Cape Peninsula University of Technology **Digital Knowledge**

CPUT Theses & Dissertations

Theses & Dissertations

3-1-2009

Non-Newtonian loss coefficients for Saunders diaphragm valves

Aime Mume Kabwe Cape Peninsula University of Technology

Recommended Citation

Kabwe, Aime Mume, "Non-Newtonian loss coefficients for Saunders diaphragm valves" (2009). CPUT Theses & Dissertations. Paper 10.

 $http://dk.cput.ac.za/td_cput/10$

This Text is brought to you for free and open access by the Theses & Dissertations at Digital Knowledge. It has been accepted for inclusion in CPUT Theses & Dissertations by an authorized administrator of Digital Knowledge. For more information, please contact barendsc@cput.ac.za.

NON-NEWTONIAN LOSS COEFFICIENTS FOR SAUNDERS DIAPHRAGM VALVES

by

AIME MUME KABWE B. Sc: Metallurgical Engineering

Dissertation submitted in fulfilment of requirements for the degree Master Technology: Chemical Engineering

in the FACULTY OF ENGINEERING

at the CAPE PENINSULA UNIVERSITY OF TECHNOLOGY

Supervisor: Dr. V.G. Fester Co-supervisor: Prof. P.T. Slatter

Cape Town Campus
March 09

Preamble i

ABSTRACT

The prediction of the energy losses when designing pipeline and pumping systems requires accurate loss coefficient data. But the loss coefficient data found in the open literature was not adequate for predicting the loss coefficient for Saunders straight-through diaphragm valves.

As more accurate loss coefficient data to enable more efficient pipeline designs are scarce in the open literature, it is problematic to predict the head loss due to the pipeline fittings, and particularly for diaphragm valves. Most of the data given in the literature are for turbulent flow based on water. Due to water shortages mining operations are forced to increase their solids concentrations and to operate in laminar flow (Slatter, 2002). Consequently there is a need to determine loss coefficient data in laminar flow for valves used in these industries to ensure energy efficient designs (Pienaar et al., 2001; 2004) or if needed, to derive a new correlation to predict losses through Saunders diaphragm valves.

However, a systematic study of various sizes of diaphragm valves of different manufacturers to ascertain, if the same loss coefficient can be applied, has never been done. Therefore a comparison will be made between the data produced in this work and the existing correlations.

The objective of this research was to determine loss coefficient data in laminar, transitional and turbulent flow for the Saunders type straight-through diaphragm valves ranging from 40 mm to 100 mm in the fully open, 75 %, 50 % and 25 % open positions, using a range of Newtonian and non-Newtonian fluids. The test work was conducted on the valve test rig in the Flow Process Research Centre at the Cape Peninsula University of Technology.

This work investigated only Newtonian and time independent homogeneous non-Newtonian fluids or slurries flowing through Saunders straight-through diaphragm valves in the turbulent, transitional and laminar regimes.

Weir-type Saunders valves and time-dependent fluid behaviour were not investigated in this study.

Preamble

The results for each test are presented in the form of valve loss coefficient (k_{valve}) against Reynolds number (Re).

This thesis adds new loss coefficient data to the open literature, and a new correlation, which will be useful for designing pipelines in industries, as well as contributing to the academic debate in this discipline.

Preamble

DECLARATION

I, Aimé Mume Kabwe, hereby declare that the content of this dissertation represents my own unaided work, and that the dissertation has not previously been submitted for academic examination towards any qualification. Furthermore, it represents my own opinions and not necessarily those of the Cape Peninsula University of Technology.

Aimé Mume Kabwe

Preamble

DEDICATION

This dissertation is dedicated to:

My father, Mr. Kabwe-Ka-Mahango Louis Rufin – for being a pillar of strength through my entire life, and for his impartation of wisdom and encouragement through the many trials that I have faced

My mother, Ms. Jacqueline Fatuma wa Kaite – for the breath and nurturing you instilled in me My nephews and nieces – this might inspire you for your further studies

My future wife – for your incessant future kindness and love

My friends, colleagues and family – thank you for your continuous support

The Almighty God – for the victory that he gives me through the Lord Jesus Christ (1 Corinthians 15:57)

Preamble v

ACKNOWLEDGEMENTS

Prof. P. Slatter – for the opportunity to pursue my postgraduate studies in the field of non-Newtonian flow processes

Dr. Veruscha Fester – for her supervisory role and her support throughout the process of completing this dissertation

The Flow Process Research Centre – the staff and students for their continuous support in carrying out this work

Richard Du Toit – for his splendid laboratory supervisor role

Baudouin Mbiya – for his contribution in the test work project

The Cape Peninsula University of Technology and the Research and Development department for the opportunity granted to further my studies in their institution

The National Research Foundation (NRF) – for their sustained support of the research

TABLE OF CONTENTS

ABSTRACT	i
DECLARATION	iii
DEDICATION	iv
ACKNOWLEDGEMENTS	ν
TABLE OF CONTENTS	v i
LIST OF FIGURES	x i
LIST OF TABLES	xiv
NOMENCLATURE	xv
Chapter 1 INTRODUCTION	1
1.1 INTRODUCTION	1
1.2 STATEMENT OF RESEARCH PROBLEM	1
1.3 AIM AND OBJECTIVES	2
1.4 METHODOLOGY	2
1.5 SCOPE	3
1.6 IMPORTANCE AND BENEFITS	3
Chapter 2 LITERATURE REVIEW	5
2.1 INTRODUCTION	5
2.2 PURPOSE OF FITTINGS	5
2.3 DEFINITION AND CLASSIFICATION OF PIPE FITTINGS	5
2.4 TYPES OF VALVES	6
2.5 DIAPHRAGM VALVES	8
2.5.1 Advantages of diaphragm valves	8
2.5.2 Features of diaphragm valves	9
2.6 IMPACT OF FITTINGS	10
2.7 FLOWS IN STRAIGHT PIPES	11
2.7.1 Shear stress distribution in a straight pipe	11
2.7.2 Energy loss in straight pipe	12
2.7.3 Newtonian laminar flow in straight pipes	12
2.7.3.1 Velocity distribution	
2.7.3.2 Friction factor	13
2.7.4 Newtonian turbulent flow in straight pipes	13
2.7.5 Non-Newtonian laminar flow in straight pipes	16

2.7.5.1 The Rabinowitsch-Mooney relation	17
2.7.5.2 Metzner & Reed generalised Reynolds number	18
2.7.5.3 Slatter Reynolds number	19
2.7.5.4 Friction factor for non-Newtonian fluids	20
2.8 FLOW IN PIPE FITTINGS	21
2.9 NEWTONIAN AND NON-NEWTONIAN FLOW IN VALVES	23
2.9.1 Pressure drop in valves	23
2.9.2 Valve loss coefficient	23
2.9.3 Methodology to determine loss coefficient	24
2.9.4 Equivalent length	26
2.9.5 Flow coefficient	27
2.10 CLASSIFICATION OF FLUIDS	27
2.10.1 Newtonian fluids	28
2.10.2 Non-Newtonian fluids	30
2.10.3 Classification of non-Newtonian fluids	30
2.10.4 Time-independent non-Newtonian fluids	30
2.10.4.1 Pseudoplastic or shear thinning fluids	31
2.10.4.2 Dilatant or shear thickening fluids	31
2.10.4.3 Viscoplastic fluids	31
2.10.5 Time dependent non-Newtonian fluids	32
2.10.5.1 Thixothropic fluids	32
2.10.5.2 Rheopectic fluids	32
2.10.5.3 Visco-elastic fluids	33
2.10.6 Settling slurries	35
2.11 RHEOLOGY	35
2.11.1 Rheological properties and laws of non-Newtonian fluids	35
2.11.1.1 Power-law fluids	36
2.11.1.2 Bingham fluids	36
2.11.1.3 Yield fluids	36
2.11.1.4 Other non-Newtonian fluids	37
2.11.2 Choice of rheological model	38
2.11.2.1 Rotational viscometry	38
2.11.2.2 Tube viscometer	38
2.12 PREVIOUS WORK ON LOSSES IN FITTINGS	40

2.13 CONCLUSION	52
2.14 RESEARCH TOPICS IDENTIFIED	52
Chapter 3 EXPERIMENTAL WORK	53
3.1 INTRODUCTION	53
3.2 DESCRIPTION OF VALVE TEST RIG	53
3.3 INSTRUMENTATION	55
3.3.1 Pressure transducers	55
3.3.2 The handheld communicator (HHC)	55
3.3.3 Data acquisition unit	56
3.3.4 Computer	56
3.3.5 Flow meters	56
3.3.6 Pumps	56
3.3.7 Weigh tank and load cell	57
3.3.8 Heat exchanger	57
3.3.9 Temperature probes	57
3.3.10 Mixer	57
3.3.11 Valves board	58
3.4 EXPERIMENTAL PROCEDURES	59
3.4.1 Calibration procedures	59
3.4.1.1 Load cell	59
3.4.1.2 Flow meter	60
3.4.1.3 Transducer	62
3.4.2 Fluid relative density	65
3.4.3 Valve test procedures	65
3.4.4 Pressure tapping	68
3.4.5 Single point pressure transducers mode (manual mode)	68
3.4.6 Straight pipe test	69
3.4.7 Differential pressure transducers mode	70
3.5 VALVES TESTED	70
3.5.1 Internal Dimension of Valves	
3.5.2 The gravity test	74
3.5.3 Valves opening setting	75
3.6 MATERIAL/FLUID TESTED	77
3.6.1 Water	77

3.6.2 Carboxyl methyl cellulose (CMC)	77
3.6.3 Kaolin	78
3.7 EXPERIMENTAL ERRORS	78
3.7.1 Gross errors	78
3.7.2 Systematic or cumulative errors	79
3.7.3 Random errors	79
3.7.4 Evaluation of errors	79
3.7.5 Combined errors	80
3.8 ERROR OF MEASURABLE VARIABLES	81
3.8.1 Axial distance	81
3.8.2 Weight	81
3.8.3 Flow rate	81
3.8.4 Pressure	81
3.8.5 Error of derived variables	81
3.8.5.1 Pipe diameter	81
3.8.5.2 Velocity	82
3.8.5.3 Wall shear stress errors	83
3.8.5.4 Reynolds number	83
3.8.5.5 The valve loss coefficient	84
3.9 CONCLUSION	88
Chapter 4 ANALYSIS OF RESULTS	89
4.1 INTRODUCTION	89
4.2 STRAIGHT PIPE RESULTS	89
4.2.1 Water	89
4.2.2 Non-Newtonian fluids	93
4.2.2.1 Fitting the pseudoplastic model	93
4.2.2.2 Fitting the yield pseudoplastic model	94
4.3 DIAPHRAGM VALVE LOSS COEFFICIENT	95
4.3.1 Graphical presentation of k_{ν} versus Reynolds number	96
4.3.1.1 Loss coefficients for 40 mm bore valve	96
4.3.1.2 Loss coefficients for 50 mm bore valve	97
4.3.1.3 Loss coefficients for 65 mm bore valve	98
4.3.1.4 Loss coefficients for 80 mm bore valve	99
4.3.1.5 Loss coefficients for 100 mm bore valve	100

4.4 CONCLUSION	104
Chapter 5 DISCUSSION AND EVALUATION OF RESULTS	105
5.1 INTRODUCTION	105
5.2 COMPARISON WITH LITERATURE	105
5.2.1 Laminar (viscous) flow (Re < 10)	106
5.2.2 Turbulent flow Re >10000	106
5.2.2.1 Comparison between literature and new data for 40 mm bore diameter valve	106
5.2.2.2 Comparison between literature and new data for 50 mm bore diameter valve	108
5.2.2.3 Comparison between literature and new data for 65 mm bore diameter valve	109
5.2.2.4 Comparison between literature and new data for 80 mm bore diameter valve	111
5.2.2.5 Comparison between literature and new data for 100 mm bore diameter valve	113
5.3 APPLICATION OF TWO-CONSTANT MODEL (MBIYA, 2008) TO SAUNDERS VALVE	ES 117
5.4 CORRELATION OF THE LOSS COEFFICIENT TO THE REYNOLDS NUMBER	122
5.4.1 Laminar (viscous) flow Re < 10	122
5.4.2 Turbulent flow	123
5.5 COMPARISON BETWEEN THE EXISTING MODELS AND THE NEW CORRELATION	V 127
5.6 CONCLUSION	134
Chapter 6 CONCLUSIONS AND RECOMMENDATIONS	135
6.1 INTRODUCTION	135
6.2 SUMMARY	135
6.3 CONTRIBUTIONS	136
6.4 CONCLUSION	137
6.5 RECOMMENDATIONS	137
REFERENCES	139
APPENDICES: HYDRALII IC GRADE LINE TEST RESULTS	145

Preamble xi

LIST OF FIGURES

-igure 2.1: The straight-through type diaphragm valve (Saunders valves, 2007)	9
Figure 2.2: The weir- or dam-type diaphragm valve (Saunders valves, 2007)	10
Figure 2.3: Velocity and shear stress distribution (Slatter, 1994)	11
Figure 2.4: Moody diagram (Massey, 1990)	15
Figure 2.5: Definition of the loss coefficient (Miller, 1990)	22
Figure 2.6: Typical representation of k_{ν} vs. Re for a fitting (Pienaar et al., 2001)	24
Figure 2.7: Diagram illustrating the calculation of valve loss coefficient	25
Figure 2.8: Rheogram of a Newtonian fluid	29
Figure 2.9: Rheogram of various Newtonian fluids	29
Figure 2.10: Non-Newtonian fluids flow curves (Paterson & Cooke, 1999)	34
Figure 2.11: Loss coefficient vs. valve opening (Miller, 1990)	41
Figure 2.12: Trends in loss coefficients in the laminar to turbulent transition region	42
Figure 2.13: C_k' for diaphragm valves (ESDU, 2004)	48
Figure 2.14: Approximate effect of partial opening, diaphragm valves (ESDU, 2004)	49
Figure 2.15: Approximate effect of Reynolds number, diaphragm valve (ESDU, 2004)	50
Figure 3.1: Schematic representation of the valve test rig	54
Figure 3.2: Pressure lines board of the valve test rig	58
Figure 3.3: Load cell calibration line	60
Figure 3.4: Khrone flow meter calibration constants	61
Figure 3.5: Safmag flow meter calibration constants	62
Figure 3.6: Calibration curve of the Point Pressure Transducer	63
Figure 3.7: The calibration curve of the 6 kPa DP cell	64
Figure 3.8: Calibration curve of the 130 kPa DP cell	64
Figure 3.9: Valve test rig pressure lines	68
Figure 3.10: Schematic diagram of a Saunders diaphragm valve	71
Figure 3.11: Photograph of a Saunders diaphragm valve	71
Figure 3.12: Internal dimension of the 80 mm bore diaphragm Natco valve (Pienaar e	t al.,,
2006)	73
Figure 3.13: Gravity flow system used to determine the valve positions	74
Figure 3.14: Percentage flow delivery at different valve positions	76
Figure 4.1: Friction factor for 50 mm OD for different opening positions	90

Preamble xii

Figure 4.2: Comparison of water tests with Colebrook & White for all pipe sizes	92
Figure 4.3: Pseudo-shear diagram for straight pipe test of CMC 5%	94
Figure 4.4: Straight pipe test of 6%, 10% and 13% Kaolin slurry	95
Figure 4.5: Loss coefficient data of the 40 mm bore Saunders diaphragm valve at all ope positions.	_
Figure 4.6: Loss coefficient data of the 50 mm bore Saunders diaphragm valve at all ope	
positions.	•
Figure 4.7: Loss coefficient data of the 65 mm bore Saunders diaphragm valve at all ope	
positions.	_
Figure 4.8: Loss coefficient data of the 80 mm bore Saunders diaphragm valve at all ope positions.	•
Figure 4.9: Loss coefficient data of the 100 mm bore Saunders diaphragm valve at all ope positions.	ening
Figure 4.10: Typical loss coefficient versus Reynolds number plot obtained for all pipe sizes	. 102
Figure 5.1: Comparison between Saunders diaphragm valves and literature for 40 mm diameter	
Figure 5.2: Comparison between Saunders diaphragm valves and literature for 50 mm diameter	
Figure 5.3: Comparison between Saunders diaphragm valves and literature for 65 mm diameter	bore
Figure 5.4: Comparison between Saunders diaphragm valves and literature for 80 mm diameter	bore
Figure 5.5: Comparison between Saunders diaphragm valves and literature for 100 mm diameter	bore
Figure 5.6: Comparison between the Saunders diaphragm valves for the 40 mm bore diam	neter
at different opening positions and two-constant model (Mbiya, 2008) using $\lambda_{\Omega Saunders}$. 118
Figure 5.7: Comparison between the Saunders diaphragm valves for the 80 mm bore diam	neter
at different opening positions and two-constant model (Mbiya, 2008) using $\lambda_{\Omega Saunders}$. 119
Figure 5.8: Comparison between the Saunders diaphragm valves for the 100 mm bore diam	neter
at different opening positions and two-constant model (Mbiya, 2008) using $\lambda_{\Omega Saunders}$. 120
Figure 5.9: 40 mm bore diameter at various opening positions	. 122
Figure 5.10: k_v versus Re less than 10 for different pipe sizes at different opening positions .	. 123
Figure 5.11: Plot of opening position against the turbulent loss coefficient for various pipe size	zes125

Preamble xiii

Figure 5.12: Comparison between the Saunders diaphragm valves for the 40 mm at different states of	ent
opening positions and the new correlation	128
Figure 5.13: Comparison between the Saunders diaphragm valves for the 50 mm bore diame	ter
at different opening positions and the new correlation	129
Figure 5.14: Comparison between the Saunders diaphragm valves for the 65 mm bore diame	ter
at different opening positions and the new correlation	130
Figure 5.15: Comparison between the Saunders diaphragm valves for the 80 mm bore diame	eter
at different opening positions and the new correlation	131
Figure 5.16: Comparison between the Saunders diaphragm valves for the 100 mm between the saunders diaphragm valves for the 100 mm between the saunders diaphragm valves for the 100 mm between the saunders diaphragm valves for the 100 mm between the saunders diaphragm valves for the 100 mm between the saunders diaphragm valves for the 100 mm between the saunders diaphragm valves for the 100 mm between the saunders diaphragm valves for the 100 mm between the saunders diaphragm valves for the 100 mm between the saunders diaphragm valves for the 100 mm between the saunders diaphragm valves for the 100 mm between the saunders diaphragm valves for the 100 mm between the saunders diaphragm valves for the 100 mm between the saunders diaphragm valves for the 100 mm between the saunders diaphragm valves d	ore
diameter at different opening positions and the new correlation	132

Preamble xiv

LIST OF TABLES

Table 2.1: Type of valves (Myles, 2000)	7
Table 2.2: Rheological models (Chhabra & Richardson, 1985)3	7
Table 2.3: Loss coefficients of different types of valves, published by Hooper (1981) 4	3
Table 2.4: Available valve loss coefficient data in the open literature (Pienaar et al., 2004) 4	6
Table 2.5: Loss coefficients for turbulent flow through diaphragm valves (Perry & Chilton, 1997)	47
Table 2.6: Loss coefficients of different sizes of Natco diaphragm valves (Kazadi, 2005) 5	0
Table 2.7: Comparison of loss coefficient data for Natco and Saunders valves (Fester et al.	٠,
2007) 5	1
Table 3.1: External dimensions of Saunders valves	2
Table 3.2: Internal dimensions of the diaphragm valves	3
Table 3.3: Valve position	7
Table 3.4: Expected highest error and experimental errors in the measurements of the valve tes	st
rig pipe diameters 8	2
Table 3.5: Absolute error for 40 mm bore diameter8	5
Table 3.6: Absolute error for 50 mm bore diameter8	5
Table 3.7: Absolute error for 65 mm bore diameter8	5
Table 3.8: Absolute error for 80 mm bore diameter8	5
Table 3.9: Absolute error for 100 mm bore diameter8	5
Table 3.10: Mean value for 40 mm bore diameter8	5
Table 3.11: Mean value for 50 mm bore diameter8	6
Table 3.12: Mean value for 65 mm bore diameter8	6
Table 3.13: Mean value for 80 mm bore diameter8	6
Table 3.14: Mean value for 100 mm bore diameter8	6
Table 3.15: Relative or percentage error for 40 mm bore diameter	7
Table 3.16: Relative or percentage error for 50 mm bore diameter	7
Table 3.17: Relative or percentage error for 65 mm bore diameter	7
Table 3.18: Relative or percentage error for 80 mm bore diameter	7
Table 3.19: Relative or percentage error for 100 mm bore diameter	7
Table 4.1: Surface roughness for various pipe sizes9	1
Table 4.2: Rheological characteristic of CMC 5%9	4
Table 4.3: Rheological characteristics of Kaolin 6%, 10% and 13% slurry9	5

Preamble xv

Table 4.4: Loss coefficients of the 40, 50, 65, 80 and 100 mm bore valve	103
Table 5.1: Percentage error: Comparison of literature and this work	116
Table 5.2: Loss coefficient error for the two-constant model application	121
Table 5.3: Power law fit for turbulent loss coefficient for various pipe sizes	126
Table 5.4: General power law fit for turbulent loss coefficient	127
Table 5.5: Loss coefficient error for the new correlation	133
Table 6.1:Nominal turbulent coefficient (λ_{Ω}) for fully open position for various pipe sizes	136

Preamble xvi

NOMENCLATURE

SYMBOL	DESCRIPTION	UNITS
γ	Shear rate	s ⁻¹
α	Effect of partial opening and change in Reynolds number	
λ_Ω	Nominal turbulent loss coefficient	
θ	Valve opening position	
σ	Standard deviation	
$\overline{\mathbf{X}}$	Population mean or average	
%C _v	Volumetric percentage of the slurry	
ν	Kinematic viscosity	m^2/s
ρ	Density of the fluid	kg/m ³
μ	Dynamic viscosity of the fluid	Pa.s
τ	Shear stress	Pa
$ au_{y}$	Yield stress	Pa
Р	Static pressure	Pa
ΔΡ	Total pressure loss	Pa
Α	Cross section area of the pipe	m^2
C_{v}	Laminar flow valve loss coefficient constant	
D	Pipe diameter	m
Е	Total energy per unit mass	J/kg
F	Friction loss coefficient	
g	Gravitational acceleration	m/s^2
G	Elasticity modulus	
Н	Total head of the system	m
k	Pipe roughness	
k_{v}	Loss coefficient of the valve	
K	Fluid consistency index	Pa.s ⁿ
K'	Apparent fluid consistency index	Pa.s ⁿ
L	The length of the pipe	m
Le	Equivalent length	m
m	Mass of a substance	kg

Preamble xvii

m_1	Slope	
N	Size of population	
n	Flow behaviour index	
n'	Apparent flow behaviour index	
р	Pressure (static)	Pa
Q	Volumetric flow rate	m ³ /s
r	Plug radius	m
R	Pipe radius	m
RD	Relative density	
Re	Reynolds number	
Re _{MR}	Metzner-Reed Reynolds number for pseudo plastic fluids	
Res	Slatter's Reynolds number for yield pseudo plastic and Bingham	
	plastic fluids	
T	Time	S
U	Point velocity	m/s
V	Mean velocity	m/s
X	Data point in a population	
Z	Height of the pie centre-line above datum	m
€	Pipe wall roughness	m
SUBSCRIPT	DEFINITION	
1	First point of measurement	
2	Second point of measurement	
3	Third point of measurement	
Ann	Annulus	
В	Bingham	
HB	Herschel-Buckley	
Liq	Liquid	
0	Pipe wall	
W	Water	
∞	Infinite	

CHAPTER 1 INTRODUCTION

1.1 INTRODUCTION

Accurate loss coefficient data to enable more efficient pipeline designs for non-Newtonian fluids are scarce in the open literature, making it difficult to predict the head loss due to the pipeline fittings, and particularly for diaphragm valves. Most of the data given in the literature are for turbulent flow based on water. Due to water shortages, mining operations are forced to increase their solids concentrations, so that they are now forced to operate in laminar flow (Slatter, 2002). As a consequence there is a need to determine loss coefficient data in laminar flow for valves used in these industries to ensure energy efficient designs (Pienaar et al., 2001; 2006).

However, a systematic study of various sizes of diaphragm valves of different manufacturers to ascertain if the same loss coefficient can be applied has not yet been done.

The objective of this project is to produce a data base of loss coefficient data for Saunders valves for various diameters and openings. A comparison of the results with those obtained previously for Natco diaphragm valves will be conducted to evaluate the effect of valves produced by different manufacturers. This will provide input data to enable more efficient pipeline plant designs.

1.2 STATEMENT OF RESEARCH PROBLEM

The prediction of the energy losses when designing pipeline and pumping systems requires accurate loss coefficient data. However, there is a lack of sufficient laminar loss coefficient data of non-Newtonian fluids through straight-through diaphragm valves, as well as a need for a complete comparison of loss coefficient data between valves from two different manufacturers.

Chapter 1: Introduction 2

1.3 AIM AND OBJECTIVES

The objective of this work was:

> To experimentally determine the loss coefficient of Saunders diaphragm valves at different opening positions, for a range of Newtonian and non-Newtonian materials.

➤ To compare the loss coefficient data for fully, 75 %, 50 %, and 25 % open valve position between Natco and Saunders diaphragm valves.

> To evaluate existing correlations for predicting losses through straight-through diaphragm valves and, if needed, to derive a correlation for predicting losses in Saunders valves.

1.4 METHODOLOGY

In order to achieve the objectives, the following was done:

A literature review of related topics on flows of both Newtonian and non-Newtonian fluids through pipe fittings was conducted.

The losses through Saunders diaphragm valves of 40 mm, 50 mm, 65 mm, 80 mm and 100 mm bore diameter at fully, 75 %, 50 % and 25 % open was measured using the valve test rig in the slurry lab at the Cape Peninsula University of Technology. The five straight pipes could also be used for the determination of the rheology. The valve test rig has been commissioned and the data obtained proved to be reliable (Kazadi, 2005).

Water, a Newtonian fluid, was used for the calibration of the valve test rig and non-Newtonian fluids (carboxymethylcellulose and kaolin at three different concentrations) were used.

The results for each test are presented in the form of valve loss coefficient (k_{valve}) against Reynolds number (Re).

Correlations were evaluated and, a new correlation was derived to predict losses through Saunders diaphragm valves.

1.5 SCOPE

This work investigates only Newtonian and time-independent homogeneous non-Newtonian fluids or slurries flowing through Saunders straight-through diaphragm valves in the turbulent, transitional and laminar regimes.

Weir-type Saunders valves and time-dependent fluid behaviour were not investigated in this thesis.

1.6 IMPORTANCE AND BENEFITS

This thesis adds loss coefficient data to the open literature, which will be useful for designing pipelines in industries, as well as contributing to the academic debate in this discipline.

CHAPTER 2 LITERATURE REVIEW

2.1 INTRODUCTION

This chapter reviews the theory and literature relevant to Newtonian and non-Newtonian fitting losses. The definition, description, purposes of the fittings and its impact on pipeline design is described. An overview of the methodology used to measure the additional losses in the fittings is also given.

Some rheological models used by many researchers are outlined. The behaviour of Newtonian fluids through valves is reviewed and the current methods to predict non-Newtonian laminar flow through valves are discussed.

2.2 PURPOSE OF FITTINGS

Fittings in piping and tubing systems have five main functions (Franck et al., 2001):

- > Changing the direction of the flow
- Providing branch connections
- Changing the sizes of lines
- Closing lines
- Connecting lines

2.3 DEFINITION AND CLASSIFICATION OF PIPE FITTINGS

Crane (1999) classified fittings in different types such as deflecting, branching, reducing and expanding.

Deflecting fittings are part of those which change the direction of the flow, such as bends, elbows, etc., while tees, crosses and side outlet elbows may be called branching fittings. Reducing or expanding fittings are those which change the area of the fluid passageway (Crane, 1999).

Franck et al. (2001) defined a valve as any device by which the flow may be started, stopped, or regulated by a movable part that opens or obstructs passage.

Those that exhibit a straight-through flow would fall in the low resistance class. On the other hand, those that cause a change in flow path direction would fall in the high resistance class (Crane, 1999).

In general, valves are differentiated according to their design features such as sliders, cocks and flaps. However, in practice, they are often distinguished according to their function, type and function, or combined construction type-function and material (Myles, 2000).

2.4 TYPES OF VALVES

There are many kind of valves, but in the context of this investigation the straight-through diaphragm type will be studied. However, other types of valves that can be encountered will be described briefly in the section below.

Gate valves, closed or opened. They can be used for long periods on a variety of water, gas and chemical duties with a sure satisfactory operation when needed. Erosion can arise from attempting fine control or throttling. High lift valves are needed for installation and maintenance, for high stem and service with heavy solids in suspension could be troublesome, possibly creating seat wear and shut-off problems (Myles, 2000).

Globe valves are not suitable for handling virulent sluggish and as ideal steam valves. They are used with other modifications as both stop and control valves. They can be found in both globe type body or angled versions in a range of materials (Myles, 2000).

Ball valves are suitable for wide choice of materials and size range, and for high pressure and high temperature in isolation, or combined with other valves. Where other valves, they are useful for abrasive duties, sterility, coagulating fluids and throttling applications (Myles, 2000).

The 90° to 270° plug valves are available with either taper or parallel plugs. They offer a very full capacity and streamlined flow in the open position. For effective operation, lubricant under pressure is injected between the plug face and body seat. Pressure loss is minimal and high pressure easily handled with both liquids and gases (Myles, 2000).

Butterfly valves are excellent for systems requiring a lightweight compact unit which is good for on-off and regulation work. Large and heavy solids services should be avoided, as should too rapid disc operation, seeing that there is a possibility of induced pressure surge and water hammer (Myles, 2000).

Pinch valves are probably the simplest and most cost efficient valves available. Basically they comprise of a rubber hose or sleeve which is clamped in a pipeline and pinched or squeezed to stop or control the flow. In the fully open position the valve is similar to a straight-through rubber-lined pipe. They are used mainly where abrasion, sewerage, solids handling and/or corrosion is a factor (Myles, 2000).

Diaphragm valves are equally suited to on-off plus throttling, pressure and high vacuum, air or hazardous chemicals. The maintenance is practically nil. It has set flow characteristics, but the expansive coverage provided is such that almost every industry has absorbed it somewhere into the process (Myles, 2000).

Table 2.1 shows common types of valves, a sectional view and their mode of closure (Myles, 2000).

Table 2.1: Type of valves (Myles, 2000).

NAME	SECTIONAL VIEW	TYPE OF CLOSURE
Gate valve		
Globe valve		1 **
Ball valve		
Plug valve		

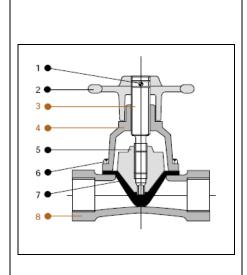
NAME	SECTIONAL VIEW	TYPE OF CLOSURE
Butterfly valve		
Diaphragm valve		
Pinch Valve		

2.5 DIAPHRAGM VALVES

2.5.1 Advantages of diaphragm valves

Diaphragm valves offer distinct advantages in applications where absolute 100 % sealing is required, and where the line fluid cannot be contaminated by the ingress of the atmosphere. Even when slurries are being handled, or solids are present in the liquids, leak-tightness is assured, due to the ability of the diaphragm to engulf particles on closure, and release them downstream when the valve is again opened.

Diaphragm valves provide an equally effective shut-off with gases under pressure, or vacuum. There is no need for any gland-packing devices for the stem, as the diaphragm provides total sealing between the medium and atmosphere.


2.5.2 Features of diaphragm valves

There are three basic components in a diaphragm valve, namely, the body, the bonnet, and the diaphragm. Additional features can be summarised as follows:

- > The diaphragm, which is the only component which needs to be replaced, can be replaced without the need to dismantle the body from the pipeline.
- Contamination-free performance and smooth flow characteristics are ensured through the pocket-less design.
- > Appropriate selection of diaphragm materials permits handling of a wide range of media.
- > The valve can be mounted in any position and can be supplied with offset flange drilling to suit.
- Operation can be by handwheel or linear actuator.
- Opened, closed, or intermediate positions are indicated.
- Mechanical locking arrangements are available.
- > The valve may, in certain applications, be used for throttling.

Types of diaphragm valves

Two types of diaphragm valves are available, namely: the straight-through type diaphragm valve and the weir or dam-type diaphragm valve shown respectively in details in Figures 2.1 and 2.2.

Material Specification				
Part No	Component	Material		
1	Hand wheel pin	Spring steel		
2	Hand wheel	Cast iron		
3	Stem	Stainless steel		
4	Bonnet	Cast iron		
5	Compressor	Cast iron		
6	Studs/bolts & nuts	Carbon steel		
7	Diaphragm	Rubber		
8	Body	Cast iron		

Figure 2.1: The straight-through type diaphragm valve (Saunders valves, 2007).

The straight-through type diaphragm valves are suitable for slurries or suspensions and fluids which coagulate and powders where pigging or rodding is needed. They are available with flanged or screwed bodies (Myles, 2000).

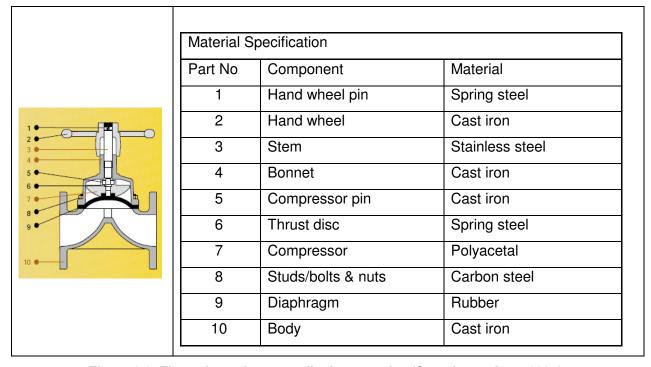


Figure 2.2: The weir- or dam-type diaphragm valve (Saunders valves, 2007).

The body incorporates an internal weir which reduces diaphragm travel and allows for precise throttling control. They are available with either flanges or with screwed socket (Myles, 2000). The weir-type diaphragm valves are suitable for less viscous fluids.

2.6 IMPACT OF FITTINGS

The so-called minor losses outweigh the ordinary friction loss in short pipes (Massey, 1990). The losses invariably arise from sudden changes of velocity (either in magnitude or direction). These changes generate large-scale turbulence in which energy is dissipated as heat (Massey, 1990).

2.7 FLOWS IN STRAIGHT PIPES

2.7.1 Shear stress distribution in a straight pipe

With regard to the flow of an incompressible fluid in a closed conduit, such a pipe is subject to inertia forces and viscous forces (Massey, 1990). Due to these forces, one is able to distinguish two different types of flow, namely the laminar and the turbulent flow. Laminar flow may occur in many situations. It occurs at velocities low enough for forces due to viscosity to predominate over inertia forces. Turbulent flow is subject to random fluctuating components that are superimposed on the main flow, and these hap-hazard movements are unpredictable (Massey, 1990).

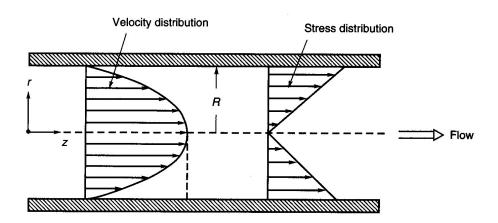


Figure 2.3: Velocity and shear stress distribution (Slatter, 1994)

The shear stress distribution, illustrated in Figure 2.3, in a pipe is given by the relationship:

$$\tau = \frac{\Delta pr}{2L}$$
 Equation 2.1

where Δp is the pressure gradient in the portion of a straight pipe of length L and the radial distance r (Chhabra & Richardson, 1999)

At the pipe wall Equation 2.1 becomes:

$$au_o = \frac{\Delta p D}{4 I_o}$$
 Equation 2.2

2.7.2 Energy loss in straight pipe

When a fluid flows in a straight pipe the dissipation of energy manifests itself as head loss and can be calculated using the Darcy-Weisbach formula (Massey, 1990):

$$\Delta H = \frac{4fL}{D} \left(\frac{V^2}{2g} \right)$$
 Equation 2.3

Where f is the fanning friction factor defined as (Massey, 1990):

$$f = \frac{2\tau_o}{\rho V^2}$$
 Equation 2.4

The velocity V is obtained from Equation 2.5 and is given by:

$$V = \frac{Q}{A}$$
 Equation 2.5

Equations 2.1 - 2.5 do not depend on the nature of the fluid (Newtonian or non-Newtonian), or on the nature of the flow (laminar or turbulent). They depend on the homogeneity of the fluid and on the development of the flow (Massey, 1990).

2.7.3 Newtonian laminar flow in straight pipes

2.7.3.1 Velocity distribution

The velocity distribution in a pipe in laminar flow (if there is no slip or hold-up effect at the pipe wall) is (Massey, 1990):

$$u = \frac{\tau_o}{2R\mu} (R^2 - r^2),$$

Equation 2.6

where u is maximum for r = 0 and is:

$$u_{\text{max}} = \frac{\tau_{o}R}{2\mu}$$
,

Equation 2.7

and the mean velocity is:

$$V = \frac{u_{\text{max}}}{2}$$

Equation 2.8

$$V = \frac{\tau_o R}{4\mu}$$

Equation 2.9

2.7.3.2 Friction factor

In general the friction factor is determined using equation 2.4. The friction factor is generally a function of both the Reynolds number and the pipe wall roughness. In Newtonian laminar flow, the pipe wall roughness has no effect on the friction factor and the friction factor is given by (Massey, 1970):

$$f = \frac{16}{Re}$$
 Equation 2.10

2.7.4 Newtonian turbulent flow in straight pipes

Turbulent flow is a flow characterised by large, random, swirling or eddy motions. Particle path cross and velocity (both direction and magnitude), and pressure fluctuate on a continuous and random basis. Turbulent flow is very complex and a consistent mathematical analysis has not yet been done. Predictions are obtained empirically from experiments (Massey, 1990).

The friction factor in turbulent flow is a function of the Reynolds number and the pipe wall roughness k. It can be obtained using the Colebrook & White equation (Massey, 1990):

$$\frac{1}{\sqrt{f}} = -4\log\left[\frac{k}{3.7D} + \frac{1.26}{Re\sqrt{f}}\right]$$
 Equation 2.11

It must be noted that the Moody diagram presents the friction factor f versus Re and is a useful tool when it comes to the friction factor determination. Figure 2.4 gives the Moody diagram. In case of a smooth pipe and for Reynolds numbers between 3000 and 100000, the Blasius equation is used to determine the friction factor (Massey, 1990).

$$f = \frac{0.079}{(Re)^{0.25}}$$
 Equation 2.12

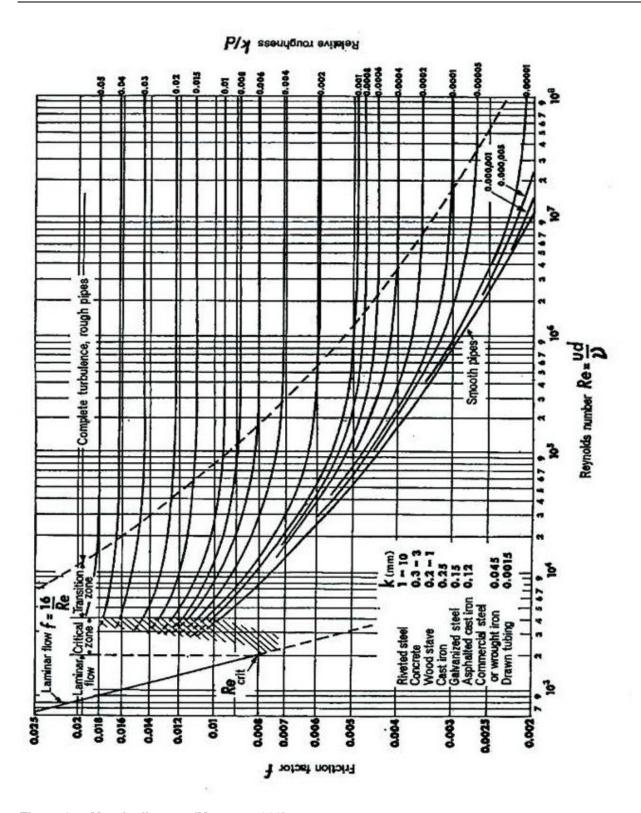


Figure 2.4: Moody diagram (Massey, 1990)

The fundamental relationships given in Equations 2.1 - 2.5 on the shear rate, energy loss in pipes and velocity are also valid for non-Newtonian fluids, as stated earlier in sections 1 & 2.

2.7.5 Non-Newtonian laminar flow in straight pipes

The following rheological relationship can be accommodated in the yield pseudoplastic model Equation 2.59 (Chhabra & Richardson, 1999).

- ightharpoonup Yield dilatant ($\tau_v > 0$ and n > 1)
- ightharpoonup Bingham plastic ($\tau_v > 0$ and n = 1)
- ightharpoonup Dilatant ($\tau_y = 0$ and n > 1)
- ightharpoonup Newtonian ($\tau_v = 0$ and n = 1)
- ightharpoonup Pseudoplastic ($\tau_v = 0$ and n < 1)

In laminar flow, the velocity distribution of a yield pseudoplastic fluid is for $R > r > r_{\text{plug}}$;

$$u = \frac{R}{K^{\frac{1}{n}}\tau_o} \frac{n}{n+1} \bigg[\left(\tau_o - \tau_y\right)^{\frac{n+1}{n}} - \left(\tau - \tau_y\right)^{\frac{n+1}{n}} \bigg] \tag{Equation 2.13}$$

when $0 < r < r_{\mbox{\tiny plug}}$ the fluid moves as a plug at a uniform plug velocity $u_{\mbox{\tiny plug}}$

The volumetric discharge Q and the average velocity are obtained from the relation (Slatter, 1994):

$$\frac{32Q}{\pi D^{3}} = \frac{8V}{D} = \frac{4n}{K^{\frac{1}{n}} \tau_{o}^{3}} \left(\tau_{o} - \tau_{y}\right)^{\frac{1+n}{n}} \left[\frac{\left(\tau_{o} - \tau_{y}\right)^{2}}{1+3n} + \frac{2\tau_{y}\left(\tau_{o} - \tau_{y}\right)}{1+2n} + \frac{\tau_{y}^{2}}{1+n} \right]$$
 Equation 2.14

With τ_o as defined by Equation 2.2 and V = Q/A (Equation 2.5)

For a Newtonian fluid $\tau_y = 0$, $K = \mu$ and n = 1, Equation 2.14 becomes:

$$\tau_{o} = \mu \frac{8V}{D}$$
 Equation 2.15

Equation 2.15 shows that wall shear rate at pipe wall for a Newtonian fluid is $\frac{8V}{D}$. It is of great importance in non-Newtonian fluid flow in general, and in this investigation in particular.

2.7.5.1 The Rabinowitsch-Mooney relation

The true shear rate can be obtained from the pseudo shear rate of a non-Newtonian fluid, by multiplying the pseudo shear rate by the Rabinowitsch-Mooney relation (Rabinowitsch, 1929):

$$\left[-\frac{du}{dr} \right]_{o} = \frac{8v}{D} \left[\frac{3n'+1}{4n'} \right]$$
 Equation 2.16
$$n' = \frac{d(\text{Log}\tau_{0})}{d\left(\text{Log}\frac{8V}{D}\right)}$$
 Equation 2.17

In case the rheological parameters of the fluid are known (τ_y , K and n), K' and n' can be obtained directly using relations (2.18) and (2.19) for pseudoplastic fluids, and (2.20) and (2.21) for yield pseudoplastic fluids (Kazadi, 2005).

$$K' = K \left(\frac{3n+1}{4n}\right)^n$$
 Equation 2.18
$$n = n'$$
 Equation 2.19

$$n' = \frac{1}{-3 + \frac{(1+n)}{n} \frac{\tau_o}{(\tau_o - \tau_y)} + \frac{2\tau_o(1+n)(\tau_o + 2n\tau_o + n\tau_y)}{(1+n)(1+2n)(\tau_o - \tau_y)^2 + 2\tau_y(\tau_o - \tau_y)(1+n)(1+3n) + \tau_y^2(1+2n)(1+3n)}}$$
 Equation 2.20

$$K' = \frac{\tau_{o}}{\left\{ \left[\frac{4n}{K^{\frac{1}{n}} \tau_{o}^{3}} \left(\tau_{o} - \tau_{y} \right)^{\frac{1+n}{n}} \left[\frac{\left(\tau_{o} - \tau_{y} \right)^{2}}{1+3n} + \frac{2\tau_{y} \left(\tau_{o} - \tau_{y} \right)}{1+2n} + \frac{\tau_{y}^{2}}{1+n} \right] \right]^{n'}} \right\}}$$
 Equation 2.21

2.7.5.2 Metzner & Reed generalised Reynolds number

It has been demonstrated that for laminar pipe flow of any given time independent fluid that 8V/D is some unique function of τ_0 only. According to Metzner & Reed (1955), this may be expressed as:

$$\tau_{o} = \frac{D\Delta p}{4L} = K \left(\frac{8V}{D} \right)^{n'}$$
 Equation 2.22

In most cases K' and n' are not constants, but vary with 8V/D. Thus on logarithmic plot of τ_o versus 8V/D, Equation 2.22 is simply the equation of the tangent to the curve at a given value of 8V/D, n' being the slope of this tangent and K' its intercept on the ordinate at 8V/D equal to unity (Skelland, 1967).

Metzner & Reed (1955) developed a generalised Reynolds number from the considerations above as:

$$Re_{MR} = \frac{8V^2\rho}{K\left(\frac{8V}{D}\right)^{n'}}$$
 Equation 2.23

This relation may be rewritten after transformation as:

$$Re_{MR} = \frac{\rho V^{2-n'} D^{n'}}{8^{n'-1} K'}$$
 Equation 2.24

In practice, n' is the tangent of the double logarithmic plot of τ_o versus (8V/D) at any particular value of τ_o or 8V/D. Log K' is the intercept on the y-axis.

It has been found experimentally that for many fluids K' (Equation 2.18) and n' (Equation 2.19) are constant over any range of τ_o or 8V/D for which the power law is valid. This is not the case in general (the log-log plot is not always a straight line) and care must be taken to ensure that the range of application is narrow. The quantity n' characterizes the degree of non-Newtonian behaviour for a given fluid. The greater the departure of n' from unity, the more non-Newtonian is the fluid. The quantity K' is a measure of the consistency of the fluid; the larger the value of K' the thicker or less mobile is the fluid (Metzner & Reed, 1955).

Thus (2.23) becomes:

$$Re_{MR} = \frac{\rho V^{2-n} D^{n}}{8^{n-1} K \left(\frac{3n+1}{4n}\right)^{n}}$$
 Equation 2.25

For a Bingham plastic fluid (Skelland, 1967):

$$n'=1-\frac{4\tau_y}{3\tau_o}$$
 Equation 2.26

2.7.5.3 Slatter Reynolds number

The Slatter Reynolds number takes directly into account the yield stress of non-Newtonian fluids. Slatter has proposed a Reynolds number which seeks to express the ratio of inertial forces to viscous shear forces in the sheared portion of the flow (Chhabra and Richardson, 1999).

The Slatter Reynolds number is given by:

$$Re_{s} = \frac{8V_{ann}^{2}\rho}{\tau_{y} + K\left(\frac{8V_{ann}}{D_{shear}}\right)^{n}}$$
 Equation 2.27

For a fluid with a yield stress there is a plug flow at the centre of the pipe in laminar flow, and the radius of the plug is:

$$r_{\text{plug}} = \frac{\tau_{\text{y}}}{\tau_{\text{o}}} R$$
 Equation 2.28

The shear diameter is:

$$\begin{aligned} &D_{shear} = D - D_{plug} \\ &D_{plug} = 2 r_{plug} \end{aligned} \qquad & \text{Equation 2.29}$$

The mean velocity of the annulus is:

$$V_{ann} = \frac{Q_{ann}}{A_{ann}}$$
 Equation 2.31

$$Q_{ann} = Q - Q_{plug}$$
 Equation 2.32

$$Q_{plug} = u_{plug}.A_{plug}$$
 Equation 2.33

$$u_{plug} = \frac{R}{K^{\frac{1}{n}} \tau_o} \frac{n}{n+1} \left(\tau_o - \tau_y\right)^{\frac{n+1}{n}}$$
 Equation 2.34

The transitional value of the Slatter Reynolds number from laminar to turbulent flow in straight pipes is ${\rm Re_s}=2100$ (Lazarus & Slatter, 1988).

2.7.5.4 Friction factor for non-Newtonian fluids

In the case of inelastic non-Newtonian fluids, the Fanning friction factor in laminar flow is given by (Chhabra & Richardson, 1999):

$$f = \frac{16}{Re_{MR}}$$
 Equation 2.35

Slatter (1999) also developed a friction factor for non-Newtonian fluids with a yield stress:

$$f_{ann} = \frac{2\tau_o}{\rho V_{ann}^2}$$
 Equation 2.36

In this case the transition is considered to occur when f_{ann} equals 0.008.

2.8 FLOW IN PIPE FITTINGS

The Bernoulli formula gives the macroscopic mechanical energy balance for a pipe system, as well as the total head loss in the system, and is used in the determination of different losses in the system (Massey, 1990).

The Bernoulli formula for a system of two pipes in series connected by a fitting can be written as follows:

$$z_{1} + \frac{\alpha_{1}V_{1}^{2}}{2g} + \frac{P_{1}}{\rho g} = z_{2} + \frac{\alpha_{2}V_{2}^{2}}{2g} + \frac{P_{2}}{\rho g} + H_{1} + H_{fitt} + H_{2}$$
 Equation 2.37

Where z is the elevation of the datum, α is the kinetic energy correction factor, P is the static pressure, and H the head loss.

Subscripts 1 and 2 refer to the upstream and downstream pipes respectively.

H_{fitt} is the fitting head loss in metres and is predicted using the formula (Massey, 1990):

$$H_{\text{fitt}} = k_{\text{fitt}} \frac{V^2}{2g}$$
 Equation 2.38

For a valve it is written

$$H_v = k_v \frac{V^2}{2g}$$
, Equation 2.39

where k_{fitt} and k_{v} is the fitting or valve head loss coefficient, and is defined as the non-dimensionalised difference in overall pressure between the ends of two long, straight pipes when there is no fitting, and when the real fitting is installed (Miller, 1990). This is shown graphically on Figure 2.5 for a valve.

$$k_{fitt} = H_{fitt} \frac{2g}{V^2}$$
 Equation 2.40

$$k_{\text{fitt}} = \frac{\Delta p_{\text{fitt}}}{\frac{1}{2}\rho V^2}$$
 Equation 2.41

The loss coefficient can be calculated in two ways, by including or excluding the length of the fitting.

If the length of the fitting is excluded, k_{fitt} is called k_{gross} and is obtained by the equation (Turian et al., 1997):

$$k_{gross} = \frac{1}{\frac{\rho V^2}{2}} \left[-\Delta p - \frac{\rho V^2}{2} \frac{4f}{D} (L_u + L_d) \right]$$
 Equation 2.42

If the length of the fitting is included, k_{fitt} is called k_{net} and is obtained by the equation (Turian et al., 1997):

$$k_{\text{net}} = \frac{1}{\frac{\rho V^2}{2}} \left[-\Delta p - \frac{\rho V^2}{2} \frac{4f}{D} (L_u + L_{\text{fitt}} + L_d) \right]$$
 Equation 2.43

With the exception of abrupt contractions and expansions, all other fittings have a physical length.

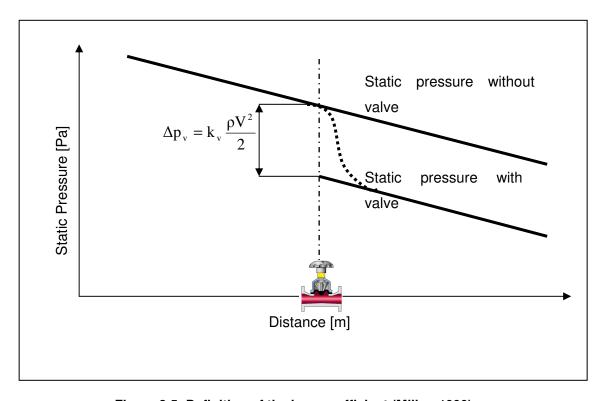


Figure 2.5: Definition of the loss coefficient (Miller, 1990)

2.9 NEWTONIAN AND NON-NEWTONIAN FLOW IN VALVES

2.9.1 Pressure drop in valves

The loss of pressure due to a valve consists of three parts (Turian et al., 1997):

The pressure drop within the valve itself is due to the viscous stresses that cause internal friction and separate flows.

The pressure drop in the upstream pipe is in excess of that which would normally occur if there were no valve in the line. This effect is small.

The pressure drop in the downstream pipe is in excess of that which would normally occur if there were no valve in the line. This effect may be comparatively large.

2.9.2 Valve loss coefficient

Friction losses for valves are obtained using Equation 2.39 where k_v is the valve loss coefficient and is defined as the number of velocity heads lost due to a valve.

The head loss is independent of the Reynolds number. In laminar flow the valve loss coefficient is Reynolds number dependent and in laminar flow is defined as C_v, the laminar flow valve loss coefficient constant (Pienaar et al., 2004):

$$C_v = k_v.Re$$
 Equation 2.44

The loss coefficient is usually presented as a function of the Reynolds number. Figure 2.6 gives a typical presentation of k_v versus Re.

The laminar flow valve loss coefficient in Equation 2.44 is determined from experimental data in the laminar flow region by the least square method.

It is obtained by minimizing the logarithmic least square error:

$$Minimum \sum \left(Log \frac{C_v}{Re} - Log k_{v/obs} \right)^2$$
 Equation 2.45

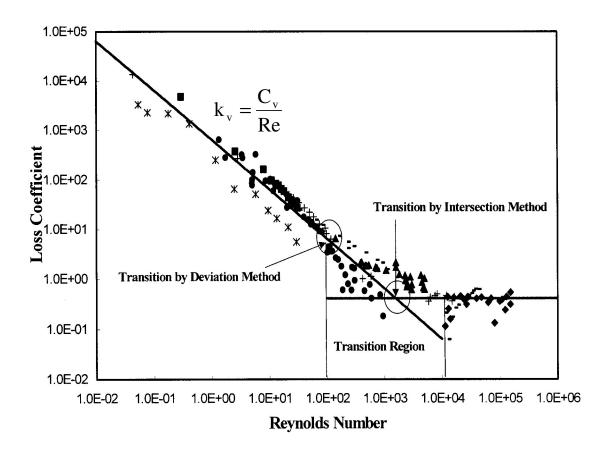


Figure 2.6: Typical representation of k_{ν} vs. Re for a fitting (Pienaar et al., 2001)

Figure 2.6 shows also the transition from laminar to turbulent flow for a range of Newtonian and non-Newtonian fluids. Some authors define it as the intersection of the laminar loss coefficient and turbulent loss coefficient loci, while others refer to it as a point where the experimental data start to deviate from the laminar flow line (Pienaar et al., 2001).

2.9.3 Methodology to determine loss coefficient

Generally, there are two methods used in the determination of valves or fittings loss coefficient: the hydraulic grade line (HGL) approach and the total pressure method. Banerjee et al., (1994), Kazadi (2005) and Baudouin (2003) adopted the hydraulic grade line approach for the determination of loss coefficients. The first two authors used it to determine loss coefficients in valves and the latter for loss coefficients in sudden contractions. It consists of measuring and plotting the static pressure gradients upstream and downstream of the valve in the region of fully

developed flow, far from the valve plan, to avoid disturbance of the flow due to the presence of the valve.

The valve pressure loss is obtained as an extrapolation of the pressure gradients measured in the fully developed flow regions, upstream and downstream of the valve.

To measure static pressure at different points upstream and downstream of the valve, Banerjee et al., (1994) used U-tube manometers containing mercury, beneath water, connected to pressure tappings. Baudouin (2003) and Kazadi (2005) used point pressure transducers and differential pressure cells connected to pressure tappings.

Turian et al., (1997) and Pienaar (1998) used the total pressure method to determine the loss coefficient through fittings and valves. Two pipes in series were joined by a fitting or valve. The method consists of measuring the pressure gradient between two points in the region of fully developed flow in straight pipes around the fitting and valve. Thus knowing the losses in the straight pipe portions one can deduct the fitting or valve loss.

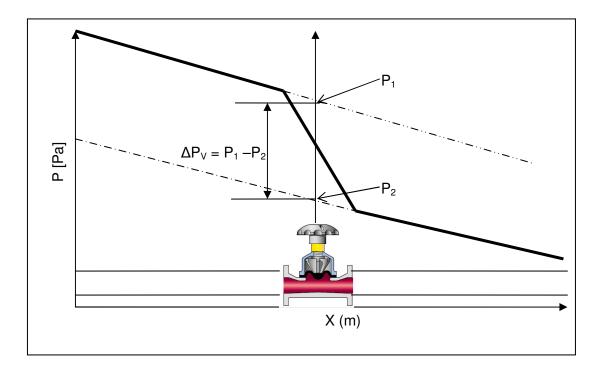


Figure 2.7: Diagram illustrating the calculation of valve loss coefficient

On a graph, static pressure (P) vs. axial distance (X) points of coordinates (P_i, X_i) are plotted from the experimental data. For the two pipes upstream and downstream of the test valve, the curves of static pressure drops follow a linear law and are straight lines as shown on Figure 2.7.

The coordinates of the points upstream of the test valve plane, which is the y-axis in this case, are used to calculate by linear regression the slope m_1 and intercept P_1 of the line upstream. The coordinates of the points downstream of the valve are used to calculate, also by linear regression, the slope m_2 and intercept P_2 of the line downstream of the valve.

In the case of valves, the pipes upstream and downstream of the test valve have the same diameters, the two hydraulic grade lines upstream and downstream of the test valve have the same slopes, m_1 and m_2 are equal and the pressure drop due to the test valve is given by:

$$\Delta p_{v} = P_{1} - P_{2}$$
 Equation 2.46

And using Equation 2.41:

$$k_{v} = \frac{\Delta p_{v}}{\frac{1}{2}\rho V^{2}}$$
 Equation 2.47

$$k_v = \frac{\left(P_1 - P_2\right)}{\frac{1}{2}\rho V^2}$$
 Equation 2.48

2.9.4 Equivalent length

Alternatively, the valve loss coefficient can be expressed in terms of the equivalent length of straight pipe of the same diameter and having the same loss as the valve. The equivalent length is expressed in numbers of pipe diameters, (Le/D) and is obtained by equating the Darcy-Weisbach formula, Equations 2.3 and 2.39 (Hooper, 1981):

$$\left(\frac{\text{Le}}{\text{D}}\right) = \frac{k_{v}}{4f}$$
 Equation 2.49

The drawback of this method is the fact that the equivalent length for a given fitting is not constant, but depends on Reynolds number and roughness, as well as size and geometry. Therefore, the use of equivalent length methods requires consideration of all these factors (Hooper, 1981).

It has been shown using dimensional analysis that k_v for incompressible Newtonian fluids is a dimensionless function of Re and of dimensionless geometric ratios characteristic of the valve (Turian et al., 1997):

$$k_y = fn(Re, geometric ratios)$$

Equation 2.50

This relation suggests that the resistance coefficient is the same for all sizes of a given type of valve provided dynamic similarity is enforced for instance equality of Reynolds number and geometric similarity are maintained (Turian et al., 1997).

2.9.5 Flow coefficient

In some branches of the valve industry, particularly for control valves, the capacity of the valve is expressed in terms of a flow coefficient.

However, there is no agreement on the definition of a flow coefficient in terms of SI units. In the USA and UK the flow coefficient in use is designated by C_{valve} and in other European countries by K_{valve} and are defined as:

C_{valve} is the rate of flow of water, in either US or UK gallons per minute, at 60 °F, at a pressure drop of one pound per square inch across the valve.

K_{valve} is the rate of flow of water in cubic metres per hour at a pressure drop of one kilogram force per square centimeter across the valve (Crane Co, 1999)

$$C_{valve} = 0.0694Q \sqrt{\frac{\rho}{\Delta p(999)}}$$
 Equation 2.51

where:

Q is the flow rate in litres per min ρ is the density of the fluid in kg/m³ $\Delta \rho$ is pressure gradient in bar

2.10 CLASSIFICATION OF FLUIDS

Either external applied pressure or effects produced under the action of a shear stress may play a major role in the classification of fluids (Chhabra & Richardson, 1999). We can encounter 'compressible' and 'incompressible' fluids, but in this thesis all the fluids tested are assumed to be incompressible. The flow characteristics of single phase liquids, solutions and pseudo-homogeneous mixtures (such as slurries, emulsions, gas-liquid dispersions) which may be

treated as a continuum if they are stable in the absence of turbulent eddies are considered, depending on their response to externally imposed shearing action.

In general fluids belong to one of the two main categories, namely Newtonian fluids or non-Newtonian fluids.

2.10.1 Newtonian fluids

One of the fundamental concepts in rheology is an idea of a Newtonian (or Newton-Stokes) liquid. This is the simplest linear liquid where the linear relationships between components of stress and rate of deformation tensors exist (Malkin, 1994). The coefficient for this linear relationship is viscosity (or Newtonian viscosity), and according to the definition, viscosity of Newtonian liquids is a material characteristic of a liquid which does not depend on conditions of flow, namely the stresses or rates of deformation.

Thus, the complete definition of a Newtonian fluid is that it not only possesses a constant viscosity, but also when the shear stress is plotted against the shear rate, the result for a Newtonian fluid is shown in Figure 2.8 and is a straight line going through the origin of the coordinates. Note that graphs plotting shear stress versus shear rate are called rheograms. Physically, the shear rate is the velocity gradient or the rate of angular deformation of the fluid (Liu, 2003).

Mathematically, a Newtonian fluid can be represented as follows:

$$\tau = \mu_n \dot{\gamma}$$
 Equation 2.52

where τ the shear stress, μ_n is the viscosity and $\dot{\gamma}$ the shear rate.

Figure 2.8 illustrates the general flow curve of a Newtonian fluid.

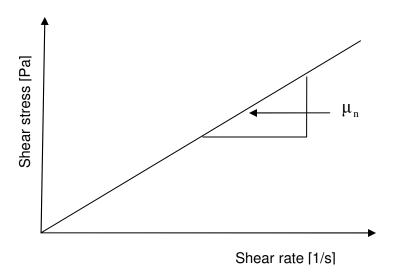


Figure 2.8: Rheogram of a Newtonian fluid

The slope of the straight line in any rheogram of a Newtonian fluid represents the viscosity (or more specifically, the dynamic viscosity) of the fluid. The higher the viscosity of a fluid, the steeper the slope in the rheogram becomes (Liu, 2003), as given in Figure 2.9.

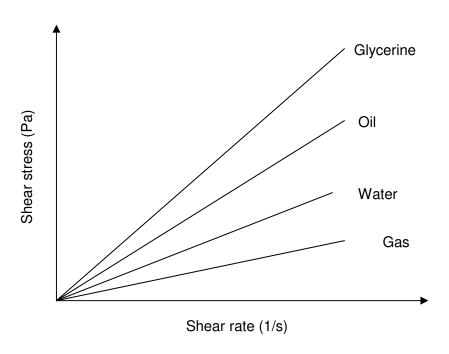


Figure 2.9: Rheogram of various Newtonian fluids

2.10.2 Non-Newtonian fluids

Many real liquids are non-Newtonian. It means that their apparent coefficient of viscosity, determined as a ratio of shear stress to shear rate of deformations, depends on conditions of flow (Malkin, 1994). A non-Newtonian fluid is one of which the flow curve (shear stress versus shear rate) is non-linear or does not pass through the origin. It means that the apparent viscosity is not a constant at given temperature and pressure, but is dependent on flow conditions such as flow geometry, shear rate, etc., and sometimes even on the kinematic history of the fluid element under consideration.

2.10.3 Classification of non-Newtonian fluids

Non-Newtonian fluids may be conveniently grouped into three general classes. Even though in those most real materials, they often exhibit a combination of two or even all the three types of non-Newtonian features. Generally, it is, however, possible to identify the dominant non-Newtonian characteristic and to take this as the basis for the subsequent process calculation (Chhabra & Richardson, 1999). In this work, only the time-independent non-Newtonian fluids will be considered, but few explanations will be given for the time-dependent fluids and the visco-elastic fluids.

2.10.4 Time-independent non-Newtonian fluids

Time-independent non-Newtonian fluids are fluids of which the rate of shear at any point is determined only by the value of the shear stress at that point at that instant.

The constitutive relation of the time independent non-Newtonian fluid can be described as follows (Chhabra & Richardson, 1999):

$$\dot{\gamma}_{_{_{_{\mathrm{YX}}}}}=\mathrm{f}(\tau_{_{_{\mathrm{YX}}}})$$
 Equation 2.53

Or its inverse form,

$$au_{yx} = f_1(\dot{\gamma}_{yx})$$
 Equation 2.54

These fluids may be further subdivided into three types:

2.10.4.1 Pseudoplastic or shear thinning fluids

This type of time-independent non-Newtonian fluid is characterised by a shear rate which increases with decreasing of the apparent viscosity. This common type of fluid behaviour observed is pseudoplasticity or shear-thinning (Chhabra & Richardson, 1999).

2.10.4.2 Dilatant or shear thickening fluids

Dilatant fluids are similar to pseudoplastic fluids in that they exhibit no yield stress, but their shear rate increases with increasing apparent viscosity; thus these fluids are also called shear-thickening (Chhabra & Richardson, 1999). This phenomenon is due to the fact that at high shear rates, the material expands or dilates slightly so that there is no longer sufficient liquid to fill the increased void space and facilitate direct solid-solid contacts which result in increased friction and higher shear stress. This mechanism causes the apparent viscosity to rise rapidly with increasing shear rate.

2.10.4.3 Viscoplastic fluids

This type of fluid behaviour is characterised by the existence of a yield stress which must be exceeded before the fluid will flow or deform, but strictly speaking, it is virtually impossible to ascertain whether any real material has a true yield stress or not (Chhabra & Richardson, 1999). Nevertheless, the concept of yield stress has proved to be convenient in practice. Conversely, such a material will deform elastically (or flow en masse like a rigid body) when the externally applied stress is smaller than the yield stress (Chhabra & Richardson, 1999). It is very important to note that a viscoplastic material also displays an apparent viscosity, which decreases with increasing shear rate for yield pseudoplastic fluids only, and is constant for Bingham plastic fluids. The flow curve may be linear or not, but will not pass through the origin.

a) Bingham plastic fluids (BP)

This is a fluid with a linear flow curve with a yield stress (Chhabra & Richardson, 1999). It is also characterised by a constant plastic viscosity (the slope of the shear stress versus the shear rate curve) and a yield stress.

b) Yield pseudoplastic fluids (YPP)

A yield pseudoplastic fluid possesses a yield stress as well as a non-linear flow curve on linear coordinates (Chhabra & Richardson, 1999).

2.10.5 Time dependent non-Newtonian fluids

Practically speaking, apparent viscosity may depend not only on the shear rate, but also on the time for which the fluid has been subjected to shearing (Chhabra & Richardson, 1999). When certain materials are sheared at a constant rate following a long period of rest, their apparent viscosities gradually become less as the internal structure of the material is progressively broken down. This can be divided further in two different groups.

2.10.5.1 Thixothropic fluids

When a material is sheared at a constant rate and its apparent viscosity decreases with the time of shearing, this fluid s called thixothropic fluid (Chhabra & Richardson, 1999).

2.10.5.2 Rheopectic fluids

Also referred to as the negative thixotropy, the rheopectic fluids are related to fluids for which the apparent viscosity increases with time of shearing (Chhabra & Richardson, 1999).

2.10.5.3 Visco-elastic fluids

In the Newtonian fluid the shearing stress is proportional to the rate of shear. Many substances show both elastic and viscous effects under appropriate circumstances. The substance is said to be visco-elastic.

At the other extreme, when a perfect solid is deformed elastically, it regains its original form on removal of the stress. In the classical theory of elasticity, the stress in a sheared body is directly proportional to the strain. For tension, Hooke's law applies and the coefficient of proportionality is known as Young's modulus, G:

$$\tau_{yx} = -G\frac{dx}{dy} = G(\dot{\gamma}_{yx})$$
 Equation 2.55

Where dx is the shear displacement of two elements separated by a distance dy.

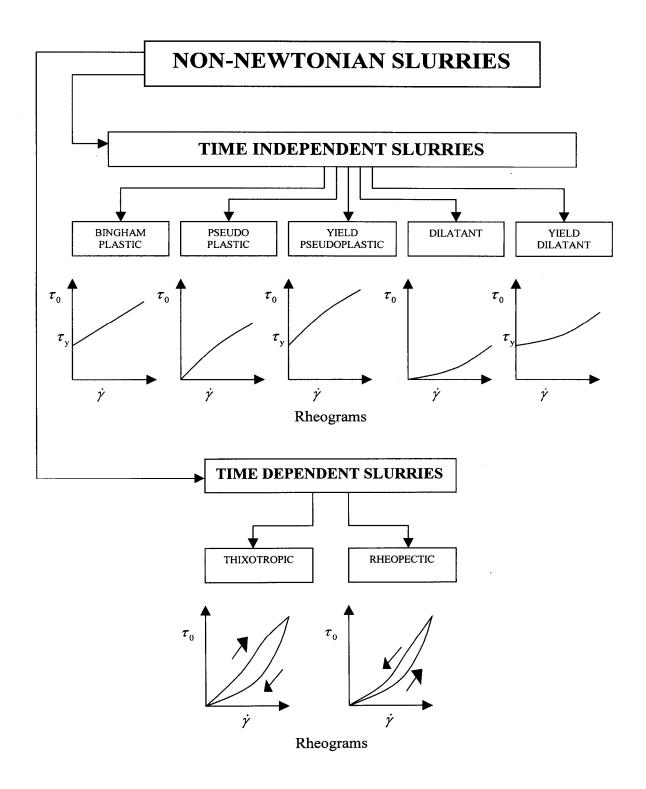


Figure 2.10: Non-Newtonian fluids flow curves (Paterson & Cooke, 1999)

2.10.6 Settling slurries

They are solutions or pseudo-homogeneous mixtures where particles in suspension settle very quickly, relative to their residence time in the pipeline (Heywood & Brown, 1991) or a mixture in which solid and liquid phases are separated and the liquid properties are generally considered to be unaltered by the presence of solids. Particles are supported by turbulent mixing and antiparticle collisions (Paterson & Cooke, 1999).

2.11 RHEOLOGY

Rheology (from the Greek "rheos": flow and "logos": knowledge) is the science of flow phenomena. Malkin (1994) defined rheology as a science dealing with materials having properties not described by models of Newton-Stokes and Hooke. It is a negative statement. The positive statement says that rheology studies materials having properties described by any relationship between force and deformation (Malkin, 1994). In this sense, the Newton-Stokes and Hooke laws limit cases formally lying on the border of rheology. Within the context of this work, rheology is defined as the viscous characteristic of a fluid or homogeneous solid-liquid mixture (Chhabra & Richardson, 1999).

The science of rheology as it is known today, owes its origin to Sir Isaac Newton who postulated the relationship between the shear stress and shear rate in a fluid as follows (Barr, 1931):-

"The resistance which arises from the lack of slipperiness originating in a fluid – other things being equal – is proportional to the velocity by which the parts of the fluid are being separated from each other."

2.11.1 Rheological properties and laws of non-Newtonian fluids

The viscosity defined by Newton's law of viscosity is the only one rheological parameter for Newtonian fluids. However, non-Newtonian fluids have two or three rheological parameters, defined by the following laws.

2.11.1.1 Power-law fluids

The relationship between shear stress and the velocity gradient, for certain non-Newtonian fluids can be expressed satisfactorily with the following power laws:

$$\tau = K \left(\frac{du}{dy}\right)^n$$
 Equation 2.56

From which

$$\mu = K \left(\frac{du}{dy}\right)^{n-1}$$
 Equation 2.57

Equation 2.56 is applicable to pseudoplastic fluids when n < 1, dilatant fluids when n > 1, and Newtonian fluids when n = 1. From Equation 2.56, the two rheological properties of pseudoplastic and dilatant fluids that can be represented by the equation are the coefficient K and the power n. The constant K is usually referred to as the consistency index or power-law coefficient, whereas the constant n is referred to as the flow-behaviour index, or power-law exponent. The constant μ in Equation 2.57 is the apparent viscosity, which reduces to the dynamic viscosity when the fluid is Newtonian (n = 1) (Liu, 2003).

2.11.1.2 Bingham fluids

For any Bingham plastic fluid (or Bingham fluids, for short), the following law holds:

$$\tau = \tau_y + \mu \frac{du}{dy}$$
 Equation 2.58

Where τ_v is the yield stress; and μ is the coefficient of rigidity, or simply the rigidity of the fluid.

2.11.1.3 Yield fluids

For yield pseudoplastic fluids and yield dilatant fluids, the following law can be used:

$$\tau = \tau_{y} + K \left(\frac{du}{dy}\right)^{n}$$
 Equation 2.59

This is the combination of Equation 2.56 and 2.58. The exponent n in Equation (2.57) is bigger than one for yield dilatant fluids, and less than one for yield pseudoplastic fluids. When n=1, Equation (2.59) reduces to Equation (2.58), which is for Bingham fluids.

