beta values were used to calculate the value of the models output using the following 

equation: 
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Figure 4.8: Equation 3, comparison of actual data with the Matlab regression model 

data. 

The comparison of the actual data and the simulated data yields an R2 value of 

48.45%. It is a poor regression model, as the simulated output falls short where the 

actual data increase or decrease sharply and provides a poor fit for all data points. 

The occurrence of a big error at all points means that this is a particularly unreliable 

model to ascertain the importance of the contribution of the variables. 

4.3.3 Neural network feedforward backpropagation 

Two layers are created in the network, with ten neurons in the first layer and one 

neuron in the second layer. The transfer function in the first layer is tansigmoid and in 

the second layer it is purelin. 
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The model of the created network is a perfect estimate of the actual data and this is 

demonstrated by the high regression value comparing the actual output data and the 

simulated output data, namely 98.64%. 

 
Figure 4.9: Equation 3, comparison of actual data with the neural network model data. 

The data points that were grossly underestimated or overestimated in the regression 

model are well estimated with the network that has been created, thus the R2 value 

also increases to a satisfactory value. 

4.3.4 Ysim from previously unseen data 

The matrix consisting of quantiles and averages was presented to the trained 

network above. The network provided an output, Ysim. The table below consists of 

the matrix presented to the network and the output that was simulated. The 

explanatory variables X1, X2, X5, X6, X8, and X10 showed a marked change in their 

output, while the simulated output of X3, X4, X7 and X9 remained relatively constant 

at . All the input variables had a fair variation of quantiles in the matrix 

represented below, although the output for X3, X4, X7 and X9 does not indicate this. 
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 Table 4.2: Quantiles of Equation 3 

 

4.4 Equation 4 

4.4.1 Matlab regression values using “dropping method” 

The results for Equation 4 after regression show R2 to be 77.43%. This is an average 

regression model and would give a poor fit to the actual data. When X7 is left out, the 

R2 value drops to 18.76%, and this is the largest change in R2 among all input 

variables for Equation 4, followed by X6 at 61.37%. When the other input variables 

are left out, there is a small change in the R2 value, with X1 at 76.53% and X2 at 

75.66%. The X1 and X2 variables, however, have an R2 value that is uncomfortably 

close to the R2 value for when all input variables are included. For the remaining input 

variables, X3, X4 and X5, R2 remains unaltered at .  



 69

R2 Values with X-values left out

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%
none l

eft
 out

X1 l
eft

 out
X2 l

eft
 out

X3 l
eft

 out
X4 l

eft
 out

X5 l
eft

 out
X6 l

eft
 out

X7 l
eft

 out
X3X

4X
5 l

eft
 out

X values left out

R
2  v

al
ue

s 
(M

at
la

b)

 
Figure 4.10: Equation 4, R2 values obtained in Matlab with successive explanatory 

variables left out. 

The regression model had a moderately low R2 value. To enable differentiation in the 

variable contribution, a better model had to be developed. However, a trend emerged 

when the scale of the R2 value was scaled down to between 60% and 80%. When 

the dummy variables X3, X4, X5 are added the R2 value does not change. The R2 

value for explanatory variable X1 and X2, does not change when compared to when 

none of the variables were left out.  

4.4.2 Matlab regression model  

The actual data for Equation 4 were plotted together with the regression model data. 

The output from Matlab provided an output with R2, beta values and P values. The 

beta values were used to calculate the value of the models output using the following 

equation: 
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Figure 4.11: Equation 4, comparison of actual data with the Matlab regression model 

data. 

The comparison of the actual data and the simulated data yields an R2 value of 

77.43%. It is a moderately good regression model, as the simulated output falls short 

where the actual data increase or decrease sharply and provides a poor fit for all 

data points. The occurrence of a big error at some extreme points means that this is 

a particularly unreliable model to determine the importance of the contribution of the 

variables. 

4.4.3 Neural network feedforward backpropagation 

The network was created with two layers. There were seven neurons in the first layer 

and one neuron in the second layer. The transfer functions are tansigmoid in the first 

layer and purelin in the second layer.  
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Figure 4.12: Equation 4, comparison of actual data with neural network model data. 

The data points that were underestimated or overestimated in the regression model 

are well estimated with the network that has been created, thus the R2=0.9996 also 

has increased to a satisfactory value. 

