## VISCOUS FLOW THROUGH SUDDEN CONTRACTIONS

By

## **VERUSCHA PIENAAR**

NH Dipl (Chem Eng), MTech (Chem Eng) (Cape Technikon)

Dissertation submitted in fulfilment of the degree DOCTOR TECHNOLOGIAE in the Faculty of Engineering Cape Technikon

February 2004

•

#### VISCOUS FLOW THROUGH SUDDEN CONTRACTIONS Veruscha Pienaar

Flow Process Research Centre, Cape Technikon, PO Box 652, Cape Town, 8000, South Africa. February, 2004.

#### ABSTRACT

Despite efforts since the 1950s, laminar flow through pipe fittings is still a topic that needs investigation (Jacobs, 1993). Most experimental studies on this topic include fittings such as contractions, expansions, elbows, valves and orifices (Edwards *et al.*, 1985; Turian *et al.*, 1998; Pal & Hwang, 1999). Although sudden contractions are not often found in industry, most researchers included these fittings as part of their experimental investigation.

The volume of work done on flow through sudden contractions over the last 50 years (e.g. Bogue, 1959; Christian *et al.*, 1972; Vrentas & Duda, 1973; Boger, 1987; Bullen *et al.*, 1996; Sisavath *et al.*, 2002), establishes its place of importance in the fundamental understanding of fluid flow and fluid mechanics.

There are inconsistent reports on the status of the study of Newtonian fluids flowing through sudden contractions, i.e., that "it is a solved problem" (Boger, 1987) and "that it is far from being resolved" (Sisavath *et al.*, 2002). One reason for this apparent contradiction is the fact that most experimental studies do not agree with one another or with analytical and numerical studies. A state-of-the-art literature review by Pienaar *et al.* (2001) confirmed this and that further investigation of this topic is required.

To explore these contradictions, it was necessary for one study to do both an experimental and numerical investigation and compare the results with existing literature. It was also important to find some basis for agreement of experimental work and not just add another data set to the existing scattered database.

A test facility was built for testing three contraction ratios, i.e.,  $\beta = 0.22$ , 0.50 and 0.85. A range of Newtonian and non-Newtonian fluids was tested over a wide range of Reynolds number (Re = 0.01 - 100 000).

A numerical study of this problem was performed using the general-purpose, commercially available software, CFX. Good agreement was found with similar studies in literature, but not with the experimental results in terms of overall pressure drop. However, this work was very useful in determining the detail of the flow phenomena required for the conical approximation developed in this work.

It was demonstrated how different results could be obtained by evaluating the two methods used in literature i.e., the extrapolation of the pressure grade line to the contraction plane and the total pressure drop approach. These methods both involved the application of Bernoulli (energy balance equation), but it was further

i

shown that different results could be obtained, depending on the friction loss calculation method used and the length of straight pipe included in the total pressure drop. In the pressure grade line method, it was demonstrated that the selection of points used for determining the fully developed friction gradient had an effect on the results obtained. It is argued that these different approaches can explain the discrepancies found in the literature and that a sound basis for further experimental investigation has been provided.

An approximation was also obtained for the pressure drop in the contraction based on the flow phenomena upstream of the sudden contraction plane, assuming a conical boundary. Excellent agreement was obtained between this model and the semi-empirical model of McNeil and Morris (1995) for contraction ratio  $\beta = 0.22$ . It was demonstrated that there is potential for the extrapolation of this model to larger contraction ratios.

In conclusion, a sudden pipe contraction – arguably geometrically the simplest pipe fitting – has been used to establish and validate a protocol for the experimental method and analysis of results for the determination of fitting losses in laminar flow. The main contribution of this work is in the experimental method, analysis of results, modelling of flow through sudden contractions and actual values for  $C_{con}$  for three contraction ratios.

#### DECLARATION

I, Veruscha Pienaar, hereby declare that the contents of this dissertation/thesis represent my own unaided work, and that the dissertation/thesis has not previously been submitted for academic examination towards any qualification. Furthermore, it represents my own opinions and not necessarily those of the Cape Technikon.

Veruscha Pienaar

February 2004

#### DEDICATION

To my dad Johnny, my mom Shirley and my brothers Zachery, Ashwin and Ormund.

To my great grandmother Catherine Van Turha, who lived her life gracefully and in thankfulness for 94 years.

"For wisdom will enter your heart, and knowledge will be pleasant to your soul, discretion will protect you and understanding will guard you"

Proverbs 2:10-11

#### ACKNOWLEDGEMENTS

I wish to thank:

- My supervisor, Prof. Paul Slatter, for his guidance, encouragement and tremendous support not only with my studies but also in my personal development.
- My family, friends and colleagues who have been so supportive over the many years of studies.
- Prof Liz van Aswegen for linguistic revision and Marion Davids for Internet and library assistance.
- All the students in the slurry and rheology laboratories who assisted with test work.
- The Council of the Cape Technikon and the National Research Foundation for financial assistance towards this research. Opinions expressed in this dissertation and the conclusions arrived at, are those of the author and are not necessarily to be attributed to the Cape Technikon or the National Research Foundation.

## TABLE OF CONTENTS

|                                                           |                                                                                                                                                                                                                                                                                        | Page<br>i                      |
|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| ABSTRA(                                                   | CT                                                                                                                                                                                                                                                                                     | iii                            |
| DECLAR                                                    | DECLARATION                                                                                                                                                                                                                                                                            |                                |
| DEDICAT                                                   | ION                                                                                                                                                                                                                                                                                    | iv                             |
| ACKNOW                                                    | LEDGEMENTS                                                                                                                                                                                                                                                                             | v                              |
| TABLE O                                                   | F CONTENTS                                                                                                                                                                                                                                                                             | vi                             |
| LIST OF F                                                 | IGURES                                                                                                                                                                                                                                                                                 | xi                             |
| LIST OF T                                                 | TABLES                                                                                                                                                                                                                                                                                 | xiii                           |
| APPENDI                                                   | CES                                                                                                                                                                                                                                                                                    | xv                             |
| NOMENC                                                    | LATURE                                                                                                                                                                                                                                                                                 | xv                             |
|                                                           |                                                                                                                                                                                                                                                                                        |                                |
| CHAPTE                                                    | R 1: INTRODUCTION                                                                                                                                                                                                                                                                      | _                              |
| 1.1                                                       | INTRODUCTION                                                                                                                                                                                                                                                                           | 1                              |
| 1.2                                                       | STATEMENT OF THE PROBLEM                                                                                                                                                                                                                                                               | 3                              |
| 1.3                                                       | OBJECTIVES                                                                                                                                                                                                                                                                             | 3                              |
| 1.4                                                       | METHODOLOGY                                                                                                                                                                                                                                                                            | 4                              |
| 1.5                                                       | SCOPE                                                                                                                                                                                                                                                                                  | 5                              |
| 1.6                                                       | IMPORTANCE AND BENEFITS                                                                                                                                                                                                                                                                | 5                              |
| СНАРТЕ                                                    | R 2: LITERATURE REVIEW AND THEORY                                                                                                                                                                                                                                                      |                                |
| CHAITE                                                    |                                                                                                                                                                                                                                                                                        | _                              |
| 2.1                                                       | INTRODUCTION                                                                                                                                                                                                                                                                           | 7                              |
| 2.2<br>2.2.1<br>2.2.2<br>2.2.3<br>2.2.4<br>2.2.5<br>2.2.6 | FLOW IN STRAIGHT PIPES<br>Shear Stress Distribution in Straight Pipes<br>Energy Losses and Friction Factors for Newtonian Fluids<br>Laminar Flow of Newtonian Fluids<br>Non-Newtonian Fluids<br>Rheological Characterisation<br>Laminar Flow of Non-Newtonian Fluids in Straight Pipes | 8<br>9<br>12<br>13<br>14<br>15 |
|                                                           | - · ·                                                                                                                                                                                                                                                                                  |                                |

| 2.2.7<br>2.2.8                                   | Metzner-Reed Generalised Approach<br>General Approach                                                                                                                                                                                               | 18<br>19                         |
|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| 2.3<br>2.3.1<br>2.3.2<br>2.3.3                   | REYNOLDS NUMBERS<br>Newtonian Reynolds Number<br>Metzner and Reed Generalised Reynolds Number<br>Slatter Reynolds Number                                                                                                                            | 20<br>21<br>22<br>22             |
| 2.3.4                                            | Friction Factors for Non-Newtonian Fluids                                                                                                                                                                                                           | 24                               |
| 2.4                                              | PHYSICAL MODELLING PRINCIPLES                                                                                                                                                                                                                       | 25                               |
| 2.5                                              | MINOR LOSSES IN PIPES                                                                                                                                                                                                                               | 27                               |
| 2.6                                              | CALCULATING LOSS COEFFICIENTS                                                                                                                                                                                                                       | 28                               |
| 2.7<br>2.7.1<br>2.7.2<br>2.7.3<br>2.7.4<br>2.7.5 | FLOW PHENOMENA IN SUDDEN CONTRACTION<br>Turbulent Flow<br>Laminar Flow<br>Pressure Losses<br>Turbulent Loss Coefficients k <sub>con</sub> for Sudden Contraction<br>Laminar Flow Loss Coefficient Constants C <sub>con</sub> for Sudden Contraction | 33<br>33<br>34<br>39<br>40<br>42 |
| 2,8                                              | EXPERIMENTAL DETERMINATION OF LOSS COEFFICIENTS                                                                                                                                                                                                     | 43                               |
| 2.9                                              | LAMINAR TO TURBULENT TRANSITION                                                                                                                                                                                                                     | 48                               |
| 2.10<br>2.10.1<br>2.10.2                         | PREDICTION OF LOSS COEFFICIENTS AND COMPARISON<br>WITH EXPERIMENTAL DATA<br>Laminar Flow<br>Turbulent Flow                                                                                                                                          | 49<br>49<br>53                   |
| 2.11                                             | CFD ANALYSIS TO EXTEND EXPERIMENTAL DATA                                                                                                                                                                                                            | 56                               |
| 2.12                                             | SUMMARY                                                                                                                                                                                                                                             | 57                               |
| 2.13                                             | CONCLUSIONS                                                                                                                                                                                                                                         | 59                               |
| 2.14                                             | RESEARCH ASPECTS IDENTIFIED                                                                                                                                                                                                                         | 60                               |
| СНАРТЕ                                           | R 3: EXPERIMENTAL INVESTIGATION                                                                                                                                                                                                                     |                                  |
| 3.1                                              | INTRODUCTION                                                                                                                                                                                                                                        | 61                               |
| 3.2                                              | DESCRIPTION OF THE EXPERIMENTAL RIG                                                                                                                                                                                                                 | 62                               |
| 3.3                                              | STRAIGHT PIPES                                                                                                                                                                                                                                      | 68                               |

|          |                                                 | 69  |
|----------|-------------------------------------------------|-----|
| 3.4      | CONTRACTING UNION                               |     |
|          | EXPERIMENTAL PROCEDURE                          | 69  |
| 3.5      |                                                 | 69  |
| 3.5.1    | Calibration<br>Differential Pressure Transducer | 70  |
| 3.5.1.1  |                                                 | 71  |
| 3.5.1.2  | Flow Meter<br>The Test Procedure                | 72  |
| 3.5.2    | Pressure Grade Line Test                        | 73  |
| 3.5.3    | Obtaining Steady Flow                           | 73  |
| 3.5.3.1  | Contraction Test                                | 75  |
| 3.5.3.2  | Straight Pipe Test                              | 77  |
| 3.5.4    | Strangth ripe rest                              |     |
| 3.6      | AUTOMATION OF TEST RIG                          | 78  |
| 3.6.1    | Contraction Test                                | 79  |
| 3.6.2    | Straight Pipe Test                              | 79  |
|          |                                                 |     |
| 3.7 CC   | MPARISON OF THE MANUAL AND THE AUTOMATED SYSTEM | 80  |
| 3.8      | EXPERIMENTAL ERRORS                             | 81  |
| 3.8.1    | Errors in Measured Variables                    | 81  |
| 3.8.1.1  | Axial Distance                                  | 81  |
| 3.8.1.2  | Weight                                          | 81  |
| 3.8.1.3  | Flow Rate                                       | 83  |
| 3.8.1.4  | Pressure                                        | 83  |
| 3.8.2    | Calculated and Combined Errors                  | 83  |
| 3.8.2.1  | Pipe Internal Diameter                          | 84  |
| 3.8.2.2  | Velocity                                        | 85  |
| 3.8.2.3  | Pseudo-Shear Rate                               | 85  |
| 3.8.2.4  | Shear Stress                                    | 86  |
| 3.8.2.5  | Reynolds Number                                 | 86  |
| 3.8.2.6  | The Loss Coefficient                            | 87  |
|          |                                                 |     |
| 3.9      | WATER RESULTS IN STRAIGHT PIPES                 | 88  |
| 3.10     | PAAR-PHYSICA MCR 300 RHEOMETER                  | 92  |
| 0.10     |                                                 |     |
| 3.11     | MATERIALS TESTED                                | 93  |
| 3.11.1   | Glycerol                                        | 94  |
| 3.11.2   | Sugar Solution                                  | 96  |
| 3.11.3   | Oil                                             | 97  |
| 3.11.4   | Carboxy Methyl Cellulose (CMC)                  | 98  |
| 3.11.4.1 | Contraction Ratio $\beta = 0.22$                | 99  |
| 3.11.4.2 | Contraction Ratio $\beta = 0.50$                | 100 |
| 3.11.4.2 | Contraction Ratio $\beta = 0.85$                | 101 |
| 3.11.5   | Kaolin                                          | 102 |
| 3.11.5.1 | Contraction Ratio $\beta = 0.22$                | 102 |

| 3.12   | CONCLUSIONS                                                   | 105 |
|--------|---------------------------------------------------------------|-----|
| СНАРТЕ | R 4: ANALYSIS OF EXPERIMENTAL RESULTS                         | \$  |
| 4.1    | INTRODUCTION                                                  | 107 |
| 4.2    | ANALYSIS OF RESULTS USING THE PRESSURE GRADE<br>LINE APPROACH | 108 |
| 4.3    | LOSS COEFFICIENT DATA OBTAINED FOR THIS WORK                  | 110 |
| 4.3.1  | Contraction Ratio $\beta = 0.22$                              | 111 |
| 4.3.2  | Contraction Ratio $\beta = 0.50$                              | 112 |
| 4.3.3  | Contraction Ratio $\beta = 0.85$                              | 113 |
| 4.4    | COMPARISON WITH PREVIOUS RESULTS                              | 115 |
| 4.4.1  | Experimental                                                  | 115 |
| 4.4.2  | Empirical and Semi-Empirical Models                           | 116 |
| 4.5    | THE EFFECT OF VARIOUS METHODS OF ANALYSIS ON THE              |     |
|        | LOSS COEFFICIENT DATA OBTAINED                                | 119 |
| 4.5.1  | Pressure Grade Line Approach                                  | 121 |
| 4.5.2  | Total Pressure Drop Approach                                  | 123 |
| 4.5.3  | Discussion of the Comparison (Figure 4.13)                    | 129 |
| 4.6    | EFFECT OF RHEOLOGY ON THE LOSS COEFFICIENT                    | 133 |
| 4.7    | SELECTION OF DATA FOR DETERMINATION OF $C_{\rm CON}$          | 136 |
| 4.9    | C <sub>CON</sub> VERSUS CONTRACTION RATIO                     | 138 |
| 4.10   | CONCLUSIONS                                                   | 139 |

## CHAPTER 5: APPLICATION OF CFD TO INVESTIGATE THE FLOW BEHAVIOUR THROUGH A SUDDEN CONTRACTION

| INTRODUCTION                         | 141                                                                                                                                     |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| DESCRIPTION OF CFX PROGRAM OPERATION | 142                                                                                                                                     |
| The Geometry and Grid Generators     | 143                                                                                                                                     |
| The Front End                        | 143                                                                                                                                     |
| The Solution Module                  | 143                                                                                                                                     |
| The Graphics Module                  | 144                                                                                                                                     |
| The Governing Equations              | 144                                                                                                                                     |
|                                      | DESCRIPTION OF CFX PROGRAM OPERATION<br>The Geometry and Grid Generators<br>The Front End<br>The Solution Module<br>The Graphics Module |

|       |                                         |       | 145 |
|-------|-----------------------------------------|-------|-----|
| 5.3   | CFD INVESTIGATION                       |       | 146 |
| 5.3.1 | Geometry                                |       | 146 |
| 5.3.2 | Boundary Conditions                     |       | 147 |
| 5.3.3 | Grid and Mesh                           |       | 148 |
| 5.3.4 | Grid Sensitivity and Optimisation Study |       | 149 |
| 5.3.5 | Fluid                                   |       | 149 |
| 5.3.6 | Simulations                             |       |     |
| 5.4   | ANALYSIS OF RESULTS OBTAINED FROM CFX   |       | 150 |
| 5.5   | CONFIRMATION OF THE VALUE OF Lex        |       | 155 |
| 5.5.1 | Velocity Profile Development            |       | 155 |
| 5.5.2 | Streamlines                             |       | 156 |
| 5.5.3 | Contour Plots                           |       | 157 |
| 5.5.5 | Contour 1 1012                          |       |     |
| 5.6   | CALCULATING THE LOSS COEFFICIENT        | USING | THE |
| 5.0   | PRESSURE GRADE LINE APPROACH            |       | 159 |
|       |                                         |       |     |
| 5.7   | DISCUSSION                              |       | 160 |
|       |                                         |       |     |
| 5.8   | CONCLUSIONS                             |       | 161 |
|       |                                         |       |     |
| СНАРТ | TER 6: PRESENTATION OF NEW ANALYSIS     |       |     |
| 6.1   | INTRODUCTION                            |       | 163 |
| 0.1   |                                         |       |     |

| 6.2 | BACKGROUND TO ANALYSIS                      | 163 |
|-----|---------------------------------------------|-----|
| 6.3 | DERIVATION OF THE CONICAL APPROXIMATION     | 166 |
| 6.4 | DETERMINATION OF THE SHAPE FUNCTION, $\phi$ | 169 |
| 6.5 | CONCLUSIONS                                 | 170 |