2.11.1.4 Other non-Newtonian fluids

There are many other laws proposed in the literature for various types of non-Newtonian fluids. They will not be discussed here, but they are represented in the Table 2.2 below:

Table 2.2: Rheological models (Chhabra & Richardson, 1985)

Fluid Model	Constitutive equation	Number of	Parameters
		Parameter	
Carreau	$\frac{\mu - \mu_o}{\mu_o \mu_\infty} = \left[1 + \left(\lambda \left(-\frac{du}{dy}\right)\right)^2\right]^{\frac{n-1}{2}}$	4	μ_{∞} , μ_{o} , λ and n
Casson	$\sqrt{\tau} = \sqrt{\tau_y} + \sqrt{\mu_c \left(-\frac{du}{dy}\right)}$	2	τ_y and μ_c
Cross	$\left \frac{\mu - \mu_{o}}{\mu_{o} \mu_{\infty}} = \left[1 + \left(\lambda \left(-\frac{du}{dy} \right) \right) \right]^{\frac{n-1}{2}}$	4	μ_{∞} , μ_{o} , λ and n
e-function	$\mu = \mu_{o} \exp \left[m \left(-\frac{du}{dy} \right) \right]$	2	μ_o and m
Ellis	$\mu = \frac{\mu_o}{1 + \left(\frac{\tau}{\tau_{\frac{1}{2}}}\right)^{\alpha - 1}}$	3	$\mu_{o},$ α and $\tau_{1/2}$

2.11.2 Choice of rheological model

Many rheological models have been presented and can be used.

The rheological characterisation of non-Newtonian fluids is not easy (Chhabra & Richardson, 1999), and can be done using a rheometer or a tube viscometer. In the context of this investigation, tube viscometer was used because the experimental test loop could also be used as an in-line tube viscometer having a range of five different pipe diameters.

2.11.2.1 Rotational viscometry

The instrument used to measure viscous properties of non-Newtonian fluids in this case is known as a rheometer. The rheometer usually consists of a concentric bob and cup, one of which is rotated to produce shear in the test fluid located in the gap between the bob and the cup. The shear stress is determined by measuring the applied torque on one of the elements. The rheometer is a very sophisticated instrument and capable of measuring the full range of rheological phenomena. The rheometers can be found using one of the many geometries, among others: concentric cylinders, cone and plate, parallel disks. And the main measurements

are angular velocity and applied torque. The software connected to these instruments converts

these signals into shear rate and shear stress (Chhabra & Richardson, 1999).

2.11.2.2 Tube viscometer

In a tube viscometer the test fluid flows at a controlled, measured rate through a tube of known diameter and the pressure drop over a known length of the tube is measured.

Data from tube viscometer yields a series of coordinates of pseudo shear rate and wall shear stresses (8V/D, τ_0). These data must be processed in order to give the required rheology.

Assuming a yield pseudoplastic rheology

$$\frac{32Q}{\pi D^{3}} = \frac{8V}{D} = \frac{4n}{K^{\frac{1}{n}}\tau_{o}^{3}} \left(\tau_{o} - \tau_{y}\right)^{\frac{1+n}{n}} \left[\frac{\left(\tau_{o} - \tau_{y}\right)^{2}}{1+3n} + \frac{2\tau_{y}\left(\tau_{o} - \tau_{y}\right)}{1+2n} + \frac{\tau_{y}^{2}}{1+n} \right]$$
 Equation 2.14

The following technique was used (Slatter, 1994):

A pseudo shear diagram was plotted using the pseudo shear rate (8V/D) as abscissa and shear stress (D Δ p/4L) as ordinate. Data points in laminar flow only from all tubes are used. The best curve is fitted to the data. A realistic value of τ_y is then adjusted until the error function is minimised. The error function E is the root square difference between observed data and calculated as:

$$E = \sqrt{\frac{\displaystyle\sum_{i=l}^{N} \left[\left(\frac{8V}{D} \right)_{i_{obs}} - \left(\frac{8V}{D} \right)_{i_{calc}} \right]^2}{N-1}}$$
 Equation 2.60

And K value for minimum error K_{min} is given by:

$$K_{\min} = \frac{1}{\left[\frac{2\sum_{i=1}^{N} \left(\frac{8V}{D}\right)_{i}/8}{n\sum_{i=1}^{N} \left(\tau_{o} - \tau_{y}\right)^{\frac{1+n}{n}} \left[\frac{\left(\tau_{o} - \tau_{y}\right)^{2}}{1+3n} + \frac{2\tau_{y}\left(\tau_{o} - \tau_{y}\right)}{1+2n} + \frac{\tau_{y}^{2}}{1+n}\right]}\right]}$$
Equation 2.61

- The wall slip effect occurs when the layers of particles near the wall are more diluted than the bulk flow (Heywood & Brown, 1991). As a result, the viscosity near the wall will be reduced and apparent slip will occur. Chhabra & Richardson (1999) warn that serious errors could occur when the wall slip is not accounted for. To account for the wall slip, more than one diameter tube should be tested. The laminar flow data should coincide for all pipe diameters if there is no wall slip. If they do not coincide, the slip velocity must be calculated for each tube and deducted from the measured mean velocity (Heywood & Brown, 1991).
- ➤ Entrance and exit losses: it is important that the entrance and exit losses in tubes that are used are minimised. This is possible by making sure that the flow is fully developed before differential pressure readings are taken, usually at least 50 pipe diameter is allowed.

2.12 PREVIOUS WORK ON LOSSES IN FITTINGS

Substantial work has been done on the prediction of minor losses in pipe systems. In this section a brief review of work relevant to this investigation is presented.

The work of Edwards et al., (1985), Banerjee et al., (1994) and Turian et al., (1978) are all based on gate and globe valves, not on diaphragm valves. They are relevant to this work because of the methodology and presentation of results.

Kittredge and Rowley (1957) had quite correctly noted the existence of a critical Reynolds number below 1000 for valves and fittings. For valves, fittings, and bends in turbulent flow, the friction coefficient's relative independence of Reynolds number is expected and attributable to the turbulence normal to the pipe flow. They concluded that the increasing friction coefficient with decreasing Reynolds number in laminar flow is characterised by the disappearance of induced turbulence and reported the losses for bends at low Reynolds number which are less than those caused by an equal length of straight pipe.

Miller (1990) classified the valve loss coefficients in three classes:

Class 1 or definitive loss coefficients: Loss coefficients in this class are based on experimental data usually from two or more sources or from research programmes, which have been crosschecked against other work. The loss coefficients are considered definitive.

In practice, the loss coefficients in class 1 are usually not directly applicable, because of the severe restraints imposed on inlet and outlet conditions and geometrical accuracy.

Class 2 or adequate loss coefficient for design purposes: Experimentally derived loss coefficients from isolated research programmes where no detailed crosschecking is possible against other sources.

Estimated loss coefficients from two or more research programmes of which the results do not agree with what could be expected to be the experimental accuracy.

Loss coefficients from Class 1 converted to apply outside the strict limitations imposed in class 1 coefficients and for which experimental information is available to predict the effects of departing from class 1 conditions.

Class 3 or suggested loss coefficient: Experimentally derived values from less reliable sources. Loss coefficients from class 1 and 2 converted to apply outside their range of application and about which there is little or no information to predict the effects of departing from the conditions under which they were derived.

Loss coefficients in diaphragm valves are classified as class 3 and are given in turbulent flow. These loss coefficients can be obtained from the Figure 2.11 for both weir and straight-through diaphragm valves.

In the fully open position in turbulent flow, the loss coefficient is approximately 0.8 for the straight-through diaphragm valve.

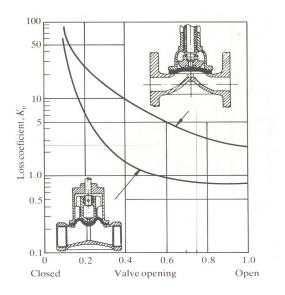


Figure 2.11: Loss coefficient vs. valve opening (Miller, 1990)

Miller (1990) represented the general shape of loss coefficient Reynolds number curves in the laminar to turbulent transition region as shown in Figure 2.12. It is evident that the laminar to turbulent transition region is the most complex flow region of internal flow.

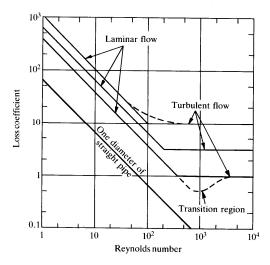


Figure 2.12: Trends in loss coefficients in the laminar to turbulent transition region

The Technical Paper published by Crane Co (1981) since 1957, reflected the latest design information available for valves and fittings, especially for gate, globe, angle, angle lift check and stop check valves and those data were obtained by experimental investigation.

Hooper (1981), using the two-K method, defined a dimensionless factor K as the excess head loss in a pipe fitting, expressed in velocity heads. K does not depend on the roughness of the fitting (or attached pipe) or the size of the system, but is a function of the Reynolds number and the exact geometry of the fitting and is given by:

$$K = \frac{K_1}{Re_{MR}} + K_{\infty} \left(1 + \frac{1}{D}\right)$$
 Equation 2.62

where: K_1 is K for the fitting at $Re_{MR} = 1$, K_{∞} is K for a large fitting at $Re_{MR} = \infty$ and D the pipe internal diameter in inches. He found $K_1 = 1000$ and $K_{\infty} = 2$ for a dam or weir type diaphragm valve. Doing the analogy with the definition in this study, it can be said that $C_v = 1000$ and $k_v = 2$.

Loss coefficient Valve type Loss coefficient, k_v constant, C_v 1500 4 Globe, standard 2 1000 Globe, angle or Y-type 2 Diaphragm, dam type 1000 800 0.25 Butterfly

Table 2.3: Loss coefficients of different types of valves, published by Hooper (1981)

Steffe et al., (1984) determined the friction loss coefficient for apple sauce flowing under laminar condition through a tee, a plug valve and an elbow. The experimental investigation indicated that friction loss coefficients increase significantly for a decreasing value of generalised Reynolds number in laminar flow regime. The recommendations for estimating the pressure loss which are found in the laminar flow of pseudoplastics through valves and fittings were given.

Edwards et al., (1985) presented head loss charts for a range of Newtonian and non-Newtonian fluids for gate and globe valves of 25 and 50 mm useful for design purposes. They have tested a range of Newtonian and non-Newtonian fluids flowing through gate and globe valves of 25 and 50 mm, fully opened. The data were presented as a relationship between the loss coefficient and a generalised Reynolds number. It has been observed that in the laminar flow region, the loss coefficient in inversely proportional to the Reynolds number and can be obtained as given in Equation 2.39:

At higher Reynolds numbers a rapid transition is observed to a region in which the loss coefficient becomes constant, at about Re = 300. In the case of gate valves, for various test fluids and for the two sizes used, the data fall together, and the analysis of experimental data gave the correlation:

$$k_v = \frac{273}{Re}$$
 Equation 2.63

For globe valves the data for the two dimensions do not fall together. The transition from laminar flow is very rapid and occurs at low Reynolds number of about 10. For the particular design of globe valves tested, in the fully open transition, the following correlations were obtained:

For 25 mm valve:

$$Re < 12 k_v = \frac{1460}{Re} Equation 2.64$$

Re > 12
$$k_v = 122$$
 Equation 2.65

For a 50 mm valve:

Re < 15
$$k_v = \frac{384}{Re}$$
 Equation 2.66
$$k_v = 25.4$$
 Equation 2.67

Banerjee et al., (1994) presented experimental data on the pressure drop across 12.5 mm globe and gate valves in the horizontal plane for pseudoplastic fluids in laminar flow. They used generalised correlations in terms of various physical and dynamic variables for the prediction of the frictional pressure drop for each valve.

The effect of pressure drop across the valve can be obtained by plotting static pressure against length for a designated fluid

The effect of the valve opening on pressure drop across the valve can be obtained by plotting pressure drop against volumetric flow rate at different opening position: The pressure drop increases with an increase in volumetric flow rate for a constant opening. As the opening became smaller, the curve became steeper.

The effect of the non-Newtonian characteristic on pressure drop across the valve was obtained by plotting pressure drop against the volumetric flow rate for different concentration of slurries. At a particular opening of the valve, the pressure drop decreases as the flow behaviour index increases.

The dimensional analysis of the experimental data, suggested the following relationship:

$$\frac{\Delta p}{\rho V^2} = f(Re, \alpha)$$
 Equation 2.68

α is the valve opening coefficient

The functional relationships developed by using the above equation through multivariable linear regression analysis, were as follows:

Correlation for globe valve:

$$\frac{\Delta p}{\rho V^2} = 8.266 Re^{-0.061 \pm 0.013} \alpha^{-0.797 \pm 0.030}$$
 Equation 2.69

After plotting this, the values of $\frac{\Delta p}{\rho V^2}$ predicted using the equation above and the experimental values, the correlation coefficient and variance of estimate are 0.9496 and 1.326x10⁻². Correlation for gate valve:

$$\frac{\Delta p}{\rho V^2} = 1.905 Re^{-0.197 \pm 0.046} \alpha^{-1.987 \pm 0.091}$$
 Equation 2.70

After plotting this, the values of $\frac{\Delta p}{\rho V^2}$ predicted using the equation above and the experimental values, the correlation coefficient and variance of estimate are 0.9344 and 1.106 x 10⁻².

Mc Neil & Morris (1995) generated the energy loss coefficient under laminar conditions for both Newtonian and non-Newtonian fluids through nozzles and derived an approximation for flow in laminar, transition and turbulent flow in a range of fittings.

Turian et al., (1997) determined losses for the flow of concentrated slurries of laterite and gypsum solutions through 25 and 50 mm globe and gate valves. The loss coefficients were found to be inversely proportional to the generalised Reynolds number for laminar flow and to approach constant asymptotic values for turbulent flow, through gate and globe valves.

The following correlations were obtained:

turbulent flow, $k_v = 0.168$.

For the 25 mm gate valve the transition from laminar to turbulent flow was observed between Re = 100 and Re = 1000 and $k_{_{V}} = \frac{320}{Re}$ for the laminar region and after the transition, in turbulent flow, $k_{_{V}} = 0.797$.

For the 50 mm gate valve the transition from laminar to turbulent flow was observed between Re = 1000 and Re = 10000 and $k_v = \frac{320}{Re}$ for the laminar region and after the transition, in

For the 25 mm globe valve, the transition from laminar to turbulent flow was observed earlier for Re < 100 and the correlation obtained was $k_v = 10.039$ for turbulent flow.

For the 50 mm globe valve also the transition was observed earlier for Re < 100 and the correlation obtained was $k_v = 6.719$.

Pienaar et al., (2004) reported the discrepancies found in the literature and provided additional loss coefficient data for three different sizes of globe valve and a rubber-lined diaphragm valve.

Kazadi (2005) presented loss coefficient data for Natco diaphragm valves at fully open position and without any comparison with different manufacturers. He also confirmed the theory that in fittings in general, and valves in particular, the transition from laminar to turbulent occurs earlier than in straight pipes, and showed that the Slatter Reynolds number is a useful tool that can also be used for design purposes.

Fester et al., (2007) tested a 40 mm nominal bore diameter diaphragm valve over a Reynolds number range from 1 to 50000 using various Newtonian and non-Newtonian fluids and obtained $C_v = 1000$ and $k_v = 2$.

Table 2.4 shows the review of frictional pressure losses for flow of non-Newtonian fluids through

Table 2.4: Available valve loss coefficient data in the open literature (Pienaar et al., 2004)

Туре	Size [mm]	Reference	C _v
Gate	25	Turian et al., 1998	
	50	Turian et al., 1998	320
	25	Edwards et al., 1985	273
	50	Edwards et al., 1985	273
Globe	25	Turian et al., 1998	
	50	Turian et al., 1998	
	25	Edwards et al., 1985	1460
	50	Edwards et al., 1985	384
3-way plug	-	Steffe et al., 1984	
Check valves			
Ball			
Horizontal lift	12.5	Kittredge & Rowley,	
Bronze disc swing		1957	
Composition disc			
swing			
Diaphragm	-	Hooper, 1981	1000

various valve sizes. Edwards et al., (1985) found the same laminar loss coefficient for various valve sizes and almost similar to that found by Turian et al., (1998) for the 50 mm gate valve. For globe valves, however, Edwards et al., (1985) found different laminar loss coefficient for various valve sizes. And finally, Hooper (1981) found a laminar loss coefficient through diaphragm valves of 1000 for unknown pipe sizes.

Table 2.5: Loss coefficients for turbulent flow through diaphragm valves (Perry & Chilton, 1997)

Operating mode	Loss coefficient, k _v		
Open	2.3		
³ / ₄ Open	2.6		
½ Open	4.3		
1/4 Open	21		

The Engineering Science Data Unit (ESDU) estimates the loss coefficient of various types of diaphragm valves, at fully open position, using the Figure 2.13

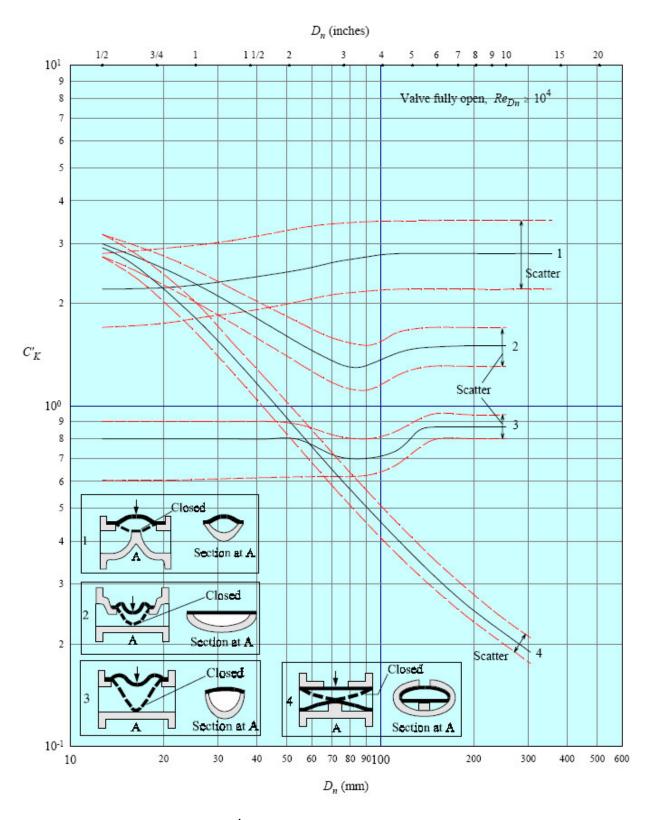


Figure 2.13: $C_{\boldsymbol{k}}'$ for diaphragm valves (ESDU, 2004)

For a partially open valve, which is at $\frac{3}{4}$, $\frac{1}{2}$ and $\frac{1}{4}$ open position, the loss coefficient of the diaphragm valve, as estimated by the ESDU, is determined by the following equation:

$$C_k = C'_k \times \alpha_1 \times \alpha_2$$
 Equation 2.71

where α_1 and α_2 are given by the graphs in Figure 2.14 and Figure 2.15, which incorporates the effect of partial opening and change in Reynolds number (ESDU, 2004).

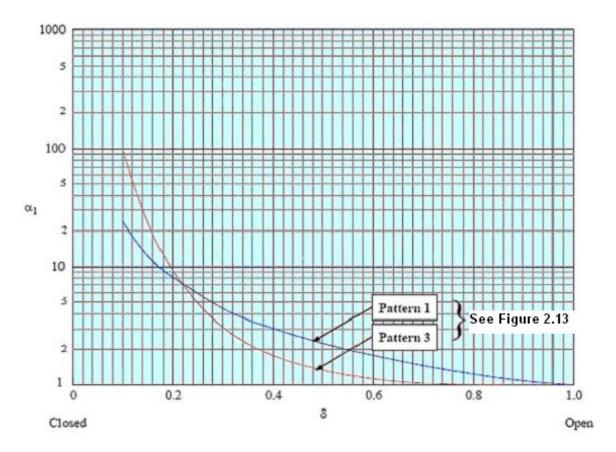


Figure 2.14: Approximate effect of partial opening, diaphragm valves (ESDU, 2004)

Figure 2.14 illustrates the approximate effect of partial opening for weir-type and straight-through diaphragm valves, where pattern 1 is related to the weir-type diaphragm valves and pattern 3 is related to the straight-through diaphragm valves.

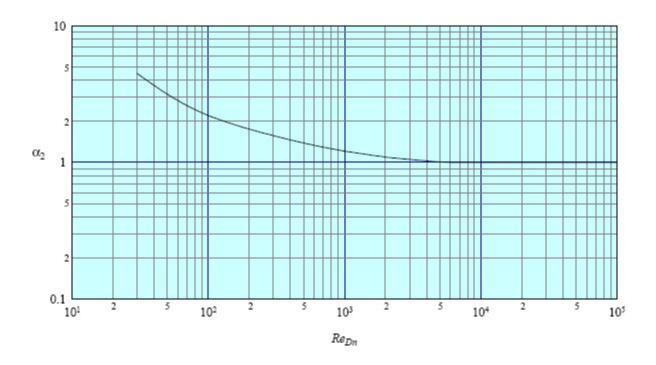


Figure 2.15: Approximate effect of Reynolds number, diaphragm valve (ESDU, 2004)

Kazadi (2005) found the loss coefficient of Natco diaphragm valves in the fully open position to have the following loss coefficients (Table 2.6):

Table 2.6: Loss coefficients of different sizes of Natco diaphragm valves (Kazadi, 2005)

Valve bore size (mm)	Loss coefficient constant, C _v	Loss coefficient, k _v
40	1200	7.96
50	946	2.53
65	555	1.21
80	515	2.54
100	69	1.30

In 2007, Fester et al., have also derived an equation (Equation 5.2) that can predict the loss coefficient for both laminar and turbulent flow only for the fully opening position for straight-through diaphragm valves.

$$k_v = \frac{C_v}{Re_s} + \lambda_\Omega$$
 Equation 2.72

Table 2.7: Comparison of loss coefficient data for Natco and Saunders valves (Fester et al., 2007)

Valve Position	Saunde	rs valve	Natco valve		% Difference	
Opening (%)	(65 mr	m bore	(65 mm bore			
	diam	eter)	diameter)			
	C _{valve}	k_{v}	C _{valve}	k_v	C _{valve}	k _v
25	3887	32.1	3511	62.9	11	49
50	1086	5.9	2133	15.5	49	62
75	587	2.2	522	2.8	12	24
100	205	0.6	766	1.3	73	52

Finally in 2008 Mbiya developed a two-constant model to predict the pressure loss through the straight-through diaphragm valves from Natco valves which can be summarised by the following equations:

$$k_v = \frac{1006}{Re_o}$$
 Equation 2.73

$$k_{v} = \frac{38.6}{D^{1.24} \sqrt{Re_{s} \theta^{2}}} + \frac{\lambda_{\Omega}}{\theta^{2}}$$
 Equation 2.74

While testing the Natco diaphragm valves, Mbiya (2008) compared his results to the ESDU model and concluded that the ESDU model worked well with the 40 mm valve in the fully opened position, and in the closure position with other valve sizes. This is why Equation 2.74 was derived by Mbiya (2008).

2.13 CONCLUSION

Perry et al. (1997) and Miller (1990) provide loss coefficients for diaphragm valves at various openings, but discrepancies exist between the two sets. There is a need to determine loss coefficient data for non-Newtonian fluids in diaphragm valves to ensure energy efficient designs (Pienaar et al., 2001; 2006). In 2004 ESDU published graphs to predict the loss coefficient in straight-through and weir diaphragm valves. Mbiya (2008), while testing the Natco diaphragm valves, compared his results to the ESDU model and concluded that the ESDU model worked well with the 40 mm valve in the fully opened position, and in the closure position with other valve sizes. In 2008 Mbiya established the two-constant model to predict losses in diaphragm valves from one manufacturer. No study has been done to ascertain if the same loss coefficient can be applied for diaphragm valves produced by different manufacturers.

2.14 RESEARCH TOPICS IDENTIFIED

The research topics identified from the literature is the determination of loss coefficient data through diaphragm valves from a different manufacturer, to establish if existing correlations can be used to estimate the loss coefficient value.

This work will be based on Newtonian and non-Newtonian fluids or slurries flowing through Saunders diaphragm valves in the turbulent, transitional and laminar regimes. Newtonian fluids will be used to calibrate the valve test rig. Only time-independent fluid behaviour will be investigated throughout this thesis. It also important to define experimental procedures in the determination of loss coefficients in valves, because the value of the loss coefficient depends on the experimental procedure used and definitions (Chhabra & Slatter, 2001).

CHAPTER 3 EXPERIMENTAL WORK

3.1 INTRODUCTION

The details of the valve test rig and how it was used to gather loss coefficient data are described in this chapter. The test rig was already built and commissioned by Kazadi (2005); only the previous set of fittings were removed and replaced in order to provide another set of loss coefficient data in both turbulent and laminar flow for Saunders diaphragm valves.

Non-Newtonian slurries were tested in pipes of outside diameter (OD) ranging from 50 mm to 110 mm. An important aspect of the experiments is that the same slurry was used for each test set. A test set is a set of tests using different pipe diameters, but the same slurry.

3.2 DESCRIPTION OF VALVE TEST RIG

The experimental rig consists of six lines of PVC pipes with diameters ranging from 50 mm to 110 mm OD. Each line is 25 m long and contains a test diaphragm valve. This length was chosen to allow a fully developed flow before and after each test valve.

Test fluids were mixed in a 1.7 m³ mixing tank. The tank was rubber-lined to avoid chemical reactions of fluid with metal. The fluids were circulated in a continuous loop, as follows: From the storage tank, fluids were pumped out with a positive displacement pump before passing through a heat exchanger. The heat exchanger was followed by two valves coupled in parallel that directed the flow either to the high part of the rig (which contained smaller pipe 42 mm and 50 mm ID) or the lower part (which contained bigger pipes, 2 x 63 mm, 80 mm and 100 mm ID). Each of the two routes was fitted with a flow meter. After the flow meters the fluids could enter any of the 6 test sections. An on/off valve was situated at the beginning of each line for isolation, so that only one line was tested at a time. After a fluid had passed a test section it was collected via a common pipe and directed to the mixing tank. At the outlet it was possible to send the fluid through a weigh tank used for calibration purposes.

A schematic representation of the valve test rig is illustrated in Figure 3.1

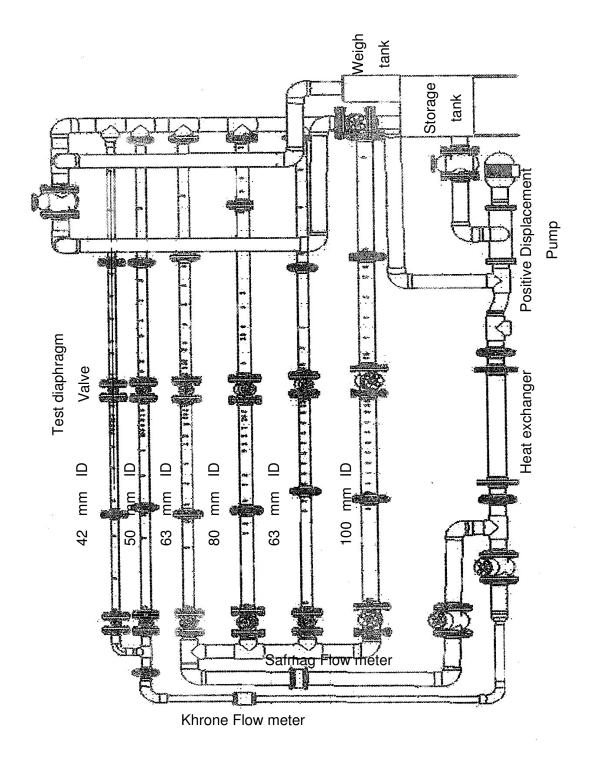


Figure 3.1: Schematic representation of the valve test rig

3.3 INSTRUMENTATION

This section presents all the instruments connected to the rig or used in order to collect experimental data.

3.3.1 Pressure transducers

Point pressure transducers and differential pressure transducers were used.

The Point Pressure Transducer (PPT) was used to measure the static pressure at a given point in the line test.

The pressure gradients were measured with a set of point pressure transducers selected from 14 point pressure transducers of the type PHPWO1V1-AKAYY-OY [GP] version 25.0 Fuji Electric. Nine of these instruments had a maximum range of 130 kPa with a precision of 0.25 %, while five others had a maximum range of 500 kPa. The output of these instruments was a DC current ranging from 4 to 20 mA, proportional to the pressure applied. The range and span of these instruments were adjusted by a handheld communicator (HHC).

The Differential Pressure Transducer (DP Cell) was used to measure the difference of static pressure between two points.

Two DP cells of the type IKKW35VI-AKCYYAA [DP], version 25.0 Fuji Electric, were used to measure differential pressures. The maximum ranges were 6 kPa and 130 kPa respectively. They had the same characteristics as the PTT, i.e. a precision of 0.25 %, and could be adjusted with a handheld communicator.

3.3.2 The handheld communicator (HHC)

A Fuji electric handheld communicator, type FXY 10AY A3, was used. This portable instrument was connected to the PPT or DP cell to change parameters such as: data display, range, span, time constant, units, calibration, etc. It was mainly used to change the ranges and to calibrate the transducers.

3.3.3 Data acquisition unit

A Hewlett Packard (HP) data acquisition unit (DAU) of the type HP 34970A was connected to a computer. This instrument received, through various channels, analogue signals from different parts of the rig (DP cell, PTT, temperature probes, load cell) and converted them to digital signals compatible with a PC.

3.3.4 Computer

All processes were controlled by a central PC, a Celeron 300. This was coupled with the DAU as an interface and was used to capture and process the experimental data automatically. Test programs were written in Visual Basic 6. The computation of the data was made using preprogrammed Microsoft Excel spreadsheets.

3.3.5 Flow meters

Two magnetic flow meters were used during test work and were mounted vertically

- ➤ A Krohne IFC 010D of 50 mm internal diameter
- ➤ A Safmag 100A2NESSR0032 of 110 mm internal diameter

3.3.6 Pumps

A progressive cavity positive displacement pump, driven by a 5.5 kW electric motor, was used to circulate the fluid in the test loop. It had a maximum capacity of 11 l/s (39.6 m³/h). A connection to another rig was made in order to have a higher flow rate, so that sufficient pressure drop could be obtained in bigger pipes when pumping water. This rig had two centrifugal pumps, of 80 l/s and 140 l/s (288 m³/h and 504 m³/h) maximum flow rate, and they were driven by a 45 kW and a 90 kW electric motor respectively.

3.3.7 Weigh tank and load cell

The weigh tank, similar to the bucket and stopwatch method, was used to determine the mass slurry distribution between the two vessels. The operation of the weigh tank is quite simple. The output voltage of the load cell varies linearly with the applied force, and is proportional to the input voltage. The resistors are connected to a power supply which is connected to the DAU. The input voltage divided by the output voltage gives a non-dimensional load cell reading which is independent of the input voltage. An accurate calibration of the load cell is essential and the procedure is given in section 3.4.1.1

3.3.8 Heat exchanger

A double pipe heat exchanger was installed at the inlet of the rig to keep the test fluids at a constant temperature.

3.3.9 Temperature probes

Two temperature probes were installed to measure the temperature before and after a fluid had entered a test section. It is located at the exit point of the heat exchanger and before the diversion point between the weigh tank and the mixing tank. This information was used to regulate the temperature of the test fluid, using the heat exchanger, and by either reducing or increasing the flow rate of water.

3.3.10 Mixer

A mixer, driven by a 3 kW electrical motor, was fitted to the storage tank to mix the test fluids at the preparation stage. At times, the mixer was run during a test to keep the fluid particles suspended.

3.3.11 Valves board

A switchboard made of small ball valves, as shown in Figure 3.2, was used to select a particular test section and direct their pressure readings to specific pressure transducers, so that different test modes could be possible.

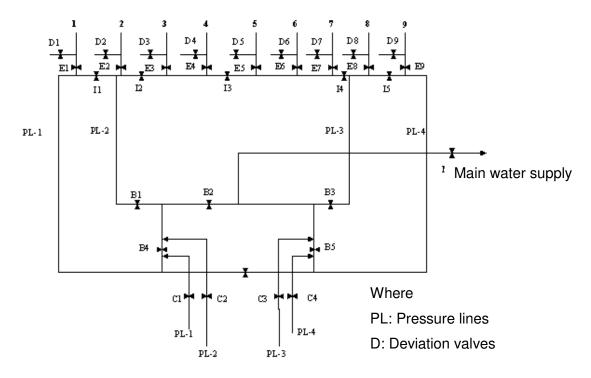


Figure 3.2: Pressure lines board of the valve test rig

Figure 3.2 gives a schematic presentation the connection of pressure lines on the valves board. These pressure lines were made of nylon tubes of 3 mm internal diameter and filled with water. Deviation valves (D1, D2, ..., D9) were on-off valves giving access to pressure transducers. Pressures lines [(PL1, ..., PL4) and (1,2, ...,9)] were connected to the test sections' pressure tappings via pods filled with water. The purpose of the pods was to collect any solid particles that might come from the test fluid, preventing it from entering the pressure lines. Each pod had a valve on top and at the bottom. The top valve was for flushing away any air bubbles and the bottom valve was used for flushing away any solids particles.

3.4 EXPERIMENTAL PROCEDURES

This section describes the procedure used to collect the experimental data. It consists of the calibration of transducers, load cell and flow meters, measuring the pipe internal diameter, setting the valve positions, measuring the density, running tests to measure the viscous properties of fluids and running tests to measure valve loss coefficients.

3.4.1 Calibration procedures

The aim of the calibration was twofold: firstly, to ensure that the measuring instrument readings were valid (normally this is done by double checking the measurement with other devices), and secondly, to ensure that the readings appearing on the PC via the DAU were as close as possible to actual readings.

3.4.1.1 Load cell

To calibrate the weigh tank, it should be empty. It must be ensured that nothing disturbs the tank. The calibration procedure was as follows:

- Switch on the computer and load the calibration program.
- > Select channel 118 on the DAU, assigned to capture the voltage induced on the load cell.
- Divert the water flow into the weigh tank and fill it to a certain level.
- > Re-direct the water to the mixing tank.
- Record the voltage indicated on the DAU and use the bucket to collect all water from the weigh tank, and weigh it on the portable scale.
- Repeat the exercise for 4 to 5 different water levels and record both the voltage and the weight.
- Plot the weight versus the voltage and determine the slope and the intercept of the linear relationship.

The linear relationship of the weight versus the voltage for load cell calibration is given in Figure 3.3

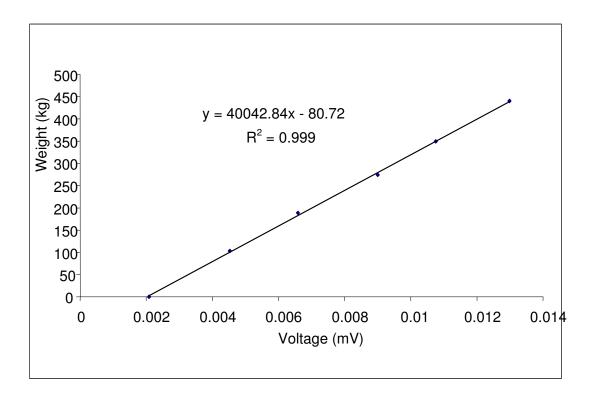


Figure 3.3: Load cell calibration line

3.4.1.2 Flow meter

The calibration procedure was a follows:

- Open the computer programme and select channel 113 on the DAU for the Khrone flow meter.
- > Choose the time interval at which the weight of the tank should be recorded by the computer programme.
- ➤ Pump the water through the rig and close valve VR07 and the VR16 to divert the flow through the Khrone flow meter and the weigh tank.
- > Close the valve at the bottom of the weigh tank to accumulate water in the tank.
- > Start the computer programme. Stop it when the tank is almost full.
- Record the voltage reading on the DAU.
- > Empty the weigh tank by opening the valve at the bottom of the tank.
- Vary the speed of the pump to change the flow rate of water though the rig.

- Repeat step 4 to 7 to record another set of data.
- Repeat the procedure to acquire at least 5 sets of data at differing flow rates.
- Follow the same procedure to calibrate the Safmag flow meter. Water flow was diverted through the Safmag flow meter by first opening valve VR07 and closing valve VR06.

The mass flow rate through the flow meter was determined as the ratio of the recorded mass of the weigh tank to the time it took to fill it. It was converted to the volumetric flow rate by dividing the ratio with the density of water at its recorded temperature.

The linear relationship of the flow rate versus the voltage for Khrone flow meter calibration is given in Figure 3.4.

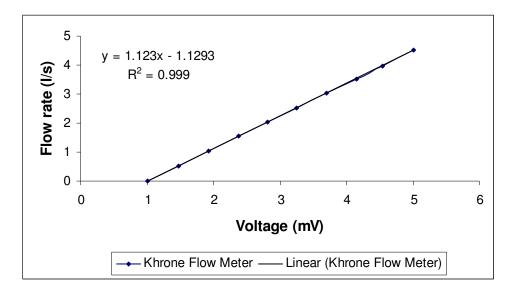


Figure 3.4: Khrone flow meter calibration constants

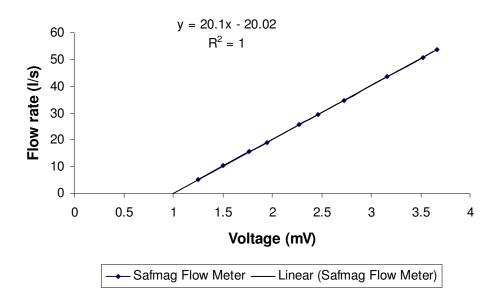


Figure 3.5: Safmag flow meter calibration constants

3.4.1.3 Transducer

The point pressure and differential pressure transducers were calibrated using equipment called the Handheld Communicator. Using water, a known pressure was applied directly to the transducers.

The calibration procedure was as follows:

- Open the calibration computer program and switch on the DAU to channel 101.
- Open the transducer's cap and set it to zero.
- > Open the pipe valves leading to the transducers and expose them to the atmosphere, to release any pressure induced by the system.
- Connect the Handheld Communicator to the transducers and switch it on.
- > Set the Handheld Communicator to the desired pressure range, either 0-40 kPa or 0-130 kPa, and set it on data recording mode.
- ➤ Read the pressure recorded by the Handheld Communicator and the voltage recorded by the DAU. This was considered as the zero mark.
- Apply pressure on the transducers and record both the pressure and the voltage reading on the Handheld Communicator and the DAU, respectively.

- ➤ Continue to increase the pressure on the transducers, recording the pressure and voltage readings to acquire at least 6 different readings.
- Plot the pressure readings against the voltage reading to determine the linear relationship between them. The slope and the intercept of this linear relationship were used to relate the pressure applied by the test fluid in the rig to the voltage recorded by the DAU.

The linear relationship of the pressure versus the voltage for point pressure transducers calibration is given in Figure 3.6:

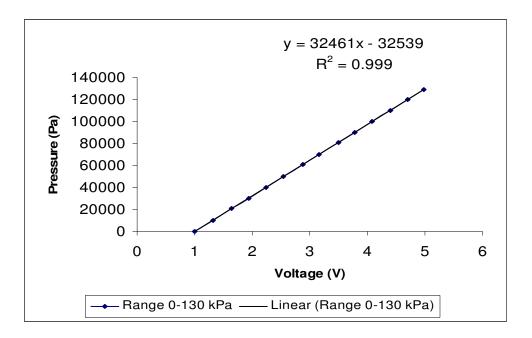


Figure 3.6: Calibration curve of the Point Pressure Transducer

The calibration of the DP cell was conducted in a similar manner to the procedure used to calibrate the point pressure transducers. The only difference was the channel used on the DAU to record the voltage produced by the pressure in the system. Channel 115 and 116 of the DAU were used to calibrate the DC cells for a pressure drop range of 6 kPa and 130 kPa respectively. The linear relationship of the pressure versus the voltage for the 130 kPa differential pressure transducers calibration is given in Figure 3.8

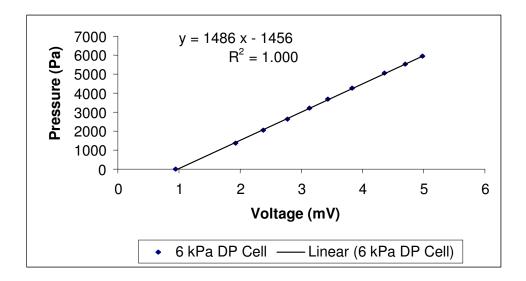


Figure 3.7: The calibration curve of the 6 kPa DP cell

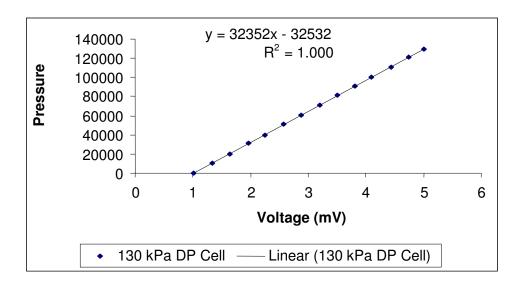


Figure 3.8: Calibration curve of the 130 kPa DP cell

3.4.2 Fluid relative density

The slurry density (p) and the relative density were determined carefully for each fluid tested, by performing the followings steps:

- ➤ Three clean, dry 250 ml volumetric flasks were weighed (M₁).
- ➤ A slurry sample was taken from a tapping in the pipe wall of any of the 5 pipes and was weighed (M₂).
- The volumetric flasks were filled to the 250 ml level with clear water and weighed again (M₃).
- ➤ The volumetric flasks were emptied, filled with clear water and weighed again (M₄).
- \triangleright The relative density S_m defined as $S_m = \rho / \rho_w$

$$RD = \frac{Mass \text{ of fluid}}{Mass \text{ of equal volume of water}} = \frac{M_2 - M_1}{(M_4 - M_1) - (M_3 - M_2)}$$
 Equation 3.1

3.4.3 Valve test procedures

In general, the operation of the valve test rig was as follows:

Switch on the computer and open the desired programme of test operation, i.e. the HGL manual mode, automatic mode, DP cell mode or the straight pipe test.

In case of testing a particular slurry, switch on the mixer to mix the slurry evenly.

- > Open fully the by-pass valve positioned immediately after the pump, to ensure that there is no build-up of pressure in the rig if the wrong valves or no valves are open.
- > Switch on the pump and set it at the desired speed to achieve a certain flow rate.
- > Open all the diaphragm valves in the system to circulate the test fluid left in the rig.
- Close the bypass valve and let the rig run for an hour to thoroughly mix the test fluid.
- ➤ To conduct a test on the 42 mm and 50 mm ID pipes, ensure that valve VR08 is open and close valve VR07. Then choose either the 42 mm ID pipe or the 50 mm ID pipe by closing either VR01 or VR02.
- > To conduct a test on the 63 mm ID, 80 mm ID or the 100 mm ID pipes, open valve VR07 and close VR08.

- ➤ Select the desired pipe among the four pipes fed through VR07 by opening or closing the appropriate valves among VR03, VR04, VR05 and VR06.
- > Choose the desired pressure tappings on the test pipes and record their distances from the valve in the appropriate columns on the computer programme.
- Flush the pressure pods and the pressure line board and fill them with tap water, ensuring that there are no bubbles in the tubes.
- Open the valves of the tappings leading to the pressure pods.
- Use the Handheld Communicator to determine the pressure range to be used during the test.
- > Set the computer programme to the determined pressure range and the chosen pipe diameter, and indicate the type of fluid to be tested.
- > Open the appropriate valves on the pressure lines board and start the test.
- > Take a sample of the fluid and conduct rheology and RD tests, and record the information on the computer programme.
- > Increase the flow rate of the fluid by increasing or decreasing the pump speed.

The test liquid was circulated from the tank by means of a positive displacement pump to the test section. The flow rate was controlled by a by-pass valve and measured with two different flow meters. The liquid discharge from the test section was returned to the liquid storage tank. The test section is 25 m long and comprised a horizontal upstream straight pipe, a diaphragm valve and a downstream straight pipe. The test section was provided with pressure taps at various points of the upstream and downstream sections of the pipe. The static pressure at different points was measured by means of point pressure transducers or differential pressure transducers mode. Different pipe diameters ranging from 40 mm to 100 mm bore diameter of Saunders diaphragm valves were used in this experimental investigation. All the valves were positioned horizontally. Under steady state conditions the liquid flow rates were recorded at various flow rates. The percentage openings of the valves used in the experiment were full, 75%, 50% and 25% open. The fluids were maintained at a temperature between 25°C and 30°C while using the positive displacement pump.

The following steps were used to compute the loss coefficient as illustrated on Figure 2.7.



Figure 2.7: Diagram illustrating the calculation of valve loss coefficient

The measurement of static pressure at different points upstream and downstream of the test valve were taken. (In total nine points were used, four upstream and five downstream of the test valve.)

The calculation of the shear stress in the two pipes upstream and downstream of the test valve was done in the regions of fully developed flow. Six points are used to calculate the shear stress (three points upstream and three points downstream respectively) of the test valve, all in regions of fully developed flow as defined above. The three points close to the test valve, one point upstream and two points downstream, are discarded because they are in the region of influence of the valve. The shear stress in the two pipes upstream and downstream is calculated using the Equation 2.2.

3.4.4 Pressure tapping

The setting of the pressure pods and the pressure transducers of the Valve Test Rig are as shown in Figure 3.9.

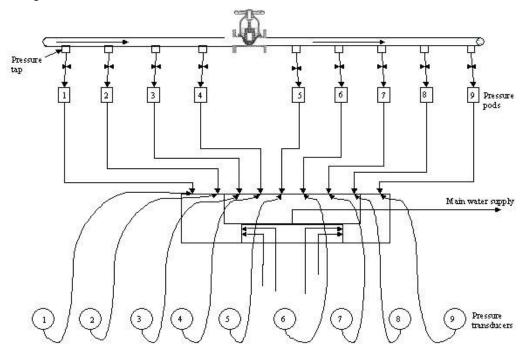


Figure 3.9: Valve test rig pressure lines

Pressure is transferred from the fluid within the test pipe to the pressure transducers through the water-filled pods. The pressure is converted into a voltage signal, detected and captured by the DAU.

3.4.5 Single point pressure transducers mode (manual mode)

The manual mode of the Valve Test Rig was conducted in two ways, namely, by reading the static pressure at one tapping point using all the nine point pressure transducers, or by using only one point pressure transducer. Using all nine transducers, the setting of the ball valves on the Pressure Lines Board (Figure 3.2) was as follows, referring to Figure 3.9.

- The exit valves: E1 was opened to read the pressure on tapping 1.
- > E2 to E9 were closed.
- ➤ Deviation valves (D1 to D9) were opened. The isolation valves (I1, I2 and I3) were closed.
- ➤ The bypass ball valves (B1 to B5) and the connecting valves (C1 to C4) were closed.
- Take the reading (all the transducers should read the same pressure).
- > Close valve E1 and open E2.
- > Read the pressure, close E2 and open E3.
- Continue this procedure until valve E9 is open.

At the completion of the process all nine point pressure transducers will record each one Pressure Grade line separately. The procedure of conducting the test, using only a one-point pressure transducer, was as follows:

- > The exit valve E1 is open to read the pressure on tapping 1.
- > E2 to E9 are closed.
- > The deviation valves (D1 to D9) are closed. The isolation valves are open.
- ➤ The bypass valves (B1 to B6) are closed, also closed are the connecting ball valves except C1.
- > C1 is connected to the point pressure transducer 1.
- Record the pressure reading.
- Close valve E1 and open E2.
- Read the pressure, close E2 and open E3.
- Continue the procedure until E9 is open.

3.4.6 Straight pipe test

The straight pipe test can be conducted simultaneously on the downstream and upstream legs of the Valve Test Rig. The procedure is as follows referring to Figures 3.2 and 3.9:

- Choose the straight pipe section on which the pressure drop will be measured and record the tapping distance.
- ➤ On the Pressure Lines Board close the isolating valve 11, I3 and I4.

- > Open the valves E according to the test sections chosen. All deviation valves and the other E valves must be closed.
- Close the bypass valve B2, B4, B5, and B6.
- ➤ Use the pressure line PL-1 and PL-2 to measure the pressure drop upstream of the test valve by opening the connecting valves C1 and C2.
- ➤ Ensure that the pressure line PL-1 is connected to the High side of the DP cell and PL-2 to the Low side of the DP cell.
- ➤ Use the pressure line PL-3 and PL-4 to measure the pressure drop downstream of the test valve by opening the connecting valves C3 and C4.

3.4.7 Differential pressure transducers mode

The pressure grade line was determined using the DP cell for reading high pressures. This was achieved by isolating the first pod from the others and opening the pressure taps, from the second pod to the ninth pod, one after another and reading the pressure gradient. The procedure is the same as the straight pipe test described above, up to the 6th step. It continues as follows:

- Open the isolating valve I3.
- Open the respective E2, and take the reading.
- Close E2 and open E3, and continue until E9 is open.
- Change the flow rate and repeat step 2 and 3

3.5 VALVES TESTED

The valves tested in this study were the straight-through type, i.e. without a weir. These valves are suitable for slurry applications. A schematic diagram and a photograph of one these valves are shown in Figure 3.10 and Figure 3.11, respectively. They consist of two principal parts, the bonnet and the base, which are separated by a paraboloidal-shaped flexible rubber band (the diaphragm). The bonnet consists of a hand-wheel and the spindle, which together drive the diaphragm down across the flow area to obstruct the flow.

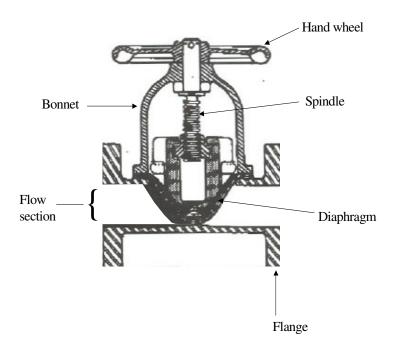


Figure 3.10: Schematic diagram of a Saunders diaphragm valve

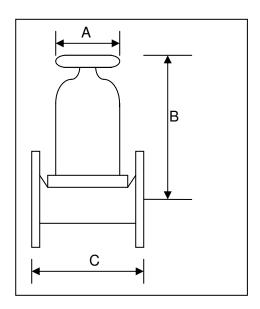


Figure 3.11: Photograph of a Saunders diaphragm valve

Five diaphragm valves (from Saunders Valves supplied by DFC, South Africa) have been tested for the purpose of this thesis. Other valves from a different manufacturer (from Natco Valves) have already been tested (Mbiya 2008). The external dimensions of the Saunders valves are shown in Table 3.1

Safe working Nominal bore Α В С Pressure kPa mm mm mm mm 40 83 121 159 700 140 700 50 181 191 65 165 700 200 216 197 245 254 700 80 100 254 267 305 700

Table 3.1: External dimensions of Saunders valves

3.5.1 Internal Dimension of Valves

The valves' internal dimensions were measured after they had been unscrewed. A schematic diagram of the inside dimensions of the valves is shown in Figure 3.12.

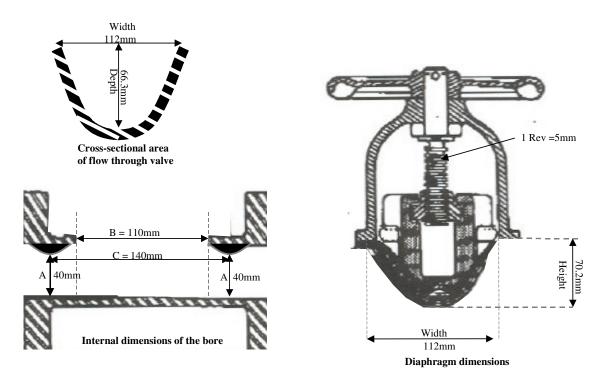


Figure 3.12: Internal dimension of the 80 mm bore diaphragm Natco valve (Pienaar et al., 2006)

The internal measured dimensions for all the Saunders valves tested are shown in Table 3.2.

Cross section Bore size Diaphragm dimensions (mm) Bore dimensions area (mm) (mm) Per Rev С Width Width Α В Depth Height 40 35.26 42.78 36.00 47.38 3.44 28.20 54.06 90.04 50 46.65 64.26 47.00 66.34 3.88 35.26 67.15 133.4 65 62.42 90.82 63.00 92.14 3.64 51.98 82.36 152.5 80 68.92 112.00 69.00 114.20 2.98 58.64 118.5 171.4 100 74.72 124.46 75.00 129.92 2.78 59.56 126.7 262.6

Table 3.2: Internal dimensions of the diaphragm valves

A close look at the values given in Table 3.2 showed that the measured values also did not portray a systematic geometrical similarity. However, some dimensions such as the depth of the cross sectional area and the height of the diaphragm proved a close correlation with the bore dimensions.

3.5.2 The gravity test

In this test, about 3 m³ of water was stored in a tank (from another rig) as shown in Figure 3.13. The test valve was connected at the end of the exit pipe so that water flowed freely by gravity when the valve was opened. The test valve was causing the major obstruction to the flow of water; therefore the flow depended on the discharge coefficient of the valve and the level of water in the storage tank.

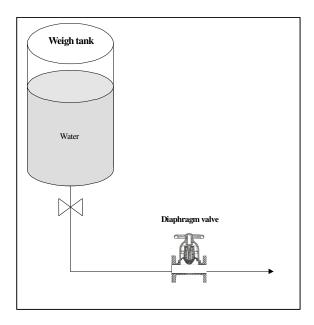


Figure 3.13: Gravity flow system used to determine the valve positions

The procedure was as follows:

- Open the computer program that records the mass of water within the weigh tank.
- > Fill the weigh tank with water.
- Set the valve at fully opened position.
- > Select the time interval, for which the mass of water was to be recorded, ideally at 1-sec. intervals.
- > Start the program to record the mass of water in the tank every second.
- > Open the valve at the bottom of the weigh tank to allow water to run through the valve, recording the change in mass simultaneously.
- Stop the computer programme once the tank is emptied.

- Close the valve, at the bottom of the tank, and refill it.
- > Set the valve position by revolving the hand-wheel once (first revolution), towards the closing position.
- Repeat steps 4 to 8.
- > Set the valve position by revolving the hand-wheel once more. This was a second revolution, towards the closing position.
- Repeat steps 4 to 8.
- Conduct the experiment until the valve is fully closed.

3.5.3 Valves opening setting

To determine the valve position, i.e. the ½, ½, and ¾ open positions, a gravity flow system was implemented. By running water through the valve at different settings, the desired valve positions could be identified. To determine the ½ open mark, for instance, the mark was determined by counting the number of revolutions of the hand-wheel at which the ratio of water flow rate at that mark, and the flow rate when the valve is fully open, was fifty per cent (50%). The procedure was as follows:

- Open the computer programme that records the mass of water within the weigh tank.
- > Fill the weigh tank with water.
- Set the valve at fully open mode.
- > Select the time interval at which the mass of water is to be recorded; ideally at 1-second intervals.
- Start the programme to record the mass of water in the tank every second.
- Open the valve at the bottom of the weigh tank to allow water to run through the valve, recording the change in mass simultaneously.
- Stop the computer programme once the tank is empty.
- Close the valve, at the bottom of the tank, and refill it with water.
- > Set the valve position by revolving the hand-wheel once, first revolution, en route for the closing position.
- Repeat step 4 to 8.
- > Set the valve position by revolving the hand-wheel once, second revolution, en route for the closing position.

- Repeat step 4 to 8.
- Conduct the experiment until the valve is fully closed.

Figure 3.14 gives the percentage delivery of the 40 mm to 100 mm bore size range after each revolution, from a fully open to fully closed position. The graph was used to determine the 75%, 50% and 25% delivery positions, which were regarded as the $\frac{1}{4}$, $\frac{1}{2}$ and $\frac{3}{4}$ open positions. Note that the graph curves are not all smooth, and that the valve setting was changed from fully open to fully closed positions. The number of revolutions to obtain the desired valve opening are given in Table 3.3.

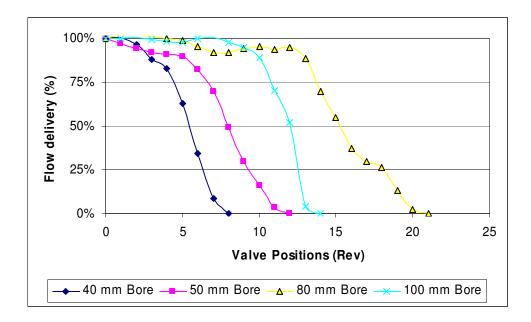


Figure 3.14: Percentage flow delivery at different valve positions

Table 3.3: Valve position

		Number of	revolutions to	obtain the		
		desired valve opening				
Valve bore size	Pipe outer diameter	75% Open	50% Open	25% Open		
40 mm	50 mm	4.5	5.5	7.8		
50 mm	63 mm	6.5	8	9.25		
80 mm	90 mm	13.75	15.25	18		
100 mm	110 mm	8.75	10	11.75		

3.6 MATERIAL/FLUID TESTED

In order to perform the tests, the Newtonian fluid (water) was used for the calibration of the valve test rig and non-Newtonian fluids (carboxymethylcellulose and kaolin at three different concentrations) will be tested to derive and to provide loss coefficient data to the open literature, which will be useful for designing pipelines in industries, as well as contributing to the academic discourse and debate in this discipline.

3.6.1 Water

Water was tested in straight pipes to establish credibility, accuracy and precision of the valve test rig. The typical properties of water are as follows: A pH of 9 with a total alkalinity of 35 mg/l as CaCO₃ and an ionic strength of less than 0.01 molar scale (Haldenwang, 2003).

3.6.2 Carboxyl methyl cellulose (CMC)

The CMC was obtained in granular form, which easily dissolves in water at a low concentration. Municipal tap water was used for this research work. Solutions of CMC are stable between pH of 2 and 10. Below pH 2, precipitation of the solids occurs, and above pH 10 the 'viscosity' decreases rapidly. The pH of the solutions tested for this study was pH 9.0 at 20 °C.

CMC is used in drilling mud, in detergents as a soil-suspending agent, in resin emulsion paints, adhesives, printing inks, as protective colloid in general and as a stabilizer in foods. The flow properties of the CMC solutions proved to be constant throughout the test work. The concentrations tested were 5% by mass. At a high concentration, dissolution of the CMC in water deteriorated and required long periods of mixing time to achieve homogeneous solutions.

3.6.3 Kaolin

The kaolin used in the preparation of kaolin suspensions is supplied by Serina Kaolin (Pty) Ltd, and was mined in the Fish Hoek area near Cape Town. Pellets of kaolin clay were mixed with tap water in preparation of the slurry to be tested. A mixer, in the mixing tank was used to mix the solution thoroughly. The kaolin slurry was mixed in volumetric concentration of 10% and 13%.

3.7 EXPERIMENTAL ERRORS

Absolute accuracy in measuring is not always achieved, unless the data are discrete numbers. It is important to be able to determine the margins of error which may be found in a set of data, and to know how they are affected by various arithmetic processes such as addition, multiplication, root extraction, etc., (Benzinger & Aksay, 1999).

There are three types of error: Gross errors, systematic errors and random errors (Benzinger & Aksay, 1999).

3.7.1 Gross errors

Gross errors are due to blunders, equipment failure and power failure. A gross error is immediate cause for rejection of a measurement (Benzinger & Aksay, 1999).

3.7.2 Systematic or cumulative errors

Systematic errors result in a constant bias in an experimental measurement. Systematic errors are those that are due to known conditions. These conditions might be:

- Natural (temperature, pressure, humidity, etc.)
- > Instrumental (calibration, graduation, range, etc.)
- Personal (poor sight of the experimenter, inability of the experimenter to take correct reading, etc.) size (Barry, 1991).

In this work precautions were taken to prevent those errors occurring: e.g. checking the calibration of instruments by another instrument not related to the instrument, or independent calibration, and also by checking the reproducibility of the results.

3.7.3 Random errors

Random errors are those that are due to chance variation. Most experiments proceed with minor variations that change from event to event and follow no systematic trend. The same quantity may be measured many times, giving close but not identical results. The fluctuations in the measurement are assumed to be random and lead to a distribution of values (Barry, 1991).

3.7.4 Evaluation of errors

The absolute error is the difference between the true value of any number or quantity and the value obtained or used for that the number or quantity in a given circumstance. If the true value of a number or quantity is X, the value obtained or used for that number or quantity is X, and the absolute error is X than:

$$X = A \pm \Delta A$$
 Equation 3.2

This means that X is comprised between $A - \Delta A$ and $A + \Delta A$. ΔA is called the maximum error or absolute error. If X is a quantity, ΔA is expressed in the same unit. ΔA is here the smallest

division of the instrument, and the smallest value detected by the instrument (Barry, 1991). ΔA is calculated from the standard deviation of a set repeated measurement as well. The absolute error for A at 99,9% confidence interval is given by the equation:

$$\Delta A = 3.29\sigma$$
 Equation 3.3

where σ is the standard deviation

If at 95% confidence level is considered, then the absolute error may be approximated by:

$$\Delta A = 2\sigma$$
 Equation 3.4

The relative or percentage error of a number or quantity is calculated by:

$$\delta A = \frac{\Delta A}{A}$$
 Equation 3.5

3.7.5 Combined errors

When a variable is a result of a computation of other variables with their subsequent errors, the resulting error is the combination of the independent variables errors (mean quadratic value of the independent errors). If a variable X is a function of n other variables, i.e., X = F (A, B, C... N), the expected highest error (Brinckworth, 1968) can be calculated from:

$$\left(\frac{\Delta X}{X}\right)^2 = \sum \left(\frac{\partial X}{\partial N}\right)^2 \left(\frac{N}{X}\right)^2 \left(\frac{\Delta N}{N}\right)^2$$
 Equation 3.6

3.8 ERROR OF MEASURABLE VARIABLES

3.8.1 Axial distance

The axial distances were measured using a measuring tape divided up in mm. The absolute error on measurements was 0.001 m.

3.8.2 Weight

The mass of all samples was measured using the weigh scale graduated in grams. The absolute error on measurements was 0.001 kg.

3.8.3 Flow rate

The flow meters used are accurate to 0.001 l/s, which can be assumed as the absolute error.

3.8.4 Pressure

The pressure transducers used are accurate at 0.25%. Care should be taken in calibration to obtain a correlation coefficient of 0.999. Such calibration can rise to an average of 0.35% (Baudouin, 2003).

3.8.5 Error of derived variables

3.8.5.1 Pipe diameter

The combined error of the diameter of the Valve Test Rig pipes was determined using the following equation:

$$D = \sqrt{\frac{4M_{_{H_2O}}}{\pi\rho_{_{H_2O}}L}} \label{eq:D}$$
 Equation 3.7

The highest expected error in calculating the pipe diameter is obtained by applying the Equations 3.6 and 3.7, and that yields:

$$\frac{\Delta D}{D} = \pm \frac{1}{2} \sqrt{\left(\frac{\Delta M_{H_2O}}{M_{H_2O}}\right)^2 + \left(\frac{\Delta L}{L}\right)^2}$$
 Equation 3.8

The highest expected error and experimental errors on the measurements of the five diameters of the Valve Test Rig are given in Table 3.4.

Table 3.4: Expected highest error and experimental errors in the measurements of the valve test rig pipe diameters

Pipe position	Nominal outer diameter (mm)	Average internal diameter (mm)	Length (mm)	Experimental error (%)	Highest expected error (%)
Тор	50	42.1	5000	0.63	2.38
2 nd Top	63	52.8	5000	0.32	1.90
3 rd Top	75	63.1	5000	0.45	1.59
4 th Top	90	80.4	5000	0.22	1.25
2 nd bottom	75	63.1	5000	0.36	1.01
Bottom	110	97.2	5000	0.37	1.03

3.8.5.2 **Velocity**

The velocity in a pipe is determined Equation 2.5. Q and A respectively, the flow rate and the cross section area of the pipe. The application of the Equation 3.6 to the Equation 2.5 yields the highest expected error on the velocity given by:

$$\frac{\Delta V}{V} = \pm \sqrt{\left(\frac{\Delta Q}{Q}\right)^2 + 4\left(\frac{\Delta D}{D}\right)^2}$$
 Equation 3.9

The pseudo shear rate is determined using the Equation 2.14

$$\dot{\gamma}_{o} = \frac{8V}{D}$$
 Equation 3.10

The application of the Equation 3.6 to 2.14 gives the expected higher error on the pseudo shear rate and it yields:

$$\frac{\Delta \dot{\gamma}_{o}}{\dot{\gamma}_{o}} = \pm \sqrt{\left(\frac{\Delta Q}{Q}\right)^{2} + 5\left(\frac{\Delta D}{D}\right)^{2}}$$
 Equation 3.11

3.8.5.3 Wall shear stress errors

The combined error of the wall shear stress of the slurries tested in the Valve Test Rig pipes was determined using the following equation:

$$\tau_{\rm o} = \frac{\Delta PD}{4L}$$

The application of the Equation 3.6 to 2.2 gives the expected highest error on the shear stress and that yields:

$$\frac{\Delta \tau_o}{\tau_o} = \pm \sqrt{\left(\frac{\Delta (\Delta P)}{\Delta P}\right)^2 + \left(\frac{\Delta D}{D}\right)^2 + \left(\frac{\Delta L}{L}\right)^2}$$
 Equation 3.12

3.8.5.4 Reynolds number

The Reynolds number errors in this work are evaluated for the Slatter Reynolds number Re_s (Equation 2.27)

$$Re_{s} = \frac{8V_{ann}^{2}\rho}{\tau_{y} + K\left(\frac{8V_{ann}}{D_{shear}}\right)^{n}}$$

Application of Equation 3.6 to 2.27 yields

$$\frac{\Delta Re_s}{Re_s} = \sqrt{\left(\frac{\Delta \rho}{\rho}\right)^2 + 4\left(\frac{\Delta Q}{Q}\right)^2 + \left(\frac{\Delta L}{L}\right)^2 + 25\left(\frac{\Delta D}{D}\right)^2 + \left(\frac{\Delta \Delta P}{P}\right)^2}$$
Equation 3.13

3.8.5.5 The valve loss coefficient

The valve loss coefficient is obtained from the Equation 2.38

$$H_{v} = k_{v} \frac{V^{2}}{2g}$$

Or the pressure loss due to the valve is related to the head loss by:

$$\Delta P_v = \rho g H_v$$

Then:

$$k_{v} = \frac{\Delta P}{\frac{1}{2}\rho V^{2}}$$

$$\left(\frac{\Delta k_{v}}{k_{v}}\right)^{2} = \left(\frac{\Delta(\Delta P_{v})}{\Delta P_{v}}\right)^{2} + \left(\frac{\Delta \rho}{\rho}\right)^{2} + 4\left(\frac{\Delta Q}{Q}\right)^{2} + 16\left(\frac{\Delta D}{D}\right)^{2}$$

Equation 3.14

A sample of 25 readings at constant flow rate were collected to evaluate the accuracy and precision of the rig in capturing data relevant to loss coefficient determination. The shear stress was determined from the pressure gradient. The average mean and standard deviation were determined. The error incurred in calculating the wall shear stress was determined as the ratio of the standard deviation and the average mean.

Table 3.5 to Table 3.9 show the statistical analysis for the absolute errors for different pipes. It can be seen that the loss coefficient absolute error for the 25 % opening position is higher than for the other opening positions.

Table 3.5: Absolute error for 40 mm bore diameter

Opening position	Fluid	ΔQ	Δρ	$\Delta(\Delta P_{v})$	ΔD	Δk_v	ΔRe
25 % Open	Kaolin 10%	0.080	3.750	4126	0.265	15.26	42.92
50 % Open	Kaolin 10%	0.022	3.750	1527	0.265	1.622	18.33
75 % Open	Kaolin 10%	0.062	3.750	2343	0.265	1.539	76.63
100 % Open	Kaolin 10%	0.026	3.750	1186	0.265	0.696	64.89

Table 3.6: Absolute error for 50 mm bore diameter

Opening position	Fluid	ΔQ	Δρ	$\Delta(\Delta P_v)$	ΔD	Δk_v	∆Re
25 % Open	Kaolin 10%	0.022	3.75	1812	0.169	1.480	27.86
50 % Open	Kaolin 10%	0.060	3.75	1274	0.169	0.647	42.47
75 % Open	Kaolin 10%	0.036	3.75	1064	0.169	0.817	28.21
100 % Open	Kaolin 10%	0.011	3.75	575.8	0.169	0.578	13.95

Table 3.7: Absolute error for 65 mm bore diameter

Opening position	Fluid	ΔQ	Δρ	$\Delta(\Delta P_{v})$	ΔD	Δk_v	ΔRe
25 % Open	Kaolin 10%	0.026	3.75	1793	0.284	1.170	47.81
50 % Open	Kaolin 10%	0.026	3.75	1255	0.284	1.173	41.54
75 % Open	Kaolin 10%	0.026	3.75	816.3	0.284	0.391	32.32
100 % Open	Kaolin 10%	0.033	3.75	498.0	0.284	0.230	41.04

Table 3.8: Absolute error for 80 mm bore diameter

Opening position	Fluid	ΔQ	Δρ	$\Delta(\Delta P_v)$	ΔD	Δk_v	ΔRe
25 % Open	Kaolin 10%	0.040	3.75	626	0.177	1.529	19.72
50 % Open	Kaolin 10%	0.032	3.75	863	0.177	2.218	11.61
75 % Open	Kaolin 10%	0.046	3.75	285	0.177	0.773	9.256
100 % Open	Kaolin 10%	0.073	3.75	559	0.177	0.578	27.97

Table 3.9: Absolute error for 100 mm bore diameter

Opening position	Fluid	ΔQ	Δρ	$\Delta(\Delta P_{v})$	ΔD	Δk_v	ΔRe
25 % Open	Kaolin 10%	0.058	3.75	473.1	0.360	2.365	21.16
50 % Open	Kaolin 10%	0.134	3.75	1296	0.360	3.538	78.02
75 % Open	Kaolin 10%	0.061	3.75	819.9	0.360	1.960	46.00
100 % Open	Kaolin 10%	0.128	3.75	215.8	0.360	0.537	22.49

Table 3.10: Mean value for 40 mm bore diameter

Opening position	Fluid	Flow Rate	ρ	ΔP_{v}	D	k_v	Re
25 % Open	Kaolin 10%	1.311	1169	36972	42.10	71.65	336.5
50 % Open	Kaolin 10%	1.859	1169	40039	42.10	38.50	627.3
75 % Open	Kaolin 10%	2.147	1169	12698	42.10	9.144	805.0
100 % Open	Kaolin 10%	2.399	1169	4283	42.10	2.470	963.1

The mean value for the loss coefficient has been presented in Table 3.10 to Table 3.14. This proved the qualitative trend that as the opening position decreases, the loss coefficient increases as well.

Table 3.11: Mean value for 50 mm bore diameter

Opening position	Fluid	Flow Rate	ρ	ΔP_{v}	D	k_v	Re
25 % Open	Kaolin 10%	3.262	1169	30520	52.8	23.53	933.6
50 % Open	Kaolin 10%	3.408	1169	13132	52.8	9.266	1003
75 % Open	Kaolin 10%	3.352	1169	4790	52.8	3.496	972.6
100 % Open	Kaolin 10%	2.845	1169	1188	52.8	1.203	718.2

Table 3.12: Mean value for 65 mm bore diameter

Opening position	Fluid	Flow Rate	ρ	ΔP_{v}	D	k_v	Re
25 % Open	Kaolin 10%	5.245	1169	31856	63.1	19.34	1199
50 % Open	Kaolin 10%	4.127	1169	4505	63.1	4.417	764.7
75 % Open	Kaolin 10%	6.090	1169	4304	63.1	1.939	1544
100 % Open	Kaolin 10%	6.069	1169	471.8	63.1	0.214	1541

Table 3.13: Mean value for 80 mm bore diameter

Opening position	Fluid	Flow Rate	ρ	ΔP_{v}	D	k_v	Re
25 % Open	Kaolin 10%	4.858	1169	46111	80.4	86.26	482.9
50 % Open	Kaolin 10%	4.228	1169	13341	80.4	32.95	376.2
75 % Open	Kaolin 10%	4.379	1169	2376	80.4	5.471	404.8
100 % Open	Kaolin 10%	6.461	1169	414.1	80.4	0.451	701.4

Table 3.14: Mean value for 100 mm bore diameter

Opening position	Fluid	Flow Rate	ρ	ΔP_{v}	D	k_v	Re
25 % Open	Kaolin 10%	5.475	1169	27769	97.2	87.13	302.9
50 % Open	Kaolin 10%	6.284	1169	10905	97.2	25.99	402.6
75 % Open	Kaolin 10%	6.267	1169	3193	97.2	7.645	403.9
100 % Open	Kaolin 10%	5.267	1169	80.94	97.2	0.431	235.2

Mbiya (2003) has derived the relative or percentage error for the loss coefficient and it can be seen that the experimental loss coefficients relative errors are almost the same with the calculated ones using the Equation 3.13. The relative error increases as the opening position increases as well.

Table 3.15 to 3.19 show the experimental relative error compared to the relative error using Equation 3.13.