4.4.4 Ysim from previously unseen data 

The matrix consisting of quantiles and averages was presented to the trained 

network above. The network provided an output, Ysim. The table below consists of 

the matrix presented to the network and the output that was simulated. The 

explanatory variables X1, X2, X5, X6 and X7 showed a marked change in their output, 

while the simulated output of X3, X4 and X5 remained relatively constant at . 

All the input variables had a fair variation of quantiles in the matrix represented 

below, although the output for X3, X4, and X5 does not indicate this. 
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Table 4.3: Quantiles of Equation 4 
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5. DISCUSSION 

The addition of average error determination to the R2 value serves to add other 

criteria to determine the importance of variables. In regression, the average error is 

the average absolute difference between the actual output and the simulated output 

for all input variables, and as the input variables is “dropped”.  

In the ANNs created here, the R2 values obtained are very high – more than 99.0%. 

The ANN does not return the actual coefficient of the input variables, as the 

backpropagation algorithm adjusts weights and bias to produce the simulated output 

values, Ysim. Thus, average error in the ANN is determined from the Ysim. This was 

done by finding the differences between the simulated output values, and then 

comparing the magnitude of the differences. The magnitude of the Ysim differences 

was then sorted and a percentage of the contribution was determined. 

The importance of the variables in both the linear regression method and in ANN was 

determined as a percentage of the total differences. The differences are defined as 

“gaps”, as they are the differences between the R2 value of the preceding variables, 

the average error, or the Ysim value. 

The additive percentage is the cumulative of the percentage importance of the 

variables. This was calculated for the purpose of determining the suspect variables. 

The additive percentage gives a sum total of the variables that are included in the 

model. The advantage of using a cumulative variable importance percentage instead 

of variable importance is more evident in a model that has many explanatory 

variables. For example, in a model with 10 variables, as in Equation 3, the cumulative 

percentage gives a more accurate depiction of the effect a particular variable would 

have and its contribution to the output, in addition to the preceding explanatory 

variable contribution. 

The criteria for identifying suspect variables are based on the cumulative variable 

importance percentage (additive percentage). The additive percentage has to be 

below 5% for the explanatory variable to be considered a suspect variable. 
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5.1 Equation 1 

5.1.1 Variable importance based on Matlab regression variables. 

The R2 values of the explanatory variables were compared as the variables are 

dropped from the regression model. The “gaps” were determined, that is the 

differences between the R2 values. The smallest differences in R2 values occurred 

when X4 was left out of the regression model, and the second smallest difference 

was when X3 was left out of the regression model. The importance of both variables 

was less than 1%.  

 

 
Figure 5.1: Equation 1, variable importance expressed as a percentage, based on 

Matlab R2 values. 

The biggest difference occurred when X1 and X5 were left out of the regression 

model, with the importance of the variables being more than 40%. X2 falls between 

the small percentage contribution of X3, X4 and X5, X1 at 14.35%. 

5.1.2 Suspect variables based on Matlab regression variables. 

The additive percentage contribution of X3 and X4 is 0.07%, thus they are both 

considered suspect variables. The next explanatory variable is X2, with an additive 
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percentage of 14.42%, putting it above the 5% requirement for explanatory variables 

to be declared suspect variables.  

Table 5.1: Equation 1, Matlab R2 values, used in identifying suspect variables. 

 

The other explanatory variables are not declared to be suspect variables following 

the 5% rule of thumb. 

5.1.3 Variable importance based on Matlab average errors.  

The smallest difference in R2 value occurred when X3 was left out of the regression 

model, and the second smallest difference was when X4 was left out of the 

regression model; the importance of both variables was less than 1%. The variable 

contribution of X3 has increased to 0.3% from 0.06% when R2 variable contribution is 

compared to average error. The contribution of the other variables, X2, X1 and X5, 

increased steadily from less than 1% to just over 15% to 33% and finally to over 50% 

respectively. 
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Figure 5.2: Equation 1, variable importance expressed as a percentage, based on 

Matlab average values. 

5.1.4 Suspect variables based on Matlab average errors. 

The additive percentage contribution of X3 and X4 was 0.44%, thus they were both 

considered suspect variables. The next explanatory variable was X2 and the additive 

percentage soared to 15.82%, putting it above the 5% requirement for explanatory 

variables to be declared suspect variables.  

Table 5.2: Equation 1, Matlab average values, used in identifying suspect variables. 

