

USING LINEAR REGRESSION AND ANN TECHNIQUES IN DETERMINING
VARIABLE IMPORTANCE

by

ADERIANA MUTHEU MBANDI

Thesis submitted in fulfilment of the requirements for the degree

Master of Technology: Chemical Engineering

in the Faculty of Engineering

at the Cape Peninsula University of Technology

Supervisor: Mr Willie Coetzee

Cape Town
18/June/2009

 ii

Declaration

I, Andriannah Mbandi, declare that the contents of this thesis represent my own
unaided work, and that the dissertation/thesis has not previously been submitted for
academic examination towards any qualification. Furthermore, it represents my own
opinions and not necessarily those of the Cape Peninsula University of Technology.

Signed Date

 iii

Abstract

The use of Neural Networks in chemical engineering is well documented. There has

also been an increase in research concerned with the explanatory capacity of Neural

Networks although this has been hindered by the regard of Artificial Neural Networks

(ANN’s) as a black box technology.

Determining variable importance in complex systems that have many variables as

found in the fields of ecology, water treatment, petrochemical production, and

metallurgy, would reduce the variables to be used in optimisation exercises, easing

complexity of the model and ultimately saving money. In the process engineering

field, the use of data to optimise processes is limited if some degree of process

understanding is not present.

The project objective is to develop a methodology that uses Artificial Neural Network

(ANN) technology and Multiple Linear Regression (MLR) to identify explanatory

variables in a dataset and their importance on process outputs. The methodology is

tested by using data that exhibits defined and well known numeric relationships. The

numeric relationships are presented using four equations.

The research project assesses the relative importance of the independent variables

by using the “dropping method” on a regression model and ANN’s. Regression used

traditionally to determine variable contribution could be unsuccessful if a highly non-

linear relationship exists. ANN’s could be the answer for this shortcoming.

For differentiation, the explanatory variables that do not contribute significantly

towards the output will be named “suspect variables”. Ultimately the suspect

variables identified in the regression model and ANN should be the same, assuming

a good regression model and network.

The dummy variables introduced to the four equations are successfully identified as

suspect variables. Furthermore, the degree of variable importance was determined

using linear regression and ANN models. As the equations complexity increased, the

linear regression models accuracy decreased, thus suspect variables are not

correctly identified. The complexity of the equations does not affect the accuracy of

the ANN model, and the suspect variables are correctly identified.

 iv

The use of R2 and average error in establishing a criterion for identifying suspect

variables is explored. It is established that the cumulative variable importance

percentage (additive percentage), has to be below 5% for the explanatory variable to

be considered a suspect variable.

Combining linear regression and ANN provides insight into the importance of

explanatory variables and indeed suspect variables and their contribution can be

determined. Suspect variables can be eliminated from the model once identified

simplifying the model, and increasing accuracy of the model.

 v

Acknowledgements

I wish to thank:

 Mr Willie Coetzee, my supervisor.

 vi

Dedication

I wish to thank Mrs Mary Mbandi, my mother, for all her support and encouragement.

 vii

Glossary

Backpropagation

General mathematical notation was used, in the form:

Where    represent the following:

 can be one of the following

x, to denote an external input

h, to denote the internal output of a node being transformed nonlinearly

z, to denote the activation of a node (output of a node)

y, to denote the external output

d, to denote the desired network output

w, to denote the weight of a connection

, to denote the bias

 can be one of the following

a number to stand for the identity of the layer; the number takes the values 1, 2 and 3

for input, hidden and output layer respectively. This is used for the internal outputs

and bias before and after transformation.

P, to stand for the identity of a particular example. This is for external and internal

outputs and for target output.

 can be one of the following:

i, to denote the identity of the node that the connection comes from originally

ij, to denote i, the origin, and j, the termination, of the connection. This notation is

only applicable to the weight notation.

Linear and Multiple Regression

Xi: input, predictor or explanatory variable.

 viii

Yi: output or criterion variable.

a, bi: regression coefficients of regression.

ε: residual error for linear regression.

YI: model output.

R: Pearson correlation.

βi: value of regression coefficient corresponding to the data value b.

t: the t-test for testing the null hypothesis.

F: corresponding test to the t-test.

P: test for assessing the consistency of the null hypothesis.

ei: residual error for multiple linear regression.

S2, ϭ: variance, standard deviation.

_

Xi: average value of the input variable.

_

Y i: average value of the output variable.

ryk, 123: semi-partial correlations of Xi and Y in the multiple linear regression.

Ryy
I: multiple correlation coefficient.

SSreg: sum of squares for regression.

SStot: total sum of squares.

SSres: residual sum of squares.

Ho: null hypothesis test for multiple regression.

 ix

Table of contents

Declaration... ii
Abstract... iii
Acknowledgements ..v
Dedication ...vi
Glossary... vii

1. INTRODUCTION...1

2. LITERATURE REVIEW ..6

2.1 MULTIPLE LINEAR REGRESSION.. 6
2.2 NEURAL NETWORKS.. 12

2.2.1 Types of neural networks ... 13
2.2.2 Historical background... 16
2.2.3 Neural network feedforward backpropagation 20
2.2.4 Summary of the backpropagation algorithm ... 23

3. RESEARCH METHODOLOGY...32

3.1 DATA.. 32
3.2 MATLAB REGRESSION... 33
3.3 NEURAL NETWORK.. 41

3.3.1 Backpropagation Algorithm .. 41
3.3.2 Creating a neural net using backpropagation. 44
3.3.3 Mutual net for the four equations.. 47

4. RESULTS ...56

4.1 Equation 1 .. 56

4.1.1 Matlab regression values using “dropping method” 56
4.1.2 Matlab regression model.. 57
4.1.3 Neural network feedforward backpropagation 58
4.1.4 Ysim from previously unseen data ... 59

4.2 Equation 2 .. 60

4.2.1 Matlab regression values using “dropping method” 60
4.2.2 Matlab regression model.. 61
4.2.3 Neural network feedforward backpropagation 62
4.2.4 Ysim from previously unseen data ... 63

 x

4.3 Equation 3 .. 64

4.3.1 Matlab regression values using “dropping method” 64
4.3.2 Matlab regression model.. 65
4.3.3 Neural network feedforward backpropagation 66
4.3.4 Ysim from previously unseen data ... 67

4.4 Equation 4 .. 68

4.4.1 Matlab regression values using “dropping method” 68
4.4.2 Matlab regression model.. 69
4.4.3 Neural network feedforward backpropagation 70
4.4.4 Ysim from previously unseen data ... 71

5. DISCUSSION..73

5.1 Equation 1 .. 74

5.1.1 Variable importance based on Matlab regression variables.................. 74
5.1.2 Suspect variables based on Matlab regression variables. 74
5.1.3 Variable importance based on Matlab average errors. 75
5.1.4 Suspect variables based on Matlab average errors.............................. 76
5.1.5 Variable importance based on neural network Ysim values.................. 77
5.1.6 Suspect variables based on neural network Ysim values. 77

5.2 Equation 2 .. 78

5.2.1 Variable importance based on Matlab regression variables.................. 78
5.2.2 Suspect variables based on Matlab regression variables. 79
5.2.3 Variable importance based on Matlab average errors. 80
5.2.4 Suspect variables based on Matlab average errors.............................. 81
5.2.5 Variable importance based on neural network Ysim values.................. 81
5.2.6 Suspect variables based on neural network Ysim values. 82

5.3 Equation 3 .. 83

5.3.1 Variable importance based on Matlab regression variables.................. 83
5.3.2 Suspect variables based on Matlab regression variables. 84
5.3.3 Variable importance based on Matlab average errors. 85
5.3.4 Suspect variables based on Matlab average errors.............................. 85
5.3.5 Variable importance based on neural network Ysim values.................. 86
5.3.6 Suspect variables based on neural network Ysim values. 87

5.4 Equation 4 .. 88

 xi

5.4.1 Variable importance based on Matlab regression variables.................. 88
5.4.2 Suspect variables based on Matlab regression variables. 89
5.4.3 Variable importance based on Matlab average errors. 90
5.4.4 Suspect variables based on Matlab average errors.............................. 90
5.4.5 Variable importance based on neural network Ysim values.................. 91
5.4.6 Suspect variables based on neural network Ysim values. 92

6. CONCLUSION ..93

7. REFERENCES..95

8. BIBLIOGRAPHY...97

9. LIST OF TABLES ...100

10. LIST OF FIGURES..101

 1

1. INTRODUCTION

The advent of computer use has brought about an avalanche of data, and the

development of neural networks has afforded a promising technique to model data.

Neural networks are seen as “universal approximators” as they can handle nonlinear

multiple variable systems (Hornik, Stichcombe & White, 1989:360). The greatest

advantage of artificial neural networks (ANN) is their user-friendliness, which hides

from the user the complicated mathematical and computational network training

procedure (Papadokonstantakis, Machefer, Schnitzlein & Lygeros, 2005:1647).

In the field of process engineering, advances in information technology brought about

an increase in the availability of processed data. However, the use of this data to

optimise processes is limited if some degree of process understanding is not present.

The use and application of neural networks in chemical engineering is well

documented and the only limitation is the imagination of chemical engineers

(Himmelblau et al., 2000:373). There has also been an increase in research on the

explanatory capacity of neural networks, although this has been hindered by the fact

that ANNs are regarded as a black box technology (Gevrey, 2003:259; Olden,

2004:389). ANN modelling has been used successfully as a pre-processing stage,

which can be instrumental in the development of a successful model.

The data pre-processing stage is of great importance, especially in most process

datasets with restricted quality and containing noise and faults (Hornik et al.,

1989:360). Determining variable importance as a pre-processing stage in data

modelling in complex systems that have many variables, such as ecological, water

treatment, petrochemical plants and bio-processing, would reduce the variables to be

used in the optimisation processes, easing the complexity of the model and ultimately

saving money (Bruns, 2002:366; Grieu, 2006:2 ;Martinez, 1999:102).

The objective of this project is to develop a methodology that uses artificial neural

network (ANN) technology and multiple linear regression to identify explanatory

variables in a dataset and determine their importance for process outputs. The

methodology is tested by using data that exhibit defined and well-known numeric

relationships.

 2

The research project assesses the relative importance of the independent variables

by using the “dropping method” (Garson, 2007:6) on a regression model and ANNs.

Regression used traditionally to determine variable contributions could be

unsuccessful if a highly nonlinear relationship exists. ANNs have been shown to be

highly competent approximators of many complex systems, and have been shown to

have advantages over general linear models in predictive ability (Hastie, Tibishrani &

Friedman, 2001:14), thus they could be the answer to this linear models shortcoming.

However, the research does not advocate the use of ANN over linear regression, but

rather a symbiotic relation. Linear regression is the well documented statistical

methodology and ANNs are just beginning to be unravelled. The symbiosis already

exists, as many statistical packages use ANN (Kemp, Zaradic & Hansen, 2007:326)

For differentiation, the explanatory variables that do not contribute significantly to the

output will be named “suspect variables”.

The method used was as follows:

A linear regression was run that modelled the data against a fixed but variable target,

measured with the absolute least squares method

The “dropping method” was used to identify suspect variables from the regression

model

The data gained were run through a trained neural network in order to enhance the

match of the modelled data against the original data.

The trained neural network was used to identify suspect variables.

It was determined whether the regression model and the ANN identify the same

suspect variables.

Multiple regression attempts to model the relation between two or more independent

variables (input) and the dependent variable (output) by fitting a linear equation to the

observed data.

The observed data are:

 (1.1)

And the model equation (also termed the regression line for k variables) is:

 3

 (1.2)

Using the least squares method (measured with the R2 value), the best fitting line

(plane) from the data is calculated by minimising the sum of the squared residuals

(ε).

Multiple regression has three primary uses:

Understanding which input variables have the greatest effect on the output.

Knowing the direction of the effect of the input variable, e.g. increasing x1

increases/decreases Y.

Using the model simulated to predict future values of the input variables when only

the output variables are known.

To date it has been shown that multiple regression is able to establish that a set of

independent variables contributes to the variance of a dependent variable to a

significant extent. The significance of this contribution can be tested rigorously by the

R2 value, using the “dropping method”. The importance can also be tested further by

examining the beta weights attributed to each of the contributing and non-contributing

variables.

ANNs are composed of simple elements operating in parallel. These elements are

inspired by biological nervous systems. As in nature, the network function is

determined largely by the connections between elements. An ANN can be trained to

perform a particular function by adjusting the value of the connections (weights)

between elements, based on the complexity of a given problem (Demuth & Beale,

2004:8).

ANNs are trained so that a particular input leads to a specific target output. An input

is presented to the network. The network compares the output to the target, and the

network’s weights are adjusted on the basis of this comparison until the network

output matches the target. The target and output pairs are essential to the training of

the network and, typically, many such pairs are used in what is termed as ‘supervised

learning’ in training the network.

 4

An ANN, once trained, can predict targets from inputs that have not been presented

to the network before. It is on this premise that “suspect variables” should be

identifiable, as the simulated output theoretically should not be affected when the

“suspect variables” are altered.

The observed data to be used for modelling comprises of randomly generated data.

The data is set up using the following equations:

Equation 1: dummy variables x3, x4

Equation 2: dummy variables x2, x4

Equation 3:

Dummy variables are x3, x4, x7, x9

The third equation is a combination of the first two equations.

Equation 4:

Dummy variables are x3, x4, x5

The general equations are used for generating random data of a range between 1

and 10. This can be done without loss of generality, since the data are produced at

random. A number of matrices are constructed for all variables and then exported to

Matlab. In general, the number of matrices created for each given equation is directly

proportional to the number of input variables.

No. of matrices = no of input variables + 2 (1.3)

At first, all input variables are utilised to calculate the regression values, after which

variables are successfully removed from the input while creating new matrices.

 5

The output variable remains constant for each equation, as it is determined by a fixed

relationship.

A neural network is created using the backpropagation algorithm. The matrices of the

ANN are derived from the random data that are generated from the four equations in

the range of 1 to 10.

Xall comprises all the input variables x1, x2,……., xk.

Yall comprises the output variable y

The default training algorithm that was used is trainlm, a network training function

that updates weight and bias values according to the Levenberg-Marquardt

optimisation algorithm. The Levenberg-Marquardt optimisation is an algorithm for

least squares estimation of nonlinear parameters that outperforms the gradient

descent and conjugate algorithm. It does so by approaching the second order

training speed by approximating the Hessian matrix as opposed to computing it.