Table 3.15: Relative or percentage error for 40 mm bore diameter

Opening position	Fluid	ΔQ/Q	Δρ/ρ	$\Delta(\Delta P_v)/\Delta P_v$	ΔD/D	$(\Delta k_v/k_v)Exp$	∆Re/Re	$(\Delta k_v/k_v)$ Calc
25 % Open	Kaolin 10%	6.102	0.003	11.16	0.629	21.29	12.76	16.73
50 % Open	Kaolin 10%	1.183	0.003	3.814	0.629	4.214	2.921	5.147
75 % Open	Kaolin 10%	2.888	0.003	18.45	0.629	16.83	9.519	19.50
100 % Open	Kaolin 10%	1.084	0.003	27.68	0.629	28.18	6.738	27.88

Table 3.16: Relative or percentage error for 50 mm bore diameter

Opening position	Fluid	$\Delta Q/Q$	Δρ/ρ	$\Delta(\Delta P_v)/\Delta P_v$	ΔD/D	$(\Delta k_v/k_v)Exp$	∆Re/Re	$(\Delta k_v/k_v)$ Calc
25 % Open	Kaolin 10%	0.674	0.003	5.937	0.32	6.291	2.984	6.221
50 % Open	Kaolin 10%	1.761	0.003	9.701	0.32	6.983	4.236	10.40
75 % Open	Kaolin 10%	1.074	0.003	22.22	0.32	23.37	2.901	22.36
100 % Open	Kaolin 10%	0.387	0.003	48.48	0.32	48.05	1.942	48.51

Table 3.17: Relative or percentage error for 65 mm bore diameter

Opening position	Fluid	ΔQ/Q	Δρ/ρ	$\Delta (\Delta P_v)/\Delta P_v$	ΔD/D	$(\Delta k_v/k_v)Exp$	ΔRe/Re	(∆k _v /k _v)Calc
25 % Open	kaolin 10%	0.496	0.003	5.628	0.45	6.049	3.988	5.992
50 % Open	kaolin 10%	0.630	0.003	27.86	0.45	26.56	5.432	27.94
75 % Open	kaolin 10%	0.427	0.003	18.97	0.45	20.17	2.093	19.07
100 % Open	kaolin 10%	0.544	0.003	105.5	0.45	107.5	2.664	105.6

Table 3.18: Relative or percentage error for 80 mm bore diameter

Opening position	Fluid	ΔQ/Q	Δρ/ρ	$\Delta(\Delta P_v)/\Delta P_v$	ΔD/D	$(\Delta k_v/k_v)Exp$	∆Re/Re	$(\Delta k_v/k_v)$ Calc
25 % Open	Kaolin 10%	0.823	0.003	1.357	0.22	1.773	4.084	2.308
50 % Open	Kaolin 10%	0.757	0.003	6.468	0.22	6.732	3.086	6.700
75 % Open	Kaolin 10%	1.050	0.003	12.00	0.22	14.13	2.286	12.21
100 % Open	Kaolin 10%	1.130	0.003	135.1	0.22	128.2	3.988	135.1

Table 3.19: Relative or percentage error for 100 mm bore diameter

Opening position	Fluid	$\Delta Q/Q$	Δρ/ρ	$\Delta(\Delta P_{v})/\Delta P_{v}$	$\Delta D/D$	$(\Delta k_v/k_v)Exp$	∆Re/Re	$(\Delta k_v/k_v)$ Calc
25 % Open	Kaolin 10%	1.059	0.003	1.704	0.37	2.714	6.986	3.096
50 % Open	Kaolin 10%	2.132	0.003	11.89	0.37	13.62	19.38	12.72
75 % Open	Kaolin 10%	0.973	0.003	25.67	0.37	25.64	11.39	25.79
100 % Open	Kaolin 10%	2.430	0.003	266.6	0.37	124.6	9.565	266.6

3.9 CONCLUSION

The experimental equipment has been described. It is reliable and can be used to measure the loss coefficient through different fittings, in this case in particular, through Saunders diaphragm valves.

The diaphragm valve has also been described and the detailed external and internal dimensions have been provided.

The basic operation used to provide useful data of loss coefficient for different purposes has been outlined. The results will be presented in the next chapter where the loss coefficient will be plotted against the Slatter Reynolds number.

The materials tested, as well as their particular purposes, have been described. The water test results will be correlated to the Colebrook & White equation and the Rheological characterisation of the non-Newtonian fluids will also be presented in Chapter 4.

The relative error Equation 3.14 derived by Mbiya (2003) has been evaluated and it was shown to be successful, because it can be used to predict the percentage error for the loss coefficient. The difference in percentage between the experimental loss coefficient relative error and the calculated ones is very small.

CHAPTER 4 ANALYSIS OF RESULTS

4.1 INTRODUCTION

The purpose of this work was to measure pressure losses in Saunders straight-through diaphragm valves.

Firstly, Newtonian fluid (water) was tested through five pipes of different size and the plot of the velocity against the wall shear stress was correlated to the Colebrook & White equation to ascertain the accuracy and the credibility of the equipment.

Secondly, the rheological characterisation was done for each non-Newtonian fluid used, applying the rheology test. It consists of using the data points in laminar flow from the test data of $(\tau_0, 8V/D)$ to obtain the rheological constants τ_v , K and n (Slatter, 1994).

Finally, the laminar and turbulent loss coefficients were calculated, based on the pressure drop through the diaphragm valves, and they were then correlated to the Reynolds number.

Thus, the objective of this chapter is

- > to present the water test results:
- to present the rheological constants obtained for the fluids under evaluation;
- to present the correlation of loss coefficient with Reynolds number.

4.2 STRAIGHT PIPE RESULTS

The results obtained in the straight pipe section will be presented here for both water and non-Newtonian fluids. The straight pipe results are important for establishing credibility of the test rig, as well as for the rheological characterisation of non-Newtonian fluids.

4.2.1 Water

The water test was conducted in the straight pipes to establish the credibility and accuracy of the test equipment.

A plot of the Fanning friction factor (f) against the Reynolds number (Re) for water for the 50 mm OD pipe is shown in Figure 4.1.

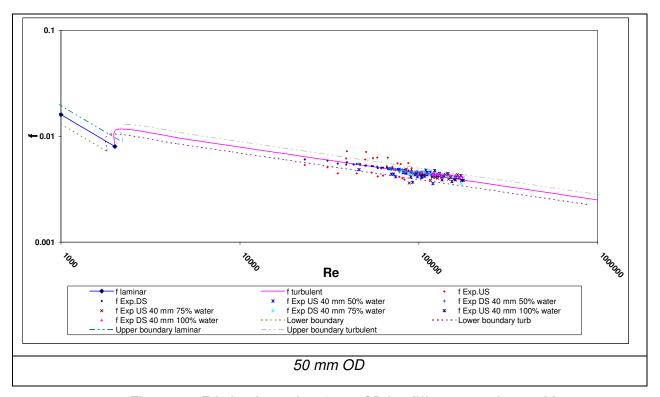


Figure 4.1: Friction factor for 50 mm OD for different opening positions

We can see that 80 % of the data fall within +/- 10 % of the calculated line for the small pipes in Figure 4.1. Such an agreement indicates the validity and degree of accuracy of the experimental technique and equipment used in this experimental investigation.

From Equation 2.5, we have calculated the velocity that was plotted against the shear stresses. Figure 4.2 shows a comparison of experimental results with the Colebrook & White equation (Equation 2.11) for all the pipes tested. The surface roughness (k) of all the pipes was less than 20 μ m, as specified for smooth pipes. The results obtained from different pipes revealed an experimental error of 5 % in the 50 mm, 63 mm and 90 mm outside diameter (OD); 10 % in the 75 mm and 15 % in the 110 mm outside diameter (OD) pipes. The friction was determined using Colebrook & White equation (Equation 2.11) and the shear stress (τ_0) was subsequently determined using Equation 2.4

A summary of the results are given in Table 4.1.

Table 4.1: Surface roughness for various pipe sizes

Nominal Diameter	Internal diameter	Surface roughness	Percentage error
(mm)	(mm)	(µm)	(%)
40	42.12	0.5	4
50	50	4	1
65	63	20	4
80	80	20	4
100	100	0.5	9

The pipe roughness was determined by measuring the pressure drop across a known length of pipe and by comparing it with the Colebrook & White equation (Equation 2.11) (King, 2002)

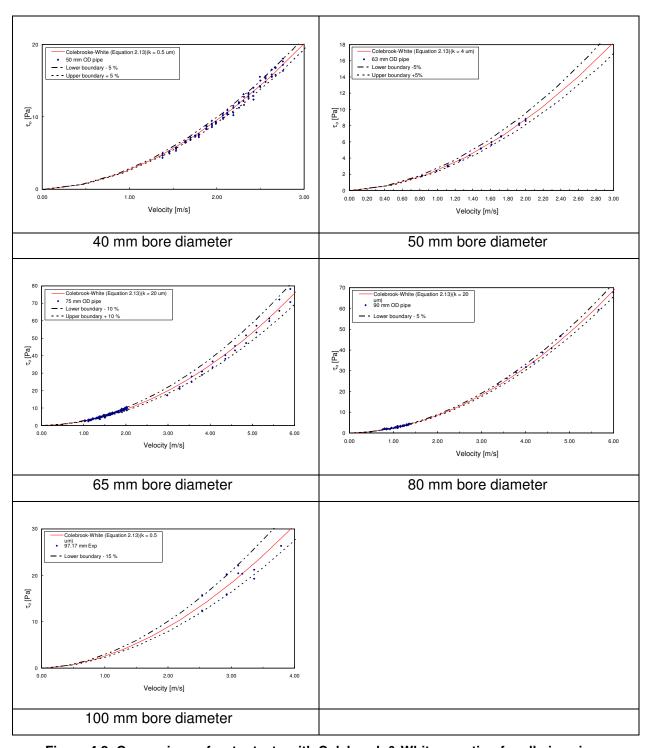


Figure 4.2: Comparison of water tests with Colebrook & White equation for all pipe sizes.

4.2.2 Non-Newtonian fluids

The non-Newtonian fluids selected were kaolin suspensions and CMC solutions that typically display yield pseudoplastic and pseudoplastic behaviour (Fester et al., 2007). Rheological constants obtained for non-Newtonian fluids will be presented in this work namely 6%, 10% and 13% volume concentration of kaolin, as well as 5% mass concentration of CMC.

The objective of this section is to explain how the fluids under evaluation were characterised and how the different models were fitted to determine the rheological constants τ_y , K and n for yield pseudoplastic or K and n for pseudoplastic where τ_y equals zero.

4.2.2.1 Fitting the pseudoplastic model

The pseudoplastic model or power law was used to model the flow behaviour of CMC and was fitted to the laminar shear stress and shear rate data from all straight pipes to determine K and n.

A power law trend curve was fitted to the wall shear stress (τ_0) and pseudo shear rate (8V/D) data to obtain the constant n (apparent flow behaviour index) and K' (apparent fluid consistency index).

An example of the pseudoplastic model fit is given in Figure 4.3 for a 5 % CMC solution. Table 4.2 gives the rheological constants used in this work for CMC 5 %.

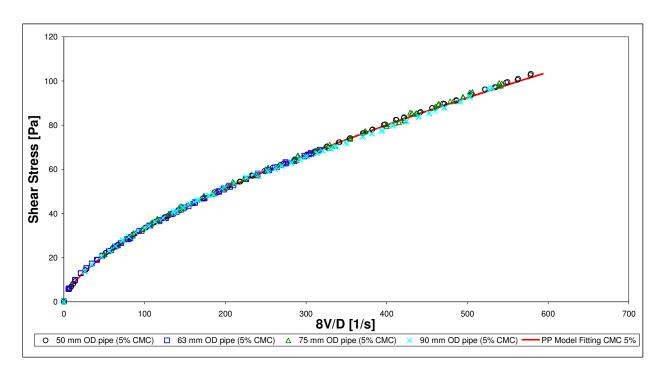


Figure 4.3: Pseudo-shear diagram for straight pipe test of CMC 5 %

Table 4.2: Rheological characteristic of CMC 5 %

Density (kg/m³)	Concentration (%)	K' (Pa/s ⁿ)	n'
1026.8	5%	1.542	0.645

4.2.2.2 Fitting the yield pseudoplastic model

The yield pseudoplastic model was used to determine the flow behaviour of kaolin, and fitted to the laminar shear stress and shear rate data from all straight pipes to determine τ_{ν} , K and n.

An example of the yield pseudoplastic model fit is given in Figure 4.4 for kaolin in suspension at three different concentrations. Table 4.3 gives the different rheological constants used in this work for kaolin 6 %, 10 % and 13 %. The yield stress (τ_y) was increasing with increasing slurry concentration. K and n were obtained using Equations 2.60 and 2.61.

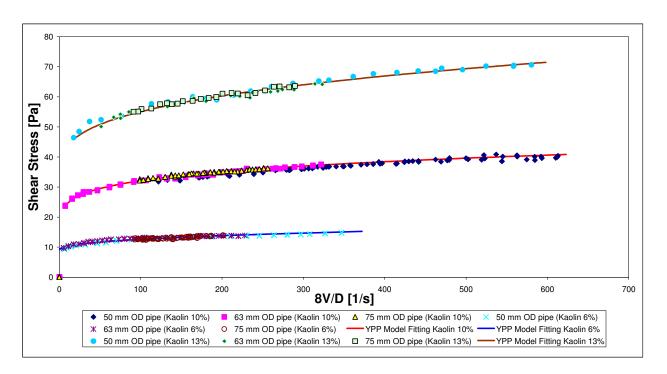


Figure 4.4: Straight pipe test of 6 %, 10 % and 13 % Kaolin slurry

Table 4.3: Rheological characteristics of Kaolin 6 %, 10 % and 13 % slurry

Density	Concentration	τ_{y}	K'	n'
(kg/m³)	(%)	(Pa)	(Pa s ⁿ)	
1103.6	6%	3.071	2.038	0.264
1169.4	10%	8.965	7.098	0.175
1215.5	13%	18.97	16.14	0.242

4.3 DIAPHRAGM VALVE LOSS COEFFICIENT

The objective of this work was to measure the diaphragm valve loss coefficient that should be correlated to the Reynolds number for further analysis.

4.3.1 Graphical presentation of k_v versus Reynolds number

In order to analyse the experimental loss coefficient data, they will be plotted on a graph versus Reynolds number, as it is customary in the field of fluid mechanics (Edwards et al., 1985; Turian et al., 1997; Pienaar, 1998; Kazadi, 2005; Mbiya, 2008).

In this work, the Slatter Reynolds (Re₃) was used to make such representation.

4.3.1.1 Loss coefficients for 40 mm bore valve

Figures 4.5 to 4.9 show the correlation between the loss coefficient using Equation 2.52 and the Reynolds number ranging from 1 to 100000 for the 40 mm to 100 mm bore diameter.

The turbulent flow occurs earlier at Reynolds around 1000 in pipe fittings, as can be seen in Figures 4.5 to 4.9, and the loss coefficients are given below for different opening positions. However, not all the fluids tested could reach the turbulent flow for different opening positions due to safety conditions under which we could operate the rig.

- \triangleright Fully open (k_v = 2.68)
- \gt 75 % open (k_v = 8.15)
- \gt 50 % open (k_v = 32.82)
- \gt 25 % open (k_v = 68.79)

The unpredictable transition region from Reynolds number 10 up to 1000 depended on the type of fluids tested and the opening position, as can been seen in Figure 4.5. The transition is not smooth for the fully open position. This could be because of the interaction between the secondary flow and the core region that tends to delay the onset of turbulence to well above Reynolds number at which straight pipe flow could become turbulent.

In laminar flow for Reynolds number less than 10, although this is not the case for all the opening positions, there is a similar trend for different fluids tested and at different opening positions. In this region, the viscous forces overcome the inertia forces and the plot of the loss coefficients and ratio of forces coincide and the loss coefficient is typical to a hyperbolic relationship.

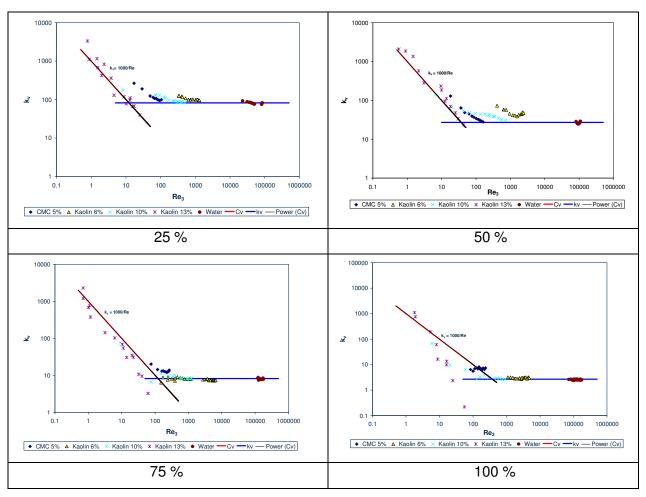


Figure 4.5: Loss coefficient data of the 40 mm bore Saunders diaphragm valve at all opening positions.

4.3.1.2 Loss coefficients for 50 mm bore valve

- \triangleright Fully open ($k_v = 1.60$)
- \gt 75 % open (k_v = 3.88)
- \gt 50 % open (k_v = 10.25)
- \triangleright 25 % open (k_v = 28.46)

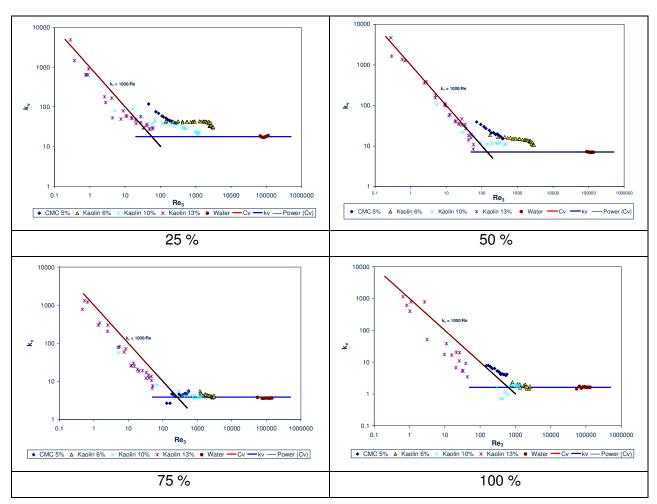


Figure 4.6: Loss coefficient data of the 50 mm bore Saunders diaphragm valve at all opening positions.

4.3.1.3 Loss coefficients for 65 mm bore valve

- \triangleright Fully open ($k_v = 0.57$)
- \gt 75 % open (k_v = 1.77)
- > 50 % open ($k_v = 3.63$)
- \triangleright 25 % open (k_v = 22.43)

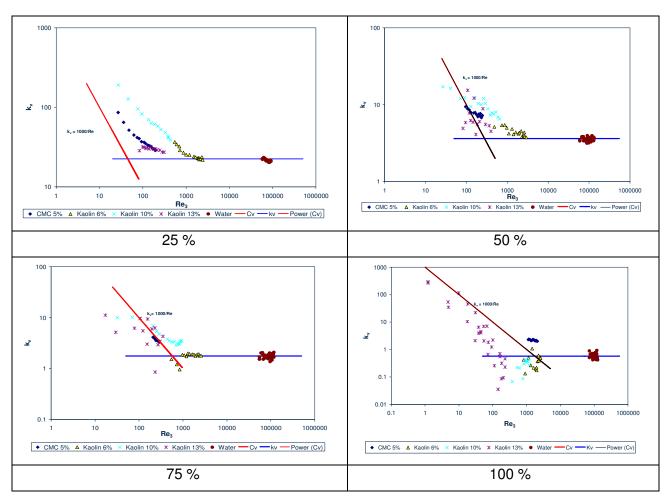


Figure 4.7: Loss coefficient data of the 65 mm bore Saunders diaphragm valve at all opening positions.

4.3.1.4 Loss coefficients for 80 mm bore valve

- \rightarrow Fully open ($k_v = 0.46$)
- \gt 75 % open (k_v = 4.27)
- \gt 50 % open (k_v = 18.86)
- \triangleright 25 % open (k_v = 88.79)

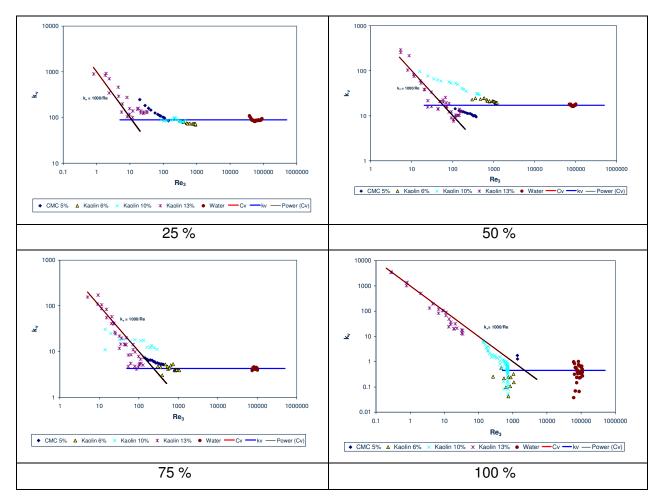


Figure 4.8: Loss coefficient data of the 80 mm bore Saunders diaphragm valve at all opening positions.

4.3.1.5 Loss coefficients for 100 mm bore valve

- \succ Fully open ($k_v = 1.04$)
- \gt 75 % open (k_v = 4.75)
- > 50 % open ($k_v = 17.84$)
- \triangleright 25 % open (k_v = 72.26)

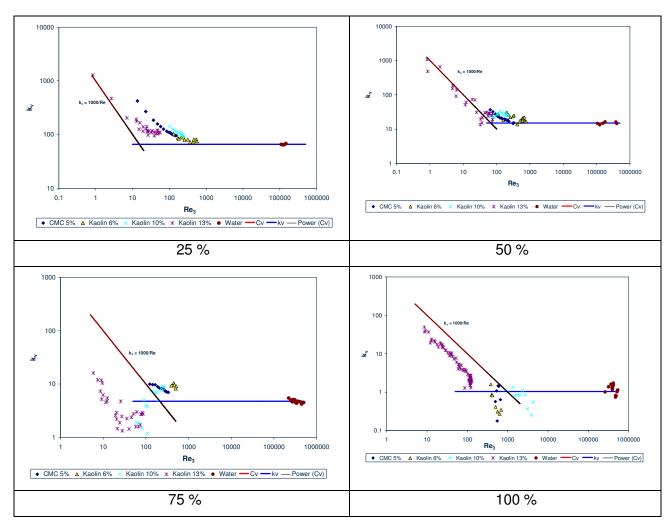


Figure 4.9: Loss coefficient data of the 100 mm bore Saunders diaphragm valve at all opening positions.

The procedure followed to calculate the loss coefficient and loss coefficient constant data have been highlighted in chapter 2. The results obtained from the straight pipe test to ascertain the reliability of the equipment have also been presented in this chapter.

Figure 4.10 represents different graphs for different pipe sizes at various opening positions.

There was good agreement between the results found for different slurries and with the turbulent loss coefficient for small pipe size (40 mm and 50 mm bore diameter). As the bore diameter increases, there is a lot of scatter in the results, especially in the transition zone for the 65 mm, 80 mm and 100 mm bore diameter.

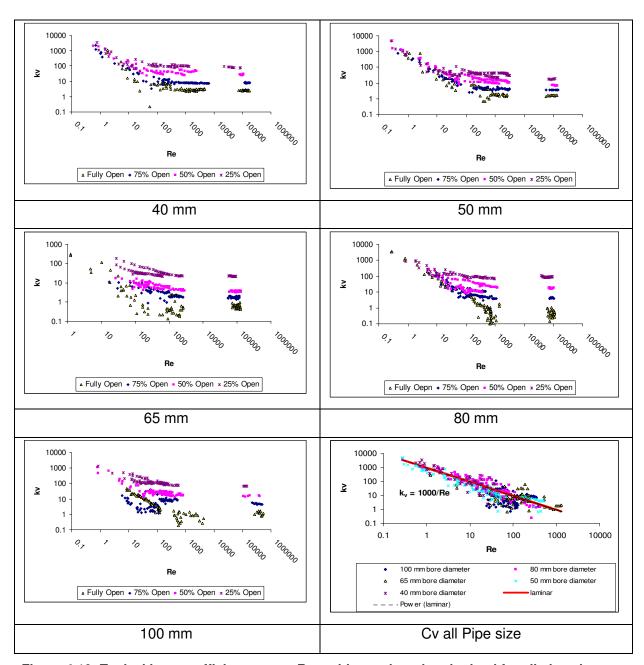


Figure 4.10: Typical loss coefficient versus Reynolds number plot obtained for all pipe sizes

Table 4.4 shows the loss coefficient data for different straight-through diaphragm valves ranging from 40 mm bore diameter to 100 mm bore diameter at different opening positions, from 100 % open to 25 % open.

Table 4.4: Loss coefficients of the 40, 50, 65, 80 and 100 mm bore valve

Valve position								
(%)	25		50		75		100	
Bore diameter	k _v	Stdev						
(mm)								
40	68.79	±11.20	32.82	±7.88	8.15	±0.98	2.68	±0.24
50	28.46	±8.70	10.25	± 2.50	3.88	± 0.24	1.60	± 0.10
65	22.43	±1.85	3.63	±0.30	1.77	±0.18	0.57	± 0.36
80	88.79	±5.41	18.86	± 3.53	4.27	±0.20	0.46	± 0.26
100	72.26	±8.92	17.84	±2.83	4.75	±0.35	1.04	±0.40

The scatter of results are prominent in the larger valves (65, 80 and 100 mm) in the fully open positions where the pressure drop was similar to the pressure drop encountered within the pipes.

4.4 CONCLUSION

In conclusion, this chapter outlined the results obtained from the valve test rig. Water tests in straight pipes have been done to ascertain the credibility of the equipment. Thus the plot of the shear stresses versus the velocities has been correlated to the Colebrook & White equation, as shown in Figure 4.2. This illustrated the efficiency of the system.

Rheological characteristics of the different materials tested have been measured using tube viscometer. In this work the pseudoplastic and the yield pseudoplastic model have been used for CMC and kaolin respectively.

Finally, the loss coefficient through Saunders diaphragm valves ranging from 40 to 100 mm nominal bore diameters at various opening positions have been calculated in laminar and turbulent flow. Figure 4.10 shows that in turbulent flow, the loss coefficient depends on the size of the valve; meanwhile, in laminar flow the laminar loss coefficients converge together for different pipe sizes and are equal to 1000, which is well explained in Chapter 5.

CHAPTER 5 DISCUSSION AND EVALUATION OF RESULTS

5.1 INTRODUCTION

In this chapter the comparison between the Saunders diaphragm valve loss coefficients obtained in this work and those found in the literature are presented. Due to the discrepancies found, a new correlation was developed and is presented here. This new correlation offers advantages over those in the literature for smaller diameter valves. As the objective of this work is to provide the laminar and turbulent loss coefficients, this section will essentially focus on the

- Comparison of the experimental data with the open literature
- > New correlation for determining the loss coefficient for Saunders diaphragm valves.

The experimental work is compared to results from Miller (1990) and Perry & Chilton (1997), as well as correlations developed by Hooper (1981), ESDU (2004) and Mbiya (2008).

5.2 COMPARISON WITH LITERATURE

One of the important objectives of this work is to compare the results obtained from this experimental investigation to the data found in the open literature in general., The nominal bore diameter of the Saunders diaphragm valves is identical to the Natco valves used by Mbiya (2008), ranging from 40 mm to 100 mm. The sizes for which loss coefficients are valid were not given by Miller (1990), Hooper (1981) and Perry & Chilton (1997).

The relative errors were calculated for Re < 10 and Re > 10000. The following details from the literature review were used for comparison, namely:

- ➤ Miller (1990) using Figure 2.11
- ➤ Hooper (1981) using Equation 2.62
- Perry & Chilton (1997) using Table 2.5
- ESDU (2004) using Equation 2.71
- Mbiya (2008) using Equation 2.74

5.2.1 Laminar (viscous) flow (Re < 10)

Figures 5.1 to 5.5 show that C_v is equal to 1000 in laminar flow, the loss coefficient predicted by Hooper (1981) is in good agreement with the results obtained from this work, within +/- 60 % experimental error. The laminar loss coefficient was valid for all different diameters used in this experimental investigation ranging from 40 mm to 100 mm, as well as at different opening positions. The same was found by Mbiya (2008) for laminar flow in Natco diaphragm valves.

5.2.2 Turbulent flow Re >10000

5.2.2.1 Comparison between literature and new data for 40 mm bore diameter valve

For Re > 10000, Figure 5.1 shows the following with regard to the 40 mm bore diameter at various openings:

a) Fully open (100 %)

The loss coefficients for straight-through Saunders diaphragm valves are within 25 % and 14 % error respectively to those predicted by Hooper (1981) and Perry & Chilton (1997). The loss coefficients predicted by ESDU (2004) and those found in the work published by Mbiya (2008) are higher than those found in this experimental investigation of about 199 % and 202 % error respectively. The loss coefficients obtained by Miller (1990) are 70 % less than those found in this work.

For 10 < Re < 1000, the loss coefficients of Saunders diaphragm valves are lower than those predicted by Mbiya (2008) in all the opening position, except for the 50 % where they are identical.

b) 75 % open

Mbiya (2008) found higher loss coefficients of 121 % error than those seen in the Saunders diaphragm valves.

Miller (1990), Hooper (1981) and Perry & Chilton (1997) obtained lower loss coefficients than those found in this work, of about 90 %, 75 % and 68 % error respectively. The loss coefficients predicted by the ESDU (2004) are within -2 % error to those found in this work.

c) 50 % open

The loss coefficients found by Mbiya (2008) and in this work are within 7 % error while Miller (1990), Hooper (1981) and Perry & Chilton (1997) and the ESDU (2004) found lower loss coefficients than those obtained in this experimental investigation of -96 %, -94 %, -87 % and -66 % error respectively.

d) 25 % open

The loss coefficients obtained from this work are lower than those found by Mbiya (2008) and higher than those obtained by Miller (1990), Hooper (1981) and Perry & Chilton (1997) and the ESDU (2004).

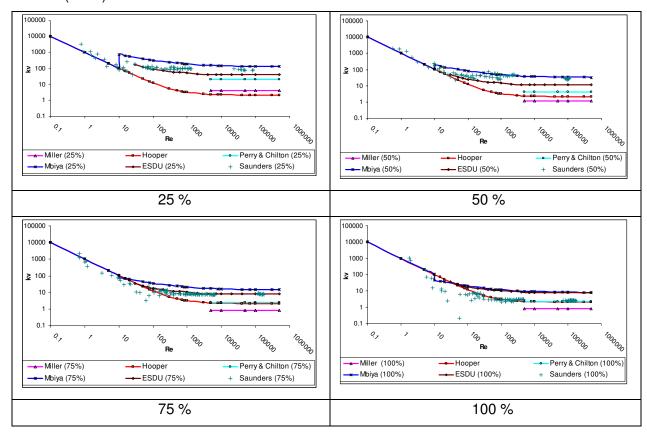


Figure 5.1: Comparison between Saunders diaphragm valves and literature for 40 mm bore diameter

5.2.2.2 Comparison between literature and new data for 50 mm bore diameter valve

For Re > 10, Figure 5.2 shows for the 50 mm bore diameter at various openings that:

a) Fully open (100 %)

The loss coefficients for straight-through Saunders diaphragm valves are within 25 %, 44 % and 56 % error to those predicted respectively by Hooper (1981), Perry & Chilton (1997) and Mbiya (2008).

The loss coefficients predicted by ESDU (2004) are higher than those found in this experimental investigation of 400 % error.

The loss coefficients obtained by Miller (1990) are lower than found in this work of -50 % error. For 10 < Re < 1000, the loss coefficients of Saunders diaphragm valves are lower than those predicted by Mbiya (2008) in all the opening position, except for the 50 % where they are identical..

b) 75 % open

Mbiya (2008) found loss coefficients of 109 % error compared to those seen in the Saunders diaphragm valves, while Hooper (1981) obtained loss coefficients of -48 % error compared to those found in this work.

Perry & Chilton (1997) obtained loss coefficients within -33 % error compared to those found in this work. The ESDU (2004) found loss coefficients of about 106 % error than those provided by this work.

c) 50 % open

The loss coefficients found by Mbiya (2008) and ESDU (2004) are within 144 % and 9 % error to those found in this work, and those found by Perry & Chilton (1997) are within -58 % error to those obtained in this experimental investigation. The loss coefficients in the Saunders diaphragm valves are higher than those predicted by Hooper (1981) and Miller (1990), with an error of -80 % and -88 % respectively.

d) 25 % open

The loss coefficients obtained from this work are lower than those found by Mbiya (2008) and ESDU (2004), and higher than those obtained by Miller (1990) and Hooper (1981), while they are within -26 % error to those found by Perry & Chilton (1997).

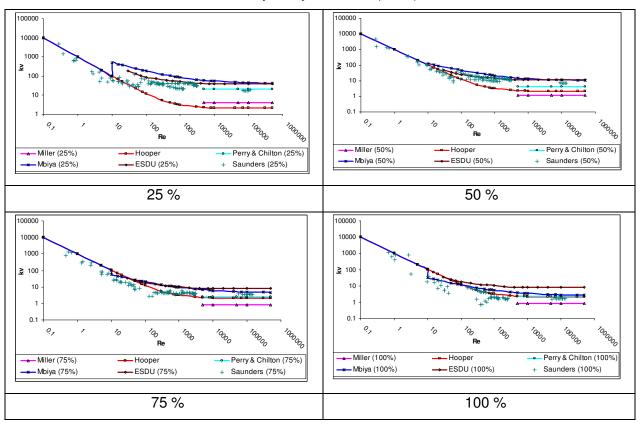


Figure 5.2: Comparison between Saunders diaphragm valves and literature for 50 mm bore diameter

5.2.2.3 Comparison between literature and new data for 65 mm bore diameter valve

For Re > 10, Figure 5.3 shows for the 65 mm bore diameter at various openings that:

a) Fully open (100 %)

The loss coefficients for straight-through Saunders diaphragm valves are within 40 % and 111 % to those predicted respectively by Miller (1990) and Mbiya (2008).

The loss coefficients obtained by Hooper (1981), Perry & Chilton (1997) and the ESDU (2004) are within 251 %, 304 % and 1286 % error to those found in this work.

For 10 < Re < 1000, the loss coefficients of Saunders diaphragm valves are lower than those predicted by Mbiya (2008) in all the opening positions.

b) 75 % open

Mbiya (2008), Hooper (1981) and Perry & Chilton (1997) found loss coefficients of 58 %, 13 % and 47 % error respectively to those seen in the Saunders diaphragm valves.

Miller (1990) obtained loss coefficients of -55 % error to those found in this work and the ESDU (2004) found loss coefficients of 346 % error to those found in the Saunders diaphragm valves.

c) 50 % open

The loss coefficients found by Perry & Chilton (1997) and in this work are within 18 % error while for those found by Miller (1990) and Hooper (1981) are within -67 % and -45 % error to those respectively obtained in this experimental investigation.

The loss coefficients found from this work are within 341 % and 205 % to those found by Mbiya (2008) and the ESDU (2004) respectively.

d) 25 % open

The loss coefficients obtained from this work are within 181 % and 76 % error respectively to those found by Mbiya (2008), and the ESDU (2004). Perry & Chilton, Miller (1990) and Hooper (1981) predicted loss coefficients within -6 %, -82 % and -91 % respectively to those obtained in this work.

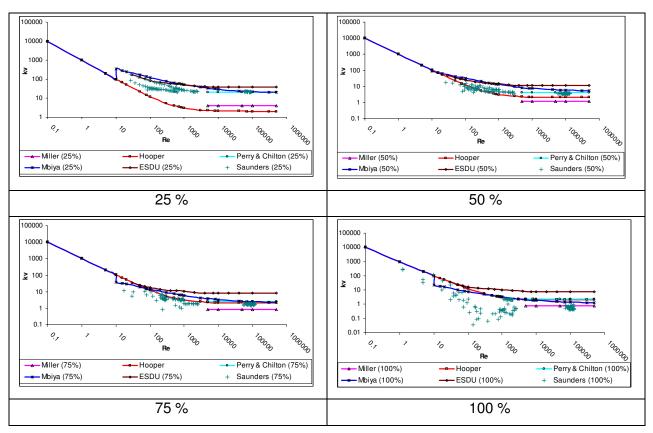


Figure 5.3: Comparison between Saunders diaphragm valves and literature for 65 mm bore diameter

5.2.2.4 Comparison between literature and new data for 80 mm bore diameter valve

For Re > 10, Figure 5.4 shows for the 80 mm bore diameter at various openings that:

a) Fully open (100 %)

The loss coefficients for straight-through Saunders diaphragm valves are within 74 % error to those predicted by Miller (1990).

The loss coefficients obtained by Hooper (1981), Perry & Chilton (1997), the ESDU (2004) and Mbiya (2008) are within 335 %, 400 %, 1422 % and 443 % error respectively to those found in this work.

For 10 < Re < 1000, the loss coefficients of Saunders diaphragm valves are identical to those predicted by Mbiya (2008) for all the opening positions.

b) 75 % open

Mbiya (2008) found loss coefficients of 59 % error to those obtained in the Saunders diaphragm valves.

Miller (1990) obtained loss coefficients of -81 % error to those found in this work.

The loss coefficients predicted by the ESDU (2004) are within 72 % to those found in the Saunders diaphragm valves, while those obtained by Hooper (1981) and Perry & Chilton (1997) are within -53 % and -39 % error to those found in this work.

c) 50 % open

The loss coefficients found by Mbiya (2008) and the ESDU (2004) are within -5 % and -48 % error to those obtained in this work, while for Perry & Chilton (1997), Hooper (1981) and Miller (1990); the loss coefficients are within -77 %, -89 % and -94 % error to those found in this experimental investigation respectively.

d) 25 % open

The loss coefficients obtained from this work are respectively within -25 %, -95 %, -98 %, -76 % and -61 % error to those found by Mbiya (2008), Miller (1990), Hooper (1981), the ESDU (2004) and Perry & Chilton (1997).

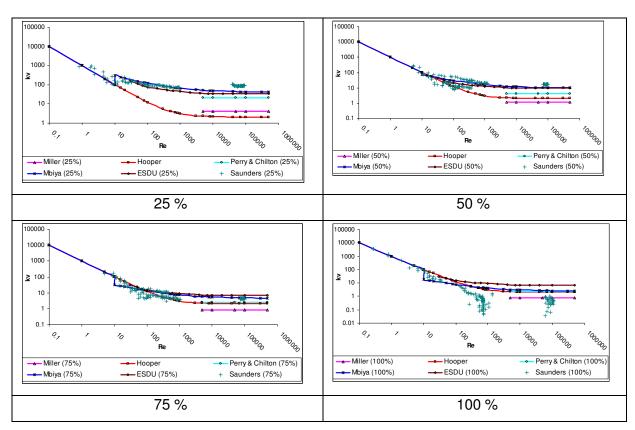


Figure 5.4: Comparison between Saunders diaphragm valves and literature for 80 mm bore diameter

5.2.2.5 Comparison between literature and new data for 100 mm bore diameter valve

For Re > 10, Figure 5.5 and Table 5.1 show for the 100 mm bore diameter at various openings that:

a) Fully open 100 %

The loss coefficients for straight-through Saunders diaphragm valves are respectively within 92 %, 121 % and 35 % error to those predicted by Hooper (1981), Perry & Chilton (1997) and Mbiya (2008).

The loss coefficients predicted by ESDU (2004) are within 592 % error to those found in this experimental investigation.

The loss coefficients obtained by Miller (1990) are within -23 % error to those found in this work.

For 10 < Re < 1000, the loss coefficients of Saunders diaphragm valves are identical to those predicted by Mbiya (2008) in all the opening position.

b) 75 %

Mbiya (2008), Hooper (1981) and Perry & Chilton (1997) found loss coefficients of 111 %, -58 % and -45 % error respectively to those obtained in the Saunders diaphragm valves, while the ESDU (2004) obtained loss coefficients of 52 % error to those found in this experimental investigation. Miller (1990) obtained loss coefficients of -83 % error to those found in this work.

c) 50 %

The loss coefficients found by Hooper (1981), Miller (1990), Perry & Chilton (1997) and Mbiya (2008) are within -89 %, -93 %, -76 % and 63 % to those obtained in this work respectively, while those found by the ESDU (2004) are within -43 % to those obtained in this experimental investigation.

d) 25 %

The loss coefficients obtained from this work are respectively within 38 %, -94 %, -97 %, -50 % and -71 % to those found by Mbiya (2008), Miller (1990), Hooper (1981), the ESDU (2004) and Perry & Chilton (1997).

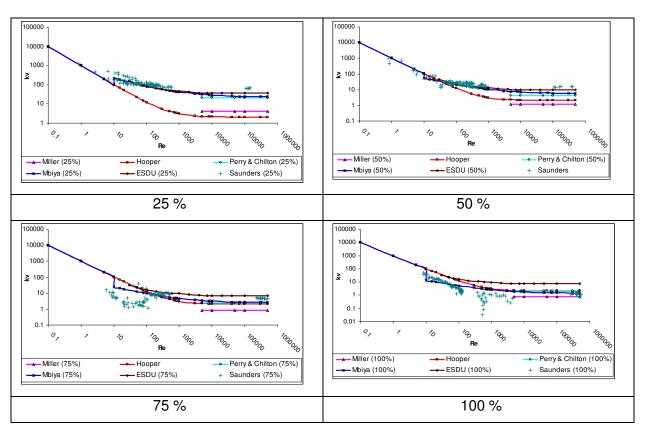


Figure 5.5: Comparison between Saunders diaphragm valves and literature for 100 mm bore diameter

Table 5.1 illustrates numerical discrepancies between the data found in the open literature and the data obtained from this work. The relative error was calculated using Equation 3.5 between the loss coefficients found in this work and those found in the literature in the turbulent regime. The positive error means that the results in literature were higher than those obtained for this work, and the negative error means that it was lower.

Table 5.1: Percentage error: Comparison of literature and this work

Bore	Opening					
diameter	position	Miller	Hooper	Perry &	ESDU	Mbiya
(mm)	(%)			Chilton		
	25	-94%	-97%	-69%	-42%	207%
40	50	-96%	-94%	-87%	-66%	7%
	75	-90%	-75%	-68%	-2%	121%
	100	-70%	-25%	-14%	199%	202%
	25	-86%	-93%	-26%	41%	199%
50	50	-88%	-80%	-58%	9%	144%
	75	-79%	-48%	-33%	106%	109%
	100	-50%	25%	44%	400%	56%
	25	-82%	-91%	-6%	76%	181%
65	50	-67%	-45%	18%	205%	341%
	75	-55%	13%	47%	346%	58%
	100	40%	251%	304%	1286%	111%
	25	-95%	-98%	-76%	-61%	-25%
80	50	-94%	-89%	-77%	-48%	-5%
	75	-81%	-53%	-39%	72%	59%
	100	74%	335%	400%	1422%	443%
	25	-94%	-97%	-71%	-50%	38%
100	50	-93%	-89%	-76%	-43%	63%
	75	-83%	-58%	-45%	52%	111%
	100	-23%	92%	121%	592%	35%

In conclusion we can say that:

None of the data found in the open literature or the commercially available model from ESDU (2004) performed well over the wide range of conditions tested in this work, i.e. Reynolds number, valve opening position and valve size.

Mbiya (2008) derived a two-constant model to predict the loss coefficients for diaphragm valves using Natco diaphragm valves. The model has been extended to this work as recommended by Mbiya (2008) to predict the loss coefficient for Saunders diaphragm valves. It was found that the two-constant model (Mbiya, 2008) performed well for 100 % open valves, but failed to predict

well over the range of different valve opening positions for different valve sizes, as can be seen in Figures 5.6 to 5.8. It consistently overpredicted the loss coefficient in the fully turbulent regime, indicating that Natco valves gave higher resistance than Saunders valves.

The ESDU (2004) model, because of its poor prediction over the wide range of size diameter and openings position, will not be discussed in the next section.

However, Mbiya's model will be closely compared again to the results found from this work by using the λ_{Ω} values obtained for Saunders valves in this work.

5.3 APPLICATION OF TWO-CONSTANT MODEL (MBIYA, 2008) TO SAUNDERS VALVES

The two-constant model requires the λ_Ω for fully open or 25 % open, and these were provided for use with this model. The λ_Ω provided was for Natco valves tested.

As shown in the previous section large errors were obtained compared with Saunders results, clearly indicating that Natco valves show higher resistance than Saunders valves.

To evaluate the wider applicability of this model, the λ_{Ω} values for Saunders valves are then substituted and the model is evaluated again against the experimental results obtained in this work.

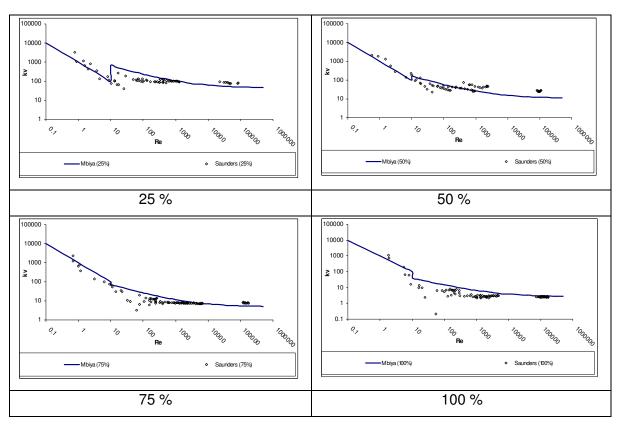


Figure 5.6: Comparison between the Saunders diaphragm valves for the 40 mm bore diameter at different opening positions and two-constant model (Mbiya, 2008) using $\lambda_{\Omega Saunders}$.

In turbulent flow, Figure 5.6 shows reasonable agreement between the data obtained in the experimental investigation and Mbiya's Model for the 40 mm bore diameter at different opening positions, except for the 100 % open. However, Figures 5.7 and 5.8 show how the model performance deteriorates with increasing valve diameter and valve opening.

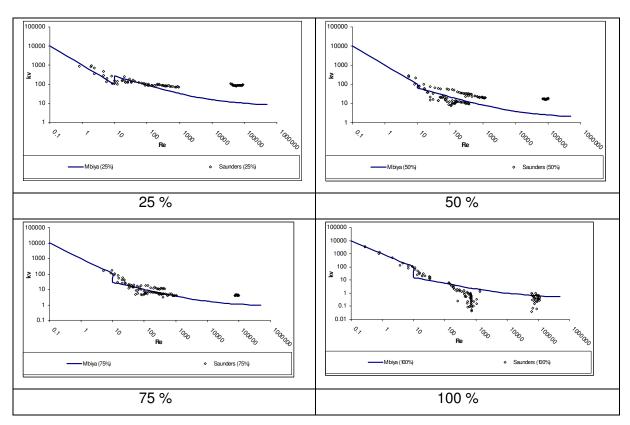


Figure 5.7: Comparison between the Saunders diaphragm valves for the 80 mm bore diameter at different opening positions and two-constant model (Mbiya, 2008) using $\lambda_{\Omega Saunders}$.

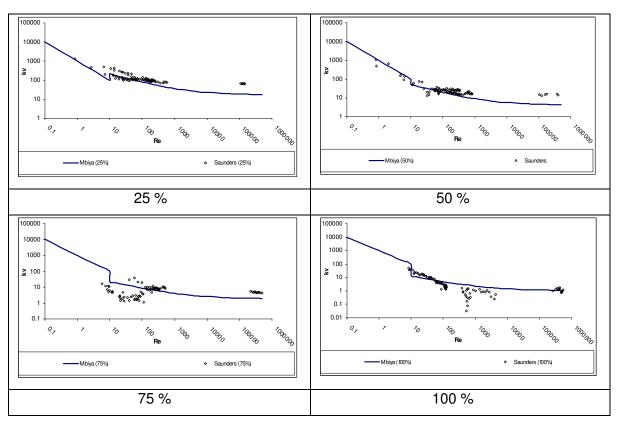


Figure 5.8: Comparison between the Saunders diaphragm valves for the 100 mm bore diameter at different opening positions and two-constant model (Mbiya, 2008) using $\lambda_{\Omega Saunders}$.

Mbiya's (2008) correlation failed to predict well and did not clearly specify for which pipe size the λ_Ω of the fully open should be used or not. This is why a simpler correlation based on the experimental work conducted in this experimental investigation is proposed, which will be described in the next section. Table 5.2 shows the deviation between Mbiya's correlation and the data found in this work. This proved that Mbiya's model does not provide a good prediction of the pressure losses through Saunders straight-through diaphragm valves.

Table 5.2: Loss coefficient error for the two-constant model application

		Application of
		two-constant
Bore diameter	Opening	model with
(mm)	position (%)	Saunders λ_Ω
		(Mbiya)
	25	-29%
40	50	-63%
	75	-33%
	100	14%
	25	6%
50	50	-26%
	75	-13%
	100	18%
	25	-44%
65	50	-14%
	75	-22%
	100	37%
	25	-89%
80	50	-87%
	75	-74%
	100	35%
	25	-74%
100	50	-74%
	75	-59%
	100	12%

5.4 CORRELATION OF THE LOSS COEFFICIENT TO THE REYNOLDS NUMBER

The lack of adequate correlation to predict the losses through Saunders diaphragm valves necessitated the development of a new correlation for the prediction of the loss coefficients through Saunders valves, as shown in Figures 5.12 to 5.16.

The purpose of this section is to present the derivation of the new correlation and comparison with the experimental data. The correlation will be plotted against the Slatter Reynolds number for the analysis.

5.4.1 Laminar (viscous) flow Re < 10

The first term still holds as the laminar flow equation shown in Figure 5.9. For Re < 10, the loss coefficient k_v is only a function of Re and can be predicted using $C_v = 1000$ as given by Hooper (1981).

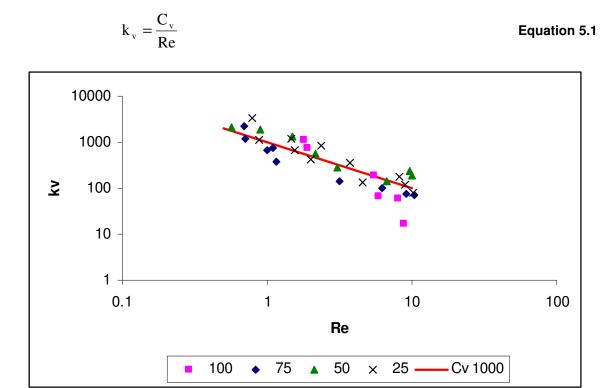


Figure 5.9: 40 mm bore diameter at various opening positions

It can be seen on Figure 5.9 that the laminar loss coefficient C_v does not depend on the valve size or opening positions, but is dependent on the Reynolds number only.

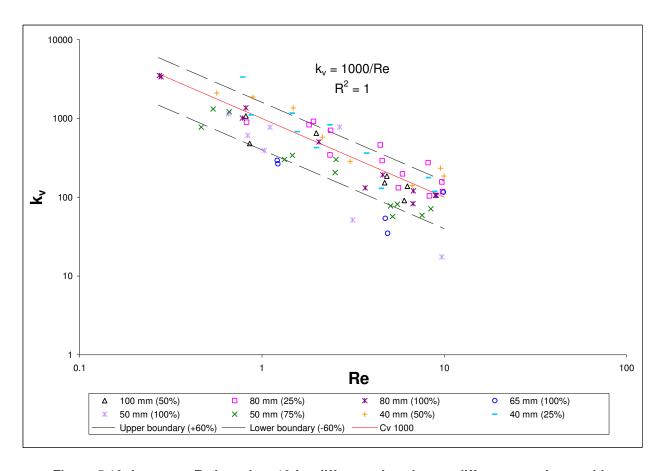


Figure 5.10: k_v versus Re less than 10 for different pipe sizes at different opening positions

5.4.2 Turbulent flow

In the turbulent regime, the loss coefficient becomes a constant and does not depend on the Reynolds number (Turian et al., 1998). It does, however, depend on the opening position of the valve.

The analysis of loss coefficients in turbulent flow has proceeded from the following initial assumptions:

- \succ The loss coefficient in turbulent flow is constant and depends on the opening position of the valve (θ).
- > The loss coefficient depends on the bore diameter of the valve
- The length of the valve has been neglected.
- > The valve friction has not been taken into account

Hooper (1981) derived a two-K method (Equation 2.62) to predict the loss coefficient through the dam diaphragm valve from laminar to turbulent for only the fully open position. A minimum value of 2 was found for the turbulent loss coefficient and 1000 for the laminar loss coefficient at Reynolds number equals to 1.

In 2007 Fester et al., derived an equation (Equation 2.72) that can predict the loss coefficient for both laminar and turbulent flow only for the fully opening position for straight-through diaphragm valves.

$$k_v = \frac{C_v}{Re_s} + \lambda_\Omega$$
 Equation 2.72

The new correlation builds and extends the latter model to include different opening positions. A relationship between the turbulent loss coefficient λ_{Ω} and the valve opening θ was derived.

Figure 5.11 shows that the plot of the opening position against the loss coefficient follows a power law trend for different bore diameter size. Due to the fact that the power law coefficient is more or less equal to the loss coefficient for the fully open position, an average power constant of 2.5 has been calculated and taken into consideration from different bore diameter size to predict the turbulent loss coefficient for different bore diameter size and the coefficient is similar to the loss coefficient at fully open position as seen in Table 5.3.

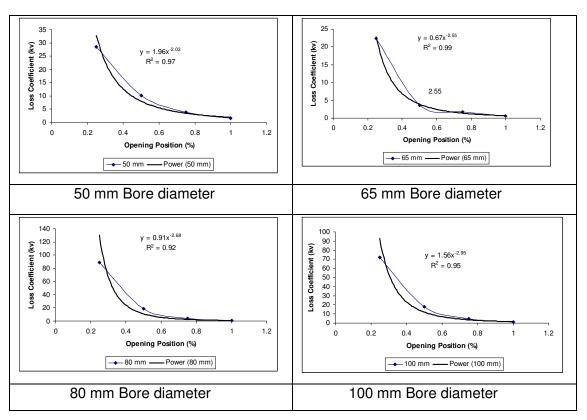


Figure 5.11: Plot of opening position against the turbulent loss coefficient for various pipe sizes

Table 5.3: Power law fit for turbulent loss coefficient for various pipe sizes

Nominal bore diameter	Power law trend	Power law constant	R²
40	$k_v = \frac{3.82}{\theta^{2.30}}$	2.30	0.91
50	$k_v = \frac{1.96}{\theta^{2.03}}$	2.03	0.97
65	$k_v = \frac{0.67}{\theta^{2.55}}$	2.55	0.99
80	$k_v = \frac{0.91}{\theta^{3.58}}$	3.58	0.92
100	$k_v = \frac{1.56}{\theta^{2.95}}$	2.95	0.95
Mean average		2.50	
Standard deviation		0.35	

Benziger (1999) stated that all the R² above 0.90 represents good fits of experimental data. Table 5.4 gives us the power law trend for the prediction of the loss coefficient for different opening positions as well as the power law constant used in this work.

Power law Average Standard deviation $k_{_{V}} = \frac{\lambda_{_{\Omega}}}{\theta^{2.5}} \qquad \qquad 2.5 \qquad \qquad 0.35$

Table 5.4: General power law fit for turbulent loss coefficient

It can be seen in Figure 5.11 that the coefficient is almost similar to the experimental loss coefficient at 100 % open position, and the latter is a function of the opening position.

$$k_v = \frac{1000}{Re_s} + \frac{\lambda_\Omega}{\theta^{2.5}}$$
 Equation 5.2

Finally Equation 5.2 represents the relationship to predict the loss coefficients at different opening positions from laminar to turbulent flow.

The new correlation (Equation 5.2) will be applied for Saunders straight-through diaphragm valves ranging from 40 mm to 100 mm in the fully, 75 %, 50 % and 25 % open position.

5.5 COMPARISON BETWEEN THE EXISTING MODELS AND THE NEW CORRELATION

The new correlation (Equation 5.2) derived as part of this work has firstly been compared to the experimental data obtained from this thesis, and then to literature.

Figure 5.12 shows a good agreement between the data obtained in the experimental investigation and the new correlation derived from this work for the 40 mm bore diameter at different opening positions except for the 50 % open.

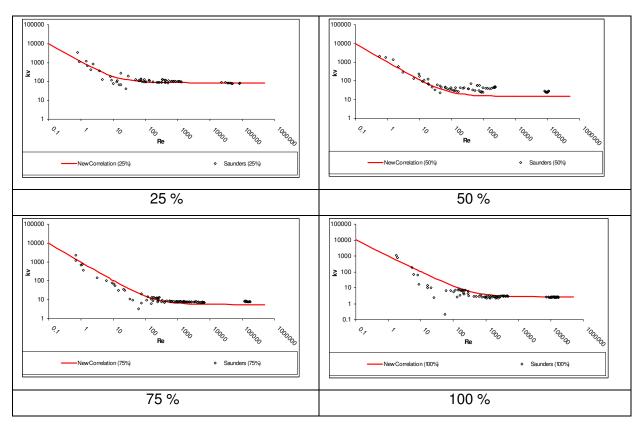


Figure 5.12: Comparison between the Saunders diaphragm valves for the 40 mm at different opening positions and the new correlation

Figure 5.13 shows a good agreement between the data obtained in the experimental investigation and the new correlation derived from this work for the 50 mm bore diameter at different opening positions, except for the 25 % open.

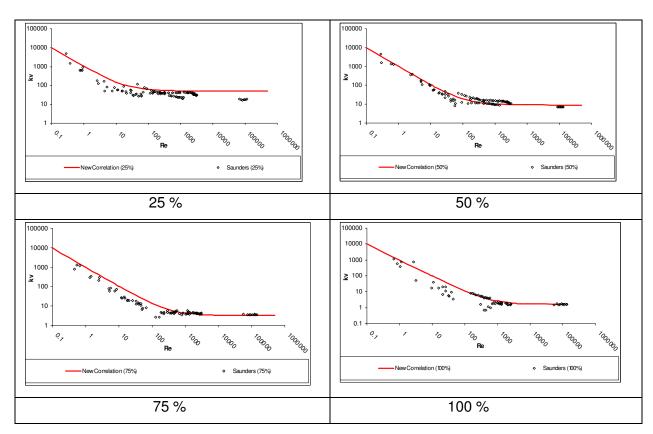


Figure 5.13: Comparison between the Saunders diaphragm valves for the 50 mm bore diameter at different opening positions and the new correlation

Figure 5.14 shows a good agreement between the data obtained in the experimental investigation and the new correlation derived from this work for the 65 mm bore diameter at different opening positions.

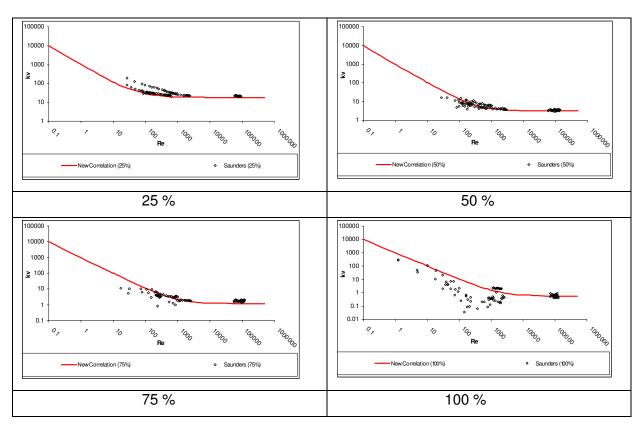


Figure 5.14: Comparison between the Saunders diaphragm valves for the 65 mm bore diameter at different opening positions and the new correlation

Figure 5.15 shows a poor agreement between the data obtained in the experimental investigation and the new correlation derived from this work for the 80 mm bore diameter at different opening positions except for the 100 % open. This poor prediction is due to the fact that the results have errors of above 40 %.

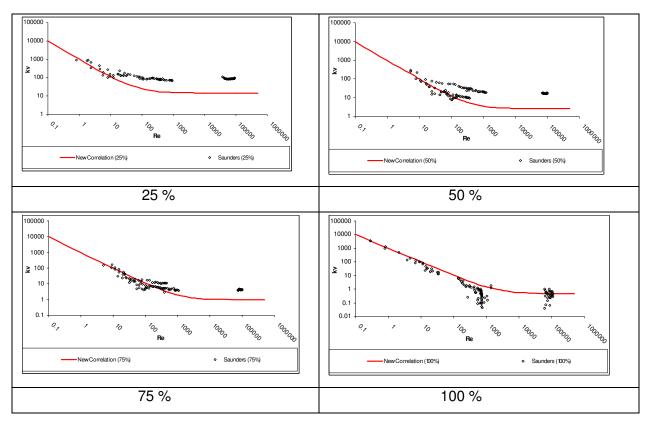


Figure 5.15: Comparison between the Saunders diaphragm valves for the 80 mm bore diameter at different opening positions and the new correlation

Figure 5.16 shows a poor agreement between the data obtained in the experimental investigation and the new correlation derived from this work for the 100 mm bore diameter at different opening positions except for the 100 % open.

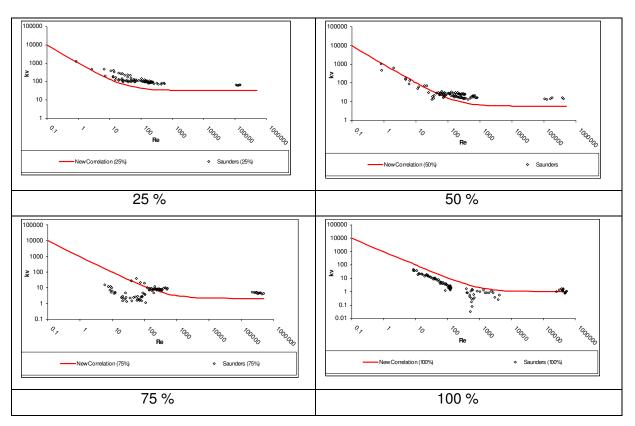


Figure 5.16: Comparison between the Saunders diaphragm valves for the 100 mm bore diameter at different opening positions and the new correlation

Table 5.5 illustrates the discrepancies between the new correlation compared to the experimental results in literature. It is noticeable that the error obtained for the new correlation is in most cases lower than those obtained using the existing correlations in literature.

Table 5.5: Loss coefficient error for the new correlation

Bore	Opening	Miller	Hooper	Perry	ESDU	Mbiya	New
diameter	position			&			correlation
(mm)	(%)			Chilton			
40	25	-94%	-97%	-69%	-42%	207%	-39%
	50	-96%	-94%	-87%	-66%	7%	-68%
	75	-90%	-75%	-68%	-2%	121%	-42%
	100	-70%	-25%	-14%	199%	202%	0%
50	25	-86%	-93%	-26%	41%	199%	46%
	50	-88%	-80%	-58%	9%	144%	-20%
	75	-79%	-48%	-33%	106%	109%	-5%
	100	-50%	25%	44%	400%	56%	6%
65	25	-82%	-91%	-6%	76%	181%	40%
	50	-67%	-45%	18%	205%	341%	17%
	75	-55%	13%	47%	346%	58%	-25%
	100	40%	251%	304%	1286%	111%	2%
80	25	-95%	-98%	-76%	-61%	-25%	-40%
	50	-94%	-89%	-77%	-48%	-5%	-74%
	75	-81%	-53%	-39%	72%	59%	-71%
	100	74%	335%	400%	1422%	443%	2%
100	25	-94%	-97%	-71%	-50%	38%	354%
	50	-93%	-89%	-76%	-43%	63%	4%
	75	-83%	-58%	-45%	52%	111%	-28%
	100	-23%	92%	121%	592%	35%	1%

5.6 CONCLUSION

The objective of this research was to determine the loss coefficient data in laminar, transitional and turbulent flow for the Saunders type straight-through diaphragm valves ranging from 40 mm to 100 mm in the fully, 75 %, 50 % and 25 % open positions, using a range of Newtonian and non-Newtonian fluids. After the comparison of the data obtained from this work was done with the existing models, it was seen that there was a lack of good prediction within the wide range of conditions i.e. valve opening position, valve size and Reynolds number. Due to the fact stated in the previous sentence, a new correlation has been derived to predict the loss coefficients for Saunders diaphragm valves. The correlation shows a good agreement with the experimental results and can be used to predict the loss coefficient in both turbulent and laminar flow. The test work has been conducted on the valve test rig in the Institute of Material and Science Technology at the Cape Peninsula University of Technology. The experimental results have been compared to the data found in the open literature. In laminar flow, the loss coefficients are similar, and Equation 5.2 can be used to predict the laminar and turbulent loss coefficients.

The main outcome of this project is the establishment of a new correlation of loss coefficient for Saunders valves for various diameters and openings. This will provide input data to enable more efficient pipeline plant designs.

CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS

6.1 INTRODUCTION

Due to water scarcity and the new water law, mining operations are obliged to increase their solids concentrations and are now faced with the reality of laminar flow operation (Slatter, 2002). Consequently there was a need to ascertain which loss coefficient data in laminar flow for the control valves (Diaphragm valves) can be used in industry, to ensure energy efficient designs (Pienaar et al., 2001; 2004).

The head losses in the valves can outweigh the head losses in straight pipes for short piping circuits (Massey, 1990). This diaphragm valve is used for pipe flow regulation in industry, but the data found in the open literature are for unknown valve sizes, except for the work produced by Fester et al., (2007) and Mbiya (2008). This section will give a summary of the work done, specifically for Saunders valves, the main contribution and recommendation for future research.

6.2 SUMMARY

A range of straight-through diaphragm valves (Saunders), from 40 mm bore diameter to 100 mm bore diameter, have been mounted horizontally and tested at different opening positions of fully, 75 %, 50 % and 25 % open positions in the Flow Process Research Centre at the Cape Peninsula University of Technology. Loss coefficient data were derived for laminar, transitional and turbulent flow in these valves.

The experimental data were compared with data and correlations in the literature, such as Perry & Chilton (1997), Miller (1990), Hooper (1981), the ESDU (2004) and Mbiya (2008). The work of Mbiya (2008) was found pertinent as it dealt with the same sizes of Natco valves. Evaluation of this work revealed three important points:

- In laminar flow, the laminar flow coefficient was the same
- For turbulent flow, Natco valves showed higher resistance to flow than Saunders valves and
- > The same loss coefficients could not be used for to determine pressure losses for transitional and turbulent data for valves produced by different manufacturers.

This model could predict well for fully open position and failed to predict well for different opening positions.

Therefore a new correlation has been developed, based on the work done by Fester et al., in 2007 (Equation 2.72), which was for fully open position. And in this work, the relationship has been extended to account different opening positions.

The nominal turbulent coefficient (λ_{Ω}) for fully open position is provided in Table 6.1 to be used with Equation 5.2

$$k_v = \frac{1000}{Re} + \frac{\lambda_\Omega}{\theta^{2.5}}$$
 Equation 5.2

Table 6.1:Nominal turbulent coefficient (λ_{Ω}) for fully open position for various pipe sizes

Bore diameter (mm)	Loss coefficient (λ_{Ω})
40	2.68
50	1.60
65	0.57
80	0.46
100	1.04

6.3 CONTRIBUTIONS

This thesis added loss coefficient data to the open literature and a design correlation for straight-through diaphragm valves, which will be useful for designing pipelines in industries and design correlation for straight-through Saunders valves, as well as contributing to the academic discourse and debate in this discipline.

The loss coefficient data found in this work was orders of magnitude lower than those for the Natco valves. Therefore, it is clear that the same loss coefficients could not be used in the turbulent flow for two different manufacturers, but in laminar flow the laminar loss coefficient found by Hooper (1981) and in this work are also similar to the one found by Mbiya (2008).

6.4 CONCLUSION

A new correlation has been derived to predict the loss coefficients for straight-through Saunders diaphragm valves at various openings from laminar to turbulent regimes.

6.5 RECOMMENDATIONS

At the end of this experimental investigation, the following is recommended:

- Further tests should be done to verify whether the loss coefficient for other manufacturers will differ to the existing loss coefficient found for Saunders and Natco valves using the same approach.
- > The horizontal position of the valves should be changed either in a vertical or inclined position to ascertain if the loss coefficient found in this work will remain the same.
- > The reason for discrepancies between Sanders and Natco valves should be investigated based on a micro-scale investigation using CFD and UVP.

REFERENCES

Banerjee, TK., Manas, D & Das, SK. 1994. Non-Newtonian liquid flow through globe and gate valve. Canadian Journal of Chemical Engineering, 72:207-211.

Barr, G. 1931. A Monograph of Viscometry, Oxford University Press

Barry, BA. 1991. Error in pratical measurement in surveying, engineering and technology. Rancho Cordova, Calif.: Landmark Entreprises

Benziger, JB & Aksay, IA. 1999. *Notes on data analysis: Chemical Engineering 346,* Spring term. Department of Chemical Engineering, Princeton University, Princeton, New Jersey 08544-5263.

Baudouin, MM. 2003. Contraction and expansion losses for non-Newtonian fluids. Unpublisshed MTech thesis, Cape Technikon, Cape Town.

Bragg, R & Holland, FA. 1995. *Fluid flow for Chemical Engineers*. 2nd Edition. London: Edward Arnold, 108 – 130.

Brinkworth, BJ. 1968. Introduction to experimentation. London: English University Press.

Brown, NP. & Heywood, NI. 1991. *Slurry handling: Design of solid liquid systems*. London: Elsevier applied science.

Chadwick, A & Morfett, J. 1992. *Hydraulics in civil and environmental engineering.* 3rd Edition. London: E & F N Spon, New York: Routledge.

Chhabra, RP & Richardson, JF. 1999. *Non-Newtonian flow in the process industries*. Oxford: Butterworth-Heinemann.

Chhabra, RP & Slatter, PT. 2001. *The flow of non-Newtonian slurries and sludges.* Unpublished course notes.

Coulson, JM & Richardson, JF. 1990. *Chemical Engineering* Volume 2. Oxford: Pergamon Press.

Crane Co. 1999. Flow of fluids through valves, fittings and pipes: metric edition – SI units. Technical paper no. 410M. London: Crane Co.

Edwards, MF, Jadallah, MSM & Smith, R. 1985. *Head losses in pipe fittings at low Reynolds number.* Chemical Engineering Res. Des. 63:43 – 50, January.

ESDU. *Pressure losses in valves.* Engineering Science Data Unit. Item number 69022. February 2004.

Fester, VG, Kazadi, DM, Mbiya, BM, & Slatter, PT 2007. Loss coefficients for flow of Newtonian and non-Newtonian fluids through diaphragm valves. *Chemical Engineering Research and Design: transactions IChemE, Part A*, 85 (A9): 1314-1324, September.

Franck et al., R. Spellman & Joanne Drinan. 2001. Fundamentals for the water and wastewater maintenance operator: Piping and valves.

Govier, GW & Aziz, K. 1972. The flow of complex mixtures in pipes. New York: Van Nostrand Reinhold.

Haldenwang, R. 2003. Flow of non-Newtonian fluids in open channels. Unpublished DTech (Civil Engineering) thesis, Cape Technikon, Cape Town.

Heywood, NI. & Brown, NP. 1991. *Slurry handling: Design of solid-liquid systems.* Elsevier, Barking, UK.

Hooper, WB. 1981. *The two-K method predicts head loss in pipefittings.* Chemical Engineering: 96 – 100, August.

Jacobs, BEA. 1993. Laminar/turbulent flow through an annulus with sudden constriction; as found in the Gannet project flow line bundles. Proc of 12th International Conference on slurry

Handling and Pipeline Transport: Hydro-transport 12, 28-30 September 1993. Brugge, Belgium, edited by CA Shook. London: Mechanical Engineering Publications.

Jadallah, MSM. 1980. Flow in pipe fittings at low Reynolds numbers. Unpublished PhD thesis, University of Bradford, UK.

Kazadi, DM. 2005. *Non-Newtonian losses through diaphragm valves*. Unpublished M.Tech dissertation, Cape Peninsula University of Technology, Cape Town.

Kirkup Les. 2002. Data analysis with Excel: An introduction for physical scientist. Cambridge: Cambridge University Press.

Kittredge, CP & Rowley, DS 1957. Resistance coefficients for laminar and turbulent flow through one-half-inch valves and fittings. *Transactions of the American Society of Mechanical Engineering*, 79:1759-1765, November.

Lazarus, JH & Slatter, PT. 1988. A method for the rheological characterisation of the tube viscometer data. Journal of pipelines, 7: 165-176.

Lomax, WR & Saul, AJ. 1979. *Laboratory work in hydraulics*. Granada Publishing Limited, Crosby Lockwood.

Liu, Henry. 2003. Pipeline engineering. Lewis Publishers.

Malkin, A. Ya. 1994. Rheology fundamentals. Canada: Chem. Tec, 1:1 – 3, 4:62 – 66.

Massey, BS. 1990. *Mechanics of fluids*. 2nd Edition, van Nostrand Reinhold.

Mbiya, BM. 2008. Predicting pressure losses in straight-through diaphragm valves. Unpublished DTech thesis, Cape Peninsula University of Technology.

McNeil, DA. 1999. *Two phase flow in orifice plates and valves.* Department of Mechanical and Chemical Engineering, Heriott-Watt University, Riccaton, Edinburgh, Scotland EH14AS, UK.

McNeil, DA & Morris, SD. 1995. A mechanistic investigation of laminar flow through an abrupt enlargement and a nozzle and its application on other pipefitting. Report EUR 16348 EN. Edinburgh: Department of Mechanical and Chemical Engineering, Heriott-Watt University.

Metzner, AB & Reed, JC. 1955. Flow of non-Newtonian fluids – correlation of the laminar, transition and turbulent flow regions. AlChej.1 (9).

Mezger, TG. 2002. The Rheology handbook: for users of rotational and oscillatory rheometers. Hannover, Germany: Viencebtz Verlag, 29.

Miles, K. & Associates. 2000. Knowing more about valves. Northcliff: K. Miles & Associates cc.

Miller, D.S. 1990. *Internal flow systems* .2nd ed. BHRA (Information Services), The Fluid Engineering Centre, Cranfield, Bedford MK43 0AJ, UK.