 

The other explanatory variables are not declared to be suspect variables following 

the 5% rule of thumb. 
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5.1.5 Variable importance based on neural network Ysim values. 

The differences in the simulated output variables, Ysim, were compared as the 

quantiles and averages of the explanatory variables were presented and trained. The 

“gaps” were determined, in other words the differences between the Ysim values for 

the various explanatory variables in the dataset. The smallest difference in Ysim 

value occurred when the X4 quantiles and average were presented to the ANN 

model, and the second smallest difference occurred when the X3 quantiles and 

averages were presented to the ANN model – both with a variable importance of less 

than 1%. 

The explanatory variables X5 and X1 had an almost equal variable contribution of 

over 40%, while X2 fell in the middle with a contribution of just above 16%. 
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Figure 5.3: Equation 1, variable importance expressed as a percentage, based on 

neural network Ysim values. 

5.1.6 Suspect variables based on neural network Ysim values.  

The additive percentage contribution of X3 and X4 was 0.07%, thus they were both 

considered suspect variables. When the next explanatory variable, X2, was included, 

the additive percentage was 16.74%, putting it above the 5% requirement for 

explanatory variables to be declared suspect variables. It is noteworthy that the 
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suspect variables, X3 and X4, which satisfy the predetermined criteria, are the 

predefined dummy variables. 

Table 5.3: Equation 1, neural network average values, used in identifying suspect 
variables. 

 

Following the 5% rule of thumb, the other explanatory variables were not declared 

suspect variables. 

5.2 Equation 2 

5.2.1 Variable importance based on Matlab regression variables. 

The R2 values of the explanatory variables were compared as the variables were 

dropped from the regression model. The “gaps” were determined, that is the 

differences between the R2 values. The smallest differences in R2 values occurred 

when X2 was left out of the regression model, and the second smallest difference 

was when X4 as left out of the regression model. The importance of both variables 

was less than 1%. 
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Figure 5.4: Equation 2, variable importance expressed as a percentage based on 

Matlab R2 values. 

The biggest difference occurred when X2 and X4 were left out of the regression 

model, with the importance of the variables being more than 40%. X3 fell between the 

small percentage contribution of X2 and X4 and the significant percentage 

contribution of X1 and X5, at 12.17%. 

5.2.2 Suspect variables based on Matlab regression variables. 

The additive percentage contribution of X2 and X4 is 0.05%, thus they are both 

considered suspect variables. The next explanatory variable is X3, with an additive 

percentage of 12.17%, putting it above the 5% requirement for explanatory variables 

to be declared suspect variables.  
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Table 5.4: Equation 2, Matlab R2 values, used in determining suspect variables. 

 

The other explanatory variables, X3, X1 and X5, are not declared to be suspect 

variables following the 5% rule of thumb. 

5.2.3 Variable importance based on Matlab average errors.  

The smallest difference in average error values occurs when X2 is left out of the 

regression model, and the second smallest difference is when X4 is left out of the 

regression model. Both have a variable importance of less than 1%.  
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Figure 5.5: Equation 2, variable importance expressed as a percentage based on 
Matlab average value. 

Although, it is noteworthy that the variable contribution of X4 has increased to 0.4% 

from 0.02% in average error variable contribution compared to its contribution as per 

the R2 value. 
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5.2.4 Suspect variables based on Matlab average errors. 

The additive percentage contribution of X2 and X4 was 0.39%, thus they were both 

considered suspect variables. The next explanatory variable was X1 and the additive 

percentage increased rapidly to 19.43%, putting it above the 5% requirement for 

explanatory variables to be declared suspect variables.  

Table 5.5: Equation 2, Matlab average values, used in identifying suspect variables. 

 

The other explanatory variables, X1, X3 and X5, are not declared suspect variables 

following the 5% rule of thumb. 

5.2.5 Variable importance based on neural network Ysim values. 

The differences in the simulated output variables, Ysim, were compared as the 

quantiles and averages of the explanatory variables were presented and trained.  

The “gaps” were determined, in other words the differences between the Ysim values 

for the various explanatory variables in the dataset. The smallest difference in Ysim 

value occurs when the X2 quantiles and average are presented to the ANN model, 

and the second smallest difference is when the X4 quantiles and averages are 

presented to the ANN model – both with a variable importance of less than 1%. 