The trained network provides a platform for evaluating the effect of altering the

values of input variables on the simulated output of the trained network. The trained

network is represented with periodic alterations of all the variables that were used in

the training network. The simulated output within each variable is compared to

establish significant changes. The deficiency of change for the simulated output for a

particular variable indicates that a specific variable does not contribute significantly to

the output, and thus can be identified as a suspect variable.

 6

2. LITERATURE REVIEW

2.1 MULTIPLE LINEAR REGRESSION

To define multiple linear regression it is best to first describe simpler linear

regression. Linear regression attempts to find a relationship between the observed

data by finding the best linear correlation (Edwards, 1976:3). The

independent (also named input, predictor, explanatory) variable is Xi and the

dependent variable (also named output, criterion) is Yi. Linear regression models the

data in the equation:

 (2.1)

thereby estimating the coefficients a and b, which are determined on condition that

the  residual error is minimised.

 (2.2)

  
 

 

The correlation coefficient of Y and X is defined by the Pearson-R correlation:

 


    
    
   

 (2.3)

The value of the correlation coefficient R falls between the values 1 and -1. If the

absolute value R2 is calculated, then the maximum value is 1. The absolute value of

R2 provides an index of the degree to which a set of data points cluster around the

proposed regression line.

 7

If the points from the data fall along the regression line, the values of R2 are higher,

and when R2 is 1 the points are exactly on the regression line. When the value of R2

is small, the data points will show considerable scatter around the regression line,

and the data points that are represented by the regression line determined will be

very few.

The value of the regression coefficient corresponding to the data value b is

represented by β. The null hypothesis is used to determine if the Y values are linearly

independent of the X values in the dataset, and thus if β = 0. The test normally used

is the t test, which assumes that the null hypothesis is true.

To apply the t test, let

  
 (2.4)

A table of the t distribution confidence interval can be used to determine the extent to

which the two distributions differ from each other. For any t test there is a

corresponding F test, such that

  

 (2.5)

The P test assesses the consistency of the null hypothesis. The smaller the P value,

the more evidence there is that the null hypothesis is false. The higher the P value,

the more evidence of the null hypothesis being true. A P value of 0.05 means that

there is a 5% chance of observing a difference as large as observed, even if the sets

of data are identical.

Multiple linear regression is an extension of the above linear equation (2.1-2.5) to

include multiple variables as the independent variables (input). Multiple regression

attempts to model the relation between two or more independent variables (input)

 8

and the dependent variable (output), by fitting the linear equation to the observed

data.

The observed data are:

 (2.6)

And the model equation is (also termed as the regression line for k variables)

 (2.7)



This line describes how Yi changes in response to the input Xi variables.

Using the least squares method, the best fitting line (plane) from the data is

calculated by minimising the sum of the squared residuals (ε).

The fitted values take the equation

 (2.8)

The residual is then the difference between the observed values and the fitted value.

 (2.9)

The least squares method chooses b0, b1, ……., bk to minimise the sum of the

residuals.

The next step is to minimise , which is also known as the residual sum of

squares.

The variance can be estimated by the equation

 9

 (2.10)

This is also known as the mean square error (MSE).

The observed values are:

 (2.11)

The observed values may vary about their mean Yi and are assumed to have the

same standard deviation .

The fitted values b0, b1, ….., bk estimate the parameters β0, β1, ….., βk of the

regression line.

Multiple regression has three primary uses:

Understanding which input variables make the greatest contribution towards the

output.

Knowing the direction of the effect, e.g. increasing X1 increases/decreases Y.

Using the simulated model to predict future values of the input variables when only

the output variables are known.

Multiple regression is a technique going back to Professor Karl Pearson in 1908.

Professor Pearson is considered to be one of the founders of modern statistics.

To date it has been shown that multiple regression can establish that a set of

independent variables contributes to the variance of a dependent variable to a

significant degree (Edwards, 1979:39). The significance of this contribution can be

tested rigorously using the R2 value. The importance of the contribution can be tested

further by examining the beta weights attributed to each of the contributing and non-

contributing variables. The regression coefficient is then calculated as:

 (2.12)

 10

From the multiple regression equation it is possible to ascertain b0 and b1, b2,…, bk,

which will result in the highest possible positive correlation between the observed

value Y’ and the predicted value Y. When this is done, the resulting correlation

coefficient will be Ry.123….k.

As the number of X variables increases, the calculations become increasingly

complex.

 (2.13)

The values b1 and b2 can then be calculated as follows:

   
  

 (2.14)

Following a similar procedure for b2:

   
  

 (2.15)

The general term bk must satisfy the following equation to minimise the mean square

error:

    (2.16)

The square of the multiple correlation coefficient will be given by

 (2.17)

SSreg: sum of squares for linear regression

SStot: total sum of squares

 11

SSres: residual sum of squares

SStot is then defined by (2.18)

   (2.19)

 (2.20)

Thus, the RYY’
2
 then is a combination of the above equations and becomes:

 
  

   
 (2.21)

RYY’
2 can also be calculated from the partial correlation coefficients of say X1 and Y,

X2 and Y generally Xi and Y. In the equation below, ry1, ry2,…, ryk stand for the semi-

partial correlations for X1 and Y , X2 and Y,…., Xk and Y.

 (2.22)

The argument is that if any of the variables X1, X2,…….., Xk are not contributing

significantly to the output, then dropping these variables will not alter the correlation

coefficient R much. Notice that ry1, ry2,…, ryk are obtained as if there were single

variable models consisting of one input and one output variable.

The significance for RYY’
2 is tested using the null hypothesis (H0). The t-test checks if

β1 = β2 = ……….. βk = 0. To test if the null hypothesis is true and β1 = β2 = ……….. βk

= 0, it is necessary to use the F-test:

 (2.23)

If the null hypothesis is rejected, then β1 = β2 = ……….. βk  0

 12

A large value of F indicates that the null hypothesis is not true, while small values are

consistent with the null hypothesis. The F value can be any value between zero and

infinity. Under the null hypothesis, F is expected to be small positive numbers.

The P value in multiple regression represents a decreasing index of the reliability of a

result (Brownlee, 1967: 570). The higher the P value, the less representative the

sample data is of the entire set of data, and therefore it is not possible to take the

observed relation between variables in the dataset to be reliable indicators of the

relationship of the entire dataset.

The P value is calculated in numerous ways, depending on the sampling distribution.

It is determined by standardising, with the calculation of two or more sample test

statistic.

 (2.24)

Once the test results are obtained, t is compared to the appropriate sampling

distribution.

2.2 NEURAL NETWORKS

Neural networks are composed of simple elements operating in parallel. These

elements are inspired by biological nervous systems. As in nature, the network

function is determined largely by the connections between elements. We can train a

neural network to perform a particular function by adjusting the value of the

connections (weights) between the elements (Demuth & Beale, 2004).

Neural networks are trained so that a particular input leads to a specific target output.

The diagram below illustrates the mechanics of neural networks. An input is

presented to the network, there is a comparison between the output and the target,

and the network weights are adjusted on the basis of this comparison until the

network output matches the target. The target and output pairs are crucial to the

training of the network and, typically, many such pairs are used in what is termed as

‘supervised learning’ in training the network.

 13

Figure 2.1: Basic neural network (Demuth & Beale, 2004)

2.2.1 Types of neural networks

Neural networks comprise interconnected neurons. There are two general

categorisations of neural networks: structural categorisation and learning algorithm

categorisation (Pham, 1995:1)

The structure of the neural networks is determined by how the inter-neuron

connections are arranged and by the nature of the connections. The structural

categorisation is further subdivided into feedforward networks and recurrent

networks.

The feedforward network neurons are grouped into layers. Signals flow from the input

layer to the output layer in one direction through connections. Thus neurons are

connected from one layer to the next, but not within the same layer. Examples of

feedforward network are: multilayer perceptron (MLP) networks, learning vector

quantisation (LVQ) networks, and group method of data handling (GMDH) networks.

The multilayer perceptron network is probably the best known type of feedforward

network. The MLP generally has three layers: an input layer, an output layer and an

intermediate or hidden layer. With regard to the output of a feedforward network, it is

 14

important to note that, at a given instant, the output is a function only of the input at

that instant.

The recurrent networks, however, have a dynamic memory, so that the outputs at a

given instant reproduce the current input as well as previous inputs and outputs.

The learning algorithm is how the strengths of the connections are adjusted and

trained to achieve a desired result. This category is further subdivided into the

supervised learning algorithm, the unsupervised learning algorithm, and the

reinforcement learning algorithm. The supervised learning algorithm adjusts the

strengths (weights) of the inter-neuron connections according to the difference

between the target output and the given input. The supervised learning requires a

“teacher” to provide desired target output signals. Examples of supervised learning

algorithms are the delta rule, the backpropagation algorithm (generalised delta rule),

and the learning vector quantisation algorithm (LVQ).

 15

Figure 2.2: ANN classification based on structure and learning algorithm

The multi-layer perceptron (MLP) Networks is the best known of the feedforward

networks. The MLP has three layers: an input layer, a hidden layer and an output

layer. The neurons in the input layer act as a holding area in order to distribute the

input signals to neurons in the hidden layer; thus the hidden layer conventionally is

not counted as a layer.

Each neuron, j, in the hidden layer acts as a sum up individual input signals xi after

weighting the strengths of their connections wji from the input layer, while computing

individual output yj as a function f.

 (2.25)

 f is a differentiable function that can be a sigmoidal or hyperbolic tangent or radial

function.

The output of the neurons in the output layer is computed similarly.

 16

Figure 2.3: ANN general architecture with hidden layer (Pham, 1995).

2.2.2 Historical background

There are at least two ingredients that are essential for the successful advancement

of a technology: conceptualisation and implementation (Hagan et al., 1995:89). The

development of neural networks has progressed through conceptualisation and

implementation, but this happened in fits and false starts rather than as a continuous

evolution. The table below offers a summary of the progress in artificial neural

networks over the years.

Table 2.1: Historical development of ANN

RESEARCHERS YEAR FIELD CONTRIBUTED
Warren McCulloch
Walter Pitts 1943

Showed that ANN could, in principle, be used to compute any
arithmetical or logical function.

Donald Hebb
1949

Proposed that the classical condition (discovered by Pavlov) is present
because of the properties of individual neurons. He then proposed a
mechanism for learning in biological neurons.

 17

Frank Rosenblatt

1958

First practical application of ANN. The invention of the perceptron
network and associated learning rule. Demonstration that the
perceptrons networks had ability to perform pattern recognition.
Limitation: can only solve a limited class of problems.

Benard Widrow Tedd
Hoff

1960

Introduced the Widrow-Hoff learning rule, a new learning algorithm. It
was used to train adaptive linear neural networks and was quite similar
in structure to Rosenblatt's perceptron. Limitations: can only solve a
limited class of problems.

Marvin Minsky
Seymore Papert

1969

Widely publicised the shortcomings of the proposed networks. This
report, combined with the lack of powerful digital computers, led to a
lull in ANN research, as many people believed there was no future in
ANN.

Teuvo Kohonen
James Anderson 1972

They independently and separately developed ANN that could act as
memory.

Paul Werbos
1974

Started work on a supervised learning technique used for ANN,
groundwork for backpropagation.

Stephen Grossberg
1976

Self-organising networks.

John Hopfield

1982

The impediments presented by the lack of powerful computers were
removed, thus great developments were possible in the field of ANN.
He proposed the use of statistical mechanics to explain the operation
of certain classes of recurrent networks; associative memory.

David Rumelhart
James McClelland

1986

Most influential publication on backpropagation algorithm for training
multilayer perceptron networks. This answered Minsky and Papert
criticism in the 1960s.

The advances in neural networks have been propelled largely by the availability of

powerful new computers and new concepts, such as innovative architecture and

training rules. Neural networks seem to have taken a permanent place as an

engineering tool, not just as a solution to any problem, but as a tool to be used in

appropriate situations.

There are a large number of applications of neural networks and the list seems to

grow every day.

Aerospace

Automative

Banking

Defence

Electronics

Entertainment

Financial

 18

Insurance

Manufacturing

Medical

Oil and gas exploration

Robotics

Speech

Securities

Telecommunication

Transportation

The application of ANN to chemical engineering is a wide and varied field. Here are

examples of implementation and research:

Bioprocess engineering: application of feedforward neural networks for system

identification of a biochemical process

Use of ANN in modelling of chemical processes

Polymers, pulp and paper industry: modelling and optimisation of pulp and paper

processing using neural networks

Separation process: prediction of product quality parameters of a crude fractionation

section of an oil refinery using neural networks; ANN has also been used extensively

in the study of the crystallisation process and its dynamics

Heat and mass transfer: a neural network approach to nonlinear Identification and

control of a heat exchanger

Thermodynamics: evaluation of the thermodynamic models Uniquac and Unifac

using artificial neural networks

Fluid dynamics: flow regime identification in air-water two-phase flow using neural

networks – process control and design: closed loop nonlinear process identification

using internally recurrent neural nets

Catalysis: the application of neural networks in the development of an online model

for a semi-regenerative catalytic reformer

Chemical reactor design: use of neural networks for LPCVD reactor modelling

 19

Process control and design: use of artificial neural networks to monitor faults and for

troubleshooting in the process industries

Unit operations of chemical engineering: HETP and pressure drop prediction for

structured packing distillation columns using a neural network model

Environmental engineering: modelling of activated sludge waste water treatment

processes using integrated neural networks and a first principle model

Transport phenomena: modelling of unsteady heat conduction fields by using

composite recurrent neural networks

These are among many examples of the applications of neural networks in chemical

engineering. The range of interests and applications continues to grow every day in

chemical engineering, as well as in all other fields.

There are a number of advantages and disadvantages related to the use of neural

networks.

Advantages

They have the ability to represent complex linear and nonlinear relationships; they

learn this relationships from modelled data.

There is no need to know the data relationships before building a neural network.

Neural nets are general, thus they can handle problems with diverse parameters and

are able to classify a very complex distribution.

Simple elements operating in parallel permit solutions to problems where multiple

constraints can be satisfied simultaneously.

Graceful degradation and final presentation of results.

Rules are implicit rather than explicit, thus eliminating the need for the user to

formulate the rules.

Disadvantages

Neural networks take training data and generate opaque, complex models, thus it is

very difficult to determine how the net is making its decision.

 20

Because the opaque complex models are very diverse, no one network of the same

problem is the same.

The trained data may sometimes contain what are termed ‘chance effects’, but this is

intrinsically built into the model where else this ‘chance’ may indeed never occur

again e.g. Zuma announces his presidential candidacy, the stock market shifts.

Neural networks are unable to manage imprecise or vague information.