Munson, BR, Young, DF & Okiishi, TH. 1990. *Fundamentals of fluid mechanics*. 2nd Edition. New York: John Wiley & Sons.

Nguyen and Uhlherr, 1983. Proc. 3rd National Conference. Rheology, Adelaide.

Paterson, A. & Cooke, R. 1999. The design of slurry pipeline systems. Short course presented at the cape Technikon, Cape Town, 24-26 March, 1999.

Perry, RH, Green, DW & Maloney, JO. 1997. *Perry's Chemical Engineering Handbook.* 7th Edition. New York: McGraw-Hill.

Pienaar, VG. 1998. Non-Newtonian fitting losses. Unpublished MTech (Chemical Engineering) thesis, Cape Technikon, Cape Town.

Pienaar, VG, Alderman & NJ, Heywood, NI. 2001. *Slurry Handling: A review of frictional pressure losses for flow of non-Newtonian fluids through pipefitting.* Vol. 2, Part 6. AEA Technology plc, Gemini Building, Oxfordshire, UK.

Pienaar, VG, Slatter, PT, Ramohlola NS & Kazadi D. 2006. Resistance coefficients of mineral tailings flowing in diaphragm control valves. *IMPC Conference on Mineral Processing, Istanbul, Turkey 3-7 Sept, 2006.* Istanbul, Turkey.

Peters, MS. 1954. *Elementary chemical engineering*. New York: McGraw-Hill, 1954.

Perry, RH., Green, DW. & Maloney, JO. 1997. *Perry's chemical engineers' handbook*. 7th ed. New York: McGraw-Hill.

Perry, RH & Chilton, CH. 1973. Chemical engineering's handbook – international student edition. McGraw-Hill, Kogakusha, Ltd.

Rabinowitsch, B. 1929. Uber die viskositat und elastizitat van solen, Z. Phisikal. Chem., 145, 1.

Saundersvalves. 2007. Product overview: Industrial diaphragm valves. http://www.saundersvalves.com/site/index [06 December 2007].

Skelland, AHP. 1967. Non-Newtonian flow and heat transfer. New York: Wilev.

Slatter, PT. 1994. *Transitional and turbulent flow of non-Newtonian slurries in pipes.* Unpublished PhD thesis. University of Cape Town, South Africa.

Slatter, PT. 1999. A new friction factor for yield stress fluids. *14th International conference on slurry handling and pipeline hydrotransport 14*, Maastricht, September 1999: 255-265.

Slatter, PT & Pienaar, VG. 1999. Establishing dynamic similarity for non-Newtonian fittings loss, 14th Int.Conf. On slurry handling and pipeline transport. Hydro transport, BHR Group, 245-254.

Taylor, JR. 1997. An introduction to error analysis: the study of uncertainties in physical measurements. 2nd Ed. Sausalito, CA. University Science Books.

Turian, RM, MA, TW, Hsu, FLG, Sung, MDJ & Plackmann. 1997. Flow of concentrated non-Newtonian slurries: 2 Friction losses in bends, fittings, valves and venture meters. Department

of Chemical Engineering, 810. Clinton Street, University of Illinois at Chicago, Chicago, IL60607, USA.

Turian, RM & Sami Selim, M. 1983. *Friction losses for flow of slurries in pipeline bends, fittings, and valves.* Hemisphere Publishing Corporation. Particulate Science and Technology 1: 365 – 392.

APPENDICES: HYDRAULIC GRADE LINE TEST RESULTS

Table of	f content	of ap	pendices
----------	-----------	-------	----------

Appendix 1: CMC 5 % in 40 mm valve, 25 % open	148
Appendix 2: Kaolin 6 % in 40 mm valve, 25 % open	149
Appendix 3: Kaolin 10 % in 40 mm valve, 25 % open	150
Appendix 4: Kaolin 13 % in 40 mm valve, 25 % open	151
Appendix 5: Water in 40 mm valve, 25 % open	152
Appendix 6: CMC 5 % in 40 mm valve, 50 % open	153
Appendix 7: Kaolin 6 % in 40 mm valve, 50 % open	154
Appendix 8: Kaolin 10 % in 40 mm valve, 50 % open	155
Appendix 9: Kaolin 13 % in 40 mm valve, 50 % open	156
Appendix 10: Water in 40 mm valve, 50 % open	157
Appendix 11: CMC 5 % in 40 mm valve, 75 % open	158
Appendix 12: Kaolin 6 % in 40 mm valve, 75 % open	159
Appendix 13: Kaolin 10 % in 40 mm valve, 75 % open	161
Appendix 14: Kaolin 13 % in 40 mm valve, 75 % open	162
Appendix 15: Water in 40 mm valve, 75 % open	163
Appendix 16: CMC 5 % in 40 mm valve, 100 % open	164
Appendix 17: Kaolin 6 % in 40 mm valve, 100 % open	165
Appendix 18: Kaolin 10 % in 40 mm valve, 100 % open	166
Appendix 19: Kaolin 13 % in 40 mm valve, 100 % open	167
Appendix 20: Water in 40 mm valve, 100 % open	168
Appendix 21: CMC 5 % in 50 mm valve, 25% open	169
Appendix 22: Kaolin 6 % in 50 mm valve, 25 % open	170
Appendix 23: Kaolin 10 % in 50 mm valve, 25 % open	171
Appendix 24: Kaolin 13 % in 50 mm valve, 25 % open	172
Appendix 25: Water in 40 mm valve, 50 % open	173
Appendix 26: CMC 5 % in 50 mm valve, 50 % open	174
Appendix 27: Kaolin 6 % in 50 mm valve, 50 % open	175
Appendix 28: Kaolin 10 % in 50 mm valve, 50 % open	176
Appendix 29: Kaolin 13 % in 50 mm valve, 50 % open	177
Appendix 30: Water in 50 mm valve, 50 % open	178
Appendix 31: CMC 5 % in 50 mm valve, 75 % open	179

Appendix 32: Kaolin 6 % in 50 mm valve, 75 % open	180
Appendix 33: Kaolin 10 % in 50 mm valve, 75 % open	181
Appendix 34: Kaolin 13 % in 50 mm valve, 75 % open	182
Appendix 35: Water in 50 mm valve, 75 % open	184
Appendix 36: CMC 5 % in 50 mm valve, 100 % open	185
Appendix 37: Kaolin 6 % in 50 mm valve, 100 % open	186
Appendix 38: Kaolin 10 % in 50 mm valve, 100 % open	187
Appendix 39: Kaolin 13 % in 50 mm valve, 100 % open	188
Appendix 40: Water in 50 mm valve, 100 % open	189
Appendix 41: CMC 5 % in 65 mm valve, 25% open	190
Appendix 42: Kaolin 6 % in 65 mm valve, 25 % open	191
Appendix 43: Kaolin 10 % in 65 mm valve, 25 % open	192
Appendix 44: Kaolin 13 % in 65 mm valve, 25 % open	193
Appendix 45: Water in 65 mm valve, 50 % open	194
Appendix 46: CMC 5 % in 65 mm valve, 50 % open	195
Appendix 47: Kaolin 6 % in 65 mm valve, 50 % open	196
Appendix 48: Kaolin 10 % in 65 mm valve, 50 % open	197
Appendix 49: Kaolin 13 % in 65 mm valve, 50 % open	198
Appendix 50: Water in 65 mm valve, 50 % open	199
Appendix 51: CMC 5 % in 65 mm valve, 75 % open	200
Appendix 52: Kaolin 6 % in 65 mm valve, 75 % open	201
Appendix 53: Kaolin 10 % in 65 mm valve, 75 % open	202
Appendix 54: Kaolin 13 % in 65 mm valve, 75 % open	203
Appendix 55: Water in 65 mm valve, 75 % open	204
Appendix 56: CMC 5 % in 65 mm valve, 100 % open	205
Appendix 57: Kaolin 6 % in 65 mm valve, 100 % open	206
Appendix 58: Kaolin 10 % in 65 mm valve, 100 % open	207
Appendix 59: Kaolin 13 % in 65 mm valve, 100 % open	208
Appendix 60: Water in 65 mm valve, 100 % open	209
Appendix 61: CMC 5 % in 80 mm valve, 25% open	210
Appendix 62: Kaolin 6 % in 80 mm valve, 25 % open	211
Appendix 63: Kaolin 10 % in 80 mm valve, 25 % open	212
Appendix 64: Kaolin 13 % in 80 mm valve, 25 % open	213
Appendix 65: Water in 80 mm valve, 25 % open	214

Appendix 66: CMC 5 % in 80 mm valve, 50 % open	. 215
Appendix 67: Kaolin 6 % in 80 mm valve, 50 % open	. 216
Appendix 68: Kaolin 10 % in 80 mm valve, 50 % open	. 217
Appendix 69: Kaolin 13 % in 80 mm valve, 50 % open	. 218
Appendix 70: Water in 80 mm valve, 50 % open	. 219
Appendix 71: CMC 5 % in 80 mm valve, 75 % open	. 220
Appendix 72: Kaolin 6 % in 80 mm valve, 75 % open	. 221
Appendix 73: Kaolin 10 % in 80 mm valve, 75 % open	. 222
Appendix 74: Kaolin 13 % in 80 mm valve, 75 % open	. 223
Appendix 75: Water in 80 mm valve, 75 % open	. 225
Appendix 76: Kaolin 6 % in 80 mm valve, 100 % open	. 226
Appendix 77: Kaolin 10 % in 80 mm valve, 100 % open	. 227
Appendix 78: Kaolin 13 % in 80 mm valve, 100 % open	. 229
Appendix 79: Water in 80 mm valve, 100 % open	. 230
Appendix 80: CMC 5 % in 100 mm valve, 25% open	. 231
Appendix 81: Kaolin 6 % in 100 mm valve, 25 % open	. 232
Appendix 82: Kaolin 10 % in 100 mm valve, 25 % open	. 233
Appendix 83: Kaolin 13 % in 100 mm valve, 25 % open	. 234
Appendix 84: Water in 100 mm valve, 50 % open	. 236
Appendix 85: CMC 5 % in 100 mm valve, 50 % open	. 237
Appendix 86: Kaolin 6 % in 100 mm valve, 50 % open	. 238
Appendix 87: Kaolin 10 % in 100 mm valve, 50 % open	. 239
Appendix 88: Kaolin 13 % in 100 mm valve, 50 % open	. 240
Appendix 89: Water in 100 mm valve, 50 % open	. 241
Appendix 90: CMC 5 % in 100 mm valve, 75 % open	. 242
Appendix 91: Kaolin 6 % in 100 mm valve, 75 % open	. 243
Appendix 92: Kaolin 10 % in 100 mm valve, 75 % open	. 244
Appendix 93: Kaolin 13 % in 100 mm valve, 75 % open	. 245
Appendix 94: Water in 100 mm valve, 75 % open	. 246
Appendix 95: CMC 5 % in 100 mm valve, 100 % open	. 247
Appendix 96: Kaolin 6 % in 100 mm valve, 100 % open	. 248
Appendix 97: Kaolin 10 % in 100 mm valve, 100 % open	. 249
Appendix 98: Kaolin 13 % in 100 mm valve, 100 % open	. 250
Appendix 99: Water in 100 mm valve, 100 % open	. 252

Appendices 148

Appendix 1: CMC 5 % in 40 mm valve, 25 % open

						CMC 5% in 40 mm valve, 25 % open	ım valve, 25 %	obeu					
_	Date:	12/10/2006	Test done by Mume										
	Valve Type:	Diaphragm											
l	Valve dimension[m]:	0.04											
	Valve position:	% Open	Area[m2]										
_	Pipe Diameter												
	Ë	0.04212	0.00139337										
ı							_		1	(a.t.d.Vin	Kitin		
_	Material Type:	CMC 5%						ul.	L+Ulu-	III.	909.6		
	Density[kg/m3]:	1026.8						1.645	0.3/8	2.043	0.000		
	Concentration:	2%											
_	ž	0.000											
_	تد	2.177						0.00	2000	9000	8 075	9 975	
	=	0.608	Axial distances	-6.248	4.518	-1.830	-0.5/1	1.076	000.7	0.040	200		
	- Poor Loo	104 to 100	Valve plane										
	Tri used.	200	Non-dimensionalised distances incl. II.DT:	-148.3	-107.3	-43.45	-13.54	25.53	63.73	143.5	191.7	236.8	
	Kange selected.	2013		c	173	4.418	5.678	7.324	8.933	12.29	14.32	16.22	
			Distances[in]:	1,700	opd 2	Pod 3	Pod 4	Pod 5	Pod 6	Pod 7	Pod 8	Pod 9	Average Q
Run #	Re3		KV.	6	(ed)	(ga)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	ZS.
				124400	115692	103599	98008	64117	57076	42607	33825	25742	1.05
Run 1	104		18.06	116506	108573	97741	93171	61912	55278	41621	33313	25632	0.98
Run 2	95		93.12	100046	102630	02016	88149	59838	53599	40678	32816	25528	0.90
Run 3	æ		06.76	017601	20000	07200	2000	5779R	51991	39699	32285	25429	0.82
Run 4	75		105.92	103333	26010	20200	78244	55881	50368	38839	31804	25334	0.76
Run 5	98		108.05	87304	61033	16070	1001	2000	40400	38174	21308	25262	0.71
Run 6	61		114.24	93603	87864	79342	12861	04.040	49102	2000	20672	25,006	0.81
Run 7	55		124.43	84953	80953	72800	69624	51431	40000	20072	30007	27764	5
0 000	20		190.61	71262	66311	59909	57022	45251	41485	33623	/0167	5,50	9 0
, ;			00,000	00440	00003	51030	97507	40632	37801	31727	27968	24515	0.63

Appendices 149

Appendix 2: Kaolin 6 % in 40 mm valve, 25 % open

											1	Ţ	Т		+	Average O		+	+	+	+	-	+	+	+	-	+	+	+	1	-	+	-	+	140
							_	_				9.975		236.8	16.19	Pod 9	(Pa)	15953	16039	16200	16268	16243	16264	16221	16392	16317	16268	16378	16191	16135	15951	16109	16060	16076	16264
							Kth	2	14.30			8.075		191.7	14.29	Pod 8	(Pa)	17986	17980	18287	18345	18354	18414	18367	18534	18373	18496	18560	18417	18382	18212	18316	18273	18295	18400
							(net Vin	304.1	6.79			6.046		143.5	12.26	Pod 7	(Pa)	20142	20260	20491	20630	20660	20782	20636	20754	20656	20841	20860	20986	20899	20738	20764	20745	20707	20791
							" Illustell	(Indian	607.0			2.685		63.73	8.904	Pod 6	(Pa)	23866	23874	24207	24385	24454	24584	24461	24654	24550	24818	24768	25058	24955	24761	24731	24645	24657	24641
	25 % open						414		3.795			1.076		25.53	7.295	Pod 5	(Pa)	25852	25582	26159	26195	26165	25968	25484	25881	25475	26564	25998	27117	27025	26666	26718	26668	26577	26425
	Kaolin 6% in 40 mm vaive, 25 % open											-0.542		-12.86	5.678	Pod 4	(Pa)	56322	56271	62870	62689	68684	73847	73910	80581	80311	92959	92959	125012	125035	125272	118016	106536	106518	84091
	Kaolin 6% in											-1.801		-42.76	4.418	Pod 3	(Pa)	57545	57372	64386	64424	69933	75516	74988	81971	81984	94472	94472	127216	126081	126167	119848	107711	107827	85358
												-4.489	200000000000000000000000000000000000000	-106.6	1.73	Pod 2	(Pa)	60256	60389	67382	67287	72898	78266	77929	84747	85112	97627	97627	129435	129090	128976	122801	110809	110778	88267
												-6.219		-147.7	0	Pod 1	(Pa)	62313	62245	69466	69300	74963	80523	80034	86903	86992	99653	99653	132520	131504	131733	125239	112964	112875	90528
55 % oben		Test done by Mume & Sisonke			Area[m²]	0.00139337						Avial distances	Valve plane	Non-dimensionalised distances incl. [L/D]:	Distancesimi			125.46	124.86	12073	116.83	107.99	99 65	99.45	99.33	100.06	101.44	101.23	95.97	95.37	9610	100.55	98 38	98.36	19861
valve,		7/13/2007	Diaphragm	0.04	% Open	0.04212		Kaolin 6%	1103.9	9%	3.071	0.00	105	200	3			1																	
Kaolin 6 % in 40 mm valve, 25 % open		Date:	Valve Type:	Valve dimension[m]:	Valve position:	Pipe Diameter [m]:		Material Type:	Density[kg/m³]:	Concentration:	ţ;	2 3	DDT .seed.	Dance coloried	range selected.	ć	Kej	297	334	307	907	450	070	920	793	726	852	958	900	1599	4050	0071	4030	1053	750
Kaolin (Ô								_		#up		2 1 4		T S S	Zun 12	Kun 13	Run 14	9	Pun 17	Bin 18	9	Run 3	Z III	2 un 2	SZ UN S	Kun 30	Run 32	Run 35

Appendix 3: Kaolin 10 % in 40 mm valve, 25 % open

										26 0/ 2000		
2007/08/13	Test done	by Mume & Sisonke	_					Kaolin 10 % in 40 mm valve, 25 % open	n 40 mm valve,	uado « ez		
Diaphragm			1									
Valve dimension[m]: 0.04												
7. Open	n Area[m²]											
0.04212	2 0.00139337			d.								
Kaolin	Γ											
10%							1/h	n/(n+1)	(n+1)/n	K th		
1169.4	Ţ						5.702	0.149	6.702	71319		
10%	Т											
7.098	T											
0.175	Axial distances	800	6219	4 489	-1 801	-0.542	1 076	2 685	6046	8.075	9 975	
101 to 109	-											
Range selected: 0-130	Non-dimensi	Non-dimensionalised distances incl.[L/D]:	-147.7	-106.6	42.76	-12.86	25.53	63.73	143.5	191.7	236.8	
	Distances[m]:		0	1.73	4.418	5.678	7.295	8.904	12.26	14.29	16.19	
		ž	Pod 1	Pod 2	Pod 3	Pod 4	Pod 5	Pod 6	Pod 7	Pod 8	Pod 9	Average
			(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	[1/s]
		83.477	131841	127314	119301	115566	37498	32901	22168	15840	10179	1.70
		88.281	121131	116398	108580	104460	37285	32205	21970	15623	9883	1.52
		86.844	129099	123307	115666	111477	37333	32332	22124	15601	9829	1.62
		86.895	127047	121810	113993	109734	37377	32247	21955	15537	6686	1.61
		87.618	115181	109266	101691	98089	36988	31992	21863	15488	2966	1.46
		87.535	110484	105100	97360	93612	36539	31876	21676	15459	9792	1.40
		87.913	108704	103784	96271	92392	36287	31645	21599	15526	6//6	1.38
		91.244	105152	100214	92115	88594	36595	31455	21587	15487	2686	1.31
9900		91.571	99826	94595	86911	83182	36244	31424	21436	15407	9818	1.24
		92.388	94223	89129	81668	78104	36051	31175	21300	15295	96/6	1.15
		95.370	87474	81553	74677	71357	35309	30489	20780	14849	9476	1.04
		108.862	83254	78260	61507	67314	34494	30095	20532	14643	9437	0.93
		116.953	78272	73724	66683	63606	34347	29539	20209	14504	9212	0.82
		130.683	74881	70068	62759	59211	33713	29256	19811	14374	9234	0.75
		128.377	68754	63913	26895	53573	33232	28813	19791	14210	9185	0.64
		177.294	47636	43772	37550	34704	28959	25161	17240	12421	8145	0.20
		132 012	SEONE		-							

Non-Newtonian Loss Coefficients for Saunders Diaphragm Valves

Appendices 151

Appendix 4: Kaolin 13 % in 40 mm valve, 25 % open

-0.542
14
- [
-12.8E
5.678
Pod 4
(Pa)
-
-
+
84604 79050
+
-
62114 58111
64757 59735
57272 54010

Appendix 5: Water in 40 mm valve, 25 % open

	Date:	11/17/2006	Test done by Mume	_		Water in 40	Water in 40 mm valve, 25 % open	uado y					
	Valve Type:	Diaphragm		1									
	Valve dimensionini.	5.5		_									
	Valve position:	7, Open	Area[m*]	_									
	Pipe Diameter [m]:	0.04212	0.00138337										
	Material Type:	Water						1/4	n/(n+1)	(n+1)/n	¥		
	Density[kg/m³]:	995.4						-	0.5	2	0.0007725		
	Concentration:	100%											
	ي د	0 0000772											
	ž	-	Axial distances	-6.248	4.518	-1.830	-0.571	1.076	2.685	6.046	8.075	9.975	
	PPT used:	101 to 109	Valve plane			4. 4	13.55	00.00	27.00	3 677	104 7	236.0	
	Range selected:	0-130	Non-dimensionalised distances incl.[UD]:	-148.3	5701.	4418	F. 6.878	7 324	8 933	12.29	14.32	16.22	
			Distances[m]:		2				97.0	e Prod	8 200	o Prod	Average
Run #	Res		K.	L DO	7007	2007	100	0 00	100	(Bal)	100)	(Bal)	19/1
			34 44	(84)	(Pa)	103101	420244	20004	27813	25870	24343	23183	234
Run 1	96606		66.35	126104	125357	123161	100134	28700	27488	25477	24293	23204	2.24
Run 2	87259		21.18	02000	110020	06194	04064	28008	27171	25333	24231	23236	2.13
Run 3	83036		20.00	96074	95061	BASAS	84102	27832	28889	25185	24175	23296	2.03
Kun 4	79132		32.80	2000	EVCU8	78704	78531	27425	28659	25074	24138	23286	1.95
	*1000		20.23	75877	75181	74040	73840	27033	26281	24910	24093	23325	1.82
	02040		25.2	71860	71162	69861	69830	26402	28041	24733	24045	23341	1.72
	63005		57.83	67496	67111	66297	65858	26342	25754	24663	23873	23393	1.62
Bung	58894		60.29	63259	62828	62232	61770	26128	25532	24488	23921	23393	1.51
Run 10	55419		62.20	59979	59114	58626	58379	25822	25253	24417	23882	23408	1.42
Run 11	50707		66.26	55964	55038	54568	54372	25533	25010	24263	23818	23404	1.30
Run 12	44959		68.11	49476	49431	48837	48667	25043	24727	24121	23751	23425	1.15
Run 13	38576		71.80	44818	44334	44017	43921	24765	24486	23989	23697	23426	1.02
Run 14	84941		82.31	132211	131233	129802	129321	28002	27178	25249	24144	23137	2.18
Run 15	80954		75.30	114720	114064	112853	112237	27789	26853	25146	24100	2315/	2.08
Run 16	77764		70.53	102922	102092	101151	100550	27532	28660	25051	24050	23208	2.00
Run 17	73573		64.81	89390	88629	87540	87154	27132	26334	24900	24015	23231	00.1
Run 18	69541		61.24	79318	79002	77637	77242	26/92	22078	24752	23940	10707	8/1
Run 19	66208		63,03	75645	75175	74027	73847	26460	25858	24637	23823	23234	0/1
Run 20	61613		66.81	71103	70622	69764	69069	26076	25545	24489	23862	23281	86,1
Run 21	58471		68.93	67824	69899	96299	65968	25880	25341	24388	23809	23278	1.50
Run 22	54489		72.21	63574	63159	62622	62229	25535	25108	24265	23752	23284	1.40
Run 23	50201		76.23	59344	58603	58267	58016	25282	24885	24136	23705	23298	1.29
Run 24	46964		78.06	55378	55426	54547	54417	25065	24708	24060	23658	23299	1.21
Run 25	43168		96'09	51344	51308	50631	50387	24839	24540	23954	23625	23317	1.1
De 26			44.04	47440	17000	******	20000			0000			

Appendix 6: CMC 5 % in 40 mm valve, 50 % open

Date	ë	12/10/2006	Test done by Mume					care a serie de limit valve, se se pent					
Vah	Valve Type:	Diaphragm											
Val	Valve dimension[m]:	0.04		ı									
Valv	Valve position:	1/2 Open	Area[m²]										
a a	Pipe Diameter [m]:	0.04212	0.00139337	_									
T Table	Material Type:	CMC 5%						\$	n/(n+1)	(n+1)/n	Κth		
Pa	Density[kg/m³]:	1026.8						1.645	0.378	2.645	3,595		
8	Concentration:	5%								3			
:		0.000											
2 2		0.608	Axial distances	-6.248	4.518	-1.830	-0.571	1.076	2 685	6.046	8.075	9.975	
d	PPT used:	101 to 109	Valve plane										
Ra	Range selected:	0-130	Non-dimensionalised distances incl.[L/D]:	-148.3	-107.3	-43.45	-13,54	25.53	63.73	143.5	191.7	236.8	
			Distances[m]:	0	1.73	4.418	5.678	7.324	8.933	12.29	14.32	16.22	
Run #	Re ₃		ky	Pod 1	Pod 2	Pod 3	Pod 4	Pod 5	Pod 6	Pod 7	Pod 8	Pod 9	Average Q
			1000	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	[1/8]
Run 1	161		27.82	126049	117382	103338	66996	72704	64424	46757	36028	26191	1.43
_	146		29.24	120990	111807	98870	92361	70670	62753	45671	35503	26055	1.33
_	130		30.72	114883	106393	93807	88021	68298	60734	44496	34874	25936	1.23
_	118		32.09	109977	101928	90023	84359	86058	58759	43523	34364	25842	1.14
٠,	102		34.03	103490	96492	85435	80196	63413	26500	42229	33718	25709	1.03
	87		36.71	96849	90592	80143	75421	90209	53925	40860	32915	25554	0.92
Run 7	92		39.56	91375	85334	75865	71435	57546	51810	39653	32250	25435	0.83
	63		45.22	85297	79559	70628	66574	54752	49291	38289	31569	25286	0.73
	47		48.38	77274	71355	63276	60163	50648	46299	36617	30596	25106	0.59
9	37		64.11	71099	62699	59274	55894	47766	43800	35045	29815	24933	0.49
12	18		129.51	58075	54902	49484	47398	41345	38454	31958	28141	24563	0.30

Appendix 7: Kaolin 6 % in 40 mm valve, 50 % open

	Date:	7/12/2007	Test done by Mume										
	Valve Type:	Diaphragm		1					5				
	Valve dimension[m]:	0.04		ı									
	Vaive position:	7, Open	Area[m²]										
	Pipe Diameter [m]:	0.04212	0.00139337										
			r										
	Material Type:	Kaolin 6%						1/n	n/(n+1)	(n+1)/n	Kun		
	Density[kg/m³]:	1103.9						3.795	0.209	4.795	14.90		
	Concentration:	%9											
	t,:	3.071											
	Ķ:	2.038											
	ä	0.264	Axial distances	-6.219	-4.489	-1.801	-0.542	1.076	2.685	6.046	8.075	9,975	
	PPT used:	105	Valve plane										
	Range selected:	0-130	Non-dimensionalised distances incl.[L/D]:	-147.7	-106.6	-42.76	-12.86	25.53	63.73	143.5	191.7	236.8	
()			Distances[m]:	0	1.73	4.418	5.678	7.295	8.904	12.26	14.29	16.19	
	Res		, Y	Pod 1	Pod 2	Pod 3	Pod 4	Pod 5	Pod 6	2 pod	Pod 8	Pod 9	Average Q
				(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	[8]
Run 19	411		73.18	53627	51602	48780	47497	24437	22697	19028	16719	14668	1.00
Run 23	633		57.99	61352	59210	56196	55066	26318	24262	20365	18027	15935	1.28
	649		57.98	61297	59437	56326	55170	26281	24285	20372	18108	15937	1.28
Run 25	755		57.10	67098	64909	62000	60622	26446	24710	20826	18398	16170	1.40
Run 27	945		45.57	68047	65764	62795	61216	27048	25224	21061	18720	16480	1.59
Run 28	1179		41.92	74963	72688	69573	67485	27821	25476	21386	18800	16480	1.79
Run 29	1348		40.84	77877	75694	72567	70873	25839	24669	20501	18144	15790	1.92
Run 30	1569		38.55	82557	80404	77593	75514	26824	25356	21187	18640	16267	2.05
	1762		42.75	93544	91356	88585	87174	26828	25221	20934	18416	16161	2.18
Run 32	2015		43.68	10701	105053	101652	99766	27969	25414	20865	18252	15806	2.38
Run 33	2180		45.07	119566	116683	113585	111880	26265	24647	20380	17641	15240	2.54
Run 34	2230		49.23	131989	128980	125410	124069	22377	20665	16004	13373	10941	2.67
Run 35	2414		47.29	123984	121134	118742	116736	22758	20499	16150	13363	10986	2.61
Run 36	2214		46.07	114395	112638	108681	106920	21264	18981	14554	11850	9415	2.53

Kaolin 6 % in 40 mm valve, 50 % open

Appendices 155

Appendix 8: Kaolin 10 % in 40 mm valve, 50 % open

Appendix 9: Kaolin 13 % in 40 mm valve, 50 % open

Kaolin	Kaolin 13 % in 40 mm valve, 50 %	n valve,	50 % open										
							Kaolin 13 %	in 40 mm val	Kaolin 13 % in 40 mm valve, 50 % open				
	Date:	12/7/2007	Test done by Mume & Rendani										
	Valve Type:	Diaphragm											
	Valve dimension[m]:	0.04		_									
	Valve position:	% Open	Area[m*]										
	Pipe Diameter [m]:	0.04212	0.00139337				,						
		Kaolin	100										
	Material Type:	13%						1/1	n/(n+1)	(n+1)/n	Υ		
	Density[kg/m³]:	1215.5						4.136	0.195	5.136	99167		
	Concentration:	13%					-						
	4:	18.973											
	¥ &	16.141	Avial distances	0000	007.4	,	0.00	0207					
	DDT mod.	405	Value plane	-0.219	-4.409	1.80	-0.542	1.076	2,685	6.046	8.075	8.975	
	LLI need	201	valve plane										
	Range selected:	0-130	Non-dimensionalised distances incl.[L/D]:	-107.7	-106.6	-42.76	-12.86	25.53	63.73	143.5	191.7	236.8	
			Distances[m]:	0	1.73	4.418	5.678	7.295	8.904	12.26	14.29	16.19	
Run #	Re		J.	Pod 1	Pod 2	Pod 3	Pod 4	Pod 5	Pod 6	Pod 7	Pod 8	Pod 9	Average
				(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa	[Vs]
Run 2	43.34		23,45	121181	111468	96415	89444	75268	66667	47441	35629	25076	0.74
Run 3	30.31		33.49	120287	109829	95057	88012	74652	65561	46194	35329	23839	0.61
Run 4	31.93		15.68	118561	108857	93620	86395	72896	64354	45908	34612	23276	0.63
Run 6	25.18		47.83	113517	103143	89460	83405	70139	61957	44058	33704	23367	0.54
Run 7	23.88		15.18	114249	104483	89937	82487	71535	63094	45354	34078	23736	0.53
Run 8	16.03		36.54	112497	102670	89157	82758	70627	62485	44173	33291	23039	0.43
Run 9	17.59		13.81	110143	100147	86620	81339	68870	60629	43394	32875	22414	0.45
Run 10	18.32		70.01	109187	99449	85461	80075	67763	59930	42269	31964	22337	0.45
Run 11	12.44		94.85	109968	100102	86795	78757	67662	59611	42909	32497	22816	0.37
Run 12	13.80		111.0	106383	96711	83944	77472	66149	58676	41514	31745	22483	0.38
Run 13	9:26		233.7	102690	94135	81222	75350	65027	57126	40297	30742	22515	0.31
Run 14	26.6		185.8	100196	92608	79960	74094	63928	56162	39911	30537	22324	0.31
Run 15	4.56		99.5	100623	91935	80000	74179	64377	56716	40853	30777	22181	0.21
Run 17	3.05		285.3	94244	85897	74391	69179	59899	52825	39045	31103	22253	0.16
Run 18	1.48		1360	91009	83514	72123	66781	57989	51091	37446	28960	21835	0.11
Run 19	2.15		578.0	88454	81686	72348	67583	58120	51033	37166	29389	21734	0.13
Run 20	0.89		1968	76814	71699	61532	57447	51411	45961	33097	25639	19899	0.07
Run 21	0.57		2101	74620	70031	60613	56201	49819	44798	33575	27106	20931	0.05
Run 22	0.62		731.4	75107	69379	62207	58405	50338	44749	33708	26601	20743	90:0
	•												

Appendix 10: Water in 40 mm valve, 50 % open

	uedo						n/(n+1) (n+1)/n K ^{3/n}	2 0.0			2.685 6.046 8.075 9.975		63.73 143.5 191.7 236.8	8.933 12.29 14.32 16.22	Pod 6 Pod 7 Pod 8 Pod 9 Average Q	(Pa) (Pa) (Pa) [1/s]	3 24733 22471	30365 26786 24577 22674 3.13	29878 26626 24573 22749 3.01	29511 26381 24482 22818 2.91	29078 26219 24502 22876 2.79	28695 26069 24432 22897 2.68	25853 24384	27969 25669 24287 23035 2.43	27439 25460 24211 23084 2.31	26866 25123 24119 23171 2.10	26396 24901 24018 23222 1.90	24678 22902	24624 22925	28837 26116 24545 23023 2.66	24427 23070	27304 25456 24280 23218 2.20	26824 25144 24210 23281 2.01	Total Course Course Street
	Water in 40 mm valve, 50 % open						£	-			-0.571 1.076		-13.54 25.53	5.678 7.324	Pod 4 Pod 5	(Pa) (Pa)	129100 32493	116327 32352	103960 31559	95623 31126	86283 30730	77558 30052		68234 29154	66294 28672		57541 26885	97232 31811	85712 30613	77224 30138	71234 29707	64558 28325	61294 27539	E75.40
	Wate										-1.830 -0.		43.45 -13	4.418 5.6	Pod 3 Po	(Pa) (P	130446 129	117634 116	105234 103				+		- 3		57599 57	98669 97;	86128 85	78413 775	73063 712	65565 64	62086 612	27950
											-4.518		-107.3	1.73	Pod 2	(Pa)	132870	120616	107528	96928	89393	80843	75428	70839	68747	64462	59047	101200	88606	78877	73972	67029	63134	60040
				_		1					-6.248		-148.3	0	Pod 1	(Pa)	134487	122451	109429	100441	90852	81909	76529	71999	69541	65248	28300	103170	89899	81559	75528	67928	63884	00400
oben		Test done by Mume		Area[m²]	0.00139337						Axial distances	Valve plane	Non-dimensionalised distances incl.[UD]:	Distances[m]:	ž		34.81	32.98	30.47	29.04	27.04	25.07	24.67	25.07	26.90	30.04	31.68	28.88	26.32	25.22	25.70	28.48	31.81	22 67
e, 50 %		11/22/2006	Diaphragm	% Open	0.04212		Water	995,864	%00L	0.00081		101 to 109	0-130																					
Water in 40 mm valve, 50 % open		Date:	Valve Type:	Valve position:	Pipe Diameter [m]:		Material Type:	Density[kg/m²]:	Concentration:	2	ä	PPT used:	Range selected:		Res		119618	115666	111073	107412	103255	98889	94911	89947	85278	77719	70195	109268	103498	98148	92248	81457	74199	00000
Water in													_		Run#		Run 1	Run 2	Run 3	Run 4	Run 5	Run 6	Run 7	Run 8	Sun 9	Run 10	Run 11	Run 18	Run 19	Run 20	Run 24	Run 23	Run 24	Prim 26

Appendix 11: CMC 5 % in 40 mm valve, 75 % open

CMC	CMC 5 % in 40 mm valve, 75 % ope	valve, 7	2 % oben										
	Date	12/8/2006	Test done by Mime				CMC 5 % in	CMC 5 % in 40 mm valve, 75 % open	woo %				
	Valve Type:	Diaphragm		7									
	Valve dimension[m]:	0.04											
	Valve position:	% Open	Area[m²]										
	Pipe Diameter [m]:	0.04212	0.00139337										
	Material Type:	CMC 5%						1,h	rv(n+1)	(n+1)/n	κļ		
	Density[kg/m³]:	1026.8						1.550	0.392	2.550	1.957		
	Concentration:	5%					ŭ						
	ţ;	0.000											
	K:	1.542											
	::	0.645	Axial distances	-6.248	-4.518	-1.830	-0.571	1.076	2.685	6.046	8.075	9.975	
	PPT used:	101 to 109	Valve plane										
	Range selected:	0-130	Non-dimensionalised distances incl.[L/D]:	-148.3	-107.3	-43.45	-13.54	25.53	63.73	143.5	191.7	236.8	
			Distances[m]:	0	1.73	4.418	5.678	7.324	8.933	12.29	14.32	16.22	
Run #	Res		je.	Pod 1	Pod 2	Pod 3	Pod 4	Pod 5	Pod 6	Pod 7	Pod 8	Pod 9	Average
				(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	[8]
Run 1	267.25		13.89	125838	115315	100825	94211	73832	62039	47097	36222	26098	1.86
Run 2	254.42		12.81	121423	112245	98226	91729	72448	64061	46477	35832	26023	1.80
Run 3	243.71		12.52	118366	109769	96345	99968	71123	63039	45901	35556	25940	1.74
Run 4	231.13		12.09	114999	106652	93817	87636	69780	61834	45275	35181	25855	1.67
Run 5	216.97		12.17	111612	103895	90486	84703	68674	69909	44622	34795	25759	1.60
Run 6	193.82		12.63	105919	98404	86738	80792	66107	58623	43319	34183	25618	1.47
Run 7	176.47		13.19	101948	94865	83372	77867	64195	57141	42459	33732	25520	1.37
Run 8	159.74		12.99	97705	91038	80062	74970	62129	55574	41610	33221	25430	1.27
Run 10	119.29		14.34	86924	80833	71684	67254	56753	51063	39179	31904	25210	1.03
Run 12	75.96		20.08	73881	68607	61320	57361	50108	45594	36042	30285	24912	0.74

Appendix 12: Kaolin 6 % in 40 mm valve, 75 % open

Date:	7/11/2007	Test done by Mume & Sisonke										
Valve Type:	Diaphragm		ı						٠			
Valve dimension[m]:	0.04											
Valve position:	% Open	Area[m²]										
Pipe Diameter [m]:	0.04212	0.00139337	_									
Material Type:	Kaolin 6%						45	114080	(n41)/ln	w1m		
DensityRosm ³ 1:	1103 0						3 705	0000	1 705	4		
Concentration:	8%						3.785	907.0	4.35	14.80		
t,:	3.071											
÷	2.038											
ë	0.264	Axial distances	-6.219	-4.489	-1.801	-0.542	1.076	2.685	6.046	8.075	9.975	
PPT used:	105	Valve plane										
Range selected:	0-130	Non-dimensionalised distances incl.[UD]:	-147.7	-106.6	42.76	-12.86	25.53	63.73	143.5	191.7	236.8	
100000000000000000000000000000000000000		Distances[m]:	0	1.73	4.418	5.678	7.295	8.904	12.26	14.29	16.19	
Res		ž	Pod 1	Pod 2	Pod 3	Pod 4	Pod 6	Pod 6	Pod 7	Pod 8	Pod 9	Average
			(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	2
152.2		6.30	32098	30160	27448	26064	23362	21784	18336	16070	14139	0.60
245.9		8.77	33458	31549	28718	27324	23839	22163	18505	16190	14183	0.77
241.4		7.56	33396	31506	28648	27300	23839	22056	18492	16196	14114	0.76
172.9		8.74	32499	30595	27831	26503	23541	21887	18284	16078	14061	0.64
322.3		7.92	34426	32406	28547	28075	24090	22334	18598	16253	14107	0.6
388.7		829	35323	33269	30314	28965	24244	22427	19657	16235	14078	1.00
395.8		7.06	35209	33158	30206	28772	24186	22337	18702	16214	14054	0.99
467.2		8.98	35848	34005	30908	29422	24215	22481	18671	16282	14104	1.08
566.9		8.60	36891	34858	31836	30230	24537	22672	18759	16295	14080	1.20
649.9		8.38	37598	35382	32528	30960	24660	22775	18851	16362	14138	129
757.2		7.95	38420	36356	33281	31791	24710	22828	18922	16390	14100	1.40
857.0		7.83	39248	37088	34018	32505	24899	23003	18939	16407	14056	1.50
971.3		7.81	40340	38183	35072	33403	25087	23133	19022	16426	14038	1.61
1068		7.87	40929	38740	35613	34129	25147	23172	19047	16454	14103	1.69
1172		7.97	41839	39696	36493	34966	25291	23251	19057	16477	14067	1.78
1326		7.67	42898	40864	37526	36037	25375	23391	19163	16480	14073	1.90
1467		7.79	44202	41947	38778	37135	25492	23483	19180	16542	14049	2.01
1599		8.21	44998	42866	39631	37975	25526	23409	18963	16541	13939	2.10
1733		7.84	45991	43925	40498	38832	25606	23470	19149	16414	14000	2.20
1844		7.75	46900	44839	41348	39504	25492	23307	19115	16395	13872	2.28
2071	,	7.74	48290	46141	42790	41030	25568	23283	19077	16189	13838	2.42
2345		7.81	49923	47492	43885	42356	25527	23501	18887	15999	13559	255
2724		7.67	48341	46156	42604	40866	21735	19421	14709	11936	9283	2.77
3121		7.73	52794	50167	46438	44638	22132	19742	15064	12043	9269	2.99
3432		7.77	56748	53993	49585	47834	22897	20627	15573	12336	9390	3.15
3675	Section Section	7.96	59951	57201	52772	50633	24205	21641	16050	40000	0040	400

Kaolin 6 % in 40 mm valve, 75 % open

100	0007	_					-						
Kun Z/	4030		7.23	62913	59773	52025	53187	24423	22028	16095	12438	8915	
Run 28	4463	7	7.51	68289	64591	59639	57124	25885	22921	16463	12735	0668	L
Run 29	4656	7	7.27	69828	66542	61371	58872	26975	23869	16730	12711	8929	
Run 30	6338	2	7.27	89525	85599	78393	75045	30335	25894	17293	11924	7092	
Run 31	6349	7	7.39	89663	85688	78519	75214	30289	26015	17155	11908	7104	
Run 32	6616	7	7.36	93521	88845	81588	78689	31132	26581	17112	11700	6441	
Run 33	5749	7	7.26	81482	76615	70205	67874	27928	23931	15910	11053	629	
Run 34	2766	7	7.46	81555	77040	70702	68037	27606	23939	15463	10964	6338	
Run 36	6055	7	7.15	85094	80285	73799	70752	28690	24825	16414	11323	6613	
Run 36	5435	7	7.20	77904	73576	67419	64651	27689	23770	16175	11293	7254	4.07
22	2470		7.00	7,007	10.400	97.7.0	1,0,0	20200					

Run 25 Run 27 Run 36 Run 37 Run 36 Run 36 Run 36

Appendix 13: Kaolin 10 % in 40 mm valve, 75 % open

ο <u>Ε</u> Ε	Test done by Mume Area[m²]					Kaolin 10	% in 40 mm v	Kaolin 10 % in 40 mm valve, 75 % open	g			82
0.04212		0.00139337	_									
Kaolin 10%							1/h	n/(n+1)	(n+1)/n	K ¹ / ₁		
1169.4						35	5.702	0.149	6.702	71319		
8.965												
0.175		Axial distances	-6.219	-4.489	-1.801	-0.542	1.076	2.685	6.046	8.075	9.975	
101 to 109		Valve plane										
0-130		Non-dimensionalised distances Incl.[L/D]:	-147.7	-106.6	-42.76	-12.86	25.53	63.73	143.5	191.7	236.8	
		Distances[m]:	0	1.73	4.418	5.678	7.295	8.904	12.26	14.29	16.19	
		ž.	Pod 1	Pod 2	Pod 3	Pod 4	Pod 5	Pod 6	Pod 7	Pod 8	Pod 9	Average
			(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	[1/8]
		75.65	50901	46299	39421	36436	31351	27312	18627	13386	8786	0.26
	_	6.55	54689	50180	43117	39689	34055	29624	20108	14446	9284	0.64
		9.45	58865	53734	46011	42470	35766	31000	21139	15103	6026	0.85
		11.09	61630	56384	48399	44593	36520	31761	21548	15567	9822	1.03
		9.91	64776	59277	51163	47353	37510	32578	22108	15749	10088	1.31
	+-	10.05	70681	64951	56508	52448	38863	33902	22842	16305	10313	1.69
	1	8.22	73479	67919	59381	923308	39679	34362	23380	18617	10504	2.00
	Н	8.38	76610	70427	61710	57813	40022	34715	23592	16808	10591	2.21
	-	7.85	80140	74551	65669	61656	40577	35297	23953	17062	10714	2.51
	\neg	8.14	84077	78014	68704	64413	41080	35784	24269	17210	10819	2.70
		8.23	87592	81893	72925	68122	41506	36108	24488	17483	11041	2.92
	-	8.17	87256	81413	71699	67661	41520	36063	24491	17430	10982	2.90
		8.20	90143	84929	74824	70651	41880	36473	24797	17606	11240	3.08
		7.93	94507	89198	79201	74767	42533	36937	25114	17801	11276	3.33
	$\overline{}$	7.87	97817	91503	82079	78054	42885	37067	25119	17918	11172	3.50
		7.82	103904	97550	87698	83183	43282	37554	25353	17976	11231	3.83
	-1	7,83	108591	101760	92377	87621	43921	37981	25611	18220	11406	4.04
	1	7.74	111644	104674	95574	91099	44381	38307	25776	18362	11511	4.20
	1	7.61	116263	109552	99730	95252	44461	38076	25626	18075	1136	4.46
	\neg	7.50	119419	112431	103073	97952	44598	38135	25414	17792	10836	4.62

Appendix 14: Kaolin 13 % in 40 mm valve, 75 % open

							Keolin 13 %	In 40 mm	Kaolin 13 % in 40 mm may 75 % ones				
	Date:	12/7/2007	Test done by Mume & rendani	_					e, re a open				
	Valve Type:	Diaphragm		1							,		
	Valve dimension[m]:	0.04											
	Valve position:	% Open	Area[m²]										
	Pipe Diameter [m]:	0.04212	0.00139337										
				1									
	Material Type:	Kaolin 13%						1,4	n/(n+1)	(n+1)/n	¥.		
	Density[kg/m³]:	1215.5						4.136	0 195	5 136	99167		
	Concentration:	13%											
	ţ	18.973											
	ž	16.141											
	ë	0.242	Axial distances	-6.219	-4.489	-1.801	-0.542	1.076	2.685	6.046	8.075	9 975	
	PPT used:	105	Valve plane										
	Range selected:	0-130	Non-dimensionalised distances incl.[U/D]:	-147.7	-106.6	-42.76	-12.86	25.53	63.73	143.5	191.7	236.8	
			Distances[m]:	0	1.73	4.418	5.678	7.295	8.904	12.26	14.29	16.19	
Run #	Re		Kyind	Pod 1	Pod 2	Pod 3	Pod 4	Pod 5	Pod 6	Pod 7	Pod 8	Pod 9	Average Q
				(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	IVs
Run 2	62.02		3.229	128968	117753	101825	93720	80390	70586	50050	37291	25147	0.92
Run 3	40.60		9.535	124449	113769	98255	90753	78371	68784	48430	36358	24648	0.72
Run 5	32.57		10.70	119220	109751	94183	87317	75911	66497	47105	35268	24384	0.63
Run 6	20.64		34.65	118134	108273	92588	85943	74756	65354	46379	34983	24242	0.50
Run 7	22.53		30.77	115587	105548	90503	83764	72953	64173	45642	34629	24103	0.52
Run 8	14.20		30.43	114536	104756	90492	83370	72463	63647	45143	34149	23470	0.40
Run 10	10.40		68.86	109350	100374	86103	79815	69504	92609	43559	32762	23224	0.34
Run 11	11.15		54.48	107634	98371	84685	78001	67554	59652	43022	32934	23035	0.35
Run 12	6.20		102.9	105706	90896	83115	77386	67220	59271	42166	32135	22489	0.25
Run 18	3.17		142.2	94797	88768	75952	70942	62414	54700	39172	30127	21820	0.17
Run 19	1.00		681.1	89332	82008	70500	65468	58202	52523	37897	29437	21929	0.09
Run 20	1.17		376.4	88982	81884	72428	66957	58422	51250	37624	28860	21539	0.0
Run 25	1.09		757.3	83717	78277	68025	62490	5,4355	48089	36071	28171	21257	0.09
Run 26	0.70		1199	80226	74590	64927	60308	52390	46259	35163	28171	21213	0.07
Run 27	0.70		2299	79360	73877	63510	59105	53018	47497	34573	27515	21083	90.0

Appendix 15: Water in 40 mm valve, 75 % open

Water	Water in 40 mm valve, 75 % open	e, 75 % o	oben										
							Water in 40	Water in 40 mm valve, 75 % open	wedo %				
	Date:	11/22/2006	Test done by Mume										
	Valve Type:	Diaphragm											
	Valve dimension[m]:	0.0 4		,									
	Valve position:	% Open	Area[m²]						,				
	Pipe Diameter [m]:	0.04212	0.00139337	_									
							_						
	Material Type:	Water						1/u	n/(n+1)	(n+1)/n	¥		
	Density[kg/m³]:	995,356						-	0.5	2	0.00078658		
	Concentration:	100%											
	3	0											
	ä	0.00078658											
	= 6	- 27	Axial distances	-6.248	-4.518	-1.830	-0.5/1	1.076	2,685	6.046	8.0/5	9.975	
	PPT used:	101 to 109	Valve plane		0.00		1	1	12.00			0000	
	Range selected:	0-130	Non-dimensionalised distances incl.[L/D]:	-148.3	-107.3	-43.45	-13.54	25.53	63.73	143.5	191.7	236.8	
			Distances[m]:	0	1.73	4.418	5.678	7.324	8.933	12.29	14.32	16.22	
Sun #	Re		sk.	Pod 1	Pod 2	Pod 3	Pod 4	Pod 5	Pod 6	Pod 7	Pod 8	Pod 9	Average
				(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	[1/6]
Run 1	177356		7.82	94085	90573	85247	82748	35550	31953	24782	20378	16406	4.64
Run 2	172682		8.39	90063	86681	81643	78986	34443	31148	24489	20324	17511	4.51
Run 3	164298		7.84	84959	81726	76384	74508	34373	31365	25105	21346	17813	4.30
Run 4	156722		7.81	79044	76231	71956	69427	33089	30437	24608	21159	17951	4.10
Run S	146466		7.73	71538	69225	65330	63553	31559	29115	23983	20921	18055	3.83
Run 6	140690		8.09	68912	66414	62579	60733	30906	28373	23624	20805	18125	3.68
Run 7	132938		7.95	63577	61453	57957	56043	29511	27552	23226	20598	18183	3.48
Run 8	123635		8.71	59499	57845	54906	53405	28257	26497	22666	20411	18327	3,23
Run 9	115985		8.93	55408	54211	51618	50262	27075	25558	22298	20251	18406	3.03
Run 10	107224		9.13	51011	49608	47376	46078	26081	24712	21910	20133	18483	2.80
Run 11	101012		9.19	47648	46228	44414	43725	25441	24066	21628	19992	18579	2.64
Run 12	93736		9.38	44802	43679	42019	41357	24641	23618	21251	19860	18611	2.45
Run 13	84913		11.01	41561	40602	38968	38396	23747	22866	20861	19746	18683	222
Run 20	127196		7.40	51639	49715	46869	45558	21525	19844	15815	13424	11080	3.33
Run 21	119413		8.32	48938	47014	44611	43008	20539	18898	15362	13259	11299	3.12
Run 22	111949		8.71	45586	44030	41497	40310	19860	18267	14996	13165	11329	2.93
Run 23	104302		00.6	41873	40736	38377	37134	18686	17317	14573	12789	11291	2.73
Run 24	96234		9.53	38164	36997	35076	34106	17566	16531	14034	12564	11255	2.52
Run 25	88352		9.65	41266	40532	39188	38431	24243	23358	21199	19980	18986	2.31
Run 26	79780		10.71	42576	41691	40361	39791	26983	26341	24503	23495	22547	2.09
				•									

Appendix 16: CMC 5 % in 40 mm valve, 100 % open

Due: CMC 6 % in 40 mm valve, 160 % open CMC 6 % in 40 mm valve, 160 % open CMC 6 % in 40 mm valve, 160 % open Processor CMC 6 % in 40 mm valve, 160 % open Processor Processor </th <th></th>														
Ubbs 1200.000 Feet Dammed (m) 1200.000 Feet Dammed (m) 1200.000 Feet Dammed (m) 1200.000 Feet Dammed (m) 1200.000 Peet Dammed (m) 1200.000 Peet Dammed (m) 1200.000 1200.000 Peet Dammed (m) 1200.000 12								CMC 5 % in	40 mm valve.	100 % oben				
Valve discretation; Open Analph? A feet of the first of the fi		Date:	12/9/2006	Test done by Mume	_									
Valve position: Concentration: 0.04 Analge*** A realge***		Valve Type:	Diaphragm											
Vulvie position: Open Aveign¹¹ Aveign²¹ Pipe Dimestrioli: Cuci. 25.6 Cuci. 25.6 Cuci. 25.6 Cuci. 10.0 C		Valve dimension[m]:	0.04											
Pipe Diameter [m]; 0.04312 0.00138337		Valve position:	Open	Area[m²]										
Higherial Type: CMC 5% Concentration: 6		Pipe Diameter [m]:	0.04212	0,00139337										
Dimit/Nggm ; 102.86 CHIC 5 No. Chicago Chicago														
Concentration: 5% L; Concentration: 5% L; Concentration: 5% L; Concentration: 6% L; Concentration: 6% L; Concentration: 1:542 Alail distances 6.246 4.518 -1.830 0.571 1.076 2.686 6.046 8.075 8.975 R; PPT used: 1.10 1.00 Mon-dimensional distances inci.[LD]: -1.48.3 -1.834 2.55.3 6.375 1.435 1.524 8.05 8.075 8.075 1.075 2.683 6.046 8.075 8.075 8.037 1.435		Material Type:	CMC 5%						1/1	n/(n+1)	(n+1)/n	Υ		
Concentration: 5% L; Concentration: 5% L; Concentration: 6% Axial distances -6.248 -4.518 -1.830 -0.571 1.076 2.666 6.046 8.075 8.075 K: n: 0.645 Axial distances incl.LDF -4.518 -1.673 -4.345 -1.3.54 8.675 6.046 8.075 9.75 Perf used: (1) to 109 Valve plane Pod 1 Pod 1 7.3 4.18 5.678 7.34 8.03 1.43.5 1.62.7 Rage selected: (1) to 109 Valve plane Pod 1 Pod 2 Pod 3 7.34 8.03 1.229 1.43.5 1.62.7 Rage assistance in the control of the contro		Density[kg/m³]:	1026.8						1.550	0.392	2.550	1.957		
t.: 0.000 k.: 0.000 R.: 0.000 <th< th=""><th></th><th>Concentration:</th><th>5%</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>		Concentration:	5%											
K; 1542 Axial distances -6.248 -4.518 -1.830 -0.571 1.076 2.865 6.046 8.075 9.975 Pued: 10.645 Axial distances inci, L/D; -1.48.3 -1.07.3 -4.518 -1.354 2.5.53 63.73 1.43.5 1.97.8 2.86.8 Pued: 10.10 109 Value plane -1.48.3 -1.07.3 -4.34.8 -1.35.4 2.5.53 63.73 1.43.5 1.62.2 Range selected: 0.130 Non-dimensionalised distances inci, L/D; -1.07.3 -4.34.8 5.67.8 7.32.4 8.833 1.22.0 1.43.2 1.62.2 Range selected: 0.130 Non-dimensionalised distances inci, L/D; Pod 1 Pod 3 Pod 4 Pod 5		t,:	0.000											
n:. 0.645 Axial distances -6.248 -4.518 -1.830 -0.571 1.076 2.685 6.046 8.075 9.975 PPT taset: 1010 109 Valve plane -1.48.3 -1.07.3 -42.45 -1.82.0 </th <th></th> <td>Ä</td> <td>1.542</td> <td></td>		Ä	1.542											
PPT Lated: (101 to 109) Valve plane -148.3 -107.3 -43.45 -13.54 25.53 63.73 148.5 191.7 23.68 Range selected: 0-130 Non-dimensionalised distances inci.[LD]: -148.3 -107.3 -43.45 -13.54 25.53 63.73 148.5 191.7 23.68 Rage selected: 0-130 Non-dimensionalised distances inci.[LD]: -1.73 -4.18 5.678 7.324 8.833 12.29 14.32 16.27 Rage Res Pod 1 Pod 2 Pod 3 Pod 4 Pod 4 Pod 5 Pod 5 Pod 7 Pod 8 Pod 6 Pod 7 Pod 8 Pod 6 Pod 7 Pod 8 Pod 9		Ë	0.645	Axial distances	-6.248	-4.518	-1.830	-0.571	1.076	2.685	6.046	8.075	9.975	
Range selected: 0.130 Mon-dimensionalised distances incl.(L/D): -107.3 -43.45 -13.54 25.53 63.73 14.3.5 191.7 236.8 Res Res Distances[m]: k, Pod 1 1/73 4.418 56.76 7.324 8.833 12.29 14.32 16.27 Res Res Pod 1 Pod 2 Pod 3 Pod 4 Pod 5 Pod 6 Pod 7 Pod 9 Pod 8 Pod 6 Pod 7 Pod 9 Pod 8 Pod 6 Pod 6 Pod 7 Pod 9 Pod 7 Pod 9 Pod 6 Pod 7 Pod 9 Pod 9 </th <th></th> <th>PPT used:</th> <th>101 to 109</th> <th>Valve plane</th> <th></th>		PPT used:	101 to 109	Valve plane										
Rej Rej Pod 1 Pod 2 Pod 3 6756 7324 8 933 12.29 14.32 16.22 261.6 Rej Pod 4 Pod 4 Pod 5 Pod 4 Pod 6 Pod 7 Pod 9		Range selected:	0-130	Non-dimensionalised distances incl.[L/D]:	-148.3	-107.3	-43.45	-13.54	25.53	63.73	143.5	191.7	236.8	
Rej Reg Fey Pod 1 Pod 2 Pod 3 Pod 6 Pod 6 Pod 7 Pod 9 Pod 9 261.6 8.0 8.0 17.0887 11.0987 11.0987 11.0910 96.089 89.106 7.315 83.50 261.25 255.3 8.0 7.41 11.4039 10.5438 89.106 7.132 651.76 7.897 261.76 7.897 261.76 7.897 261.76 7.897 261.76 7.897 261.76 261.84 7.897 261.84 651.84 4.897 261.84 671.82 863.70 7.132 651.76 4.897 261.84 7.897 261.84				Distances[m]:	0	1.73	4.418	5.678	7.324	8.933	12.29	14.32	16.22	
261.6 ROBERTION (Pa)	Run #	Re3		3	Pod 1	Pod 2	Pod 3	Pod 4	Pod 5	Pod 6	Pod 7	Pod 8	Pod 9	Average Q
261.6 8 06 120887 110910 96088 89106 74324 65459 47315 36350 26125 235.3 741 114039 105458 90771 85062 71392 63176 45972 35546 25943 218.4 6.43 7.20 105454 101443 85042 71392 66138 45022 35141 25948 25948 200.6 7.20 105467 95302 87141 65924 44102 34504 25738 174.8 6.70 6.79 95962 97045 75466 6402 57886 42434 34291 25585 150.2 6.79 96962 97046 75406 6402 57886 42177 3347 25625 150.2 8.12 8.12 1742 6598 71789 6171 5503 3347 25452 150.2 8.12 8.244 7349 6512 4022 5786 42177 3347 <td< th=""><th></th><th></th><th></th><th></th><th>(Pa)</th><th>(Pa)</th><th>(Pa)</th><th>(Pa)</th><th>(Pa)</th><th>(Pa)</th><th>(Pa)</th><th>(Pa)</th><th>(Pa)</th><th>[Vs]</th></td<>					(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	[Vs]
235.3 7.41 114039 105458 90771 65062 71392 63176 45672 35546 25943 200.6 218.4 6.43 45072 36178 45672 35141 25648 25948 200.6 7.20 105862 10143 86347 62211 69165 61438 46022 35144 25648 25648 18.2 7.20 105862 10143 86347 62710 69852 44102 38678 4264 25638 17.8 6.79 6.79 89952 93045 81068 7742 65924 42177 3467 25655 162.0 7.19 97369 9004 7349 6510 42177 3347 25625 150.2 8.12 8.12 1739 6171 55203 41366 33147 25452 150.2 8.12 8.24 7546 6440 7348 4717 35203 4718 2531 4717 2548 </th <th>Run 1</th> <th>261.6</th> <th></th> <th>8.06</th> <th>120887</th> <th>110910</th> <th>96088</th> <th>89106</th> <th>74324</th> <th>65459</th> <th>47315</th> <th>36350</th> <th>26125</th> <th>1.83</th>	Run 1	261.6		8.06	120887	110910	96088	89106	74324	65459	47315	36350	26125	1.83
2184 6.43 6.43 6.136 6136 61436 45022 3514 25646 200.6 7.20 7.20 105662 97802 8501 7947 67700 56952 44102 36108 25738 14.0 6.44 6.44 6.44 7.44 7.44 7.44 7.48 6.44 7.48 7.56 7.56 44102 3.87 2.5635 7.56 7.56 7.56 44102 3.87 2.5635 7.56 7.56 7.56 44102 3.87 2.5635 7.56 7.56 44102 3.87 2.5635 7.56 7.56 7.56 44102 3.87 2.5635 7.56 7.56 7.56 44102 3.87 2.5635 7.56 7.56 7.56 44102 3.87 2.5635 7.56 7.56 7.56 7.56 7.56 7.56 7.56 7.56 7.56 7.56 7.56 7.56 7.56 7.56 7.56 7.56 7.56 7.56	Run 2	235.3		7.41	114039	105458	90771	85062	71392	63176	45972	35545	25943	1.70
200.6 7.20 7.20 105962 95601 79407 67700 59852 44102 34608 25738 187.6 6.44 102367 95308 83003 77142 65924 58729 43434 34261 25653 174.8 6.79 6.79 65308 87044 77142 65924 58726 42840 34879 25685 162.0 7.19 6.79 812 8786 7746 64402 57866 4277 33879 25685 156.2 812 812 812 812 812 812 33879 25685 158.5 812	Run 3	218.4		6.43	109454	101143	88347	82211	69165	61438	45032	35114	25848	191
187.6 6.44 10.2367 95.30e 83003 77142 65.24 58729 43434 34.851 256.53 174.8 6.79 6.79 6.79 6.70 7.10 89952 93045 81068 75406 64402 57686 42840 33879 25685 162.0 7.19 812 <td< th=""><th>Run 4</th><th>200.6</th><th></th><th>7.20</th><th>105962</th><th>97802</th><th>85601</th><th>79497</th><th>67700</th><th>59952</th><th>44102</th><th>34608</th><th>25738</th><th>1.51</th></td<>	Run 4	200.6		7.20	105962	97802	85601	79497	67700	59952	44102	34608	25738	1.51
174.8 6.79 9952. 93045. 81068 75406 64402 57686 42840 33879 25685 162.0 7.19 97389 90014 78444 73498 65120 56356 42177 33497 25625 150.2 8.12 97389 90014 78265 71289 61711 55203 41387 25462 139.5 6.91 9173 86048 74378 60429 63966 53922 40822 3822 25397 113.4 6.96 84909 78560 83331 64745 56835 51124 39212 3872 25216 100.6 5.66 80766 75038 62271 52341 58448 49396 38309 31483 25716 83.9 6.41 75518 70383 62435 58700 5312 36994 30799 25011	Run 5	187.6		6.44	102367	95308	83003	77142	65924	58729	43434	34261	25653	1.43
162.0 7.19 97363 90014 78444 73496 65356 42177 33497 25525 150.2 8.12 8.12 94244 87561 76266 71296 61711 55203 41386 33147 25462 139.5 6.91 6.91 77378 66429 60366 53922 40822 33822 25387 113.4 6.91 6.94 7856 69331 6445 56832 51124 39212 3172 25215 100.6 5.56 80766 75038 62231 64236 38309 31482 25316 83.9 6.41 75518 70383 62237 54846 38309 31482 25316	Run 6	174.8		6.79	99952	93045	81068	75406	64402	57686	42840	33879	25585	1.36
150.2 8.12 94.244 87561 76265 71299 61711 55203 41386 33147 25462 139.5 6.91 91.73 85048 7178 69429 60366 53922 40822 25897 113.4 6.96 94909 7856 6931 6445 56835 5172 39212 31972 25216 10.6 5.6 90766 75038 62231 62231 54848 38309 31482 25316 83.9 6.41 75518 70383 62435 6670 52712 47255 36964 30799 25011	Run 7	162.0		7.19	97393	90014	78444	73498	63120	56356	42177	33497	25525	1.29
139.5 6.91 61.73 85048 74378 69.66 53922 40822 32822 25397 113.4 6.96 6.96 69331 64745 56835 51124 39212 31972 25215 100.6 7.56 80.76 75038 66273 62231 54648 49396 38309 31483 25130 83.9 6.41 75518 70383 62435 5870 47255 36964 30799 25011	Run 8	150.2		8.12	94244	87561	76265	71299	61711	55203	41386	33147	25462	1.22
113.4 6.96 6400 7850 6931 64745 56835 51124 39212 31972 25215 100.6 5.56 60766 75038 66273 62231 54648 49396 38309 31483 25130 83.9 6.41 75518 70383 62435 58700 52172 47255 36964 30799 25011	Run 9	139.5		6.91	91373	85048	74378	69429	99809	53922	40822	32822	25397	1.15
100.6 5.56 80.766 75038 66273 62231 54848 49396 38309 31483 25130 83.9 6.41 75518 70383 62435 58700 52172 47255 36984 30799 25011	Run 10	113.4		96.9	84909	78560	69331	64745	56835	51124	39212	31972	25215	0.99
83.9 6.41 75518 70383 62435 58700 52172 47255 36984 30799 25011	Run 11	100.6		5.56	80766	75038	66273	62231	54848	49396	38309	31483	25130	0.91
	Run 12	83.9		6.41	75518	70383	62435	58700	52172	47255	36984	30799	25011	0.79

Appendix 17: Kaolin 6 % in 40 mm valve, 100 % open

							Kaolin 6 %	in 40 mm val	Kaolin 6 % in 40 mm valve, 100 % open	_			
	Date:	7/7/2007	Test done by Mume	_									
	Valve dimension[m]:	O.04											
	Value nonliton	5	Area[m²]	_									
	Pipe Diameter [m]:	0.04212	0.00139337										
	Metoriel Tune	Kaolin 60						ş	1,000	ditan)	W.T.		
	Deneitylko/m³1:	1103.9						3.795	0 200	4 795	14.90		
	Concentration:	6%											
	3 2	3.071											
	ë	0.264	Axial distances	-6.248	-4.518	-1,830	-0.571	1.076	2.685	6.046	8.075	9.975	
	PPT used:	105	Valve plane										
	Range selected:	0-130	Non-dimensionalised distances incl.[L/D]:	-148.3	-107.3	-43.45	-13.54	25.53	63.73	143.5	191.7	236.8	
			Distances[m]:	0	1.73	4.418	5.678	7.324	8.933	12.29	14.32	16.22	
Run #	å			Pod 1	Pod 2	Pod 3	Pod 4	Pod 6	Pod 6	Pod 7	Pod 8	Pod 9	Average
				(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	[Vs]
Run 1	204.2		4.63	35379	33376	30354	28829	26589	24739	20924	18682	16529	0.72
Run 3	288.9		4.47	36129	34083	31174	29617	26921	25110	21178	18849	16702	0.85
Run 4	280.5		6.26	35945	33971	30968	29464	26842	24922	20889	18649	16498	0.86
Run 9	694.6		3.58	37940	35874	32734	31167	27602	25523	21267	18834	16532	1.35
Run 11	916.9		3.61	39229	37213	33651	32097	27834	25843	21427	18967	16550	1.59
Run 13	1100		3.16	39783	37577	34103	32533	27785	25767	21408	18887	16424	1.76
Run 15	1309		3.16	40709	38556	35037	33430	28121	26022	21475	18925	16383	192
Run 16	1307		3.03	40695	38411	34937	33303	27995	25992	21503	18860	16394	1.93
Run 18	1546		3.08	41312	39150	35703	34031	28228	26071	21523	18905	16413	5.09
Run 19	1788		2.84	42471	40106	36483	34768	28169	26006	21492	18560	16127	2.29
Run 20	1835		2.84	41943	39820	36218	34502	28083	25949	21349	18604	16106	2.29
Run 22	2072		2.80	42453	40446	38578	35070	27939	25613	20976	18321	15624	2.46
Run 23	2450		2.97	39368	37821	33927	32314	24221	22119	17093	14351	11784	2.65
Run 24	2370		2.86	39756	37588	33862	32443	24348	22097	17129	14345	11695	264
Run 26	2775		2.82	41510	39402	35399	33305	24651	22427	17186	14394	11532	2.89
Run 26	2747		2.70	41633	39101	35419	33680	24351	22229	17207	14382	11472	2.89
Run 28	2910		3.13	43051	40330	36128	34195	24282	21588	16444	13333	10622	3.08
Run 29	3437		2.95	46061	43019	38259	35567	23181	20617	14770	11384	7964	3.45
Run 30	3298		3.05	47446	44523	39249	37014	23740	21090	15327	11689	8305	3.44
Run 32	3436		3.13	50080	46649	41149	39092	24890	21778	15255	11319	1901	3.65
Run 33	4124		2.79	55397	51817	46174	43785	26414	23067	16070	11570	1372	3.91
Run 34	3780		3.15	55382	51513	45775	42720	26388	23194	16067	11898	7864	3.89
Run 35	4454		3.22	60346	56715	50553	47197	28118	24474	16228	11533	7156	4.16
Run 38	4809		2.96	67870	63210	56643	53464	30366	26367	17510	11710	6870	4.50
								*****	-	0.00	>	0000	

Appendix 18: Kaolin 10 % in 40 mm valve, 100 % open

Kaolin	Kaolin 10 % in 40 mm valve, 100	n valve,	100 % open										
							Kaolin 10 %	in 40 mm valv	Kaolin 10 % in 40 mm valve, 100 % open				
	Date:	8/9/2007	Test done by Mume & Sisonke										
	Valve Type:	Diaphragm											
	Valve dimension[m]:	0.04											
	Valve position:	Open	Area[m²]	_									
	Pipe Diameter [m]:	0.04212	0.00139337	_									
	Material Type:	Kaolin 10%						1/4	n/(n+1)	(n+1)/n	Υ		
	Density(kg/m³):	1169.4					,	5.702	0.149	6.702	71319		
	Concentration:	10%											
	ي د	8,965											
	ä	0.175	Axial distances	-6.219	-4.489	-1.801	-0.542	1.076	2.685	6.046	8.075	9.975	
	PPT used:	101 to 109	Valve plane										
	Range selected:	0-+30	Non-dimensionalised distances incl.[L/D]:	-147.7	-196.6	-42.76	-12.86	25.53	63.73	143.5	191.7	236.8	
			Distances[m]:	0	1.73	4.418	5.678	7.295	8.904	12.26	14.29	16.19	
Run #	Re		, K	Pod 1	Pod 2	Pod 3	Pod 4	Pod 5	9 Pod	Pod 7	Pod 8	Pod 9	Average Q
				(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	[78]
Run 1	2190		2.57	90220	83068	72785	68381	46570	39861	26826	18981	11751	4.58
Run 2	2117		2.47	88393	81538	71211	66500	46044	39638	26781	18842	11693	4.41
Run 3	2414		2.21	86091	79625	70136	65147	45601	39259	26625	18663	11488	4.27
Run 4	1895		2.66	84929	78359	68238	63351	44550	38535	26043	18398	11424	4.07
Run 5	2042		2.30	82276	76221	66816	61781	44689	38292	28042	18420	11326	3.86
Run 6	1611		2.62	81305	75514	64983	60098	43840	37864	25797	18258	11371	3.69
Run 7	1024		2.58	79306	72901	61839	58305	42979	37384	25183	17622	10826	3.50
Run 8	1369		2.21	76202	70824	60788	29999	43099	37614	25344	17982	11162	3.21
Run 9	1326		2.34	76088	70393	60921	56066	42966	37403	25269	18023	11145	3.11
Run 10	1049		2.14	74210	67887	58547	54039	42329	36659	24937	17739	10831	2.91
Run 11	927.5		2.64	73261	67349	57693	53564	41926	36427	24603	17486	10915	2.75
Run 12	914.3		2.72	72044	65834	57094	52305	41649	36009	24366	17361	10913	2.60
Run 13	764.9		2.58	70017	64014	55222	50850	40803	35320	23962	16914	10630	2.38
Run 14	628.6		2.91	68854	62815	54054	49901	40388	35021	23751	16930	10673	2.19
Run 15	514.2		2.96	67245	61146	52662	48612	39744	34639	23494	16744	10628	1.97
Run 16	423.6		2.89	65973	60283	51591	47630	39356	34206	23295	16592	10502	1.78
Run 17	299.0		3.15	63637	58020	49703	45673	38460	33366	22764	16347	10345	1.47
Run 18	218.4		3.82	61728	56173	48191	44225	37512	32565	22176	15885	10097	1.24
Run 19	129.1		2.71	58264	53266	45658	41918	36127	31358	21367	15295	9226	06:0
Run 20	59.01		6.32	55736	50869	43307	39944	34606	30077	20474	14677	9411	0.63
Run 21	5.94	•	68.51	47609	43736	37031	34242	29799	25946	17599	12792	8181	0.18
Run 22	20.54		9.63	52279	47645	40729	37521	32423	28306	19388	13961	8880	0.36
Run 23	161.1		3.32	59604	54507	46340	42721	36696	31799	21685	15522	9876	98