## **CHAPTER 7: EVALUATION AND DISCUSSION OF THE NEW ANALYSIS**

| 7.1   | INTRODUCTION                                                                   | 171 |
|-------|--------------------------------------------------------------------------------|-----|
| 7.2   | COMPARISON WITH EXISTING MODELS                                                | 172 |
| 7.2.1 | The Engineering Design Approximation by ESDU (1989)                            | 172 |
| 7.2.2 | The Mechanistic Model Based on Two-Stream Approach by McNeil and Morris (1995) | 174 |
| 7.2.3 | Approximation Based on Sampson's Rule by Sisavath et al. (2002)                | 175 |
| 7.3   | EXTRAPOLATION OF THE CONICAL APPROXIMATION TO                                  |     |
|       | β > 0.25                                                                       | 179 |

| 7.3.1 | Contraction Ratio $\beta = 0.50$                             | 179 |
|-------|--------------------------------------------------------------|-----|
| 7.3.2 | Contraction Ratio $\beta = 0.85$                             | 180 |
| 7.4   | DISCUSSION AND CONCLUSIONS                                   | 181 |
|       | ER 8: SUMMARY, SIGNIFICANT CONTRIBUTIONS AND<br>MENDATIONS   |     |
| 8.1   | INTRODUCTION                                                 | 183 |
| 8.2   | SUMMARY                                                      | 183 |
| 8.3   | SIGNIFICANT CONTRIBUTIONS                                    | 185 |
| 8.3.1 | Reducing the Experimental Scatter                            | 185 |
| 8.3.2 | The Use of Various Methods to Calculate the Loss Coefficient | 185 |
| 8.3.3 | The Derivation of a Simple Engineering Design Approximation  | 186 |
| 8.3.4 | Experimental Values of C <sub>con</sub> and k <sub>con</sub> | 187 |
| 8.4   | FUTURE RESEARCH RECOMMENDATIONS                              | 188 |
| 8.5   | CONCLUSION                                                   | 188 |

#### LIST OF FIGURES

| Figure 2.1  | Shear stress distribution in a pipe                                    | 9  |
|-------------|------------------------------------------------------------------------|----|
| Figure 2.2  | Idealised flow curves of time-independent fluids (Alderman, 1996)      | 15 |
| Figure 2.3  | Shear stress distribution in a pipe showing unsheared plug radius      | 16 |
| Figure 2.4  | Definition of the loss coefficient (Miller, 1978)                      | 31 |
| Figure 2.5  | Local head loss at a sudden contraction                                |    |
|             | (From Finnemore & Franzini, 1997)                                      | 34 |
| Figure 2.6  | Basic elements of laminar flow through a contraction (From Boger,      |    |
|             | 1987)                                                                  | 35 |
| Figure 2.7  | Dependence of the entry length on Reynolds number (Eq. 2.60)           | 37 |
| Figure 2.8  | Effect of Reynolds number on the entrance velocity profile             |    |
|             | (From Boger, 1982)                                                     | 38 |
| Figure 2.9  | Loss coefficients for sudden contractions (From Miller, 1978)          | 42 |
| Figure 2.10 | Comparison of correlations for laminar flow with experimental data for |    |
|             | a contraction ratio $\beta \approx 0.5$                                | 53 |
| Figure 2.11 | Comparison of turbulent loss coefficient data for sudden contractions  | 55 |
| Figure 3.1  | Schematic diagram of experimental apparatus                            | 65 |
| Figure 3.2  | Pressure tapping, solids pod and connection to pressure transducer     | 66 |
| Figure 3.3  | Typical calibration curve for differential transducer                  | 71 |
|             |                                                                        |    |

| Figure 3.4  | Layout of test rig before automation with only one point pressure         |     |
|-------------|---------------------------------------------------------------------------|-----|
| Figure 5.4  | transducers                                                               | 74  |
| Figure 3.5  | "Unsteady" decreasing or increasing flow with time                        | 75  |
| Figure 3.6  | "Steady flow" pressure fluctuates evenly with time                        | 75  |
| Figure 3.7  | Typical graph of pressure grade line test in a sudden contraction         | 77  |
| Figure 3.8  | Pseudo-shear diagram obtained from the automated rig                      | 80  |
| Figure 3.9  | Layout of automated test rig with individual point pressure transducers   | 82  |
| Figure 3.10 | Water test in 9.28 mm straight pipe                                       | 89  |
| Figure 3.11 | Water test in 21.0 mm straight pipe                                       | 90  |
| Figure 3.12 | Water test in 36.0 mm straight pipe                                       | 91  |
| Figure 3.13 | Water test in 42.3 mm straight pipe                                       | 91  |
| Figure 3.14 | Schematic diagram of MCR 300 rheometer                                    | 93  |
| Figure 3.15 | Laboratory test of glycerol at 25 °C and relative density of 1.2583       | 95  |
| Figure 3.16 | Flow curve from pipe tests for 90 % glycerol solution                     | 96  |
| Figure 3.17 | Flow curve from pipe tests and rheometer for 50 % sugar solution          | 97  |
| Figure 3.18 | Temperature sweep for SAE 20W-50 oil                                      | 98  |
| Figure 3.19 | Flow curves for CMC tested in contraction $\beta = 0.22$                  | 99  |
| Figure 3.20 | Flow curves for CMC tested in contraction $\beta = 0.50$                  | 100 |
|             | Flow curves for CMC tested in contraction $\beta = 0.85$                  | 101 |
|             | Comparison of rheological parameters obtained in pipe loop and            |     |
| U           | rheometer for kaolin tested in contraction $\beta = 0.22$                 | 104 |
| Figure 3.23 | Apparent viscosity for all fluids tested                                  | 105 |
| Figure 4.1  | Selection of data points for extrapolation                                | 109 |
| Figure 4.2  | Loss coefficient data for $\beta = 0.22$                                  | 111 |
| Figure 4.3  | Loss coefficient data for $\beta = 0.50$                                  | 112 |
| Figure 4.4  | Loss coefficient data for $\beta = 0.85$                                  | 113 |
| Figure 4.5  | Loss coefficient data for $\beta = 0.85$ using automated rig              | 114 |
| Figure 4.6  | $\beta = 0.22$ comparison with ESDU (1989) and McNeil & Morris (1995)     | 117 |
| Figure 4.7  | $\beta = 0.50$ comparison with ESDU (1989) and McNeil & Morris (1995)     | 117 |
| Figure 4.8  | $\beta = 0.85$ comparison with ESDU (1989) and McNeil & Morris (1995)     | 118 |
| Figure 4.9  | $C_{con}$ obtained for various number of points used for extrapolation of |     |
| 8           | fully developed pressure gradient                                         | 122 |
| Figure 4.10 | Points selected for total pressure drop approach                          | 125 |
|             | Analysis of glycerol results using various methods of analysis            | 126 |
|             | Results from various methods of analysis                                  | 128 |
|             | Comparison of results from this work and literature                       | 129 |
|             | Comparison of results for $Re = 10 - 10000$                               | 130 |
|             | Comparison of results for $\text{Re} < 10$                                | 131 |
|             | Comparison when using different methods of analysis                       | 132 |
|             | Comparison of turbulent flow results                                      | 133 |
|             | Loss coefficient data for CMC                                             | 134 |
| Figure 4.19 | Sensitivity of loss coefficient data to rheology of fluid                 | 135 |
| Figure 4.20 | Comparison of oil and CMC data using the appropriate Reynolds             | -   |
|             | number to correlate loss coefficient                                      | 135 |
| Figure 4.21 | Comparison of kaolin and CMC data using the appropriate Reynolds          |     |
|             | number to correlate loss coefficient                                      | 136 |

| Figure 4.22 | Effect of data selected for determination of C <sub>con</sub>                                      | 137  |
|-------------|----------------------------------------------------------------------------------------------------|------|
| Figure 4.23 | C <sub>con</sub> versus contraction ratio for various researchers                                  | 138  |
| Figure 5.1  | Geometry of sharp-edged contraction using CFX (not to scale)                                       | 146  |
| Figure 5.2  | illustration of one-way biased grid spacing (not actual grid used)                                 | 148  |
| Figure 5.3  | Definition of L <sub>ex</sub>                                                                      | 152  |
| Figure 5.4  | Definition of L <sub>e</sub>                                                                       | 152  |
| Figure 5.5  | Values of Lex and Le                                                                               | 153  |
| Figure 5.6  | Comparison of Boger's Lv with this work Lex at the wall and center line                            | e154 |
| Figure 5.7  | Comparison of velocity profiles at 0.05 m and 0.075 m                                              | 156  |
| Figure 5.8  | Streamlines at $Re = 0.01$                                                                         | 157  |
| Figure 5.9  | Contour plots at $Re = 0.01$                                                                       | 158  |
| Figure 5.10 | Contour plots at $re = 100$                                                                        | 159  |
| Figure 5.11 | Comparison of this CFD work with Sisavath et al. (2001)                                            | 160  |
| Figure 6.1  | Conical approximation of low Reynolds number flows through a                                       |      |
|             | sudden contraction                                                                                 | 167  |
| Figure 6.2  | Fit of conical approximation to experimental data                                                  | 170  |
| Figure 7.1  | Comparison of loss coefficient predictions from ESDU (1989) and                                    |      |
|             | Conical Approximation                                                                              | 173  |
| Figure 7.2  | Comparison of loss coefficient predictions from McNeil and Morris (1995) and Conical Approximation | 174  |
| Figure 7.3  | Comparison of loss coefficient predictions from Sisavath et al. (2002)                             |      |
| 0           | and Conical Approximation                                                                          | 176  |
| Figure 7.4  | Comparison of Sisavath et al. (2002) with Conical Approximation                                    |      |
|             | without $\phi$                                                                                     | 178  |
| Figure 7.5  | Comparison of experimental data for $\beta = 0.5$ with conical approximation and other models      | 180  |
| Figure 7.6  | Comparison of experimental data for $\beta = 0.85$ with conical                                    |      |
| -           | approximation and other models                                                                     | 181  |
| Figure 8.1  | Loss coefficient data obtained in this work                                                        | 187  |

#### LIST OF TABLES

| Table 2.1 | Re at which vena contracta exist                                       | 40 |
|-----------|------------------------------------------------------------------------|----|
| Table 2.2 | Loss coefficients for sudden contraction                               |    |
|           | (From Finnemore & Franzini, 2002)                                      | 41 |
| Table 2.3 | Loss coefficients for sudden contractions (From Hwang, 1996)           | 41 |
| Table 2.4 | 2.4 Loss coefficient data for Newtonian and non-Newtonian fluid flow   |    |
|           | through sudden contractions                                            | 43 |
| Table 2.5 | Definition of fitting losses and total length given by various authors | 45 |
| Table 2.6 | Laminar / turbulent transition for contractions                        | 49 |
| Table 2.7 | Conclusions and equations on loss coefficient data for                 |    |
|           | sudden contractions                                                    | 58 |

Preamble

| Table 3.1  | Nominal diameter and internal diameter of pipes used                              | 68<br>69 |  |
|------------|-----------------------------------------------------------------------------------|----------|--|
| Table 3.2  | Contraction ratios obtained for upstream and downstream pipes                     |          |  |
| Table 3.3  | Errors of principal computed variables                                            |          |  |
| Table 3.4  | Newtonian values of $\theta$ for fittings tested                                  |          |  |
| Table 3.5  | Pipe roughness obtained for the straight pipes                                    |          |  |
| Table 3.6  | Viscosity of glycerol solutions (Perry, 1984)                                     | 95       |  |
| Table 3.7  | Fluid properties of CMC tested in contraction $\beta = 0.22$                      | 99       |  |
| Table 3.8  | Fluid properties of CMC tested in contraction $\beta = 0.50$                      | 100      |  |
| Table 3.9  | Fluid properties of CMC tested in contraction $\beta = 0.85$                      | 101      |  |
| Table 3.10 | Rheological parameters obtained from pipe tests for kaolin tested in              |          |  |
|            | contraction $\beta = 0.22$                                                        | 103      |  |
| Table 3.11 | Rheological parameters obtained from rheometer for kaolin tested in               |          |  |
|            | contraction $\beta = 0.22$                                                        | 103      |  |
| Table 3.12 | Rheological parameters obtained from pipe tests for kaolin tested in              |          |  |
|            | other contractions                                                                | 104      |  |
|            |                                                                                   |          |  |
| Table 4.1  | Loss coefficient data for $\beta = 0.22$                                          | 111      |  |
| Table 4.2  | Loss coefficient data for $\beta = 0.50$                                          | 112      |  |
| Table 4.3  | Loss coefficient data for $\beta = 0.85$                                          | 113      |  |
| Table 4.4  | Statistical analysis of data ( $C_{con} = k_{con} * Re$ ) obtained in contraction | 115      |  |
| Table 4.5  | Comparison of experimentally determined $C_{con}$ and $k_{con}$ with previous     |          |  |
|            | results                                                                           | 116      |  |
| Table 4.6  | Results obtained when using various numbers of points selected for                |          |  |
|            | extrapolation to contraction plane                                                | 121      |  |
| Table 4.7  | Values obtained for $C_{con}$ when using various numbers of points                |          |  |
|            | selected for extrapolation to contraction plane                                   | 122      |  |
| Table 4.8  | C <sub>con</sub> obtained using total pressure drop approach                      | 125      |  |
| Table 4.9  | C <sub>con</sub> obtained by various researchers                                  | 138      |  |
|            | -                                                                                 |          |  |
| Table 5.1  | Grid optimization                                                                 | 149      |  |
| Table 5.2  | Fluid properties of lubrication oil used in CFX simulations                       | 149      |  |
| Table 5.3  | Mass flow rate at various Reynolds numbers                                        | 150      |  |
| Table 5.4  | Values of $L_{ex}$ and $L_{e}$                                                    | 153      |  |
|            |                                                                                   |          |  |
| Table 7.1  | Comparison of results for ESDU (1989) and Conical Approximation                   | 173      |  |
| Table 7.2  | Comparison of C <sub>con</sub> from ESDU (1989) and Conical Approximation         | 173      |  |
| Table 7.3  | Comparison of results for McNeil and Morris (1995) and Conical                    |          |  |
|            | Approximation                                                                     | 175      |  |
| Table 7.4  | Comparison of C <sub>con</sub> from McNeil and Morris (1995) and Conical          |          |  |
|            | Approximation                                                                     | 175      |  |
| Table 7.5  | Comparison of results for Sisavath et al. (2002) and Conical                      |          |  |
|            | Approximation                                                                     | 177      |  |
| Table 7.6  | Comparison of $C_{con}$ from Sisavath <i>et al.</i> (2002) and Conical            |          |  |
| <b></b>    | Approximation                                                                     | 177      |  |
| Table 7.7  | Comparison of Sisavath et al. (2002) and Conical Approximation                    |          |  |
|            | without $\phi$                                                                    | 178      |  |
|            |                                                                                   |          |  |