They are unable to handle linguistic information and thus unable to combine numeric

data with linguistic data.

There is heavy reliance on trial and error to determine the number of layers, number

of nodes, transfer functions and training functions.

2.2.3 Neural network feedforward backpropagation

Backpropagation is also known as the backpropagation of errors, and was created by

generalising the Widrow-Hoff learning rule, which is a gradient descent algorithm

(Rumelhart & McClelland, 1986). The gradient descent algorithm is an optimisation

algorithm to find a local minimum. The algorithm takes steps proportional to the

negative of the gradient and thus the network weights are adjusted along the

negative of the gradient. Backpropagation is used for feedforward networks that have

no feedback or networks that do not have connections that loop.

Backpropagation requires that transfer functions used in the hidden layer are

differentiable, and backpropagation networks usually have multiple layers. The errors

are said to propagate backwards from the outer nodes to the inner nodes, thus

calculating the gradient of the error of the network with respect to the adjusted

weights of the network. Although the standard backpropagation is a gradient descent

algorithm, there are a number of variations on the basic algorithm, based on different

methods of optimisation, such as the conjugate gradient and the Newton method.

The input vectors and corresponding output vectors are presented to a chosen multi-

layered nonlinear network and are trained until the network can approximate a

function that associates a specific input with a specific output. Properly trained

backpropagation networks are capable of approximating any function and, once

trained, give reasonable answers if they are presented with inputs they have never

seen.

 21

Neurons use any differentiable function to generate their output, but the commonly

used transfer function is logsigmoid and tansigmoid. The transfer function calculates

a layer’s output from the net input.

 (2.26)

Feedforward networks have one or more layers of sigmoid neurons, followed by an

output layer of linear neurons. The multiple layers of nonlinear transfer functions

allow the network to train nonlinear and linear relations between the input and output.

The linear output layer produces outputs of values between the range of 1 and -1.

The logsigmoid, tansigmoid and purelin transfer functions are shown below:

Purelin

Purelin is a transfer function that calculates the output of a layer from its net input.

Since it is a linear transfer function, it simply returns the value passed to it according

to the expression:

f(n) = n (2.27)

-5

-4

-3

-2

-1

0

1

2

3

4

5

-5 -4 -3 -2 -1 0 1 2 3 4 5

n

f(n
)

Figure 2.4: Purelin transfer function with f(n) = purelin (n) = purelin(Wp+b)

 22

This transfer function is important, as it finds linear approximation to nonlinear

functions. However, this does not mean that a linear network can be made to perform

a nonlinear computation.

Nonlinear transfer function

Tansigmoid

Tansigmoid is a transfer function that calculates the output of a layer from its net

input, which can range from plus to minus infinity. It takes input and returns outputs

squashed between -1 and 1, where f is an exponential function in the format:

 (2.28)

-1.5

-1

-0.5

0

0.5

1

1.5

-5 -3 -1 1 3 5

n

f(n
)

Figure 2.5: Tansigmoid transfer function with f(n) = tansig(n) = tansig (Wp+b)

Logsigmoid

 23

Logsigmoid is a transfer function that calculates the output of a layer from its net

input, which can range between plus and minus infinity. It takes input and returns

each element of N squashed between 0 and 1 according to the expression:

 (2.29)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-5 -3 -1 1 3 5

n

f(n
)

Figure 2.6: Logsigmoid transfer function with f(n)= logsig(n) = logsig(Wp+b)

2.2.4 Summary of the backpropagation algorithm

The backpropagation algorithm learns to recognise and reproduce patterns

iteratively, where weights are adjusted in order to minimise error with a pre-defined

selected criterion. The four steps of the algorithm are summarised below:

2.1.1.1 Initialise weights or start from random weight state

2.1.1.2 The output of the network is evaluated (forward pass)

The purpose of the nodes in the input layer is to transmit the received single

external input to all nodes of the next layer.

The output of the kth input of the pth example is shown in Figure 2.7.

 24

Figure 2.7: Input layer in the forward pass (Tsaptsinos, 1995)

This can be written as:

 (2.30)

The function of any other node is to receive inputs, sum the weighted inputs plus the

bias, nonlinearly/linearly convert the sums and transmit the outputs to the nodes in

the next layer or to the external environment.

O - represents an input, hidden and output node

W - represents the bias, default value = 1

 - represents the weights

 - represents the unidirectional flow placed on the connections

The output of the lth hidden layer is shown graphically in Figure 2.8.

This is written as

l l l llK (2.31)

1

l llk
  (2.32)

The nonlinear transformation using the transfer function is represented as follows:

 l (2.33)

 25

Figure 2.8: Hidden layer in the forward pass (Tsaptsinos, 1995)

The equations 2 to 4 represent one hidden layer, but for more than one hidden layer

the equations are similarly derived, although for different numbers of layers.

The output layer of the mth output node is shown graphically in Figure 2.8.

It can be written as

 (2.34)



 26

Figure 2.9: Output layer in the forward pass (Tsaptsinos, 1995)

Then

 (2.35)

2.1.1.3 The error is calculated (error criterion)

The error criterion E measures the difference between the actual outputs of the

output node of the network (py m) and the desired outputs ().

This is given by:

 (2.36)

The total error for all can be summed up by the following equation:

 (2.37)

 27

A tolerance level t can be determined for the outputs:

If the required output is zero, any network output below t is considered correct. If the

required output is one, any network output greater than 1-t is considered correct. If

there is a continuous output, the generated output is considered correct if it lies within

t of the desired value.

2.1.1.4 The weights are adjusted (backward pass)

In order to minimise E, which depends on the weights and biases, the

backpropagation uses gradient steepest descent in order to locate appropriate

weights and biases. The gradient descent algorithm works in such a way that it

changes each weight by an amount proportional to the gradient of the error criterion

at the present weight location.

The backward pass is symbolised by the following equation:

 (2.38)

The gradient can be found using the following equation:

 (2.39)

Where n determines the step size the descent takes and is negative, as the aim is to

decrease the error.

The generalised delta rule can be summarised after much derivation and is given by:

 (2.40)

n: learning rate

: “delta term” representing the error

x: represents the incoming inputs to a particular node

 28

Weights on the connection between the hidden layer and the output layer
()

These weights are adjusted with the following summarised equations. The

derivations are left out with generic node and weight one at a time, thus summation is

dropped:

 (2.41)

py m is the output of the output layer node; then

 (2.42)

The gradient is then given as:

 (2.43)

Weights on the connection between the input layer and the hidden layer

The weights are adjusted for the backpass with the following summarised equations.

There is one generic node and weight at a time, and the summation is therefore

dropped for the purposes of simplification:

 (2.44)

 is effectively the input of the first hidden layer.

 29

  

 (2.45)

Simplifying the equation above,

 (2.46)

The gradient is then:

 (2.47)

Where the delta () term of this layer is represented by:

 (2.48)

Notice the delta term for the input hidden layer uses the delta term for the hidden

output layer, as they are interconnected.

The new weights for the input hidden layer and the hidden output layer are calculated

by means of the following two equations:

 (2.49)

 (2.50)

The summary of these steps, namely forward pass, error criterion and
backward pass, is the following:

1. Initialise all weights

Present the input variables to the nodes in the input layer.

Calculate the output of every input variable with the following equation

 30

 (1a)

Calculate the output of every hidden node using the transfer function chosen; in this

case a logsigmoid function was used. The output of a hidden layer is a nonlinear

transformation of the sum of the product of incoming inputs from the previous layer

and the associated weights, plus the bias.


 (1b)

Calculate the output of every output node using the following equation, which also

utilises the logsigmoid function as the transfer function. The output of a node from the

output layer is a nonlinear transformation of the sum of the product of incoming

inputs from the previous layer and the associated weights, plus the bias.


 (1c)

Calculate the error, which is the difference between the target values and the values

generated by the network, multiplied by 0.5.

 (1d)

2. Accumulate the total error.

 (2a)

3. If the total error is satisfactory, stop; otherwise continue to the next step.

4. For each layer and for the input/output pair, calculate the following:

Delta values, using the following equation:

 (4a)

 (4b)

 31

Calculate the change required for each weight using the following equations;

represents the steepness parameter, and is usually set to 0.5 or to 1:

 (4c)

 (4d)

 (4e)

 (4f)

For each weight, amass the total change required.

5. Adjust the weights using the following equations:

  (5a)

  (5b)

  (5c)

  (5d)

6. Continue from step 1 until step 3 is satisfactory.

 32

3. RESEARCH METHODOLOGY

3.1 DATA

The data used were generated randomly in Microsoft Excel. The range was set so

that every term in the set equation contributed within the set range. After a review of

the literature and a comparative study, the range of 1 to 10 was chosen. For a proper

comparative study to be done, four equations were set to generate the random

values. When the random values were generated, the missing variables were added

as dummy variables.

Equation 1 with 5 input variables:

 dummy variables: x3, x4

Equation 2 with 5 input variables:

 dummy variables: x2, x4

Equation 3 is a combination of equation 1 and equation 2, with 10 input variables:

dummy variables: x3, x4, x7, x9

Equation 4 has seven input variables:

 dummy variables: x3, x4, x5

This was done for 1 000 observations. The purpose was to check if these dummy

variables inserted in the equation contributed any significant difference to the

 33

regression value and to check if they were detected by the ANN as suspect

variables.

3.2 MATLAB REGRESSION

The general equations were used for generating random data of a range between 1

and 10. A number of matrices were constructed for all variables and exported to

Matlab.

In general, the number of matrices created for each given equation is directly

proportional to the number of input variables.

Number of matrices = number of input variables + 2

The output variable remains constant for each equation, as it is determined by the

equation. At first, all input variables are utilised in calculating the regression values,

and then one variable is successfully removed from the input while creating new

matrices.

All matrices in Matlab for the command regression have to be formatted with a

column of ones. The column of ones is for estimating the y intercept of the linear

model. The y intercept in the equation below is represented by and it is the only

standalone constant.

The command in Matlab:

 (3.1)

returns the least squares fit of Yall on Xall by solving the linear model where

 (3.2)

 (3.3)

for where:

 34

 is an n-by-1 vector of output variables

 is an n-by-p matrix of input variables

 is a p-by-1 vector of parameters

 is an n-by-1 vector of random disturbances

 
  (3.4)

The command above provides an estimate of in b. Since a column of one has

been added to the Xall matrix, there is a p-by-1 vector of estimates from the least

squares fit. b constants, which are estimates of the βi of the equation

 is a p-by-2 vector gives for all datasets (Xall, Yall) with a range in which 95% of

the bi values lie. In other words, 95% of the β estimates lie within a classified multiple

of the respective standard deviation.

The residuals are defined as

 (3.5)

This is returned in r and which is a n-by-1 vector

 is an n-by-2 vector is a p-by-2 vector gives for all datasets (Xall, Yall) with a

range in which 95% of the ri values lie. In other words, 95% of the residuals lie within

a classified multiple of the respective standard deviation.

The vector stats contains the R2 statistic along with the F and p values for the

regression.

 35

Equation 1: dummy variables x3, x4

The first matrix, Xall, will contain ones and the input variables X1, X2, X3, X4, X5, a 1

000 by 6 matrix, while Yall will have the output variable, a vector with 1 000 rows.

The second matrix, Xno1, will contain ones and the input variables X2, X3, X4, X5 , a 1

000 by 5 matrix, while Yno1 will have the output variable, a vector with 1 000 rows.

The third matrix, Xno2, will contain ones and the input variables X1, X3, X4, X5 , a 1 000

by 5 matrix, while Yno2 will have the output variable, a vector with 1 000 rows.

The fourth matrix, Xno3, will contain ones and the input variables X1, X2, X4, X5 , a 1

000 by 5 matrix while Yno3 will have the output variable, a vector with 1 000 rows.

The fifth matrix, Xno4, will contain ones and the input variables X1, X2, X3, X5 , a 1000

by 5 matrix, while Yno4 will have the output variable, a vector with 1 000 rows.

The sixth matrix, Xno5, will contain ones with input variables X1, X2, X3, X4 , a 1000 by

5 matrix, while Yno5 will have the output variable, a vector with 1 000 rows.

The seventh matrix created removes the dummy variables X3 and X4. It is called Xno34

and has ones and the input variables X1, X2, X5 , a 1000 by 4 matrix. The output

variable is Yno34 and will have a vector with 1 000 rows.

Most importantly, the output vector remains constant for comparison, because the

dummy variables X3, and X4 do not contribute to the output and thus the regression

value should not be altered by their presence.

Thus, this set of data has seven matrices in total. These are the matrices that were

created in Excel spreadsheets and exported to Matlab for the regression for the first

dataset.

Actual commands in Matlab

 [b,bint,r,rint,stats] = regress(Yall,Xall);

[bno1,bintno1,rno1,rintno1,statsno1] = regress(Yno1,Xno1);

 36

[bno2,bintno2,rno2,rintno2,statsno2] = regress(Yno2,Xno2);

[bno3,bintno3,rno3,rintno3,statsno3] = regress(Yno3,Xno3);

[bno4,bintno4,rno4,rintno4,statsno4] = regress(Yno4,Xno4);

[bno5,bintno5,rno5,rintno5,statsno5] = regress(Yno5,Xno5);

 [bno34,bintno34,rno34,rint34,stats34] = regress(Yno34,Xno34);

STATS = [stats; statsno1; statsno2; statsno3; statsno4; statsno5; statsno34]

B = [bno1 bno2 bno3 bno4 bno5]

Equation 2: dummy variables x2, x4

The first matrix, Xall, will contain ones and the input variables X1, X2, X3, X4, X5, a 1

000 by 6 matrix, while Yall will have the output variable, a vector with 1 000 rows.

The second matrix, Xno1, will contain ones and the input variables X2, X3, X4, X5, a

1000 by 5 matrix, while Yno1 will have the output variable, a vector with 1000 rows.

The third matrix, Xno2, will contain ones and the input variables X1, X3, X4, X5, a 1000

by 5 matrix, while Yno2 will have the output variable, a vector with 1000 rows.

The fourth matrix, Xno3, will contain ones and the input variables X1, X2, X4, X5, a

1000 by 5 matrix, while Yno3 will have the output variable, a vector with 1000 rows.

The fifth matrix, Xno4, will contain ones and the input variables X1, X2, X3, X5, a 1000

by 5 matrix, while Yno4 will have the output variable, a vector with 1000 rows.

The sixth matrix, Xno5, will contain ones and the input variables X1, X2, X3, X4, with

1000 by 5 matrix, while Yno5 will have the output variable, a vector with 1000 rows.