Appendix 19: Kaolin 13 % in 40 mm valve, 100 % open

							Kaolin 13 %	Kaolin 13 % in 40 mm yalve, 100 % open	ve, 100 % open				
_	Date:	12/7/2007	Test done by Mume & Rendani										
	Valve Type:	Diaphragm	-										-
	Valve dimension[m]:	0.04											
_	Valve position:	Open	Area[m²]										
	Pipe Diameter [m]:	0.04212	0.00139337										
,													
	Material Tune	Kaolin 13%						ş	n((n#4)	(n+1)/in	£7		
	Densitvika/m³1:	1215.5						4.136	0.195	5.136	99167		
	Concentration:	13%											
-	ند	18.973											
_	ž	16.141											
_	Ë	0.242	Axial distances	-6.219	-4.489	-1.801	-0.542	1.076	2.685	6.046	8.075	9.975	
_	PPT used:	105	Valve plane										
_	Range selected:	0-130	Non-dimensionalised distances incl.[L/D]:	-147 7	-106.6	-42.76	-12.86	25.53	63.73	143.5	191.7	236.8	
'			Distances[m]:	0	1,73	4.418	5.678	7.295	8.904	12.26	14.29	16.19	
	Res		a de la composição de l	Pod 1	Pod 2	Pod 3	Pod 4	Pod 5	9 pod	Pod 7	Pod 8	Pod 9	Average
П				(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa	[/s]
Г	55.50		0.22	125520	113860	98080	90659	78970	69301	48768	35925	24298	98.0
	24.94		2.37	118134	107552	93103	85657	74823	65845	46659	34898	23932	0.55
Run 12	16.31		13.53	113442	103947	89142	82273	72045	63394	45094	34028	23461	0.43
Run 13	16.22		9.87	113494	103685	89014	82249	72044	63265	45014	33929	23302	0.43
	8.02		61.01	110048	100999	86873	80008	70135	61748	44032	33279	23401	0.29
Run 16	8.85		16.33	108254	99237	85200	78261	68754	60639	43844	33125	23354	0.31
	5.44		193.1	103195	94830	81324	75109	65745	28030	41811	32112	23160	0.23
	1.90		753.3	94609	88485	76097	70277	61911	54546	39011	30501	22239	0.12
	1.80		1096	79116	71915	62914	58161	50922	45087	34385	28225	21405	0.10
	134		3079	81948	76033	65022	60073	52482	46577	24006	30776	24040	8

Appendix 20: Water in 40 mm valve, 100 % open

_	Date:	11/22/2006	Test done by Mume										
_	Valve Type:	Diaphragm											
_	Valve dimension[m]:	0.04		,									
	Valve position:	Open	Area[m²]										
	Pipe Diameter [m]:	0.04212	0.00139337	_									
	Metadel Tune	Wohan						Į.	1)/041)	/n+1/h	¥,X		
	Daneth Control 1.	906 366						-	30		0.0007004		
	Concentration:	100%					-		9	,	0.000/99		
	t,:	0											
_	ĸ	0.0007991											
1	DDT :sead	104 104	Axial distances	-6.248	4.518	-1.830	-0.5/1	1.076	2.685	6.046	8.075	9.975	
	Range selected:	0-130	Non-dimensionalised distances incl. I. (DI:	.1483	.107.3	43.45	13.54	25.53	63.73	143.5	7 161	238.8	
7			Distances [m]:	0	1.73	4.418	5.678	7.324	8.933	12.29	14.32	16.22	
Run #	Re		sž.	Pod 1	Pod 2	Pod 3	Pod 4	Pod 5	Pod 6	Pod 7	Pod 8	e pod	Average Q
				(Pa)	(Pa)	(Pa	(Pa)	(Pa)	(Pa)	(Pa)	(Pa	(Fa	Ze.
Run 1	174710		2.54	66370	62885	57485	54839	36653	33094	25869	21487	17406	4.64
Run 2	167476		2.54	62951	59672	54247	52398	35443	32087	25486	21340	17611	4.45
Run 3	160586		2.71	59768	20999	51814	48927	34324	31220	24904	21217	17809	4.27
Run 4	153072		2.45	55897	53401	49247	47050	33044	30298	24566	21132	17854	4.07
Run 5	145412		2.57	52891	50235	45783	44266	31861	29172	24068	20951	17981	3.86
Run 6	138084		2.48	49503	47490	43410	41800	30749	28488	23861	20808	18087	3.67
Run 7	134686		2.62	47845	45988	42511	40536	29993	27877	23261	20693	18131	3.58
Run 8	127348		2.55	45293	43283	40011	38902	28995	27039	23008	20521	18262	3.38
Run 9	118778		2.55	42059	40531	37562	36367	28027	26142	22575	20356	18392	3.15
Run 11	104005		2.39	37014	35956	33609	32312	26020	24683	21874	20182	18501	2.76
Run 13	. 90300		2.48	32899	31908	30342	29552	24361	. 23386	21204	19848	18633	2.40
Run 14	84053		2.67	31289	30105	28887	28304	23808	22859	20904	19796	18710	2.23
Run 16	72170		2.63	32772	32215	31041	30536	27137	26424	25001	24089	23291	1.92
Run 16	130225		2.71	51483	49221	45748	44389	33775	31790	27418	24803	22381	3.46
Run 17	171540		2.46	64509	61153	55025	52792	36368	33071	25916	21707	17719	4.56
Run 18	159890		2.52	59866	56665	52355	49639	34188	31418	25167	21414	17835	4.25
Run 19	150715		2.57	55671	52053	48639	46340	32824	30152	24494	21235	18014	4.00
Run 20	120362		2.55	51775	49273	45277	43784	31225	29021	23912	20960	18131	3.78
Run 21	122648		2.72	44231	42062	38826	37641	28521	26780	22927	20591	18484	3.26
Run 22	121304		2.64	43744	41321	38830	37169	28330	26694	22870	20594	18505	3.22
Run 23	111251		2.70	39815	38419	35542	34626	27130	25590	22289	20408	18584	2.95
Run 24	102253		2.71	36797	35335	33250	32285	26023	24614	21789	20145	19637	2.72
Run 27	133903		2.57	40385	38194	34742	33075	22419	20434	15944	13191	10782	3,56
Prin 28	470540												

Appendix 21: CMC 5 % in 50 mm valve, 25% open

64 64 misonalised distances i [m]: k, incl 38,13 39,46 39,54 39,54 39,54 44,31 44,82 41,58 41,58 44,31 44,82 51,72 51,72 51,72 51,72 56,58				CMC 5 % in 5	CMC 5 % in 50 mm valve, 25 % open .	. uedo % 91				
Valve position: ½ Open Area[m³] Pipe Diameter [m]: 0.0528 0.002189564 Material Type: 0.0458 0.002189564 Contentration: 1026.8 0.0000 K; 1.542 Axial distances n: 0.645 Axial distances n: 0.130 Value n: 0.130 Axial distances 233.2 28.3 28.45 234.4						ı				
90 90 90										
85 gg										
85 J					1/0	0/(0+1)	(n+1)/n	¥ [‡] ¥		
99 Jan 198				1	1.550	0.392	2.550	1.957		
99										
99										
8 4	46 574	-3.526	-2 281	-0.780	1 257	3.042	A 500	8 566	10.67	
79									ò	
	nces incl.[L/D]: -124.5	-66.78	43.20	-14.77	23.80	57.04	124.3	162.2	2002	
	0	3.048	4.293	5.794	7.831	9.586	13.14	15.14	17.14	
37.59 38.13 38.13 39.54 39.54 39.90 41.58 44.31 44.31 44.31 44.31 47.72 51.72 55.58 55.58	Pod 1	Pod 2	Pod 3	Pod 4	Pod 5	Pod6	Pod 7	Pod 8	Pod	Average Q
37.59 38.13 38.46 39.54 39.54 41.39 44.31 44.31 47.72 51.72 51.72 51.72 55.69 56.60	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	ê	[Vs]
38.13 38.46 39.54 39.50 41.58 44.31 44.31 44.31 44.31 44.31 56.59 56.59 56.59 56.59 75.04	122867	110497	106104	26666	59170	52642	41606	34145	36698	3.02
39.46 39.54 39.50 39.50 44.15 44.82 44.82 47.72 51.72 55.58 56.60		-	100454	95356	57239	51308	40810	33647	26537	2.82
39.54 39.60 41.58 44.31 44.82 47.72 51.72 55.58 55.58 55.59 55.60 75.04	111631	100734	97264	91900	56202	50539	40293	33348	26413	2.70
39.90 41.59 44.31 44.82 47.72 51.72 55.89 55.89 55.89 55.80 75.04	105686	96323	91803	87262	92060	49232	39568	32873	26271	2.53
41.59 44.31 44.32 47.72 51.72 51.72 55.89 55.89 68.61	100699	+	87623	83077	53642	48135	38893	32499	26132	2.39
44.31 44.82 47.72 51.72 55.59 56.59 56.59 75.04	97130	88053	84330	80105	52462	47305	38365	32180	26016	2.25
4482 47.72 51.72 55.58 56.59 58.60 75.04	93436	84464	81097	76501	51339	46244	37687	31809	25918	2.11
47.72 55.72 55.58 56.50 . 68.41	88869	80342	77408	72939	20080	45281	37055	31429	25790	1.96
51.72 55.89 55.89 58.60 5.80 5.80 5.80 5.80 5.80 5.80 5.80 5.8	83957	76547	72921	68979	48753	43991	36303	30918	25665	1.79
55.58	80818	73266	70253	66422	47507	42992	35646	30628	25583	1.67
58.60 . 68.41 . 75.04	75133	68309	65485	61862	45480	41539	34741	30085	25412	1.47
68.41	72582	91099	63458	60009	44730	40816	34285	29788	25336	1.37
75.04	96736	90800	58493	. 55522	42572	39001	33234	29180	25155 .	1.16
	62924	57097	55052	52512	41011	37926	32463	28748	25025	1.02
117.9	24494	49140	46678	44849	37207	34930	30611	27713	24751	0.72

Appendix 22: Kaolin 6 % in 50 mm valve, 25 % open

L.,	Date:	7/24/2007	Test done by Mume & Sisonke				Kaolin 6 %	Kaolin 6 % in 50 mm valve, 25 % open	ve, 25 % open				
	Valve Type:	٦									58		
	Valve dimension[m]:		4 .	Г									,
	Valve position: Pipe Diameter [m]:	74 Open	Area[m] 0.002189564	_									
_				1			,						
	Material Type:	Kaolin 6%						1/u	n/(n+1)	(n+1)/h	Υţ		
-	Density(kg/m³]:	1103.9						3,795	0.209	4.795	14.90		
_	Concentration:	90.0											
	25 62	3.071											
•	2 2	0.264	Axial distances	-6.574	-3.526	-2.281	-0.780	1.257	3.012	5.958	7.958	9.961	
_	PPT used:	101 to 109	Valve plane							200			
_	Range selected:	0-130	Non-dimensionalised distances incl.[UD]:	-124.5	-66.78	-43.20	-14.77	23.80	57.04	112.8	150.7	188.6	
			Distances[m]:	0	3.048	4.293	5.794	7.831	9.586	12.53	14.53	16.53	
# circl	á		1	Pod 1	Pod 2	Pod 3	Pod 4	Pod 5	Pod 6	Pod 7	Pod 8	Pod 9	Average
				(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	[Vs]
Run 1	3118		29.92	19866	97235	96191	94788	20355	18185	15391	13361	11335	4.57
Run 2	2857		31.92	98761	95648	94771	93179	20728	18714	15581	13676	11679	4.39
Run 3	2691		28.93	87992	84912	83996	82128	20211	18243	15466	13577	11576	4.25
Run 4	2548		28.80	82505	80080	78713	77532	20516	18591	15631	13826	11954	4.09
Run 5	1932		30.99	71169	68588	67548	66313	21645	19876	17338	15518	13940	3.48
Run 6	1728		30.85	66393	63898	62764	61435	21718	19897	17434	15690	14011	3.28
7	1618		30.36	62846	60103	28207	. 57982	21611	19791	17378	15728	14060	3.17
Run 8	1516		30.77	59312	90699	56025	54667	21531	19837	17398	15671	14158	3.00
Run 9	1364		30.17	55425	52741	52136	50851	21394	19/6/	17392	19983	14144	200
Run 10	1197		30.56	52167	49815	48851	4/5//	24775	20202	1/939	18376	14801	2.03
E un 1	1067		30.50	48192	40740	45858	44673	25471	24115	21925	20235	18847	224
7	990.9		a + cc	47137	44586	43736	42425	25455	24160	21981	20371	18897	2.05
2 100	648.5		31.01	44250	42032	41156	39997	25365	24073	21906	20285	18854	1.87
Pun 18	603.5		31.92	41241	39024	38315	37297	25599	24338	22190	20501	19151	1.61
Run 16	407.1		33.00	38902	36619	35972	34810	24936	23819	21746	20061	18763	1.44
Run 17	307.4		33.52	38003	35901	35127	34020	25914	24726	22582	20914	19526	124
Run 18	229.2		36.52	36220	33967	33301	32092	25429	24284	22207	20493	19222	8
Run 19	147.6		38.10	33364	31076	30462	29372	24696	23530	21555	19908	18747	0.84
Run 20	2351		30.08	77577	75340	74030	72963	20025	18103	15255	13491	11802	3.86
24	2514		3134	73858	71386	70186	69032	20012	18185	15603	12887	12107	3.63

170

Appendix 23: Kaolin 10 % in 50 mm valve, 25 % open

				,									
	Date:	8/14/2007	Test done by Mume & Sisonke										
	Valve Type:	Diaphragm											
	Valve dimension[m]:	0.05											
	Valve position:	74 Open	Area[m²]										
	Pipe Dlameter [m]:	0.0528	0.002189564										
8													
	Material Type:	Kaolin 10%						1/4	n/(n+1)	(n+1)/n	K th		
	Density(kg/m³]:	1169.4						5.702	0.149	6.702	71319		
	Concentration:	10%							i i				
	t':	8.965											
	K:	7.098											
	ë	0.175	Axial distances	-6.574	-3.526	-2.281	-0.780	1.257	3.012	5.958	7.958	9.961	
	PPT used:	101 to 109	Valve plane										
	Range selected:	0-130	Non-dimensionalised distances incl. [L/D]:	-124.5	-86.78	43.20	-14.77	23.80	57.04	112.8	150.7	188.6	
5	5 TOTAL CONTROL OF THE STREET	0 000000	Distances[m]:	0	3.048	4.293	5.794	7.831	9.586	12.53	14.53	16.53	
Run #	Res		2	Pod 1	Pod 2	Pod 3	Pod 4	Pod 5	9 Pod	Pod 7	8 pod	6 Pod	Average
8				(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	[NS]
Run 1	1141		20.84	108543	99929	97144	93277	34654	30265	22842	17772	12760	4.61
Run 2	1189		20.56	102662	94892	91870	88348	34312	29937	22547	17523	12639	4.43
Run 3	1248		23.17	104430	97128	94593	90886	34063	29615	22331	17318	12377	4.24
Run 4	1064	200000000000000000000000000000000000000	23.29	99719	92203	96668	85812	33613	29329	22078	17079	12244	4.06
Run 5	956		23.05	96130	88379	85549	81899	33665	29235	21985	16975	12115	3.92
Run 6	878		23.03	92384	84706	81822	78108	32884	28930	21807	16781	11948	3.76
Run 7	815		23.14	88935	81040	78403	74586	32972	28464	21397	16458	11713	3.63
Run 8	736		24.75	86981	79381	76550	73053	31746	28117	21231	16079	11531	3.43
Run 9	722		24.56	82048	74941	72329	68478	31862	27740	20899	15869	11228	3.21
Run 10	615	100 B	26.43	79412	72423	69568	65976	31744	27406	20587	15687	11022	3.00
Run 11	528		27.94	76473	69287	66491	62990	31235	27170	20244	15303	10910	2.82
Run 12	490		28.62	74098	67001	. 64365	60838	31107	27040	20217	15268 .	10885	2.66
Run 13	437		29.53	71309	64257	61653	58254	30850	26730	20051	15120	10865	2.50
Run 14	311		35.27	67315	60129	57547	54220	30115	26131	19455	14625	10559	2.16
Run 15	240		35.68	61627	54767	52151	48991	29504	25600	19058	14430	10227	1.86
Run 16	198		37.08	59208	52433	49740	46584	29127	25327	18913	14184	10177	1.70
Run 17	135		37.97	53568	47056	44429	41314	28418	24784	18535	13806	10072	1.37
Run 18	114.7		38.69	51382	44729	42397	39211	27946	24328	18203	13563	9916	1.25
Run 19	69.3		44.20	48242	41889	39373	36412	27376	23873	17801	13293	8/96	96'0
Run 20	57.7		36.35	45968	39742	.37380	34457	26800	23389	17453	13308	9397	98.0
Run 21	29.7		54.11	42292	36483	34343	31425	25623	22399	16561	12682	9054	0.58
Run 22	16.83		87.53	40103	34398	32291	29510	24292	21254	15824	12192	8723	0.44
Run 23	5.12		80.93	36904	25500	20428	260.46	9970R	40700	45004	*****	-	700

Non-Newtonian Loss Coefficients for Saunders Diaphragm Valves

Kaolin 10 % in 50 mm valve, 25 % open

Appendix 24: Kaolin 13 % in 50 mm valve, 25 % open

Kaolin	Kaolin 13 % in 50 mm valve, 25 %	n valve,	25 % open										
55	Date:	12/8/2007	Test done by Mume & Rendani	-			Kaolin 13 %	Kaolin 13 % in 50 mm valve, 25 % open	e, 25 % open				
	Valve Type: Valve dimension[m]:	Diaphragm 0.05											88
	Valve position:	% Open	Area[m²]										
	Pipe Diameter [m]:	0.0528	0.002189564										
	Material Type:	Kaolin 13%						1/10	n/(n+1)	(n+1)/h	Κth		
	Density[kg/m²]:	1215.5					_	4.136	0,195	5.136	99167		
	Concentration:	13%											
	£ 8	16.141	Avial distances	6.574	3526	-2 281	-0.780	1 257	3.012	5.958	7.958	9.981	
	PPT used:	105	Valve plane										
	Range selected:	0-130	Non-dimensionalised distances incl.[UD]:	-124.5	-66.78	-43.20	-14.77	23.80	57.04	12.8	150.7	188.6	
			Distances[m]:	0	3.048	4,293	5.794	7.831	9.586	12.53	14.53	16.53	
Run #	Re		IK,	Pod 1	Pod 2	Pod 3	Pod 4	Pod 5	Pod 6	Pod 7	Pod 8	Pod 9	Average
				(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	[Ne]
Run 1	60.33	3	27.75	100020	86331	82282	75851	59778	53306	40910	31916	24022	1.33
Run 2	60.65		29.57	100060	86697	81970	75860	59702	53083	40807	31961	23991	1.34
Run 3	48.80		27.65	97360	84788	79946	73492	59366	52527	40740	32269	24201	1.18
Run 4	49.17		27.45	96893	83678	79174	72948	58919	52152	40400	31715	23908	1.19
Run 5	41.22		33.48	94553	81946	77442	71229	58074	51577	39780	31320	23804	1.07
Run 6	41.31		36.33	94584	82143	77460	71342	58067	51772	39683	31111	23774	1.07
Run 7	33.05		30.32	82928	79847	75576	69407	56955	51006	39308	30696	23348	0.95
Run 8	33.66		29.26	91939	78890	74990	68815	56518	50447	39640	30782	23958	0.95
Run 9	28.06		40.41	88703	77138	72732	96755	55419	49429	38199	30593	23240	0.85
Run 10	27.42		57.46	82878	77814	72929	67153	55859	48482	38239	30459	23363	0.84
Run 11	18.91		46.56	88421	75949	72259	66307	22384	49301	38318	30415	23272	0.71
Run 12	20.56		38.02	87432	75374	70678	65442	54493	48653	37972	30024	22941	0.72
Run 13	15.04		51.63	86207	73891	70457	64885	54069	46373	3/595	29413	22804	0.00
Run 14	15.61		52.31	85484	70400	69760	64.460	24132	4840/	3/44/	28831	09977	0.00
or man	11.18		67.16	19109	74700	00000	01400	20000	40040	20000	20000	22,000	0.40
Run 16	10.6/		79.6C	76202	77/77	50000	26610	06070	40849	30307	28008	24636	0.43
Pun 48	7 823		AC OA	78477	60216	86.308	60017	50000	45490	35479	28734	22046	040
St cut	4 196		186.04	77308	66668	63000	58106	49667	44286	34969	27819	21964	0.29
Run 20	4.361		52.59	77361	67463	64093	59194	50378	44879	36250	28211	21967	0.29
Run 21	2.613		178.2	72476	63819	60349	58657	48835	43039	34050	28047	22096	0.21
Run 22	2.803		129.1	72501	63376	60166	55498	47589	42929	34123	27639	22088	0.22
Run 23	0.799		646.9	67751	58336	55710	52671	45349	40608	32503	26822	21568	0.11
Run 24	0.880		643.7	67142	58806	92929	51561	44602	40752	32224	26782	21396	0.11
Run 25	0.922		903.6	63025	55773	52165	48149	42968	38368	31158	26220	21347	0.10

Appendix 25: Water in 40 mm valve, 50 % open

Date:	11/30/2006	Test done by Mume					9					
Valve Type:	Diaphragm		1				e.					•
Valve dimension[m]:	0.05											
Valve position:	1/2 Open	Area[m²]										
Pipe Diameter [m]:	0.0528	0.002189564										
Material Type:	Water		Г				1/h	n/(n+1)	(n+1)/n	Υ _{III}		
Density[kg/m³]:	995.660427		_				-	0.5	2	0.000802		
Concentration:	100%					17						
ţ.	0											
Ë	0.000802		_									
ë	-	Axial distances	-6.574	-3.526	-2.281	-0.780	1.257	3.012	9999	8 566	10.57	_
PPT used:	101 to 109	Valve plane										
Range selected:	0-130	Non-dimensionalised distances incl.[L/D]:	-124.5	-66.78	43.20	-14.77	23.80	57.04	124.3	162.2	2002	
		Distances[m]:	0	3.048	4.293	5.794	7.831	9.586	13.14	15.14	17.14	
Re,		,	Pod 1	Pod 2	Pod 3	Pod 4	Pod 5	Pod 6	Pod 7	Pod 8	Pod	Average O
			(Pa)	(Pa)	(Pa)	(Pa)	(F.a)	(Pa)	(Pa)	(Pa)	(Pa)	[78]
138159		23.79	82810	80579	79593	78807	24386	22853	20572	19055	17632	4.61
131833		22.24	75313	73286	72574	71569	25118	23725	21594	20244	18879	4.40
125584		20.99	67958	66236	65441	64557	24490	23260	21398	20176	18899	4.19
119261		20.10	61674	60135	59336	58593	24023	22894	21173	20050	18918	3.98
112366		19.05	55395	54008	53317	52556	23401	22455	20912	19926	18895	3.75
104971		18.18	49786	48471	47830	47249	22873	22054	20703	19814	18910	3.51
97503		17.67	45154	44031	43541	42940	22375	21635	20490	19709	18905	3.26
90255		17.28	41098	40178	39687	39221	21962	21306	20299	19618	18928	3.01
81455		16.88	36877	36080	35647	35296	21450	20913	20081	19510	18916	2.72
74981		17.21	34402	33692	33379	33051	21085	20625	19928	19408	18930	2.50
67519		18.43	32165	31562	31320	31012	20700	20353	19754	19339	18939	2.26
49545		22 12	24740	24,000	*****	01010	27770					

Water in 50 mm valve, 25 % open

Appendix 26: CMC 5 % in 50 mm valve, 50 % open

	- Contract	Car done of months										
Valve Type:	Diaphragm		1									
Valve dimension[m]:	0.05											
Valve position:	% Open	Area[m²]	- 70									
Pipe Diameter [m]:	0.0528	0.002189564										
Material Trans	200											
Material Type:	CMC 9%						1/0	n/(n+1)	(n+1)/n	Υţ		
Density[kg/m²]:	1026.8						1.550	0.392	2.550	1.957		
t,:	0000											
K:	1.542											
ä	0.645	Axial distances	-6.574	-3.526	-2 281	-0.780	1257	3012	8 568	8 566	40.67	
PPT used:	101 to 109	Valve plane								2000	10.01	
Range selected:	0-130	Non-dimensionalised distances Incl.[UD]:	-124.5	-86.78	43.20	-14.77	23.80	57.04	1243	162.2	2002	
		Distances[m]:	0	3.048	4.293	5.794	7.831	9.586	13.14	15.14	17.14	
.ge		K _V	Pod 1	Pod 2	Pod 3	Pod 4	Pod 5	9 pod	Pod 7	Pods	Pod 9	Average
			(Pa)	(Pa)	(Pa)	(Pa)	(Fa)	(Pa)	(Pa)	(Pa)	(Pa)	3
465.9		15.18	123709	109764	104076	97468	86121	58339	45251	36259	27335	8
431.2		14.72	117364	104292	99213	92460	64437	56982	44321	35732	27174	3.74
385.4		15.07	110353	98744	93401	87917	62124	55158	43118	35109	26983	3.44
344.0		16.89	105638	93852	89065	83358	60101	53365	42093	34479	26779	3.17
316.8		17.67	101692	90088	85867	80386	58743	52096	41391	34050	26631	2.98
291.7		18.73	98170	87568	83233	77582	57213	50979	40626	33584	26512	2.80
268.0		19.79	94822	84492	80380	75363	55901	49890	39967	33121	26392	2.63
241.7		19.23	90081	80572	76530	72028	54271	48796	39268	32687	26213	2.44
		21.37	82086	76134	72311	67897	52354	46957	38178	32047	25985	221
		21.14	79953	71932	68409	64297	50521	45602	37188	31462	25808	1.99
		24.32	76726	68881	65496	61434	48873	44271	36443	31063	25707	1.82
		27.19	70527	63474	60476	56936	46307	42156	35086	30293	25477	1.55
Run 13		30.07	67447	60688	58005	54697	44887	40976	34436	29844	25351	1.40
		34.17	62829	56963	54532	51423	42761	39344	33378	29253	25197	120
71.89		39.23	58055	30003	77603	90024	00007	23050	-			

CMC 5 % in 50 mm valve, 50 % open

Appendix 27: Kaolin 6 % in 50 mm valve, 50 % open

Test done by Mume & Sisonke	DIMAGE. NA
	Sigorke Sigorke
Area[m²]	
0.002189564	
Axial distances	
Valve plane	-6.574 3.526 -2.281 -0.780
Non-dimensionalised distances incl.[L/D]:	.3.526 .2.281
Distances[m]:	-6.574 -3.526 -2.281 -124.5 -68.78 -43.20
, K	-6.574 -3.526 -2.281 -124.5 -66.78 -43.20 0 3.048 4.293
	-6.574 -3.526 -2.281 -124.5 -66.78 -43.20 0 3.048 4.293 Pod 1 Pod 2 Pod 3
9.04	-6.574 -3.526 -2281 -124.5 -66.78 -43.20 0 3.048 -4.293 Pod 1 Pod 2 Pod 3 (Pa) (Pa) (Pa)
9.40	-6.574 -3.526 -2.281 -124.5 -66.78 -43.20 0 3.048 4.293 Pod 1 Pod 2 Pod 3 (Pa) (Pa) (Pa) 4.203 46203 43408 42083
9.10	-6.574 -3.526 -2.281 -1245 -66.78 -43.20 0 3.048 -4.293 Pod 1 Pod 2 Pod 3 (Pa) (Pa) (Pa) (Pa) 46203 43045
9.75	6.574 3.526 -2.281 -124.5 -68.78 -43.20 0 3.048 4.293 Pod 1 Pod 2 Pod 3 (Pa) (Pa) (Pa) (Pa) 46203 43406 46203 43406 44675 41608 40482
8.82	-6.574 -3.526 -2.281 -124.5 -68.78 -43.20 0 3.048 4.293 Pod 1 Pod 2 Pod 3 (Pa) (Pa) (Pa) (Pa) 46203 4.308 4.2083 46203 4.4053 4.2083 44575 4.1608 4.0482 4.2845 4.0019 38769
66.6	-6.574 -3.826 -2.281 -124.5 -68.78 -43.20 0 3.048 4.293 Pod 1 Pod 2 Pod 3 46203 43.408 4.2083 46775 44053 4.2043 44575 41608 38769 42060 39201 37863
9.48	-6.574 -3.526 -2.281 -124.5 -66.78 -43.20 0 3.048 4.283 0 Pod 1 Pod 2 Pod 3 Pod 1 Pod 3 Pod 3 Pod 1 Pod 3 Pod 3 Pod 4 Pod 3 42083 44575 44053 42943 44575 44053 42943 42060 39240 37966
10.	-6.574 -3.526 -2.281 -1245 -66.78 -43.20 0 3.048 -4.293 -0.041 -0.042 -0.043 -0.093
10	-6.574 -3.526 -2.281 -1245 -66.78 -43.20 0 3.048 -4.293 0 041 Pod 2 Pod 3 0 Pod 1 (Pa) (Pa) (Pa) 4.293 46203 43.048 4.2943 44575 44.053 4.2943 44575 44.053 4.2943 42445 40.019 38.769 4206 39201 37.963 4205 39201 37.963 4205 39201 37.963
11:	6.574 3.526 -2281 -1245 -66.78 -43.20 0 3.048 4.293 Pod 1 Pod 2 Pod 3 (Pa) (Pa) (Pa) (Pa) 4.203 46203 43408 4.2043 44575 44053 42443 44575 41608 40482 42045 39240 37863 42046 39240 37863 42046 39240 37863 42048 38286 38812 35682
181	6.574 3.526 -2281 -1245 -66.78 -43.20 0 3.048 4.293 Pod 1 Pod 2 Pod 3 Pod 2 Pod 3 (Pa) (Pa) (Pa) (Pa) 4.293 46203 43408 4.2043 44575 44053 42443 44575 44053 42843 42045 39240 38769 42046 39241 37863 42056 39240 37863 38286 38812 35682 38287 34305 333054 333054
15.9	6.574 3.526 -2281 -1245 -66.78 -43.20 0 3.048 -4.293 Pod 1 Pod 2 Pod 3 (Pa) (Pa) (Pa) (Pa) (Pa) (Pa) (Pa) (Pa)
15.84	46.574 -3.526 -2.281 -124.5 -68.78 -43.20 0 3.048 -4.293 Pod 1 Pod 2 Pod 3 Re203 43.08 4.293 46203 434.08 42083 46203 434.08 40482 48775 44053 42043 42045 40019 33769 42045 40019 33766 42046 39240 37862 42036 39240 37862 38926 38926 38926 38926 38926 34567 38927 33569 3467 36917 3408 33064 37584 35078 34068 36373 33068
16.50	46.574 - 3.5262.281 -124.5 - 48.78 - 43.20 0 3.048
16.67	-6.574 -3.526 -2.281 -6.574 -3.526 -2.281 0 3.048 4.283 Pod 1 Pod 2 Pod 3 Pod 1 Pod 3 Cod 3 Pod 1 Pod 3 Cod 3 44575 44053 4.2943 44575 44053 4.2943 44575 44053 4.2943 44575 44053 3.8070 38286 39240 37986 42060 39240 37986 42060 39240 37986 38287 35240 37986 38287 35240 37986 38287 35240 37986 38287 35240 37986 38287 35240 37986 38287 35240 37986 38287 35240 37986 38287 35240 37986 38287 35240 34643 36535 33373 33064 34249 31356 31167
16.4	-6.574 -3.526 -2.281 -1245 -66.78 -43.20 0 3.048 -4.293 Pod 1 Pod 2 Pod 3 Pod 1 Pod 2 Pod 3 Re203 -4.249 -4.2943 -4.245 -4.053 -4.2943 -4.245 -4.053 -4.2943 -4.245 -4.053 -4.2943 -4.245 -4.053 -4.2943 -4.245 -4.053 -4.2943 -4.245 -4.053 -4.2943 -4.245 -4.053 -4.2943 -4.245 -4.053 -4.2943 -4.246 -3.9240 -3.9266 -3.9286 -3.9240 -3.9264 -3.9286 -3.9240 -3.9264 -3.9286 -3.9270 -3.9266 -3.9235 -3.9373 -3.966 -3.9235 -3.9373 -3.966 -3.9270 -3.92570 -2.9421
29	-6.574 -3.526 -2.281 -1245 -66.78 -43.20 0 3.048 -4.293 Pod 1 Pod 2 Pod 3 Pod 3 Pod 3 4.293 46775 -44053 -4.2943 44775 -44053 -4.2943 44775 -44053 -4.2943 44775 -44053 -4.2943 42845 -4019 -3.6966 40722 -38020 -36966 40722 -38020 -36966 38287 -34.967 -34.967 37020 -34.82 -34.967 3764 -3.5078 -34043 37584 -3.5078 -34043 35539 -3.2570 -31996 34249 -31938 -31956 34249 -31938 -29421 31233 -2885 -29155
26	6.574 3.526 2.281 -1245 66.78 4.220 0 3.048 4.293 Pod 1 Pod 2 Pod 3 Pod 2 Pod 3 Pod 2 Pod 3 4203 43408 4.203 44575 44053 42403 44575 44053 42403 44575 44053 38769 42045 39240 31869 42046 39240 31869 42048 39240 31869 38286 38286 38240 31667 37020 34282 33068 35039 33570 34043 36535 33973 33068 34249 31936 31167 34249 31533 28885 28155 291237 27483 26735
2	6.574 3.526 -2.281 -1245 -66.78 -43.20 0 3.048 -4.293 Pod 1 Pod 2 Pod 3 (Pa) (Pa) (Pa) (Pa) (Pa) (Pa) (Pa) (Pa)
	46,574 -3,526 -2,281 -124.5 -68.78 -43.20 0 3,048 -4,293 Pod 1 Pod 2 Pod 3 Re203 43,06 4,208 46,203 430,06 4,208 46,203 430,06 4,048 46,75 440,53 4,048 42045 400,19 31766 42045 400,19 31766 42045 400,19 31766 42046 39240 31766 40722 390,20 3566 38287 3364 3456 36017 3428 3306 37864 3406 3406 3639 32570 31167 3424 3103 2815 3123 2886 2815 28717 2457 23850 28710 2455 23850 28712 2455 23850

Appendix 28: Kaolin 10 % in 50 mm valve, 50 % open

	Date:	8/14/2007	Test done by Mume & Sisonke	_			NAOIII 10	in so mm val	Kaolin 10 % in 50 mm valve, 50 % open				
	Valve Type:	Diaphraom		1					82				
	Valve dimension[m]:	0.05											
	Valve position:	% Open	Area[m²]										
	Pipe Diameter [m]:	0.0528	0.002189564										
-	Material Type:	Kaolin 10%						4		400.00	Alle.	1921	
	Dansity/key/m³ 1:	1169.4						III.	(LaU)	nv(T+n)	Y		
	Concentration:	10%						20/05	0.149	6.702	71319		
	.;	8.965											
	K:	7.098		100000000000000000000000000000000000000	13								
	2	0.175	Axial distances	-6.574	-3.526	-2.281	-0.780	1.257	3.012	5.958	7 958	9 061	
	PPT used:	101 to 109	Valve plane										
	Range selected:	0-130	Non-dimensionalised distances incl.[L/D]:	-124.5	-66.78	43.20	-14.77	23.80	57.04	112.8	150.7	188.6	
			Distances[m]:	0	3.048	4,293	5.794	7.831	9.586	12.53	14.53	16.53	
Run #	Re,		F.	Pod 1	Pod 2	Pod 3	Pod 4	Pod 6	Pod 6	Pod 7	Pod 8	6 pod	Average Q
	200			(Pa)	(F3)	(Pa)	(Pa)	(Pa)	(Pa)	(P2)	(Pa)	(Pa)	[We]
Run 1	1365		8.70	78672	70299	67977	63987	34768	30444	23003	17558	12630	4.67
Run 2	1213		9.28	76547	68719	65850	62024	34653	30142	22689	17597	12569	4.42
Run 3	1101		9.46	74220	66457	63588	59829	34020	29658	22301	17123	12221	4.20
Run 4	1017		9.53	72939	64955	62213	58586	33772	29496	22156	17046	12128	408
e un a	8.096		9.56	71153	63101	60625	57026	33528	29294	22060	16815	12073	3.91
Rune	890.6		10.08	69488	62070	59120	55483	33159	28974	21825	16755	12033	3.73
Kun /	837.1		10.10	67758	60186	57515	53777	32754	28524	21469	16416	11726	3.58
e un	768.7		8.92	65912	58576	55821	52150	32445	28415	21362	16392	11592	3.40
	679.8		10.81	64294	56787	54072	50422	32161	27953	20873	15989	11436	3.25
e i	628.9		10.57	62290	55114	52335	48779	31746	27635	20649	15805	11174	3.05
E :	552.7		10.84	61114	53650	51005	47430	31440	27418	20480	15548	11078	2.91
Z	472.6		11.33	59039	51687	49064	45506	31181	27181	20294	15479	11074	2.68
2 :	432.7		10.67	56806	49498	47062	43604	30789	26763	20002	15219	10876	2.51
Mu 14	321.7		11.78	54516	47355	45035	41631	30325	28440	19764	14927	10737	2.13
Run 16	275.2		11.53	52808	46001	43548	40106	29872	26150	19561	14752	10608	1.94
Run 16	245.3		11.94	51489	44767	42222	38819	29490	25702	19220	14467	10452	1.84
Run 17	186.2		11.58	49194	42619	40159	36927	28923	25232	18856	14185	10255	1.58
Run 18	141.8		11.21	47379	41030	38583	35357	28398	24780	18481	13907	10018	1.35
Run 19	91.84		12.27	45027	38938	36554	33447	27463	24007	17880	13470	9717	1.08
Run 20	56.51		16.81	42943	37075	34818	31912	26415	23213	17284	12963	9478	0.81
Kunzı	28.18		21.76	40816	35123	, 32961	30274	25526	22213	16587	12512 ,	2808	95.0
Kun ZZ	11.68		54.11	39435	33734	31680	28994	24549	21485	16000	10000	1000	A 97
- 52 un			* ***						61400	6000	12036	6/04	0.0

Appendix 29: Kaolin 13 % in 50 mm valve, 50 % open

Date:	12/8/2007	Test done by Mume & Rendani	_									
Valve Type:	Diaphragm		1									
Valve dimension[m]:	90:0											
Valve position:	7. Open	Area(m²)										
Pipe Diameter [m]:	0.0528	0.002189564	П									
Material Type:	Kaolin 13%						44	() tollo	/mad Ma	W/2		
Density[kg/m²]:	1215.5						4 136	0.105	8 138	00467		
Concentration:	13%						3	4.180	200	20100		
÷.	18.973											
ë	0.242	Axial distances	-6.574	-3 526	-2.281	-0.780	1257	3,049	5 058	7 060	2000	
PPT used:	105	Valve plane							2000	200	86.6	
Range selected:	0.130	Non-dimensionalised distances incl.[L/D]:	-124.5	-66.78	-43.20	-14.77	23.80	57.04	112.8	150.7	188.6	
		Distances[m]:	0	3.048	4.293	5.794	7.831	9.580	12.53	14.53	16.53	
Re		ķ	Pod 1	Pod 2	Pod 3	Pod 4	Pod 5	Pod 6	Pod 7	Pod 8	Pod 9	Average Q
44.65												[1/6]
81.78		8.45	96888	83088	78492	72066	61062	53811	41441	32581	24319	1.30
2000	-	10.78	96544	83100	78122	71724	60678	53572	41315	32491	24405	1.31
49.09		10,94	85374	81241	76419	70309	59749	52774	40628	32054	24076	1.20
30.00	-	19.63	893/0	81661	79997	70464	59484	52802	40565	31998	24178	121
67.29		14.22	94262	81244	76516	70359	59524	52793	40720	32045	24280	1.09
67.75	+	18.13	93940	80656	75546	69917	59015	52320	40316	31828	24056	1.10
30.01		34.10	92585	79133	74085	69690	58382	52087	39827	31604	24248	0.97
00.00		26.91	91716	78323	73840	67669	57463	51123	39505	31380	23883	0.98
84.12		46.72	90717	78965	73884	67533	57763	51131	39015	31330	23841	0.85
20.12		32.60	89820	77487	72382	66483	56574	50246	38922	30972	23602	99'0
26.35		28.38	89126	76152	72257	65950	56327	50114	38584	30668	23317	92.0
47.95		34.15	88546	76000	71282	65773	55813	49666	38536	30536	23362	0.77
76.84		00.60	85649	73602	69561	63678	54212	48246	37454	29653	22755	99'0
15.51		00.14	00000	14220	69969	63825	54460	48327	37411	29951	22756	0.67
12.70		58.21	83806	72040	00000	50879	54038	47700	36964	29612	22660	0.54
9.196		1043	84204	20027	65007	7070	04040	40443	30000	59967	22533	0.55
9.169		109.6	82557	71548	67360	61764	07170	10701	30137	27567	98077	0.45
9.470		97.5	82292	70788	67022	61253	5278A	46047	07000	\$/C87	22/34	0.45
4.962		176.1	75369	66848	63022	57981	49983	44065	34410	27203	27877	0.40
4.918		155.4	77409	68524	64357	59309	51241	45355	34933	29868	22087	031
2.408		355.7	. 74261	64324	60476	55826	48373	43272*	34088	28218	21912	0.21
2.730		386.0	73842	64147	60378	56574	49005	43203	33513	27951	21448	0.22
0.577		1351	65193	57401	54725	51264	44610	39702	31410	26211	21031	900
0.697		1252	65363	57671	54822	50137	44278	39983	31348	26713	20996	60.0
0.277		4638	59500	51586	49376	45819	40185	36705	30185	25713	21307	90.0
0.205											-	

Kaolin 13 % in 50 mm valve, 50 % open

Appendix 30: Water in 50 mm valve, 50 % open

	11/30/2006	Test done by Mume					nado er on farini initi on initi					
Valve Type:	Diaphragm		1									
Valve dimension[m]:	90.0											
Valve position:	% Open	Area[m²]										
Pipe Diameter [m]:	0.0528	0.002189564										
Material Type:	Water						1/4	n/(n+1)	(n+1)/n	Y ₁ ₁ ₁		
Density[kg/m³]:	995.73191					W 100 11	-	0.5	,	0.0008081		
Concentration:	100%					-			3	0.000000		
ţ.	0											
÷	0.0008061											
::	-	Axial distances	-6.574	-3 526	-2 281	-0.780	1 257	3.042	98 8	993 0	23.05	_
PPT used:	101 to 109	Valve plane						100	800	9950	10.01	
Range selected:	0-130	Non-dimensionalised distances incl.[UD]:	-124.5	-66.78	-43.20	-14.77	23.80	57.04	124.3	162.2	2002	
		Distances[m]:	0	3.048	4.293	5.794	7.831	9.586	13.14	15 14	17 14	
Res		, k	Pod 1	Pod 2	Pod 3	Pod 4	Pod 6	Pod 6	Pod 7	Pod 8	8 Pod	Average
			(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	Pa	(Pa)	14/1
135670		7.03	46342	44339	43513	42571	25198	23825	21675	20321	18781	4.55
126393		7.10	42924	41134	40289	39401	24469	23293	21394	20195	18878	424
118604		6.97	40080	38557	37801	37031	23852	22826	21163	20025	18891	3.98
112226		6.95	37980	36516	35814	35179	23466	22480	20960	19937	18892	3.77
104307		7.11	35508	34216	33653	33072	22824	22024	20704	19810	18948	3.50
97200		7.12	33561	32404	31906	31348	22377	21689	20497	19722	18916	3.26
88731		7.30	31475	30544	30108	29635	21861	21248	20281	19614	18919	2.98
81925		7.88	30100	29270	28864	28517	21511	20958	20098	19515	18934	2.75
75092		8.35	28714	27985	27643	27324	21161	20664	19940	19445	18943	2.52
67708		8.61	27175	26584	26289	26008	20794	20378	19784	19357	18936	2.27
60404		9.86	30484	29964	29753	29527	24945	24618	24105	23785	23445	2.03
48078		11.12	28363	28057	27922	27747	24424	24245	23911	23663	23468	1.61
40335		11.38	27065	26825	26725	26596	24172	24026	23787	23610	23447	1.35
26941	100 March 100 Ma	13.54	25151	25044	24000	24007	00266	00000	00000			-

Water in 50 mm valve, 50 % open

Appendix 31: CMC 5 % in 50 mm valve, 75 % open

						CMC 5 % in 5	CMC 5 % in 50 mm valve, 75 % open	% oben				
12/9/2006		Test done by Mume	П									
	ıragm									v		
Valve dimension[m]: 0.05			Ī									
% Open		Area[m²]										
Pipe Diameter [m]: 0.0528		0.002189564									8.7	
							4	(10/10)	10441/6	N/A		
1026.8	8 0						1.550	0.392	2.550	1.957		
2%												
0000					•							
1.542												
0.645		Axial distances	-6.574	-3.526	-2.281	-0.780	1.257	3.012	995'9	8.566	10.57	
101 to 109	Г	Valve plane				28						
Range selected: 0-130		Non-dimensionalised distances Incl.[UD]:	-124.5	-66.78	-43.20	-14.77	23.80	57.04	124.3	162.2	200.2	
	Γ	Distances[m]:	0	3.048	4.293	5.794	7.831	9.586	13.14	15.14	17.14	
		ķ	Pod 1	Pod 2	Pod 3	Pod 4	5 pod	Pod 6	L Pod	Pod 8	6 pod	Average Q
			(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	[1/8]
		5.62	123779	108272	102036	94504	70463	61791	47225	37442	27679	4.54
		5.08	119078	104802	68886	91690	69157	60611	46642	37212	27670	4.32
487.0		4.62	114262	100896	95237	88270	67210	59154	45761	36556	27407	4.09
454.3		4.81	110696	97380	91705	85443	65704	57900	44942	36168	27282	3.89
423.6		4.71	106904	94383	88735	82490	64166	56800	44175	35656	27137	3.69
382.0		4.43	102215	89818	84984	78917	62085	55069	43224	35094	26952	3.42
337.6		4.30	9696	85251	80560	74778	59788	53276	42105	34373	26749	3.12
		4.63	91254	80864	76470	70948	57487	51329	40731	33698	26535	2.81
256.3		4.24	86769	76554	72365	67476	55467	49561	39752	33049	26326	2.55
229.1		4.07	82779	73442	69380	64741	53573	48163	38813	32476	26139	2.35
205.3		4.45	79869	70681	66974	62476	52050	46933	38052	32028	25993	2.16
182.9		4.66	76619	67963	64473	60043	50483	45603	37254	31552	25863	1.99
161.6		2.67	72777	65070	61794	57740	48953	44346	36503	31087	25731	1.81
129.4		2.67	67479	60383	57542	53755	46348	42151	35144	30341	25503	1.54
1017		000	10000									00.0

Non-Newtonian Loss Coefficients for Saunders Diaphragm Valves

Appendix 32: Kaolin 6 % in 50 mm valve, 75 % open

	2000000	Tout door he Mirms & Cleanks	Г									
Date:	7/19/2007	Test done by Mume & Sisonike		5						88		
Valve Type:	Diaphragm											
Valve dimension[m]:	90.0		1									
Valve position:	% Open	Area[m']										
Pipe Diameter [m]:	0.0528	0.002189564	_									
		Г				_	1,4	n/(n+1)	(n+1)/n	K**		
Material Type:	Kaoim 6%						3 795	0 200	4.795	14.90		
Density(kg/m²):	1103.9					_						
Concentration:	9%9											
	3.071											
2	2.038		The second second								1000	
E	0.264	Axial distances	-6.574	-3.526	-2.281	-0.780	1257	3.012	2.958	906.7	98.80	
PPT used:	105	Valve plane										
Range selected:	0-40	Non-dimensionalised distances incl.[L/D]:	-124.5	-66.78	-43.20	-14.77	23.80	57.04	112.8	150.7	188.6	et e l'année
		Distances[m]:	0	3.048	4.293	5.794	7.831	9.586	12.53	14.53	16.53	
R	-	, in the second	Pod 1	Pod 2	Pod 3	Pod 4	Pod 6	Pod 6	Pod 7	Pod 8	Pod 9	Average 0
	+		(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	[6/8]
3032	1	4.33	36940	33714	32472	31016	18774	16529	13317	11269	9220	4.65
3019		3.92	36889	33757	32304	30949	18701	16622	13244	11005	8812	8
2902	-	3.96	36303	33210	32024	30288	19056	16805	13886	11802	9674	4.49
2847		3.79	36440	32940	31867	30428	18839	17032	13977	11743	9656	4.52
2803		3.79	35558	32483	31171	29848	18746	16891	13965	11723	2692	4.34
0780		3.94	35388	32463	31309	29730	18833	16883	13872	11732	9734	4.35
2007		388	34713	31855	30748	29525	18716	16877	13868	11818	9739	4.20
1007	1	413	35189	32061	30888	29377	18705	16892	13821	11751	9803	4.20
240R	+	404	33901	30770	29656	28422	18298	16404	13574	11795	6998	4.07
Dun 40		429	33162	30298	29109	27748	18142	16378	13494	11532	9561	3.86
		410	32801	29925	28752	27606	17888	16143	13458	11474	9525	3.86
		430	32235	29474	28197	27223	18044	16303	13439	11372	1196	3.70
	-	435	31859	28910	27821	26743	17915	16164	13391	11455	9228	3.61
	-	449	31295	28297	27245	26071	17809	16183	13424	11445	9651	3.43
		487	30994	28098	26973	25814	17751	16135	13455	11527	9737	3.32
At the state of th		433	31569	28782	27559	28579	19307	17801	15114	13153	11353	3.08
		461	30865	27987	26905	25872	19141	17700	14988	13041	11331	2.90
			00000	-	0.000	00000	40700	18117	ACASE	4280E	41010	2.75

Appendix 33: Kaolin 10 % in 50 mm valve, 75 % open

\prod
-6.574
-124.5
0
Pod 1
(Pa)
65468
65180
63395
80620
59872
58086
56725
54671
53687
51854
502(
48735
44121
40492
380

Appendix 34: Kaolin 13 % in 50 mm valve, 75 % open

Main Types	Date:		12/8/2007	Test done by Mume & Rendani	_									
Physic distributional of 0.05 According 10.05	Valve Type		Diaphragm											
Vision Parametrion: Concentration: Concentration: Chical Control Con	Valve dime	nslon(m):			_									
Page Diametr [101] 10,0030 10,0020 10,	Valve posit	ion:		Area[m²]										
Part	Pipe Dlame	eter [m]:	٦	0.002189564	7									
Material Press 1245. Material Characterial Press Material Press Material Press Material Characterial Characterial Press Material Characterial Press Material Cha			Kaolin						į	1,000	(m±4)lin	Kth		
Contenting 17555 Contenting 12555 Contenting Contenting 12555 Contenting Contenting 12555 Contenting 12555 Contenting 12555 Co	Material Ty	:96	13%					-		(all la	2 136	20167		
Concentration: 1378 Section 1,00	Density(kg	/m,):	1215.5						4.130	0.135	0010	20100		
K. 18.673 K. 18.673 4.556 2.281 -0.780 1.287 5.989 7.889 9.881 F. 18.44 18.44 18.477 2.027 A.18.6 7.884 9.881 1.885 Professor 1.05 Valve plane 1.05 Valve plane 4.32 4.477 2.297 5.784 4.89 1.885 1.885 Professor 1.05 Non-dimensional distinces incl., Dip. 1.24.2 6.78 4.477 2.297 5.794 1.28 1.897 1.895	Concentral	tion:	13%	-										
K. 16.141 Abail distances 6.574 3.506 2.721 0.790 1.1577 3.012 5.560 7.890 9.061 PPT clased: Col.30 Web pales Col.30 Web pales 1.22.7 2.29.7 5.704 1.12.8 1.650 1.650 Rap PPT clased: Col.30 Web pales Col.30 1.42.9 5.704 1.12.8 1.650 1.650 Rap Rep Col.30 Col.30 1.42.9 5.704 7.61 1.650	;;		18.973											
Part	ÿ					0000	2000	0 780	1 267	3,042	6.058	7 958	9.961	
Party instact 1750 Vary dimensionalised distances incit_LDD; -124.5 -66.78 -14.27 27.94 7.89 17.83 119.7 118.97 16.83 Res Party	ë			Axial distances	-6,5/4	2.020	07.7-	20.70	I TAN	4				
Ray Districtability (Pa) Pod 2 Pod 3 Pod 4 Pod 6 Pod 6 Pod 9 Fig. 1 Pod 9 Pod 9 Pod 1	best 184			Valve plane	-124 5	-56.78	-43.20	-14.77	23.99	57.04	112.8	150.7	188.6	
Rb, Pod 1 Pod 2 Pod 3 Pod 4 Pod 6 Pod 6 Pod 9 Pod 9 Pod 9 Pod 1 Pod 1 Pod 9 Pod 9 Pod 1 Pod 1 Pod 1 Pod 9 Pod 9 Pod 1 P	Kange sell	cted:	0-130	Distance [m]	-	3.048	4.293	5.794	7.831	9.586	12.53	14.53	16.53	
(6) (6) <td>-</td> <td></td> <td></td> <td>- Constitution of the Cons</td> <td>Pod 1</td> <td>Pod 2</td> <td>Pod 3</td> <td>Pod 4</td> <td>Pod 6</td> <td>Pod 6</td> <td>Pod 7</td> <td>Pod 8</td> <td>Pod 9</td> <td>Average</td>	-			- Constitution of the Cons	Pod 1	Pod 2	Pod 3	Pod 4	Pod 6	Pod 6	Pod 7	Pod 8	Pod 9	Average
46 OH 6 66 6 67 6 229 77445 71175 6130 54310 4620 2240 77445 71175 6130 54310 46107	-			4	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	[/s]
47.00 78.60 99565 67200 77333 71082 61286 61037 411956 23744 24510 45.50 45.50 77844 51024 41077 32014 25102 46.50 10.64 94214 91277 77824 50074 41077 32016 25102 38.11 10.50 94214 91277 77829 60460 53316 4044 32429 2442 38.11 10.20 94214 91277 78281 70046 60460 53316 40444 32429 24407 41077 32776 24289 30.00 11.20 95100 79784 72531 68796 60460 53316 40475 32420 24778 24289 24017 37723 24289 24017 37723 24289 24017 37723 24289 24017 37723 24289 24017 37723 24289 24017 37723 24289 24017 37723 24289 <	+	2		868	96071	82829	77445	71175	61330	54310	41652	32985	24640	120
45.50 17.40 99842 82804 77241 61224 61074 53014 25102 46.80 46.80 10.64 94777 81701 77651 60744 53350 41707 32718 24.80 24.		5 8		7.68	95555	82203	77333	71082	61283	54037	41355	32745	24510	122
45.50 10.64 94777 81701 76511 70762 60744 55550 41077 32776 2400 38.15 14.56 94274 81257 78221 70936 60469 55359 40475 24402 38.15 12.30 92190 78763 66636 50669 40475 31723 2428 39.25 17.19 92560 78629 76629 50669 40475 31723 2428 39.00 18.22 17.19 92560 78627 56269 50665 52469 40475 31723 2428 23.00 18.22 78.22 78.22 78.245 51151 31659 24017 31629 24218 31733 2428 24017 31629 31733 3262 2428 3488 34617 31629 32617 31783 34629 32617 32826 32617 32826 32617 32826 32617 328269 32617 32826 32617 32		000		13.49	95842	82804	77689	71241	61234	54097	41707	33014	25102	1.15
38.1 4.66 94214 91257 76221 70938 60460 65315 40644 32443 24422 38.1 1.20 94214 91267 76571 66736 52636 40446 32426 24172 38.2 1.20 92560 78978 75671 66736 55263 40445 31732 24286 38.2 1.7 1.2 92560 78978 75678 56061 51736 40041 31688 24017 2.5 1.0 1.7 91881 78978 77877 67826 56061 51736 40041 31689 34077 31726 3407 2406 31744 31746 31744 31744 31744 31744 31744 31744 31744 31744		60		10.64	94777	81701	78511	70762	60744	53550	41077	32776	24506	1.16
39.21 17.30 93190 71978 75251 68736 52659 40468 20052 24185 30.24 30.24 12.22 92560 7897 75076 68636 55499 40475 31723 24228 32.54 12.22 92763 77875 75076 68636 55249 40475 31733 24228 23.00 18.23 91681 77875 77875 67863 68240 51736 40239 31731 24300 25.66 26.67 18.55 20.79 91681 7866 77875 61861 6418 55745 51151 38569 39744 39551 24300 20.46 26.67 26.41 64010 51784 49138 39540 22540 25460 22540 24488 38744 30251 23690 22540 24488 38744 30251 23690 22540 25486 24488 38779 28925 22890 22540 25486 <td< td=""><td></td><td>46</td><td></td><td>14.56</td><td>94214</td><td>81257</td><td>76321</td><td>70938</td><td>60460</td><td>53315</td><td>40844</td><td>32443</td><td>24422</td><td>2</td></td<>		46		14.56	94214	81257	76321	70938	60460	53315	40844	32443	24422	2
25.54 17.22 92.550 7.9937 7.5078 6.6636 5.0459 40475 31723 24228 32.54 17.19 92.153 7.6078 6.6056 5.0459 40415 31723 2420 32.00 17.19 92.153 7.119 9.2153 7.119 6.0416 6.0416 6.0401 31734 24017 2.66 20.79 90.064 7.695 6.4916 6.5787 40299 30745 23626 1.6.35 20.74 9.0664 7.695 6.4916 6.5787 40399 30745 23626 1.6.30 20.74 4.0416 7.065 6.4916 6.5787 40829 30745 23626 1.6.30 20.46 7.7416 7.7410 7.065 6.4916 6.5787 4.893 30745 23626 1.6.03 20.00 7.7416 8.6923 6.4010 5.1916 4.6431 30251 22020 1.6.03 20.00 20.00 7.7410		34		12.30	93190	79788	75251	68736	59305	52659	40468	32052	24185	1.06
2.5.34 17.19 9275.3 7882.9 74119 6792.2 58961 51786 40041 31688 24017 2.6.03 3.6.03 17.19 9215.3 7887.5 7787.5 6778.6 6778.6 6778.6 6778.6 6778.6 6778.6 6778.6 6778.6 6778.6 6778.7 774.6 774.6 774.6 774.6 747.7 774.6 6778.7 774.6 6778.7 774.6 6778.7 774.6 6778.7 774.6 6778.7 774.6 6778.7 774.6 6778.7 774.6 6778.7 774.6 6778.7 774.6 6778.7 774.6 6778.7 6778.7 6778.7 6778.7 6778.7 774.7		1		1999	92550	79937	75078	96989	59065	52459	40475	31723	24228	0.95
25.00 19.23 91681 77875 77875 67663 66240 51736 40239 31231 24300 25.66 20.79 90684 78696 67893 57245 51151 38569 30745 28225 20.46 20.79 90684 78696 67818 57245 361451 38569 30745 28202 28225 20.46 20.46 67867 7410 70689 67916 66918 30745 28225 28225 14.30 20.46 20.46 5680 66918 76716 69525 6581 66010 3063 28205 22510 12.17 20.00 20.00 69526 65801 60410 51916 4431 30553 28300 22510 12.17 20.00 20.00 7371 68801 62749 54686 3779 29025 2250 12.17 20.00 20.00 20.00 20.00 20.00 20.00 20.00		5 8		17.19	92153	78929	74119	67922	58361	51898	40041	31668	24017	96.0
18.55 20.79 90684 76896 67289 67387 5151 39559 30745 23825 20.46 18.75 44808 6787 48638 5151 39559 30745 23825 20.46 18.75 7410 70859 64918 55781 48638 38744 29892 22828 14.90 20.46 24.89 87754 77576 69525 65591 64012 51981 28970 22825 14.20 25.42 25.84 66821 6778 64042 3779 29959 22826 12.17 25.60 26.81 65591 66821 6774 44048 3779 29959 22826 7.50 28.91 8370.8 73212 68821 6724 5486 3779 29959 22867 7.550 28.91 8371.2 7185 6880 6236 5425 48054 3779 29959 22867 5.52 28.81 8		200		1923	91681	77875	73757	67863	58240	51736	40239	31231	24300	0.83
20.46 18.76 67.67 74410 70859 64918 56787 48638 38744 30251 22489 14,90 20.46 24.89 73573 70052 64022 55.81 48138 38477 29599 22225 14,90 24.89 24.89 7373 67876 64032 55.81 48488 37779 28959 22225 12,17 25.42 25.42 68271 6710 54886 37779 28950 22266 7,50 26,41 8770 8770 6827 48486 37779 28965 22896 7,50 26,42 8770 6266 6240 5488 37779 28965 22896 7,50 8,437 71,15 88623 62860 6240 5488 3774 2962 22897 8,437 7,69 8,949 62860 6240 5480 3774 2910 22623 8,522 8,14 6,17 6,240 <td></td> <td>86</td> <td></td> <td>20.79</td> <td>90684</td> <td>76696</td> <td>72698</td> <td>67383</td> <td>57245</td> <td>51151</td> <td>39559</td> <td>30745</td> <td>23625</td> <td>0.70</td>		86		20.79	90684	76696	72698	67383	57245	51151	39559	30745	23625	0.70
14,90 24,89 87354 73573 70052 64032 55381 49138 38467 29959 22225 14,90 29.80 29.80 79716 69525 65591 60410 51916 46431 38053 22890 22570 14,20 29.80 29.80 73719 69825 65591 60410 51916 46431 38053 22890 22570 22890 22570 22890 22570 22890 22570 22890 </td <td></td> <td>9</td> <td></td> <td>18.78</td> <td>87867</td> <td>74410</td> <td>70858</td> <td>64918</td> <td>55787</td> <td>49838</td> <td>38744</td> <td>30251</td> <td>23498</td> <td>0.72</td>		9		18.78	87867	74410	70858	64918	55787	49838	38744	30251	23498	0.72
14,20 29,33 79716 69625 65591 60410 51916 44431 36053 28390 22510 12,17 26,42 26,93 73718 68821 62749 54685 48486 3779 28905 22500 12,03 26,27 26,27 68821 62524 54685 48486 3779 28905 22506 12,03 28,17 28,27 48023 37520 29725 22806 22806 7,550 28,47 48,47 48,47 37287 29623 22806 22807 2806 22807 22806 5,072 71,69 80,953 62,860 62,304 53,943 27,04 29,05 22,06 5,532 81,51 71,69 69,949 65,961 60,865 52,04 46773 34546 2806 22,00 5,532 81,51 81,51 60,949 69,945 60,945 62,173 46,273 34546 2804 2804 <t< td=""><td></td><td>9 8</td><td></td><td>24.89</td><td>87354</td><td>73573</td><td>70052</td><td>64032</td><td>55381</td><td>49138</td><td>38467</td><td>29959</td><td>23225</td><td>0.62</td></t<>		9 8		24.89	87354	73573	70052	64032	55381	49138	38467	29959	23225	0.62
14,22 25,42 6888 73212 68821 62749 54685 48486 37779 29605 23264 12,03 26,24 26,24 6886 73264 54833 48623 3750 29725 22965 12,03 26,24 26,24 54,933 48623 37267 29625 22965 7,50 56,91 83712 7187 66,240 54,82 46049 37247 29623 22968 8,532 77,69 60,853 61,994 65,961 60,254 52,903 34,144 29105 22,968 5,532 81,51 77,69 60,499 65,961 60,254 4620 34,144 29106 22,068 5,532 26,40 30,04 76,34 66,965 52,91 46,20 34,14 29106 27,022 2,542 30,04 76,03 66,94 62,965 57,97 50,57 44,719 34,01 21,89 2,546 2,00 <		8 8		20.03	79718	69525	65591	60410	51916	46431	36053	29390	22510	950
1.2.17 6.8.6.6.0 6.8.5.6.4 5.49.33 4.46.23 37.5.0 2.97.5.5 2.99.6.5 7.5.0 6.9.1 8.9.6.23 7.16.5 8.90.33 6.28.60 5.42.5.2 480.64 37.287 2.98.53 2.2889 7.5.0 7.1.6 8.0.1.2 7.197 6.0.28.0 5.28.0 37.44 2.91.05 2.2889 8.437 7.7.6 8.0.1.2 7.197 6.0.28.0 5.27.12 460.0 37.144 2.91.05 2.2889 5.532 8.1.5 6.0.65 6.5.96 6.0.22.0 5.29.0 3.0.10 2.91.05 2.2889 5.532 8.0.7 6.0.65 6.5.96 6.0.24.0 3.27.12 3.90.0 2.91.05 2.2887 2.54.0 8.0.7 6.0.20.0 5.79.7 4.67.2 3.40.0 2.91.05 2.90.8 2.5.2 8.0.7 6.0.9 6.2.0 5.79.7 4.0.7 3.44.1 2.90.8 2.1863 1.3.0 3.0.0 7.3.6 6.2.6 5.2.6 <td></td> <td>47</td> <td></td> <td>25.42</td> <td>83888</td> <td>73212</td> <td>68821</td> <td>62749</td> <td>54685</td> <td>48488</td> <td>37779</td> <td>29805</td> <td>23264</td> <td>0.53</td>		47		25.42	83888	73212	68821	62749	54685	48488	37779	29805	23264	0.53
7.50 56.91 8.96.23 7.18.3 6.805.0 54.25.2 4.05.4 37.297 2.96.23 2.28.89 6.437 7.50 5.81 7.18.6 8.91.2 7.18.7 67.79.6 6.23.40 5.39.3 4.77.8 37.14.4 2.97.32 2.28.87 5.77.2 6.437 7.18.6 8.91.5 6.948.9 6.948.1 6.00.25 5.27.1 4.68.20 3.94.03 2.91.05 2.22.89 5.52.2 81.51 6.948.9 6.586.5 6.00.65 5.27.12 4.68.20 3.94.03 2.91.05 2.22.83 5.52.2 81.51 6.948.9 6.586.5 6.096.5 5.27.12 4.68.20 2.91.05 2.20.03 2.26.23 2.52.2 2.54.6 6.94.6 6.21.73 5.73.15 4.92.2 3.45.46 2.90.8 2.18.3 2.52.2 3.00.2 7.35.4 6.64.6 5.73.1 5.90.4 4.47.19 3.44.4 2.81.9 1.469 3.20.0 3.30.0 7.35.3 6.32.1				26.27	83705	73178	68580	63254	54933	48623	37520	29725	22995	0.53
7.50 7.50 7.15 83.11 7.1977 67796 62340 53993 4.776 37.14 2.972 2.2887 5.072 7.76 6.9953 6.9469 6.5861 6.0265 5.2712 4.6807 28-403 2.9105 2.2823 5.532 81.51 81.51 6.9469 6.5865 6.0265 5.2704 46773 3.9011 2.9105 2.2823 5.532 81.51 80.949 6.9775 6.9865 6.0285 5.2904 46773 3.9611 2.9106 2.2022 2.548 30.04 7.9034 6.9148 6.2173 57315 3.9546 2.8633 2.9047 44779 34546 2.8033 2.8633 5.907 44779 34646 2.8633 2.8047 47716 47719 2.8140 2.8194 2.8194 2.8194 2.8144 2.8194 2.8194 2.8194 2.8194 2.8194 2.8194 2.8194 2.8194 2.8194 2.8194 2.8194 2.8194 2.8194		20.0		58.81	83623	71853	68033	62850	54252	48054	37297	29623	22898	0.41
6.437 7.149 6.9469 6.9461 6.025 5.2712 46820 38403 2.9105 2.2523 5.072 7.72 7.66 6.9469 6.9469 6.9469 6.9475 6.9469 6.9773 29.04 46773 3.601 2.9106 2.2088 2.542 8.15 80.949 69775 6.5865 6.0865 5.2904 46773 3.611 2.9106 2.0888 2.542 3.00 7.6034 66148 62.173 57315 49942 44722 3.456 2.9088 2.1683 2.522 3.00 7.6641 66606 62.103 57977 50507 44719 3.4491 2.8183 2.7002 1.330 3.00 7.3584 62.963 56933 54946 47776 47269 3.1440 2.7876 2.7876 1.469 3.39 7.3933 58278 58043 5.2047 41266 2.7876 2.7896 2.7876 0.662 1.216 5650 <		000		2446	82117	71977	67796	62340	53993	47768	37144	29732	22987	0.44
5,572 8,072 8,151 8,094 69775 65865 65865 52904 46773 36011 29106 22088 2,532 8,152 8,153 1,203 1,215 4,942 4422 34546 29088 2,1663 2,542 2,543 3,004 7,6934 66,606 62,103 5/777 5,0507 44719 34901 2,1663 2,522 2,522 3,00 7,7584 6,2663 5,907 5,7977 5,0507 44719 34901 2,8152 2,7002 1,330 3,00 7,3584 6,2663 5,693 5,4946 4,7776 4,274 3,444 2,8152 2,7002 1,469 3,39 7,393 6,3219 5,694 4,7776 4,726 3,2809 2,1819 0,662 1,169 3,040 3,2809 2,7876 2,7876 2,7876 2,7876 2,7876 2,7876 2,7876 2,7876 2,7876 2,7876 2,7876 2,7876 2,7876		43/		77.80	80953	69489	65961	60825	52712	46820	36403	29105	22523	0.33
5.5.32 5.5.32 2.5.46 2.0.06 2.0.06 2.0.06 2.0.06 2.0.06 2.0.06 2.0.06 2.0.06 2.0.06 2.0.06 2.0.07 44719 34901 2.0.07 2.0.07 2.0.07 44719 34901 2.0.091 2.0.091 2.0.07 44719 34901 2.0.091 2.0.091 2.0.07 44719 34901 2.0.091 2.0.091 2.0.07 44719 34901 2.0.091		7/0		19 10	90949	69775	65985	60985	52904	46773	36011	29106	22088	0.35
2.546 2.546 2.546 2.547 5.0507 44719 34901 2.8374 2.1891 2.522 2.522 300.2 73564 62963 5909 55283 48453 43271 34244 28152 22002 1.330 300.2 73564 62963 5909 55283 48453 43271 34244 28152 22002 1.469 339.6 73933 83219 56834 44776 4629 3440 27816 27816 0.662 1216 68907 89560 56334 52040 47266 32809 27896 27896 0.662 1216 6603 56446 4776 47266 32809 27899 27899		532		2006	76034	66148	62173	57315	49942	44222	34546	28088	21863	0.22
2.52 2.52 2.52 2.52 4.6453 4.6453 4.6453 4.6453 4.6453 4.2771 3.424 2.8152 2.2002 1.330 30.0 30.0 7.3584 6.2663 5.4946 4.7776 4.629 3.440 2.7876 2.819 1.469 30.0 30.0 7.3933 6.953 5.6946 4.7776 4.6299 3.4140 2.7876 2.819 0.662 1.215 6.807 9550 5.8334 5.2040 4.7266 3.2099 2.7399 2.7399 0.662 1.215 6.807 9550 6.834 4.0547 4.7266 3.2099 2.7399 2.7399		240		305.8	76881	90999	62109	57977	50507	44719	34901	28374	21891	0.22
1,469 399,8 73933 63219 59650 46287 41268 32809 21819 21813 0.862 2.87040 46287 41268 32809 27399 21813 0.862 2.87040 46287 41268 32809 27399 21813		770		3000	73584	62863	29090	55283	48453	43271	34244	28152	22002	0.16
1,469 32809 27399 21813 0,862 1215 69500 56334 52040 46287 41266 32809 27809 21813		330		2.000	73033	83219	69633	54946	47776	42629	34140	27876	21819	0.16
0.862 1210 00001 00001 00001 00001 00000 00001 00000 00000 00000 00000 00000 00000 0000		469		0.500	20007	59560	FE34	52040	46287	41266	32809	27399	21813	0.10
		862		1215	10000	20000	20000	ESENE	45548	40512	17805	27160	21695	0.10