Loss coefficient data obtained in this work

Table 8.1

| References       | REFERENCES                                       | 191                |
|------------------|--------------------------------------------------|--------------------|
|                  | APPENDICES                                       |                    |
| Appendix A:      | Experimental data for contraction $\beta = 0.22$ | 199                |
| Appendix B:      | Experimental data for contraction $\beta = 0.50$ | 210                |
|                  | Experimental data for contraction $\beta = 0.85$ | 223                |
|                  | NOMENCLATURE                                     |                    |
| Symbol           | Description                                      | Unit               |
| A                | cross sectional area                             | m <sup>2</sup>     |
| C <sub>con</sub> | laminar flow loss coefficient constant           | -                  |
| Cv               | solids volumetric concentration                  | %                  |
| Cw               | solids concentration by weight                   | %                  |
| Cet              | kinetic energy correction at the throat          | -                  |
| Cmt              | momentum correction at the throat                | -                  |
| d                | particle diameter                                | m                  |
| D                | internal pipe diameter                           | m                  |
| Е                | sum of mean error squared                        |                    |
| F                | force                                            | Ν                  |
| f                | Fanning friction factor                          |                    |
| G <sub>N</sub>   | geometry factor                                  |                    |
|                  | gravitational acceleration                       | m/s <sup>2</sup>   |
| g<br>H           | head                                             | m                  |
| Κ                | fluid consistency index                          | Pa.s <sup>n</sup>  |
| K'               | apparent fluid consistency index                 | Pa.s <sup>n'</sup> |
| k                | hydraulic roughness                              | m                  |
| L                | pipe length                                      | m                  |
| L <sub>e</sub>   | entry length after contraction plane             | m                  |
| L <sub>ex</sub>  | new exit length prior to contraction plane       | m                  |
| $L_v$            | Boger exit length prior to contraction plane     | m                  |
| Μ                | mass                                             | kg                 |
| m                | slope                                            | -                  |
| Ν                | number of data points                            | -                  |
| n                | flow behaviour index                             | -                  |
| n'               | apparent flow behaviour index                    | -                  |
| р                | pressure                                         | Pa                 |

static pressure

 $\mathbf{p}_{\mathbf{s}}$ 

Pa

187

|                     |                                                  | ~                  |
|---------------------|--------------------------------------------------|--------------------|
| Q                   | volumetric flow rate                             | m <sup>3</sup> /s  |
| R                   | radius                                           | m                  |
| Re                  | Reynolds number                                  | -                  |
| Recrit              | critical Reynolds number at onset of transition  | -                  |
| $Re_{MR}$           | Metzner&Reed Reynolds number (Power law)         | -                  |
| Re <sub>3</sub>     | Slatter Reynolds number (Yield pseudoplastic)    | -                  |
| Rer                 | roughness Reynolds number                        | -                  |
| r                   | correlation coefficient                          | -                  |
| r                   | radius from the centerline of the pipe           | m                  |
| t                   | time                                             | S                  |
| u                   | point velocity                                   | m/s                |
| V                   | average velocity                                 | m/s                |
| Z                   | elevation from datum                             | m                  |
|                     |                                                  |                    |
| α                   | kinetic energy correction factor                 | -                  |
| $\alpha_t$          | core-area fraction at throat                     | -                  |
| β                   | contraction ratio, $D_d/D_u$                     | -                  |
| Ϋ́                  | shear rate                                       | $s^{-1}$           |
| δ                   | viscous sub-layer thickness                      | m                  |
| Δ                   | increment                                        | ш                  |
| $\lambda_i$         | throat friction-factor coefficient               |                    |
| μ                   | dynamic viscosity                                | -<br>Pa.s          |
| ρ                   | fluid or slurry density                          | •                  |
| ρ <sub>w</sub>      | density of water                                 | kg.m <sup>-3</sup> |
| τ                   | shear stress                                     | kg.m <sup>-3</sup> |
| το                  | wall shear stress                                | Pa                 |
| -                   |                                                  | Pa                 |
| τ <sub>y</sub><br>φ | yield stress                                     | Pa                 |
| Ψ                   | shape function for conical approximation         | -                  |
| Subscripts          |                                                  |                    |
| 85                  | 85 <sup>th</sup> percentile of particles passing |                    |
| 0                   | at the wall of the pipe                          |                    |
| 3                   | reference to Slatter Reynolds number             |                    |
| ann                 | annulus                                          |                    |
| con                 | contraction                                      |                    |
| crit                | critical                                         |                    |
| cale                | calculated                                       |                    |
| d                   | downstream                                       |                    |
| fitt                | fitting                                          |                    |
| 1                   | loss                                             |                    |
| m                   |                                                  |                    |
| obs                 | mixture (slurry)                                 |                    |
| r                   | observed (experimental)                          |                    |
| S                   | roughness<br>solids                              |                    |
| u                   |                                                  |                    |
| u<br>V              | upstream                                         |                    |
| w                   | volumetric                                       |                    |
|                     | water                                            |                    |
|                     | ·                                                |                    |

## CHAPTER 1

### CHAPTER 1 INTRODUCTION

#### **1.1 INTRODUCTION**

Although efforts have been made since the 1950s, laminar flow through pipe fittings is still a topic that needs investigation (Jacobs, 1993). Most experimental studies on this topic included fittings such as contractions, expansions, elbows, valves and orifices (Edwards *et al.*, 1985; Turian *et al.*, 1998; Pal & Hwang, 1999). Although sudden contractions are not often found in industry, most researchers included these fittings as part of their experimental investigation. McNeil and Morris (1995) investigated flow through sudden contractions and expansions because understanding flow behaviour through these geometrically simple fittings could enhance the understanding of flow through more complex fittings such as valves, which are a combination of contracting and expanding flows.

Judging from the volume of work done on flow through sudden contractions over the last 50 years (e.g. Bogue, 1959; Christian *et al.*, 1972; Vrentas & Duda, 1973; Boger, 1987; Bullen *et al.*, 1996; Sisavath *et al.*, 2002), it must definitely have a place of importance in the fundamental understanding of fluid flow and fluid mechanics. Much of the early work was done to understand entry flow phenomena, concentrating on downstream flow phenomena and turbulent flow (Boger & Ramamurthy, 1970; Bullen *et al.*, 1987; White *et al.*, 1987).

1

In 1987 Boger stated that laminar flow of Newtonian fluids through sudden contractions "is a solved problem". Sisavath *et al.* (2002) indicated that several studies were done on laminar flow of non-Newtonian fluids through sudden contractions, but that less was done on Newtonian fluids. He stated that the determination of additional pressure drop for laminar flow of Newtonian fluids through sudden contractions "is far from being resolved". The reason for this apparent contradiction was the fact that most experimental studies did not agree with one another or with analytical and numerical studies. A state-of-the-art literature review by Pienaar *et al.* (2001) confirmed this yet again and therefore further investigation of this topic is required.

To investigate these contradictions, it is necessary for one project to do both an experimental and numerical study and compare it to existing literature. Not only that, but also to find agreement of results and not just add another data set to the existing scattered database.

Contractions are geometrically simple, eliminating the debate of whether the physical length of the fitting should be included or excluded in the analysis. If some agreement could be found between this study and others, either experimental, numerical or analytical, it would lay the foundation for investigating additional losses for flow through various other industrial fittings, ensuring that the same repeatable procedure will be followed by researchers who wish to make a contribution to creating a database of loss coefficient data, especially for viscous laminar flow where the discrepancies are most obvious. Until these discrepancies have been resolved, it is meaningless to generate any more data. Agreement between a CFD study and an experimental study would be especially useful because doing these studies on CFD will save both time and money, but CFD is only as good as the set of experimental results that it is compared to, if such experimental results exist.

This study was therefore carried out on sudden contractions to:

- investigate the possible reasons for variations in experimental results obtained by various experimental researchers;
- find out why analytical and numerical studies and experimental studies did not yield the same results; and
- to provide definitive data for design purposes.

#### **1.2 STATEMENT OF THE PROBLEM**

There are no reliable experimentally determined loss coefficient data available for predicting additional losses through sudden contractions that agree with theoretical predictions or other experimental studies, especially for laminar flow.

#### **1.3 OBJECTIVES**

The objectives of this thesis are to:

 Experimentally determine loss coefficient data for 3 contraction ratios between 0.1 and 0.9.

3

- 2. Evaluate the reason why different results may be obtained by scrutinising the existing experimental procedure and analysis of experimental results.
- 3. Use commercially available CFD software to investigate the flow through sudden contractions concurrently with the experimental investigation.
- 4. To develop a more reliable model to predict losses through sudden contractions based on the macro (experimental investigations) and micro (from CFD investigation) energy views.

The emphasis in these objectives will be in the low Reynolds number laminar flow region, i.e., 0.01 < Re < 100, since Re = 100 is often indicated in the literature as the starting point of laminar flow breakdown or where the data starts to deviate from the laminar flow line.

#### 1.4 METHODOLOGY

The methodology used to investigate this problem will be as follows:

- Building a test loop facility with 3 contractions ranging between 0.1 and 0.9.
- Test rheologically different fluids both in straight pipes (to determine rheological parameters) and in contractions (to determine loss coefficient data).
- The results will be analysed using the energy balance (Bernoulli) equation to calculate the losses in the fitting. These will be correlated to the appropriate Reynolds number in laminar flow to determine the loss coefficient constants (C<sub>con</sub>) for contraction ratios between 0.1 and 0.9.

- The results will be evaluated to determine the effect of rheology on fitting losses, the role of the Reynolds number, the micro and macro energy view and models to predict fitting losses.
- Results from experiments and CFD will be used to develop a model for the prediction of these fitting losses that will be acceptable and will agree with other numerical or experimental studies.

#### 1.5 SCOPE

This work will evaluate losses in sudden contractions using Newtonian and time independent homogeneous non-Newtonian fluids, with the emphasis on laminar flow. However, experimental work will include laminar, transitional and turbulent flow for completeness of the study.

#### **1.6 IMPORTANCE AND BENEFITS**

This study will not only derive a method for predicting losses through sudden contractions, but also emphasise what may be going wrong in the experimental investigations and in the analyses of results, which have lead to the discrepancies experienced at present. These analogies can then be extrapolated to investigating other fittings (e.g. valves, bends, etc.) reliably.

## CHAPTER 2

### CHAPTER 2 THEORY AND LITERATURE REVIEW

#### 2.1 INTRODUCTION

This chapter provides a review of the literature on pressure losses through pipe fittings, with the emphasis on flow through sudden contractions. It will review the literature and theory that is relevant to the understanding of the losses that occur as a fluid passes through a sudden contraction.

The flow phenomena will be described for both laminar and turbulent flow. The techniques for determining loss coefficient data will be reviewed. The analysis of results will include straight pipe flow, and friction factors used will be described for both Newtonian and non-Newtonian fluids. Loss coefficient data is generally correlated to the Reynolds number; therefore the various Reynolds numbers used for Newtonian and non-Newtonian fluids will be discussed. The fundamental theory reviewed will therefore include flow through straight pipes, laminar and turbulent flow, head losses due to friction, total head and pressure losses and minor losses in piping systems.

Since this work will review both Newtonian and non-Newtonian fluids, the fundamental theory and the application of viscometry and rheology will be reviewed. The investigation of contractions has been of a theoretical and experimental nature. Both the theoretical and experimental studies will be reviewed.

This chapter will conclude with the research topics identified based on the literature reviewed as well as a presentation of the expected outcomes of this study. This present study will focus on obtaining reliable experimental results that can be compared with various theoretical models and experimental results found in literature.

#### 2.2 FLOW IN STRAIGHT PIPES

The determination of the frictional pressure drop in straight pipes is very important in the analysis of losses due to sudden contractions since a contraction is essentially two straight pipes that are connected. The determination of the losses contributed by any fitting requires that the frictional losses in the straight pipes be deducted from the total pressure loss across the system (Miller, 1978). The theory available for determining frictional pressure drop in straight pipes will therefore be reviewed.

#### 2.2.1 Shear Stress Distribution in Straight Pipes

To demonstrate the shear stress distribution in a pipe (Figure 2.1) one can consider a coaxial cylindrical element of length L and radius R over which a pressure difference  $\Delta p$  exists (Massey, 1970). The shear stress,  $\tau$ , acts uniformly on the curved surface of this cylinder to provide the retarding force, F<sub>3</sub>. A force balance over the cylinder where will yield the shear stress within the pipe radius r (Massey, 1970)

$$\tau = \frac{\Delta pr}{2L} \tag{2.1}$$

and also the shear stress at the pipe wall where  $r = \frac{D}{2}$ 

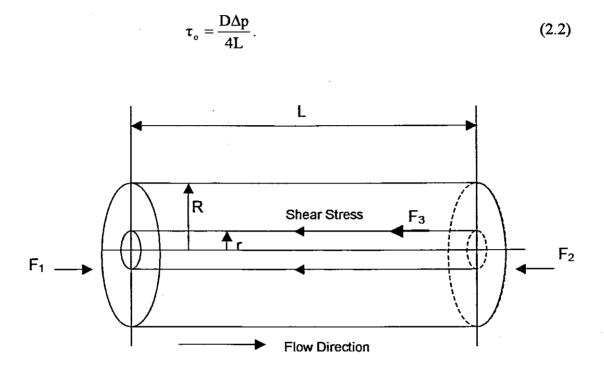



Figure 2.1: Shear stress distribution in a pipe

In the experimental procedure it is possible to measure the pressure drop across a known length of straight pipe and Eq. (2.2) can be used to calculate the shear stress at the pipe wall. These fundamental relationships are based on a force balance and the assumption that the fluid is homogeneous; it does not rely on any assumptions regarding the viscous nature of the fluid (Slatter, 1994).

#### 2.2.2 Energy Losses and Friction Factors for Newtonian Fluids

When a fluid flows through a pipe, there is a dissipation of energy. Energy is expended in overcoming viscous friction or in causing turbulent mixing to occur. When flow occurs in a horizontal straight pipe of uniform diameter, this energy loss manifests itself as a head loss  $\Delta H$ , that can be detected by appropriately connected manometer tubes. The pressure loss can be calculated from (Massey, 1970)

9

(2.2)

$$\Delta p = \rho g \Delta H \,. \tag{2.3}$$

The head loss, or loss of energy per unit weight, is given directly by the head difference,  $\Delta H$ , measured in metres of fluid, which can be calculated using the Darcy formula (Massey, 1970)

$$\Delta H = \frac{4fL}{D} \left[ \frac{V^2}{2g} \right]$$
(2.4)

where f is the Fanning friction factor defined as (Massey, 1970),

$$\mathbf{f} = \frac{\tau_0}{\frac{1}{2}\rho \mathbf{V}^2} \tag{2.5}$$

and

$$\tau_{\circ} = \frac{D\Delta p}{4L}.$$
(2.2)

The basic equation from which the frictional pressure drop may be calculated can be obtained by rearranging Eq. (2.2), (2.4) and (2.5) which yields

$$\Delta p = \frac{2f L \rho V^2}{D}.$$
 (2.6)

Equation 2.6 is very useful because it is valid for all types of fluids and for both laminar and turbulent flow, provided that the appropriate value of f is used (Holland & Bragg, 1995).

For Newtonian laminar flow, the Fanning friction factor is a function of the Reynolds number (Re) and is given by (Holland & Bragg, 1995)

$$f = \frac{16}{Re}.$$
 (2.7)

For Newtonian turbulent flow, the friction factor dependence on the Reynolds number decreases gradually with increasing Reynolds number and is a function of the relative roughness of the pipe (Holland & Bragg, 1995). The greater the roughness, the higher the value of f for a given Reynolds number (Re). At very high values of Re, the friction factor becomes independent of Re. The simplest expression for calculating the friction factor in turbulent flow is the Blasius equation, which is valid for Reynolds numbers between 3000 and 100 000 for hydraulically smooth pipes (Holland & Bragg, 1995),

$$f = \frac{0.079}{Re^{0.25}}.$$
 (2.8)

Based on the experimental work of Nikuradse in 1930 on rough pipes, Von Kármán and Prandtl combined this work with their boundary layer theory and derived the semi-empirical rough pipe flow laws (Chadwick & Morfett, 1993).

$$\frac{1}{\sqrt{f}} = -4\log\left(\frac{k}{3.7D}\right)$$
(2.9)

From 1937 to 1939 Colebrook and White investigated randomly rough commercial pipes opposed to the uniform sand roughened pipes of Nikuradse and proposed the well-known and applied Colebrook & White equation (Chadwick & Morfett, 1993)

$$\frac{1}{\sqrt{f}} = -4\log\left[\left(\frac{k}{3.7D}\right) + \frac{1.26}{\text{Re}\sqrt{f}}\right].$$
(2.10)

#### 2.2.3 Laminar Flow of Newtonian Fluids

When a fluid flows, shear deformation will take place. Laminar flow is characterised by the fact that individual fluid particle paths do not cross those of neighbouring particles in the adjacent laminae. The rate of deformation is known as the shear rate,  $\dot{\gamma}$ . Viscous stresses are set up when there is relative movement between adjacent particles. At low velocities, viscous forces dominate inertia forces and restrain any particles from moving from their path. Newton postulated the basic law of viscous resistance in 1687 as

$$\tau = \mu \frac{\mathrm{d}u}{\mathrm{d}y}.$$
 (2.11a)

The term  $\frac{du}{dy}$  is the rate at which the velocity u increases with the co-ordinate y perpendicular to the velocity,  $\mu$  is the coefficient of viscosity and  $\tau$  is the resulting shear stress on a surface perpendicular to and in the direction of increasing y (Massey, 1970). For the axially symmetric flow of a fluid in a pipe, the relationship becomes

$$\tau = \mu \left( -\frac{\mathrm{d}u}{\mathrm{d}r} \right). \tag{2.11b}$$

By integrating Eq. (2.11), one can obtain the velocity at any point in the pipe by applying a boundary condition that the velocity is zero at the pipe wall, hence assuming no-slip,

$$u = \frac{\tau_0}{2\mu R} \left( R^2 - r^2 \right).$$
 (2.12)

The total flow in the pipe can therefore be determined by integrating Eq. (2.12) resulting in the Hagen-Poiseuille equation (Holland & Bragg, 1995) where

$$Q = \frac{\pi R^4}{32\mu} \left(\frac{\Delta p}{L}\right)$$
(2.13)

and the average velocity can be found from

$$V = \frac{Q}{A}.$$
 (2.14)

The velocity profile can be written as

$$u = u_{max} \left( 1 - \left( \frac{r}{R} \right)^2 \right)$$
 (2.15)

where  $u_{max} = 2V$ .

From Eq. (2.12) and Eq. (2.13) it can be demonstrated that

$$\tau_0 = \mu \frac{8V}{D}.$$
 (2.16)

In a pipe, Eq. (2.11) can be written as

$$\tau_0 = \mu \left[ -\frac{\mathrm{d}u}{\mathrm{d}r} \right]_0, \qquad (2.17)$$

therefore

$$\frac{8V}{D} = \left[ -\frac{du}{dr} \right]_0.$$
(2.18)

From this equation the very important correlation between shear rate and pseudo shear rate can be established that forms the basis of tube viscometry.