The seventh matrix removes the dummy variables X2 and X4, is called Xno24 and has

ones and input variables X1, X2, X5, a 1000 by 4 matrix. The output variable is Yno24

and will have a vector with 1000 rows.

 37

Most importantly, the output vector remains constant for comparison, because the

dummy variables X2, and X4 do not contribute to the output and thus the regression

value should not be altered by their presence.

Thus, this set of data has seven matrices in total. These are the matrices that were

created in Excel spreadsheets and exported to Matlab for the regression for the

second dataset.

Actual commands in Matlab

[b,bint,r,rint,stats] = regress(Yall,Xall);

[bno1,bintno1,rno1,rintno1,statsno1] = regress(Yno1,Xno1);

[bno2,bintno2,rno2,rintno2,statsno2] = regress(Yno2,Xno2);

[bno3,bintno3,rno3,rintno3,statsno3] = regress(Yno3,Xno3);

[bno4,bintno4,rno4,rintno4,statsno4] = regress(Yno4,Xno4);

[bno5,bintno5,rno5,rintno5,statsno5] = regress(Yno5,Xno5);

 [bno24,bintno24,rno24,rint24,stats24] = regress(Yno24,Xno24);

STATS = [stats; statsno1; statsno2; statsno3; statsno4; statsno5; statsno24]

B = [bno1 bno2 bno3 bno4 bno5]

Equation3:

Dummy variables are x3, x4, x7, x9

The third equation is a combination of the first two equations.

The first matrix, Xall, will contain ones and the input variables X1, X2, X3, X4, X5, X6,
X7, X8, X9, X10, a 1000 by 11 matrix, while Yall will have the output variable, a vector

with 1000 rows.

The second matrix, Xno1, will contains ones and the input variables X2, X3, X4, X5, X6,
X7, X8, X9, X10, a 1000 by 10 matrix, while Yno1 will have the output variable, a vector

with 1000 rows.

 38

The third matrix, Xno2, will contain ones and with input variables X1, X3, X4, X5, X6, X7,
X8, X9, X10, a 1000 by 10 matrix, while Yno2 will have the output variable, a vector with

1000 rows.

The fourth matrix, Xno3, will contain ones and input variables X1, X2, X4, X5, X6, X7, X8,
X9, X10, a 1000 by 10 matrix, while Yno3 will have the output variable, a vector with

1000 rows.

The fifth matrix, Xno4, will contain ones and the input variables X1, X2, X3, X5, X6, X7,
X8, X9, X10, a 1000 by 10 matrix, while Yno4 will have the output variable, a vector with

1000 rows.

The sixth matrix, Xno5, will contain ones and the input variables X1, X2, X3, X4, X6, X7,
X8, X9, X10, a 1000 by 10 matrix, while Yno5 will have the output variable, a vector with

1000 rows.

The seventh matrix, Xno6, will contain ones and the input variables X1, X2, X3, X4, X5,
X7, X8, X9, X10, a 1000 by 10 matrix, while Yno5 will have the output variable, a vector

with 1000 rows.

The eighth matrix, Xno7, will contain ones and input variables X1, X2, X3, X4, X5, X6, X8,
X9, X10, a 1000 by 10 matrix, while Yno5 will have the output variable, a vector with

1000 rows.

The ninth matrix, Xno8, will contain ones and input variables X1, X2, X3, X4, X5, X6, X7,
X9, X10, a 1000 by 10 matrix, while Yno5 will have the output variable, a vector with

1000 rows.

The tenth matrix , Xno9, will contain ones and input variables X1, X2, X3, X4, X5, X6, X7,
X8, X10, a 1000 by 10 matrix, while Yno5 will have the output variable, a vector with

1000 rows.

The eleventh matrix, Xno10, will contain ones and input variables X1, X2, X3, X4, X5, X6,
X7, X8, X9, a 1000 by 10 matrix, while Yno5 will have the output variable, a vector with

1000 rows.

 39

The twelfth matrix, Xno3479, will contain ones and input variables X1, X2, X4, X5, X6, X8,
X10, a 1000 by 8 matrix, while Yno5 will have the output variable, a vector with 1000

rows.

Thus, this set of data has 12 matrices in total. These are the matrices that were

created in Excel spreadsheets and exported to Matlab for the regression for the third

dataset.

Actual commands in Matlab

[b,bint,r,rint,stats] = regress(Yall,Xall);

[bno1,bintno1,rno1,rintno1,statsno1] = regress(Yno1,Xno1);

[bno2,bintno2,rno2,rintno2,statsno2] = regress(Yno2,Xno2);

[bno3,bintno3,rno3,rintno3,statsno3] = regress(Yno3,Xno3);

[bno4,bintno4,rno4,rintno4,statsno4] = regress(Yno4,Xno4);

[bno5,bintno5,rno5,rintno5,statsno5] = regress(Yno5,Xno5);

[bno6,bintno6,rno6,rintno6,statsno6] = regress(Yno6,Xno6);

[bno7,bintno7,rno7,rintno7,statsno7] = regress(Yno7,Xno7);

[bno8,bintno8,rno8,rintno8,statsno8] = regress(Yno8,Xno8);

[bno9,bintno9,rno9,rintno9,statsno9] = regress(Yno9,Xno9);

[bno10,bintno10,rno10,rintno10,statsno10] = regress(Yno10,Xno10);

[bno3479,bintno3479,rno3479,rintno3479,statsno3479]=regress(Yno3479,Xn

o3479);

STATS = [stats; statsno1; statsno2; statsno3; statsno4; statsno5; statsno6; statsno7;

statsno8; statsno9; statsno10; statsno3479]

B = [bno1 bno2 bno3 bno4 bno5 bno6 bno7 bno8 bno9 bno10]

Equation 4:

Dummy variables are x3, x4, x5

The first matrix, Xall, will contain ones and the input variables X1, X2, X3, X4, X5, X6,
X7, a 1000 by 8 matrix, while Yall will have the output variable, a vector with 1000

rows.

 40

The second matrix, Xno1, will contain ones and the input variables X2, X3, X4, X5, X6,
X7, a 1000 by 7 matrix, while Yno1 will have the output variable, a vector with 1000

rows.

The third matrix, Xno2, will contain ones and the input variables X1, X3, X4, X5, X6, X7,

a 1000 by 7 matrix, while Yno2 will have the output variable, a vector with 1000 rows.

The fourth matrix, Xno3, will contain ones and input variables X1, X2, X4, X5, X6, X7, a

1000 by 7 matrix, while Yno3 will have the output variable, a vector with 1000 rows.

The fifth matrix, Xno4, will contain ones and the input variables X1, X2, X3, X5, X6, X7, a

1000 by 7 matrix, while Yno4 will have the output variable, a vector with 1000 rows.

The sixth matrix, Xno5, will contain ones and the input variables X1, X2, X3, X4, X6, X7, a

1000 by 7 matrix, while Yno5 will have the output variable, a vector with 1000 rows.

The seventh matrix, Xno6, will contain ones and the input variables X1, X2, X3, X4, X5,
X7, a 1000 by 7 matrix, while Yno5 will have the output variable, a vector with 1000

rows.

The eighth matrix, Xno7, will contain ones and input variables X1, X2, X3, X4, X5, X6, a

1000 by 7 matrix, while Yno5 will have the output variable, vector with 1000 rows.

The ninth matrix, Xno345, will contain ones and input variables X1, X2, X6, X7, a 1000 by

5 matrix, while Yno5 will have the output variable, vector with 1000 rows.

Thus, this set of data has nine matrices in total. These are the matrices that were

created in Excel spreadsheets and exported to Matlab for the regression for the

fourth dataset.

Actual commands in Matlab

[b,bint,r,rint,stats] = regress(Yall,Xall);

[bno1,bintno1,rno1,rintno1,statsno1] = regress(Yno1,Xno1);

[bno2,bintno2,rno2,rintno2,statsno2] = regress(Yno2,Xno2);

[bno3,bintno3,rno3,rintno3,statsno3] = regress(Yno3,Xno3);

[bno4,bintno4,rno4,rintno4,statsno4] = regress(Yno4,Xno4);

 41

[bno5,bintno5,rno5,rintno5,statsno5] = regress(Yno5,Xno5);

[bno6,bintno6,rno6,rintno6,statsno6] = regress(Yno6,Xno6);

[bno7,bintno7,rno7,rintno7,statsno7]=regress(Yno7,Xno7);

[bno345,bintno345,rno345,rintno345,statsno345]=regress(Yno345,Xno345);

STATS = [stats; statsno1; statsno2; statsno3; statsno4; statsno5; statsno6; statsno7;

statsno345]

B = [bno1 bno2 bno3 bno4 bno5 bno6 bno7]

3.3 NEURAL NETWORK

3.3.1 Backpropagation Algorithm

There are many variations of the backpropagation algorithm, depending on the

different methods of optimisation. The simplest is the generalisation of the steepest

descent method (Rumelhart & McClelland, 1986) applied to a feedforward neural

network. The network learning updates the weights and biases in the negative

direction in which the performance function decreases most rapidly. The architecture

that is commonly used for the feedforward backpropagation algorithm is a multilayer

network as represented in Figure 10 below.

 42





 





Figure 3.1: Structure of a feedforward neural network with two transfer functions

The neural network model is made up of three layers: input, hidden and output.

The system learns by adjusting its weights, Wj,k, while the inputs and outputs are

presented to the model in a normalised format. During the fitting process, there are a

number of network parameters that can be adjusted to give a better approximation of

the output. The parameters are:

Number of neurons in the various layers

Number of layers

Transfer functions chosen in each of those layers

The learning parameters: rate of change of damping/accelerating factor

The rate of learning

Optimisation method chosen (search algorithms)

 43

Figure 3.1 shows three layers: input, hidden and output. Each layer comprises weight

matrix, summation units, the bias vector b, the transfer function boxes and the output

vector a. The inputs are represented by xp1, xp2,…., xpR, where R is the number of

elements in the input vector. The inputs are each assigned a weight: w1,1, w1,2….w1,R.

The input elements enter the network and are represented as a matrix W.

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

R

R

S S S R

w w w
w w w

w w w

 
 
   
  
 

M M M
 (3.6)

Each element in the input vector y is connected to each neuron through the weight

matrix W, and each neuron has a bias bi, a summation, a transfer function f and an

output ai. All together, the outputs yi give the output vector y.

 (3.7)

This equation is written in the matrix form:

 (3.8)

In the equation above, the neuron has a bias b, which is summed with the weighted

inputs to form the equation. Generally the summation units find the net value once

the inputs are fed to the neuron; this net value is calculated by finding the product of

each input value and the corresponding connection weights.

The two neuron output can be written as:

 (3.9)

 (3.10)

In this particular case,

 and (3.11)

 44

Thus, from Figure 10, the output a becomes:

 (3.12)

All together, the equation for output for our particular system is:

 (3.13)

3.3.2 Creating a neural net using backpropagation.

The following steps were followed in creating a neural net.

3.3.2.1 Build matrix

The matrix for the neural net was derived from the random data that were generated

from the four equations in the range of 1 to 10.

Xall comprises all the input variables x1, x2,……., xk.

Yall comprises the output variable y

3.3.2.2 Invert the matrix

The Xall and Yall matrices were inverted, with xall and yall becoming the inverted

matrices respectively. The inversion is important, as all matrix operations in the

Matlab neural net are row operations, while the operations in Excel are done in

columns.

3.3.2.3 Separate the set into training, validation and test set

Training set: The dataset for the training set comprises a quarter of the dataset to

form a training subset.

Validation set: The dataset for the validation set comprises a quarter of the dataset to

form a validation set

Test set: The dataset for the test set comprises half of the remaining data, which then

forms the test set.

 45

All the sets were set as equally spaced points throughout the original dataset.

3.3.2.4 Scale the training set

The input training subset was rearranged from minimum values to maximum values

using the command minmax.

Pr = minmax(input training subset) (3.14)

The command minmax takes the input training subset, an R x Q matrix, and returns

an R x 2 matrix, Pr. This has minimum and maximum values for each row of the input

training subset.

The purpose of arranging the training subset from minimum to maximum is to

determine the range of the inputs to be used in creating the network.

3.3.2.5 Create the net

The first step in creating the net is to set the feedforward structure in which each

layer only receives inputs from the previous layers. The function newff creates the

feedforward network.

Initially, when training a feedforward network, it is vital to create the network object.

This requires four inputs and returns the network object, which are as follows:

The first input is an R by 2 matrix of minimum and maximum values for each of the R

elements of the input vector that were created previously.

The second input is a range containing the sizes of each layer. This is the number of

neurons, including weights and bias, a summing junction and an output transfer

function.

The third input is a group that contains the names of the transfer functions to be used

in each layer.

The final input contains the name of the training function to be used.

There are a number of transfer functions that could be used and tansigmoid is the

default transfer function of Matlab. Tansig, as it is known in short in Matlab, is used

frequently, as it is differentiable and is a prerequisite in the hidden layer in

 46

backpropagation. The training function serves the purpose of mapping the net output

of the neurons (or layers) according to their actual output.

The training functions are created in Matlab to provide a training algorithm for the

feedforward backpropagation. The different algorithms use the gradient of the

performance function to determine how to adjust the weights to reduce performance.

The task of the training algorithms is to reduce the mean square error (mse), which is

the average squared error between the network outputs and the target output. The

default performance function is mse (mean square error).

All the algorithms use the gradient of the performance function to determine weight

adjustments to minimise the mean square error. The gradient determination provides

the name, backpropagation – a technique that executes computations through the

network backwards.

The several different backpropagation training algorithms have a variety of different

computational and capacity requirements, and no one algorithm is best suited to all

situations. Examples of backpropagation training functions used by Matlab include

trainlm, trainbfg, trainrp and traingd. The transfer functions can be any differentiable

transfer function, such as tansig, logsig or purelin.

A caution is issued when using trainlm as the default training function, because it is

very fast and therefore requires a lot of memory to run.

The default training algorithm used is trainlm, a network training function that updates

weight and bias values according to Levenberg-Marquardt optimisation. The

Levenberg-Marquardt optimisation is an algorithm for least squares estimation of

nonlinear parameters that outperforms gradient descent and conjugate algorithms by

approaching the second order training speed through approximating the Hessian

matrix rather than computing it.

The trainlm of the training function has the following default values:

100 epochs: presentation of the set of training input and target pairs to a network and

the calculation of new weights and biases. This is done in batch

Minimum performance gradient of

 47

A factor of 1 to use for memory/speed

Performance goal of zero

A weight/bias learning function, 'learngdm' which is a gradient descent weight and

bias learning function with momentum.