Kaolin 13 % in 50 mm valve, 75 % open

652.22 350.24 450.02 450.02 391.74 31312 28483 625.4 57014 5356 4381 4387 38676 31152 28483 62204 552146 52875 48938 43176 39234 31035 25824 62205 55146 52800 48126 42404 38406 30944 26121 58509 51973 48114 46406 40722 36912 30070 25433 58905 52318 49160 45757 40600 36857 30039 25471	64916 57014 53244 49381 43042 39174 31312 26483 21324 62205 57014 52703 48968 43387 38676 31155 25890 21277 62205 55146 52875 48938 43176 39234 31035 25824 21374 62243 54274 52400 48126 47404 38406 30944 26121 21371 58509 51973 49114 46406 40722 36912 30070 25433 21153 58605 52318 49160 45757 40600 36857 30039 25471 21111	-	=		00000	11002	10003	AORES	43646	39430	31406	26429	21432	60.0
64916 57014 53565 49381 43042 38174 31312 26483 21324 62524 55297 52703 48968 43387 38676 31155 25890 21277 62205 55146 52875 48938 43176 39234 31035 25824 21377 62205 54274 52400 4816 42176 3646 26121 21371 58509 51873 4916 45757 40600 3687 30039 25471 21111	64916 57014 53565 49381 43042 39174 31312 26483 21324 62264 55297 52703 48968 43387 38676 31155 25890 21277 62205 55146 52875 48938 43176 39234 31035 25824 21374 62843 54274 52400 48126 42404 38406 30944 26121 21371 58509 51973 49146 46406 40722 36912 30070 25433 21153 58605 52318 49160 45757 40600 38857 30039 25471 21111		_	2256	7770	4500	22024	200	250					9,0
62204 55207 52703 48968 43387 38676 31155 25890 21277 62205 55146 52875 48938 43176 39234 31035 25624 21374 62843 54274 52400 48126 42404 38406 30944 26121 21371 58509 51973 49114 46406 40722 36912 30070 25433 21153 58805 52318 49160 45757 40600 36857 30039 25471 21111	62524 55287 52703 48968 43367 38676 31155 25890 21277 62205 55146 52875 48938 43176 39234 31035 25824 21374 62843 54274 52400 48126 42404 38406 3094 268121 21371 58509 51973 48114 48406 40722 38912 30070 25433 21153 58805 52318 49180 45757 40600 38857 30039 25471 21111		t	DOUC	64916	57014	53595	49381	43042	39174	31312	26483	21324	0.70
62205 55474 52400 48126 43176 39234 31035 25824 21374 62205 55474 52400 48126 42404 38406 30944 26121 21371 58509 51973 49114 46406 40722 36912 30070 25433 21153 58805 52318 49160 45757 40600 38857 30039 25471 21111	62205 55146 52875 48938 43176 39234 31035 25824 21374 62205 55146 52400 48126 42404 38406 30944 26121 21371 59509 51873 49114 46406 40722 36912 30070 25433 21153 59805 52318 49160 45757 40600 36857 30039 25471 21111		\dagger	EDOX CONT	10303	55207	52703	48968	43387	38676	31155	25890	21277	0.07
62205 55146 52875 48938 43176 38234 31033 2502** 21033 2502** 21033 2502** 21033 2502** 21033 2502** 21033 2502** 21033 2502** 21033 2502** 21033 25471 21111 21111	62205 55146 52875 48938 43176 38234 31035 25024 21037 62843 54274 52400 48126 42404 30846 26121 21371 58509 51973 46114 46406 40722 36912 30070 25433 21153 58805 52318 49160 45757 40600 38857 30039 25471 21111		_	111	47670	2000				,0000	24025	ACODA	21374	80.0
62843 54274 52400 48126 42404 38406 30944 26121 21371 58509 51973 49114 46406 40722 36912 30070 25433 21153 58805 52318 49160 45757 40600 36857 30039 25471 21111	62843 54274 52400 48126 42404 38406 30944 26121 21371 59509 51973 49114 46406 40722 36912 30070 25433 21153 59605 52318 49160 45757 40600 36857 30039 25471 21111		H	1317	62205	55146	52875	48938	431/6	39234	31035	\$70C7	11017	3
59509 51973 49114 46406 40722 36912 30070 25433 21153 59805 52318 49160 45757 40600 36857 30039 25471 21111	59609 51973 49114 46406 40722 36912 30070 25433 21153 59805 52318 49160 45757 40600 36857 30039 25471 21111		\dagger	1770	62843	54274	52400	48126	42404	38406	30944	26121	21371	0.08
59509 51973 49114 48400 40124 50512 50510 25471 21111 59805 52318 49160 45757 40600 36857 30039 25471 21111	58509 51973 48114 46400 40722 39912 25471 21111 58805 52318 49160 45757 40600 38857 30039 25471 21111		+	147				20101	40700	20042	20070	25433	21153	0.05
59805 52318 49160 45757 40600 36857 30039 25471 21111	59805 52318 49160 45757 40600 36857 30039 25471 21111		-	5936	29509	51973	49114	40400	40175	20312	2000	20107		
			t	7116	59805	52318	49160	45757	40600	36857	30039	25471	21111	60.0

Appendix 35: Water in 50 mm valve, 75 % open

Water	Water in 50 mm valve, 75 % open	e, 75 %	oben										
							Water in 50	Water in 50 mm valve, 75 % open	5 % open				
	Date:	11/29/2006	Test done by Elelwani	_					•				
	Valve Type:	Diaphragm											
	Valve dimension[m]:	0.05											
	Valve position:	% Open	Area[m²]	_									
J	Pipe Diameter [m]:	0.0528	0.002189564					-					
				ì									
	Material Type:	Water						1/u	n/(n+1)	(n+1)/n	Υ		
	Density[kg/m³]:	995.0746					•	-	0.5	2	0.0007723		
	Concentration:	100%					•						
	ty:	0											
	K:	0.0007723											
79	;i	1	Axial distances	-6.574	-3.526	-2.281	-0.780	1.257	3.012	6.566	8.566	10.57	
	PPT used:	101 to 109	Valve plane										* 3
	Range selected:	0-130	Non-dimensionalised distances incl.[L/D]:	-124.5	92'99-	43.20	-14.77	23.80	57.04	124.3	162.2	200.2	
			Distances[m]:	0	3.048	4.293	5.794	7.831	9.586	13.14	15.14	17.14	
Run #	Re,		K	Pod 1	Pod 2	Pod 3	Pod 4	Pod 5	Pod 6	Pod 7	Pod 8	Pod 9	Average
				(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	[NS]
Run 1	143671		3.66	39400	37280	36314	35398	25099	23838	21689	20239	18764	4.62
Run 2	134816		3.65	37195	35328	34469	33580	24445	23299	21412	20139	18779	4.34
Run 3	123301		3.68	34398	32816	32074	31391	23649	22692	21064	19966	18830	3.97
Run 4	116457		3.63	32747	31321	30663	30023	23166	22289	20851	19858	18838	3.75
Run 5	103846		3.65	30077	28926	28328	27836	22397	21676	20489	19702	18855	3.34
Run 6	93925		3.66	28175	27162	26724	26253	21803	21221	20226	19566	18864	3.02
Run 7	83291		3.58	26250	25457	25063	24706	21232	20772	19975	19419	18874	2.68
Run 8	74914		3.62	24948	24311	24002	23687	20840	20437	19787	19337	18880	2.41
Run 9	55233		3.81	26983	26597	26461	26273	24537	24315	23927	23633	23375	1.78

Appendix 36: CMC 5 % in 50 mm valve, 100 % open

CMC 5	CMC 5 % in 50 mm valve, 100 % open	valve, 10	00 % oben										
							CMC 5 % in	CMC 5 % in 50 mm valve, 100 % open	100 % open				
	Date:	12/9/2006	Test done by Mume						-				
	Valve Type:	Diaphragm		1									
	Valve dimension[m]:	0.05		1									
	Valve position:	Open	Area[m²]										
	Pipe Diameter [m]:	0.0528	0.002189564	_									
	Material Type:	CMC 5%						‡	n/(n+1)	(n+1)/n	Υ _{th}		
	Density(kg/m³):	1026.8						1.550	0.392	2.550	1.957		
	Concentration:	2%											
	t,: 3	0.000						*					Sa.
	K:	1.542					20						
	ë	0.645	Axial distances	-6.574	-3.526	-2.281	-0.780	1.257	3.012	6.566	8.566	10.57	
	PPT used:	101 to 109	Valve plane										
	Range selected:	0-130	Non-dimensionalised distances incl.[UD]:	-124.5	-66.78	43.20	-14.77	23.80	57.04	124.3	162.2	200.2	
			Distances[m]:	0	3.048	4.293	5.794	7.831	9.586	13.14	15.14	17.14	
Run #	Re		ž.	Pod 1	Pod 2	Pod 3	Pod 4	Pod 5	Pod 6	Pod 7	Pod 8	Pod 9	Average Q
				(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	[/s]
Run 1	575.2		4.13	119051	103175	96674	89128	72786	63681	48574	38248	27953	4.63
Run 2	541.4		3.84	115012	100449	94119	86590	71200	62466	47759	37737	27801	4.43
Run 3	494.3		4.07	110595	96657	90019	83420	66889	60730	46571	37089	27594	4.14
Run 4	463.1		4.08	106994	93382	87690	80867	67373	59271	45866	36588	27430	3.94
Run 5	421.0		4.26	102805	89619	83983	77507	65265	57646	44811	36073	27256	3.68
Run 6	386.4		4.13	98696	86896	81284	75138	63299	56190	43836	35490	27101	3.45
Run 7	356.2		4.78	96052	83789	79121	72815	61919	54775	43192	35025	26948	3.25
Run 8	329.3		5.15	93126	81847	76429	70948	60492	53622	42283	34580	26820	3.07
Run 9	303.6		5.26	90349	79033	74414	69056	58887	52513	41486	34154	26670	2.89
Run 11	257.1		6.29	84744	74516	70428	65433	56046	50002	40052	33202	26400	2.55
Run 12	219.8		6.32	80194	70632	66716	62066	53534	48270	38872	32491	26140	2.28
Run 13	194.2		7.26	76786	67758	64015	59538	51864	46762	37960	31963	25991	2.08
Run 14	170.7		7.88	73473	65091	61413	57483	50213	45380	37123	31455	25838	1.89
Run 15	151.1		7.69	70270	62436	59154	55414	48620	44145	36296	30979	25700	1.73

Appendix 37: Kaolin 6 % in 50 mm valve, 100 % open

Material Type: Disphragm Valve Dismeter [m]: 0.0528 0.002189564	7.1822007 Test done by Mume & Sisonke 0.052 0.002189564 0.052 0.002189564 0.052 0.002189564 0.052 0.002189564 0.052 0.002189564 0.052 0.002189564 0.052 0.002189564 0.052 0.002189564 0.054 0.056 0.05	9% Open n² 88564 88564 Intersionalised distances incl.[L/D]: cese(m): k, 1,64 1,76 1,76 1,43 1,69 1,90	0% open n³ 1 88564 Bissonke recel(m): k, recel(m): recel(m): k, Pod 1 recel(m): k, Pod 1 recel(m): k, Pod 1 1.64 30.49 1.69 2.01 2.01 2.01 2.01 2.01 2.04 2.05 2.	0% Open n³ 1 Resided Resided <	0% Open n³ 1 Resided Resided <	of open Kaolin 6 % in 50 mm valve, 10 n³ Reserve A.3.526 -2.281 -0.780 1.257 -1.267	P/6 Open run by Mume & Sigoride Kaolin 6 % in 50 mm valve, 100 % open run by Mume & Sigoride Th Inth Inth </th <th>Maolin 6 % in 60 mm valve, 100 % open Acadime 8 Siconies n³1 Réséda 1 1 m n/(n+1) (n+1)m K²n Réséda 1 257 3.795 0.208 4.795 1.285 Pélone 1 25.2 2.281 -0.780 1.257 3.012 5.988 7 Pélone 1 24.5 -6.74 -3.526 -2.281 -0.780 1.257 3.012 5.988 7 Resélni; L, Pod 1 Pod 4 Pod 5 Pod 4 Pod 6 Pod 7 1.28 Pod 7 1.28</th> <th>O/6 Open Kaolin 6 % in 50 mm valve, 100 % open Kaolin 6 % in 50 mm valve, 100 % open Introduce 8 Storine Introduce 9 Storine 9 Storine</th>	Maolin 6 % in 60 mm valve, 100 % open Acadime 8 Siconies n³1 Réséda 1 1 m n/(n+1) (n+1)m K²n Réséda 1 257 3.795 0.208 4.795 1.285 Pélone 1 25.2 2.281 -0.780 1.257 3.012 5.988 7 Pélone 1 24.5 -6.74 -3.526 -2.281 -0.780 1.257 3.012 5.988 7 Resélni; L, Pod 1 Pod 4 Pod 5 Pod 4 Pod 6 Pod 7 1.28 Pod 7 1.28	O/6 Open Kaolin 6 % in 50 mm valve, 100 % open Kaolin 6 % in 50 mm valve, 100 % open Introduce 8 Storine Introduce 9 Storine
100 % open Test done by Mume & Sisonke Axial distances Valve plane Non-dimensionalised distances incl.[L/D]: Distances(m): k, 1.64 1.76 1.48 1.48 1.69 1.90 2.01 2.01 2.01 2.01 2.04 2.35	9% Open n² 88564 88564 Intersionalised distances incl.[L/D]: cces[m]: k, 1.64 1.76 1.43 1.46 1.69 1.90 2.01 2.01 1.55 1.90 2.01 2.04 2.35	0% open n³ 88564 Bissonke linensionalised distances incl.[L/D]: -6.574 linensionalised distances incl.[L/D]: 0 cces(m): k, Pod 1 linensionalised distances incl.[L/D]: 0 linensionalised distances incl.[L/D]: 0 linensionalised distances incl.[L/D]: 0 line 30.49 line 30.49 line 20.99 line<	n³ 46 574 -3.526 Ristances -6.574 -3.526 Pidine innensionalised distances incl.[L/D]: -124.5 -66.78 Inces(m): k, Pod 1 Pod 2 Inces(m): k, Pod 1 Pod 2 Icces(m): k, Pod 1 Pod 2 Icces(m): k, Pod 1 Pod 2 1.64 30740 27751 1.75 30841 27752 1.43 30740 27551 1.69 28099 27455 1.69 28099 27455 1.69 28099 27456 1.69 28099 27456 1.69 28099 27456 1.69 29005 26099 2012 28170 2820 1.90 30182 27188 1.90 30182 2820 1.50 2877 2820 1.53 28641 2870 2.04 2874 2748 2.04 2874 2877 2.04	n³ Resided n³ Resided	n³ Resided n³ Resided	n³ Resided n³ Resided	Naolin 6 % in 60 mm valve, 100 % open nne by Mame & Sisonide 17 B9564 17	Naolin 6 % in 50 mm valve, 100 % open n°1 Réachne 6 Sisonke 1/n n°(n°1) n° (n°1) n° (n°1) n° (n°1) n° (n°1) n° (n°1) n° (n°1) n°	O/O OPEN Kaolin 6 % in 60 mm valve, 100 % open Kaolin 6 % in 60 mm valve, 100 % open International bed distances A 5574 -3.526 -2.281 -0.780 1.257 3.012 5.960 7.868 Plane Immunicabilised distances incl. LDI: -124.5 -6.574 -3.281 -0.780 1.257 3.012 5.960 7.868 Plane Immunicabilised distances incl. LDI: -124.5 -6.574 -3.286 -2.281 -0.780 1.257 3.012 5.960 7.868 Plane Immunicabilised distances incl. LDI: -124.5 -6.784 -4.230 -1.477 -2.380 1.787 1.480 1.580 1.480 Internationalised distances incl. LDI: Pod 1 Pod 2 Pod 3 Pod 4 Pod 6 Pod 6 Pod 7 Pod 6 Pod 7 Pod 7 Pod 7 Pod 8 Pod 9
	-6.574 -6.574 -124.5 -124.5 -124.5 -104.4 -1		-3.526 -3.526 -3.048 -9.04 2 -9.04 2 -27521 -2754 -2754 -2624 -26325 -26325 -26325 -26325 -2632 -2632 -2632 -2632 -2632 -2632 -2632 -2633 -2723	.3.526 .2.281 -66.78 .43.20 -80.78 .43.20 -80.49 .4.293 -80.49 .4.293 -80.49 .4.293 -80.49 .4.293 -80.49 .2.893 -80.49 .2.893 -80.49 .2.893 -80.49 .2.893 -80.49 .2.893 -80.49 .2.893 -80.49 .2.893 -80.49 .2.893 -80.49 .2.893 -80.49 .2.893 -80.49 .2.893 -80.49 .2.893 -80.49 .2.893 -80.49 .2.893 -80.49 .2.893 -80.49 .2.893	.3.526 .2.281 -66.78 .43.20 -80.78 .43.20 -80.49 .4.293 -80.49 .4.293 -80.49 .4.293 -80.49 .4.293 -80.49 .2.893 -80.49 .2.893 -80.49 .2.893 -80.49 .2.893 -80.49 .2.893 -80.49 .2.893 -80.49 .2.893 -80.49 .2.893 -80.49 .2.893 -80.49 .2.893 -80.49 .2.893 -80.49 .2.893 -80.49 .2.893 -80.49 .2.893 -80.49 .2.893 -80.49 .2.893	.3.526 .2.281 -66.78 .43.20 -80.78 .43.20 -80.49 .4.293 -80.49 .4.293 -80.49 .4.293 -80.49 .4.293 -80.49 .2.893 -80.49 .2.893 -80.49 .2.893 -80.49 .2.893 -80.49 .2.893 -80.49 .2.893 -80.49 .2.893 -80.49 .2.893 -80.49 .2.893 -80.49 .2.893 -80.49 .2.893 -80.49 .2.893 -80.49 .2.893 -80.49 .2.893 -80.49 .2.893 -80.49 .2.893	1/n n/(n+1) (n+1) (n+1	1/n n/(m+1) (m+1)/n K ^{3/m} 3.526 -2.281 -0.780 1.257 3.012 5.958 7.	1/n

Appendix 38: Kaolin 10 % in 50 mm valve, 100 % open

												_	_	,			Average	[1/8]	4.61	4.46	4.27	4.09	3.98	3.67	3.30	3.05	2.83	2.62	2.42	2.16
												190.0	9.901	000	188.6	16.53	Pod 9	Pa	13007	12769	12451	12458	12272	12179	11415	10995	10946	10815	10585	10708
								Υ _{II} γ	71319			7.050	008.7	1007	130.7	14.53	Pod 8	(Pa)	18017	17690	17379	17278	16997	16827	16112	15779	15565	15289	15072	. 14847
	Ę							(n+1)/n	6.702			6 050	0.900		112.8	12.53	Pod 7	(Pa)	23285	23021	22660	22507	22196	22025	21148	20826	20513	20346	20011	19769
	Kaolin 10 % in 50 mm valve, 100 % open							n/(n+1)	0.149			0,000	3.0.6		57.04	9.586	Pod 6	(Pa)	30752	30420	30037	29895	29529	29275	28200	27799	27439	27136	26840	26401
	6 in 50 mm v		50				251	1/n	5.702				/67		23.80	7.831	Pod 5	(Pa)	34987	34668	34313	34035	33651	33333	32334	31838	31412	31057	30768	30196
	Kaolin 10 %											0000	-0.780		-14.77	5.794	Pod 4	(Pa)	45389	44552	43906	43242	42598	41398	39944	38821	37937	37237	36565	35670
													-2.281		43.20	4.293	Pod 3	(Pa)	49167	48533	47811	47118	46488	45358	43464	42484	41474	40543	40012	38969
													-3.526		-66.78	3.048	Pod 2	(Pa)	52336	51418	50695	49931	49333	47812	46315	45356	44272	43424	42625	41723
	,			,		_							-6.574		-124.5	0	Pod 1	(Pa)	59993	59228	58430	57759	57098	55872	53849	52648	51562	50693	49995	48915
100 % open		Test done by Mume & Sisonke			Area[m²]	0.002189564							Axial distances	Valve plane	Non-dimensionalised distances incl.[L/D]:	Distances[m]:	فد		1.75	1.70	1.72	1.87	2.00	1.83	1.70	0.95	1.16	0.71	0.70	1.56
n valve,		8/14/2007	Diaphragm	0.05	Open	0.0528		Kaolin 10%	1169.4	40%	8.965	7.098	0.175	101 to 109	0-130															
Kaolin 10 % in 50 mm valve, 100		Date:	Valve Type:	Valve dimension[m]:	Vaive position:	Pipe Diameter [m]:		Material Type:	Density[kg/m²]:	Concentration:	÷	ž.	ä	PPT used:	Range selected:		ď		1299	1241	1146	1040	982.8	842.8	GRK 5	6909	523.4	439.2	381.4	297.8
Kaolin																	, n		Biro 1	Run 2	Run 3	Run 4	Run 6	Run 6	Bun 7	Sun S	6	P. m. 10	Run 11	Run 12

Appendix 39: Kaolin 13 % in 50 mm valve, 100 % open

							Kaolin 13 %	Kaolin 13 % in 50 mm valve, 100 % open	ve. 100 % open				
	Date:	12/8/2007	Test done by Mume & Rendani										
	Valve Type:	Diaphragm		1									
	Valve dimension[m]:	0.05		1									
	Valve position:	Open	Area[m²]	900									
_	Pipe Diameter [m]:	0.0528	0.002189564					•					
_		Kaolin						[;			n//·		
	Description 1 ype:	1078	_					WI 9677	(Lau)	UM L+U)	A 100		
	Consentation	1210.0					_ •	4.130	0.190	0.130	19186		
_	t:	18.973											
•	2	16.141											
	*	0.242	Axial distances	-6.574	-3.526	-2.281	-0.780	1.297	3.012	5.958	7.958	9.961	**
	PPT used:	105	Valve plane				10000000				0.000		
_	Range selected:	0-130	Non-dimensionalised distances incl.[UD]:	-124.5	-66.78	-43.20	-14.77	23.80	57.04	112.8	150.7	188.6	
			Distances[m]:	0	3.048	4.293	5.794	7.831	9,586	12.53	14.53	16.53	
Run #	Re		k,	Pod 1	Pod 2	Pod 3	Pod 4	Pod 5	Pod 6	Pod 7	Pod 8	Pod 9	Average Q
				(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	[Vs]
Run 1	44.40		0.75	97805	84475	79269	72484	63298	55794	42980	34248	25516	1.14
Run 2	43.40		3.45	97268	83578	78714	71771	62636	55161	42281	33954	24958	1.13
Run 4	39.46		9.12	94082	80681	76082	69672	60850	53684	41279	32992	24851	1.06
Run 5	32.12		5.49	94527	81218	76621	69933	60928	53696	41329	32833	24558	96.0
Run 6	32.68		5,15	93535	80557	75635	69380	60383	53377	41114	32569	24546	0.96
Run 7	25.54		10.92	93138	79927	75420	68739	59796	52858	40648	32428	24224	0.83
Run 8	26.27		19.83	92055	78603	74168	68047	90069	52127	40266	32378	24347	0.84
Run 9	20.72		6.70	90417	77499	72804	96699	58292	51493	39750	31669	23731	0.74
Run 10	21.13		20.35	89888	76828	72302	66418	57977	51103	39678	31523	24093	0.75
Run 11	15.75		16.57	87449	74941	70764	64813	56652	50166	38954	31217	23751	0.63
Run 12	11.08		38.11	87265	75086	70870	85024	99595	50184	38637	30762	23516	0.52
Run 14	9.693		17.45	79882	68961	64755	59871	52113	46401	36659	29845	23014	0.46
Run 15	6.040		215.6	75829	65026	60626	55780	48791	43618	34284	27871	22039	0.35
Run 16	2.915		51.1	77049	66759	62762	95975	50291	44850	35876	28986	22812	0.24
Run 17	3.150		51.4	76676	67259	63334	90589	51215	45335	35467	28900	22420	0.25
Run 18	1.109		774.9	73275	63276	59398	54898	49137	43565	34341	28361	22501	0.14
Run 19	2.669		778.5	67200	58247	54784	20550	44047	39336	31810	27152	21723	0.19
Run 20	0.836		610.6	69090	60814	57245	52621	46199	41670	32972	27029	21698	0.11
Run 21	1.031		393.4	69954	59742	56816	52037	46556	41421	33421	27605	22047	0.13
Run 22	0.656		1144	63156	55578	52169	48730	43082	38842	31214	26458	21369	60.0
Run 23	0.660		2189	63243	55400	52282	48879	43152	38802	30902	25828	21211	0.09
Run 24	0.275		14800	62756	54072	50962	47301	42136	38096	30345	25682	21523	90.0
Run 25	0.255		5934	00000	20110	2000	47500	******					

Appendix 40: Water in 50 mm valve, 100 % open

				_		***	Water in 50 r	Water in 50 mm valve, 100 % open	% oben				
	Date:	11/29/2006	Test done by Elelwani	_									
	Valve Type:	Diaphragm ·									,		
	Valve dimension[m]:	0.05											
	Valve position:	Open	Area[m²]										
	Pipe Diameter [m]:	0.0528	0.002189564	_									
											4		
	Material Type:	Water					•	Ę	n/(n+1)	(n+1)/n	¥.		
	Density[kg/m³]:	995.53056						-	0.5	2	0.0007954		
	Concentration:	100%											
	ţ	0											
	ي	0.0007954											
	ë	-	Axial distances	-6.574	-3.526	-2.281	-0.780	1.257	3.012	6.566	8.566	10.57	
	PPT used:	101 to 109	Valve plane										
	Range selected:	0-130	Non-dimensionalised distances Incl.[L/D]:	-124.5	-66.78	-43.20	-14.77	23.80	57.04	124.3	162.2	200.2	
			Distances[m]:	0	3.048	4.293	5.794	7.831	9.586	13.14	15.14	17.14	
				1 100	Pod 2	Pod 3	Pod 4	Pod 5	Pod	Pod 7	Pod 8	Pod 9	Average
	re;		W	(Pa)	(Pa)	(Pa)	(Pa)	(Fa)	(Pa)	(Pa)	E.	(Pa)	[vs]
	FOCCOT		-	33466	31531	30674	29786	24587	23413	21479	20165	18804	4.38
	107761		160	32499	30738	29872	29101	24197	23132	21332	20093	18825	4.22
	113829		83	29986	28547	27829	27192	23222	22371	20910	19909	18876	3.77
Pin 4	10639		159	28682	27440	26840	26205	22751	21988	20689	19778	18876	3.53
e dia	98638		1,61	27415	26265	25738	25235	22258	21595	20470	19673	18897	3.27
9 10	90000		899	26100	25153	24698	24256	21771	21193	20224	19568	18907	2.99
Pin 7	82862		98	25057	24233	23854	23476	21350	20877	20045	19464	18910	2.75
Rung	73841		1.52	23886	23229	22929	22610	20920	20512	19850	19380	18907	2.45
Run 9	65248		1.73	22895	22377	22109	21864	20531	20232	19679	19308	18952	2.16
Run 10	54445		1,44	26280	25890	25707	25514	24586	24354	23973	23682	23416	1.80

Appendix 41: CMC 5 % in 65 mm valve, 25% open

CMC 5	CMC 5 % in 65 mm valve, 25 %	valve, 25	% oben										
				ı			CMC 6 % in	CMC 5 % in 65 mm valve, 25 % open	25 % open				
	Date:	12/13/2006	Test done by Mume	_									
	Valve Type:	Diaphragm		24									
	Valve dimension[m]:			r									
	Valve position:	7, Open	Area[m²]										
	Pipe Diameter [m]:	0.06308	0.003125167										
									1000	10.40%	ally		
	Material Type:	CMC 5%						W.	(L+U)/U	U/L+U	4		
	Density(kg/m³]:	1026.7						1.724	0.367	2.724	10.04		
	Concentration:	2%					•						
	ود	0											
	2	3.81		6 074	A 896	2 885	0.037	0.987	1 968	2 938	3 916	4 858	
	ë	86.0	Axial distances	-0.914	200	200.7	0.00	200	200:1	200			
	PPT used:	101 to 109	Valve plane	400	77.45	45.74	14.85	15.85	31.20	46.58	62.08	77.01	
	Kange selected.	8	Distances[m]:	0	2.088	4.089	6.037	7.961	8.942	9.912	10.89	11.83	
# cma	á		2	Pod 1	Pod 2	Pod 3	Pod 4	Pod 6	Pod 6	Pod 7	Pod 8	Pod 9	Average Q
				(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	[VS]
Run 1	194.9		28.69	135555	126578	116611	107061	70817	62829	61091	56205	51729	4.16
Run 2	178.1		30.18	130835	120995	111793	102621	29689	64218	59601	54932	50515	3.90
Run 3	166.1		30.51	126337	116937	107652	98868	67353	62844	58312	53768	49458	3.72
Run 4	153.9		32.28	123352	114251	105143	96484	66681	62259	57861	53435	49290	3.52
Run 5	140.3		32.95	117545	108605	99933	91650	64500	60284	56083	51844	47869	3.30
Run 6	130.4		33.62	113321	104405	96309	88229	62926	58812	54769	50688	46828	3.13
Run 7	114.3		35.31	107078	99031	91279	83534	60631	56798	52985	49101	45448	2.86
Run 8	107.2		36.37	104383	96446	88783	81334	59652	55858	52135	48347	44781	2.73
Run 9	93.41		37.07	98403	90096	83802	76794	57442	53841	50278	46682	43301	2.48
Run 10	82.13		40.44	94251	87110	80248	73677	55726	52276	48852	45438	42220	2.26
Run 11	74.04		41.67	90679	84025	77532	71090	54452	51165	47900	44583	41528	2.10
Run 12	62.36		44.84	84558	78158	72194	66281	51726	48738	45719	42680	39817	1.86
Run 13	47.84		51.69	80575	74807	69410	,64132	52054	49345	46625	43883	41363	1.55
Run 14	36.20		64.81	73750	68556	63847	59053	48840	46413	44059	41630	39384	1.27
Run 15	26.98		86.19	68189	63583	59174	54893	46049	43918	41796	39654	37639	1.03

Non-Newtonian Loss Coefficients for Saunders Diaphragm Valves

Appendix 42: Kaolin 6 % in 65 mm valve, 25 % open

Date:	2	8/1/2007	Test done by Mume & Sisonke										
Valv	Valve Type:	Diaphragm											
Valv	Valve dimension[m]:	0.065		ſ									
Valv	Valve position:	1/2 Open	Area[m²]										
P. S	Pipe Diameter [m]:	0.06308	0.003125167	_									
								,	100	7.10.1	, tin		
Mat	Material Type:	Kaolin 6%						W.	(L+U)/U	W(1+U)	۷.		
Den	Density[kg/m³]:	1103.9					_	3.795	0.209	4.795	14.90		
Con	Concentration:	%9											
ij		3.071											
¥		2.038											
Ë		0.264	Axial distances	-6.974	-4.886	-2.885	-0.937	0.987	1.968	2.938	3.916	4.858	
PPT	PPT used:	101 to 109	Valve plane										
Ran	Range selected:	0-130	Non-dimensionalised distances incl.[L/D]:	-110.6	-77.45	-45.74	-14.85	15.65	31.20	46.58	62.08	10.77	
			Distances[m]:	0	2.088	4.089	6.037	7.961	8.942	9.912	10.89	11.83	
gru #	ě		٤	Pod 1	Pod 2	Pod 3	Pod 4	Pod 6	Pod 6	Pod 7	Pod 8	Pod 9	Average
				(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	[//s]
Run 2	2416		21.83	66343	64678	63337	62106	20413	19245	18304	17243	16503	5.60
Run 3	2298		23.71	64961	63187	62048	60755	20865	19081	18040	17170	16557	5.41
L	2139		22.40	90609	59421	58227	59695	20284	19005	18096	17236	16375	5.18
	1999		22.10	58462	56972	55424	54151	20436	19016	18075	17169	16463	5.07
	1935		22.95	56901	55285	53895	52696	20169	18710	17865	17045	16414	4.93
	1833		22.85	53123	51868	50458	49229	19600	18518	17768	16969	16421	4.70
	1660		23.54	51034	49559	48335	47081	19847	18638	17790	17078	16472	4.46
_	1520		24.09	48903	47540	46423	45280	19701	18689	17779	16983	16411	4.20
	1975		22.93	45948	44745	43579	42157	19074	18016	17186	16410	15911	3.94
_	1205		25.19	42986	41578	40622	39272	18744	17687	17034	16276	15728	3.67
Run 12	1004		25.43	41613	40267	39044	37927	19901	19185	18490	17768	17175	3.37
2	870.7		26.88	38591	37295	36235	35042	19794	18965	18266	17634	17070	3.05
Run 14	721.6		28.82	37038	35715	34621	33517	19814	19089	18575	17895	17410	2.76
Run 15	548.5		36.66	35430	34269	33177	32061	20090	19401	18822	18303	17768	2.32
Run 16	698.5		32.20	35880	34649	33643	32491	19800	19076	18489	17920	17510	2.60
Pun 17	ACE 8		34 13	36055	34895	33748	32509	20152	10372	48822	40462	477EA	2 47

Appendix 43: Kaolin 10 % in 65 mm valve, 25 % open

	Date:	8/14/2007	Test done by Mume										
•	Valve Type:	Diaphragm					2						
	Valve dimension[m]:	0.065											
	Valve position:	% Open	Area[m²]	_									
	Pipe Diameter [m]:	0.06308	0.003125167	_									
		Kaolin						ş	n/(n+1)	(n+1)/n	K th		
	Material Type:	1169.4						5.702	0.149	6.702	71319		
	Concentration:	10%											
	ن	8.965											
	2	7.098		1	0007	3000	0.037	0.087	1 068	2 938	3916	4.858	
	2	0.175	Axial distances	49.974	4.000	000.7-	10.801	0.90	200	200			
	PP1 used:	901 00 101	Non-dimensionalised distances incl 7 /01:	-1106	-77.45	-45.74	-14.85	15.65	31.20	46.58	62.08	77.01	
	Kange selected:	200	Distances [m]	c	2 088	4.089	6.037	1.961	8.942	9.912	10.89	11.83	
			negurealini.	Pod	Pod 2	Pod 3	Pod 4	Pod 5	Pode	Pod 7	Pod 8	Pod 9	Average
Run #	Ke,		Ž.	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	[1/8]
	9770		2821	94358	96668	86687	82793	33893	31290	29123	27054	25375	5.21
	0.15		28.47	91404	87346	83505	79781	33513	30924	28898	26898	25213	9.09
	825.7		29.33	88717	84771	81149	77434	33115	30699	28713	26678	25048	2
Pun 4	726.8		30.14	86438	82171	78634	74904	32840	30345	28386	26350	24708	9
Run 6	682.2		30.65	84090	79936	76354	72637	32615	30061	28281	26226	24603	4 48
Run 6	631.0		31.99	81506	77456	73834	70112	32205	29858	27914	26001	24362	4.29
Sun 7	558.6		31.63	78852	74684	71049	67184	32002	29686	27826	/0807	24040	2 88
Run 8	482.3		35.05	77619	73430	69744	66284	31652	00000	27176	25370	23794	3.58
Run 9	434.4		38.92	74060	70185	66363	R2994	31206	29123	27225	25301	23719	3.41
Run 10	385.2		41.26	72704	68990	65670	61815	31019	28946	27194	25081	23492	3.21
Run 11	387.3		ON CO.	79594	48765	65092	61454	30867	28837	27097	25071	23528	3.07
Run 12	331.3		40.12	70970	99999	63279	59919	30713	28602	26886	24951	23353	2.86
Kun 13	707		50.20	68301	64267	61031	57314	30206	28387	26613	24449	23002	2.70
t un	2,602		58.04	86094	62002	58806	55252	29783	27859	26102	24143	22567	2.50
er una	497.5		R129	81764	58151	54618	51098	29044	27175	25488	23525	22079	2.26
6 LIN 10	166.7		6296	59450	55704	52246	48861	28489	26743	25028	23076	21530	5.09
	135.4		70.08	56887	53189	49991	46582	27978	26311	24585	22648	21182	1.87
D. 10	95.48		82.73	55248	51411	48150	44627	27566	25920	24254	22279	20832	20.
Run 20	, 77.08		95.90	53012	49337	46182	42663	27273	25596	23950	22043	205/2	1.42
Run 21			127.3	51349	47706	44356	40898	26858	25290	23656	21657	20202	0.0
Run 22	27.24		191.1	49027	45432	42208	38894	26638	24890	23295	21489	20102	0.30

Appendix 44: Kaolin 13 % in 65 mm valve, 25 % open

Kaolin	Kaolin 13 % in 65 mm valve, 25	m valve,	, 25 % open										
	Date	8/30/2007	Test done by Mume & Sisonke				Kaolin 13 %	in 65 mm val	Kaolin 13 % in 65 mm valve, 25 % open	_			
	Valve Type:	Diaphragm	-	1									
	Valve position:	%Open	Area[m²]	_									
	Pipe Diameter [m]:	0.06308	0.003125167	_									
	Material Type:	Kaolin 13%						14	n/(n+1)	(n+1)/n	Ψ,¥		
	Density(kg/m²]:	1214.8					:5	4.637	0.177	5.637	75890		
	Concentration:	13%											
	. 2	11.285											
	ä	0.216	Axial distances	-6.974	-4.886	-2.885	-0.937	0.987	1.968	2.938	3.916	4.858	
	PPT used:	0.130	Non-dimensionalised distances incl. (LO):	-110.6	-77.45	-45.74	-14.85	15,65	31.20	46.58	62.08	10.77	
	manage of the	2	Distances[m]:	0	2.088	4.089	6.037	7.961	8.942	9.912	10.89	11.83	
Run #	Re		ž	Pod 1	Pod 2	Pod 3	Pod 4	Pod 5	Pod 6	Pod 7	Pod 8	6 Pod	Average Q
				(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(F)	[76]
Run 1	634.4		20.50	124153	116887	111231	104926	56416	53066	49848	46128	43215	5.60
Run 2	590.7		22.79	123167	115717	109896	103529	56061	52731	49500	45977	43228	5.39
Run 3	828.8		23.21	121714	114577	108567	101988	56010	6556	49346	45894	43003	5.23
Run 4	530.8		23.44	120445	113014	107138	100632	55722	52596	49297	45500	42912	5.11
Run 5	513.7		23.59	118717	111326	105525	98954	55375	52165	48922	45349	42564	5.01
Run 6	485.5		23.84	117599	109920	104305	97733	55503	52298	48856	45525	42440	4.88
Run 7	470.3		23.79	115482	108553	102223	95772	54734	51572	48344	44931	41940	4.80
Run 8	463.4		23.50	113113	106066	100308	93647	5415/	51054	47305	43068	41100	4.55
Run 9	433.6		24.54	110927	104020	9/844	80703	53507	50308	47778	43919	41090	436
or and	403.0		11.62	105000	98281	82208	85733	52445	49442	46505	43215	40392	4.20
Bun 12	340.6		28.01	103882	97171	91107	84690	53012	49978	46996	43850	40947	3.98
Run 13	308.7		27.30	100343	93918	87903	81592	51539	48585	45631	42401	39660	3.75
Run 14	283.7		27.39	97422	91157	85299	78879	51118	48172	45239	42049	39300	3.56
Run 15	245.9		28.98	95219	90988	82753	76308	20860	47921	44973	41789	39103	3.32
Run 16	214.2		29.15	91896	85556	79597	72852	50337	47470	44499	41351	38645	3.08
Run 17	196.6		30.07	89868	83848	77835	71727	50057	47176	44182	41113	38404	2.83
Run 18	190.1		29.82	88069	81892	76020	70072	49809	46915	43982	40907	38230	279
Run 19	167.1		30.15	96368	80433	74485	68484	49487	46680	43682	40749	37983	797
Run 20	152.9		31.96	85230	79187	73405	67645	49424	46560	43593	40598	37992	2.53
, Run 21	139.5		30.01	82828	76802	71153	65432	48907	46070	43110	40131	3/203	2.41
Run 22	126.8		31.05	81657	75646	69932	64259	48649	45882	42872	39995	37320	2.29
Run 23	116.6		30.56	79994	74055	68723	62945	48324	45491	42605	39/45	37091	2.16
Run 24	106.8		31.53	79880	73610	68016	62319	48085	45303	42461	39622	36912	2.11
Run 25	99.20		31.78	78500	72713	66985	61430	47893	45236	42328	38542	36847	2.00
Run 26	83.65		28.54	76877	71014	65646	80062	47443	44659	41953	38079	39339	1.62

Appendix 45: Water in 65 mm valve, 50 % open

Water ii	Water in 65 mm valve, 25 % oper	, 25 % 0	pen										
				ı			Water in 65 m	Water in 65 mm valve, 25 % open	ben				
	Date:	11/24/2006	Test done by Mume										
	Valve Type:	Diaphragm											
	Valve dimension[m]:	0.065		_									
	Valve position:	1, Open	Area[m²]	_									
	Pipe Diameter [m]:		0.003125167	_									
		Make						4	n/(n+1)	(n+1)/n	Κth		
	Densitylko/m³ 1:	995.427097						-	0.5	2	0.00079018		
	Concentration:	100%											
	ţ;	0											
	Ψ.	0.00079018											
	ë	-	Axial distances	-6.974	-4.886	-2.885	-0.937	0.987	1.968	2.938	3.916	828	
	PPT used:	101 to 109	Valve plane										
	Range selected:	0-130	Non-dimensionalised distances incl.[L/D]:	-110.6	-77.45	-45.74	-14.85	15.65	31.20	46.58	62.08	77.01	
			Distances[m]:	0	2.088	4.089	6.037	7.961	8.942	9.912	10.89	11.83	
*	å		Ę	Pod 1	Pod 2	Pod 3	Pod 4	Pod 5	Pod 6	Pod 7	Pod 8	Pod 9	Average Q
				(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	[As]
Pin 1	86803		27.71	40380	39979	39309	39040	22010	21534	21145	20795	20594	3.41
e de	97852		25.24	44179	43528	42896	42612	22400	22007	21538	21082	20838	3.85
Pin 3	105762		24.37	47165	47039	46475	45819	22793	22310	21818	21415	21056	4.16
	113350		24.58	51278	49954	49390	48855	23207	22708	22107	21625	21297	4.46
Rins	119248		24.93	55035	54005	53612	53271	23776	23054	22414	21884	21524	4.69
Run 6	127954		24.72	59962	59483	58643	58012	23978	23393	22744	22069	21695	5.03
Pun 7	134845		25.83	64743	63840	62959	62455	23530	22819	21980	21310	20862	5.30
S con S	142191		26.81	71512	20606	69701	68828	23873	23103	22353	21599	21100	5.59
Run 9	14862		28.30	79366	78412	77567	76372	24468	23596	22765	21948	21374	5.85
Run 10	156038		30.40	89434	88222	86780	85913	25094	24081	23274	22250	21740	6.14
Run 11	164557		31.68	98881	97818	96681	95156	25269	24393	23507	22640	21885	6.47
Run 12	170548		33.01	108193	106555	105601	104486	25903	24743	23867	22823	22203	6.71
Run 13	176082		35.69	119556	117755	116523	115260	26480	25271	24185	23215	,22613	6.92
Run 14	179565		36.02	124244	122768	121344	119911	26519	25338	24292	23270	22655	7.06

Appendix 46: CMC 5 % in 65 mm valve, 50 % open

Date: 12/13/2006 Test done by Mume	one by Mume			CMC 5 % in	CMC 5 % in 65 mm valve, 50 % open	uedo % o				
12/13/2006 12/13/2006 Valve Type: Diaphragm Valve Diaphragm Valve Diaphragm Valve Diaphragm Valve Diaphragm Valve Diaphragm Valve Diameter [m]: 0.06308 Valve Diameter	one by Mume									
Valve Type: Disphragm Valve Type: Usebragm Valve dimension(m): 0.065										
Valve dimension m ; 0.065 Valve position: 3.0en Pipe Diameter m ; 0.06308 Material Type: CMC 5% Concentration: 5% Concentration: 0.5% K: 0.5% K: 0.5% Ringe selected: 0.130 Range selected: 0.130 Range selected: 0.130 Range selected: 0.130 Range selected: 0.130 190.8 175.3 175.3 163.1 128.7 128.8 1										
Valve position: % Open										
Pipe Diameter [m]; 0.06308	m²]									
Material Type: CMC 5% Density/Light 1: 1026.7 Concentration: 5% V; 3.88 n; 0.58 PPT used: 101 to 109 Range selected: 0-130 Re, Re, 246.5 2246.5 222.0 202.0 190.8 175.3 183.3 128.7	125167									
Material Type: CMC 55% Density(Itg/m³ 1: 1026.7 Concentration: 5% t; 3.88 n; 0.58 n: 0.58 n: 0.58 n: 101 to 109 Range selected: 0-130 Range selected: 0-130 Range selected: 101 to 109				_				- th		
Concentration: 5% 1026.7 Concentration: 5% 0 0 0				_	¥.	n(n+1)	(n+1)/n	×		
Concentration: 5% t; 0 K; 0 K; 0.88 n: 0.58 ppT used: 101 to 109 PPT used: 101 to 109 PPT used: 101 to 109 Range selected: 0-130 Res, 2246.5 2246.5 2246.5 226.0 200.0 190.8 175.3 163.3					1.724	0.367	2.724	10.36		
Color Color Color										
K; 3.86 n; 0.58 PT used: 101 to 109 PPT used: 101 to 109 Range selected: 0.130 Re,										
Range selected: 0-130 Range selected: 0-130 Range 202.6 221.0 221.0 202.0 190.8 175.3 163.3 175.7										
PPT used: 101 to 109 Range selected: 0-130 Res. 246.5 221.0 220.0 202.0 190.8 175.3 163.3	distances -6.974	74 -4.886	-2.885	-0.937	0.987	1.968	2.938	3.916	4.858	
Range selected: 0-130 Re, 246.5 232.6 221.0 221.0 202.0 190.8 175.3 163.3 151.1	plane									
Re, 246.5 232.6 232.6 221.0 209.8 190.8 175.3 183.3 163.3	fimensionalised distances incl.[L/D]: -110.6	0.6 -77.45	-45.74	-14.85	15.65	31.20	46.58	62.08	77.01	
Re, 246.5 23.6 221.0 202.0 202.0 190.8 175.3 163.3 163.3		2.088	4.089	6.037	7.961	8.942	9.912	10.89	11.83	
246.5 232.6 232.6 221.0 202.0 190.8 175.3 163.3 151.1			Pod 3	Pod 4	Pod 5	Pod 6	Pod 7	Pod 8	Pod 9	Average
246.5 232.6 221.0 202.0 202.0 190.8 175.3 163.3 151.1			(Pa)	(Pa)	(Pa)	Pa)	(Pa)	(Pa)	(Pa)	[1/8]
232.6 221.0 221.0 202.0 190.8 175.3 163.3 151.1		9	107153	96459	77066	71519	66280	60870	55776	4.97
221.0 221.0 202.0 190.8 175.3 163.3 151.1		-	104480	93860	75382	70160	64907	59723	54731	4.77
202.0 202.0 190.8 175.3 163.3 151.1			102412	92204	74207	69024	63968	58856	54077	4.60
202.0 190.6 175.3 163.3 151.1		H	100099	90134	72829	67907	62838	57877	53137	4.44
190.8 175.3 163.3 151.1	7.58 119023	023 108612	98610	88765	71958	99699	62157	57240	52557	4.32
175.3 163.3 151.1			96347	86898	70652	65940	61093	56284	51738	4.15
163.3 151.1 128.7		112476 102755	93477	84121	68836	64145	59486	54885	50443	3.91
151.1	7.95		91741	82824	68062	63510	59015	54501	50229	3.72
128.7	7.80	H	89034	80398	66541	62139	57752	53374	49222	3.52
	7.97	844 91901	83872	75834	63343	59229	55151	51005	47160	3.14
		370 89441	81529	73710	61903	57887	53977	49982	46258	5.96
106.5			78724	71291	82009	56282	52426	48674	42098	2.75
		90974 83156	75988	68815	58187	54636	51034	47367	43957	2.55

Appendix 47: Kaolin 6 % in 65 mm valve, 50 % open

							W		60 64				
-	Date	8/4/2007	Test done by Mirms & Sisonke	_			Naosin 6 %		Kaosin 6 % in 65 mm varve, 50 % open	2			
	Valve Type:	Diaphragm		1									
	Valve dimension[m]:	0.065		1									
	Valve position:	% Open	Area[m²]										
_	Pipe Diameter [m]:	0.06308	0.003125167	_									
	Material Type:	Kaolin 6%						4	n/(n+1)	(n+1)/n	K ^{t/n}		
	Density[kg/m³]:	1103.9						3.795	0.209	4.795	14.90		
	Concentration:	9%	**										
	ية ن	2.038											
	ë ë	0.264	Axial distances	-6.974	-4.886	-2.885	-0.937	0.987	1.968	2.938	3.916	4.858	
	PPT used:	101 to 109	Valve plane										
	Range selected:	0-130	Non-dimensionalised distances incl.[L/D]:	-110.6	-77.45	-45.74	-14.85	15.65	31.20	46.58	62.08	17.01	
			Distances[m]:	0	2.088	4.089	6.037	7.961	8.942	9.912	10.89	11.83	
Run #	Re,		k,	Pod 1	Pod 2	Pod 3	Pod 4	Pod 5	Pod 6	Pod 7	Pod 8	Pod 9	Average Q
				(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	[1/8]
Run 1	2902		3.76	33978	32471	31034	29473	19763	18903	17989	17191	16448	6.15
~	2686		3.84	33411	31847	30337	28896	19770	18982	18027	17283	16533	5.95
	2571		4.03	33122	31497	29983	28636	19845	18962	18116	17263	16708	5.84
4	2595		4.36	33001	31428	29878	28803	19897	18850	18047	17396	16786	5.86
Run 5	2523		3.89	32715	31054	29807	28379	19776	18997	18141	17433	16706	5.68
Run 6	2492		4.17	32174	30660	29380	27950	19573	18680	18012	17238	16688	5.58
7	2280		3.80	31391	28882	28673	27362	19489	18704	18025	17146	16611	5.31
	2180		4.54	30896	29478	28262	26974	19384	18579	17744	16998	16497	5.15
6	1969		4.35	30295	28689	27637	26364	19299	18478	17729	16795	16424	4.87
9	1882		4.19	29858	28498	27273	25962	19045	18395	17788	16996	16474	4.73
F	1609		4.36	29288	27900	26549	25329	19107	18410	17734	16977	16413	4.40
12	1422		4.12	28180	26754	25563	24123	18570	17934	17388	16700	16053	4.08
Run 13	1302		4.84	27309	25967	24826	23586	18406	17718	17073	16351	15865	3,83
Run 14	1089		4.21	28087	26749	25591	24378	19795	19132	18564	17776	17280	3.50
Run 16	974		5.02	27643	26355	25155	23896	19629	19042	18471	17699	17274	3.27
Run 16	298		5.45	27000	25798	24566	23450	19536	18957	18349	17588	17214	3,0
4	742		5.40	26816	25582	24519	23338	19940	19416	18828	18194	17730	2.76
Run 18	483		5.14	26356	25158	24108	22961	20088	19524	19022	18294	17868	2.19

Appendix 48: Kaolin 10 % in 65 mm valve, 50 % open

	Date:	8/14/2007	Test done by Mume										
	Valve Type:	Diaphragm		ľ									
	Valve dimension[m]:	0.065											
	Valve position:	75 Open	Area[m²]										
	Pipe Diameter [m]:	0.06308	0.003125167	_									
_		diony										82_	
	Material Type:	10%						1/h	n/(n+1)	(n+1)/n	₽¥.		
	Density[kg/m³]:	1169.4	6					5.702	0.149	6.702	71319		
	Concentration:	10%											
	;;	8.965											
	ž.	7.098											
	ë	0.175	Axial distances	-6.974	-4.886	-2.885	-0.937	0.987	1.968	2.938	3.916	4.858	
	PPT used:	101 to 109	Valve plane										
_	Range selected:	0 130	Non-dimensionalised distances incl.[UD]:	-110.6	-77.45	45.74	-14.85	15.65	31.20	46.58	62.08	77.01	
			Distances[m]:	0	2.088	4.089	6.037	7.961	8.942	9.912	10.89	11.83	
Run #	Re,		J.	Pod 1	Pod 2	Pod 3	Pod 4	Pod 5	Pod 6	Pod 7	Pod 8	Pod 9	Average Q
				(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	[78]
Run 1	1016		6.18	06509	56450	52545	49664	33449	31402	29439	27395	25641	5.59
Run 2	977.6		6.36	59756	55652	51860	48091	33272	31216	29281	27292	25537	5.41
Run 3	870.5		6.51	58585	54500	50689	46933	32952	30971	29113	27059	25377	5.12
Run 4	836.7	133	6.54	57748	53640	49942	46186	32885	30715	28791	26700	25057	4.97
Run 6	778.0		6.53	56735	52560	48935	44985	32318	30474	28508	26422	24789	4.80
Rune	719.6		6.36	55659	51772	47980	44109	32075	30187	28294	26294	24524	4.57
Run 7	846.2		6.51	54731	50715	47009	43293	31723	29840	28077	25855	24332	4.35
Run 8	592.8		6,89	53812	49919	46198	42425	31402	29558	27735	25691	24039	4.13
Run 9	525.4		8.03	53566	49455	45739	42160	31383	29562	27533	25625	23989	4.01
Run 10	465.0		7.54	52765	48746	45038	41449	31188	29330	27492	25278	23798	3.73
Run 1	415.5		7.85	52213	48250	44487	40949	30843	29102	27300	25242	23603	3.53
Run 12	384.0		7.30	51613	47705	44122	40369	30751	28942	27171	24995	23354	3.30
Run 13	334.4		8.85	50999	47154	43490	39882	30513	28771	26906	. 24723	23212	3.10
Run 14	287.8		10,36	50180	46305	42714	38998	30244	28416	26632	24361	23048	2.88
Run 15	264.1		12.00	49831	45937	42372	38683	29986	28258	26419	24173	22934	2.77
Run 16	230.2		10.02	48136	44361	40905	37433	29404	27713	25829	23845	22354	2.52
Run 17	196.0		10.37	46477	42788	39212	35834	28738	26915	25120	23085	21630	2.34
Run 18	161.9		12.40	45598	41934	38345	34954	28230	28639	24771	22841	21386	2.15
Run 19	127.7		9.46	44594	40848	37411	33978	27754	26096	24418	22438	20899	1.90
Run 20	90.73		12.34	43593	39912	36446	33101	27356	25783	24030	22042	20804	1.62
Run 21	71.37		12.04	42882	39249	35877	32564	27072	25512	23810	\$1803	20384	141
Run 22	40.95		16.31	42043	38404	35072	31695	26818	25149	23494	21434	20117	1.10
Run 23	28.62		17.16	41368	37709	34526	31192	20405	PAGGAC	31000	02000	****	000

Kaolin 10 % in 65 mm valve, 50 % open

Appendix 49: Kaolin 13 % in 65 mm valve, 50 % open

Kaolir	Kaolin 13 % in 65 mm valve, 50 %	nm valve	e, 50 % open										
							Kaolin 13 %	Kaolin 13 % in 65 mm valve, 50 % open	s, 50 % open				
	Date:	8/30/2007	Test done by Mume & Sisonke										
	Valve Type:	Diaphragm											
	Valve dimension[m]:	0.065		_									
	Valve position:	% Open	Area[m.]	_									
	Pipe Diameter [m]:	0.06308	0.003125167	-									
	Metadal Tone:	Kaolin 13%						Į,	n/(n+1)	(n+1)/n	K ^{the}		
	Density/ka/m³ 1:	1214.8						4.637	0.177	5.637	75890		
	Concentration:	13%					-	0.0000000000000000000000000000000000000					
	į.	17.44226											
	ë	0.21567	Axial distances	-6.974	4.888	-2.885	-0.937	0.987	1.968	2.938	3.916	4.858	
	PPT used:	101 to 109	Valve plane										
	Range selected:	0-130	Non-dimensionalised distances inct.[L/D]:	-110.6	-77.45	45.74	-14.85	15.65	31.20	46.58	62.08	10.77	
			Distances[m]:	0	2.088	4.089	6.037	7.961	8.942	9.912	10.89	11.83	
Run #	Rej		***	Pod 1	Pod 2	Pod 3	Pod 4	Pod 5	Pod 6	Pod 7	Pod 8	Pod 9	Average Q
				(Pa)	(P3)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	[Vs]
Run 1	694.5		4.41	92500	85241	79024	72369	55346	52622	49327	45649	42828	5.91
Run 2	646.6		4.51	92363	85050	78713	72114	55795	52845	49644	45678	43136	5.72
Run 3	592.3		4.88	91589	83482	78000	71327	55647	52624	49487	46220	43145	5.44
Run 4	560.2		4.89	89419	82550	76372	69937	55139	51987	48825	45378	42564	5.22
Run 5	514.8		4.78	89397	82145	75945	69482	55179	52064	48886	45447	42521	5.05
Run 6			5.30	87985	80784	74597	68261	54606	51450	48310	44846	42099	4.79
Run 7	429.8		5.16	86582	79490	73210	66882	54323	51117	48039	44581	41874	4.57
Run 8			4.50	84328	78015	71180	62509	53675	50573	47549	43776	41401	4.37
Run 9			5.33	83776	76928	70725	64470	53049	50034	47043	43955	41035	4.13
Run 10			4.76	81084	74091	21989	61010	64250	48289	45349	42036	39404	388
L unu	0.767		Laa	796.21	72829	66923	60732	50807	47791	44916	42214	39434	3.35
Run 13			604	78806	72142	. 66268	60101	50930	47964	45008	41800	39152	3.07
Pun 14			95	77150	70596	64778	58601	49873	46910	44118	40887	38275	2.87
Run 15			4.10	78588	70692	64711	58365	50188	47271	44437	40699	38525	2.72
Run 16			12.14	75830	69452	63645	57156	49249	46484	43649	41255	38387	2.55
Run 17			5.92	75308	68918	63332	57345	49210	46355	43508	40437	37799	2.48
Run 18	126.6		6.22	75429	69128	63283	57325	49427	46639	43788	40573	38058	2.33
Run 19			7.79	74566	67978	62397	56473	48735	45908	43064	39841	37440	2.24
Run 20	107.8		15.42	73817	67146	61606	55587	48212	45454	42704	40309	37567	2.10
Run 21			5.86	72845	66444	61092	89099	47881	45149	42434	39349	36834	1.98
Run 22	82.51		4.91	73082	66811	61094	54904	48033	45367	42639	39220	36829	1.87

Appendix 50: Water in 65 mm valve, 50 % open

												80		_	က္	Average	+		15.04	14.68					12.54	12.13	5 11.56	11.23	10.84	10.15	9.56		-	7.88
							Г	Т	1			4.858		77.01	11.83	6 Pod	Pa	39360	38949	37743	36576	35560	34523	33332	32193	31271	29815	29101	28304	26982	25758	24804	24004	22992
							W.	0.001				3.916		62.08	10.89	Pod	Pa	42051	41249	40184	38554	37717	36319	35064	33824	32853	31248	30462	29490	27880	26738	25574	24766	23801
							althan)	,				2.938		46.58	9.912	Pod 7	Pai	45895	45056	43618	42165	40764	38847	37729	36288	35046	33382	32463	31399	29548	28135	26818	25905	24505
	woo %						(140)/0	0.5				1.968		31.20	8.942	Pode	Pal	49415	48346	46847	44993	43835	41778	40121	38431	37422	35210	34318	33005	30969	29423	27939	26899	25436
	on valve, 50						45	-			3	0.987		15.65	7.961	Pods	[Fa]	52120	51393	49875	47266	46463	43775	42011	40514	39167	36839	35681	34372	32018	30383	28713	28028	26113
	Water in 65 mm valve, 50 % open											-0.937		-14.85	6.037	Pod 4	[Pa]	103845	101439	96394	90821	86972	81097	75809	71327	67518	62287	59976	56575	50699	46190	42083	39566	35906
												-2.885		-45.74	4.089	Pod 3	Pai	110083	107174	102212	95815	92052	85792	80223	75643	71302	65862	63337	59603	53326	48629	44185	41435	37420
												-4.886	0.000	-77.45	2.088	Pod 2	Pal	115964	113130	107683	101412	97106	90326	84720	79520	75150	69198	66501	62500	55881	50828	46112	43279	38956
						_						-6.974		-110.6	0	Pod 1	Pal	121922	119032	113515	106304	101851	95004	88888	83697	78880	72620	69551	65608	58627	53244	48132	45173	40677
open		Test done by Mume			Area[m²]	0.003125167						Axial distances	Valve plane	Non-dimensionalised distances Incl.[L/D]:	Distances[m]:		, and	3.55	3.69	3.59	3.43	3.49	3.70	3.35	3.27	3.25	3.06	3.08	3.05	3.02	2.75	2.67	2.54	2.62
, 50 % 0		11/24/2006	Diaphragm	0.065	74 Open	0.06308		000 87	100%	0	0.001	1	101 to 109	0-130			74 BRG									0000000								
Water in 65 mm valve, 50 % open		Date:	Valve Type:	Valve dimension[m]:	Valve position:	Pipe Diameter [m]:	Market Street	Daneth Contra 1.	Concentration:	į.	K:	=	PPT used:	Range selected:		á		308602	303494	296314	287660	280043	270263	260826	253069	244809	233241	226578	218686	204816	193036	181005	172731	159041
Water ir	•			•			_		•				•			, 100		Run 1	Run 2	Run 3	Run 4	Run 5	Run 6	Run 7	Run 8	Run 9	Run 10	Run 11	Run 12	Run 13	Run 14	Run 15	Run 16	Run 17

Appendix 51: CMC 5 % in 65 mm valve, 75 % open

								Art man 14	76 % onen				
							CMC o % III	CMC 5 % in 65 mm valve, 75 % open	10000000				
Date:		12/13/2006	Test done by Mume										
Valve	Valve Type:	Diaphragm						63					
Valve	sion[m]:	0.065		ſ									
Valve	Valve position:	% Open	Area[m²]	_									
Pipe	Ë	0.06308	0.003125167										
							•						
Mater	Material Type:	CMC 5%					20	1/n	n/(n+1)	(n+1)/n	Υţ		
Denst	<u>.</u>	1026.7						1.493	0.401	2.493	3.740		
Conc		5%	8										
::		0											
¥		2.42											
ë		0.67	Axial distances	-6.974	-4.886	-2.885	-0.937	0.987	1.968	2.938	3.916	4.858	
PPT used:		101 to 109	Valve plane										
Ranoe	ected:	0-130	Non-dimensionalised distances incl.[UD]:	-110.6	-77.45	-45.74	-14.85	15.65	31.20	46.58	62.08	77.01	
			Distances[m]:	0	2.088	4.089	6.037	7.961	8.942	9.912	10.89	11.83	
# 412	Re.		يُّد	Pod 1	Pod 2	Pod 3	Pod 4	Pod 5	Pod 6	Pod 7	Pod 8	Pod 9	Average Q
				(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	[Vs]
Run 1	289.4		3.29	135214	123289	111451	99883	82549	76632	70809	64967	59445	5.63
Run 2	279.4		3.50	133383	121523	109746	98290	81337	75557	69846	64094	58637	5.48
	272.3		3.58	132224	120337	108814	97273	80701	74939	69277	63573	58177	5.38
	263.6		3.51	130303	118769	106940	95919	79781	74154	68434	62838	57579	5.25
	254.8		3.68	128804	116795	105754	94663	78815	73214	67732	62221	56905	5.12
	243.8		3.55	125954	114547	103535	92732	97877	72044	66530	61081	56081	4.95
Run 7	235.9		3.73	123862	112493	101771	91259	76159	71018	99259	60410	55356	4.83
	231.7		3.84	122612	111457	100918	90413	75546	70418	65108	59937	55005	4.76
Run 9	221.6		4.01	120659	109562	99157	88937	74600	69398	64204	59134	54254	4.61
Run 10	208.8		413	118002	107100	02020	97072	73182	69171	22166	50101	63430	4 40

Appendix 52: Kaolin 6 % in 65 mm valve, 75 % open

4.62 4.38 3.69 4.07 (Pa) 23505 23307 23307 25027 24870 25472 25360 25251 25251 3.916 24125 24005 23919 25511 25506 25460 25409 25501 25501 25501 25501 25501 25501 25509 25509 25509 25509 25509 25509 25509 25509 10.89 Pa (n+1)/n 4.795 2.938 (Pa) 25026 24875 24775 24767 26224 26201 26793 26593 26584 26533 26564 26557 26257 26116 26095 46.58 9.912 Kaolin 6 % in 65 mm valve, 75 % open 0.209 1.968 (Pa) 25711 25632 25526 27144 27014 27014 27463 8.942 3.795 0.987 (Pa)
26538
26485
26485
26295
27724
27724
27639
28169
27824
27824
27824 1/4 -0.937 (Pa) 31845 31800 32316 31858 31497 31824 31320 30951 30736 -2.885 (Pa) 33376 32764 32773 33674 33777 33094 32541 32541 31928 31928 -4.886 -77.45 2.088 34152 33604 34848 34354 33908 33405 33158 32849 32081 31775 31478 34690 Pod 2 E -6.974 -110.6 | Pod 1 | (Pa) | 38185 | 35537 | 35092 | 35541 | 35584 | 35584 | 35584 | 35584 | 35584 | 35584 | 35584 | 35584 | 34818 | 34818 | 34818 | 33331 | 33331 | 33333 | 32838 | 33333 Valve plane
Non-dimensionalised distances incl. [L/D]:
Distances(m): Test done by Mume & Sisonke 1.79 1.93 1.93 1.92 1.92 1.92 1.93 1.88 1.88 1.83 1.21 1.21 1.21 Axial distances Area[m²] 0.003125167 Kaolin 6% 1103.9 0.06 3.071 2.038 0.264 101 to 109 Diaphragm 0.065 % Open 0.06308 5 Valve dimension[m]: Valve position; Pipe Diameter [m]: Material Type: Density[kg/m³]: Concentration; n: PPT used: Range selected: 2576 2420 2283 2210 1926 1788 1628 1412 1412 1199 1071 1071 546.8 Run 6
Run 6
Run 8
Run 10
Run 11
Run 11
Run 14
Run 15
Run 16
Run 16
Run 18
Run 18
Run 18
Run 18
Run 18
Run 20 Run #

Kaolin 6 % in 65 mm valve, 75 % open

Appendix 53: Kaolin 10 % in 65 mm valve, 75 % open

Kaolin	Kaolin 10 % in 65 mm valve, 75 % open	m valve,	75 % open										
				_			Kaolin 10 %	6 in 65 mm va	Kaolin 10 % in 65 mm valve, 75 % open				
	Date:	8/14/2007	Test done by Mume										
	Valve Type:	Diaphragm	4.1										5
	Valve dimension[m]:	0.065											
	Valve position:	% Open	Area[m²]										
	Pipe Diameter [m]:	0.06308	0.003125167	_									
	Material Type:	Kaolin 10%						1/n	n/(n+1)	(n+1)/n	₹ ¶		
	Density(kg/m³]:	1169.4						5.702	0.149	6.702	71319		
	Concentration:	10%											
		8.965											
	¥	7.098											
	ë	0.175	Axial distances	-6.974	-4.886	-2.885	-0.937	0.987	1.968	2.938	3.916	4.858	
	PPT used:	101 to 109	Valve plane										
	Range selected:	0-130	Non-dimensionalised distances incl.[L/D]:	-110.6	-77.45	-45.74	-14.85	15.65	31.20	46.58	62.08	77.01	
			Distances[m]:	0	2.088	4.089	6.037	7.961	8.942	9.912	10.89	11.83	
Run #	Re		¥	Pod 1	Pod 2	Pod 3	Pod 4	Pod 5	Pod 6	Pod 7	Pod 8	Pod 9	Average Q
				(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	[Vs]
Run 1	980.5		3.08	54527	50298	46481	42495	33195	31270	29328	27246	25627	5.50
Run 2	934.6		3.52	54019	49944	46056	42115	32989	31041	29124	27120	25457	5.34
Run 3	894.5		3.46	53634	49512	45660	41713	32828	30909	28970	26955	25286	5.23
Run 4	858.3		3.39	53162	49044	45259	41336	32581	30660	28765	26630	25050	5.09
Run 5	832.0		3.00	52613	48513	44760	40799	32387	30440	28604	26469	24813	4.98
Run 6	807.2		3.16	52016	48004	44236	40393	32153	30281	28356	26265	24636	4.88
Run 7	754.9		3.01	51378	47292	43595	39769	31834	29950	28118	26001	24387	4.72
Run 8	699.7		2.85	50491	46457	42765	38868	31325	29554	27741	25576	24005	4.53
Run 9	637.9		3.39	50077	46136	42349	38546	31137	29424	27516	25305	23866	4.33
Run 10	558.4		3.32	49412	45452	41732	38013	30833	29098	27252	24902	23567	4.04
Run 11	488.3		3.51	48866	44907	41307	37466	30654	28872	27056	24767	23386	3.74
Run 12	443.1		3.78	48308	44443	40789	37179	30443	28735	26880	24480	23257	3.56
Run 14	. 286.3		4.73	47059	43172	39569	35856	29816	27998	26240	24337	22662	2.88
Run 15	252.1		5.39	46527	42767	39109	35453	29327	27760	25885	23973	22331	2.69
Run 16	210.4		6.91	45262	41423	37877	34277	28622	26985	25139	23301	21729	2.47
Run 20	70.53		10.19	41251	37770	34446	31039	26733	25100	23370	21711	20126	1.36
Run 21	32.03		10.02	40512	36924	33603	30280	26251	24637	23005	21250	19725	0.98

Appendix 54: Kaolin 13 % in 65 mm valve, 75 % open

Test done by Mume & Rendani	
	2
.003125167	0.003125167
Axial distances	Axial distances
/aive plane	Valve plane
Von-dimensionalised dista	Non-dimensionalised dista
Vistances[m]:	Distances[m]:
K	¥
4.30	4.30
3.43	3.43
2.94	2.94
98.0	0.86
6.29	6.29
6.01	6.01
3.01	3.01
9.41	9.41
5.54	5.54
9.65	9.6
6.23	9
5.17	
11.19	

Non-Newtonian Loss Coefficients for Saunders Diaphragm Valves

Appendix 55: Water in 65 mm valve, 75 % open

	11/24/2006	lest done by Mume	7									
Valve Type:	Diaphragm			**								
Valve dimension[m]:	3: 0.065		ſ									
Valve position:	% Open	Area[m²]										
Pipe Diameter [m]:	0.06308	0.003125167										
Material Type	Water						1/4	0/(0+1)	(n+1)/n	Kim		
Density(kg/m³):	999.87						-	0.5	2	0.001		
Concentration:	100%											
ij.	0											
يد	0.001											
ë	-	Axial distances	-6.974	4.886	-2.885	-0.937	0.987	1.968	2.938	3.916	4.858	
PPT used:	101 to 109	Valve plane										
Range selected:	0-130	Non-dimensionalised distances Incl.[L/D]:	-110.6	-77.45	-45.74	-14.85	15.65	31.20	46.58	62.08	17.01	
		Distances[m]:	0	2.088	4.089	6.037	7.961	8.942	9.912	10.89	11.83	
Run # Re;		kv	Pod 1	Pod 2	Pod 3	Pod 4	Pod 5	Pod 6	Pod 7	Pod 8	Pod 9	Average Q
			(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	[1/8]
Run 1 320731	200	2.35	121296	114119	106360	98694	61291	57575	53186	48522	45809	15.89
Run 2 307874	200	1.91	111461	105005	98219	20877	57686	54132	50226	46068	42732	15.25
Run 3 297769		2.04	105107	98726	92355	85541	54588	51625	48073	43852	41379	14.75
	200	2.01	98507	92684	86603	80472	52109	49307	45844	41898	39632	14.25
Run 5 277381		1.91	91907	86417	80869	75110	49279	46527	43580	39949	37744	13.74
Run 6 267518		1.88	85818	80518	75763	70429	46938	44387	41406	38211	36073	13.26
Run 7 256829		2.10	79790	75005	70366	65713	44263	41908	39283	36671	34796	12.73
Run 8 246337		1.97	73846	69461	65277	61036	41385	39641	37197	34538	32989	12.21
Run 9 236750		2.04	69672	64908	61052	57217	39932	37692	35406	33246	31725	11.73
Run 10 225981		1.45	63380	60093	56708	52952	37309	35687	33930	31600	30003	11.20
Run 11 216007		1.77	58794	55667	52434	49315	35541	33886	32088	30359	28907	10.70
Run 12 204873		1,49	53701	51074	48268	45318	33237	31860	30479	28841	27486	10.15
Run 13 195949	0.00	. 1.48	50060	47589	45050	42474	31674	30565	29109	27505	26414	9.71
Run 14 185781		1.40	46111	43826	41596	39432	30036	28937	27813	26312	25427	9.21
Run 15 175772	a contract of the contract of	1.40	42194	40257	38350	36365	28311	27447	26386	25258	24373	8.71
Run 16 164719		145	38515	26024	25247	22510	25022	PEGRA	24000	27772	00000	9 48

Water in 65 mm valve, 75 % open

Appendix 56: CMC 5 % in 65 mm valve, 100 % open

Chen 0.06308 cmc 6% 1033.2 6% 6.000 1.542 0.000 1.542 0.000 1.542 0.000 1.000	Diaphragm 0.065	Test done by Sisonke	П			CMC 5 % in	CMC 5 % in 65 mm valve, 100 % open	, 100 % open				
Material Type: Densiky(kg/m²) Concentration t, K; n; n; PPT used: Range selecte	Valve dimension[m]: 0.055 Valve position: Open Pipe Diameter [m]: 0.0630	Area										
Concen ty: K: K: n: PPT use							1/h	n/(n+1)	(n+1)/h	K ¹ th		
K; K; n PPT us Range		5.2					1.550	0.392	2.550	1.957		
n: PPT use		00										
PPT use	1.54	42						8				
PPT use	0.64	45 Axial distances	-6.974	-4.886	-2.885	-0.937	0.987	1.968	2.938	3.916	4.858	
Range	101	Valve					20,000,00					
	Range selected: 0-130	Non-dimensionalised distances incl.[L/D]:	-110.6	-77.45	45.74	-14.85	15.65	31,20	46.58	62.08	77.01	
		Distances[m]:	٥	2.088	4.089	6.037	7.961	8.942	9.912	10.89	11.83	
Run #	Re,	×	Pod 1	Pod 2	Pod 3	Pod 4	Pod 5	Pode	Pod 7	Pod 8	Pod 9	Average
			(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	[Vs]
Run 1	2037	0.855	110803	101942	93762	85382	66003	61975	57702	53424	49490	15.37
Run 2	1989	0.874	108307	99835	91663	83565	64495	60660	58554	52196	48554	15.10
Run 3	1929	0.860	104502	96260	88641	80731	62779	58694	54907	50861	47224	14.78
Run 4	1873	0.809	101615	93729	86185	78546	61164	57504	53712	49673	46152	14.44
Run 6	1808	0.752	97910	90413	83190	75918	59318	55651	52213	48193	44871	14.07
Run 6	1747	0.947	94215	87077	80045	73181	57238	53911	50316	46775	43626	13.72
Run 7	1681	0.916	90979	83976	77387	70704	55623	52237	48857	45403	42363	13.33
Run 8	1600	0.891	96298	80137	73858	67570	53241	50134	47050	43783	40889	12.86
Run 9	1538	0.990	83204	76935	40602	65014	51503	48471	45543	42255	39811	12.49
Run 10	1800	0.868	80377	74306	68694	62920	50008	47116	44298	41281	38626	12.17
Run 11	1436	0.968	77753	72033	66613	61097	48626	45909	43088	40239	37766	11.87
Run 12	1366	0.893	74122	68616	63601	58344	46646	44049	41527	38826	36414	11.44
Run 13	1287	. 0.928	70154	65061	60325	55422	44672	42262	39811	37277	35072	10.95
Run 14	1222	0.840	66773	62004	57493	52997	42780	40508	38372	35986	33824	10.54
Run 15	1174	0.959	64213	59674	92339	51077	41546	39313	37199	34975	32993	10.23