The explanatory variables X5 and X1 have an almost equal variable contribution of 

over 40%, while X3 falls in the middle with a contribution of just above 14%. 
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Figure 5.6: Equation 2, variable importance expressed as a percentage based on neural 

network Ysim value. 

5.2.6 Suspect variables based on neural network Ysim values.  

The additive percentage contribution of X3 and X4 was 0.07%, thus they were both 

considered suspect variables. When the next explanatory variable, X2, was included, 

the additive percentage was 16.74%, putting it above the 5% requirement for 

explanatory variables to be declared suspect variables. It is significant to note that 

the suspect variables, X2 and X4, which satisfy the predetermined criteria, are the 

predefined dummy variables. 

Table 5.6: Equation 2, neural network average values, used in identifying suspect 
variables. 

 

The other explanatory variables, X3, X1 and X5, are not declared suspect variables 

following the 5% rule of thumb. 
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5.3 Equation 3 

Equation 3 was a combination of Equation 1 and Equation 2, and consequently the 

regression and ANN models obtained should be a reflection of the separate models 

of the separate equations that made up Equation 3. Equation 1 had X3 and X4 as 

suspect variables, and Equation 2 had X2 and X4 as suspect variables. When 

Equation 3 was formulated, the X2 and X4 of Equation 2 became X7 and X9 of 

Equation 3. The regression model for Equation 3 was especially poor, although the 

ANN model was vastly superior and therefore the ability to identify suspect variables 

improved. 

5.3.1 Variable importance based on Matlab regression variables. 

The R2 values of the explanatory variables were compared as the variables were 

dropped from the regression model. The “gaps” were determined, that is the 

differences between the R2 values. The smallest differences in R2 values occurred 

when X4 was left out of the regression model, and the second smallest difference 

was when X7 was left out. Similarly, when X9 and then X3 were left out of the 

regression model there was a minute difference in the change in R2 value. The 

importance of the variables mentioned thus far made was less than 1%. 
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Figure 5.7: Equation 3, variable importance expressed as a percentage based on 
Matlab R2 values. 

The biggest difference occurred when X8 was left out of the regression model, with 

an importance of more than 70%. The contribution of the other explanatory variables 

increased to 2.24% for X2, to 3.75% for X5, and to 5.78% for X10. X6 and X1 both have 

a contribution of over 7%.  

The regression model for Equation 3 however was very poor, at 48.45%, and 

therefore the resulting values for variable importance were not accurate. 

5.3.2 Suspect variables based on Matlab regression variables. 

The additive percentage contribution of X4, X7, X9, X3, and X2 was 2.52%, thus they 

were all considered suspect variables. The next explanatory variable was X5, with an 

additive percentage of 6.26%, putting it above the 5% requirement for explanatory 

variables to be declared suspect variables. It is worth noting that, in Equation 3, X2 

meets the criteria for a suspect variable, contrary to Equation 1 and Equation 2, 

which form Equation 3. 

Table 5.7: Equation 3, Matlab R2 values, used in identifying suspect variables. 

 

The other explanatory variables, X5, X10, X6, X1 and X8, are not declared suspect 

variables following the 5% rule of thumb. 
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5.3.3 Variable importance based on Matlab average errors.  

The smallest difference in average error value occurred when X9 was left out of the 

regression model, and the second smallest difference was when X5 was left out; the 

importance of both variables was less than 1%. The other explanatory variables, X4, 

X7 and X2, all had an individual variable contribution of about 1%. X3 and X10 had an 

intermediate variable contribution of ~5%. The remaining explanatory variables, X1, 

X6 and X8, made the bulk of the contribution, with X8 leading at 60.78%. 
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Figure 5.8: Equation 3, variable importance expressed as a percentage based on 

Matlab average values. 

5.3.4 Suspect variables based on Matlab average errors. 

The additive percentage contribution of X9, X5, X4, X7, and X2 was 3.98%, thus they 

were all considered suspect variables. The next explanatory variable was X3 and the 

additive percentage was 6.44%, putting it above the 5% requirement for explanatory 

variables to be declared suspect variables. It is worth noting that, in the average error 

difference in Equation 3, X5 meets the criteria for a suspect variable, contrary to what 

is the case in Equation 1 and Equation 2, which form Equation 3. 
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Table 5.8: Equation 3, Matlab average values, used in identifying suspect variables. 