3.3.2.6 Train the net

Once the feedforward backpropagation network has been created, the net can be

trained, using the command:

net,TR,Y] = train(net,P,T,Pi,Ai,val,test) (3.15)

The command net, takes the seven inputs, which are:

The neural network net

P, the network inputs

T, the network targets

Pi, which has a default value of zero, the initial input delay conditions

Ai, which also has a default value of zero, the initial layer delay conditions

val, which is the structure of the validation vectors

test, the structure of the test vectors

The command train then returns the three outputs as follows:

Net, a new network

TR, the training record (showing epoch and performance ‘mse’)

Y, the network outputs

3.3.3 Mutual net for the four equations

The general equations are used for generating random data of a range between 1

and 10. A matrix with inputs and output is constructed for all variables and then

exported to Matlab.

 48

The matrix Xall will contain all the input variables X1, X2, X3, X4, X5 etc., while Yall will

have the output variable, a vector with 1 000 rows. These are exported from Excel to

Matlab, and these matrices are transposed on xall and yall respectively.

A network is created with a two-layer network, a tansigmoid transfer function in the

hidden layer, and a purelin linear transfer function in the output layer.

An initial guess is made of the number of neurons in the hidden layer. It is usually

prudent to start the initial guess according to the following equation:

The dataset has one output, thus the network should have one output neuron. The

Levenberg-Marquardt algorithm is used for training.

The actual commands are:

xall = Xall’; %transposes Xall

yall = Yall’; %transposes Yall

iitst = 2:4:1000; %space 4 starting 2nd column

iival = 4:4:1000; %space 4 starting 4th column

iitr = [1:4:1000 3:4:1000]; %space 4 starting at multiple area

val.P = xall(:,iival); val.T = yall(:,iival); %validation set ¼ of the data

test.P = ptrans(:,iitst); test.T = tn(:,iitst);%test set ¼ of the data

ptr = ptrans(:,iitr); ttr = tn(:,iitr); %training set ½ of the data

net=newff(minmax(ptr),[noofneuronsinhiddenlayer,noofneuronsintheouter

layer],{'tansig' 'purelin'},'trainlm');

%create a feedforward backpropagation network with two layers and

%tansigmoid, purelin as the transfer functions

%the training function is trainlm, the Levenberg-Marquardt optimisation

% the training set from the input dataset is used

 49

 [net,tr]=train(net,ptr,ttr,[],[],val,test);

%a net is created with default zero values for input delay conditions and input

%layer delay conditions. The training function utilises the training data subset

%to return a new net, giving a record of the epochs.

%The training will stop after a number of iterations when errors increase.

plot(tr.epoch,tr.perf,tr.epoch,tr.vperf,tr.epoch,tr.tperf)

legend('Training','Validation','Test',-1);

ylabel('Squared Error'); xlabel('Epoch')

The above 3 commands are for plotting training, validation and test errors to check

the progress of training.

a = sim(net,xall);

Simulates the network to return the simulated y values

[m,b,r] = postreg(a, yall) %

Regression analysis of Yall (target) and ‘a’ which is the Y values as simulated by the

network. This gives a feel of how accurate or good a fit is the simulated model

estimating the actual model.

3.3.3.1 Equation 1: dummy variables x3, x4

The matrix Xall will contain all the input variables X1, X2, X3, X4, X5, thus a 1 000 by 5

matrix, while Yall will have the output variable, a vector with 1000 rows. These are

exported from Excel to Matlab, and these matrices are transposed to xall and yall

respectively

In Equation 1, a network is created with a two-layer network, a tansigmoid transfer

function in the hidden layer, and a purelin linear transfer function in the output layer.

An initial guess is made of the number of neurons in the hidden layer, which is five.

The dataset has one output, thus the network should have one output neuron. The

Levenberg-Marquardt algorithm is used for training.

 50

The actual commands are:

xall = Xall’;

yall = Yall’;

iitst = 2:4:1000;

iival = 4:4:1000;

iitr = [1:4:1000 3:4:1000];

val.P = xall(:,iival); val.T = yall(:,iival);

test.P = ptrans(:,iitst); test.T = tn(:,iitst);

ptr = ptrans(:,iitr); ttr = tn(:,iitr);

net = newff(minmax(ptr),[5 1],{'tansig' 'purelin'},'trainlm');

[net,tr]=train(net,ptr,ttr,[],[],val,test);

plot(tr.epoch,tr.perf,tr.epoch,tr.vperf,tr.epoch,tr.tperf)

legend('Training','Validation','Test',-1);

ylabel('Squared Error'); xlabel('Epoch')

a = sim(net,xall);

[m,b,r] = postreg(a, yall)

3.3.3.2 Equation 2: dummy variables
x2, x4

The matrix Xall will contain all the input variables X1, X2, X3, X4, X5, thus a 1 000

by 5 matrix, while Yall will have the output variable, a vector with 1 000 rows. These

are exported from Excel to Matlab, and these matrices are transposed to xall and yall

respectively

In Equation 2, a network is created with a two-layer network, a tansigmoid transfer

function in the hidden layer, and a purelin linear transfer function in the output layer.

An initial guess is made of the number of neurons in the hidden layer, which is five.

The dataset has one output, thus the network should have one output neuron. The

Levenberg-Marquardt algorithm is used for training.

The actual commands are:

xall = Xall’;

yall = Yall’;

 51

iitst = 2:4:1000;

iival = 4:4:1000;

iitr = [1:4:1000 3:4:1000];

val.P = xall(:,iival); val.T = yall(:,iival);

test.P = ptrans(:,iitst); test.T = tn(:,iitst);

ptr = ptrans(:,iitr); ttr = tn(:,iitr);

net = newff(minmax(ptr),[5 1],{'tansig' 'purelin'},'trainlm');

[net,tr]=train(net,ptr,ttr,[],[],val,test);

plot(tr.epoch,tr.perf,tr.epoch,tr.vperf,tr.epoch,tr.tperf)

legend('Training','Validation','Test',-1);

ylabel('Squared Error'); xlabel('Epoch')

a = sim(net,xall);

[m,b,r] = postreg(a, yall)

3.3.3.3 Equation 3:

Dummy variables are x3, x4, x7, x9

The third equation is a combination of the first two equations. The matrix Xall will

contain all the input variables, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, thus a 1 000 by

10 matrix, while Yall will have the output variable, a vector with 1 000 rows. These are

exported from Excel to Matlab, and these matrices are transposed to xall and yall

respectively

In Equation 2, a network is created with a two-layer network, a tansigmoid transfer

function in the hidden layer, and a purelin linear transfer function in the output layer.

An initial guess is made of the number of neurons in the hidden layer, which is 10.

The dataset has one output, thus the network should have one output neuron. The

Levenberg-Marquardt algorithm is used for training.

The actual commands are:

xall = Xall’;

yall = Yall’;

iitst = 2:4:1000;

 52

iival = 4:4:1000;

iitr = [1:4:1000 3:4:1000];

val.P = xall(:,iival); val.T = yall(:,iival);

test.P = ptrans(:,iitst); test.T = tn(:,iitst);

ptr = ptrans(:,iitr); ttr = tn(:,iitr);

net = newff(minmax(ptr),[10 1],{'tansig' 'purelin'},'trainlm');

[net,tr]=train(net,ptr,ttr,[],[],val,test);

plot(tr.epoch,tr.perf,tr.epoch,tr.vperf,tr.epoch,tr.tperf)

legend('Training','Validation','Test',-1);

ylabel('Squared Error'); xlabel('Epoch')

a = sim(net,xall);

[m,b,r] = postreg(a, yall)

3.3.3.4 Equation 4:

Dummy variables are x3, x4, x5

The matrix Xall will contain all the input variables, X1, X2, X3, X4, X5, X6, X7, a 1 000

by 7 matrix, while Yall will have the output variable, a vector with 1 000 rows. These

are exported from Excel to Matlab, and these matrices are transposed to xall and yall

respectively

In Equation 2, a network is created with a two-layer network, a tansigmoid transfer

function in the hidden layer, and a purelin linear transfer function in the output layer.

An initial guess is made of the number of neurons in the hidden layer, which is seven.

The dataset has one output, thus the network should have one output neuron. The

Levenberg-Marquardt algorithm is used for training.

The actual commands are:

xall = Xall’;

yall = Yall’;

iitst = 2:4:1000;

iival = 4:4:1000;

iitr = [1:4:1000 3:4:1000];

val.P = xall(:,iival); val.T = yall(:,iival);

 53

test.P = ptrans(:,iitst); test.T = tn(:,iitst);

ptr = ptrans(:,iitr); ttr = tn(:,iitr);

net = newff(minmax(ptr),[7 1],{'tansig' 'purelin'},'trainlm');

[net,tr]=train(net,ptr,ttr,[],[],val,test);

plot(tr.epoch,tr.perf,tr.epoch,tr.vperf,tr.epoch,tr.tperf)

legend('Training','Validation','Test',-1);

ylabel('Squared Error'); xlabel('Epoch')

a = sim(net,xall);

[m,b,r] = postreg(a, yall)

3.3.3.5 Using the trained net to check for suspect variables

The creation and testing of the net was discussed in the previous section, and the

assumption is that the net is a good fit for the proposed model and that the

regression constant for simulated Y values and actual values is greater than 98%.

Thus, if the network is presented with previously unseen values for inputs, would the

network actually give a good estimate of the outputs? Would we be able to pick up

trends enforced in the input in the simulated output?

Bearing this questions in mind, we set out to use the trained network to simulate

outputs and check whether the simulated outputs pick up suspect variables.

3.3.3.6 Same matrix as created for the net

The same matrices as above were used, as we were not recreating a new network

but rather using the trained net.

3.3.3.7 Create data in ascending order

The matrices that were used previously were arranged in ascending order, using the

Excel function of sorting the columns of x1, x2, x3, etc. in ascending order.

3.3.3.8 Extract input quantiles from the ascending matrix

Quantiles are a set of 'cut points' that divide a sample of data into groups containing

(as far as possible) equal numbers of observations. For the data, a 20%, 50% and

80% quantile were chosen, as they best represent the data and create a fair

statistical sample.

 54

3.3.3.9 Calculate average of the input variables from the matrix created

The calculated average is used to form a new matrix of input quantiles, averages.

The matrix will have the following number of rows and columns:

The aim is to report the quantile for the one input variable while keeping the other

input variables constant by reporting the average for the rest of the input variables.

Below is an example, of three variables in the format they were to be presented for

training in the neural net:

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

This matrix is exported to Matlab, and transposed.

3.3.3.10 Simulation

Once the new matrix is formed, the network that was created before is used to

simulate new output values, Ysim (the output from the net, which is the simulated

output).

The simulated output for where the dummy variables are should not change as the

input changes. This is because the dummy variables do not contribute to the output

and therefore do not alter the simulated output. The variables that do not show any

 55

significant change in the simulated output can then be declared suspect variables.

The new simulated matrix will be in the form:

3.3.3.11 Check if the Ysim changes

The output of the new simulation is then exported to Excel and a comparison is made

to see if there is actual change in the Ysim compared to the input.

 56

4. RESULTS

Linear regression is the most commonly used method to analyse process data, and

is a method that has been tested thoroughly and is known universally. The success

of linear regression stems from its ability to be predictive and provide explanatory

results (Gevrey, 2003:259). Linear regression, however, is unable to model complex

nonlinear systems, therefore the use of ANN in process data is justified, as the

relationships between variables are often nonlinear. Linear regression may have

another shortcoming in that one has to examine the final values of R2 and the beta

weights to determine variable importance. A methodology is needed for determining

the hierarchy of the “importance” of the variables, and variable contribution. The ANN

models are able to make good predictions, although methods need to be developed

to clarify the black-box approach to ANNs.

The four equations were modelled using the Matlab regression function and a neural

net was developed.

4.1 Equation 1

4.1.1 Matlab regression values using “dropping method”

The results for Equation 1 after regression show R2 to be 93.31%. This is a good

model. When X1 is left, the R2 value drops to 53.65%, and when X5 is left out, R2 is

still low at 55.11%. When X2 was left out R2 values drops to 80.25%, while when X3

and X4 was left out, R2 values were not altered from 93%.

 57

R2 values with X-values left out

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

None left
out

X1 left out X2 left out X3 left out X4 left out X5 left out

X (Variable input)

R
2 v

al
ue

s
(m

at
la

b)

Figure 4.1: Equation 1, R2 values obtained in Matlab with successive variables
explanatory variables left out.

The dummy variables added were X3 and X4, and the result of R2 when these two

variables were left out show that they are insignificant to the regression value for the

whole equation.

4.1.2 Matlab regression model

The actual data for Equation 1 were plotted together with the regression model data.

The output from Matlab provides an output with R2, beta values and P values. The

beta values are used to determine the models output using the following equation:

 58

Figure 4.2: Equation 1, comparison of actual data with the Matlab regression model

data.

The model is a good estimate of the actual data, although the simulated model

underestimates where actual data spikes sharply. The comparison of the actual

output values and the simulated output values yields a regression value of 93.31%.

4.1.3 Neural network feedforward backpropagation

The created network has two layers with five neurons in the first layer and one

neuron in the second layer.

 59

Figure 4.3: Equation 1, comparison of actual data with the neural network model data

The model of the created network is a perfect estimate of the actual data and this is

demonstrated by the high regression value comparing the actual data and the

simulated, of 99.96%.

4.1.4 Ysim from previously unseen data

The matrix, consisting of quantiles and averages, was presented to the trained

network above. The network provided an output, Ysim. The table below consists of

the matrix presented to the network and the output that was simulated. The

explanatory variables X1, X2 and X5 show a marked change in their output, while the

X3 and X4 simulated outputs remain relatively constant at .

 60

Table 4.1: Quantiles of Equation 1

All the input variables have a fair variation of quantiles in the matrix represented

below, although the output for X3 and X4 does not indicate this.

4.2 Equation 2

4.2.1 Matlab regression values using “dropping method”

The results for Equation 2 after regression show R2 to be 92.91%. This is a good

regression model. When X1 is left out, the R2 value drops to 53.01%, and when X5 is

left out, R2 is still low at 50.32%. This shows that X1 and X2 are the most important

explanatory variables due to their contribution to the output. When X3 was left out R2

drops to 81.48%, while the R2 values are not altered from 93% when X2 and X4 are

left out.

 61

R2 values with X-values left out

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

None left
out

X1 left
out

X2 left
out

X3 left
out

X4 left
out

X5 left
out

X2X4 left
out

X

R
2 v

al
ue

s
(m

at
la

b)

Figure 4.4: Equation 2, R2 values obtained in Matlab with successive explanatory
variables left out.