Appendix 57: Kaolin 6 % in 65 mm valve, 100 % open

	Date:	7/31/2007	Test done by Mume & Sisonke	Г									
20	Valve Type:	Diaphragm		1									
	Valve dimension[m]:	0.065		1									
	Valve position:	Open	Area[m²]										
	Pipe Diameter [m]:	0.06308	0.003125167										
	Material Type:	Kaolin 6%						1/h	n/(n+1)	(n+1)/n	Υţ		
	Density[kg/m³]:	1103.9						3.795	0.209	4.795	14.90		
	Concentration:	6%					•						
	ţ,	3.071											
	ü	2.038											
	ë	0.264	Axial distances	-6.974	4.886	-2.885	-0.937	0.987	1.968	2.938	3.916	4 858	
	PPT used:	101 to 109	Valve plane										
	Range selected:	0-40	Non-dimensionalised distances incl.[L/D]:	-110.6	-77.45	-45.74	-14.85	15.65	31.20	46.58	62.08	77.01	
			Distances[m]:	0	2.088	4.089	6.037	7.961	8.942	9.912	10.89	11.83	
Run #	Re		ĸ	Pod 1	Pod 2	Pod 3	Pod 4	Pod 5	Pod 6	Pod 7	Pod 8	Pod 9	Average
				(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	[1/8]
Run 1	2574		0.483	25484	23948	22511	21413	19022	18171	17430	16561	16038	5.76
7	2512		0.532	24630	23332	22205	20901	18788	17921	17223	16523	15964	5.47
2	2313		0.389	24742	23254	22042	20890	18894	18053	17330	16597	16019	5.32
4	2256		909:0	24334	23055	21851	20631	18674	17932	17257	16547	16058	5.14
10	2103		0.369	24221	22886	21627	20474	18425	17791	17192	16452	15928	5.01
Run 6	2000		0.173	24057	22772	21647	20279	18496	17734	17135	16355	15836	4.84
_	1968		0.217	24258	22987	21747	20480	18720	18038	17419	16697	16145	4.81
•	1848		0.197	23150	21890	20531	19253	17549	16915	16403	15685	15134	4.68
	1617		0.215	22497	21322	20238	19101	17433	16881	16294	15624	15131	4.23
2	1463		1.079	22434	21234	20012	18888	17457	16922	16236	15583	15212	3.96
Ξ	1333	10	0.265	23564	22381	21476	20330	18880	18305	17920	17293	16869	3.71
Run 12	1146		0.498	23479	22233	21224	20020	18795	18232	17669	16942	16606	3.46
13	906.3		0.134	27893	. 26674	25618	24632	23299	22786	22248	21399	21157	3.06
-	824.6		0.423	22949	21767	20795	19673	18455	17974	17459	16822	16432	2.85

Kaolin 6 % in 65 mm valve, 100 % open

Appendix 58: Kaolin 10 % in 65 mm valve, 100 % open

Date:	8/14/2007	Test done by Mume & Sisonke										
Valve Type:	Diaphragm	-	ı			*1						
Valve dimension[m]:	0.065											
Valve position:	Open	Area[m²]										
Pipe Diameter [m]:	0.06308	0.003125167										
	8											
Material Type:	Kaolin 10%						4	n/(n+1)	(n+1)/n	5 ₹		
Density[kg/m³]:	1169.4						5.702	0.149	6.702	71319	221122	
Concentration:	10%										2	
ζ;	8.965											
Ä	7.098											
n:	0.175	Axial distances	-6.974	-4.886	-2.885	-0.937	0.987	1.968	2.938	3.916	4.858	
PPT used:	101 to 109	Valve plane										
Pnge selected:	0-130	Non-dimensionalised distances incl.[L/D]:	-110.6	-77.45	-45.74	-14.85	15.65	31 20	46.58	62.08	10.77	
		Distances[m]:	0	2.088	4.089	6.037	7.961	8.942	9.912	10.89	11.83	
ě		ند	Pod 1	Pod 2	Pod 3	Pod 4	Pod 5	Pode	Pod 7	Pod 8	Pod 9	Average
			(Fa)	(Pa)	(Pa)	(Pa)	(E	(Pa)	(Pa)	(Pa)	(Pa)	[/8]
1199		0.274	50215	46130	42100	38049	33401	31514	29569	27521	25680	609
1173		0.416	50370	46173	42154	38137	33504	31480	29582	27486	25727	60.9
1091		0.391	49896	45739	41684	37705	33098	31152	29240	27204	25390	5.88
1034		0.377	49335	45193	41150	37187	32756	30793	28905	26885	25084	5.72
1012		0.373	48956	44847	40837	36920	32454	30574	28656	26633	24854	5.63
961.5		0.345	48381	44330	40332	36399	32035	30200	28260	26259	24474	5.45
898.5		0.264	47984	43863	39932	36054	31790	29936	28006	26035	24220	5.28
892.0		0.423	47951	43827	39890	36128	31753	29838	27972	26090	24239	5.27
847.4		0.301	47551	43551	39604	35745	31522	29691	27813	25680	24064	5.08
772.6		0.086	47118	43134	39234	35443	31289	29464	27556	25606	23786	4.82
622.8		0.212	46377	42434	38702	34891	30871	29083	27189	25183	23512	4.26
. 524.0		0.220	46002	42012	38183	34422	30519	28635	26795	24818	23110	3.99
379.4		9900	73AE7	10000	00000	00000	00000	-				

Kaolin 10 % in 65 mm valve, 100 % open

Appendix 59: Kaolin 13 % in 65 mm valve, 100 % open

Kaolin	Kaolin 13 % in 65 mm valve, 100	n valve,	100 % open										
							Kaolin 13 9	6 in 65 mm va	Kaolin 13 % in 65 mm valve, 100 % open	E			
	Date:	12/12/2007	Test done by Mume & Rendani	_									
	Valve Type: Valve dimension[m]:	Diaphragm 0.065			60								
	Valve position:	Open	Area[m²]										
	Pipe Diameter [m]:	0.06308	0.003125167										
	Material Type:	Kaolin 13%						the state of the s	11/04/10	1041/40	Alba		
	Density[kg/m³]:	1215.5					29	4.136	0.195	5.136	99167		
	Concentration:	13%											
	2 2	16.141											
	H:	0.242	Axial distances	-6.974	-4.886	-2.885	-0.937	0.987	1.968	2 938	3,916	4.858	
	Range selected:	0-130	Non-dimensionalised dirtances incl.[UD]:	-110.6	-77.45	-45.74	-14.85	15.65	31.20	46.58	62 08	77.04	
			Distances[m]:	0	2.088	4.089	6.037	7.961	8.942	9.912	10.89	11.83	
Run #	Re,		k,	Pod 1	Pod 2	Pod 3	Pod 4	Pod 5	Pod 6	Pod 7	Pod 8	Pod 9	Average
				(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	[l/s]
Run 1	231.2		0.461	83490	76138	69501	62620	55463	52158	48526	45062	41846	3.87
Run 2	231.3		0.229	83048	76006	69256	62329	55395	51876	48515	44904	41856	3.86
Run 4	205.8		0.094	82565	75729	68718	62044	54955	51867	48242	44858	41594	3.62
Run 5	184.0		0.316	82257	75561	68675	61922	54746	51599	48083	44581	41485	3.40
Run 6	179.7		0.096	81788	75031	68137	61602	54645	51405	47881	44334	41301	3.35
Run 7	162.3		0.705	81747	75017	68193	61446	54806	51386	47914	44596	41432	3.16
Run 8	165.0		0.555	81415	74718	90629	61382	54282	51222	47775	44377	41308	3.19
Run 10	143.9		0.035	81058	74122	87558	61070	53988	50824	47570	44075	41079	2.96
Mun 14	4010		0.258	79709	73125	68673	60433	53177	50187	47159	43931	40868	2.55
Run 17	92.74		1.230	78495	72030	65702	59177	52720	49778	46703	43614	40905	2,42
Run 19	72.15		0.863	78442	71588	65262	58960	. 52202	49256	46500	43236	40346	2.01
Run 20	73.63		1.820	78079	71101	64920	58266	52397	49331	46129	43060	40048	2.02
Run 21	67.64		7.110	77163	70360	64067	57681	51507	48876	45747	42542	39967	1.91
Run 23	54.77		2.061	26999	70135	64254	58117	51989	48877	45821	42676	39870	1.71
Run 24	54.42		6.953	76860	70441	63936	57591	51536	48624	45627	42515	39799	1.70
Run 25	44.49		4.495	75972	69824	63546	57627	51374	48496	45503	42388	39704	151
Run 26	44.20		4.081	75854	69592	63226	57034	20802	48085	45219	42162	39381	1.51
Run 27	38.15		6.481	74947	68915	62913	26697	50817	47899	44953	41788	39270	1.38
. Run 28	37.89		3.927	74630	68581	62434	56414	50323	47584	44746	41571	39016	1.38
Run 29	30.19		2.106	73204	67518	61612	55970	49937	47066	44272	41285	38683	1.20
Kun 30	30.65		21.95	73249	67367	61114	55333	49581	46648	43673	40791	38300	1.20
Run 31	18.23		45.40	69661	63970	58316	52758	47268	44703	42095	39439	37131	0.88
Kun 32	17.59		10.35	70308	64576	59010	53714	49067	45414	42788	39929	37541	0.88
Run 34	9.881		116.05	68779	63556	99929	52323	47050	44514	41560	39388	36803	0.62

Appendix 60: Water in 65 mm valve, 100 % open

	Date:	2006/14/204	Total done in 18, and				Water in 65 r	Water in 65 mm valve, 100 % open	e open				
	Valve Tune	Diaphraem	lest done by mune	_									
	Valve dimension[m]:	0.065	50 St. 10										
	Valve position:	Open	Area[m²]										
*	Pipe Diameter [m]:	0.06308	0.003125167					**					×
	Material Type:	Water						1,6	n/(n+1)	/n+11/n	K1/n		
	Density[kg/m³]:	999.87						-	0.5	2	0.001		
	Concentration:	100%											
	يَ دَ	0.001											
en.	ë	1	Axial distances	-6.974	4.886	-2 885	-0 937	0.987	1 968	2 028	2016	4 858	*
	PPT used:	101 to 109	Valve plane						8	200	0.50	1.000	
	Range selected:	0-130	Non-dimensionalised distances incl. [L/D]:	-110.6	-77.45	45.74	-14.85	15.65	31.20	46.58	62.08	77.04	
			Distances[m]:	0	2.088	4.089	6.037	7.961	8.942	9.912	10.89	11.83	
Run #	Res		ĸ	Pod 1	Pod 2	Pod 3	Pod 4	Pod 5	Pod 6	Pod 7	Pod 8	Pod 9	Average
			X constitution of the second	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	[/8]
Run 1	387078		0.434	126524	116199	106364	96108	75966	71719	65695	59946	55469	19.18
Run 2	372029		0.415	117976	108837	99638	89868	71562	67169	61803	56193	52268	18.43
Run 3	355644		0.374	109061	100492	92023	83555	66625	62510	57798	53238	49007	17.62
Run 4	340432		0.568	100765	92840	85245	77230	65039	58625	54128	49521	46655	16.87
S III	321485		0.437	91640	84758	77807	70803	57209	54026	50317	45885	43354	15.93
Run 6	305957		0.425	84186	78009	71915	65501	53171	92909	46844	43240	40552	15.16
Run 7	289462		0.462	77003	71347	65844	60327	49423	46793	43558	40406	38003	14.34
Run 8	274624		0.500	70645	66239	60739	55511	46035	43658	40695	37904	35782	13.61
Run 9	255851		0.333	63393	59033	54720	50207	41928	40258	37720	35008	33252	12.68
Run 10	240004		0.452	57620	54061	50095	46270	38901	37074	35089	32892	31326	11.89
Run 11	224549		0.289	52379	49061	45883	42503	36248	34650	32949	30895	29529	11.13
Run 12	206578		0.472	46578	43896	41150	38320	32989	31654	30208	28548	27507	10.24
Run 13	187843		0.574	41190	38926	36691	34403	30104	29212	27820	26540	25711	9.31

Water in 65 mm valve, 100 % open

Appendix 61: CMC 5 % in 80 mm valve, 25% open

3.15 2.87 2.50 3.30 3.30 3.30 203 1.82 1.18 1.18 123.8 (Pa) 28048 26922 26922 26546 25691 25693 24612 24295 8.461 (Pa) 31952 30444 29911 29057 28641 277261 277261 27261 27261 27261 27261 27261 27261 27261 29291 105.2 (n+1)/n 2.695 5.977 (Pa) 38660 36379 36379 34332 34332 33789 32837 30944 30944 30193 CMC 5 % in 80 mm valve, 25 % open n/(n+1) 3.907 0.371 48.58 9.919 40237 38057 38855 38422 35422 34189 33218 35411 33628 44129 Pa 1.906 1,695 (Pa) 49295 45858 44772 42943 42109 40715 38933 37277 36168 -0.808 -15.03 (Pa) 97698 65070 59508 83352 79056 72358 69637 53446 -2.408 (Pa) 101142 -29.94 87220 75793 72743 68164 62237 55919 53045 52297 47560 3.604 -4.809 -59.79 (Pa) 106867 106867 92586 88076 880795 77899 73251 66921 660226 55860 55861 -6.012 -79.73 Pod 1 (Pa) 110111 95555 90358 83148 80104 75138 61520 58253 Axial distances
Valve plane
Non-dimensionalised distances incl.[UD]:
Distances[m]: 97.46 101.2 108.0 117.0 117.0 117.8 145.2 159.5 183.0 246.0 12/12/2006 Test done by Mume Area[m²] 0.005080729 3.55 0.59 101 to 109 0-130 Diaphragm CMC 5% % Open 0.08043 1026.7 0.08 2% Date: Valve Type: Valve dimension[m]: Valve position: Pipe Diameter [m]: Material Type: Density[kg/m³]: n: PPT used: Range selected: Concentration: 56.48 56.48 56.48 36.06 19.69 98.58 143.2 109.1 Re. Run 2
Run 6
Run 6
Run 8
Run 9
Run 10
Run 11
Run 12
Run 13

CMC 5 % in 80 mm valve, 25 % open

Appendix 62: Kaolin 6 % in 80 mm valve, 25 % open

									ve 25 % onen				
	200 TOTAL TO			1			Kaolin 6 %	Kaolin 6 % in 80 mm valve, 25 % open	2000				
	Date:	7/26/2007	Test done by Mume & Sisonke	_									
	Valve Type:	· Diaphragm											
	Valve dimension[m]:	0.08											
	Valve position:	14 Open	Area[m²]										
	Pipe Diameter [m]:	0.08043	0.005080729										
	Material Type:	Kaolin 6%						1/n	n/(n+1)	(n+1)/n	Υ		
	Density[kg/m³]:	1103.9						3.795	0.209	4.795	14.90		
	Concentration:	90.0											
	i	3.071											
	Ë	2.038											
	ä	0.264	Axial distances	-6.415	4.009	-2.408	-1.209	1.906	3.907	5.977	8.461	9.956	
	PPT used:	101 to 109	Valve plane			N. Section							
	Range selected:	0-130	Non-dimensionalised distances incl.[UD]:	-79.76	-49.84	-29.94	-15.03	23.70	48.58	74.31	105.2	123.8	
			Distances[m]:	0	2.406	4.007	5.206	8.321	10.32	12.39	14.88	16.37	
Run #	å		ند	Pod 1	Pod 2	Pod 3	Pod 4	Pod 5	Pod 6	Pod 7	Pod 8	Pod 9	Average
				(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	[l/s]
Run 11	925.0		72.35	62022	60933	59996	59491	16509	15431	14525	13361	12641	5.19
Run 12	922.4		86.69	55823	54634	54005	53425	16156	15032	14230	13112	12545	4.95
Run 13	863.5		73.09	53170	52007	51406	50814	15901	14885	13936	12856	12365	4.68
Run 14	796.3		72.63	49502	48504	48000	47440	15863	14759	13928	12785	12242	4.42
Run 15	738.7		72.74	46877	45804	45357	44886	15557	14625	13783	12680	12120	4.23
Run 16	622.5		74.17	43362	42259	41638	41073	15250	14289	13455	12267	11807	3.95
Run 17	544.8		73.71	40173	39104	38480	38022	15469	14512	13747	12536	12085	3.67
Run 18	504.8		75.36	38335	37266	36849	36292	15682	14776	13952	12773	12274	3.44
Run 19	414.9		79.31	36432	35277	34859	34302	17091	16253	15404	14227	13847	3.08
Run 20	374.9		80.62	33749	32560	32279	31838	16892	16180	15359	14281	13907	2.82
Run 21	315.4		85.67	32382	31448	30986	30650	17200	16385	15676	14535	14201	2.56

Appendix 63: Kaolin 10 % in 80 mm valve, 25 % open

	% obeu		XX.				n/(n+1) (n+1)/n K ^{lin}	H			3.907 5.977 8.461 9.956		105.2	9.919 11.99 14.47 15.97	Pod 6 Pod 7 Pod 8 Pod 9	(Pa) (Pa) (Pa) (Pa)	17646	20680 17126	20388 16846	20219 16613	20087 16396	19905 16173	19753 15962	19597 16050	19323 15891	19185 15715	18889 15363	18308	20/6/ 10094 14677 12839	17584 14199	17345 13827	16955 13647	19274 16812 13367 11874
	Kaolin 10 % in 80 mm valve, 25 % open						#	5.702			1.906		23.70	7.918	Pod 5	(Pa)	26835	26222	25877	25676	25458	25299	25109	24936	24845	24532	24182	23624	23163	22558	22271		21 21614
	Kaolin							,	•		-2.408 -0.808		-29.94 -15.03	3.604 5.204	Pod 3 Pod 4	(Pa) (Pa)	98860 97060	86274 84599	-	-	-		70303 68457		-	+	+	+	52960 51252	-			20172 27624
											-6.012 -4.809		-79.73 -59.79	0 1.203	Pod 1 Pod 2	(Pa) (Pa)	104436 100360	91981 88594	86156 82793	-			75559 72298		+	+	+	+	57892 54844	-			20004
, 25 % open		Test done by Mume		3.	Area[m]	0.005080729					Axial distances	Valve plane	Non-dimensionalised distances incl.[L/D]:	Distances[m]:	J.		96.90	80.58	78.64	78.46	79.91	82.10	83.98	86.43	92.08	96.27	97.65	96.73	98.77	85.58	85.74	85.35	70.00
Kaolin 10 % in 80 mm valve, 25 %		8/15/2007	1		1	0.08043	Kaolin 10%	1169.4	10%	7 000	0.175	101 to 109	0-130																				
10 % in 80		Date:	Valve Type:	Valve dimensionim	Valve position:	Pipe Diameter [m]:	Material Tone	Density(kg/m³):	Concentration:	ي ان	ž ž	PPT used:	Range selected:		Res		322.6	2282	265.6	279.2	284.3	253.6	230.8	219.3	173.0	141.1	187.1	165.4	141.9	127.0	1 26	81.6	
aolin															Run #		Run 1	Run 3	Run 4	Run 5	Run 6	Run 7	Run 8	Run 9	Run 10	Run 11	Run 12	Run 13	Run 14	St mm	Run 17	Run 18	

Appendix 64: Kaolin 13 % in 80 mm valve, 25 % open

	23			r			Kaolin 13 %	6 in 80 mm va	Kaolin 13 % in 80 mm valve, 25 % open				
	Date:	12/11/2007	Test done by Mume & Rndani	_									
	Valve Type:	Diaphragm											
	Valve dimension[m]:	90.08		ı									
	Valve position:	7. Open	Area[m²]										
	Pipe Diameter [m]:	0.08043	0.005080729										
											50		
	Material Type:	Kaolin 13%						1/1	n/(n+1)	(n+1)/n	Κt		
	Density(kg/m³):	1215.5						4,136	0.195	5.136	99167		
	Concentration:	13%											
	ţ.	18.973											
	ÿ.	16.141									100		
	Ë	0.242	Axial distances	-6.415	4.009	-2.408	-1.209	1.906	3.907	5.977	8.461	9.956	
	PPT used:	105	Valve plane										
	Range selected:	0-130	Non-dimensionalised distances inc.[L/D]:	-79.76	49.84	-29.94	-15.03	23.70	48.58	74.31	105.2	123.8	
			Distances[m]:	0	2.406	4.007	5.206	8.321	10.32	12.39	14.88	16.37	
Run #	Res		, k	Pod 1	Pod 2	Pod 3	Pod 4	Pod 5	Pod 6	Pod 7	Pod 8	6 Pod	Average
				(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	[1/8]
Run 1	32.02		127.5	74228	68681	64796	61517	44213	39810	34701	28977	25806	1.98
Run 2	32.30		135.5	74234	68715	64630	61342	43949	39633	34632	28839	25957	1.98
Run 3	25.82		131.6	71811	66316	61926	58286	43179	39673	34513	28516	25698	1.78
Run 4	25.48		122.9	71950	65693	62073	58988	43150	39403	34385	28243	25341	1.78
Run 6	21.07		140.0	70402	65005	61018	57987	44214	39934	34978	28960	26259	1.58
Run 6	21.20		127.0	70279	65207	61208	58133	44583	40209	35288	28824	26484	1.58
Run 7	17.44		158.5	67961	63077	58640	55762	43446	39733	34679	28688	26366	1.40
Run 8	17,11		151.6	68176	63235	58943	55583	43208	39608	34587	28699	26031	1.40
Run 9	12.05		100.1	65121	60158	56775	53559	42512	38605	33915	27937	24936	1.16
Run 10	12.22		139.1	64970	59865	56278	53277	42271	38324	33622	27812	24992	1.16
Run 11	9.795		117.8	62792	58715	54993	51846	41700	37936	33300	27482	24729	1.01
Run 12	9.718		156.1	63103	58478	54601	51697	41655	37666	33120	27381 .	24700	1.01
Run 13	8.305		103.9	61243	62029	53569	50437	41136	37376	32839	27122	24384	0.92
Run 14	8.167		274.2	62669	57186	53405	50454	41179	37481	32722	27243	24901	0.92
Run 15	5.904		197.9	59183	55565	51900	48835	40238	36682	32381	26958	24565	0.74
Run 16	5.611		131.8	59447	55763	51535	48710	40486	36993	32664	27273	24539	0.74
Run 17	4.572		291.7	56886	52472	49109	46599	38758	35479	31392	26176	24095	0.62
Run 18	4.458		459.9	58054	53260	49638	46960	38932	35447	31333	26141	24139	0.62
Run 19	2.366		344.5	55437	51545	48480	46209	38462	35187	31164	26286	23857	0.43
Run 21	2.385	•	705.8	55268	51116	47479	45116	37449	34140	30356	25444 .	23351	0.43
Run 22	1.920		918.6	54138	50380	46989	44671	37391	34116	30173	25830	23387	0.37
Run 23	1.815		833.1	54961	50426	47348	44827	37577	34499	30527	25486	23595	0.37
Run 25	0.825		894.5	51839	47959	44624	42675	38094	33360	29929	25248	23268	0.23
							200000000000000000000000000000000000000					200	300000

Kaolin 13 % in 80 mm valve, 25 % open

Appendix 65: Water in 80 mm valve, 25 % open

		۵	6	+	9 Average Q		4 7.12	98.9		+	-			1 5.48	7 5.28		3 4.85	1 4.66	6 4.37	9 4.16		3.64
		9.956	123.8	15.97	(Pa)	20462	20294	20040	19849	19655	19594	19438	19253	19121	18947	19029	18833	18621	19786	19749	19677	19541
	K ^{lin} 0.0007074	8.461	105.2	14.47	(Pa)	20979	20779	20519	20336	20133	20026	19727	19664	19363	19271	19122	18975	18896	19992	19947	19832	19662
	(n+1)/n 2	5.977	74.31	11.99	(Pa)	21715	21390	21160	21091	20731	20554	20266	20053	19831	19663	19594	19389	19162	20268	20241	20102	19889
% open	n/(n+1) 0.5	3.907	48.58	9.919	(Pa)	22300	22051	21765	21622	21290	21079	20754	20498	20273	20051	19882	19698	19573	20148	20460	20317	20083
Water in 80 mm valve, 25 % open	1,	1.906	23.70	7.918	(Pa)	23331	23003	22595	22323	21940	21817	21528	20926	20705	20639	20276	20259	20084	19892	20790	20722	20539
Water in 80 n		-0,808	-15.03	5.204	(Pa)	129909	118458	109294	102653	94349	90523	81030	74877	68121	62869	57869	54558	49937	45703	42815	40240	35833
		-2.408	-29.94	3.604	(Pa)	130640	118900	109841	103114	94638	90740	81457	75100	68422	63168	58110	54646	50145	46013	43033	40275	35915
		4.809	-59.79	1.203	Pod 2 (Pa)	130906	119470	110099	103589	95118	91136	81861	75629	68873	63484	58374	54971	50400	46185	43212	40514	36115
		-6.012	-79.73	0	(Pa)	131221	119789	110431	103740	95317	91422	82012	75755	68874	63629	58559	55109	20600	46404	43255	40627	36229
Test done by Mume Area[m ²] 0.005080729		Axial distances	Non-dimensionalised distances incl.[L/D]:	Distances[m]:	ي	100,7	97.41	94.88	92.63	90.89	89.75	86.44	84.26	81.12	78.05	75.97	75.04	71.44	67.15	64.55	62.52	60.01
11/28/2006 Diaphragm 0.08 % Open 0.08043	Water 993.6571 100% 0	1 101 to 109	0-130																			
Date: Valve Type: Valve dimension[m]: Valve position: Pipe Diameter [m]:	Material Type: Density[kg/m³]: Concentration: t _r ; K:	n: PPT used:	Range selected:		Ke ₃	164237	158381	152472	147968	142037	139481	132712	127553	121955	117337	112189	107945	103527	97122	92606	88926	80887
,		*	LJ		# uny	Run 1	Run 2	Run 3	Run 4	Run 5	Run 6	Run 7	Run 8	Run 9	Run 10	Run 11	Run 12	Run 13	Run 14	Run 15	Run 16	Run 17

Appendix 66: CMC 5 % in 80 mm valve, 50 % open

			1				and of an income and a some					
Date:	12/13/2006	Test done by MUME	7									
Valve Type:	Diaphragm											
Valve dimension[m]:	0.08											
Valve position:	7. Open	Area[m²]										
Pipe Diameter [m]:	0.08043	0.005080729										
			1									
Material Type:	CMC 5%					_	1/u	n/(n+1)	(n+1)/n	¥		
Density[kg/m³]:	1026.7						1.639	0.379	2.639	7.221		
Concentration:	2%	•				,						
÷.	0	1										
¥:	3.34											
ii.	0.61	Axial distances	-6.012	4.809	-2.408	-0.808	1.906	3.907	5.977	8.461	9326	
PPT used:	101 to 109	Valve plane			'n					t		
Range selected:	0-130	Non-dimensionalised distances incl.[UD]:	-79.73	-59.79	-29.94	-15.03	23.70	48.58	74.31	105.2	123.8	
		Distances[m]:	0	1,203	3.604	5.204	7.918	9.919	11.99	14.47	15.97	
Res		ķ	Pod 1	Pod 2	Pod 3	Pod 4	Pod 5	Pod 6	Pod 7	8 pod	Pod 9	Average Q
			(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	[1/s]
372.8		9.45	123777	119175	109911	103222	72469	64140	55564	45094	38927	9.84
360.1		10.00	121976	117086	107511	100813	71148	62915	54562	44286	38154	9.60
335.6		10.16	117401	112798	103339	97135	69062	61188	53009	43122	37161	9.13
318.5		96'6	114144	109526	100310	94039	67585	60203	52093	42415	36634	8.79
303.0	20	10.34	111222	106667	97847	91646	66347	58768	50917	41445	35841	8.48
286.9	0.00	10.77	108269	103907	94967	98688	64878	57431	49861	40590	35150	8.15
265.1	0	11.17	104031	99783	91121	85317	62813	55634	48310	39447	34165	7.70
236.1		11.20	98108	94443	86193	80627	60173	53462	46403	38022	32955	7.09
217.9		11.50	94559	90882	82995	77682	58600	51996	45290	37110	32273	69.9
195.9		11.98	90144	86744	79002	73954	56475	50223	43840	36017	31416	6.20
178.0		12.37	96660	83223	75824	71036	54707	48723	42489	35037	30552	5.78
157.0		12.75	82194	79092	71930	67402	52596	46927	41036	33931	29660	5.28
143.0		13.06	79284	75801	69510	65004	51184	45700	40013	33218	29137	4.94
115.0		14.34	70570		1,100	1000						

CMC 5 % in 80 mm valve, 50 % open

Appendix 67: Kaolin 6 % in 80 mm valve, 50 % open

Kaolin	Kaolin 6 % in 80 mm valve, 50 %	ı valve, ξ	20 % oben										
							Kaolin 6 % in 80 mm valve, 50 % open	80 mm valve,	90 % oben				
	Date:	7/26/2007	Test done by Mume & Sisonke										
	Valve Type:	Diaphragm		,									
	Valve dimension[m]:	0.08											
	Valve position:	wedo 3/	Area[m ²]			9					5.		
	Pipe Diameter [m]:	0.08043	0.005080729	_									
	Material Type:	Kaolin 6%						1/h	n/(n+1)	(n+1)/n	¥		
	Density[kg/m²]:	1103.9						3.795	0.209	4.795	14.90		
	Concentration:	90.0					Š						
	:	3.071	•								•		
	ÿ	2.038											
	ë	0.264	Axial distances	-6.012	4.809	-2.408	-0.808	1.906	3.907	5.977	8.461	9.956	
	PPT used:	101 to 109	Valve plane										
	Range selected:	040	Non-dimensionalised distances incl.[L/D]:	-79.73	-59.79	-29.94	-15.03	23.70	48.58	74.31	105.2	123.8	
			Distances[m]:	0	1.203	3.604	5.204	7.918	9.919	11.99	14.47	15.97	
Kun #	Reı		ž	Pod 1	Pod 2	Pod 3	Pod 4	Pod 5	Pod 6	Pod 7	Pod 8	Pod 9	Average Q
				(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	[1/8]
Run 1	1471		19.49	34025	32914	32429	31838	16914	16087	15111	13968	13310	5.64
Run 2	1085		19.48	33934	32793	32124	31562	17100	15991	15062	13938	13228	5.61
Run 3	1072		19.00	32940	31903	31266	30670	16826	15759	14966	13734	13091	5.46
Run 4	1021		19.97	32899	31877	31078	30584	16802	15729	14744	13596	12980	5.44
Run 5	885	8000000	20.67	32084	30821	30160	29695	16647	15616	14685	13585	12962	5.21
Run 6	996		20.45	31701	30604	29913	29503	16459	15450	14485	13413	12820	5.23
Run 7	922.5		20.97	30999	29965	29324	28784	16428	15382	14488	13312	12790	4.99
Run 8	883.5		21.19	30063	29019	28415	28020	16340	15304	14332	13246	12694	4.83
Run 9	719.9		20.50	28970	27734	27134	26643	15750	14992	14176	12979	12409	4.58
Run 10	709.3		21.23	28735	27555	26882	26385	15618	14741	13962	12677	12301	4.57
Run 11	636.3		20.97	28200	27021	26345	25845	15873	15069	14308	13132	12576	4.33
Run 12	638.5		22.55	26746	25603	25109	24612	15532	14703	13857	12705	12294	4.PA
Run 13	525.0	•	24.07	25454	24286	23787	23304	15402	14573	13771	12574	12297	3.66
Run 14	539.9		24.51	25265	24189	23641	23171	15287	14419	13549	12427	12085	3.66
Run 15	448.7		23.30	24211	23241	22675	22246	15730	14821	14012	12834	12483	3.27
Run 16	331.5		24.31	24631	23587	23047	22596	17168	18406	15568	14380	14045	2.84
Run 17	284.8		22.50	23699	22633	22296	21882	17375	16634	15889	14589	14396	2.49

Appendix 68: Kaolin 10 % in 80 mm valve, 50 % open

												[Т	7	or.	_	9 Average Q	[1/8]	7 5.55	H		0 4.98	-	0 4.60	1 4.41	8 4.15	H		-	3.27	H	7 2.68	\vdash	-		1.64			1.01
							ı			1			9000		123.8	16.37	6 Pod 8	(Pa)	16077	15932	15707	15570	1533	15090	14791	14608	14460	14271	14239	14006	13770	13457	12896	12670	12243	12040	11981	11764	11500
								K.	71319				8.461		105.2	14.88	Pod 8	(Pa)	17879	17780	17552	17289	17045	16805	16412	16246	16212	15970	15873	15610	15390	15192	14517	14237	13757	13547	13369	13318	13062
								(n+1)/n	6.702				5.977		74.31	12.39	Pod 7	(Pa)	21616	21449	21283	21013	20801	20524	20155	19971	19849	19766	19639	19418	18964	18587	18079	17644	17175	16969	16872	16678	16364
	, 50 % open							n/(n+1)	0.149				3.90/		48.58	10.32	Pod 6	(Pa)	24452	24276	24012	23790	23557	23280	22872	22683	22506	22336	22237	22164	21685	21232	20639	20342	19693	19498	19354	19181	18832
	Kaolin 10 % in 80 mm valve, 50 % open							1/h	5.702				98.		23.70	8.321	Pod 5	(Pa)	27116	26978	26765	26429	26151	25721	25518	25214	25020	24826	24777	24489	24017	23752	23015	22687	22064	21846	21671	21446	21057
	Kaolin 10 % i										,		807.L-		-15.03	5.206	Pod 4	(Pa)	52330	51605	50622	48937	46613	45781	44375	42905	41960	41317	40443	39696	38121	36828	34686	33184	30602	29879	29314	28648	27635
												201	-2.408		-29.94	4.007	E pod 3	(Pa)	54170	53353	52328	50611	48426	47561	46090	44661	43639	42986	42176	41326	39732	38444	36332	34716	32183	31363	30712	30025	29106
												000.	4.003		49.84	2.406	Pod 2	(Pa)	56194	55431	54339	52578	50438	49485	48094	46480	45579	44980	43971	43061	41608	40218	38183	36605	33844	33235	32487	31872	30926
												211.0	-0.413		-79.76	0	Pod 1	(Pa)	59564	58867	57766	55984	53733	52763	51344	49852	48866	48161	47319	46356	44734	43351	41319	39558	37071	36209	35559	34850	33845
s, 50 % open		Test done by Mume			Area[m²]	0.005080729	г					-	Value plane	- 1	Non-dimensionalised distances incl.[L/D]:	Distances[m]:	ky		29.49	30.52	31.02	31.83	30.30	31.66	32.59	33.41	34.36	35.01	38.37	40.76	49.68	53.40	53.15	56.53	58.92	62.41	65.87	76.30	96.97
ım valve		8/15/2007	Diaphragm	90.0	% Open	0.08043	4 4	Kaolin 10%	1169.4	40%	8.965	1.090	404 104 00	200	0-130																								
Kaolin 10 % in 80 mm valve, 50 %		Date:	Valve Type:	valve dimensioniful.	Valve position:	Pipe Diameter [m]:		Material Type:	Density[kg/m²]:	Concentration:	د خز	2	DDT seed.	noon.	Range selected:		Re,		447.3	407.3	386.2	360.4	340.2	321.5	290.8	261.1	233.2	213.5	187.7	168.5	133.2	116.8	90.75	81.64	51.80	42.57	34.46	24.52	15.69
Kaolin																	Run #		Run 1	Run 2	Run 3	Run 4	Run 5	Run 6	Run 7	Run 8	Run 9	Run 10	Run 11	Run 12	Run 13	Run 14	Run 15	Run 16	Run 17	Run 18	Run 19	Run 20	Run 21

Appendix 69: Kaolin 13 % in 80 mm valve, 50 % open

Kaolin	Kaolin 13 % in 80 mm valve, 50 % o	n valve,	50 % open										
							Kaolin 13 % in	Kaolin 13 % in 80 mm valve, 50 % open	uedo % 05				
	Date:	12/10/2007	Test done by Mume & Rendani										
	Valve Type:	Diaphragm											
	Valve position:	5, Open	Area[m²]										
	Pipe Diameter [m]:	0.08043	0.005080729										
	Material Type:	Kaolin 13%						1/1	n/(n+1)	(n+1)/n	K		
	Density[kg/m²]:	1215.5						4.136	0.195	5.136	99167		
	Concentration:	13%											
	ي د	18.973					2						
	ë	0.242	Axial distances	-6.012	4.809	-2.408	-0.808	1.906	3.907	5.977	8.461	9366	
	PPT used:	105	Valve plane	-									
	Range selected:	0-130	Non-dimensionalised distances incl.[L/D];	-79.73	-59.79	-29.94	-15.03	23.70	48.58	74.31	105.2	123.8	
			Distances[m]:	0	1.203	3.604	5.204	7.918	9.919	11.99	14.47	15.97	
Run #	Res		K ₄	Pod 1	Pod 2	Pod 3	Pod 4	Pod 5	Pod 6	Pod 7	Pod 8	Pod 9	Average Q
		175000		(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	[8/]
Run 3	4.868	100000	264.8	58875	53128	50436	48076	40185	36724	31942	26477	24496	0.6987833
Run 4	5.029		235.3	58796	53515	50662	47648	40262	36576	32032	26258	24498	0.70
Run 5	7.251		92.3	61460	55769	52389	49459	41455	37750	33147	27491	24778	0.92
Run 6	7.754		203.9	61101	55782	52142	49543	41130	37622	32912	27423	25304	0.92
Run 7	10.58		68:09	61224	55712	52256	49460	41602	37581	69068	27323	24780	1.11
Run 8	10,00		73.08	62019	56137	52642	49693	41627	37851	33289	27383	24898	1.11
Run 9	14.70		53.13	64022	57818	54224	51150	42884	38915	34174	27981	25545	1.38
Run 10	15.77		48.47	63148	57481	53940	50836	42467	38529	33864	27751	25302	1.38
Run 11	19.28		33.35	64192	58048	54679	51669	43218	39033	34267	28305	25434	1.57
Run 12	18.66		34.92	65049	59030	55268	52299	43591	39486	34721	28629	25758	1.57
Run 13	23.34		13.97	65044	59454	55633	52449	43948	40097	35080	28750	25861	1.74
Run 14	23.50		20.16	65024	59569	55685	52514	44089	39950	34827	28749	25642	1.74
Run 15	28.83		15.08	66033	60611	56457	53661	44854	40328	35516	29201	26196	98
Aun 16	77.91		30.82	66509	60383	56397	53433	44415	40194	35245	29155	26219	1.96
Y un d	42.75		13.91	66450	61462	57701	54548	45405	41166	35899	29230	26729	2.35
Kun 18	42.73		14.41	65363	60520	56454	53143	43856	39756	34628	28230	25371	2.36
Run 19	49.15		20.10	66269	60863	57162	53825	43992	39847	34548	28038	25439	2.54
Run 20	45.13		19.06	67142	92909	56688	53606	44206	39940	34799	28511	25497	2.55
Run 21	56.73		22.13	66988	61869	58022	54556	44399	40196	34852	28570	25830	2.73
Run 22	57.22		20.47	60899	62175	57952	54568	44967	40119	34791	28473	25660	2.75
Run 23	96'99		19.22	67907	65699	58610	55414	44981	40458	35008	28983	25782	3.02
Run 24	62.13		23.78	69160	62200	58406	55124	44960	40404	34832	28382	25687	3.03
Run 25	68.42		15.42	69356	63118	59106	55794	45473	40498	35235	28543	25568	3.16
Run 26	67.93		15.02	68920	63024	58679	55478	44983	40447	35119	28298	25481	3.15
Run 27	79.15		12.06	68615	63361	59183	55926	45279	40969	35294	28611	25647	3.35
Run 28	77.41		18.25	69691	63880	59209	56003	44938	40513	35188	28742	25741	3.38
Run 29	90.47		9.23	69887	64954	60618	57024	45960	40802	35618	28817	25496	3.63

Appendix 70: Water in 80 mm valve, 50 % open

													•			A. Carrier	of all all	[1/8]	17.42	16.61	15.82	15.02	14.34	13.59	12.89	12.08	11.28	10.56	9.79	9.16	8.28	7.62	6.93	6.12	5.44	4.85
												9300	9,900	0 000	123.0	10.97	2	(Pa)	31804	30329	29228	28197	27433	26216	25368	24806	23672	22924	22231	21520	20803	20250	19841	19405	19004	18655
								K	0.0006876			100	0.401	0 307	105.2	14.47	200	(Pa)	33723	32328	30977	29647	28617	27456	26859	25744	24475	23804	22888	22141	21295	20702	20193	19601	19270	18853
								(n+1)/n	2			6.033	0.377	24.04	14.31	Dod 7		(Pa)	36297	34753	32882	31781	30563	29296	28265	27131	25823	24906	23946	22913	22007	21441	20736	20129	19615	19124
	ben							n/(n+1)	9.0			2000	3.307	40 50	40.00	Bode	200	(Pa)	38454	08998	34849	33166	32099	30588	29621	28467	26970	25943	24777	23633	22629	21903	21233	20473	19914	19414
	Water in 80 mm valve, 50 % open					٠		U/L	1			900	0000	25 70	7.040	Dod E	200	(Pa)	40833	38886	36779	35279	34001	32524	31325	30052	28413	27261	25916	24744	23334	22387	21762	20976	20256	19715
	Water in 80 m									8.5		909 0	0.000	45.00	-13.03	Dod 4	1	(Pa)	118900	111120	104931	97182	92314	86627	82023	76392	69821	63329	56014	50305	43490	39496	35278	31172	28124	25965
												2,400	2.400	70.00	2 604	5.00d	200	(Pa)	121285	112949	106176	98436	93363	87837	83216	77250	70850	64025	98995	50790	43796	39928	32926	31503	28294	26122
												4 900	200	50 70	4 303	Dod 2	1	(Pa)	123269	114799	108187	100726	68056	89131	84336	78303	72195	65072	57640	51480	44650	40506	36182	31827	28663	26404
												6040	210.0	70.72	200	Pod 4		(Fa)	124654	116144	109231	101600	10956	90095	85023	78860	72482	65571	57932	51850	44967	40712	36449	32080	28788	26483
uedo		Test done by Mume			Area[m²]	0.005080729	-					Acial distances	Valve plane	Non-dimensionalisad distances incl [1 /D].	Dietarcoe[m].	A Chileson and the chil	A.		12.81	12.82	13.58	13.63	14.08	14.49	15.05	15.93	16.47	16.18	15.65	15.34	14.69	14.08	14.08	13.51	12.95	13.21
, 50 % o		11/28/2006	Diaphragm	- 1	% Open			water	993.0949	100%	0 0000000	0.000000		0.430	200					100000	Secret .										100000000000000000000000000000000000000					
Water in 80 mm valve, 50 % open		Date:	Valve Type:	Valve dimension[m]:	Valve position:	Pipe Diameter [m]:		material Type:	Density[kg/m*]:	Concentration:	₩	ž į	PPT Gsed:	Pance calacted:	range selector.	Re.			398301	379704	361827	343358	327975	310687	294677	276211	257849	241540	223908	209434	189328	174144	158539	139853	124278	110823
Wateri																Run #			Run 1	Run 2	Run 3	Run 4	Run 5	Run 6	Run 7	Run 8	Run 9	Run 10	Run 11	Run 12	Run 13	Run 14	Run 15	Run 16	Run 17	Run 18

Appendix 71: CMC 5 % in 80 mm valve, 75 % open

CMC 5	CMC 5 % in 80 mm valve, 75 % ope	ralve, 7	5 % open										
							CMC 5 % in 80	CMC 5 % in 80 mm valve, 75 % open	woben %				
	Date:	12/13/2006	Test done by Mume										
	Valve Type:	Diaphragm		1									
	Valve dimension[m]:	90.08											
	Valve position:	1% Open	Area[m²]										
•	Pipe Diameter [m]:	0.08043	0.005080729	П			•					•	
	Material Type:	CMC 5%						1/h	n/(n+1)	(n+1)/n	Kuw		
	Density[kg/m³]:	1026.7						1.658	0.376	2.658	7.985		
	Concentration:	2%					-10						
	ţ.	0	1 1				ZII						
	÷	3.5											
	ë	0.603	Axial distances	-6.012	4.809	-2.408	-0.808	1.906	3.907	5.977	8.461	9:956	
•		101 to 109	Valve plane									•	
	Range selected:	0-130	Non-dimensionalised distances incl.[L/D]:	-79.73	-59.79	-29.94	-15.03	23.70	48.58	74.31	105.2	123.8	
			Distances[m]:	0	1.203	3.604	5.204	7.918	9.919	11.99	14.47	15.97	
Run #	Res		ŀkv	Pod 1	Pod 2	€ Pod 3	Pod 4	Pod 5	Pod 6	Pod 7	Pod 8	Pod 9	Average Q
				(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	[7/8]
Run 1	420.9		5.20	123363	118367	107798	100602	76591	67660	58464	47545	40983	10.81
Run 2	400.1		5.26	120351	114894	104579	97702	74694	95099	57156	46411	39955	10.43
Run 3	370.9		5.34	115945	110846	101085	94253	72431	64037	55450	44951	38788	9.88
Run 4	354.6		5.28	112897	108084	98494	91842	70922	62715	54249	44070	37982	9.57
Run 5	326.7		5.40	108358	103929	94623	88193	68465	60611	52415	42632	36769	9.02
Run 6	297.2		5.65	103785	99264	90169	84178	65944	58325	50614	41158	35516	8.43
Run 7	270.6		5.61	99308	95142	86475	80638	63596	56385	48821	39810	34392	7.88
Run 8	251.5		5.98	96299	92032	83751	78034	61797	54753	47550	38724	33549	7.48
Run 9	236.7	20 900	6.03	93549	89548	81453	18657	60400	53562	46520	38010	32933	7.16
Run 10	217.1		6.42	90432	86497	78674	73477	28606	51984	45225	36973	32113	6.73
Run 11	198.9		6.53	87209	83283	75898	19202	56826	50438	43938	35958	31272	6.32
Run 12	178.9		6.47	83452	79853	72752	20629	54943	48859	42586	35004	30483	5.86
Run 13	161.7		6.72	80255	76896	69941	65236	53178	47362	41296	34059	29692	5.45
Run 14	146.0		7.15	77322	74026	67420	62936	51537	45929	40174	33178	29036	5.07

Appendix 72: Kaolin 6 % in 80 mm valve, 75 % open

							1	-				
Date:	700013017	Took door he Marco 9 Circula	Г			Kaolin 6 % in 80 mm valve, 75 % open	mm valve, 75	% oben				
Velue Tune:	Disaboun	Control of marine & cleaning	7									
Valve Ippe.	Diapriiagiii	1										
Valve dilliension[iii]	9.0	5	Г									
Valve position:	v Obeu	Areaim										
Pipe Diameter [m]:	0.08043	0.005080729	7									
						٠						
Material Type:	Kaolin 6%						4	n/(n+1)	(n+1)/n	Y.		
Density[kg/m³]:	1103.9						3.795	0.209	4.795	14.90		
Concentration:	90.0	ı										
ţ.	3.071											
ÿ	2.038											
ë	0.264	Axial distances	-6.415	4.009	-2.408	-1.209	1.906	3.907	5.977	8.461	9.956	
PPT used:	101 to 109	Valve plane								-		
Range selected:	0-40	Non-dimensionalised distances incl.[L/D]:	-79.76	-49.84	-29.94	-15.03	23.70	48.58	74.31	105.2	123.8	
		Distances[m]:	0	2.406	4.007	5.206	8.321	10.32	12.39	14.88	16.37	
Res		Kv	Pod 1	Pod 2	Pod 3	Pod 4	Pod 5	Pod 6	Pod 7	Pod 8	Pod 9	Average Q
			(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	[1/8]
1065		3.89	23740	22680	21915	21290	17159	16317	15406	14186	13515	5.42
1001		3.96	23250	22163	21477	20968	16976	16093	15213	14017	13371	5.20
905		3,98	22909	21776	21087	20579	16910	15987	15080	13793	13251	4.95
886		4.03	22639	21580	20905	20445	16833	15917	15016	13829	13219	4.83
823		3.94	22244	21205	20583	20113	16704	15811	14989	13783	13242	4.59
836		3.84	22316	21148	20727	20275	16830	15961	15075	13814	13338	4.59
802		4.02	22523	21443	20757	20174	16805	15988	15143	13879	13369	4.59
735		5.31	22261	21129	20490	19968	16863	15950	15022	13783	13407	4.33
641		4.99	21242	20184	19477	18907	15988	15143	14224	13040	12544	4.05
602		4.39	20700	19704	19058	18595	15910	15015	14073	12900	12402	3.84
534		17.4	20647	19528	18906	18479	15963	15130	14245	13018	12642	3.64
548		4.13	20588	19596	18999	18532	15999	15118	14266	13056	12625	3.62
470	8 9	5.24	21913	20898	20306	19885	17557	16912	15909	14716	14395	3.28
389		3.02	21944	20971	20409	19996	17977	17161	16371	15207	14783	2.97
302		4.72	22178	21175	20544	20153	18196	17433	16618	15414	15079	2.63
358												

Appendix 73: Kaolin 10 % in 80 mm valve, 75 % open

					¥.	71319			8 461 0 0 66	$\frac{1}{2}$	105.2 123.8	H	Pod 8 Pod 9 Average Q	(Pa) (Pa)	17791 15975	<u> </u>	17350 15652	L	L	Н					L	15433 13771	H	14996 13354	14097 12629	H	13337 11916	13190 11823	13067 11621
				•	(n+1)/n	+			5 977		74.31	11.99	Pod 7	(Pa)	21546	21319	21135	20910	20763	20342	20000	19823	19606	19469	19444	19116	18733	18481	17640	17208	16831	16709	16454
75 % open					n/(n+1)	0.149			3 907		48.58	9.919	Pod 6	(Pa)	24337	24066	23890	23706	23483	23023	22706	22506	22301	22277	22071	21862	21342	21126	20261	19694	19336	19156	18869
Kaolin 10 % in 80 mm valve, 75 % open					4,1	5.702			900		23.70	7.918	Pod 5	(Pa)	26890	26601	26435	26174	25966	25450	25158	24903	24747	24547	24508	24063	23807	23521	22559	22081	21620	21409	21236
Kaolin 10 %									808.0		-15.03	5.204	Pod 4	(Pa)	39589	38873	38201	37379	36614	35300	34704	34228	33806	33157	32858	32135	31453	30828	28976	27990	27040	26584	28164
									-2 408		-29.94	3.604	Pod 3	(Pa)	41289	40574	39942	39096	38508	37222	36487	35868	35316	34878	34524	33751	33150	32372	30499	29492	28564	28099	27597
									4 809	•	-59.79	1.203	Pod 2	(Pa)	43334	42495	41831	40933	40443	39204	38329	37883	37202	36791	36391	35722	34934	34163	32428	31262	30334	29929	29340
_	1		_	П					-6 012		-79.73	0	Pod 1	(Pa)	46746	45999	45211	44275	43833	42531	41647	41164	40460	40022	39564	38760	38133	37307	35389	34376	33305	32912	32353
Test done by Mume			Area[m ²]	0.005080729		T			Axial distances	Valve plane	Non-dimensionalised distances incl.[L/D]:	Distances[m]:	Kv		10.67	11.19	11.08	11.47	11.32	10.28	10.79	11.05	11.97	13.31	12.04	12.32	17.14	16.89	17.76	16.03	17.48	16.74	22.21
8/15/2007	Diaphragm	0.08	₩ Open	0.08043	Kaolin 10%	1169.4	10%	8.965	0.175	101 to 109	0-130																						
Date:	Valve Type:	Valve dimension[m]:	Valve position:	Pipe Diameter [m]:	Material Type:	Density[kg/m³]:	Concentration:	ذ خن	ž	PPT used:	Range selected:		Res		340.1	309.1	320.1	297.4	253.6	231.3	225.6	185.6	182.6	154.6	151.6	125.1	99.0	82.1	54.91	38.89	26.44	18.13	9.54
													Run #		Run 1	Run 2	Run 3	n 4	g ur	9 1	, u	Run 8		0 t	1	ın 12	Run 13	II 14	Run 16	ın 17	Run 18	Run 19	Run 21

Appendix 74: Kaolin 13 % in 80 mm valve, 75 % open

Date:	12/10/2007	Test done by Mume & Rendani	_									
Valve Type:	Diaphragm											
Valve dimension[m]:	90.08											
Valve position:	% Open	Area(m²)	_									
Pipe Diameter [m]:	0.08043	0.005080729	_									
Material Type:	Kanlin 13%	_				_	45	Mand	40.141	2		
	201	_				-	IIII	(n+1)	nu(1+n)	4		
Density(kg/m² j:	1215.5						4.136	0.195	5.136	99167		
Concentration:	15%											
涉꺞	18.973395											
ë	7628	Axial distances	-6.415	4.009	-2.408	-1.209	1.906	3.907	5.977	8.461	996.6	
PPT used:	105	Valve plane	•		T							
Range selected:	0-130	Non-dimensionalised distances incl. [L/D]:	-79.76	49.64	-29.94	-15.03	23.70	48.58	74.31	105.2	123.8	
		Distances[m]:	0	2.406	4.007	5.206	8.321	10.32	12.39	14.88	16,37	
Rea		K.	Pod 1		Pod 3	Pod 4	Pod 5	Pode	Pod 7	Pod 8	6 pod	Average Q
			(Pa)	(Pa) ((Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	[Ns]
131.8		7.44	73879	-	63709	59788	48541	43667	37445	30082	26953	4.48
127.0		5.05	74596	67364 63	98989	59745	48316	43845	37840	30175	26927	4.48
110.6		6.83	74352		62966	58814	48086	43629	37608	30168	26861	4.16
113.3		5.53	73874		62915	59151	47798	43420	37464	29840	26668	4.19
102.0		5.15	73291	-	62274	58814	47638	43197	37391	30074	26584	3.96
105.0		5.44	73129	L	62325	58967	47991	43207	37424	30161	26719	4.00
97.28		4.57	73001	65593 67	62153	58950	47821	43219	37306	29935	26485	3.85
98.10		7.84	72911		1983	58824	47658	43052	37009	29803	26500	3.85
		3.00	72125	64845 6	61477	58201	47128	42601	37004	29454	26168	3.64
		4.15	72255		61320	58001	47195	42646	37038	29502	26307	3.63
		9.76	71322	64480 60	60607	57099	47064	42049	36435	29247	26203	3.43
		4.77	71109		7884	57430	46727	42160	36499	29166	25942	3.42
Run 13 71.49		11.01	70824		3185	56618	46377	42053	36307	28961	26283	3.21
		14.19	70532		59836	92999	46234	41905	36085	29119	26266	3.19
Run 15 63.17		8.52	70164		59536	56142	46448	41658	36147	29061	25901	3.02
		5.50	69742		59184	55862	46237	41516	36022	28963	25663	3.00
		8.40	69524	L	58893	55767	45888	41462	35918	28797	25755	2.78
		4.72	69173		58815	55664	45739	41363	35934	28673	25671	2.76
		19.97	68787		58286	55393	45800	40997	35542	28693	25951	2.56
		14.02	68643		58342	55285	45435	40927	35478	28552	25648	2.56
		14.59	68120	_	57810	54871	45360	40814	35360	28666	25605	2.45
		14.20	68392	-	62629	55161	45194	40687	35378	28767	25531	2.45
Run 23 36.11		19.67	61779	H	57545	54585	45170	40509	35251	28593	25648	2.19
		14.53	67858	60837 57	57342	54486	44822	40361	35290	28377	25477	2.17
		11.77	96899		56583	54175	44847	40253	34990	28274	25192	2.07
Run 26 32.21	300000	21.76	67362	60832 57	57042	54286	44544	40075	34962	28249	25350	2.07
24 70												

1.80	1.69	1.69	1.56	1.56	1.31	1.31	1.12	1.12	0.97	76.0	0.71	0.54	0.33	0.33
25535	26878	26868	26997	26161	25728	25846	26135	25761	25837	25427	24384	23216	21550	21553
28329	29592	29135	29223	28636	28198	28275	28285	28111	27980	27745	26972	24847	23431	23602
34936	35962	35887	35675	35216	34329	34320	34451	34254	33709	33732	32521	29451	26662	26953
40039	41094	40970	40734	40434	39186	39357	39469	39101	38590	38516	37078	33103	29343	30261
44485	45530	45201	44737	44572	43427	43626	43425	42864	42143	42091	40522	36457	31815	33292
53802	54512	53861	53912	53258	51911	51920	51983	51493	51159	50721	48473	43418	38233	39509
56542	57837	57291	57033	56778	54481	54989	54715	54402	53529	53270	51343	45433	40169	41355
59651	60849	60717	59909	59432	58133	58253	57465	57359	20995	56942	54037	48431	42944	44184
66515	67460	67102	66537	66322	63538	64430	63963	63691	62385	62202	60024	52380	47284	47881
24.52	41.87	40.42	92.75	41.00	55.13	83.63	105.2	96.8	172.0	109.1	155.2	495.6	1824	1629
25.50	23.18	23.07	20.71	20.19	15.26	15.11	11.47	11.29	9.311	8.911	5.039	4.483	2.961	2.561

Run 28
Run 30
Run 31
Run 31
Run 32
Run 32
Run 36
Run 36
Run 36
Run 36
Run 37
Run 41

Appendix 75: Water in 80 mm valve, 75 % open

	11/30/2000	Test done by Mume										
Valve Type:	Diaphragm		1									
Valve dimension[m]:	90:0											
Valve position:	Open	Area[m²]	_									
Pipe Diameter [m]:	0.08043	0.005080729	П									
Material Type:	Water						1/0	(Jul)	/n+1\/n	Kin		
Density[kg/m²]:	993.24906						-	0.5	2	0.000693		
Concentration:	100%											
÷	0				ć							
ï.	0.000693											
ë	1	Axial distances	-6.012	4.809	-2.408	-0.808	1.906	3.907	5.977	8.461	9.956	
PPT used:	101 to 109	Valve plane			0000000							
Range selected:	0-130	Non-dimensionalised distances Incl.[L/D]:	-79.73	-59.79	-29.94	-15.03	23.70	48.58	74.31	105.2	123.8	
		Distances[m]:	0	1.203	3.604	5.204	7.918	9.919	11.90	14.47	15.97	
Res		Kv	Pod 1	Pod 2	Pod 3	Pod 4	Pod 5	Pod 6	Pod 7	8 pod	Pod 9	Average Q
			(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	[s _i]
558488		3.02	124041	120884	116307	111670	71012	66391	61379	56167	52328	24.61
540275		2.61	117002	114219	109835	105151	68170	63713	59364	53511	49742	23.81
519706		2.83	109231	106947	102346	98750	63845	60135	55876	50802	47640	22.91
501989		2.58	102277	100425	95812	92400	00609	56435	53262	48143	45005	22.12
481034		2.40	94529	92190	88758	85347	26987	53041	50093	45244	42275	21.20
461466		2.44	88358	86521	82382	79547	53844	50555	47328	43392	40083	20.34
443363		2.45	82168	80441	77018	74230	50578	47756	44712	41164	38209	19.54
420298		2.31	74657	73402	70568	68010	47090	44424	41849	38449	35992	18.52
400960		2.40	70062	68126	29959	63597	44369	41917	39745	36599	34522	17.67
386400		2.31	65765	64453	61944	59685	42664	40056	37915	35028	32934	17.03
361999		2.21	59615	58316	56194	54389	39446	37176	35377	32846	30927	15.95
345275		2.32	55251	54465	52242	50553	37290	35197	33397	31081	29530	15.22
323243		2.17	50759	49783	48084	46589	34575	33061	31468	29451	27865	14.25
305793		2.10	46812	. 46055	44445	43035	32768	31277	29912	27970	26730	13.48
283737		2.18	42634	42059	40721	39464	30547	29228	28004	26430	25305	12.51
267391		2.00	39673	39107	37698	36867	29059	27902	26841	25397	24331	11.78
249131	040000000000000000000000000000000000000	2 4 7	26200	01020	00110	07200	20020	01000	27.000			

Appendix 76: Kaolin 6 % in 80 mm valve, 100 % open

												9.956		123.8	16.37	Pod 9 Average Q	(Pa) [Us]	14173 5.46	13831 5.42		11745 4.66	13635 4.38	13669 4.37	16356 4.05	13666 3.75	14755 3.37	16254 2.49
							Υ _{εν}	14.90				8.461 9.		105.2 12	14.88 16	Pod 8 Po	(Pa) (F	14770 14	14441 13	14199 13	12291 11	14261 13	14121 13	16809 16	H	H	16675 16,
							(n+1)/n	4.795				5.977		74.31	- 12.39	Pod 7	(Pa)	16062	15718	15527	13512	15387	15414	18089	15415	16405	17891
	00 % oben						n/(n+1)	0.209				3.907		48.58	10.32	9 pod	(Pa)	16983	16676	16466	14483	16280	16323	18787	16145	17294	18768
	Kaolin 6 % in 80 mm valve, 100 % open						1/1	3.795				1.906		23.70	8.321	Pod 6	(Pa)	17865	17614	17406	15318	17130	17321	19898	17112	17995	19508
	Kaolin 6 % in											-1.209		-15.03	5.206	Pod 4	(Pa)	19696	19429	19015	16901	18660	18859	21297	18596	19531	20875
												-2.408		-29.94	4.007	Pod 3	(Pa)	20215	19970	19590	17439	19158	19306	21795	19226	20023	21457
												4.009		-49.84	2.406	Pod 2	(Pa)	20992	20689	20308	18061	19793	19885	22459	20002	20593	21996
					_							-6.415		-79.76	0	Pod 1	(Pa)	22060	21827	21358	19109	20885	21034	23585	20962	21763	23106
100 % open		Test done by Mume & Sisonke		Г	Area[m ²]	0.005080729						Axial distances	Valve plane	Non-dimensionalised distances Incl.[L/D]:	Distances[m]:	lk _v		0.152	0.324	0.239	0.106	0.043	0.249	0.098	0.219	0.565	0.254
valve,		7/25/2007	Diaphragm	90.0	Open	0.08043	Kaolin 6%	1103.9	%9	3.071	2.038	0.264	101 to 109	0-40													
Kaolin 6 % in 80 mm valve, 100 %		Date:	Valve Type:	Valve dimension[m]:	Valve position:	Pipe Diameter [m]:	Material Type:	Density[kg/m²]:	Concentration:	ţ.	K:	ä	PPT used:	Range selected:		Reı		1074	1056	880	844	744	742	633	553	456	266
Kaolin																Run#		Run 1	Run 2	Run 4	Run 5	Run 6	Run 7	Run 8	Run 9	Run 10	Run 11

Appendix 77: Kaolin 10 % in 80 mm valve, 100 % open

	Date:	87272007	Test done by Mume & Sisonke	Г	1	8.965							
	Valve Type:	Diaphragm		1	2	7.098					3		
	Valve dimension[m]:	90.0			2	0.175							
	Valve position:	Open	Area[m²]	Г									
	Pipe Diameter [m]:	0.08043	0.005080729	ī									
	Material Type:	10%	Pod Number:	Pod 1	Pod 2	Pod 3	Pod 4	Pod 5	Pod 6	Pod 7	Pod 8	Pod 9	
	Concentration:		Axial distances	-6.415	-4.009	-2.408	-1.209	1.906	3.907	5.977	8.461	9.956	
	Density(kg/m²]:	1169.4	Valve plane										
			Non-dimensionalised distances incl.:	-79.76	-49.84	-29.94	-15.03	23.70	48.58	74.31	105.2	123.8	
			Distances[m]:	0	2.406	4.007	5.206	8.321	10.32	12.39	14.88	16.37	
Run#	Re,		k,	å	40	G	ď	OP,	J.do	DP,	, do	, do	Average Q
				[Pa]	[Pa]	[Pa]	Pal	[Pa]	[Pa]	[Pa]	[Pa]	[Pa]	[Vs]
Run 1	716.2		0.151	0	2912	4524	6009	9096	11847	14202	17174	18868	6.46
Run 2	725.9		0.054	0	2866	4491	5983	9682	11926	14212	17213	18868	6.50
Run 3	705.5		0.485	0	3066	4562	9609	9648	11911	14209	17248	19012	6.51
Run 4	714.1		0.314	0	3001	4586	6108	77.96	11899	14245	17224	18962	6.49
Run 5	700.2		0.458	0	3041	4567	6130	2096	11857	14229	17212	19030	6.48
Run 6	711.4		0.393	0	2904	4619	6123	9996	11844	14215	17237	18964	6.50
Run 7	706.5		0.348	0	2901	4594	6238	9658	11855	14226	17305	18976	6.48
Run 8	9.669		0.527	0	2948	4609	6450	9998	11870	14205	17249	19027	6.50
Run 9	729.3		0.118	0	2825	4577	5905	9630	11904	14260	17148	18777	6.42
Run 10	679.4		0.100	0	2900	4577	6037	9693	11894	14259	17365	18886	6.26
Run 11	709.1		0.175	0	2932	4665	6014	9657	11895	14246	17195	18824	6.37
Run 12	701.6		0.407	0	3014	4650	6019	9623	11842	14192	17336	18866	6.40
Run 13	726.1		0.083	0	2805	4550	9069	9655	11905	14238	17176	18793	6.43
Run 14	695.7		0.223	0	2845	4641	5926	9651	11887	14269	17187	18940	6.37
Run 15	696.1		0.534	0	2892	4670	5963	9614	11827	14199	17151	18982	6.45
Run 16	694.1		0.553	0	2889	4702	6909	9815	11869	14208	17163	18980	6.43
Run 17	716.0		0.409	0	2892	4683	5991	9641	11879	14270	17297	19015	6.52
Run 18	703.5		0.608	0	2878	4713	6022	8679	11864	14220	17283	19037	6.51
Run 19	695.4		0.671	0	2861	4707	5970	9672	11887	14193	17190	19041	6.49
Run 20	680.2		0.804	0	2925	4739	6093	9739	11866	14199	17172	19080	6.44
Run 21	703.4		0.563	0	2865	4645	6109	9676	11856	14181	17155	19008	6.52
Run 22	685.6		0.732	0	2927	4689	6083	9711	11855	14197	17196	19096	6.48
Run 23	683.1		0.778	0	2999	4692	0909	9584	11853	14193	17227	19073	6.46
Run 24	667.4		1.029	0	3084	4706	1,709	9608	11815	14187	17302	19182	8.46
Run 25	9.089		0.805	0	2786	4712	6100	9664	11896	14206	17304	19168	6.50
Run 26	709.5		0.417	0	2779	4589	6082	9621	11852	14182	17296	18994	6.53
Run 27	656.1		0.470	0	2850	4630	6083	9519	11714	14129	17360	18852	6.22
Run 28	637.1		0.860	0	2957	4694	6220	9557	11734	14122	17118	18987	6.22
Run 29	585.6		0.816	0	2751	4534	5892	9402	11679	14020	17079	18857	6.01
130	679.6		0000		1000				The second second				

Kaolin 10 % in 80 mm valve, 100 % open

Run 31	Run 32	Run 33	Run 34	Run 35	Run 36	Run 37	Run 38	Run 39	Run 42	Run 43	Run 44	Run 45	Run 46	Run 47	Run 48	Run 49	Run 50	Run 51	Run 54	Run 55	Run 56
533.6	544.9	540.5	536.2	484.5	484.0	426.6	420.8	431.0	346.4	300.7	299.8	251.1	240.9	209.5	196.7	186.5	188.0	169.7	155.8	138.2	137.6
1.213	1.026	0.083	0.162	0.540	0.558	1.090	1.551	0.798	1.381	1.478	1.779	1.878	1.514	2.050	3.972	2.823	2.648	3.681	4.779	5.706	6.375
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2773	2828	2706	2761	2760	2777	2878	2908	2620	2748	2753	2803	3065	2588	2702	2681	2654	2754	2486	2596	2559	2687
4568	4559	4400	4405	4449	4416	4359	4415	4311	4291	4245	4360	4348	4260	4201	4309	4232	4168	4253	4201	4230	4222
5840	5845	5701	5815	5771	5723	5763	5806	5473	5638	5534	5618	. 5541	5628	5535	5613	5505	5583	5460	5504	5573	5648
9402	9384	9387	9358	9226	9231	9180	9183	9054	9013	9033	8960	8884	8839	8776	8695	8736	8742	9616	8611	8480	8481
11591	11622	11437	11476	11431	11363	11272	11202	11175	11146	11132	11077	10928	11042	10947	10845	10932	10828	10643	10510	10613	10508
13905	13911	13852	13805	13724	13692	13558	13472	13534	13314	13219	13273	13124	13088	12931	12888	12848	12877	12746	12643	12570	12579
16865	16875	16616	16629	16615	16541	16516	16444	16113	16213	16223	16255	15847	15710	15891	15869	15636	15565	15564	15623	15602	15664
18892	18797	18327	18338	18315	18293	18263	18232	17677	17961	17804	17852	17452	17546	17348	17505	17275	17328	17225	17168	17061	17128
5.76	5.76	5.47	5.48	5.24	5.24	4.97	4.97	4.68	4.44	4.10	4.09	3.61	3.60	3.33	3.32	3.14	3.17	3.02	2.91	2.72	2.74

Appendix 78: Kaolin 13 % in 80 mm valve, 100 % open

			Average Q	[J/s]	2.13	2.05	1.74	1.60	1.53	1.8	1.36	1.26	1.26	171	96.0	0.98	0.84	0.84	79'0	0.59	0.40	0.24	0.24	0.12	7.16
		9.956 123.8 15.97	Pod 9	(Pa) 25988	25971	25959	26947	27321	27141	26806	27015	26440	26704	26302	26249	26234	25573	25660	24767	24827	24269	23531	23270	23281	601109
	K ^{III} 99167	105.2	Pod 8	(Pa) 28996	29055	28734	29260	29943	29556	29373	28212	28994	28565	28393	28593	28418	27950	27924	27089	27068	26384	25675	25709	24929	43043
	5.136	74.31	Pod 7	(Pa) 35602	35658	35540	35536	36540	36436	35245	36014	35564	35500	34727	34635	34577	33819	33997	32716	32866	31547	30671	30314	29435	26727
uedo % 00i	0.195	3.907	Pod 6	(Pa) 40956	40960	41444	41722	41841	41651	41120	41030	40556	40453	39642	39503	39271	38405	38719	37254	37464	35971	34747	34415	32964	22700
Kaolin 13 % in 80 mm valve, 100 % open	1/n 4.136	23.70	Pod 6	(Pa) 45790	45441	45082	45416	46392	45834	45155	45028	44639	44448	43605	43467	43164	42529	42674	41018	40995	39490	38120	37849	36038	30434
Kaolin 13 % in		-0.808	Pod 4	(Pa) 54413	54307	53637	5422	92009	53931	54186	53304	52559	53160	51564	51797	51263	49966	50459	48612	48566	46965	44702	44781	41734	45010
	W	-2.408	Pod 3	(Pa) 57499	57383	57621	57167	57926	57295	57059	56555	90999	55718	54568	54675	54095	52706	52727	51097	51032	48986	46761	46829	43688	43020
×		-59.79	Pod 2	(Pa) 61116	60917	60655	60450	60692	60183	59883	59506	59362	59165	29995	57430	57601	56423	56027	54365	54124	51510	49613	49315	46007	4093/
		-6.012	Pod 1	(Pa) 67640	67432	67625	68033	67671	67014	66279	66173	65112	65158	63917	63570	63242	61645	61626	59723	59231	56418	54545	54373	49968	49590
100 % open Test done by Mume & Rendani Area[m²]		Axial distances Valve plane Non-dimensionalised distances incl.[UD]:	Ustances [m].	16.51	10.32	14.81	11.34	25.71	14.01	15.97	29.30	19.75	42.34	80.76 80.04	93.1	96.4	111.2	70.6	173.4	114.6	457.4	870*	1203	3161	3189
12/10/2007 12/10/2007 Disphragm Open Open	Kaolin 13% 1215.5 13% 18.973	0.242 105 0-130																			8.00				
Kaolin 13 % in 80 mm valve, 100 % open Date: 12/10/2007 Test done by Mune & Valve Type: Disphragm Valve dimension[m]: 0.08 Valve position: 0.08 Valve position: 0.08043 0.005080729	Material Type: Density(kg/m²]: Concentration: t;	n: PPT used: Range selected:	Res	80.00	32.24	30.18	31.11	19.32	17.74	17.85	14.32	12.41	12.67	10.41	838	8.14	6.15	6.15	4.15	3.41	1.92	99'0	0.71	0.25	0.27
Kaolin			Run #		Run 2	Run 4	Run 5	Run 11	Run 13	Run 14	Run 16	Run 17	Run 18	Run 19	Run 21	Run 22	Run 23	Run 24	Run 26	Run 28	Run 29	Ruf 31	Run 32	Run 33	Run 34