#### 2.2.4 Non-Newtonian Fluids

Non-Newtonian fluids exhibit an apparent viscosity that varies with shear rate, unlike Newtonian fluids where the viscosity does not vary with shear rate (Holland & Bragg, 1995). These fluids may therefore be classified according to either their response to externally applied pressure or according to the effects produced under Chapter 2

the action of shear stress (Chhabra & Richardson, 1999). The behaviour of these fluids can be classified as:

- (a) Time-independent fluid behaviour (Shear thinning, Viscoplastic and Shear thickening fluid behaviour).
- (b) Time-dependent fluid behaviour (Thixotropy and Rheopexy).
- (c) Viscoelastic fluid behaviour.

The focus of this study is essentially on time-independent fluids.

#### 2.2.5 Rheological Characterisation

The determination of the flow behaviour of a fluid involves the measurement of shear stress in a fluid at various shear rates (Holland & Bragg, 1995). A plot of shear stress versus shear rate for a particular fluid sample is called a flow curve and it would normally consist of a collection of experimentally determined points through which a curve may be drawn (Alderman, 1996). If an equation can be fitted to the curve, it facilitates calculation of the behaviour of the fluid. Only the data in laminar flow are used for curve fitting to determine the rheological constants (Alderman, 1996). The rheological model that best fits the data points defines the fluid's rheological character. The data are used to determine the yield stress parameter in the model,  $\tau_y$ , if appropriate, the fluid consistency index, K, and the flow behaviour index, n, for the particular fluid (Alderman, 1996).

These flow models are approximations to the actual behaviour of the fluid and should not be used outside the range of conditions, especially shear rates, for which they are determined (Coulson & Richardson, 1990).

The most common relationships of shear stress versus shear rate are shown in Figure 2.2.

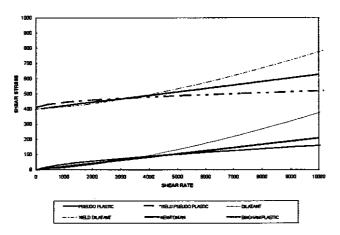



Figure 2.2: Idealised flow curves of time-independent fluids

# 2.2.6 Laminar Flow of Time-Independent Non-Newtonian Fluids in Straight Pipes

Several rheological models exist that can be used to model the laminar flow behaviour of non-Newtonian fluids, but the Herschel-Bulkley model is able to accommodate most other models as explained below.

The equations for laminar pipe flow can be derived as follows as described by Govier and Aziz (1972). The velocity gradient is given by

$$\frac{\mathrm{du}}{\mathrm{dr}} = \left[\frac{1}{\mathrm{K}}\right]^{\frac{1}{\mathrm{n}}} \left[\frac{\mathrm{r}\Delta p}{2\mathrm{L}} - \tau_{\mathrm{y}}\right]^{\frac{1}{\mathrm{n}}}.$$
(2.19)

In this case it is clear that, when  $\tau = \frac{r\Delta p}{2L} \leq \tau_y$ , the fluid does not shear and adjacent laminae are stationary relative to one another. This occurs for values of  $r \leq r_{plug}$  where

(2.20)

$$r_{\rm plug} = \frac{R\tau_y}{\tau_0} \, .$$

The situation is shown graphically in Figure 2.3.

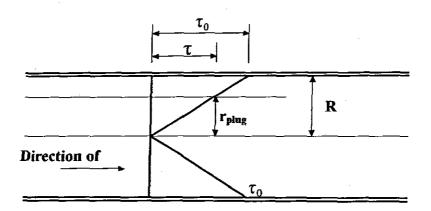



Figure 2.3: Shear stress distribution in a pipe showing unsheared plug radius

For  $R > r > r_{plug}$  the fluid shears and Eq. (2.19) can be integrated to yield

$$\mathbf{u} = \frac{\left[\frac{1}{K}\right]^{\frac{1}{n}}}{\left[\frac{\Delta p}{2L}\right]^{\frac{1}{n}}} \frac{n}{n+1} \left[ \left(\boldsymbol{\tau}_{0} - \boldsymbol{\tau}_{y}\right)^{\frac{n+1}{n}} - \left(\boldsymbol{\tau} - \boldsymbol{\tau}_{y}\right)^{\frac{n+1}{n}} \right].$$
(2.21)

When  $0 \le r \le r_{plug}$  the fluid moves as a plug at a uniform plug velocity  $u_{plug}$  and after integration the full relationship can be written as

$$\frac{32Q}{\pi D^3} = \frac{8V}{D} = \frac{4n}{K^{\frac{1}{n}}\tau_0^3} (\tau_0 - \tau_y)^{\frac{1+n}{n}} \left[ \frac{(\tau_0 - \tau_y)^2}{1+3n} + \frac{2\tau_y(\tau_0 - \tau_y)}{1+2n} + \frac{\tau_{y^2}}{1+n} \right], \quad (2.22)$$

where  $\tau_0 = \frac{D\Delta p}{4L}$  and  $V = \frac{Q}{A}$ .

The following rheological relationships can be accommodated in the yield pseudoplastic model:

| Yield dilatant      | $(\tau_y > 0 \text{ and } n > 1)$     |  |  |
|---------------------|---------------------------------------|--|--|
| Bingham plastic     | $(\tau_y > 0 \text{ and } n = 1)$     |  |  |
| Yield pseudoplastic | $(\tau_y\!>\!0 \text{ and } n\!<\!1)$ |  |  |
| Dilatant            | $(\tau_y = 0 \text{ and } n > 1)$     |  |  |
| Newtonian           | $(\tau_y = 0 \text{ and } n = 1)$     |  |  |
| Pseudoplastic       | $(\tau_y = 0 \text{ and } n < 1).$    |  |  |

It was demonstrated in Eq. (2.18) that the shear rate at the pipe wall for Newtonian fluids is  $\frac{8V}{D}$ . For non-Newtonian flow, this is not the case (Wilson *et al.*, 1992) and the quantity  $\frac{8V}{D}$  is called pseudo shear rate, flow characteristic or bulk shear rate. The plot of  $\tau_0$  versus  $\frac{8V}{D}$  is called a pseudo shear diagram. The pseudo shear rate is of great importance in non-Newtonian flow, and can be related to the true shear rate by the Rabinowitsch-Mooney relation (Chhabra & Richardson, 1999),

$$\left[-\frac{\mathrm{du}}{\mathrm{dr}}\right]_{0} = \frac{8\mathrm{V}}{\mathrm{D}}\left[\frac{3\mathrm{n}'+1}{4\mathrm{n}'}\right]$$
(2.23)

where

$$\mathbf{n}' = \frac{\mathrm{d}(\ln \tau_0)}{\mathrm{d}\left(\ln \frac{8\mathrm{V}}{\mathrm{D}}\right)}.$$
(2.24)

The most commonly used models to describe laminar flow in straight pipes are the pseudoplastic and yield pseudoplastic models and the Metzner and Reed generalised approach (Slatter, 1994).

#### 2.2.7 Metzner-Reed Generalised Approach

Metzner and Reed (1955) developed a general technique for expressing the laminar flow rheological properties of many non-Newtonian fluids in circular pipe flow by considering the wall shear stress,  $\tau_0 = D\Delta p/4L$ , as a function of the pseudo shear rate 8V/D. This relationship is

$$\tau_0 = K' \left(\frac{8V}{D}\right)^{n'}, \qquad (2.25)$$

and n' is the tangent to the double logarithmic plot of  $\tau_0$  versus 8V/D at any particular value of  $\tau_0$  or 8V/D and K' is the intercept on the y axis. This relationship can be used directly for design purposes in laminar flow. It has been found experimentally that for many fluids K' and n' are constant over wide ranges of  $\tau_0$  or 8V/D. For some fluids, this is not the case (the log-log plot is not a straight line) and care must be taken to ensure that the range of application is narrow, i.e., that the particular values of K' and n' used are valid for the actual values of 8V/D or  $\tau_0$  in a given design problem. In some cases, different values of K' and n' would have to be used for every value of 8V/D (Slatter, 1994).

The relationships between K' and K and n' and n for a power-law fluid are given below:

n' ≈ n

and

$$K' = K \left(\frac{1+3n}{4n}\right)^n.$$
 (2.26)

For a Newtonian fluid, n' = 1 and  $K' = \mu$ .

### 2.2.8 General Approach

One of the primary objectives of rheometry is the establishment of the relationship between the shear stress and the shear rate – often referred to as a rheogram or a flow curve and can be cast in the form developed by Weissenberg in 1929 (Tanner & Walters, 1998)

$$\dot{\gamma} = f(\tau). \tag{2.27}$$

For laminar tube flow the relationship between the bulk shear rate 8V/D, the wall shear stress  $\tau_0$  and the volumetric flow rate Q is (Tanner & Walters, 1998)

$$\frac{8V}{D} = \frac{32Q}{\pi D^3} = \frac{4}{\tau_0^3} \int_0^{\tau_0} \tau^2 \dot{\gamma}(\tau) d\tau . \qquad (2.28)$$

This relationship is of fundamental importance for several reasons:

A plot of 8V/D vs  $\tau_0$  will give a unique line for a given material for all values of D (Chhabra & Richardson, 1999). This means that in general the bulk shear rate (8V/D) is a unique function of the rheogram  $\dot{\gamma} = f(\tau)$  and the wall shear stress ( $\tau_0$ ), provided that there is no time dependency or slip at the wall and the flow is laminar.

Being a definite integral, Eq. (2.28) shows that the relationship between 8V/D and  $\tau_0$  can be obtained by numerical integration using data directly from a rheometer, without using a conventional rheological model.

Since (8V/D) is a unique function of the rheogram and the wall shear stress, Eq. (2.28) is independent of pipe diameter, and can be used for scale-up and design.

It provides the link or pathway between the rheogram and the pseudo shear diagram, i.e., given a rheogram, Eq. (2.28) can be used to construct a pseudo shear diagram (8V/D vs  $\tau_0$ ), which can be used for design in laminar flow. Conversely, the process can be reversed by differentiating Eq. (2.28). This provides the link or pathway between the pseudo shear diagram and the rheogram. This approach is used to derive the Rabinowitsch-Mooney relationship, which enables us to construct a rheogram if we have a pseudo shear diagram. The main problem with tube viscometry is that 8V/D is not true shear rate but the wall shear rate for a Newtonian fluid, therefore the bulk shear rate has to be transformed to the true shear rate, ( $\dot{\gamma}$ ).

Differentiation of Eq. (2.28) after some manipulation will yield the following, known as the Rabinowitsch-Mooney equation:

$$\dot{\gamma}_0 = \left(-\frac{\mathrm{du}}{\mathrm{dr}}\right)_0 = \frac{8\mathrm{V}}{\mathrm{D}}\left(\frac{3\mathrm{n'}+1}{4\mathrm{n'}}\right) \tag{2.23}$$

If one plots a log-log pseudo shear diagram with  $\tau_0$  versus 8V/D for the laminar flow region, then n' is the slope of the tangent of the graph. The slope will only be approximately constant if the fluid is a power-law fluid (Chhabra & Richardson, 1999).

#### 2.3 REYNOLDS NUMBERS

The Reynolds number can be used to determine what flow regime exists under given conditions (Holland & Bragg, 1995).

#### 2.3.1 Newtonian Reynolds Number

The famous dye experiment carried out by Osborne Reynolds in 1883 (from Coulson & Richardson, 1990), in his study of the head losses associated with the flow of water through pipes, showed clearly the distinction between laminar and turbulent flow. He stated the transition between the two regimes was characterised by a dimensionless group,

$$Re = \frac{\rho VD}{\mu},$$
 (2.29)

called the Reynolds number, in his honour (Coulson & Richardson, 1990). The Reynolds number is the ratio between the inertial forces and viscous forces. Stable laminar flow ends at Re = 2100 and turbulent flow ensues (Metzner & Reed, 1955; Govier & Aziz, 1972; Coulson & Richardson, 1990). This Reynolds number is used to describe the ratio of forces that exists in Newtonian fluids (Holland & Bragg, 1995).

Non-Newtonian fluids are more complex and many Reynolds numbers have been formulated to accommodate them. Not all of them will be discussed, only the ones that will be used in this thesis, which is the Metzner and Reed Reynolds number ( $Re_{MR}$ ) and the Slatter Reynolds number ( $Re_3$ ). The Reynolds number correlating the loss coefficient should account for the complete non-Newtonian characteristics of the fluid. The Reynolds numbers selected each describe different types of non-Newtonian behaviour.

## 2.3.2 Metzner and Reed Generalised Reynolds Number

Metzner and Reed (1955) developed a generalised Reynolds number for non-Newtonian flow:

$$\operatorname{Re}_{MR} = \frac{8\rho V^{2}}{K' \left(\frac{8V}{D}\right)^{n'}},$$
(2.30)

where

$$\mathbf{K}' = \mathbf{K} \left(\frac{3n+1}{4n}\right)^n \tag{2.26}$$

and n = n'.

Hence, for a power law fluid, Eq. (2.30) can be rewritten in terms of K and n as

$$\operatorname{Re}_{MR} = \frac{8\rho V^{2}}{K\left(\frac{8V}{D}\right)^{n}} \left(\frac{4n}{3n+1}\right)^{n}.$$
(2.31)

#### 2.3.3 Slatter Reynolds Number

Slatter (1994) developed a Reynolds number that places emphasis on the yield stress. Using the fundamental definition that  $\text{Re} \propto \text{inertial} / \text{viscous}$  forces, the final formulation is

$$\operatorname{Re}_{3} = \frac{8\rho \operatorname{V_{am}}^{2}}{\tau_{y} + \operatorname{K} \left(\frac{8\operatorname{V_{am}}}{\operatorname{D_{shear}}}\right)^{n}}.$$
(2.32)

The development of this Reynolds number is presented below, starting with the fact that in the presence of a yield stress the central core of the fluid moves as a solid plug. The unsheared plug is treated as a solid body in the centre of the pipe; the flow that the plug represents must be subtracted, as it is no longer being treated as part of the fluid flow. The corrected mean velocity in the annulus  $V_{ann}$  is then obtained as follows.

$$V_{ann} = \frac{Q_{ann}}{A_{ann}}, \qquad (2.33)$$

where

$$\mathbf{Q}_{ann} = \mathbf{Q} - \mathbf{Q}_{plug} \tag{2.34}$$

and

$$\mathbf{Q}_{\mathbf{plug}} = \mathbf{u}_{\mathbf{plug}} \mathbf{A}_{\mathbf{plug}}.$$
 (2.35)

The constitutive rheological equation can be integrated to obtain the plug velocity  $u_{plug}$ ,

$$u_{plug} = \frac{D}{2K^{\frac{1}{n}}\tau_0} \frac{n}{n+1} \left[ \left(\tau_0 - \tau_y\right)^{\frac{n+1}{n}} \right].$$
(2.36)

The radius of the plug is

$$\mathbf{r}_{\mathrm{plug}} = \frac{\mathbf{\tau}_{\mathrm{y}}}{\mathbf{\tau}_{\mathrm{0}}} \mathbf{R} \ . \tag{2.37}$$

The area of the annulus is

$$A_{ann} = \pi \left( R^2 - r_{plug}^2 \right). \tag{2.38}$$

The sheared diameter,  $D_{shear}$ , is taken as the characteristic dimension because this represents the zone in which shearing of the fluid actually takes place, and it is defined as

$$\mathbf{D}_{\text{shear}} = \mathbf{D} - \mathbf{D}_{\text{plugs}} \tag{2.39}$$

where

$$\mathbf{D}_{\mathrm{plug}} = 2\mathbf{r}_{\mathrm{plug}}.\tag{2.40}$$

This expression can be used to represent both Herschel-Bulkley and Bingham plastic behaviour (Slatter & Wasp, 2000).

## 2.3.4 Friction Factors for Non-Newtonian Fluids

Various correlations exist for the calculation of  $\tau_0$  and f for non-Newtonian fluids (Heywood, 1984) and will not be reproduced here.

For inelastic non-Newtonian fluids, the Fanning friction factor in laminar flow becomes (Holland & Bragg, 1995)

$$f = \frac{16}{Re_{MR}}.$$
 (2.41)

Slatter (1999) developed a friction factor for fluids with a yield stress

$$f_{ann} = \frac{2r_0}{V_{ann}^2}.$$
 (2.42)

For smooth wall turbulent flow, the friction factor can be correlated by the generalised form of the Von Kármán equation as given by Dodge and Metzner (1959)

$$\frac{1}{\sqrt{f}} = \frac{4}{n^{10.75}} \log \left( f^{\left( 1 - \frac{n}{2} \right)} Re_{MR} \right) - \frac{0.4}{n^{1/2}}.$$
 (2.43)

Slatter (1994) developed a friction factor for non-Newtonian slurries based on particle roughness, where  $d_{85}$  is the representative particle size.

• For smooth wall turbulent flow (where Re, is the roughness Reynolds number)

$$\frac{V}{V_{\star}} = 2.5 \ln \left(\frac{R}{d_{g_5}}\right) + 2.5 \ln Re_r + 1.75.$$
 (2.44)

For fully developed rough wall turbulent flow

## 2.4 PHYSICAL MODELLING PRINCIPLES

 $\frac{1}{\sqrt{f}} = 4 log \left( \frac{3.34D}{d_{ss}} \right).$ 

Experiments are often required to determine the way in which one variable depends on another because complete analytical solution of engineering problems involving the flow of real fluids is seldom attainable. Experimental investigation may require testing in several sizes, and it is necessary to understand the relationship between models of different size in order to correctly interpret the qualitative and quantitative data obtained from such experiments. The concepts of dimensional analysis and physical, geometric, kinematic and dynamic similarity are introduced as they apply to the specific problem of modelling and data interpretation of fittings of different size.