The dummy variables added were X2 and X4, and the result of R2 when these two

variables are left out show that they are insignificant for the regression value of the

whole equation.

4.2.2 Matlab regression model

The actual data for Equation 2 were plotted together with the regression model data.

The output from Matlab provides an output with R2, beta values and P values. The

beta values are used to determine the value of the models output using the following

equation:

 62

Figure 4.5: Equation 2, comparison of actual data with the Matlab regression model

data.

The comparison of the actual data and the simulated data yields an R2 value of

92.91%. This is a good regression model, but it falls short where the actual data

increase or decrease sharply; for example, at observation (record) 499, the actual Y

output was -0.08 while the simulated Y was -1.34, yielding an error of 1600%. The

occurrence of high errors at some points is compensated for by the number of

records, with 1 000 data points.

4.2.3 Neural network feedforward backpropagation

The network was created with two layers. The first layer had five neurons and the

second layer had one neuron. The transfer function was: tansigmoid in the first layer

and purelin in the second layer.

The model of the created network is a perfect estimate of the actual data and this is

demonstrated by the high regression value comparing the actual output data and the

simulated output data, namely 99.91%.

 63

Figure 4.6: Equation 2, comparison of actual data with the neural network model data.

The data points that were underestimated in the regression model were estimated

well with the network that was created, thus the R2 value also increases to a

satisfactory value.

4.2.4 Ysim from previously unseen data

The matrix consisting of quantiles and averages was presented to the trained

network above. The network provided an output, Ysim. The table below consists of

the matrix presented to the network and the output that was simulated. The

explanatory variables X1, X3 and X5 showed a marked change in their output, while

the simulated output of X2 and X4 remained relatively constant at . All the input

variables had a fair variation of quantiles in the matrix represented below, although

the output for X2 and X4 does not indicate this.

 64

Table 4.2: Quantiles of Equation 2

4.3 Equation 3

4.3.1 Matlab regression values using “dropping method”

The results for Equation 3 after regression show R2 to be 48.45%. This is a poor

regression model and would give a poor fit to the actual data. When X8 is left out, the

R2 value drops to 12.73% – the largest change in R2 among all the input variables.

When the other input variables are left out, there is a small change in the value of R2,

with X1 at 44.61% and X6 at 44.83%. Dropping X10 yields R2 at 45.61%, and X5

dropped follows closely at 46.61%. For the remaining input variables, X3, X4, X7 and

X9, R2 remains unaltered at 49.4%.

 65

R2 values with X-values left out

40.00%
41.00%
42.00%
43.00%
44.00%
45.00%
46.00%
47.00%
48.00%
49.00%
50.00%

Non
e l

eft
 ou

t

X1 l
eft

 ou
t

X2 l
eft

 ou
t

X3 l
eft

 ou
t

X4 l
eft

 ou
t

X5 l
eft

 ou
t

X6 le
ft o

ut

X7 l
eft

 ou
t

X8 le
ft o

ut

X9 l
eft

 ou
t

X10
 le

ft o
ut

Xno
34

79

X values left out

R
2 v

al
ue

s
(m

at
la

b)

Figure 4.7: Equation 3, R2 values obtained in Matlab with successive explanatory

variables left out.

The regression model had an unacceptably low R2 value. To enable differentiation in

the variable contribution, a better model had to be developed. However, a trend

emerged when the scale of the R2 value was scaled down to between 40% and 50%.

The dummy variables added X3, X4, X7 and X9, the R2 value does not change when

compared to when none of the variables were left out. The result for R2 when these

variables were left out showed that they were insignificant for the regression value for

the whole equation.

4.3.2 Matlab regression model

The actual data for Equation 3 were plotted together with the regression model data.

The output from Matlab provided an output with R2, beta values and P values. The

beta values were used to calculate the value of the models output using the following

equation:

 66

Figure 4.8: Equation 3, comparison of actual data with the Matlab regression model

data.

The comparison of the actual data and the simulated data yields an R2 value of

48.45%. It is a poor regression model, as the simulated output falls short where the

actual data increase or decrease sharply and provides a poor fit for all data points.

The occurrence of a big error at all points means that this is a particularly unreliable

model to ascertain the importance of the contribution of the variables.

4.3.3 Neural network feedforward backpropagation

Two layers are created in the network, with ten neurons in the first layer and one

neuron in the second layer. The transfer function in the first layer is tansigmoid and in

the second layer it is purelin.

 67

The model of the created network is a perfect estimate of the actual data and this is

demonstrated by the high regression value comparing the actual output data and the

simulated output data, namely 98.64%.

Figure 4.9: Equation 3, comparison of actual data with the neural network model data.

The data points that were grossly underestimated or overestimated in the regression

model are well estimated with the network that has been created, thus the R2 value

also increases to a satisfactory value.

4.3.4 Ysim from previously unseen data

The matrix consisting of quantiles and averages was presented to the trained

network above. The network provided an output, Ysim. The table below consists of

the matrix presented to the network and the output that was simulated. The

explanatory variables X1, X2, X5, X6, X8, and X10 showed a marked change in their

output, while the simulated output of X3, X4, X7 and X9 remained relatively constant

at . All the input variables had a fair variation of quantiles in the matrix

represented below, although the output for X3, X4, X7 and X9 does not indicate this.

 68

 Table 4.2: Quantiles of Equation 3

4.4 Equation 4

4.4.1 Matlab regression values using “dropping method”

The results for Equation 4 after regression show R2 to be 77.43%. This is an average

regression model and would give a poor fit to the actual data. When X7 is left out, the

R2 value drops to 18.76%, and this is the largest change in R2 among all input

variables for Equation 4, followed by X6 at 61.37%. When the other input variables

are left out, there is a small change in the R2 value, with X1 at 76.53% and X2 at

75.66%. The X1 and X2 variables, however, have an R2 value that is uncomfortably

close to the R2 value for when all input variables are included. For the remaining input

variables, X3, X4 and X5, R2 remains unaltered at .

 69

R2 Values with X-values left out

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%
none l

eft
 out

X1 l
eft

 out
X2 l

eft
 out

X3 l
eft

 out
X4 l

eft
 out

X5 l
eft

 out
X6 l

eft
 out

X7 l
eft

 out
X3X

4X
5 l

eft
 out

X values left out

R
2 v

al
ue

s
(M

at
la

b)

Figure 4.10: Equation 4, R2 values obtained in Matlab with successive explanatory

variables left out.

The regression model had a moderately low R2 value. To enable differentiation in the

variable contribution, a better model had to be developed. However, a trend emerged

when the scale of the R2 value was scaled down to between 60% and 80%. When

the dummy variables X3, X4, X5 are added the R2 value does not change. The R2

value for explanatory variable X1 and X2, does not change when compared to when

none of the variables were left out.

4.4.2 Matlab regression model

The actual data for Equation 4 were plotted together with the regression model data.

The output from Matlab provided an output with R2, beta values and P values. The

beta values were used to calculate the value of the models output using the following

equation:

 70

Figure 4.11: Equation 4, comparison of actual data with the Matlab regression model

data.

The comparison of the actual data and the simulated data yields an R2 value of

77.43%. It is a moderately good regression model, as the simulated output falls short

where the actual data increase or decrease sharply and provides a poor fit for all

data points. The occurrence of a big error at some extreme points means that this is

a particularly unreliable model to determine the importance of the contribution of the

variables.

4.4.3 Neural network feedforward backpropagation

The network was created with two layers. There were seven neurons in the first layer

and one neuron in the second layer. The transfer functions are tansigmoid in the first

layer and purelin in the second layer.

 71

Figure 4.12: Equation 4, comparison of actual data with neural network model data.

The data points that were underestimated or overestimated in the regression model

are well estimated with the network that has been created, thus the R2=0.9996 also

has increased to a satisfactory value.

4.4.4 Ysim from previously unseen data

The matrix consisting of quantiles and averages was presented to the trained

network above. The network provided an output, Ysim. The table below consists of

the matrix presented to the network and the output that was simulated. The

explanatory variables X1, X2, X5, X6 and X7 showed a marked change in their output,

while the simulated output of X3, X4 and X5 remained relatively constant at .

All the input variables had a fair variation of quantiles in the matrix represented

below, although the output for X3, X4, and X5 does not indicate this.

 72

Table 4.3: Quantiles of Equation 4

 73

5. DISCUSSION

The addition of average error determination to the R2 value serves to add other

criteria to determine the importance of variables. In regression, the average error is

the average absolute difference between the actual output and the simulated output

for all input variables, and as the input variables is “dropped”.

In the ANNs created here, the R2 values obtained are very high – more than 99.0%.

The ANN does not return the actual coefficient of the input variables, as the

backpropagation algorithm adjusts weights and bias to produce the simulated output

values, Ysim. Thus, average error in the ANN is determined from the Ysim. This was

done by finding the differences between the simulated output values, and then

comparing the magnitude of the differences. The magnitude of the Ysim differences

was then sorted and a percentage of the contribution was determined.

The importance of the variables in both the linear regression method and in ANN was

determined as a percentage of the total differences. The differences are defined as

“gaps”, as they are the differences between the R2 value of the preceding variables,

the average error, or the Ysim value.

The additive percentage is the cumulative of the percentage importance of the

variables. This was calculated for the purpose of determining the suspect variables.

The additive percentage gives a sum total of the variables that are included in the

model. The advantage of using a cumulative variable importance percentage instead

of variable importance is more evident in a model that has many explanatory

variables. For example, in a model with 10 variables, as in Equation 3, the cumulative

percentage gives a more accurate depiction of the effect a particular variable would

have and its contribution to the output, in addition to the preceding explanatory

variable contribution.

The criteria for identifying suspect variables are based on the cumulative variable

importance percentage (additive percentage). The additive percentage has to be

below 5% for the explanatory variable to be considered a suspect variable.

 74

5.1 Equation 1

5.1.1 Variable importance based on Matlab regression variables.

The R2 values of the explanatory variables were compared as the variables are

dropped from the regression model. The “gaps” were determined, that is the

differences between the R2 values. The smallest differences in R2 values occurred

when X4 was left out of the regression model, and the second smallest difference

was when X3 was left out of the regression model. The importance of both variables

was less than 1%.

Figure 5.1: Equation 1, variable importance expressed as a percentage, based on

Matlab R2 values.

The biggest difference occurred when X1 and X5 were left out of the regression

model, with the importance of the variables being more than 40%. X2 falls between

the small percentage contribution of X3, X4 and X5, X1 at 14.35%.

5.1.2 Suspect variables based on Matlab regression variables.

The additive percentage contribution of X3 and X4 is 0.07%, thus they are both

considered suspect variables. The next explanatory variable is X2, with an additive

 75

percentage of 14.42%, putting it above the 5% requirement for explanatory variables

to be declared suspect variables.

Table 5.1: Equation 1, Matlab R2 values, used in identifying suspect variables.

The other explanatory variables are not declared to be suspect variables following

the 5% rule of thumb.

5.1.3 Variable importance based on Matlab average errors.

The smallest difference in R2 value occurred when X3 was left out of the regression

model, and the second smallest difference was when X4 was left out of the

regression model; the importance of both variables was less than 1%. The variable

contribution of X3 has increased to 0.3% from 0.06% when R2 variable contribution is

compared to average error. The contribution of the other variables, X2, X1 and X5,

increased steadily from less than 1% to just over 15% to 33% and finally to over 50%

respectively.

 76

Variable Importance (Average Error)

0

10

20

30

40

50

60

X3 X4 X2 X1 X5

Input Variables

%
 V

ar
ia

bl
e

Im
po

rta
nc

e

Figure 5.2: Equation 1, variable importance expressed as a percentage, based on

Matlab average values.

5.1.4 Suspect variables based on Matlab average errors.

The additive percentage contribution of X3 and X4 was 0.44%, thus they were both

considered suspect variables. The next explanatory variable was X2 and the additive

percentage soared to 15.82%, putting it above the 5% requirement for explanatory

variables to be declared suspect variables.

Table 5.2: Equation 1, Matlab average values, used in identifying suspect variables.

The other explanatory variables are not declared to be suspect variables following

the 5% rule of thumb.

 77

5.1.5 Variable importance based on neural network Ysim values.

The differences in the simulated output variables, Ysim, were compared as the

quantiles and averages of the explanatory variables were presented and trained. The

“gaps” were determined, in other words the differences between the Ysim values for

the various explanatory variables in the dataset. The smallest difference in Ysim

value occurred when the X4 quantiles and average were presented to the ANN

model, and the second smallest difference occurred when the X3 quantiles and

averages were presented to the ANN model – both with a variable importance of less

than 1%.

The explanatory variables X5 and X1 had an almost equal variable contribution of

over 40%, while X2 fell in the middle with a contribution of just above 16%.

Variable Importance

0
5

10
15
20
25
30
35
40
45

X4 X3 X2 X5 X1

Input Variables

%
 V

ar
ia

bl
e

im
po

rta
nc

e

Figure 5.3: Equation 1, variable importance expressed as a percentage, based on

neural network Ysim values.

5.1.6 Suspect variables based on neural network Ysim values.

The additive percentage contribution of X3 and X4 was 0.07%, thus they were both

considered suspect variables. When the next explanatory variable, X2, was included,

the additive percentage was 16.74%, putting it above the 5% requirement for

explanatory variables to be declared suspect variables. It is noteworthy that the

 78

suspect variables, X3 and X4, which satisfy the predetermined criteria, are the

predefined dummy variables.

Table 5.3: Equation 1, neural network average values, used in identifying suspect
variables.

Following the 5% rule of thumb, the other explanatory variables were not declared

suspect variables.

5.2 Equation 2

5.2.1 Variable importance based on Matlab regression variables.

The R2 values of the explanatory variables were compared as the variables were

dropped from the regression model. The “gaps” were determined, that is the

differences between the R2 values. The smallest differences in R2 values occurred

when X2 was left out of the regression model, and the second smallest difference

was when X4 as left out of the regression model. The importance of both variables

was less than 1%.

 79

Variable Importance (Using R2)

0
5

10
15
20
25
30
35
40
45
50

X2 X4 X3 X1 X5

Input Variables

%
 V

ar
ia

bl
e

Im
po

rta
nc

e

Figure 5.4: Equation 2, variable importance expressed as a percentage based on

Matlab R2 values.

The biggest difference occurred when X2 and X4 were left out of the regression

model, with the importance of the variables being more than 40%. X3 fell between the

small percentage contribution of X2 and X4 and the significant percentage

contribution of X1 and X5, at 12.17%.