 

5.3.5 Variable importance based on neural network Ysim values. 

The smallest difference in Ysim values occurred when X9 quantiles and average were 

presented to the ANN model, the second smallest difference was when the X3 

quantiles and averages were presented to the ANN model, followed by X4 and X7; all 

these had a variable importance of less than 2%. X2 fell in the middle, with 8.61%. 

The other explanatory variables, X6, X1, X8, X5 and X10, had a nearly equal 

percentage variable contribution of 17 to 18% and higher. The way in which the 

contribution of the explanatory variables was represented was an accurate portrayal 

of Equation 3. 



 87

Variable Importance

0
2
4
6
8

10
12
14
16
18
20

X9 X3 X4 X7 X2 X6 X1 X8 X5 X10

Input Variables

%
 V

ar
ia

bl
e 

Im
po

rt
an

ce

 
Figure 5.9: Equation 3, variable importance expressed as a percentage based on neural 

network Ysim values. 

5.3.6 Suspect variables based on neural network Ysim values.  

The additive percentage contribution of X9, X3, X4 and X7 was 4.00%, thus they were 

all considered suspect variables. The next explanatory variable was X2 and the 

additive percentage was 12.60%, putting it above the 5% requirement for explanatory 

variables to be declared suspect variables. It is worth noting that, in Equation 3, the 

same explanatory variables meet the criteria for a suspect variable as in Equation 1 

and Equation 2. 
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Table 5.9: Equation 3, neural network average values, used in identifying suspect 
variables. 

 

5.4 Equation 4 

Equation 4 would be considered as one creating a complex nonlinear system, and 

thus more complicated to solve. The regression model was comparatively poor, with 

an R2 value of 77.43%. The previous regression models of Equation 1 and Equation 

2, which provided excellent results in identifying all the suspect variables from the 

explanatory variables, had excellent regression models, with an R2 value of over 

90%. The ANN model for Equation 3, however, had a high R2 value of 99.9%, and 

thus was valuable in identifying the suspect variables.  

5.4.1 Variable importance based on Matlab regression variables. 

The R2 values of the explanatory variables were compared as the variables were 

dropped from the regression model. The “gaps” were determined, that is the 

difference between the R2 values. The smallest differences in R2 values occurred 

when X4 was left out of the regression model, and the second smallest difference 

was when X5 is left out. Equally, when X3, X1 and X2 were left out of the regression 

model there was a very minuscule difference in the change in R2 value. The variables 

mentioned thus far make less than a 5% contribution to the variable importance. 
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Figure 5.10: Equation 4, variable importance expressed as a percentage based on 

Matlab R2 value. 

5.4.2 Suspect variables based on Matlab regression variables. 

The additive percentage contribution of X4, X5, X3, X1 and X2 was 3.51%, thus they 

were all considered suspect variables. The next explanatory variable was X6 and the 

additive percentage was 24.25%, putting it above the 5% requirement for explanatory 

variables to be declared suspect variables. It is worth noting that, in Equation 4, X1 

and X2 meet the criteria for a suspect variable, contrary to the setup of Equation 4, 

where the dummy variables added were, X3, X4 and X5. 

Table 5.10: Equation 4, Matlab R2 values, used in identifying suspect variables. 

 

The other explanatory variables, X7 and X10, were not declared suspect variables 

following the 5% rule of thumb. 
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5.4.3 Variable importance based on Matlab average errors.  

The smallest difference in average error, at 0.55%, occurred when X4 was left out of 

the regression model. The second smallest difference, at 2.21%, was when X3 was 

left out, followed by X5 with 2.58%. The variables mentioned thus far make a 

contribution of less than 5% to the variable percentage importance, with X3 and X5 

having an almost identical variable importance. 
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Figure 5.11: Equation 4, variable importance expressed as a percentage based on 

Matlab average value. 

5.4.4 Suspect variables based on Matlab average errors. 

The additive percentage contribution of X4 and X3 was 2.75%, thus they were both 

considered suspect variables. The next explanatory variable was X5 and the additive 

percentage was 5.34%, putting it above the 5% requirement for explanatory variables 

to be declared suspect variables. It is worth noting that, in Equation 4, X4 and X3 

meet the criteria for a suspect variable, although X5, which was added as a dummy 

variable, was above the suspect variable criteria of 5%. 
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Table 5.11: Equation 4, Matlab average values, used in identifying suspect variables. 

 

The other explanatory variables, X5, X1, X7, X2 and X6, were not declared suspect 

variables following the 5% rule of thumb. 