Dimensional analysis enables the reduction of individual quantities relevant to a physical problem to be assembled into dimensionless groups, often referred to by name (Massey, 1970). These groups assist in the interpretation of model studies by ensuring that the conditions under which tests and observations take place at one size fitting are the same as those at the other size fitting.

Physical similarity, like dimensional analysis, helps to ensure that the conditions under which tests and observations take place at one scale are the same as those on another scale (Massey, 1970). The models at different scale are said to be physically similar in respect of specified physical quantities (e.g. velocity), when the ratio of corresponding magnitudes of these quantities between the two systems is the same everywhere. For any comparison between models, the sets of conditions associated with each must be physically similar.

Geometric similarity is the similarity of shape (Massey, 1970). The requirement is that any ratio of length in one model to the corresponding length in another model is the same. This ratio is referred to as the scale factor. Geometric similarity is the first requirement of physical similarity.

Kinematic similarity is similarity of motion and requires similarity of both length and time interval (Massey, 1970). When flows are kinematically similar, the patterns formed by streamlines are geometrically similar at the same time. Geometric similarity alone does not imply kinematically similar flows.

Dynamic similarity is similarity of forces (Massey, 1970). Since there may be several kinds of forces acting on a fluid particle, it is usually impossible to satisfy dynamic similarity of them all simultaneously. The justification for comparing observations from one model flow system with those in another are that the fluid behaviour is similar in the two systems, implying kinematic similarity. Geometric similarity alone does not imply dynamic similarity. The requirements for kinematic similarity are both geometric and dynamic similarity. This produces geometric similarity of flow patterns, and is of prime importance in this study. The forces that control the behaviour of fluids could be due to the differences in piezometric pressure or pressure forces, the action of viscosity, gravity, surface tension, elasticity or inertia. Of primary concern in this work is the ratio of viscous to inertial forces; the dimensionless group of specific interest in this study is therefore the Reynolds number.

#### 2.5 MINOR LOSSES IN PIPES

Head losses, in addition to those due to straight pipe friction, are always incurred at pipe bends, junctions and valves. These additional losses are due to eddy formation generated in the fluid at the fitting and must be taken into account. In the case of long pipelines of several kilometres, these local losses may be negligible, but for short pipelines they may be greater than the straight pipe frictional losses (Chadwick & Morfett, 1993). A general theoretical treatment for local head losses is not available, but it is usual to assume rough turbulence (where the friction factor is independent of the Reynolds number) since it leads to the simple equation (Chadwick & Morfett, 1993):

$$\mathbf{h}_{\text{fitt}} = \mathbf{k}_{\text{fitt}} \frac{\mathbf{V}^2}{2g} \tag{2.46}$$

 $h_{fitt} = local head loss$ 

 $k_{fitt} = fitting loss coefficient.$ 

The two methodologies for the prediction of losses in pipe fittings are based on the following assumptions (King, 2002):

- a) The fitting will contribute to the energy dissipation an amount equivalent to an additional length of pipe that is calculated as a multiple of the pipe diameter.
- b) Kinetic energy is dissipated as the fluid flows through the fitting and the loss is calculated in terms of the number of velocity heads that are lost.

The loss coefficient is related to the upstream Reynolds number of the flow through the fitting

$$k_{tot} = \frac{C_{fitt}}{Re} + k_{fitt} \left( 1 + \frac{0.0254}{D} \right)$$
 (2.47)

and Cfitt and kfitt are determined experimentally (King, 2002).

## 2.6 CALCULATING LOSS COEFFICIENTS

The energy losses across a fluid-conveying conduit in a fluid are normally accounted for using the energy balance or Bernoulli equation:

$$z_{1} + \frac{\alpha_{1}V_{1}^{2}}{2g} + \frac{p_{1}}{\rho g} = z_{2} + \frac{\alpha_{2}V_{2}^{2}}{2g} + \frac{p_{2}}{\rho g} + \sum_{i=1}^{N} h_{loss} , \qquad (2.48)$$

where subscripts 1 and 2 refer to the upstream and downstream conditions respectively, V is the mean flow velocity, z is the elevation from the datum,  $\alpha$  is the kinetic energy correction factor, p is the static pressure and where there are N sources of energy loss (Edwards *et al.*, 1985). Each term in the expression represents energy per unit weight of fluid, known as energy head or head loss, and is a statement of the law of conservation of energy as applied to fluid flow. The head loss is in units of metres. For the case of a head loss in a fitting, the Bernoulli equation may be rewritten as:

$$z_{1} + \frac{\alpha_{1}V_{1}^{2}}{2g} + \frac{p_{1}}{\rho g} = z_{2} + \frac{\alpha_{2}V_{2}^{2}}{2g} + \frac{p_{2}}{\rho g} + h_{1} + h_{\text{fitt}} + h_{2}, \qquad (2.49)$$

where  $h_1$  and  $h_2$  refer to the friction head loss in the straight pipe upstream and downstream of the fitting and  $h_{fitt}$  refers to the head loss in the fitting. The head loss, h, in the straight pipe can be calculated from Eq. (2.4).

The assumption of uniform velocity profiles is not always acceptable for all problems (Potter & Wiggert, 1997) as in the case of the analysis of losses across contractions where the upstream and downstream diameters are different. The control-surface integral must then be taken into consideration with the proper expression for the velocity distribution. The distribution can be accounted for by introducing the kinetic-energy correction factor,  $\alpha$ , defined by

$$\alpha = \frac{\int u^3 dA}{\overline{V}^3 A}$$
 (2.50)

For a flow with a parabolic profile in a pipe  $\alpha = 2$ . For most internal turbulent flows the profile is nearly uniform with  $\alpha \approx 1.05$ . Since this value is so close to unity it is often taken as  $\alpha = 1$  (Potter & Wiggert, 1997).

For pseudoplastic fluids  $\alpha$  becomes (Jadallah, 1980)

$$\alpha = \frac{3(1+3n)^2}{(1+2n)(3+5n)}.$$
 (2.51)

For yield pseudoplastic fluids  $\alpha$  becomes (Baudouin, 2003)

$$\alpha = 2\tau_0^4 \frac{M(\tau_0 - \tau_y)^2 + B\tau_y(\tau_0 - \tau_y) + Y\tau_y^2}{\left[\frac{(\tau_0 - \tau_y)^2}{1 + 3n} + \frac{2\tau_y(\tau_0 - \tau_y)}{1 + 2n} + \frac{\tau_y^2}{1 + n}\right]^3},$$
(2.52)

where

$$M = \frac{3}{(3n+1)(4n+2)(5n+3)},$$
$$B = \frac{6}{(2n+1)(3n+2)(4n+3)},$$
$$Y = \frac{1}{2(n+1)^3}.$$

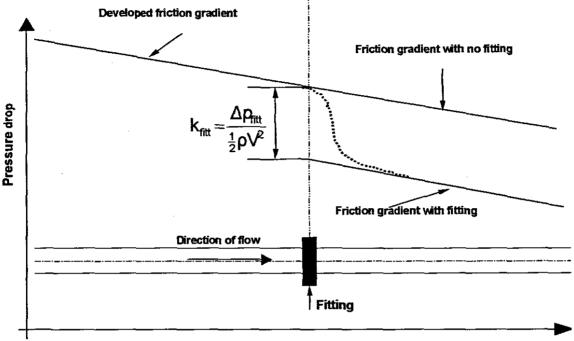
On dimensional grounds, the head loss in a fitting will depend upon the fluid velocity, fluid properties and the geometry of the fitting as follows (Edwards *et al.*, 1985):

$$\frac{2gh_{fitt}}{V^2} = fn(Reynolds number, geometry)$$
(2.53)

and can be expressed as a function of the velocity energy head and is usually taken as a direct proportionality:

$$\mathbf{h}_{\text{fitt}} = \mathbf{k}_{\text{fitt}} \frac{\mathbf{V}^2}{2\mathbf{g}}.$$
 (2.54)

Hence, the loss coefficient of the fitting is given by


$$\mathbf{k}_{\text{fitt}} = \mathbf{h}_{\text{fitt}} \frac{2\mathbf{g}}{\mathbf{V}^2}.$$
 (2.55)

This can also be expressed in terms of pressure drop because  $\Delta p=\rho g \Delta h$  and then Eq. (2.55) becomes

$$k_{fitt} = \frac{\Delta p_{fitt}}{\frac{1}{2}\rho V^2}$$
(2.56)

where:

(1) k<sub>fitt</sub> is the non-dimensionalised difference in overall pressure between the ends of two long straight pipes when there is no fitting and when the real fitting is installed (Miller, 1978). This is shown in Figure 2.4 below.



**Axial Distance** 

### Figure 2.4: Definition of the loss coefficient (Miller, 1978)

(2)  $\Delta p_{fitt}$  is the pressure loss across the fitting. The flow lengths over which pressure losses occur start from a few diameters upstream to several pipe diameters downstream of the actual length of the fitting. This is known as the region of influence or interference.  $\Delta p_{fitt}$  should be measured across this region. It can be the measured static pressure drop ( $\Delta p_s$ ) or the total pressure that is  $\Delta p_{tot} = \Delta p_s + \frac{1}{2}\rho V^2$ . It is therefore important to state whether k<sub>fitt</sub> is based on the static or total pressure (Miller, 1978).

31

- (3) p is the density of the fluid. In the case of settling slurries it can be based on either the *in situ* or delivered concentration and this also needs to be specified.
  - (4) V is the mean flow velocity in the pipe. If there is a change in pipe diameter, the convention is to use the higher mean flow velocity of either the upstream or the downstream pipe.

Equation (2.56) is based on the static pressure only. In the case of contractions where the upstream and downstream velocities are different, the total pressure should be used to account for changes in kinetic energy. Therefore, for a sudden contraction, Eq. (2.56) becomes:

$$k_{con} = \frac{\left[\frac{\Delta p_{con}}{\rho g} + \frac{\left(\alpha_1 V_1^2 - \alpha_2 V_2^2\right)}{2g}\right]}{\frac{V_2^2}{2g}}$$
(2.57)

With the exception of abrupt contractions and expansions, all other fittings have a physical length. There are three distinct conventions for estimating the length of the straight pipe in the test section (Perry & Chilton, 1973):

- 1. the actual length of the centreline of the entire system is taken;
- 2. the lengths of the individual pieces of pipe that are actually straight are summed up; and
- the distances between the intersections of the extended centrelines of the successive straight pipes are added.

## 2.7 FLOW PHENOMENA IN SUDDEN CONTRACTION

Flow patterns within contractions have been observed and used to gain an understanding and calculate pressure losses in the contraction. Several good reviews exist on this topic (e.g. Shah & London, 1978), and only the important aspects pertaining to this work will be highlighted in this section.

#### 2.7.1 Turbulent Flow

Turbulent flows through sudden contractions are well described in most texts on fluid mechanics. Some of the literature has been reviewed and there is general agreement about the form of the flow patterns and the reason for the pressure drop (Massey, 1970; Chadwick & Morfett, 1994; Holland & Bragg, 1995; Finnemore & Franzini, 2002).

In turbulent flow there is a marked drop in pressure as the fluid passes through the contraction. The pressure loss is due to an increase in velocity and the loss of energy in turbulence. There is a rise in pressure at the upstream corner of the contraction due to streamline curvature so that the centrifugal action causes the pressure at the pipe wall to be greater than in the centre of the stream. The streamlines continue to curve downstream of the contraction to form a cross section where a minimum pressure and maximum velocity are obtained. This is known as the *vena contracta*. The contracted flowing stream is surrounded by fluid that is in a state of turbulence but has very little forward motion. Downstream of the *vena contracta* the flow stream expands, the velocity decreases and the pressure rises. Between points D and E the fluid is in a very disturbed condition because the stream

expands and the velocity decreases while the pressure rises. After this expansion, the flow is normal. This is shown in Figure 2.5.

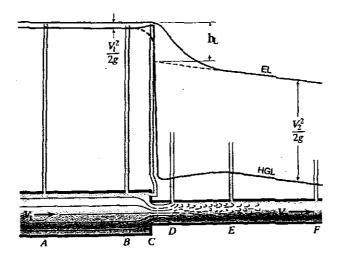



Figure 2.5: Local head loss at a sudden contraction (from Finnemore & Franzini, 1997)

#### 2.7.2 Laminar Flow

When a fluid flows through a sudden contraction, the flow progresses from being fully developed at a plane some distance upstream from the contraction to being fully developed in the downstream tube at a distance  $L_e$  from the contraction (Boger, 1987). A stationary flow vortex is present in the corner of the upstream tube and the contraction plane and detaches from the wall at a distance  $L_v$ . It reduces the available flow area and the fluid accelerates and results in a partially developed velocity profile at the entrance of the downstream tube. After the contraction plane, the centreline velocity continues to develop until it reaches 99% of its fully developed value. This distance is known as the entry length,  $L_e$ .

A diagram illustrating these phenomena is shown in Figure 2.6.

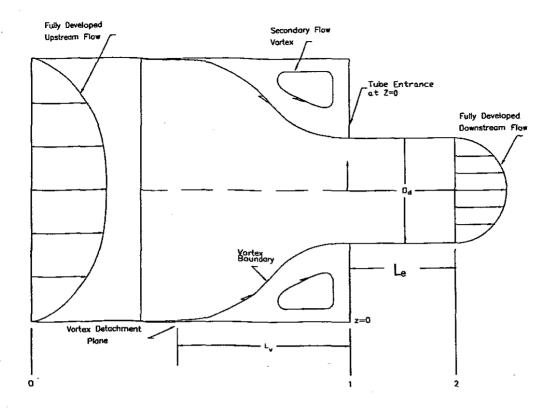



Figure 2.6: Basic elements of laminar flow through a contraction (From Boger, 1987)

The vortex size decreases as the fluid velocity increases and the velocity profile changes from being partially developed to being uniform (flat) at the entrance of the downstream tube (Ramamurthy & Boger, 1971).

#### 2.7.2.1 Creeping Flow

At  $\text{Re} \leq 1$ , creeping flow exists (Boger, 1987). The velocity profile development is only slightly distorted from being fully developed as it enters the smaller pipe and the profile is independent of the Reynolds number. The vortex reattachment length is independent of the Reynolds number and

$$L_v = 0.17D_u,$$
 (2.58)

and the entry length is constant and

$$L_{e} = \frac{0.49D_{d}}{2}$$
(2.59)

where  $\mathbf{D}_u$  and  $\mathbf{D}_d$  are the upstream and downstream diameters respectively.

#### 2.7.2.2 Inertial Flow

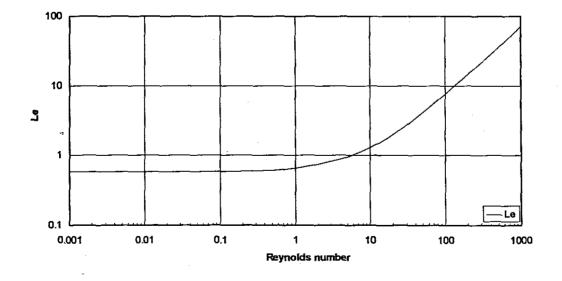
At  $\text{Re} \ge 1$ , fluid inertia becomes important. The stationary vortex decreases in size as Re increases and at Re = 100,  $L_v = 0.05D_u$ . The entry length becomes Reynolds number dependent (Boger, 1987), but at a given Reynolds number, it is a weak function of the contraction ratio,  $\beta_{\text{con}}$ , (Vrentas & Duda, 1973). Later investigations reported that inertia only starts to dominate at Re > 50 (McNeil *et al.*, 1999).

#### 2.7.2.3 Effect of Rheology on Flow Patterns

The rheology of the fluid has the following effect on the upstream flow vortex:

- Shear thinning decreases the size of the flow vortex (Kim-E et al., 1983).
- Visco-elastic properties increase the size of the flow vortex (White et al., 1987).
- Low yield numbers  $(Y = \frac{\tau_y R_u}{\eta U})$  are sufficient to eliminate the upstream flow vortex for Bingham plastic fluids (Hammad & Vradis, 1996), where  $R_u$  is the radius of the upstream pipe,  $\eta$  is the plastic viscosity and U is the inlet streamwise velocity.

Understanding the effect of flow patterns through contractions can assist in solving problems in extrusion processes (Hammad & Vradis, 1996).


#### 2.7.2.4 The Effects of Rheology on the Entry Length

The effects of rheology on the entry length are summarised below.

The entry length can be expressed as a function of the flow behaviour index, n (Collins & Schowalter, 1963; Ramamurthy & Boger, 1971). The entry length increases as the flow behaviour index decreases from 1 to 0.1 (Collins & Schowalter, 1963). Philippoff and Gaskins (1958) have reported a number of experiments indicating an extremely short entry length for viscoelastic fluids. Kim-E *et al.*, (1983) found that the entry length results for highly shear thinning fluids is identical to Newtonian results and that the relationship established by Boger (1987) was applicable for Re = 0 to 100 and this is shown in Figure 2.7.

$$L_e = 0.0709 \text{Re} + 0.589 \tag{2.60}$$

The velocity profile at the entrance of an abrupt 2 to 1 contraction is uniform for Newtonian and inelastic power-law fluids when  $0.585 \le n \le 1$  and  $20 \le \text{Re} \le 1942$ (Ramamurthy & Boger, 1971).