5.2.2 Suspect variables based on Matlab regression variables.

The additive percentage contribution of X2 and X4 is 0.05%, thus they are both

considered suspect variables. The next explanatory variable is X3, with an additive

percentage of 12.17%, putting it above the 5% requirement for explanatory variables

to be declared suspect variables.

 80

Table 5.4: Equation 2, Matlab R2 values, used in determining suspect variables.

The other explanatory variables, X3, X1 and X5, are not declared to be suspect

variables following the 5% rule of thumb.

5.2.3 Variable importance based on Matlab average errors.

The smallest difference in average error values occurs when X2 is left out of the

regression model, and the second smallest difference is when X4 is left out of the

regression model. Both have a variable importance of less than 1%.

Variable Importance (Average Error)

0

10

20

30

40

50

60

70

X2 X4 X1 X3 X5

Input Variables

%
 V

ar
ia

bl
e

Im
po

rta
nc

e

Figure 5.5: Equation 2, variable importance expressed as a percentage based on
Matlab average value.

Although, it is noteworthy that the variable contribution of X4 has increased to 0.4%

from 0.02% in average error variable contribution compared to its contribution as per

the R2 value.

 81

5.2.4 Suspect variables based on Matlab average errors.

The additive percentage contribution of X2 and X4 was 0.39%, thus they were both

considered suspect variables. The next explanatory variable was X1 and the additive

percentage increased rapidly to 19.43%, putting it above the 5% requirement for

explanatory variables to be declared suspect variables.

Table 5.5: Equation 2, Matlab average values, used in identifying suspect variables.

The other explanatory variables, X1, X3 and X5, are not declared suspect variables

following the 5% rule of thumb.

5.2.5 Variable importance based on neural network Ysim values.

The differences in the simulated output variables, Ysim, were compared as the

quantiles and averages of the explanatory variables were presented and trained.

The “gaps” were determined, in other words the differences between the Ysim values

for the various explanatory variables in the dataset. The smallest difference in Ysim

value occurs when the X2 quantiles and average are presented to the ANN model,

and the second smallest difference is when the X4 quantiles and averages are

presented to the ANN model – both with a variable importance of less than 1%.

The explanatory variables X5 and X1 have an almost equal variable contribution of

over 40%, while X3 falls in the middle with a contribution of just above 14%.

 82

Variable Importance

0
5

10
15
20
25
30
35
40
45
50

X2 X4 X3 X1 X5

Input Variables

%
 V

ar
ia

bl
e

Im
po

rta
nc

e

Figure 5.6: Equation 2, variable importance expressed as a percentage based on neural

network Ysim value.

5.2.6 Suspect variables based on neural network Ysim values.

The additive percentage contribution of X3 and X4 was 0.07%, thus they were both

considered suspect variables. When the next explanatory variable, X2, was included,

the additive percentage was 16.74%, putting it above the 5% requirement for

explanatory variables to be declared suspect variables. It is significant to note that

the suspect variables, X2 and X4, which satisfy the predetermined criteria, are the

predefined dummy variables.

Table 5.6: Equation 2, neural network average values, used in identifying suspect
variables.

The other explanatory variables, X3, X1 and X5, are not declared suspect variables

following the 5% rule of thumb.

 83

5.3 Equation 3

Equation 3 was a combination of Equation 1 and Equation 2, and consequently the

regression and ANN models obtained should be a reflection of the separate models

of the separate equations that made up Equation 3. Equation 1 had X3 and X4 as

suspect variables, and Equation 2 had X2 and X4 as suspect variables. When

Equation 3 was formulated, the X2 and X4 of Equation 2 became X7 and X9 of

Equation 3. The regression model for Equation 3 was especially poor, although the

ANN model was vastly superior and therefore the ability to identify suspect variables

improved.

5.3.1 Variable importance based on Matlab regression variables.

The R2 values of the explanatory variables were compared as the variables were

dropped from the regression model. The “gaps” were determined, that is the

differences between the R2 values. The smallest differences in R2 values occurred

when X4 was left out of the regression model, and the second smallest difference

was when X7 was left out. Similarly, when X9 and then X3 were left out of the

regression model there was a minute difference in the change in R2 value. The

importance of the variables mentioned thus far made was less than 1%.

Variable Importance (using R2)

0
10
20
30
40
50
60
70
80

X4 X7 X9 X3 X2 X5 X10 X6 X1 X8

Input Variables

%
 V

ar
ia

bl
e

Im
po

rta
nc

e

 84

Figure 5.7: Equation 3, variable importance expressed as a percentage based on
Matlab R2 values.

The biggest difference occurred when X8 was left out of the regression model, with

an importance of more than 70%. The contribution of the other explanatory variables

increased to 2.24% for X2, to 3.75% for X5, and to 5.78% for X10. X6 and X1 both have

a contribution of over 7%.

The regression model for Equation 3 however was very poor, at 48.45%, and

therefore the resulting values for variable importance were not accurate.

5.3.2 Suspect variables based on Matlab regression variables.

The additive percentage contribution of X4, X7, X9, X3, and X2 was 2.52%, thus they

were all considered suspect variables. The next explanatory variable was X5, with an

additive percentage of 6.26%, putting it above the 5% requirement for explanatory

variables to be declared suspect variables. It is worth noting that, in Equation 3, X2

meets the criteria for a suspect variable, contrary to Equation 1 and Equation 2,

which form Equation 3.

Table 5.7: Equation 3, Matlab R2 values, used in identifying suspect variables.

The other explanatory variables, X5, X10, X6, X1 and X8, are not declared suspect

variables following the 5% rule of thumb.

 85

5.3.3 Variable importance based on Matlab average errors.

The smallest difference in average error value occurred when X9 was left out of the

regression model, and the second smallest difference was when X5 was left out; the

importance of both variables was less than 1%. The other explanatory variables, X4,

X7 and X2, all had an individual variable contribution of about 1%. X3 and X10 had an

intermediate variable contribution of ~5%. The remaining explanatory variables, X1,

X6 and X8, made the bulk of the contribution, with X8 leading at 60.78%.

Variable Importance (Average Error)

0

10

20

30

40

50

60

70

X9 X5 X4 X7 X2 X3 X10 X1 X6 X8

Input Variables

%
 V

ar
ia

bl
e

Im
po

rta
nc

e

Figure 5.8: Equation 3, variable importance expressed as a percentage based on

Matlab average values.

5.3.4 Suspect variables based on Matlab average errors.

The additive percentage contribution of X9, X5, X4, X7, and X2 was 3.98%, thus they

were all considered suspect variables. The next explanatory variable was X3 and the

additive percentage was 6.44%, putting it above the 5% requirement for explanatory

variables to be declared suspect variables. It is worth noting that, in the average error

difference in Equation 3, X5 meets the criteria for a suspect variable, contrary to what

is the case in Equation 1 and Equation 2, which form Equation 3.

 86

Table 5.8: Equation 3, Matlab average values, used in identifying suspect variables.

5.3.5 Variable importance based on neural network Ysim values.

The smallest difference in Ysim values occurred when X9 quantiles and average were

presented to the ANN model, the second smallest difference was when the X3

quantiles and averages were presented to the ANN model, followed by X4 and X7; all

these had a variable importance of less than 2%. X2 fell in the middle, with 8.61%.

The other explanatory variables, X6, X1, X8, X5 and X10, had a nearly equal

percentage variable contribution of 17 to 18% and higher. The way in which the

contribution of the explanatory variables was represented was an accurate portrayal

of Equation 3.

 87

Variable Importance

0
2
4
6
8

10
12
14
16
18
20

X9 X3 X4 X7 X2 X6 X1 X8 X5 X10

Input Variables

%
 V

ar
ia

bl
e

Im
po

rt
an

ce

Figure 5.9: Equation 3, variable importance expressed as a percentage based on neural

network Ysim values.

5.3.6 Suspect variables based on neural network Ysim values.

The additive percentage contribution of X9, X3, X4 and X7 was 4.00%, thus they were

all considered suspect variables. The next explanatory variable was X2 and the

additive percentage was 12.60%, putting it above the 5% requirement for explanatory

variables to be declared suspect variables. It is worth noting that, in Equation 3, the

same explanatory variables meet the criteria for a suspect variable as in Equation 1

and Equation 2.

 88

Table 5.9: Equation 3, neural network average values, used in identifying suspect
variables.

5.4 Equation 4

Equation 4 would be considered as one creating a complex nonlinear system, and

thus more complicated to solve. The regression model was comparatively poor, with

an R2 value of 77.43%. The previous regression models of Equation 1 and Equation

2, which provided excellent results in identifying all the suspect variables from the

explanatory variables, had excellent regression models, with an R2 value of over

90%. The ANN model for Equation 3, however, had a high R2 value of 99.9%, and

thus was valuable in identifying the suspect variables.

5.4.1 Variable importance based on Matlab regression variables.

The R2 values of the explanatory variables were compared as the variables were

dropped from the regression model. The “gaps” were determined, that is the

difference between the R2 values. The smallest differences in R2 values occurred

when X4 was left out of the regression model, and the second smallest difference

was when X5 is left out. Equally, when X3, X1 and X2 were left out of the regression

model there was a very minuscule difference in the change in R2 value. The variables

mentioned thus far make less than a 5% contribution to the variable importance.

 89

Variable Importance (R2)

0
10
20
30
40
50
60
70
80

X4 X5 X3 X1 X2 X6 X7

Input Variables

%
 V

ar
ia

bl
e

Im
po

rta
nc

e

Figure 5.10: Equation 4, variable importance expressed as a percentage based on

Matlab R2 value.

5.4.2 Suspect variables based on Matlab regression variables.

The additive percentage contribution of X4, X5, X3, X1 and X2 was 3.51%, thus they

were all considered suspect variables. The next explanatory variable was X6 and the

additive percentage was 24.25%, putting it above the 5% requirement for explanatory

variables to be declared suspect variables. It is worth noting that, in Equation 4, X1

and X2 meet the criteria for a suspect variable, contrary to the setup of Equation 4,

where the dummy variables added were, X3, X4 and X5.

Table 5.10: Equation 4, Matlab R2 values, used in identifying suspect variables.

The other explanatory variables, X7 and X10, were not declared suspect variables

following the 5% rule of thumb.

 90

5.4.3 Variable importance based on Matlab average errors.

The smallest difference in average error, at 0.55%, occurred when X4 was left out of

the regression model. The second smallest difference, at 2.21%, was when X3 was

left out, followed by X5 with 2.58%. The variables mentioned thus far make a

contribution of less than 5% to the variable percentage importance, with X3 and X5

having an almost identical variable importance.

Variable Importance (Average Error)

0

5

10

15

20

25

30

35

X4 X3 X5 X1 X7 X2 X6

Input Variables

%
 V

ar
ia

bl
e

Im
po

rta
nc

e

Figure 5.11: Equation 4, variable importance expressed as a percentage based on

Matlab average value.

5.4.4 Suspect variables based on Matlab average errors.

The additive percentage contribution of X4 and X3 was 2.75%, thus they were both

considered suspect variables. The next explanatory variable was X5 and the additive

percentage was 5.34%, putting it above the 5% requirement for explanatory variables

to be declared suspect variables. It is worth noting that, in Equation 4, X4 and X3

meet the criteria for a suspect variable, although X5, which was added as a dummy

variable, was above the suspect variable criteria of 5%.

 91

Table 5.11: Equation 4, Matlab average values, used in identifying suspect variables.

The other explanatory variables, X5, X1, X7, X2 and X6, were not declared suspect

variables following the 5% rule of thumb.

5.4.5 Variable importance based on neural network Ysim values.

The least difference in Ysim value occurred when the X4, X5 and X3 quantiles and

averages were presented to the ANN model, with their variable importance being

less than 1%.The other explanatory variables, X1, X2, X6 and X7, far outweighed the

contribution of X4, X5 and X3. X7 is presented as making the largest contribution of all

the explanatory variables, at 66.49%.

Variable Importance

0

10

20

30

40

50

60

70

X4 X5 X3 X1 X2 X6 X7

Input Variables

%
 V

ar
ia

bl
e

Im
po

rta
nc

e

 92

Figure 5.12: Equation 4, variable importance expressed as a percentage based on
neural network Ysim value.

5.4.6 Suspect variables based on neural network Ysim values.

The additive percentage contribution of X5, X4 and X3 was 0.31%, thus they were

both considered suspect variables. The next explanatory variable was X1 and the

additive percentage as 5.04%, putting it just above the 5% requirement for

explanatory variables to be declared suspect variables. It is worth noting that, in

Equation 4, X5, X4 and X3 meet the criteria for a suspect variable corresponding to the

dummy variables added.

Table 5.12: Equation 4, neural network average values, used in identifying suspect
variables.

The other explanatory variables, X1, X2, X6 and X7, are not declared as suspect

variables following the 5% rule of thumb.

 93

6. CONCLUSION

The four equations and the data simulated were used to create models on the basis

of multiple linear regression and ANN. The methodology compares R2 and average

error to determine the importance of variables and their contribution to the output in

the four equations. Suspect variables were identified less effectively with multiple

linear regression and more successfully with the ANN.

Multiple linear regression and ANN of Equation 1 produced an excellent model with a

high R2 and low average error. The suspect variables identified were X1 and X3, in

line with the dummy variables that were predefined in Equation 1. Equation 2 also

had a fine multiple linear regression and ANN, with a high R2 value and low average

error. The suspect variables identified were X2 and X4, which have been preselected

as dummy variables in Equation 2.

Equation 3, however, had a very poor multiple regression model. This was

unexpected, as Equation 3 was a combination of Equation 1 and Equation 2.

Consequently, the R2 was very low and the average error was high from the multiple

linear regression model. The suspect variables identified were X2, X3, X5, X4, X7 and

X9. The multiple linear regression did not yield a good result, as the dummy variables

for Equation 3, namely X3, X4, X7 and X9, were not recognised. The ANN model

improved the R2 to a satisfactory value and the average error dropped drastically.

The suspect variables identified then were X3, X4, X7 and X9, which were as expected

from the predefined dummy variables.

The linear regression model of Equation 4 was normal, with an average R2 value and

relatively low average error. Nevertheless, the suspect variables identified from the

R2 value were different from the ones recognised from the average error. R2 showed

all the explanatory variables to be suspect variables, except X6 and X7, while average

error recognised only X3 and X4 as suspect variables. Thus the multiple linear

regression model was not accurate in identifying the predefined dummy variables as

suspect variables. The R2 value of the ANN model was high, the average error was

low and the explanatory variables identified as suspect variables were X3, X4 and X5.