5.4.5 Variable importance based on neural network Ysim values. 

The least difference in Ysim value occurred when the X4, X5 and X3 quantiles and 

averages were presented to the ANN model, with their variable importance being 

less than 1%.The other explanatory variables, X1, X2, X6 and X7, far outweighed the 

contribution of X4, X5 and X3. X7 is presented as making the largest contribution of all 

the explanatory variables, at 66.49%. 
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Figure 5.12: Equation 4, variable importance expressed as a percentage based on 
neural network Ysim value. 

5.4.6 Suspect variables based on neural network Ysim values.  

The additive percentage contribution of X5, X4 and X3 was 0.31%, thus they were 

both considered suspect variables. The next explanatory variable was X1 and the 

additive percentage as 5.04%, putting it just above the 5% requirement for 

explanatory variables to be declared suspect variables. It is worth noting that, in 

Equation 4, X5, X4 and X3 meet the criteria for a suspect variable corresponding to the 

dummy variables added. 

Table 5.12: Equation 4, neural network average values, used in identifying suspect 
variables. 

 

The other explanatory variables, X1, X2, X6 and X7, are not declared as suspect 

variables following the 5% rule of thumb. 
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6. CONCLUSION 

The four equations and the data simulated were used to create models on the basis 

of multiple linear regression and ANN. The methodology compares R2 and average 

error to determine the importance of variables and their contribution to the output in 

the four equations. Suspect variables were identified less effectively with multiple 

linear regression and more successfully with the ANN. 

Multiple linear regression and ANN of Equation 1 produced an excellent model with a 

high R2 and low average error. The suspect variables identified were X1 and X3, in 

line with the dummy variables that were predefined in Equation 1. Equation 2 also 

had a fine multiple linear regression and ANN, with a high R2 value and low average 

error. The suspect variables identified were X2 and X4, which have been preselected 

as dummy variables in Equation 2.  

Equation 3, however, had a very poor multiple regression model. This was 

unexpected, as Equation 3 was a combination of Equation 1 and Equation 2. 

Consequently, the R2 was very low and the average error was high from the multiple 

linear regression model. The suspect variables identified were X2, X3, X5, X4, X7 and 

X9. The multiple linear regression did not yield a good result, as the dummy variables 

for Equation 3, namely X3, X4, X7 and X9, were not recognised. The ANN model 

improved the R2 to a satisfactory value and the average error dropped drastically. 

The suspect variables identified then were X3, X4, X7 and X9, which were as expected 

from the predefined dummy variables. 

The linear regression model of Equation 4 was normal, with an average R2 value and 

relatively low average error. Nevertheless, the suspect variables identified from the 

R2 value were different from the ones recognised from the average error. R2 showed 

all the explanatory variables to be suspect variables, except X6 and X7, while average 

error recognised only X3 and X4 as suspect variables. Thus the multiple linear 

regression model was not accurate in identifying the predefined dummy variables as 

suspect variables. The R2 value of the ANN model was high, the average error was 

low and the explanatory variables identified as suspect variables were X3, X4 and X5. 

The suspect variables identified in Equation 4 were the predefined suspect variables. 
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The criterion chosen for suspect variables was for an additive variable importance of 

less than 5%. In the particular equations, the criterion was sufficient, although in a set 

of data with 100 input variables or more, a variable contribution of 0.5% would be 

considered as a noteworthy contribution. However one can adjust the criterion used 

for declaring a explanatory variable, a suspect variable, depending on the number of 

explanatory variables or number of outputs. 

The combination of traditional statistical modelling and ANN can better be used in 

determining the importance of variables and their contribution to the output. The 

contribution of each variable in the four equations was clearly defined and presented, 

and may be utilised  by those with little understanding of the ANN or the process data 

they are modelling to reduce the number of explanatory variables. An examination of 

the explanatory variables declared as suspect variables and the variable contribution 

to the output may lead to a reduction in the complexity of sometimes overwhelming 

models as a pre-process in data modelling. 

The summary of the performance of the multiple linear regression and ANN models 

for all equations was extensively explored in Chapter 5. A confirmation of the 

legitimacy of an explanatory variable being declared as a suspect variable was 

accomplished with their emergence as a suspect variables in multiple linear 

regression model and ANN. Their variable contribution was determined from the R2 

value and the average error and the ANN output simulated value. 
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