### 2.7.2.5 Velocity Overshoots

At Reynolds numbers between 50 and 200, a concavity exists in the entrancevelocity profile also known as velocity overshoots. Off-centre maxima or velocity overshoots were reported to exist at Re = 100 by Boger (1982), Re = 100 and 200 by Vrentas and Duda (1973) and Re = 50 by Christiansen *et al.* (1972). The depth of the concavity increases with  $\beta_{con}$  and Re (Christiansen *et al.*, 1972). Figure 2.8 shows the dependence of axial velocities at the tube entrance and an example of velocity overshoots. For Bingham fluids velocity overshoots are evident at lower Reynolds numbers (Hammad & Vradis, 1996), but this is not obtained with shear thinning fluids (Kim-E *et al*, 1983).

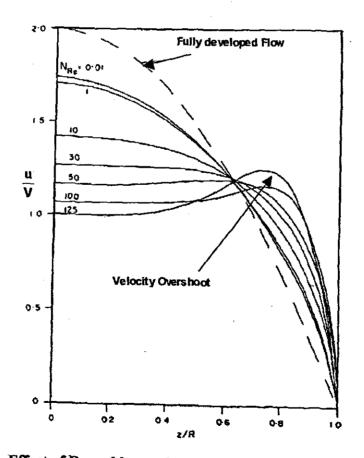



Figure 2.8: Effect of Reynolds number on the entrance velocity profile (from Boger, 1982)

## 2.7.3 Pressure Losses

The accurate prediction of pipe contraction pressure loss is important in the design of pipe systems where close control of the flow distribution in a network of pipes is required, such as heat exchangers, in the extrusion of polymer melts and other sludges encountered in the oil and gas production industries (Hammad & Vradis, 1996). The pressure loss through sudden contractions is associated with the development of the velocity profile as the fluid enters the smaller tube. The investigation and determination of the entry length therefore forms a basis for the work done to determine pressure losses in contractions.

This work often excluded the flow phenomena in the upstream tube as the assumption was that the flow was fully developed as it entered the smaller tube. Bogue (1959) was the first to suggest that this was not the case for viscous fluids and that a stationary vortex is formed upstream that could contribute considerably to the total pressure loss across the contraction. Durst and Loy (1985) recognised the importance of both upstream and downstream flow phenomena and although detailed measurements were made of these quantities both experimentally and computationally, they did not develop a predictive method for the calculation of pressure drop due to sudden contractions. Although some pressure drop results were reported for  $\beta = 0.25$ , the change in velocity components has also not been accounted for as required for the determination of head losses using Eq. (2.57), since the upstream and downstream flow the same.

39

## 2.7.4 Turbulent Loss Coefficients kcon for Sudden Contraction

As stated earlier, a general theoretical treatment is not yet available for the losses through sudden contractions (Chadwick & Morfett, 1993), but some derivations exist based on the application of the Bernoulli equation and the momentum equation. This approach is very reliable for sudden expansions but in the case of a sudden contraction, the analysis can only be applied after the *vena contracta* and it is necessary to have experimental values of the contraction ratio [ $\beta_{con}$ ] (Holland & Bragg, 1995).

The following Reynolds numbers were reported at which the *vena contracta* exists for Newtonian fluids as shown in Table 2.1.

| Re                          | β <sub>con</sub>  | REFERENCE                  |  |  |
|-----------------------------|-------------------|----------------------------|--|--|
| 186 for very viscous fluids | 0.16              | Astarita and Greco, 1968   |  |  |
| 200                         | 0.44,0.16, 0.0625 | Vrentas and Duda, 1973     |  |  |
| > 400                       | 0.09              | La Nieve, 1968             |  |  |
| >1000                       | 0.125             | Sylvester and Rosen        |  |  |
| 1346 for water              | 0.16              | Astarita and Greco, 1968   |  |  |
| 2100 for water              | 0.25              | Ramamurthy and Boger, 1971 |  |  |

Table 2.1: Re at which vena contracta exist

Although Chadwick and Morfett (1993) stated that experiments indicate that the contraction of the flow area is approximately 40% and give an approximation, loss coefficients for sudden contractions from the literature (Franzini & Finnemore, 2002) are often tabulated and are given below for a range of contraction ratios between 0 and 1 as shown in Table 2.2.

# Table 2.2: Loss coefficients for sudden contraction (From Chadwick & Morfett,1993)

| β <sub>con</sub> | 0    | 0.1  | 0.2  | 0.3  | 0.4  | 0.5  | 0.6  | 0.7  | 0.8  | 0.9  | 1.0  |
|------------------|------|------|------|------|------|------|------|------|------|------|------|
| <b>k</b> con     | 0.50 | 0.45 | 0.42 | 0.39 | 0.36 | 0.33 | 0.28 | 0.22 | 0.15 | 0.06 | 0.00 |

Table 2.3 shows data from Hwang and Houghtalen (1996). In this case, the loss coefficient is dependent on the velocity in the smaller pipe for each contraction ratio.

## Table 2.3: Loss coefficients for sudden contractions (From Hwang &<br/>Houghtalen, 1996)

| VELOCITY<br>IN<br>SMALLER<br>PIPE (m/s) | RATIO OF SMALLER TO LARGER PIPE DIAMETERS, D <sub>2</sub> /D <sub>1</sub> |      |      |      |      |      |      |      |      |      |
|-----------------------------------------|---------------------------------------------------------------------------|------|------|------|------|------|------|------|------|------|
|                                         | 0                                                                         | 0.1  | 0.2  | 0.3  | 0.4  | 0.5  | 0.6  | 0.7  | 0.8  | 0.9  |
| 1                                       | 0.49                                                                      | 0.49 | 0.48 | 0.45 | 0.42 | 0.38 | 0.28 | 0.18 | 0.07 | 0.03 |
| 2                                       | 0.48                                                                      | 0.48 | 0.47 | 0.44 | 0.41 | 0.37 | 0.28 | 0.18 | 0.09 | 0.04 |
| 3                                       | 0.47                                                                      | 0.46 | 0.45 | 0.43 | 0.40 | 0.36 | 0.28 | 0.18 | 0.10 | 0.04 |
| 6                                       | 0.44                                                                      | 0.43 | 0.42 | 0.40 | 0.37 | 0.33 | 0.27 | 0.19 | 0.11 | 0.05 |
| 12                                      | 0.38                                                                      | 0.36 | 0.35 | 0.33 | 0.31 | 0.29 | 0.25 | 0.20 | 0.13 | 0.06 |

Miller (1978) produced a graph of loss coefficient versus contraction ratio and this is shown in Figure 2.9.

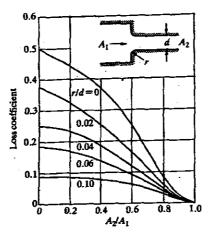



Figure 2.9: Loss coefficients for sudden contractions (From Miller, 1978)

Values obtained in Miller are slightly higher than those quoted in Hwang & Houghtalen (1996). There is no mention of velocity dependence of the loss coefficient in Miller (1978) and Finnemore & Franzini, (1997) whereas Hwang & Houghtalen (1996) listed values at different velocities.

## 2.7.5 Laminar Flow Loss Coefficient Constant C<sub>con</sub> for Sudden Contraction

For laminar flow, the loss coefficient is inversely proportional to the Reynolds number (Edwards *et al.*, 1985; Ma, 1987; Slatter *et al.*, 1997; Pienaar, 1998) and the data loci present as a straight line of slope -1.:

$$k_{con} = \frac{C_{con}}{Re}.$$
 (2.61)

For Newtonian fluids, the Newtonian Reynolds number given by  $Re_N$  will apply. For non-Newtonian fluids the Metzner & Reed Reynolds number given by  $Re_{MR}$  or the Slatter Reynolds number given by  $Re_3$  will be applicable. These Reynolds numbers are described in detail in Section 2.3. Loss coefficient data determined experimentally are given in Table 2.4. The laminar

flow loss coefficient constant is denoted by  $C_{con}$  and for turbulent flow by  $k_{con}$ .

| Table 2.4: Loss coeffic | ient data for Newtonian and non-Newtonian fluid flow |
|-------------------------|------------------------------------------------------|
|                         | through sudden contractions                          |

| REFERENCE            | FLUID                                                  | β <sub>con</sub> | C <sub>con</sub> | k <sub>con</sub> |
|----------------------|--------------------------------------------------------|------------------|------------------|------------------|
| Hooper, 1981         | -                                                      | -                | 160              | -                |
| Edwards et al., 1985 | 50% Glycerol/water<br>lubricating oil                  | 0.198            | 110              | 0.45             |
| Edwards et al., 1985 | 50% Glycerol/water<br>lubricating oil, CMC, china clay | 0.436            | 59               | 0.33             |
| Ma, 1987             | Laterite & gypsum slurries                             | 0.5              | 900              | 0.23             |
| Pienaar, 1998        | 100% Glycerol, kaolin, CMC                             | 0.463            | 640              | 0.42             |
| Pienaar, 1998        | 100% Glycerol, kaolin, CMC                             | 0.205            | 1300             | 0.44             |
| Pal & Hwang, 1999    | Oil-in-water emulsions                                 | 0.244            | <u> </u>         | 0.43             |

It is not understood why the results from different researchers vary so much. The sharpness of the contraction has a significance influence on the loss coefficient and any deviation from a sharp edged contraction will result in a lower loss coefficient value (Bullen *et al.*, 1996) and this may be the reason. The experimental data are insufficient to draw any conclusions. The experimental procedure for determining loss coefficient data will therefore be reviewed to facilitate an understanding of the discrepancies.

#### 2.8 EXPERIMENTAL DETERMINATION OF LOSS COEFFICIENTS

This section will review the experimental practices when measuring losses through sudden contractions and other fittings to establish if a consistent practice exists. It will focus on the placement of pressure tappings before and after the contraction plane and the analysis of results.

Experimental determination of the loss coefficient can be done by directly measuring the pressure drop across the fitting including the sections upstream and downstream that are not fully developed and by calculating the head loss Eq. (2.49) and hence the loss coefficient (Pienaar, 1998), or by measuring the pressure gradient along the length of the upstream and downstream pipes (Edwards *et al.*, 1985).

It is, however, very difficult in practice to distinguish between the incompletely developed and the fully-developed flow region prior to and after the fitting, hence making it difficult to measure the pressure drop due to the fitting only (Ward-Smith, 1976). Experimental determination of fitting losses is therefore carried out by measuring the overall friction loss in a system made up of two lengths of straight pipe connected in series by a fitting or valve. To obtain the loss due to a fitting or valve, the friction loss in the straight pipe is subtracted from the total friction loss measured (Perry & Chilton, 1973). The total length of straight pipe can either include or exclude the physical length of the fitting resulting in the k<sub>gross</sub> only if the straight pipe losses are subtracted

$$k_{gross} = \frac{1}{\frac{1}{2}\rho V^{2}} \left[ -\Delta p - \frac{1}{2}\rho V^{2} \frac{4f}{D} (L_{u} + L_{d}) \right], \qquad (2.62)$$

or  $k_{nett}$  if the length of the fitting is included as a length of straight pipe (ESDU, 1989)

$$k_{nett} = \frac{1}{\frac{1}{2}\rho V^2} \left[ -\Delta p - \frac{1}{2}\rho V^2 \frac{4f}{D} (L_u + L_{fitt} + L_d) \right].$$
(2.63)

Ma (1987) has done a significant amount of work analysing loss coefficient data by excluding and including the physical length of the fitting. He has concluded that the values of  $k_{fitt}$ , excluding the physical length of the fitting as a piece of straight pipe, have lower scatter than those including the physical length of the fitting. In the case of determining losses in contractions, this should not be an issue since a contraction does not have a physical length.

It was not always clear from the work reviewed which method was used. Definitions of fitting loss and the total length given by various researchers are given in Table 2.5.

Clearly, direct comparison of experimental results is not possible where physical straight pipe length, overall length, and fully developed flow length are used by different researchers.

| RESEARCHER                      | DEFINITION OF Apfint                                                                                                                                                                                                                  |  |  |  |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Steffe et al.                   | The total length of flow included that contributed by the valve,                                                                                                                                                                      |  |  |  |
| (1984)                          | fitting or elbow. The pressure tap downstream of the fitting $(p_2)$                                                                                                                                                                  |  |  |  |
|                                 | was 20.8 diameters from the fitting. The straight pipe friction                                                                                                                                                                       |  |  |  |
|                                 | losses was correlated as                                                                                                                                                                                                              |  |  |  |
|                                 | $f = 14.14 \text{ Re}_{MR}^{-1.048}$ instead of the usual $f = 16/\text{Re}_{MR}$ .                                                                                                                                                   |  |  |  |
| Edwards <i>et al</i> .          | The total head loss is the sum of the head losses for all straight                                                                                                                                                                    |  |  |  |
| (1985)                          | pipe sections and all fittings.                                                                                                                                                                                                       |  |  |  |
| Das <i>et al</i> . (1991)       | The pressure drop due to the bend is obtained from the difference<br>between the static pressure of the upstream, fully developed flow<br>and the static pressure of the downstream, fully developed flow<br>regions across the bend. |  |  |  |
| Mukhtar <i>et al.</i><br>(1995) | Measured the pressure drop across a bend one pipe diameter<br>upstream of the bend and two pipe diameters downstream of the<br>bend.                                                                                                  |  |  |  |

 Table 2.5: Definition of fitting losses and total length given by various authors

| Bojcic <i>et al.</i><br>(1997) | The total length of pipe is the sum of the lengths of straight pipe<br>sections and the lengths of fittings measured on the centrelines of<br>the fittings.                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pal and Hwang<br>(1999)        | $\Delta p$ for expansions, contractions and valves is defined as a sudden<br>pressure change in the transitional section for an assumed fully<br>developed flow and can be determined by extrapolating the<br>pressure profiles of both the upstream and downstream pipes to<br>the expansion plane. Pressure taps were located 5, 10 and 25<br>diameters upstream and downstream of the fitting and the pressure<br>differential taken as the difference between the pressures at the<br>tappings 25 diameters upstream and downstream. |

The dependence of the laminar entrance loss coefficient on the contraction ratio was correlated by Kaye and Rosen (1971) and serves as the basis for many other correlations widely used today (ESDU, 1989). In this experimental study, a minor adjustment was made from previous work, that is, to increase the tapping distance to the entrance of the contraction to at least 2 diameters. The entrance losses were obtained from the equilibrium pressure gradient in the downstream test section  $(dp/dz)_T$  and a pressure measurement  $p_{ES}$  taken 2 diameters prior to the contraction plane. The pressure loss due to the contraction was then determined as follows:

$$\Delta p_{ent} = p_{ES} - \left( \frac{dp}{dz} \right)_E \Delta l \left| - \left( \frac{dp}{dz} \right)_T L_T \right|.$$
 (2.64)

The equilibrium pressure gradient in the entrance was calculated from the equilibrium test section downstream using the contraction ratio

$$\left(\frac{\mathrm{d}p}{\mathrm{d}z}\right)_{\mathrm{E}} = \beta^2 \left(\frac{\mathrm{d}p}{\mathrm{d}z}\right)_{\mathrm{T}}.$$
(2.65)

It was found that the correction for the friction losses in the entrance tube was significant only for the three largest contraction ratios, in this case being 0.636, 0.411 and 0.213. Reanalysis of previous data resulted in a higher value of  $C_{con}$  and

was said to be due to the fact that the entrance section was not long enough to permit fully developed flow before reaching the contraction. Also concluded is that an upstream diameter greater than twice the diameter of the downstream tube may be considered an infinite reservoir. Reynolds numbers as low as 5 were obtained.

Boger and Ramamurthy (1970) placed the tapping only on the downstream test section at 2 feet (608 mm) intervals along the downstream test section, with the first tap only 1 diameter from the contraction plane when measuring loss coefficients for viscous power-law fluids.

Jadallah (1980) measured the axial pressure gradients upstream and downstream of the contraction and extrapolated the fully developed pressure gradient to the contraction plane to determine the pressure drop across the contraction.

Ma (1987) also measured the axial pressure gradients along the upstream as well as the downstream tangent lines. He used the total pressure drop method by selecting one point upstream and one point downstream. He however measured the pressure gradient for the straight pipe sections as well, and did not have to calculate the friction factor from pipe flow theory.

Pienaar (1998) measured the pressure 50 diameters upstream and downstream of the contraction and calculated the friction loss from the wall shear stress for Newtonian fluids

$$\tau_o = \mu \frac{8V}{D} \tag{2.16}$$

and for non-Newtonian fluids

$$\frac{32Q}{\pi D^3} = \frac{8V}{D} = \frac{4n}{K^{\frac{1}{n}} \tau^3_0} \left( \tau_0 - \tau_y \right)^{\frac{1+n}{n}} \left[ \frac{(\tau_0 - \tau_y)^2}{1+3n} + \frac{2\tau_y(\tau_0 - \tau_y)}{1+2n} + \frac{\tau^2_y}{1+n} \right].$$
 (2.22)

It is clear that various different methods have been used for the determination of loss coefficient data. A systematic experimental procedure is required to determine loss coefficient data that are in agreement with one another and with numerical and analytical results.