The suspect variables identified in Equation 4 were the predefined suspect variables.

 94

The criterion chosen for suspect variables was for an additive variable importance of

less than 5%. In the particular equations, the criterion was sufficient, although in a set

of data with 100 input variables or more, a variable contribution of 0.5% would be

considered as a noteworthy contribution. However one can adjust the criterion used

for declaring a explanatory variable, a suspect variable, depending on the number of

explanatory variables or number of outputs.

The combination of traditional statistical modelling and ANN can better be used in

determining the importance of variables and their contribution to the output. The

contribution of each variable in the four equations was clearly defined and presented,

and may be utilised by those with little understanding of the ANN or the process data

they are modelling to reduce the number of explanatory variables. An examination of

the explanatory variables declared as suspect variables and the variable contribution

to the output may lead to a reduction in the complexity of sometimes overwhelming

models as a pre-process in data modelling.

The summary of the performance of the multiple linear regression and ANN models

for all equations was extensively explored in Chapter 5. A confirmation of the

legitimacy of an explanatory variable being declared as a suspect variable was

accomplished with their emergence as a suspect variables in multiple linear

regression model and ANN. Their variable contribution was determined from the R2

value and the average error and the ANN output simulated value.

 95

7. REFERENCES

Brownlee K.A. 1967. Statistical theory and methodology in science and engineering.

New York: Wiley.

Bruns, R.E. 2002. Simulation of an industrial waste water treatment plant using

artificial neural networks and principal component analysis. Brazilian Journal

of Chemical Engineering, 19(4).

Demuth, H. & Beale, M. 2004. Neural network toolbox, for use with MATLAB®.

Massachusetts: The Math Works, Inc.

Edwards, A.L. 1976. An introduction to linear regression and correlation. San

Francisco: WH Freeman.

Edwards, A.L. 1979. Multiple regression and the analysis of variance and covariance.

San Francisco: WH Freeman.

Garson, D.G. 2007. Quantitative research in public administration: statistic’s notes.

Class notes. Northern Carolina State University.

Gevrey, M. 2003. Review and comparison of methods to study the contribution of

variables in artificial neural network models. Ecological Modelling, 160:249–

264.

Grieu, S. 2006. KSOM and MLP neural networks for on-line estimating the efficiency

of an activated sludge process. Chemical Engineering Journal, 116:1–11.

Hagan, M. 1995. A Modular Control Systems Laboratory. Computer Applications in

Engineering Education, 3(2): 89-96.

Hastie, T., Tibishrani, R. & Friedman, J. 2001. The elements of statistical learning:

data mining, inference and prediction. New York: Springer.

Himmelblau, D. 2000. Application of artificial neural networks in chemical

engineering. Korean Journal of Chemical Engineering, 17(4):373–392.

 96

Hornik, K., Stichcombe, M. & White, H. 1989. Multilayer feedforward networks are

universal approximators. Neural Network, 2(5):359–366.

Kemp, S., Zaradic, P. & Hansen, F. 2007. An approach for determining relative input

parameter importance and significance in artificial neural networks. Ecological

Modelling, 204(2007):326–334.

Martinez, A. 1999. Study of weight importance in neural network with collinear

variables in regression problems. International conference on industrial and

engineering applications of artificial intelligence and expert systems, 1611:

101-110.

Olden, D. 2004. An accurate comparison of methods for quantifying variable

importance in artificial neural networks using simulated data. Ecological

Modelling, 178:389–397.

Papadokonstantakis, S., Machefer, S., Schnitzlein, K. & Lygeros, A. 2005. Variable

selection and data pre-processing in NN modelling of complex chemical

processes. Computers and Chemical Engineering, 29:1647–1659.

Pham, D.T. 1995. An introduction to artificial neural networks. Neural networks for

chemical engineers. Elsevier Science BV:1

Rumelhart, E.D. & McClelland, L.J. (with the PDP Research Group). 1986. Learning

in Boltzmann machines. Cambridge, MA: The MIT Press.

Tsaptsinos, D. 1995. Back-propagation and its variations. Neural Networks for

Chemical Engineers. Elsevier Science BV:33

 97

8. BIBLIOGRAPHY

Allison, P.D. 1999. Multiple regression. Thousand Oaks: Pine Forge Press.

Amazedsaint blogs. 2006. Articles-Design pattern, Neural Networks, C#,

programming.http://amazedsaintarticles.blogspot.com/2006/06/brainnet-ii-

inside- story-of-brainnet.html [Accessed on 15 June 2007]

Anderson, James, A.1972. A Simple Neural Network Generating an Interactive

Memory, Mathematical Biosciences 14:197-220

Association for the advancement of artificial intelligence. n.d. Neural Networks and

connectionist system http://www.aaai.org/AITopics/html/neural.html

[Accessed on 23 January 2007]

Burton, M. 2004. Neural networks. Rhodes University: Department of Mathematics.

Children’s Mercy Hospital. 2007. Definition of P value.http://www.childrens-

mercy.org/stats/library/pvalueci.asp [Accessed on 11 June 2007]

Duke University, Department of Statistical Science. 2000. A framework for

nonparametic regression using neural networks.

http://ftp.isds.duke.edu/WorkingPapers/00-32.pdf [Accessed 7 June 2007]

Gorni, A. 1997. The application of neural networks in the modelling of plate rolling

processes. JOM-e: 49(4).

Glynn, W. 2007. Linear regression with Matlab. MS&E Introduction to stochastic

modelling 121:1–4.

Grossberg, S. 1976. Adaptive pattern classification and universal recoding, I: Parallel

development and coding of neural feature detectors. Biological Cybernetics,

23: 121-134.

 98

Gurdani, R., Onimaru R.S. & Crespo, F.C.A. 2001. Neural network model for the on-

line monitoring of a crystallization process. Brazilian Journal of Chemical

Engineering, 18(3):267–275.

Hebb, DO. 1949. The Organization of Behaviour. New York: Wiley.

Hopfield, J. 1982. Neural network and physical systems with emergent collective

computational abilities. Proceedings of the national academy of sciences of

the United States of America, 79 (8):2554-2558.

 Kohonen, Teuvo. 1972. Correlation Matrix Memories, IEEE Transaction on

Computers, C-21:353-359

Luxhøj, J.T. 1997. Neural network in bioprocessing and chemical engineering. IEE

Transactions, 29(9):810–811.

Minsky, M., Papert, S. 1969. Perceptrons – An Introduction to Computational

Geometry. The MIT Press, Cambridge, MA.

Marquardt, D.W. 1963. An algorithm for least-squares estimation of nonlinear

parameters. J. Soc. Indust. Appl. Math, 11:431–441.

North Carolina State University, College of Social Science and Humanities. 1996.

Multipleregression.http://www2.chass.ncsu.edu/garson/PA765/regress.htm

[Accessed on 6 June 2007]

Oklahoma State University College of Engineering. n.d. Neural Network Design.

http://hagan.okstate.edu/nnd.html [Accessed on 26 February 2007]

Rosenblatt, Frank .1958. The Perceptron: A Probabilistic Model for Information

Storage and Organization in the Brain. Cornell Aeronautical Laboratory,

Psychological Review, 65, No. 6: 386-408.

Rumelhart, D.E., J.L. McClelland and the PDP Research Group .1986. Parallel

Distributed Processing: Explorations in the Microstructure of Cognition.(1):

Foundations, Cambridge, MA: MIT Press

 99

Statistica. 1994. Descriptive Statistics.

http://www.statsoft.com/textbook/stbasic.html#Descriptive%20statistics

[Accessed on 11 June 2007]

University of Glasgow. 1997. Statistics Glossary.

http://www.stats.gla.ac.uk/steps/glossary/hypothesis_testing.html#pvalu e

[Accessed on 11 June 2007]

University of Texas at Austin. n. d. Lecture notes on the advantages of neural

networks.http://homepage.psy.utexas.edu/homepage/class/Psy387R/LectureNo

tes/Lectures%2013/5Advantages%20of%20networks.doc [Accessed on 5 May

2007]

University of Wollongong: School of Electrical, Computer and Telecommunications

engineering. 2003. Back Propagation Neural Network Tutorial.

http://ieee.uow.edu.au/~daniel/software/libneural/BPN_tutorial/BPN_English/

BPN_English/BPN_English.html [Accessed on 03 July 2007]

University of North Carolina Wilmington. n.d. Introduction to the backpropagation

algorithm.http://people.uncw.edu/tagliarinig/Courses/415/Lectures/An%20Intr

oduction%20To%20The%20Backpropagation%20Algorithm.ppt [Accessed

on 03 September 2007]

University of Sterling, Department of computing and mathematics, Centre for

cognitive and computational Neuroscience. 2003. An introduction to Neural

Networks.http://www.cs.stir.ac.uk/~lss/NNIntro/InvSlides.html [Accessed on

18 June 2007]

University polytechnic of Madrid. n.d. Artificial Neural Networks.

http://www.gc.ssr.upm.es/inves/neural/ann1/anntutorial.html [Accessed on 15

May 2007]

Werbos, P. 1994. The Roots of Backpropagation: From Ordered Derivatives to

Neural Networks and Political Forecasting, New York: Wiley.

 100

Widrow, B. & Hoff, Marcian, E. 1960. Adaptive Switching Circuits, 1960 IRE

WESCON Convention Record, New York: IRE : 96-104

Widrow, B. & Lehr, A.M. 1990. 30 years of adaptive neural networks: perceptron,

madaline, and backpropagation. Proceedings of the Institute of Electrical

Engineers and Electronics (IEEE), 78(9):1415–1442.

Willamette University.1999. Neural Network literature.

http://www.willamette.edu/~gorr/classes/cs449/backprop.html[Accessed on 10

July 2007]

Woinaroschy, A., Plesu, V. & Woinaroschy, K. 2001. Classification of neural networks

based on genetic algorithm. Proceedings of the 6th World Congress of

Chemical Engineers, Melbourne, 2001. [The Institute: 1-7].

9. LIST OF TABLES

Table 2.1: Historical development of ANN ... 16
Table 4.1: Quantiles of Equation 1 .. 60
Table 4.2: Quantiles of Equation 3 .. 68
Table 4.4: Quantiles of Equation 4 .. 72
Table 5.1: Equation 1, Matlab R2 values, used in identifying suspect variables....... 75
Table 5.2: Equation 1, Matlab average values, used in identifying suspect variables.

.. 76
Table 5.3: Equation 1, neural network average values, used in identifying suspect

variables. ... 78
Table 5.4: Equation 2, Matlab R2 values, used in determining suspect variables. ... 80
Table 5.5: Equation 2, Matlab average values, used in identifying suspect variables.

.. 81
Table 5.6: Equation 2, neural network average values, used in identifying suspect

variables. ... 82

 101

Table 5.7: Equation 3, Matlab R2 values, used in identifying suspect variables....... 84
Table 5.8: Equation 3, Matlab average values, used in identifying suspect variables.

.. 86
Table 5.9: Equation 3, neural network average values, used in identifying suspect

variables. ... 88
Table 5.10: Equation 4, Matlab R2 values, used in identifying suspect variables..... 89
Table 5.11: Equation 4, Matlab average values, used in identifying suspect variables.

.. 91
Table 5.12: Equation 4, neural network average values, used in identifying suspect

variables. ... 92

10. LIST OF FIGURES

Figure 2.1: Basic neural network (Demuth & Beale, 2004) 13
Figure 2.2: ANN classification based on structure and learning algorithm................ 15
Figure 2.3: ANN general architecture with hidden layer (Pham, 1995)..................... 16
Figure 2.4: Purelin transfer function with f(n) = purelin (n) = purelin(Wp+b) 21

Figure 2.5: Tansigmoid transfer function with f(n) = tansig(n) = tansig (Wp+b) 22
Figure 2.6: Logsigmoid transfer function with f(n)= logsig(n) = logsig(Wp+b)........... 23
Figure 2.7: Input layer in the forward pass (Tsaptsinos, 1995)................................. 24
Figure 2.8: Hidden layer in the forward pass (Tsaptsinos, 1995) 25
Figure 2.9: Output layer in the forward pass (Tsaptsinos, 1995).............................. 26
Figure 3.1: Structure of a feedforward neural network with two transfer functions ... 42
Figure 4.1: Equation 1, R2 values obtained in Matlab with successive variables

explanatory variables left out. .. 57
Figure 4.2: Equation 1, comparison of actual data with the Matlab regression model

data. .. 58

 102

Figure 4.3: Equation 1, comparison of actual data with the neural network model data

.. 59
Figure 4.4: Equation 2, R2 values obtained in Matlab with successive explanatory

variables left out... 61
Figure 4.5: Equation 2, comparison of actual data with the Matlab regression model

data. .. 62
Figure 4.6: Equation 2, comparison of actual data with the neural network model

data. .. 63
Figure 4.7: Equation 3, R2 values obtained in Matlab with successive explanatory

variables left out... 65
Figure 4.8: Equation 3, comparison of actual data with the Matlab regression model

data. .. 66
Figure 4.9: Equation 3, comparison of actual data with the neural network model

data. .. 67
Figure 4.10: Equation 4, R2 values obtained in Matlab with successive explanatory

variables left out... 69
Figure 4.11: Equation 4, comparison of actual data with the Matlab regression model

data. .. 70
Figure 4.12: Equation 4, comparison of actual data with neural network model data.

.. 71
Figure 5.1: Equation 1, variable importance expressed as a percentage, based on

Matlab R2 values. .. 74
Figure 5.2: Equation 1, variable importance expressed as a percentage, based on

Matlab average values... 76
Figure 5.3: Equation 1, variable importance expressed as a percentage, based on

neural network Ysim values. .. 77
Figure 5.4: Equation 2, variable importance expressed as a percentage based on

Matlab R2 values. .. 79
Figure 5.5: Equation 2, variable importance expressed as a percentage based on

Matlab average value... 80
Figure 5.6: Equation 2, variable importance expressed as a percentage based on

neural network Ysim value... 82
Figure 5.7: Equation 3, variable importance expressed as a percentage based on

Matlab R2 values. .. 84
Figure 5.8: Equation 3, variable importance expressed as a percentage based on

Matlab average values... 85

 103

Figure 5.9: Equation 3, variable importance expressed as a percentage based on

neural network Ysim values. .. 87
Figure 5.10: Equation 4, variable importance expressed as a percentage based on

Matlab R2 value... 89
Figure 5.11: Equation 4, variable importance expressed as a percentage based on

Matlab average value... 90
Figure 5.12: Equation 4, variable importance expressed as a percentage based on

neural network Ysim value... 92