Appendix 79: Water in 80 mm valve, 100 % open

																	Average Q	[/s]	30.44	28.76	27.50	24.36	23.32	22.27	21.26	20.38	19.21	18.16	17.13	16.05	15.15	13.95
													9:626		123.8	15.37	6 pod	(ba)	608/9	62275	26283	50510	47398	45242	43062	41208	38756	36298	35050	32788	31396	29573
								K ^{1/n}	0.0007317			500	8.461		105.2	14.87	Pod 8	(Pa)	72691	66274	63337	54319	51580	48730	45806	43955	41641	39058	37174	34772	33063	31081
								(n+1)/n	2				5.977		74.31	12.39	Pod 7	(Pa)	81214	75196	70774	59749	56959	53805	50793	48164	45305	42451	40116	37624	35853	33234
	nec							n/(n+1)	0.5	00000			3.907		48.58	10.32	Pod 6	(Pa)	87722	80082	75652	64110	61004	56840	53976	51209	47968	45425	42789	39883	37904	35176
	Water in 80 mm valve, 100 % open							1/h	1				1.906		23.70	8.319	Pod 5	(Pa)	94785	85381	81672	68970	62159	61613	57633	54681	51354	47891	45204	42148	40028	37120
	Nater in 80 mm						•			la .			-1.209		-15.03	5.204	Pod 4	(Pa)	113102	103234	96298	81010	76340	72181	67442	63864	59591	55516	51957	48284	45557	41947
													-2.408		-29.94	4.005	Pod 3	(Pa)	117076	106544	100297	68888	78949	73804	69553	29659	61360	57170	53528	49564	46714	43159
												45	-4.009		-59.79	2.404	Pod 2	(Pa)	121205	110217	103008	86649	81334	76430	71711	67992	63198	58888	54988	51280	48222	44414
			•										-6.413		-79.73	0	Pod 1	(Pa)	127076	118365	109802	91998	87084	81525	76349	72299	67192	62424	58215	53981	50725	46594
ned		Test done by Mume		Section 18	Area[m²]	0.005080729	1						Axial distances	Valve plane	Non-dimensionalised distances incl.[L/D]:	Distances[m]:	Ť.		0.231	0.153	0.059	0.301	0.027	0.105	0.149	0.297	0.208	0.270	0.402	0.268	0.219	. 0.523
100 % o		11/30/2006	. Diaphragm				200	Water	994.27247	100%	0	0.0007317	-	83	0-130																	
Water 80 mm valve, 100 % open				Ë	Valve position:	Pipe Diameter [m]:		Material Type:	Density[kg/m²]:	Concentration:	ψ;	. <u>.</u>	ë	PPT used:	Range selected:		Res		624809	618537	591528	524078	501537	479068	457383	438298	413262	390661	368557	345250	325921	300132
Water																	Run #		Run 1	Run 2	Run 3	Run 5	Run 6	Run 7	Run 8	Run 9	Run 10	Run 11	Run 12	Run 13	Run 14	Run 15

Appendix 80: CMC 5 % in 100 mm valve, 25% open

											_	_	-		Average Q	[1/8]	8.34	8.09	77.7	7.41	7.12	6.83	6.51	6.13	5.88	5.59	5.27	4.98	4.48	3.88	3.41	2.95	2.46	1.74	1.19
							_	_			4 499		46.30	10.05	Pod 9	(Pa)	49463	48636	47714	46554	45621	44882	43645	42490	41795	40630	40050	39147	37665	35918	35022	33502	31861	33004	31040
							Kile	6.435			3.501		36.03	9.052	Pod 8	(Pa)	51463	50578	49611	48371	47446	46521	45351	44110	43430	42419	41518	40613	38992	37151	36171	34559	32784	33698	31567
			20				(n+1)/n	2.618			2.502		25.75	8.053	Pod 7	(Pa)	53767	52810	51811	50507	49514	48581	47316	46010	45251	44188	43223	42270	40576	38638	37498	35740	33888	34629	32305
	5 % open						n/(n+1)	0.382			1.502		15.45	7.053	Pod 6	(Pa)	55779	54827	53802	52474	51404	50435	49063	47728	46912	45850	44829	43778	42029	39929	38709	36839	34861	35411	32962
	10 mm valve, 2						1/4	1.618			0.700		7.20	6.251	Pod 5	(Pa)	57584	56518	86555	54054	52980	51909	50478	49040	48201	47076	46011	44872	42910	40863	39635	37707	35614	36048	33427
	CMC 5 % in 100 mm valve, 25 % open										1.040		-10.70	4.511	Pod 4	(Pa)	117743	114074	109810	104598	100520	96718	92143	87110	84046	80329	76919	73144	67649	.61376	57229	52549	48037	45037	40255
											-2.542		-26.16	3.009	Pod 3	(Pa)	121177	117050	112528	107437	103326	89268	94824	89579	86774	82753	79425	75554	69773	63216	59094	54234	49497	46251	41233
											-4.552		46.84	666.0	Pod 2	(Pa)	125052	121029	116538	111358	107134	103264	98123	93188	89871	86081	82545	78589	72591	65756	61503	56456	51462	47825	42418
											-5.551		-57.12	0	Pod 1	(Pa)	127127	123290	118330	113212	108990	105189	100169	94830	91768	87788	84193	80050	74137	67258	62716	57482	52484	48831	43178
25 % open		Test done by Mume			Area[m]	0.007415736			_	1	Axial distances	Valve plane	Non-dimensionalised distances incl.[L/D]:	Distances[m]:	, K		86.7	62.8	88.9	91.2	92.7	95.2	96.4	686	100.9	103.0	108.2	109.3	115.9	. 126.3	140.8	157.3	185.3	268.1	423.6
ı valve,		12/13/2006	Diaphragm	0.1	% Oben	0.09717	CMC 5%	1026.7	2%	3.16	0.618	101 to 109	0-130																						
CMC 5 % in 100 mm valve, 25 %		Date:	Valve Type:	Valve dimension[m]:	valve postudn:	Pipe Diameter [m]:	Material Type:	Density[kg/m²]:	Concentration:	تدائ	::	PPT used:	Range selected:		Re;		200.2	192.0	181.6	170.0	161.0	152.1	142.1	130.8	123.7	7.97	106.1	98.2	84.8	69.4	58.1	47.6	37.1	23.0	13.6
CMC															Kun #		Run 1	Kun 2	Yan 3	Kun 4	Kuns			0 0		S T U	L unx	Run 12	Run 13	Run 14	Kun 15	Sun 16	Kun 17	Kun 18	Kun 19

Appendix 81: Kaolin 6 % in 100 mm valve, 25 % open

Date: Valve dimension[m] Valve dimension[m] Valve position: Pipe Diameter [m]: Density[Kgim]]: Concentration: i; K: R: Ringe selected: Range selected: Range selected: 238.7 238.7 238.7 238.7 238.7 238.7 340.7 340.7 340.7 316.2 238.9 207.7 170.4	Kao	75 % 0 pen Test done by Mume & Sisonke Arial distances Avaive plane Non-dimensionalised distances inci,[LD]: Distances[m]:	-5.551 -5.551 -5.551 -5.7.12 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.	46.84 46.84 46.84 60.999 60.999 60.999 7.0099	2.542 2.542 3.009 9.043 9.009 9.043 9.009 9.043 9.009 9.043 9.009 9.043 9.009 9.043 9.009 9.043 9.009	1040	1/n 1/n 1/n 1/20 6.251 6.251 Pod 5 (Pa) 14524 15361 16638 17865 17865 17865 17865 17865 17865	1.502 1.502 1.503	(n+1)/n 4.785 2.502 2.502 2.502 2.502 8.653 Pod 7 (Pa) 1.3946 1.4668 1.606 1.606 1.606 1.604 1.7364 1.7364 1.7364 1.7364 1.7364	K ^{III} 14.90 14.90 3.501 3.501 9.052 9.052 9.052 143.49 143.49 143.49 156.71 156.71 156.71 169.46 170.17	4,499 4,499 46.30 10.05 Pod \$ Pod \$ Pod \$ 10.05 13.386 13.992 15.630 15.630 15.419 16.707 16.801	Average Q
---	-----	---	---	--	---	------	---	---	--	--	---	---------------

Appendix 82: Kaolin 10 % in 100 mm valve, 25 % open

Nacilli 10 % III 100 IIIIII valve, 23 %												
8/1	8/15/2007	Test done by Mume & Sisonke	Г			Kaolin 10 % ir	Kaolin 10 % in 100 mm valve, 25 % open	25 % open				
Valve Type: Diag	Diaphragm		1									
T	% Open	Area[m²]	Г									
Ë	0.09717	0.007415736	П									
Ka	Kaolin 10%						1/h	n/(n+1)	(n+1)/n	Kim		
114	1169.4						5.702	0.149	6.702	71319		
Concentration: 10%	10%											
7.0	7.098											
1.0	0.175	Axial distances	-5,551	-4.552	-2.542	-1.040	0.700	1.502	2.502	3.501	4.499	
	101 to 109	Valve plane										
Range selected: 0-1	0-130	Non-dimensionalised distances incl.[L/D]:	-57.12	-46.84	-26.16	-10.70	7.20	15.45	25.75	36.03	46.30	
200		Distances[m]:	0	666.0	3.009	4.511	6.251	7.053	8.053	9.052	10.05	
Res		, K	Pod 1	Pod 2	Pod 3	Pod 4	Pod 5	Pod 6	Pod 7	Pod 8	Pod 9	Average Q
			(Pa)	(Pa)	(Pa)	(Fa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	[Vs]
238.9		92.7	62646	61075	59701	57770	25829	25068	24087	23055	21829	5.48
241.3		95.4	62173	60662	59345	57442	26246	25349	24324	23151	22265	5.38
219.4		97.1	60217	58669	57335	55470	25554	24738	23770	22633	21662	5.18
204.1		100.8	58003	56508	55253	53446	25320	24342	23435	22165	21323	4.91
206.8		104.8	56526	55430	53978	52396	24854	24186	23215	22181	21275	4.77
185.6		106.3	55498	54021	52735	50999	25153	24330	23313	22264	21360	4.62
159.5		108.4	52614	51147	49746	48064	24309	23569	22630	21579	20665	4.35
147.8		110.3	51218	49663	48356	46624	24227	23419	22489	21381	20518	4.19
137.4		118.6	49925	48362	47149	45475	24311	23586	22615	21550	20743	3.93
125.4		124.4	49414	47955	46619	44743	24157	23517	22609	21579	50709	3.78
102.5		140.1	47165	45688	44372	42778	23860	23230	22283	21283	20415	3.40
86.40		150.3	45377	44076	42761	41034	23693	22886	21962	20937	19959	3.08
69.74		174.0	44357	42783	41538	39987	23565	22742	21716	20650	19850	2.84
63.93		203.5	44102	42496	41400	39644	23076	22316	21377	20376	19534	2.63
56.13		211.4	42030	40660	39359	37699	22270	21564	20645	19667	18769	2.46
46.36		216.0	40735	39266	38011	36270	52099	21666	20853	19756	18924	2.28
36.64		226.7	37838	36413	35035	33373	21582	20899	19882	19051	18160	2.07
30.15		221.3	38107	34596	33400	31646	21714	21016	20162	19167	18234	1.83
25.66		268.2	34156	32902	31485	29941	21029	20256	19315	18384	17590	1.65
19.67		291.0	33577	32266	30939	29325	21304	20589	19708	18798	17913	1.44
13,83		323.5	32475	31048	29804	28166	21122	20351	19488	18583	17639	1.24
10.86		380.8	31668	30276	. 29029	27381	20900	20213	19347	18386	17535	1.09
6.605		464.9	30592	29209	27967	26429	20633	SOUCE	40170		12005	0.86

Appendix 83: Kaolin 13 % in 100 mm valve, 25 % open

							of Mark allowy	Manual 12 St. in 400 mm man 25 of miles X	26 % 0000				
Date:		12/11/2007	Test done by Murne & Rendani				Magin 15 79 II.	TOO MEET VALVE,	inda v es				
VaV	Type:	1											
Valv	Valve dimension[m]: 0.1												
Valv		% Open	Area[m²]										
Pipe	Pipe Diameter [m]: 0.00	0.09717	0.007415736										
Mate	Material Type: Kao	Kaolin 13%						1/4	n/(n+1)	(n+1)/n	Kup		
Dens		1215.5						4136	0 195	5 136	99167		
S		200	_			15							
ان	П	18.973	, ,										
2	16.	16.141											
100	DPT used: 10542	74	Axial distances	-0.301	4.392	-2.542	-1.040	0.700	1.502	2.502	3,501	4.499	
2	cted:	30	Non-dimensionalised distances incl. (LD):	-57.12	-46.84	-26 16	-10 70	7.20	15.45	25.75	36.03	48.30	
	â		Distances[m]:	o	0.999	3.009	4,511	6.251	7.053	8.053	9.052	10.05	
Run #	Res		, Y	Pod 1	Pod 2	Pod 3	Pod 4	Pod 5	Pod 6	Pod 7	8 pod	Pod 9	Average Q
				(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	2
	71.68		105.7	83520	81304	78164	74051	45642	44886	42836	39890	38650	4.52
Run 2	72.14		105.3	83008	80773	78051	73544	45431	44444	42810	39693	39684	4.51
Run 3	64.32		101.2	80234	77445	74791	70143	44685	44048	42136	38838	37830	4.30
Run 4	62.45		95.5	80225	77796	74744	88889	45241	44177	42403	39103	37818	4.29
Run 6	60.82		116.4	79600	78348	73243	69322	45111	44046	42075	39630	38269	4.12
Run 6	60.97		116.7	79791	76594	73448	88589	45424	44161	42193	39638	38391	4.13
Run 7	55.13		108.1	76936	74535	71159	67490	45241	44022	42024	39429	37835	3.92
Run 8	55.37	Ī	106.5	76991	74432	71230	67312	45748	43835	42246	39824	38171	3.93
Rung	49.88		101.2	75076	71986	69196	65314	45128	43920	41982	39152	37757	3.78
Di un di	48.12		2,41	7,007	97/10	18899	64//8	45344	43814	41779	38916	3/88/	3.72
Run 12	47.06		0.100	74828	68080	68048	07070	44630	45101	44067	2007	37.500	97.0
Run 13	38.86		92.1	68613	65876	62873	58981	43874	42751	41084	38361	36964	3.25
Run 14	39.41		107.3	69834	66046	62622	58608	43641	42543	40812	38184	37006	3.26
Run 15	34.19		112.3	96899	63695	60639	56797	43475	42281	40491	37858	36786	3.01
Run 16	32.56		106.2	66717	64105	60375	66995	43280	42096	40486	37738	36565	2.89
Run 17	27.57		111.4	64744	61874	58618	54507	43081	41918	40238	37527	36404	2.70
Run 18	26.53		92.6	64611	61643	58708	54933	42935	42249	40308	37337	36129	2.67
Run 19	25.37		107.7	82770	60134	57186	53281	42691	41581	39904	37236	36126	2.52
Run 20	25.47		112.5	63256	60507	57774	53984	42679	41379	39778	37015	35954	2.53
Run 21	23.53		122.3	62614	60105	57163	53660	43134	41642	39882	37506	36195	2.39
Run 22	24.49		135.6	82749	59866	56804	53264	42663	41358	39566	37330	36094	2.39
Run 23	19.39		109.0	96909	58246	55270	51885	42487	41332	39692	37232	35922	2.17
Run 24	19.31		131.6	60742	58334	55052	51534	42141	41094	39442	37059	35841	2.15
Run 25	15.04		116.0	59322	56603	53747	50346	42279	40935	39442	37057	35709	1.90
Run 26	15.85		155.5	59145	56363	53512	50107	41964	40753	38986	36759	35580	1.90
	12.57		178.7	58560	55231	52268	48824	41715	40532	38578	36471	35236	1.76

128	12.98	164.6	58276	55013	52219	49007	41220	40350	38527	36354	35121	1.76
1 29	5.98	155.1	57891	53376	50443	47167	41124	39781	38332	36015	34652	1.53
98	2.06	181.7	57671	53537	50568	47244	41065	39909	38203	35940	34686	1.53
33	4.30	211.4	55821	51960	49004	46246	40759	39504	37681	35465	34102	1.16
132	4.25	162.6	55622	51942	48761	45457	40027	38828	37710	35495	33992	1.16
33	3.07	295.2	52880	49653	46832	43818	39389	38261	36683	34621	33366	98.0
34	2.66	413.0	53401	50310	47028	43884	39249	38088	36588	34422	33321	98.0
35	2.74	659.3	50377	47559	45208	42423	38319	37166	35488	33882	32712	0.67
36	2.71	760.4	50527	48060	45309	42587	38179	37078	35328	33620	32554	0.67
37	0.84	1053	48156	46024	43671	40801	36849	35986	34657	32763	31707	0.36
32	0.85	1597	48120	46136	43429	40688	36784	35821	34439	32610	31610	0.36

Run 28
Run 30
Run 31
Run 31
Run 33
Run 38
Run 38
Run 38
Run 38

Appendix 84: Water in 100 mm valve, 50 % open

											г	_	1	T	Average	(a/L)	40.47	0.87	49 8	7.86	7.48	989	6.26	5.86	•
						_					2077	DD T	46.30	40.30	Pod 9	ā	25048	24210	23941	21790	21413	20870	20395	20104	
						N/N	0.0000048	O O COO CO			2 504	2000	36.03	20.00	Pod 8	(Pa)	25158	24322	24053	21917	21442	20893	20452	20121	
						(n+1)/n	2	,			2 500	2007	25.75	8 053	Pod 7	(Pa)	25431	24617	24274	22036	21640	21069	20539	20253	
						n/(n+1)	0.5				1 500		15.45	7.053	Pod	(Pa)	25680	24857	24429	22238	21822	21131	20749	20374	
Water in 100 mm value 25 % and	MILL VALVE, 40					1/0	-				0.700		7.20	6.251	Pod 6	(Pa)	25876	24939	24640	22290	21926	21315	20734	20469	
Water in 100											-1 040		-10.70	4.511	Pod 4	(Pa)	109256	99162	92719	60583	68999	48710	43954	40947	
											-2 547		-26.16	3.009	Pod 3	(Pa)	109410	68086	93030	95809	55835	48708	44075	41028	
											-4.552		46.84	0.999	Pod 2	(Pa)	109470	99201	93184	60850	55886	48899	44137	41079	
	_	1		_	_						-5.551		-57.12	0	Pod 1	(Pa)	110179	99348	93289	61037	56124	49094	44092	41159	
open ,	Test done by Mume			Area[m²]	0.007415736		1				Axial distances	Valve plane	Non-dimensionalised distances incl.[L/D]:	Distances[m]:	II.		83.74	83.11	81.76	68.07	66.44	64.08	64.97	65.55	
e, 25 %	11/27/2006	Diaphragm	0.1	%Open	0.09717	Water	993.48062	100%	0	0.0007016	-	101 to 109	0-130												
Water in 100 mm valve, 25 % open	Date:		Valve dimension[m]:	Valve position:	Pipe Diameter [m]:		Density[kg/m³]:	Concentration:	t,:	K:	n:		Range selected:		Re		194266	183100	177637	145/71	01/861	862/24	00101	108666	
Wateri															Run #		Run 1	Kun 2	Kung	e III	L C	o din o	S III	ח שא	

Appendix 85: CMC 5 % in 100 mm valve, 50 % open

							Average Q	[ks]	12.81	12.05	11.72	11.59	11.12	10.76	10.31	9.81	9.37	8.90	8.44	7.97	7.52	96'9	6.45	6.01	5.39	4.81	4.25	3.70
				4.499	46.30	10.05	Pod 9	(Pa)	64430	61905	61007	60458	58554	57547	56199	54517	52921	51417	49920	48458	47056	45244	43684	42363	40602	38860	37209	36161
		K ^{Bn} 7.147		3.501	36.03	9.052	Pod 8	(Pa)	67194	64449	69669	63028	61088	59918	58469	26700	55205	53476	52017	50396	48941	47086	45368	44051	42114	40304	38562	37398
		(n+1)/n 2.639		2.502	25.75	8.053	Pod 7	(Pa)	70275	67450	66218	65771	63689	62539	61007	59218	57621	55837	54325	52583	51062	49158	47345	45953	43914	41991	40071	38801
% one	2	n/(n+1) 0.379		1.502	15.45	7.053	Pod 6	(Pa)	73020	70177	68981	68701	66351	65073	63476	61567	59857	57946	56381	54620	53018	51023	49117	47713	45564	43478	41495	40104
CMC 5 % in 100 mm value 50 % onen		1/h 1.639		0.700	7.20	6.251	Pod 5	(Pa)	75505	72406	71017	70602	68495	67116	65440	63363	61466	59535	57863	56121	54467	52445	50482	48994	46808	44667	42579	41068
CMC 5 % is				-1.040	-10.70	4.511	Pod 4	(Pa)	104070	69086	95787	94730	91663	89234	86235	83107	80210	77108	74316	71294	68558	65221	62057	59817	56427	53556	50844	48592
	10	E		-2.542	-26.16	3.009	Pod 3	(Pa)	108283	102228	100057	98449	95397	92918	89754	86590	83511	80211	77521	74352	71416	67982	64900	62400	58803	26793	52896	50436
				-4.552	-46.84	0.999	Pod 2	(Pa)	114646	107701	105076	103699	100415	92826	94508	91200	87976	84674	81627	78482	75423	71825	68405	65810	62091	58847	55602	52998
				-5.551	-57.12	0	Pod 1	(Pa)	117677	110426	107308	106215	102475	100277	96658	93364	90157	90698	83878	80521	77360	73772	70138	61289	63725	60393	57079	54101
50 % open	Test done by Mume Area[m*] 0.007415736			Axial distances	Valve plane Non-dimensionalised distances incl.[L/D]:	Distances[m]:	ž		15.85	15.21	15.26	14,53	15.55	16.14	16.21	16.86	16.93	18.20	18.17	19.09	19.37	19.95	20.92	21.30	23.54	27.40	32.14	36.75
valve,	12/13/2006 Diaphragm 0.1 ½ Open 0.09717	CMC 5% 1026.7 5%	3.319	0.61	101 to 109 0-130														575							200		
CMC 5 % in 100 mm valve, 50 % op	Date: Valve Type: Valve dimension[m]: Valve position: Pipe Diameter [m]:	Material Type: Density(kg/m³]: Concentration:	¥	ä	PPT used: Range selected:		Re		359.0	329.7	317.3	312.5	294.7	281.8	265.3	247.6	232.6	216.2	201.0	185.5	171.3	. 153.7	138.2	125.4	107.9	92.06	77.33	63.97
CMC 5							Run #		Run 1	Run 2	Run 3	Run 4	Run 6	Run 6	Run 7	Run 8	Run 9	Run 10	Run 11	Run 12	Run 13	Run 14	Run 16	Run 16	Run 17	Run 18	Run 19	Run 20

0000	5
%	
5	3
dylo	Valva,
7 2	
100	
2.	Ξ
%	?
r C)
()

Appendix 86: Kaolin 6 % in 100 mm valve, 50 % open

			66	46.30	rt	a) [l/s]	H			90 6:00		5.10	+	99.69	+	175 5.33		176 4.71		Н		Н	2.95	33	2.13
		14.90	3.501 4.499		9.052 10.05	+	16046 15713	,				15442 15167	+	16475 16469	+	H	15816 15524	15760 15376		Н				+	17034 16857
	ĸI	(n+1)/n 4.795	2.502	25.75	8.053	(Pa)	16496	16548	16801	16458	16461	16043	16/74	16936	16775	16633	16348	16399	16212	16175	16140	17549		\dashv	17528
200	uedo %	0.209	1.502	15.45	7.053	(Pa)	16812	16920	16908	16703	16719	16311	17086	17303	17034	16889	16697	16641	16365	16514	16271	17884	17849	17794	17739
of color	Kaolin 6 % in 100 mm valve, 60 % open	1/n 3.795	0.700	7.20	6.251	(Pa)	17040	17133	17138	16994	16913	16559	17399	17,562	17359	17252	16912	16805	16675	16748	16555	18054	18007	17887	17908
S S S S S S S S S S S S S S S S S S S	Kaolin 6 % in		-1.040	-10.70	4.511	(Pa)	25300	25381	25046	24272	23279	22120	25555	25123	24048	23361	22844	21963	21476	21180	20513	21623	21284	20522	20082
		×	-2.542	-26.16	3.009	(Pa)	25912	25947	25669	24742	23833	22725	26114	25/89	24608	23953	23415	22539	21971	21672	21145	22189	21801	21140	20665
	41		-4.552	-46.84	666.0	(Pa)	26366	26381	26022	25148	24375	23117	26506	26260	25009	24430	23803	23009	22464	21987	21595	22677	22199	21430	20960
			-5.551	-57.12	0	(Pa)	26735	26797	26451	25594	24794	23703	27024	26/93	25527	24912	24221	23542	23008	22467	22019	23105	22703	21963	21438
50 % open	Test done by Mume & Sisonke Area[m*] 0.007415736		Axial distances	Non-dimensionalised distances incl.[L/D]:	Distances[m]:	ŷ.	16.65	16.98	16.61	16.58	17.53	15.61	21.62	20.90	20.50	19.70	17.59	13.36	. 24,55	22.91	21.69	25.92	29.86	17.36	25.66
n valve,	8/3/2007 Diaphragm 0.1 % Open 0.09717	Kaolin 6% 1103.9 6% 3.071	0.264	0-40																					
Kaolin 6 % in 100 mm valve, 50 %	Date: Valve Type: Valve dimension[m]: Valve position: Pipe Diameter [m]:	Material Type: Density(kg/m²]: Concentration: t,:	:u	Range selected:	•	Res	816.4	811.2	766.8	707.2	601.0	494.8	681.8	624.5	594.0	585.3	510.0	414.8	330.4	309.9	256.0	225.4	202.0	157.3	111.7
Kaolin						Kun #	Run 1	Run 2	Run 3	Run 4	Run 5	Run 6	Run 7	Run 8	Run 10	Run 11	Run 12	Run 13	Run 14	Run 15	Run 16	Run 17	Run 18	Run 19	Run 20

Appendix 87: Kaolin 10 % in 100 mm valve, 50 % open

Kaolin	Kaolin 10 % in 100 mm valve, 50 % open	m valve,	, 50 % open										
						0.000	Kaolin 10 % in	Kaolin 10 % in 100 mm valve, 50 % open	20 % oben				
	Date:	8/15/2007	Test done by Mume & Sisonke										
	Valve Type:	Diaphragm							*				
	Valve dimension[m]:	0.1		100									
	Valve position:	1/2 Open	Area[m*]										
	Pipe Diameter [m]:	0.09717	0.007415736										
	Material Type:	Kaolin 10%					-	4,4	n/(n+1)	(0+1)/0	N X		
	Density[kg/m²]:	1169.4						5.702	0.149	6.702	71319		
	Concentration:	10%	,				-						
	t,: K	8.965											
	ë	0.175	Axial distances	-5.551	-4.552	-2.542	-1.040	0 700	1 502	2,502	3501	4 499	
	PPT used:	101 to 109	Valve plane										
	Range selected:	0-130	Non-dimensionalised distances incl.[L/D]:	-57.12	46.84	-26.16	-10.70	7.20	15.45	25.75	36.03	46.30	
			Distances[m]:	0	- 666'0	3.009	4.511	6.251	7.053	8.053	9.052	10.05	
Run #	Res		K,	Pod 1	Pod 2	Pod 3	Pod 4	Pod 6	Pod 6	Pod 7	Pod 8	Pod 9	Average Q
- 1				(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	[l/s]
Run 1	342.2		25.22	44272	42888	41489	39623	26436	25633	24689	23619	22615	6.41
Run 2	305.0		25.90	43668	42097	40678	38898	26205	25397	24448	23293	22369	6.21
Run 3	299.6		27.00	43035	41605	40067	38352	26074	25281	24288	23112	22309	60.9
Run 4	292.8		26.47	41477	40041	38698	36875	25257	24507	23554	22590	21567	5.86
Run 5	273.4		25.85	40855	39346	38026	36314	25428	24691	23681	22639	21691	5.70
Run 6	259.9		25.38	40045	38528	37190	35552	25205	24437	23472	22149	21475	5.57
Run 7	239.6		24.84	38660	37265	35877	34173	24733	24007	23046	22021	21058	5.29
Run 8	230.5		24.78	37974	36577	35203	33526	24560	23841	22887	21887	20836	5.16
Kung	214.4		25.66	36795	35378	34046	32299	23984	23261	22307	21310	20408	4.93
2 1	100.4		24.40	30034	18065	33054	318/0	2410/	23446	0/522	21453	59007	4.7
Run 12	186.1		24.26	35320	33890	32697	30792	23707	79967	22190	21126	20074	4 23
Run 13	143.1		28.22	34383	32989	31682	29953	23324	22670	21768	20729	19867	3.98
Run 14	128.8		31.71	34101	32568	31263	29471	23245	22505	21463	20592	19629	3.84
Run 15	118.8		26.02	33177	31758	30457	28660	22918	22205	21331	20372	19369	3.66
Run 16	107.2		25.65	32049	30572	29253	27598	22487	21710	20815	19690	18904	3.50
Run 17	102.1		26.99	31299	29849	28575	26859	22171	21469	20507	19553	18679	3.34
Run 18	89.31		22.06	30169	28818	27509	25845	21808	21076	20163	19203	18290	3.10
Run 19	82.94		19.86	29283	27968	26687	25062	21349	20636	19771	18809	17915	2.96
Run 20	74.46		19.29	28567	27352	26035	24478	21011	20375	19464	18534	17633	2.76
Run 21	64.72		22.04	28501	27194	25907	24295	21089	20402	19481	18627	17683	2.58
Run 22	57.21		20.51	27791	26531	25270	23681	20810	20086	19213	18360	17442	2.39

Appendix 88: Kaolin 13 % in 100 mm valve, 50 % open

Date:	12/11/2007	Test done by Mume & Rendani										
Valve Type:	Diaphragm		1									8,
Valve dimension[m]:												
Valve position:	75 Open	Area[m²]	_									
Pipe Diameter [m]:	0.09717	0.007415736										
		r	ľ									
Material Type:	Kaolin 13%						1/u	n/(n+1)	(n+1)/h	Υ		
Density(kg/m²):	1215.5						4.136	0.195	5.136	99167		
Concentration:	13%											
t ;	18.973											
Ę.	16.141	CONTRACTOR										
ë	0.242	Axial distances	-5.551	4.552	-2.542	-1.040	0.700	1.502	2.502	3.501	4.499	
PPT used:	105	Valve plane										
Range selected:	0-130	Non-dimensionalised distances incl.[UD]:	-57.12	-46.84	-28.16	-10.70	7.20	15.45	25.75	36.03	46.30	
		Distances[m]:	0	0.999	3.009	4.511	6.251	7.053	8.053	9.062	10.05	
Reı		k _e	Pod 1	Pod 2	Pod 3	Pod 4	Pod 5	Pod 6	Pod 7	Pod 8	6 pod	Average Q
			(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	[1/8]
73.32		14.76	62281	59797	56722	52145	45386	43917	42041	39942	37931	4.57
74.94		17.57	61974	29867	26600	52129	45228	44243	42057	39743	38114	4.56
75.36		26.62	61075	59667	55948	51090	44781	43184	41093	38555	37559	4.40
71.82		23.04	61544	58423	55659	51566	44803	43897	41664	38558	37979	4.40
59.25		26.52	60720	98225	54422	51304	44487	42826	40659	38517	36834	4.03
62.33		26.17	60381	57803	54715	50844	44588	42962	40520	38579	36841	4.06
54.90		21.94	59886	57279	54877	20802	44294	43635	40563	38434	36724	3.80
56.12		26.78	59738	57163	54136	50909	44478	42910	40542	38576	36911	3.81
49.25		28.63	57638	56189	52088	49350	43868	43293	40622	38348	37247	3.45
44.11		26.88	58369	55864	52010	49192	44903	41313	40539	38257	36978	3.42
36.32		10.88	58744	55351	52377	48934	44328	42387	40625	38253	36544	3.19
37.50	-	17.54	58358	55210	52113	48608	43545	42283	40314	38021	36417	3.20
32.14		8.71	57557	54265	51403	48323	43441	42071	40257	37900	36277	2.95
32.60		15.09	. 57327	54400	51263	48668	42636	41616	39953	37561	36064	2.95
24.92		25.55	55452	53112	50059	46804	42256	41027	39265	37013	35687	2.44
22.21		63.32	55750	52561	50414	46381	42093	40844	38854	36775	35616	2.20
18.46		65,93	53770	51650	48714	45444	41315	40375	38250	36343	35105	1.95
12.14		48.83	53574	51234	48154	44937	40921	40105	38268	36027	34845	1.84
11.38		39.19	53652	51326	47851	44544	40491	39712	38070	35902	34505	1.64
6.04		62.41	51911	49143	46538	43524	39782	38811	37254	35027	33896	1.12
6.28		109.2	51611	48797	46271	43050	39442	38322	36840	34794	33630	1.12
4.85	18	145.6	*50211	47384	44922	42108	38796	37740 *	36064	34152	33005	96.0
4.71		115.6	50134	47500	44851	41896	38275	37444	35981	33968	32820	96.0
1.99		549.1	48148	45675	43046	40140	36990	36093	34665	32901	31865	0.57
0.82		803.6	46060	43708	41448	38769	35771	35016	33806	32001	31071	0.34
90 0												

Kaolin 13 % in 100 mm valve, 50 % open

240

Appendix 89: Water in 100 mm valve, 50 % open

Water	Water in 100 mm valve, 50 % open	ve, 50 %	open										
							Water in 100 n	Water in 100 mm valve, 50 % open	open				
	Date:	11/30/2006	Test done by Mume										
	Valve Type:	Diaphragm									9.2		
	Valve definersion[m]:	0.1 7.000	Amai m.										
	Pipe Diameter [m]:	0.09717	0.007415736										
	Material Type:	Water						1/1	n/(n+1)	(n+1)/n	Y.		
	Density[kg/m²]:	993.87994						-	0.5	2	0.0007152		
	Concentration:	100%											
	.;.	0											
	Ÿ	0.0007152											
	ii.	-	Axial distances	-5.551	-4.552	-2.542	-1.040	0.700	1.502	2.502	3.501	4.499	
	PPT used:	101 to 109	Valve plane										
	Range selected:	0-130	Non-dimensionalised distances incl.[L/D]:	-57.12	-46.84	-26.16	-10.70	7.20	15.45	25.75	36.03	46.30	
			Distances[m]:	0	0.999	3.009	4.511	6.251	7.053	8.053	9.052	10.05	
Run #	Res		K,	Pod 1	Pod 2	Pod 3	Pod 4	Pod 5	Pod 6	Pod 7	Pod 8	Pod 9	Average Q
		0		(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Fa)	(Pa)	(Pa)	[NS]
Run 1	404428		14.59	129579	129203	128137	126452	59454	58748	58274	57256	56689	22.21
Run 2	379411		16.18	121979	121659	120688	119888	54256	53575	53074	52507	51725	20.84
Run 3	359597		18.01	118034	117188	116750	115646	50743	50369	49480	48609	48243	19.75
Run 4	328448		19.88	108092	107618	107426	106349	44952	44411	44225	43293	42885	18.04
Run S	312994		21.70	102575	101950	101557	100607	42259	42128	41360	41068	40586	17.19
Run 6	295022		21.67	93571	92652	92702	91566	39398	39311	38721	38418	37943	16.20
Kun 7	276216		20.85	82526	82036	81604	80905	36734	36240	35913	35558	35130	15.17
Run 8	259364	0.23	20.07	73665	73521	73050	72761	34395	34167	33901	33352	33143	14.24
Kun 9	235883		19.11	62513	62167	61702	61267	31337	31160	30790	30495	30120	12.95
Run 10	208781		18.03	51237	51060	50855	50508	28319	28171	27881	27652	27412	11.47
Run 12	179681		16.41	41057	40956	40639	40358	25405	25217	25075	24887	24689	9.87
Run 13	155128		14.84	34052	33895	33756	33537	23228	23086	22963	22886	22640	8.52
Run 15	124324		13.33	27397	27342	27219	27067	21088	20956	20910	20836	20696	6.83
Run 16 '	106259		14.72	25122	25129	24999	24913	20131	20150	20023	19970	19878	5.84

Appendix 90: CMC 5 % in 100 mm valve, 75 % open

			4.499		46.30	10.05	Pod 9 Q	[1/s]	56203 12.06	54002 11.31	51702 10.56		47573 9.14	45908 8.56	_		40473 6.48	Н
	5.082		3.501		36.03	9.052	Pod 8		64470	61658	58954	55902	53916	51858	49748	47144	45137	42678
	(n+1)/n 2.565		2.502		25.75	8.053	Pod 7	0	67277	64370	61550	58283	56292	54119	51836	49189	46990	44446
CIAC 6 % in 100 mm valve, 75 % open	n/(n+1) 0.390		1.502		15.45	7.053	Pod 6		69872	66883	63893	60587	58460	56239	53869	51040	48748	46190
in 100 mm val	1/n 1.565		0.700		7.20	6.251	Pod 5		72104	68808	65651	62358	08009	57781	55395	52578	50135	47511
CMC 5 %	•		-1.040		-10.70	4.511	Pod 4		86870	82545	78433	73819	70914	67705	64379	60537	57384	53898
			-2.542		-26.16	3.009	Pod 3		90716	86263	82043	77303	74185	70783	67357	63351	59939	56284
			4.552		-46.84	0.999	Pod 2		95915	90910	86678	81845	78548	75033	71509	67126	63563	59628
			-5.551		-57.12	٥	Pod 1		98258	93361	96888	84027	80505	77027	73382	96689	65258	61216
Date: 12/14/2006 Test done by Mume Valve Irype: Diaphragm Valve dimension[m]: 0.1 Valve position: 3/. Open Area[m²] Pipe Diameter [m]: 0.09717 0.007415736			Axial distances	Valve plane	Non-dimensionalised distances incl.[J/D]:	Distances[m]:	E,	THE STATE OF THE S	-2.67	-3.18	-3.49	-3.91	-4.47	-5.02	-5.48	-6.51	-7.35	-9.59
12/14/2006 Diaphragm 0.1 % Open 0.09717	CMC 5% 1026.7 5%	2.826	0.639	101 to 109	0-130													
Date: Valve Type: Valve dimension[m]: Valve position: Pipe Diameter [m]:	Material Type: Density[kg/m²]: Concentration:	¥	Ë	PPT used:	Range selected:		Res		336.4	308.2	280.7	250.4	230.5	210.8	189.4	164.8	144.5	123.3
					_		Run #		Run 6	Run 7	Run 8	Run 9	Run 10	Run 11	Run 12	Run 13	Run 14	Run 15

Appendix 91: Kaolin 6 % in 100 mm valve, 75 % open

			ı			Kaolin 6 %	Kaolin 6 % in 100 mm valve, 75 % open	Ive, 75 % open				
	8/2/2007	Test done by Mume & Sisonke	7									
Valve dimensionimi-	Diapinagm 0.1	**										
Valve position:	% Open	Area(m²)										
Pipe Diameter [m]:	0.09717	0.007415736										
								:		45		
Density/ka/m³1:	1103.9						3 705	0.200	4 705	X 25		
Concentration:	%9							204.0	3	26		
	3.071											
	2.038											
9	0.264	Axial distances	-5.551	-4.552	-2.542	-1.040	0.700	1.502	2.502	3,501	4.499	
PPT used:	101 to 109	Valve plane	34									
Range selected:	040	Non-dimensionalised distances incl.[L/D]:	-57.12	-46.84	-26.16	-10.70	7.20	15.45	25.75	36.03	46.30	
		Distances[m]:	0	0.999	3.009	4.511	6.251	7.053	8.053	9.052	10.05	
Re,		kv	Pod 1	Pod 2	Pod 3	Pod 4	5 pod	Pod 6	Pod 7	Pod 8	6 pod	Average Q
			(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Fa)	[78]
513.2		8.86	22915	22447	21834	21324	17841	17503	17158	16744	16351	5.26
497.0		7.99	22845	22311	21861	21237	17962	17670	17283	16892	16444	5.09
465.1		9.40	22684	22211	21683	21095	17840	17567	17207	16763	16420	4.89
447.2		10.13	22362	21800	21389	20800	17702	17442	17096	16585	16365	4.72
395.6		9:00	22044	21614	21108	20552	17682	17473	17114	16623	16335	4.43
373.1		12.85	21829	21227	20827	20240	17557	17207	16954	16526	16330	4.21
254.3		12.07	20870	20441	19991	19382	17372	17169	16837	16417	16191	3.35
210.0		11.21	20632	20223	19834	19115	17021	16829	16608	16132	15877	3.06
204.5		16.49	20070	19708	19331	18717	16810	16547	16221	15865	15610	2.86
155.2		15.80	20038	19430	19064	18382	16791	16553	16240	15868	15602	2.66
99.05		17.73	21221	20700	20261	19670	18252	18046	17745	17382	17097	2.11
57.32		35.83	20605	20133	19699	19271	18173	17922	17611	17113	17069	1.50
73.60		19.79	21099	20575	20085	19563	18261	18026	17675	. 17275	17015	1.89
39.47		25.35	20078	20100	0000	0000	****	-				11

Appendix 92: Kaolin 10 % in 100 mm valve, 75 % open

							Kaodin 107	Kaolin 10 % in 100 mm valve, 75 % open	alive, 75 % ope				
8	Date:	8/15/2007	Test done by Mume & Maanda										
Ç	Valve Type:	Diaphragm											
	Valve dimension[m]:	0.1		,									
	Valve position:	% Open	Area[m²]										
	Pipe Diameter [m]:	0.09717	0.007415736										
86	Material Tone	Kaolin						ŧ	n/m+1)	(n+1)/h	Kw		
	Density[kg/m³]:	1169.4						5.702	0.149	6.702	71319		
	Concentration:	10%											
	:	8.965											
	ž.	7.098											
	2	0.175	Axial distances	-5.551	-4.552	-2.542	-1.040	0.700	1.502	2.502	3.501	4.499	
	PPT used:	101 to 109	Valve plane								ALSONOW		
	Range selected:	0-130	Non-dimensionalised distances incl.[L/D]:	-57.12	-46.84	-26.16	-10.70	7.20	15.45	25.75	36.03	46.30	
			Distances[m]:	0	0.999	3.009	4.511	6.251	7.053	8.053	9.052	10.05	
Run #	Re,	- 200	ř.	Pod 1	Pod 2	Pod 3	Pod 4	Pod 6	Pod 6	Pod 7	Pod 8	Pod 9	Average Q
				(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	[1/8]
Run 1	343.2	0.070.007.07	7.20	37089	35663	34285	32377	26602	25833	24861	23809	22685	6.50
Run 2	327.3		7.03	36899	35361	34019	32107	26432	25751	24787	23735	22605	6.39
Run 3	312.5		7.41	36357	34915	33532	31591	26184	25523	24515	23368	22373	6.18
Run 4	294.8		8,09	35774	34262	32883	31117	25909	25131	24171	23182	22123	6.00
Sun 6	269.2		8.26	35209	33743	32299	30589	25719	24912	23931	22861	21900	5.74
gru 6	255.5		8.18	34620	33119	31727	28996	25290	24582	23588	22465	21570	5.57
Zun 7	234.7		6.83	33857	32344	30962	29261	24906	24183	23203	21979	21123	5.36
Sun 8	229.0	202	7.64	33121	31692	30374	28608	24489	23788	22874	21763	20909	5.14
Run 9	195.6		4.03	32609	31050	29813	28075	24278	23531	22604	21367	20429	4.86
Sun 10	183.4		6.23	31919	30400	29202	27305	23804	23176	22168	20991	20148	4.59
Pun 11	170.8		5.80	31645	30098	28934	27160	23562	22999	22050	20751	20017	4.43
Pun 12	146.4		6.08	31124	29666	28306	26589	23324	22592	21661	20460	19631	4.16
Run 13	138.0		6.23	30525	29080	27860	26138	22984	22299	21362	20093	19380	3.93
Run 14	109.4		-0.36	29765	28263	26975	25264	22471	21789	20828	19596	18765	3.61
3run 16	106.0		2.14	29456	27908	26734	25051	22242	21644	20698	19392	18641	3.49
Run 16	101.0		2.10	28999	27399	26337	24525	22064	21383	20494	19419	18516	3.35
Run 17	89.27		3.22	28719	27351	25855	24288	21859	21210	20275	19226	18310	3.26
Run 18	86.73		-1,13	28165	26857	25507	23828	21557	20931	20006	18928	17993	3.11
Run 19	81.18		-0.53	27734	26424	25079	23428	21371	20677	19777	18810	17837	2.98
Sun 20	68.77		-0.63	27159	25828	24560	22908	21054	20345	19456	18488	17581	2.69
Sun 21	60 11		66.0-	26749	25408	24118	22801	20742	20129	CYCD1	10001	*****	9.64

Appendix 93: Kaolin 13 % in 100 mm valve, 75 % open

Date:	9/30/2007	7 Test done by Mume			;;	17.442		0					
Valve Type:					κ:	11.285							
Valve dimension[m]:					n:	0.216							
Valve position:	tion: % Open												
Pipe Diameter [m]	:iw	0.007415736											
Material Type:	Kaolin 13%			Pod 1	Pod 2	Pod 3	Pod 4	Pod 5	Pod	Pod 7	Pod 8	6 pod	
Concentration:		Axial distances		-5.551	4.043	-2.542	-0.699	0.700	1.502	2.502	4.499	9.511	
Density/kg/m³]:		Valve plane											
		Non-dimensionalise	ed distances Incl.:	-57.12	41.60	-26.16	-7.19	7.20	15.45	25.75	46.30	97.88	
		Distances[m]:		0	1.508	3.009	4.852	6.251	7.063	8.053	10.05	15.06	
Run# R	Re,		K.	DP,	DP,	OP,	š	90	ob.	OP,	90	oP,	Average Q
				[Pa]	[Pa]	[Pa]	[Pa]	[Pa]	[Pa]	[Pa]	[Pa]	[Pa]	[/8]
Run 1	78.41		2.71	0	4215	7499	11735	17257	18919	20956	25427	37529	5.56
	76.85		2.71	0	4159	7633	11969	17433	18995	21043	25820	37707	5.56
	83.24		2.88	0	4152	7566	12146	17755	19212	21373	25788	38220	5.83
Run 4 85	85.27		2.72	0	4167	7692	12455	17964	19525	21539	25827	38266	5.83
	68.15	,	1.58	0	4154	7750	11882	17835	18231	21086	25506	37892	5.38
	73.89		1.70	0	4167	7786	11483	17697	19030	20945	24960	36927	5.16
	61.42		3.00	0	4157	7295	11629	16833	18349	20287	24884	39619	26.
Run 12 58	58.34		1.59	0	4141	7496	11941	16898	18172	20158	24592	36223	4.73
	51.25		2.75	0	4066	7057	11383	16151	17741	19682	24132	35867	4.55
Run 16 45	45.73		2.37	0	4061	6833	11277	15755	17279	19216	23772	35290	4.30
000	40.09		1.43	0	4399	6840	11186	15652	16900	18875	23526	34898	4.07
	35.96	.,	2.25	0	3939	8770	11033	15313	16760	18700	23216	34564	384
Run 24 27	.34		2.46	0	3860	6677	10864	15000	16405	18319	22854	33928	3.38
	27.99		1.32	0	3876	7037	11108	15074	16440	18430	22851	33972	3.38
	24.46		1.88	0	3898	6952	11048	14872	16257	18232	22715	33696	3.19
	20.55		2.91	0	3804	6503	10670	14851	15977	17911	22336	33267	2.85
	21.28		1.45	0	3831	9069	11010	14803	16135	18104	22569	33355	2.85
	19.47		2.56	0	3426	5945	10309	13141	14510	16428	20630	31721	2.87
60	20.66		2.20	0	3352	2887	10024	13119	14610	16392	20700	31545	2.89
	25.80	•	4.74	0	3014	6254	9940	13645	15218	17032	21543	31737	2.98
	11.54	•	4.54	0	2984	5798	9593	12765	14316	16031	19824	30933	2.27
	12.38	-	5.43	0	3182	5740	9426	12923	14072	15890	19618	30604	2.27
	8.55		7.32	0	2915	5784	9223	12879	14344	16126	19890	31278	2.14
	9.92		6.24	0	3056	5880	9150	12956	14141	15821	20067	30780	2.15
Run 42 12	12.23		4.78	0	3030	5885	8961	12744	14399	16452	20172	30809	2.15
Run 43 9.	9.27		5.18	0	3206	5814	9231	12789	14491	16060	19910	30859	2.08
Run 44 7.	7.49		12.01	0	3473	5907	9475	12976	14007	16124	20103	31334	2.08
Run 48 8.	8.99		11,78	0	2929	5625	8947	12770	13863	16121	19850	30336	1.89
o or und	***	•	THE RESERVE OF THE PARTY OF THE										

Appendix 94: Water in 100 mm valve, 75 % open

27.68 224.90 22.557 22.557 19.75 11.73 16.94 15.98 11.98 11.34 12.34 (Pa) 77917 56886 58879 56072 50172 46751 44183 37204 37204 34595 0.0007238 40119 (Pa) 79600 67773 59530 50575 47658 44798 44798 3.501 ¥ (n+1)/n (Pa) 80078 69124 60334 55340 51317 48132 4832 45330 42955 40477 38127 38127 35264 n/(n+1) (Pa) 80971 69653 61139 52015 52015 48781 45735 40911 38644 32694 32731 1.502 Water in 100 mm valve, 75 % open 44075 41279 38792 35996 32971 0.700 (Pa) 81343 69886 61585 57533 52367 49099 46034 Ę . 6.251 -1.040 (Pa) 116445 97804 84313 78115 70590 65393 60915 57270 57270 53489 49684 45321 40868 (Pa) 118042 100085 86211 79572 71538 66367 61819 58153 Pod 3 54233 (Pa) 119086 101068 87108 80615 72143 67195 62244 59044 -57.12 (Pa) 120183 101555 87546 80967 72714 67675 62893 55309 51202 46542 46542 41902 -5.551 Pod 1 0.007415736 Valve plane
Non-dimensionalised distances Incl.[UD]:
Distances[m]: 4.48 4.19 4.75 4.75 5.04 5.04 5.02 5.43 5.02 5.04 5.02 Test done by Mume Axial distances Water in 100 mm valve, 75 % open Area[m²] 101 to 109 0-130 % Open 0.09717 Diaphragm 0.1 Water 994.115 0.00072 Date:
Valve Type:
Valve dimension[m]:
Valve position:
Pipe Diameter [m]: n: PPT used: Range selected: Material Type: Density[kg/m³]: 498099 448058 406221 383876 355438 37893 319080 319080 287688 269585 246534 222160 Run 1
Run 3
Run 3
Run 4
Run 6
Run 7
Run 9
Run 9
Run 10

Appendix 95: CMC 5 % in 100 mm valve, 100 % open

											Γ	7				Average	[Vs]	19.00	17.69	16.62	17.30	16.17	15.38
							_	_				4.499		46.30	10.05	Pod	(Pa)	85465	81180	75630	78684	73492	70301
							**	5.198				3.501		36.03	9.052	Pod 8	(Pa)	89131	84402	79430	81619	76277	72860
							(n+1)/n	2.591				2.502		25.75	8.053	Pod 7	(Pa)	93003	87849	82534	84927	79211	75228
	CMC 5 % in 100 mm valve, 100 % open						n/(n+1)	0.386				1.502		15.45	7.053	Pod 6	(Pa)	96575	90993	85671	87540	82294	79244
	100 mm valv						ž	1.591				0.700		7.20	6.251	Pod 5	(Fa)	98036	93348	86957	89732	83524	81034
	CMC 5 % in											-1.040		-10.70	4.511	Pod 4	(Pa)	110427	103946	96131	99783	92626	88826
												-2.542		-26.16	3.009	Pod 3	(Pa)	115406	108258	101433	104646	97117	92858
			89									-4.552		-46.84	666.0	Pod 2	(Pa)	122088	115183	106846	110247	103235	97981
												-5.551		-57.12	0	Pod 1	(Pa)	124885	118278	109785	112789	105275	100703
100 % open		Test done by Mume			Area[m²]	0.007415736						Axial distances	Valve plane	Non-dimensionalised distances incl.[L/D]:	Distances[m]:	<u>ئ</u> و		0.637	1.409	0.177	1.464	1.077	0.567
ı valve, '		12/14/2006	Diaphragm	0.1	Open	0.09717	CMC 5%	1026.7	5%	0	2.818	0.629	101 to 109	0-130									
CMC 5 % in 100 mm valve, 100 %		Date:	Valve Type:	Valve dimension[m]:	Valve position:	Pipe Diameter [m]:	Material Type:	Density[kg/m³]:	Concentration:	;	Ÿ	ë	PPT used:	Range selected:		å		662.1	600.7	551.4	582.3	530.7	495.6
CMC 5																Run		Run 1	Run 2	Run 3	Run 4	Run 6	Run 6

Appendix 96: Kaolin 6 % in 100 mm valve, 100 % open

Deter: Concentration: Concentration:<	00 mn	Kaolin 6 % in 100 mm valve, 100	, 100 % open										
Acres Product Produc	8/2/20	07	Test done by Mume & Sisonke				Kaolin 6 % ir	100 mm valve	e, 100 % open				
Avea[m] 7 0.007415736 6% 1/1 1/1 1/1 (n+1)/n	Diap	hragm		o.									
7 0.007415736 Material distances inci.[LD]: -5.551 4.522 -2.542 -1.040 0.700 1.502 2.502 3 109 Valve plane Non-dimensionalised distances inci.[LD]: -57.12 -46.84 -26.16 -10.70 7.20 15.45 25.75 3 Non-dimensionalised distances inci.[LD]: -57.12 -46.84 -26.16 -10.70 7.20 15.45 25.75 3 Non-dimensionalised distances inci.[LD]: -57.12 -46.84 -26.16 -10.70 7.20 15.45 25.75 3 Non-dimensionalised distances inci.[LD]: -57.12 -46.84 -26.16 -10.70 7.20 15.45 25.75 3 Non-dimensionalised distances inci.[LD]: -57.12 -46.84 -26.16 -10.70 7.20 15.45 25.75 3 Non-dimensionalised distances inci.[LD]: -57.12 -46.84 -26.16 -10.70 7.20 15.45 25.75 3 Non-dimensionalised distances inci.[LD]: -57.12 -46.84 -26.16 -10.70 7.20 15.45 25.75 3 Non-dimensionalised distances inci.[LD]: -57.12 -46.84 -26.16 -10.70 7.20 15.45 25.75 3 Non-dimensionalised distances inci.[LD]: -57.12 -46.84 18768 17821 17724	2			S. 100									
110 110	ဝိ	en	Area[m²]										
1/10	8	9717	0.007415736										
6% Axial distances Axi							,						
Axial distances Axial dist	3	nolin 6%						1/n	n/(n+1)	(n+1)/n	KW		
Axial distances Axial dist	=	03.9						3.795	0.209	4.795	14.90		
Axial distances Axial dist	ø	%											
109 Valve plane -5.551 -4.552 -2.542 -1.040 0.700 1.502 2.502 3 109 Valve plane -57.12 -46.84 -26.16 -10.70 7.20 1.545 25.75 3 Non-dimensionalised distances inci, LDI; -57.12 -46.84 -26.16 -10.70 7.20 15.45 25.75 3 Distances[m]; 0 0 0 999 3.009 4.511 6.251 7.033 8.053 9 k, 1 Pod 1 Pod 2 Pod 3 Pod 4 Pod 5 Pod 6 Pod 7 Pod 7 Pod 7 Pod 7 Pod 7 Pod 7 Pod 6 Pod 7 Pod 7 Pod 6 Pod 7 Pod 6 Pod 7 Pod 7 Pod 7 Pod 7 Pod 8 Pod 6 Pod 7 Pod 8 Pod 7 Pod 8 Pod 7 Pod 8 Pod 7 Pod 8 Pod 7	က	.071											
Axial distances 5,551 4,552 -2,542 -1,040 0,700 1,502 2,502 3 Non-dimensionalised distances incl.[LD]: -57,12 -46,84 -26,16 -10,70 7,20 15,45 2,57 3 Distances[m]: Distances[m]: -57,12 -46,84 -26,16 7,20 15,45 2,57 3 k, Distances[m]: -6,10 7,20 1,545 2,57 3 3,57 3 3 3 3 3 3 4,511 6,251 7,053 8,053 3 3 3 3 3 3 9 4,511 6,251 7,053 8,053 3 3 3 4,511 6,251 7,053 8,053 <	2	980			8								
Non-dimensionalised distances incl.[LD]; -57.12 -46.84 -26.16 -10.70 7.20 15.45 25.75 3 3.005 2.004 2.014 2.	0	264	Axial distances	-5.551	4.552	-2.542	-1.040	0.700	1.502	2.502	3.501	4.499	
Non-dimensionalised distances incl.[UD]: -57.12 -46.84 -26.16 -10.70 7.20 15.45 25.75 3 Distances[m]: Dod 1 Pod 1 Pod 2 Pod 3 A.511 6.251 7.053 8.053 9 k _v Pod 1 Pod 2 Pod 3 Pod 3 Pod 4 Pod 6 Pod 6 Pod 7 Pod 7 Pod 5 Pod 6 Pod 7 Pod 7 Pod 6 Pod 7 Pod 6 Pod 7 Pod 7 Pod 6 Pod 7 Pod 7 Pod 6 Pod 7 Pod 7 Pod 7 Pod 7 Pod 7 Pod 6 Pod 7 Pod 6 Pod 7 Pod 6 Pod 7 Pod 7	Ι-	01 to 109	Valve plane										
Pod 1 Pod 2 Pod 3 Pod 4 Pod 6 Pod 6 Pod 7 Pod 5 Pod 4 Pod 6 Pod 7 Pod 7 Pod 5 Pod 4 Pod 6 Pod 7 Pod 7 Pod 7 Pod 7 Pod 7 Pod 6 Pod	٦	140	Non-dimensionalised distances incl.[UD]:	-57.12	46.84	-26.16	-10.70	7.20	15.45	25.75	36.03	46.30	
Pod 1 Pod 2 Pod 3 Pod 4 Pod 6 Pod 6 Pod 7 Pod 7 (139 (2028) (1974) (Pa)			Distances[m]:	0	0.999	3.009	4.511	6.251	7.053	8.053	9.052	10.05	
(Pa) (Pa) <th< th=""><th> </th><th></th><th>ý.</th><th>Pod 1</th><th>Pod 2</th><th>Pod 3</th><th>Pod 4</th><th>Pod 5</th><th>Pod 6</th><th>Pod 7</th><th>Pod 8</th><th>Pod 9</th><th>Average Q</th></th<>			ý.	Pod 1	Pod 2	Pod 3	Pod 4	Pod 5	Pod 6	Pod 7	Pod 8	Pod 9	Average Q
20289 19764 19380 18620 17841 17614 17514 17219 20465 19913 19488 18867 17912 17721 17387 20391 19626 19344 18768 17823 17343 17345 20271 19674 19266 19642 17748 17346 17242 20200 19610 19005 16853 17616 17463 17042 19895 19286 18847 17867 1789 17021 19893 19283 18819 1840 17616 17407 17012 19893 19803 18813 18171 17589 17352 16912 19123 19816 18620 17639 16565 16585 16585				(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	[We]
20465 19013 19458 18867 17912 17721 17367 20391 19826 19344 18788 17823 17833 17316 20271 19674 19226 19642 17748 17348 17346 19885 19510 19005 18534 1765 17463 17068 19885 19347 19039 18354 17592 17389 17021 19878 19888 18899 18400 17616 17407 17012 19678 19183 18813 18171 17589 17322 16972 19133 19813 1820 17639 16965 16863 16892			0.139	20289	19764	19380	18820	17841	17614	17219	16876	16495	5.90
20291 1926 19344 16786 17823 17633 17316 20271 16674 19266 16642 17748 17326 17242 20000 19610 19005 18534 17616 17483 17088 19865 19347 19039 18834 18400 17616 17407 17021 19873 19883 18899 18400 17616 17407 17012 19678 19183 18813 18171 17699 17322 16912 19123 18695 18200 17639 16965 16887 16583		S	0.037	20465	19913	19458	18867	17912	17721	17367	16998	16625	5.75
20271 19674 19286 18642 17748 17536 17242 20000 18510 19005 18538 17616 17463 17068 19885 19347 19039 18854 17582 17389 17021 19893 18893 18400 17616 17407 17012 1973 19813 18171 17589 17322 16912 19123 18813 1873 17639 16983 16583			-0.183	20391	19826	19344	18788	17823	17633	17316	16931	16563	5.54
20000 19610 19005 18539 17616 17463 17068 19895 19287 19039 18354 17592 17399 17021 19678 19283 18899 18640 17516 17407 17012 19678 1913 18817 17589 17352 16912 1913 1885 1820 17539 16985 16582			0.027	20271	19674	19266	18642	17748	17536	17242	16768	16512	5.37
19895 19347 19039 18354 17592 17389 17021 19993 19283 18889 18400 17616 17407 17012 19678 19678 18813 18171 17589 17352 16972 19123 18955 18220 17639 16965 16837 16583			-0.232	20000	19510	19005	18538	17616	17463	17068	16697	16342	5.18
19983 19283 18889 18400 17616 17407 17012 19678 1913 18813 18171 17589 17352 16972 19123 18695 18220 17639 16965 16837 16583			0.107	19895	19347	19039	18354	17592	17389	17021	16616	16338	4.88
19678 19183 18813 18171 17589 17352 16972 19123 1805 18220 17639 16965 16837 16583			0.422	19993	19283	18899	18400	17616	17407	17012	16568	16324	4.63
19123 18695 18220 17639 16965 16837 16583			0.449	19678	19183	18813	18171	17589	17352	16972	16600	16340	4.30
			1.209	19123	18695	18220	17639	16965	16837	16583	16215	16009	4.04

Appendix 97: Kaolin 10 % in 100 mm valve, 100 % open

5.40 5.35 5.35 5.37 5.37 5.26 Pod 9 [Pa] 8985 9179 9132 8997 8997 9095 9134 9139 9091 9095 9098 9036 8995 9064 3.501 36.03 [Pa] 8261 8287 8.053 2.502 1.502 16.00 Kaolin 10 % in 100 mm valve, 100 % open 7.20 Pod 5 0.700 | Pa| Pod 4 4.852 8.965 7.098 0.175 -26.16 Pod 3 3.009 | Pa| 2496 | 2521 | 252 1.508 Pod 2 -57.12 Pod 1 [Pa] ě Valve plane
Non-dimensionalised distances incl.:
Distances[m]: 8/22/2007 Test done by Mume & Sisonke Kaolin 10 % in 100 mm valve, 100 % open 0.397 0.328 0.328 0.024 Pod Number: Axial distances Area[m²] 0.007415736 Diaphragm 0.1 Open 0.0971 kaolin 10% 10% Valve Type: Valve dimension[m]: Pipe Diameter [m]: Concentration: Density[kg/m³]: Valve position: Material Type: 245.4 227.9 231.5 231.5 242.5 242.5 242.5 242.5 242.5 242.5 242.5 242.5 243.5 Date Run 13 Run 16 Run 18 Run 18 Run 19 Run 23 Run 23 Run 10 Run 12 Run 3 Run 6 Run 8 Run 8 Run 8 Run 8 Run#

Appendix 98: Kaolin 13 % in 100 mm valve, 100 % open

_	Date:	10/1/2007	Test done by Sisonke & Maanda			18.973						•	
1	Valve Type:	Diaphragm		1	ÿ	16.141							
_	Valve dimension[m]:	10			::	0.242							
_	Valve position:	Open	Area[m²]	, 									
-	Pipe Diameter [m]:	0.09717	0.007415736										
	Material Type:	Kaolin 13%	Pod Number:	Pod 1	Pod 2	Pod 3	Pod 4	Pod 6	9 pod	Pod 7	Pod 8	8 Pod	
٢	Concentration:	13%	Axial distances	-5,551	4.043	-2.542	669'0" .	0.700	1.502	2.502	4.489	9.511	
	Density(kg/m³):	1204.1	Valve plane		S - 1 - 60 - 50 - 50			Na samuel and a sa	0.00000	2000000			
			Non-dimensionalised distances incl.:	-57.12	-41.60	-26.16	-7.19	7.20	15.45	25.75	46.30	97.88	
			Distances[m]:	0	1.508	3.009	4.852	6.251	7.053	8.053	10.05	15.06	
Run #	Re,		¥	ď	оь,	OP,	, 00	P,	90	ъ,	ъ,	ов,	Average Q
				Pal	[Pa]	[Pa]	[Pa]	[Pa]	[Pa]	[Pa]	[Pa]	[Pa]	[//8]
Run 1	134.0		2.22	0	3963	7653	12200	15465	17133	19309	23644	36143	6.76
Run 2	136.1		2.02	0	4185	7445	11606	15371	16944	18993	23325	35561	6.79
Run 3	133.1		2.09	0	4501	7373	11767	15315	16776	18997	23429	35739	6.73
Run 4	132.2		2.07	0	4159	7564	12180	15292	16903	19135	23885	38084	6.73
Run 5	133.0		2.08	0	4064	7555	12186	15478	17057	19156	23613	35920	6.73
Run 6	131.4		2.37	۰	4163	7607	11993	15351	17001	19048	23789	35926	6.70
Run 7	131.5		2.24	0	4272	7541	11967	15275	16923	19077	23724	35933	6.70
Run 8	131.3		2.73	0	4322	7691	12021	15347	17064	19230	23648	36087	69.9
Run 9	132.1		1.50	0	3977	7290	11708	15179	16869	18881	23642	35796	6.72
Run 10	131.3		1.72	۰	4014	7434	11812	15145	16818	18936	23763	35724	8.68
Run 11	130.6		1.82	0	3873	7525	11863	15211	16844	18988	23787	35722	99.9
Run 12	134.4		1.92	0	3961	7549	11999	15250	16923	19077	23471	35549	6.73
Run 13	131.0		2.35	0	4444	7563	12109	15204	16916	19104	23722	35890	8.88
Run 14	130.7		2.08	0	4344	7572	11846	15314	16965	19080	23956	35869	29'9
Run 15	131.5		2.65	0	3962	7695	12312	15447	17045	19211	23449	35978	69'9
Run 16	132.0		1.84	0	3948	7417	11572	15207	16974	18958	23455	35647	69.9
Run 17	131.5		2.24	0	4426	7533	11749	15235	16892	18994	23865	35620	6.67
Run 18	132.3		1.88	0	3883	7567	11868	15386	16975	19085	23612	35588	6.67
Run 19	131.4		2.66	٥	4504	7592	11864	15466	16982	19122	23327	35649	6.65
Run 20	130.7		1.89	0	3965	7572	11812	15259	16967	19114	23752	35786	6.65
Run 21	130.7		2.07	0	4244	7616	12081	15301	17022	19154	23798	35733	6.64
Run 22	132.4		2.86	0	4484	7671	12343	15484	17145	19245	23600	35965	6.71
Run 23	131.4		1.71	0	4119	7268	11480	15180	16768	18806	23538	35716	6.70
Run 24	133.1		1.31	0	4314	7291	11634	15175	16763	18926	23739	35571	6.71
Run 25	130.8		1,49	0	4352	7403	11770	15140	16873	18980	23976	35678	99'9
Run 26	125.0		2.76	0	4183	7472	11370	14935	16626	18787	23383	35664	6.52
Run 27	126.2		1.96	0	4041	7482	11859	15026	16834	18940	23652	35579	6.53
Run 28	117.1		2.07	0	4151	7496	11699	15076	16732	18904	23716	35406	6.25
Run 29	115.5		30 €	•									000

3,63			11779	15263	16842	18898	23168	35364
			12092	15219	16795	18722	23153	35241
	0 4120	20 6988	11439	15006	16441	18703	23082	35212
	0 4182	32 7387	11531	14908	16524	18529	22993	35122
	0 42	4213 7438	11669	15170	16742	18662	23133	35127
1000000	0 4179	7473	11447	14707	16415	18310	22741	34898
	0 3905	7350	11636	14348	16442	18022	22689	34698
		4046 7299	11489	14895	16245	18044	23107	34815
	0 4099		11644	14948	16557	18365	23059	34726
	0 4101	7177	11364	14522	16012	17956	22661	34189
	0 4099	7363	1:1562	14690	16137	18117	22755	34476
	0 4092		11362	14668	16379	18034	22771	34285
	0 4393		11599	14814	16462	18067	23019	34270
	0 3991		10977	14278	15663	17647	22364	33794
	0 43	4335 7245	10886	14516	15731	17536	22327	33775
	0 4193	33 7115	10891	14345	15588	17357	22179	34005
			11358	14368	15829	17538	22492	33967
	0 4125	25 6973	10733	13842	15196	16967	21921	33286
	0 4277	77 7358	11268	14396	18050	17396	22314	33622
	0 4000	7124	10988	13997	15435	17010	22041	33292
	0 4094		11171	14295	15652	17255	22204	33269
	0 39	3910 7029	11043	14009	15286	16960	21882	33081
	0 3876	7103	11102	14185	15444	17221	22120	33029
	0 3725	25 7054	11017	14093	15473	16873	21747	32804
			11020	14092	15450	16952	21724	32816
	9096		10517	13601	14847	16559	21335	32338
	0 4133	33 6999	11012	14096	15240	16810	21623	32646
	0 42	-	10981	13894	15229	16830	21479	32466
	0 4151		10899	13763	15214	16676	21477	31966
	96 0	3610 7126	10872	13993	15315	16854	21360	31789
	0 4061	31 7186	11103	13938	15377	16907	21589	32076
	0 3741	41 6954	10696	13592	14926	16567	21542	31814
		854 6854	10720-	13455	15032	16623	21340	31702
	0 3927	27 6746	10357	13343	14606	16299	20926	31553
	0 3767	37 6716	10486	13444	14598	16242	20808	31286
	0 3888	98 6894	10433	13022	14759	16333	21324	31288
	0 3842	6986	10560	13489	14782	16345	21671	31270
			10601	13410	14692	16592	21720	31149
			10632	13579	14749	16542	20556	31303
	0 4067	37 6952	10685	13420	14680	16586	20474	31515
			40704	49599	*****	1840B	20474	31120
	0	3466 5593	07/01	2000	1404	90+01		

Appendix 99: Water in 100 mm valve, 100 % open

Water	Water in 100 mm valve, 100 % op	ve, 100	% oben										
							Water in 100	Water in 100 mm valve, 100 % open	0 % open				
	Date:	11/27/2006	Test done by Mume										
	Valve Type:	Diaphragm											
	Valve dimension[m]:	0.1											
	Valve position:	Open	Area[m²]										
	Pipe Diameter [m]:	0.09717	0.007415736										
	Material Type:	Water						ţ,	n/(n+1)	(n+1)/n	Υţ		
	Density(kg/m³]:	995.09431						-	0.5	2	0.0007733		
	Concentration:	100%											
	ţ.,	0											
	ÿ	0.0007733											
	:	1	Axial distances	-5.551	-4.552	-2.542	-1.040	0.700	1,502	2.502	3.501	4.499	
	PPT used:	101 to 109	Valve plane										
	Range selected:	0-130	Non-dimensionalised distances incl.[L/D]:	-57.12	46.94	-26.16	-10.70	7.20	15.45	25.75	36.03	46.30	
			Distances[m]:	0	0.999	3.009	4.511	6.251	7.053	8.053	9.052	10.05	
Run #	Re3		Ky	Pod 1	Pod 2	Pod 3	Pod 4	Pod 5	Pod 6	Pod 7	Pod 8	Pod 9	Average Q
				(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	(Pa)	[1/8]
Run 1	537269		1.127	118322	117400	115240	113665	101141	100294	98664	96956	96303	31.87
Run 3	517511		0.992	98681	96831	95709	93327	83969	82741	81759	80665	79743	30.69
Run 6	492262		0.775	81537	80336	79587	77824	69811	69360	68195	67590	66450	29.20
Run 6	474515		0.724	76734	75811	75197	73200	66126	65560	65025	64080	63440	28.14
Run 7	473457		0.803	72671	71997	70700	80869	62851	62297	61477	60644	60112	28.08
Run 18	420158		1.507	105876	105239	103370	100460	90258	89937	88524	88138	86358	24.92
Run 19	417157		1.701	98577	97714	95839	94463	84526	84087	82317	81828	80644	24.74
Run 21	402887		1.232	84150	81916	81616	80431	72430	71867	70555	70024	68933	23.90
Run 22	396559		1.277	76187	75249	74704	72997	65796	64957	64354	63196	63012	23.52
Run 23	396559		1,153	70082	69571	68717	67424	61230	60385	59859	59145	58748	23.52
Run 25	388776		1.308	59037	58573	57887	24777	51704	51360	50164	50107	49553	23.06
Run 28	365840		1.564	75761	74665	73238	72389	64993	64015	63337	63025	61967	21.70
Run 33	317395		1.357	63910	63578	62782	61250	55554	54839	54553	53890	53304	18.82
Run 37	262544		0.988	45384	45044	44561	43757	40163	39805	39531	39163	38631	15.57