## 2.9 LAMINAR TO TURBULENT TRANSITION

Experimental results for laminar/turbulent transition in contractions are given in Table 2.6. These results are taken only from experimental results that were presented in the form of loss coefficient ( $k_{con}$ ) versus Reynolds number. The Reynolds number for the laminar/turbulent transition is denoted by Re<sub>crit</sub>. The critical Reynolds number can be taken as the intersection of the lines for laminar and turbulent flow. If determined in this way, the critical Reynolds number often lies somewhere between the lower and upper critical Reynolds number because the data start to deviate from the laminar line at Re  $\approx 200$ , after which the flow will be very unstable until it reaches fully developed flow at approximately Re  $\approx 10^4$ . McNeil *et al.* (1999) reported that for Reynolds numbers up to 50, only the viscous forces are important. The sudden change in the area will cause the flow is laminar, but the sudden change in area will cause the flow to enter the pipe jet-like and inertia forces

must be considered. This behaviour is similar to turbulent flows. Work done on non-Newtonian fluids often included Newtonian fluids as the data fell on the same line. For Newtonian fluids,  $Re_N$  is used whereas for non-Newtonian fluids  $Re_{MR}$  or  $Re_3$  is used.

| CONTRACTION RATIO, | Recrit     | REFERENCE            |
|--------------------|------------|----------------------|
| β <sub>con</sub>   |            |                      |
| 0.205              | 200        | Pienaar, 1998        |
| 0.445              | 200        | Edwards et al., 1985 |
| 0.463              | 200 - 1800 | Pienaar, 1998        |
| 0.500              | 3913       | Ma, 1987             |
| 0.660              | 200        | Edwards et al., 1985 |

 Table 2.6: Laminar/turbulent transition for contractions

The reason for the discrepancy in the results of Ma (1987) compared with those of Pienaar (1998) and Edwards *et al.* (1985) is possibly due to the fact that the lowest Reynolds number that was tested was 500, already in the transition region. Edwards *et al.* (1985) tested up to Reynolds numbers of 500, just enough to show that the loss coefficient starts to deviate from the laminar line at Re  $\approx$  200.

## 2.10 PREDICTION OF LOSS COEFFICIENTS AND COMPARISON WITH EXPERIMENTAL DATA

#### 2.10.1 Laminar Flow

Edwards *et al.* (1985) correlated their results for  $\beta_{con} = 0.445$  and  $\beta_{con} = 0.660$  as

$$k_{con} = \frac{110}{Re}$$
(2.66)

and

STATE GENERAL

$$k_{con} = \frac{59}{Re}$$
(2.67)

respectively, using  $Re_N$  for Newtonian fluids and  $Re_{MR}$  for fluids with pseudoplastic behaviour.

Ma (1987) correlated the results for  $\beta_{con} = 0.5$  as

$$k_{con} = \frac{900}{Re}$$
(2.68)

using  $Re_N$  for Newtonian fluids and  $Re_{MR}$  for fluids with pseudoplastic behaviour and those fluids exhibiting a yield stress.

Pienaar (1998) correlated the results for  $\beta_{con} = 0.205$  and  $\beta_{con} = 0.463$  as

$$k_{con} = \frac{1300}{Re}$$
(2.69)

and

$$k_{con} = \frac{640}{Re}$$
(2.70)

1

respectively, using  $Re_N$  for Newtonian fluids and  $Re_{MR}$  for fluids with pseudoplastic behaviour and  $Re_3$  for fluids with a yield stress.

Rao (1986) suggested the following equation to calculate  $k_{con}$  for Re < 250 both Newtonian and non-Newtonian fluids, provided that the appropriate Reynolds number is being used,

$$k_{con} = 1.32 + \frac{159(1-\beta_{con}^2)}{Re}$$
 (2.71)

ESDU (1989) suggested a similar expression for the prediction of the loss coefficient in laminar flow for Newtonian fluids that is valid for  $\text{Re} < 10^4$ ,

$$k_{con} = \left(0.32 + \frac{159}{Re}\right) (1 - \beta_{con}).$$
 (2.72)

McNeil and Morris (1995) used a semi-empirical mechanistic approach to develop a one-dimensional flow model for predictions of frictional losses through expansions and extended this approach to contractions. The procedure for calculating the loss coefficient involves the following:

• Determine the diameter ratio,  $\beta$ , and the geometry factor,  $G_N$ 

$$G_{\rm N} = 0.127 \, (1 - \beta^2) \tag{2.73}$$

• Determine the throat Reynolds number, Ret

$$\operatorname{Re}_{t} = \frac{\operatorname{Re}_{u}}{\beta}$$
(2.74)

Determine the core-area fraction, α<sub>t</sub>

$$\alpha_{t} = 0.5 + \gamma \left( 1 - \exp(-B) (G_{N} \operatorname{Re}_{t})^{\frac{\gamma_{3}}{2}} \right)$$
 (2.75)

where

$$\gamma = 0.23 \left( 1 - \beta^{10} \right) \left( 1 - \exp(-10 \left( 1 - \beta^{1.04} \right) \right) \right)$$
(2.76)

$$B = 0.04 + 0.001 \exp(6\beta^{3.5})$$
 (2.77)

 Determine the throat momentum (c<sub>mt</sub>) and kinetic energy correction (c<sub>et</sub>) factors where

$$c_{\rm mt} = \frac{0.6220}{\alpha_{\rm t}} + \frac{0.04466}{(1-\alpha_{\rm t})}$$
(2.78)

$$c_{\rm et} = \frac{0.4906}{\alpha_{\rm t}^2} + \frac{0.009437}{(1-\alpha_{\rm t})^2}$$
(2.79)

Determine the throat friction-factor coefficient, λ<sub>t</sub>

$$\lambda_{t} = 16 + 22.27 \left[ \frac{(\alpha_{t} - 0.5)}{(0.75 - \alpha_{t})} \right]^{0.858}$$
(2.80)

Determine the loss coefficient, k<sub>N</sub>

$$\mathbf{k}_{N} = (1+\beta^{2})(\mathbf{c}_{mt} - \mathbf{c}_{mu}\beta^{2}) + \beta^{4}\mathbf{c}_{eu} - \mathbf{c}_{et} + \frac{4}{3}\frac{(1-\beta)}{3(1+\beta)Re_{t}G_{N}}\left[\lambda_{t}(1+2\beta) + \beta^{2}\lambda_{u}(2-2\beta-3\beta^{2})\right].$$
(2.81)

The deficiencies highlighted by McNeil and Morris (1995) were that not all the data was modelled because the data available did not give enough insight into the flow behaviour of the fluid through the contraction, and more experimentation is needed. Another concern was the use of the unproven two-stream model in interpreting the data. The determination of the flow mechanisms is essential and more fundamental measurements are needed to develop and validate the approach.

A comparison of Eq. (2.66), (2.68) and (2.70) with experimental results is shown in Figure 2.10 as well as a comparison of the correlations obtained by Edwards *et al.* (1985), Ma (1987) and Pienaar (1998). The expression suggested by Rao (1986) is based on the experimental work done by Edwards *et al.* (1985). The correlation and the experimental data of Ma (1987) fell within the experimental scatter of the experimental loss coefficient data of Pienaar (1998). The experimental data represents Newtonian fluids as well as fluids with pseudoplastic and yield pseudoplastic behaviour. It is not clear why the experimental results of Pienaar (1998) and Ma (1987) are different from the experimental results of Edwards *et al.* (1985). Both Ma and Edwards measured the pressure gradient upstream and downstream, while Pienaar measured the total pressure drop across the entire system. One would therefore expect the work of Edwards *et al.* and Ma to correlate better because a similar methodology was applied compared with that of Pienaar.

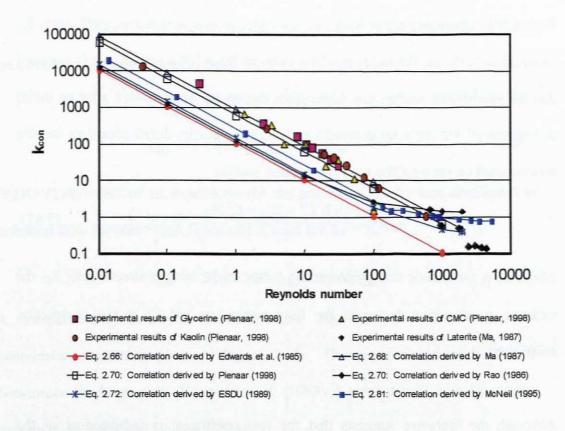



Figure 2.10: Comparison of correlations for laminar flow with experimental data for a contraction ratio  $\beta \approx 0.5$ 

### 2.10.2 Turbulent Flow

Miller (1978), ESDU (1989) and Idelchik (1986) presented design methods to predict pressure losses through pipe contractions based on experimentally determined pressure loss coefficients.

The static pressure drop due to the contraction is given by ESDU (1989) as

$$\Delta p = \frac{1}{2} \rho V_2^2 \left( k_{\text{con}} + \alpha_3 - \alpha_0 \beta_{\text{con}}^2 \right)$$
(2.82)

where  $\alpha_3$  and  $\alpha_0$  are the kinetic energy correction factors which allow for nonuniform velocity profiles and  $\beta_{con}$  is the contraction ratio expressed as the area ratio of the smaller to the larger pipe. Kays (1950) developed a theory for the prediction of contraction loss coefficients for Newtonian fluids for Reynolds numbers ranging from 500 to 10000. It is assumed that the mechanical energy loss takes place during the re-expansion after an initial contraction (C<sub>c</sub>) to the *vena contracta* and requires velocity distribution data and the area contraction ratio for the *vena contraction* section.

$$k_{con} = \frac{1 - \alpha_{l}\beta^{2}C_{c}^{2} - 2C_{c} + C_{c}^{2}2k_{d3}}{C_{c}^{2}} - (1 - \beta_{con}^{2}), \qquad (2.83)$$

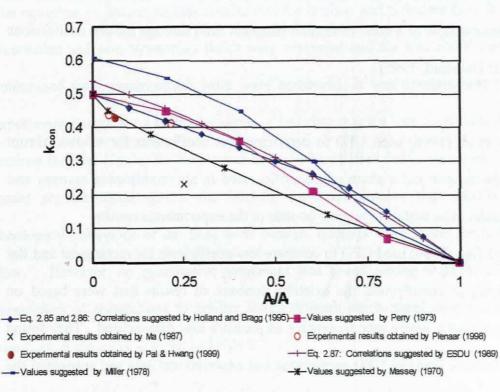
where  $\alpha_1$  is the kinetic energy correction factor at the vena contracta side,  $k_{d3}$  the momentum correction factor at the flow expansion and  $C_c$  is the contraction coefficient.

Although the literature suggests that the loss coefficient is independent of the Reynolds number at high velocities, Bullen *et al.* (1987) suggest a Reynolds number dependence at high velocities and present another method of prediction. The work was an extension to that of Kays (1950), which now included the losses due to recirculation at the contraction plane and at the *vena contracta*, while taking into account the recoverable and non-recoverable pressure losses. Also presented in this work was the dependence of the loss coefficient on the inlet sharpness of the contraction plane

$$k_{\rm con} = \frac{2g\overline{A}_2^2 h_A}{Q} - \left[1 - \beta_{\rm con}^2\right]$$
(2.84)

where  $h_A$  is the actual head loss consisting of a recoverable and non-recoverable pressure loss.

Holland and Bragg (1995) presents an equation to calculate the loss coefficient  $k_{con}$  for turbulent flow of Newtonian fluids


$$k_{con} = 0.4 [1.25 - \beta_{con}]$$
 when  $\beta_{con} < 0.715$  (2.85)

$$k_{con} = 0.75[1.0 - \beta_{con}]$$
 when  $\beta_{con} > 0.715$ . (2.86)

ESDU (1989) derived an expression for the prediction of the loss coefficient in turbulent flow for Newtonian fluids that is valid for  $\text{Re} > 10^4$ 

$$k_{con} = 0.539 - 0.374\beta_{con} - 0.165\beta_{con}^2.$$
 (2.87)

A comparison of turbulent loss coefficient data from various sources with experimental results is given in Figure 2.11. The experimental work of non-Newtonian fluids given by Edwards *et al.* (1985) compared well with Newtonian data given by Perry and Chilton (1973).





# contractions

# 2.11 CFD ANALYSIS TO EXTEND EXPERIMENTAL DATA

The sudden contraction, due to its geometrical simplicity and hydrodynamic complexity, has been used as a benchmark problem in computational fluid mechanics. It is used to test various numerical methods as well as to validate the constitutive equations used to characterise the rheology of non-Newtonian fluids. The sudden contraction geometry has often been used to study the entry length and the prediction of the pressure drop in the entrance region and this work has often been associated with flows and pressure losses through contractions. This work in many cases paints only half the picture, because for viscous fluids the upstream developments may add considerably to the overall pressure loss especially in laminar flow where an upstream vortex is present (Bogue, 1959). Other numerical studies were the investigation on the effect of moderate and high Reynolds numbers on the laminar flow of a non-Newtonian Bingham fluid through sudden contractions (Vradis & Hammad, 1996).

Mumma *et al.* (1996) used CFD to determine loss coefficients for elbows, abrupt exits, gate damper and a sharp-edged orifice used in air conditioning systems and found results to be within 15% error bounds of the experimental results.

Riffat and Gan (1996) used CFD to compare loss coefficients for rectangular and flat oval elbows to complement the existing database of results that were based on experiments only, where inconsistencies in pressure loss data existed. They found good agreement between CFD predictions and experimental data and supported the use of CFD to expand the experimental studies that are expensive, laborious and time- consuming. Only one study was found that derived an approximation for the excess pressure drop using the finite-element code FLUIDITY based on a solution obtained by Sampson to the problem of flow through a sudden contraction (Sisavath *et al.*, 2002). An approximation was derived for the loss coefficient constant as shown in Eq.(2.88)

$$C_{con} = 6\pi \left( 1 - \frac{R_1^2}{R_2^2} \right).$$
 (2.88)

This work was, however, limited to creeping flow, but at a Reynolds number of 10, it approximates that of ESDU as shown in Eq. (2.72).

# 2.12 SUMMARY

The equations to determine loss coefficients for laminar and turbulent flow for both Newtonian and non-Newtonian fluids were reviewed and the loss coefficient data determined from experimental work were compared. It was demonstrated by the experimental work for a particular series of test data that the loss coefficient data in laminar flow are similar for Newtonian and non-Newtonian fluids, provided that the losses are correlated against the relevant Reynolds number that describes the rheological behaviour of the fluid best. Similar findings were found for turbulent flow. However, no quantitative agreement was found among work of different researchers or correlations to predict losses through sharp-edged contractions. A summary of the work is given in Table 2.7.

57

| ſ <del></del>                            | LAMINAR                                                                                                                                                                                                                                                                                                                   | TURBULENT                                                                                                                                                                                                                                                     |
|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NEWTONIAN                                | The loss coefficient becomes<br>inversely proportional to the<br>Reynolds number at low<br>Reynolds numbers (Miller, 1978).                                                                                                                                                                                               | The loss coefficient is independent<br>of the Reynolds number. It<br>increases as the contraction ratio<br>decreases.                                                                                                                                         |
| Equations for<br>Newtonian<br>fluids     | $k_{con} = \frac{C_{con}}{Re}$ (Eq. 2.61)<br>$k_{contr} = 1.32 + \frac{159(1 - \beta_{con})}{Re}$ (Eq. 2.71)<br>(Eq. 2.81) <sup>1</sup>                                                                                                                                                                                   | $k_{con} = 0.4 [1.25 - \beta_{con}] \text{ when } \beta_{con} < 0.71$ (Eq. 2.85)<br>$k_{con} = 0.75 [1.0 - \beta_{con}] \text{ when } \beta_{con} > 0.715$ (Eq. 2.86)<br>$k_{con} = 0.539 - 0.374\beta_{con} - 0.165\beta_{con}^{2}$ (Eq. 2.87)<br>(Eq. 2.81) |
| NON-<br>NEWTONIAN                        | $C_{con}$ is similar as for Newtonian<br>fluids.<br>Non-Newtonian behaviour can be<br>accounted for by using the<br>Reynolds number best describing<br>the rheology of the fluid. This is<br>based on work done by Edwards<br><i>et al.</i> (1985), Rao (1986), Ma<br>(1987), Pienaar (1998) and Pal<br>and Hwang (1999). | Most experimental work suggests<br>that the loss coefficients are similar<br>to those for Newtonian fluids.                                                                                                                                                   |
| Equations for<br>non-Newtonian<br>fluids | $\mathbf{k}_{\rm con} = \left(0.32 + \frac{159}{\rm Re}\right) \left(1 - \beta_{\rm con}^2\right)$                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                             |
| CFD                                      | $C_{con} = 6\pi (1 - R_1^2 / R_2^2)$ (Eq. 2.88)                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                             |

# Table 2.7: Conclusions and equations on loss coefficient data for sudden contractions

<sup>&</sup>lt;sup>1</sup> This Equation is too long to fit in space provided and can be looked up in the text on page 52. It is valid for both laminar and turbulent flow.

# 2.13 CONCLUSIONS

The flow behaviour through straight pipes for both Newtonian and non-Newtonian fluids has been described as it plays an important role in the analysis of fitting losses. The various Reynolds numbers used for Newtonian and non-Newtonian fluids were introduced and described. For Newtonian fluids, the Newtonian Reynolds number  $\text{Re}_{\text{Newt}}$  was used, for fluids exhibiting pseudoplastic and yield pseudoplastic behaviour the generalised Metzner & Reed Reynolds number  $\text{Re}_{MR}$  and the Slatter Reynolds number  $\text{Re}_3$  were used respectively.

A summary of work done on the flow behaviour of Newtonian and non-Newtonian fluids through contractions as well as the experimental investigations and the predictive correlation derived from these experiments was presented and discussed and the main conclusions are as follows:

- General agreement among the work of researchers exists for turbulent flow through contractions.
- 2. The prediction of the laminar flow loss coefficient constant, C<sub>con</sub>, is based on experimental data except for one case where it was found by an analytical method based on Sampson's rule. Good agreement was found between the model and CFD. This work was, however, not verified by experiment.
- 3. There is still little agreement between experimental work and numerical and theoretical studies. Theoretical and numerical investigators question the reliability of the experimental work to explain these discrepancies and vice versa for experimentalist.

4. The flow of a Newtonian fluid through a sudden contraction is not a solved problem owing to what has been found in the available literature.

# 2.14 RESEARCH ASPECTS IDENTIFIED

It is evident from the literature review that there are certain aspects that need to be researched. These are as follows:

- There is a lack of experimental data for flow through sudden contractions, especially at low Reynolds numbers for both Newtonian and non-Newtonian fluids.
- The data that is available from various researchers do not agree and this issue needs to be addressed and resolved before any further experimental studies can be done for any other fittings.
- Comparison between experimental data and theoretical modelling is not good and this issue needs to be addressed.
- There is a need to establish dynamic similarity for geometrically similar contractions.
- Experimental studies are very time consuming and the use of CFD to extend the existing database of knowledge (especially for pressure drop determination) for the investigation of flow through sudden contractions should be validated.
- Most investigations on sudden contractions have concentrated on the losses associated with developing flow in the entry length downstream of the contraction plane. However, for low Reynolds numbers laminar flow, the opposite is true, and the losses associated with flow phenomena upstream of the contraction plane need further qualitative and quantitative investigation.
- Using a contraction bypasses any debate regarding whether the length of the fitting should be included or excluded.
- It is fundamentally important to formulate experimental and analytical protocols to eliminate discrepancies in the final loss coefficient values because the literature contains several divergent approaches.



# CHAPTER 3 EXPERIMENTAL INVESTIGATION

# 3.1 INTRODUCTION

The flow phenomena through sudden contractions were investigated in the Flow Process Research Centre (FPRC) at the Cape Technikon with the objectives of both scrutinising, formulating and validating the experimental procedures for determining loss coefficient data for pipe fittings and to produce loss coefficient data for design purposes. Sudden contractions were used for this study because of their geometric simplicity.

A study was previously conducted at the FPRC using a versatile research instrument, the Balanced Beam Tube Viscometer (BBTV) (Slatter *et al.*, 1997; Pienaar, 1998). The results were compared with similar experimental studies in the literature. The results Jadallah (1980) obtained were lower than that of Pienaar (1998) and those obtained by Ma (1987) were higher than those of Pienaar. The difference in results was especially evident in the laminar region. It was clear from a state-of-the-art literature review (Pienaar *et al.*, 2001), that the deviations in results for what is perceived as a relatively simple problem were unacceptable. It is therefore critically important that some light be shed on the discrepancy of published results before any further work can be undertaken for all types of pipe fittings. An experimental rig was designed, constructed and commissioned to investigate this problem and to extend the work done on non-Newtonian fluids flowing through

contractions to three diameter ratios. Jadallah (1980) tested two contraction ratios and Ma (1987) tested one.

In this chapter the following aspects will be discussed:

- The experimental apparatus.
- The experimental procedure.
- The error analysis.
- Water results in straight pipes.
- Properties of fluids.

#### 3.2 DESCRIPTION OF THE EXPERIMENTAL RIG

The experimental apparatus consisted of a 50mm progressive cavity positive displacement pump, two flow meters (a magnetic flow meter and a mass flow meter), a 42.26mm internal diameter upstream straight pipe section and a specially machined contraction union allowing for fitting straight pipe sections of various diameters downstream. A schematic diagram of the apparatus is given in Figure 3.1.

The 200-litre storage tank was fitted with a mixer driven by a motor of 1.5 kW to ensure that solids were kept in suspension during the experiments with slurries. The pump was fitted with a variable speed drive to enable tests at different flow rates. A three-way valve was located at the pump outlet to allow a by-pass of fluid back to the storage tank to enable the measurement of low flow rates in the contractions. The fluid passed through a heat exchanger followed by a surge damper 50mm in diameter and 0.4m high. The fluid then passed through the two flow meters in series.

Two flow meters were used to ensure accurate flow measurements.

- A Krohne IFC 010D electromagnetic flow meter of 42mm internal diameter was mounted vertically.
- A mass flow meter (Massflo<sup>®</sup> by Danfoss Instrumentation) with an internal diameter of 21mm was installed horizontally. The flow meter is made of stainless steel and measures flow directly in kg/h, as well as density, temperature and sugar concentration (Brix). The signal converter MASS 6000 has a current output of 4 20 mA, a load less than 800 ohm and an adjustable 0 30 seconds time constant. The low-flow cut-off is 0 9.9% of the maximum flow rate.
  The flow meters were calibrated using the "bucket and stopwatch" method.

The upstream and downstream straight pipe sections were each 5m long to ensure fully developed flow at the inlet and redevelopment downstream of the contraction. The pipes were fitted with pressure tappings to measure the pressure grade line across the contractions. The distance between the tappings was decreased and increased logarithmically towards and after the contraction. The tappings were constructed by machining solid PVC rods of 30mm diameter. A 12mm bore was also drilled half way and threaded for the valves to be screwed in. These sections were glued at the specified distances. The tappings of 3mm were drilled carefully in the pipe walls with length to diameter ratios greater than four to ensure accurate readings (Hanks, 1975; Goldstein, 1983). All burrs were carefully removed from the inside edge of each tapping. All threads were assembled with thread tape to prevent any leakages. After this, the pipe internal diameter was measured before the pipe was mounted on the rig. The pipes and tappings were mounted horizontally using a spirit level.

All pressure tappings were connected to 3mm Nylon tube pressure lines filled with water. The pressure from the test point was transmitted to the pressure transducers by opening the valve that connects the tapping to the pressure line. The valves as well as the pressure tappings were numbered from 1 to 24.

Solids pods were installed between the pressure tap and the pressure line to collect any solid particles coming from the test fluid, preventing it from entering the pressure lines and the transducers. Each pod was fitted with a valve on top for flushing away any air bubbles and at the bottom for flushing away the solid particles or viscous fluids to the collecting gutter. Four valves on the main pressure line allowed isolation of lines 1, 2, 3 or 4 so that the differential pressure could be measured between different tappings. A schematic diagram of this is given in Figure

64

3.2.

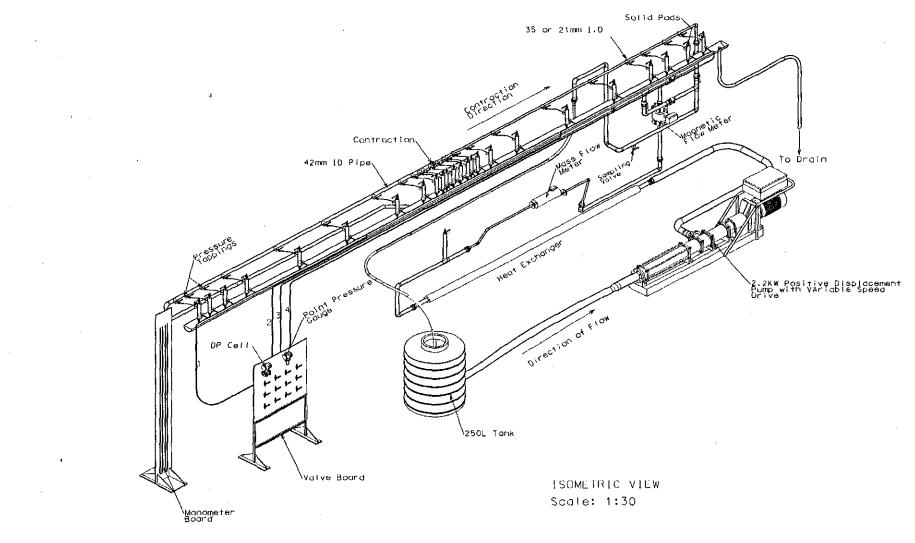



Figure 3.1: Schematic diagram of experimental apparatus

VG Pienaar: Viscous Flow Through Sudden Contractions

65

Experimental Investigation

Chapter 3

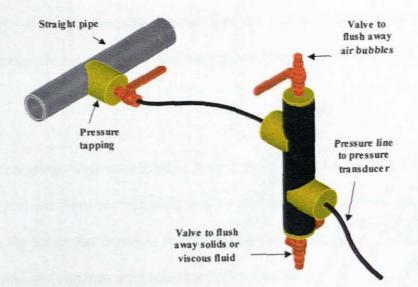



Figure 3.2: Pressure tapping, solids pod and connection to pressure transducer

Two types of pressure transducers were used for measuring the pressure grade line and the differential pressure difference across the straight pipe:

- A Fuji Electric point pressure transducer (PPT) type FHPWO2V1-AKCYY OY
   [GP] serial number A1K15295 version 25.0. It has a maximum range of 130 kPa with an accuracy of 0.25%. The output of this instrument is a DC current ranging from 4 to 20 mA, which is proportional to the applied pressure. The ranges and span are adjustable electronically with a Hand Held Communicator (HHC) to a turndown ratio of 10.
- A Fuji Electric differential pressure transducer (DP cell) type FKKW35V1-AKCYY AA [DP] serial number A1F1026T version 25.0 was used to measure differential pressure between two points. It has the same characteristics as the

PPT, i.e., maximum range of 130 kPa turned down to a minimum of 13kPa with an accuracy of 0.25%, using the HHC.

The hand-held communicator [HHC] used was a Fuji Electric type FXW 10 AY1-A3. This portable instrument allowed communication with both DP cell and PPT. It has some interesting features such as data display, range, span, time constant, unit, calibration, etc. It was used mainly to change the ranges and to check the data display with the logged values on the test program.

Two U-tube manometers were used for calibration of the pressure transducers:

- a mercury-water manometer was used for calibration in the higher pressure range (≥ 20 kPa);
- a water- air manometer was used to calibrate in the lower pressure range (≤ 20 kPa).

A data acquisition system was used to collate the data. It consisted of an HP 34970A data acquisition / switch unit equipped with various channels to convert analogue signals from the pressure transducers and flow meters to digital signals that are logged to the computer. The 4 - 20 mA transducer outputs are converted to 0.4 - 2 V using a precision 250  $\Omega$  resistor. The computer used with the DAU was a Celeron 300 that captured and processed all the data. Test programs were written in Visual Basic 6. The data analysis was done using a programmed Microsoft Excel spreadsheet.

The rheology of the test fluids was also obtained from a Paar Physica MCR 300 rotational rheometer. This instrument was used in cases where the fluids were less viscous and for which sufficient laminar flow could not be achieved on the straight pipes of the Fitting Rig. Those fluids were tested in the rheometer over the same range of shear rates and temperatures encountered during the HGL test.

#### 3.3 STRAIGHT PIPES

The internal pipe diameter (D) was determined by measuring the mass of water ( $M_w$ ) required to fill a known length of pipe (L). The diameter was then calculated from Eq. (3.1).

$$D = \sqrt{\frac{4M_w}{\pi \rho_w L}}$$
(3.1)

The diameter was measured between various tapping distances for each pipe. The same procedure was followed for each pipe and the average internal diameter for each pipe is given in Table 3.1.

| NOMINAL DIAMETER [mm] | INTERNAL DIAMETER [mm] |
|-----------------------|------------------------|
| 13                    | 9.28                   |
| 25                    | 21.0                   |
| 40                    | 36.0                   |
| 50                    | 42.3                   |

Table 3.1: Nominal diameter and internal diameter of pipes used

# 3.4 CONTRACTING UNION

The upstream pipe diameter was kept constant while the downstream pipe was replaced by one of different diameter. A specially machined union was used to construct the sudden contraction. The pipes were mounted flush leaving no gaps that would influence the flow patterns. The upstream and downstream pipe diameters and the resulting contraction ratio in both diameter and area ratio of downstream to upstream pipes are shown in Table 3.2.

Table 3.2: Contraction ratios obtained for upstream and downstream pipes

| UPSTREAM<br>DIAMETER<br>[mm] | DOWNSTREAM<br>DIAMETERS<br>[mm] | DIAMETER<br>RATIO, β<br>[D <sub>D</sub> /D <sub>U</sub> ] | $\begin{array}{c} \text{AREA RATIO, } \beta^2 \\ [A_D/A_U] \end{array}$ |
|------------------------------|---------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------|
| 42.3                         | 9.28                            | 0.219                                                     | 0.0480                                                                  |
| 42.3                         | 21.0                            | 0.496                                                     | 0.246                                                                   |
| 42.3                         | 36.0                            | 0.851                                                     | 0.724                                                                   |

#### 3.5 EXPERIMENTAL PROCEDURE

This section will describe the experimental procedure used to obtain the measured variables, i.e., velocity and pressure drop. The experimental procedure consists of calibrating the instruments, measuring the pressure drop in the straight pipe sections to determine the viscous properties of the fluid, and to measuring the pressure grade line across the contraction.

# 3.5.1 Calibration

Prior to any experimental study it is important to ensure that the instruments give reliable results. This is achieved by means of calibration.

# 3.5.1.1 Differential Pressure Transducer

The differential pressure transducer was calibrated for ranges ranging from 0 to 130 kPa using a U-tube manometer. The procedure is described below.

- 1. Air bubbles and solids are flushed from all lines using the main water supply connected to the pressure line.
- 2. The differential pressure transducer is connected to the manometer so that the high and low-pressure sides are connected to the high and low-pressure sides of the U-tube manometer.
- 3. A differential head, corresponding to the upper bound of the range, is set up in the glass tubes of the U-tube manometer.
- 4. The differential head is physically measured with a fixed tape measure within  $\pm 1$  mm accuracy while at the same time the DP cell output is logged.
- 5. The differential head is then decreased uniformly in 10 parts and step 4 repeated, until the equilibrium is attained.

The calibration equation is obtained by performing a linear regression on the pressure based on the differential heads and the transducer DC voltage output. The coefficient of correlation  $R^2$  should be at least 0.9999, as shown in Figure 3.3.

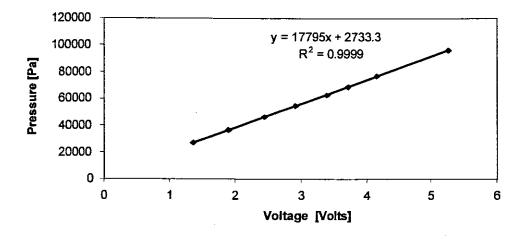



Figure 3.3: Typical calibration curve for differential pressure transducer

# 3.5.1.2 Flow meter

The two flow meters work on two different basic principles, i.e., gravimetric and magnetic; they were mounted in series to measure the same flow rate. Having the two flow meters in series was particularly useful when non-conductive materials such as the Newtonian viscous oil was tested, in which case the magnetic flow meter did not work. The flow meters were calibrated using the bucket and stopwatch method. Care was taken that the flow readings from the two instruments were always the same to within  $\pm 0.001$  l/s. When the discrepancies were significant between the two instruments (especially at very low flow rates), the flow rate was measured using the bucket and stopwatch method. The minimum flow rates that could be measured accurately by the magnetic and mass flow meter were 0.05 and 0.02 l/s respectively.

# 3.5.2 The Test Procedure

The final product of a test is the plot of  $k_{con}$  versus Reynolds number. To achieve this, the following steps were followed and will be described in detail in following sections:

- The fluids are loaded in the rig and circulated for approximately thirty minutes to ensure a consistent and homogeneous mixture so that a representative sample can be taken.
- A sample is taken from a sampling tap to measure the relative density.
- A straight pipe test is done for the rheological characterisation as described in Section 3.5.4. A sample is sent to the rheometer for comparison.
- The pressure grade line is measured (PGL test) from tap 5 up to 20 as described in Section 3.5.3.
- The pump speed is increased, the pressure grade line is measured and k<sub>con</sub> computed as shown in Eq. (2.58).
- This is done until the maximum output of the pump or pressure transducers is reached.
- Plot k<sub>con</sub> versus Reynolds numbers.
- The overall procedure is repeated for other fluids. The loss coefficient constant is calculated from all the data in the laminar region below the transitional Reynolds number of 200 as described in Chapter 4.

# 3.5.3 Pressure Grade Line Test

The measurement of the pressure grade line was very tedious and care had to be taken to ensure the right operating conditions to obtain the best pressure drop results. Because only one transducer was used to take the readings at 16 pressure tappings (as shown in Figure 3.4), it was important to ensure that the flow was steady before pressure drop readings could be taken. An operator was required to open the valves to each pressure pod at exact intervals to reduce variability of results. The procedures are described in detail below.

# 3.5.3.1 Obtaining Steady Flow

The pressure grade line test required two operators. The pump is switched on, and the fluid is left to run for a while to obtain steady flow. All pods must be flushed and filled with water beforehand.

Valve number 5 (Fig. 3.4) is opened to the pressure line. Readings are taken on the same point to ensure that the flow is steady. To ascertain this, the pressure was measured at the same flow rate and the pressure was logged and a plot of pressure versus time was constructed. Typical plots of unsteady flow, either increasing or decreasing, are shown in Figure 3.5 and steady flow is shown in Figure 3.6.

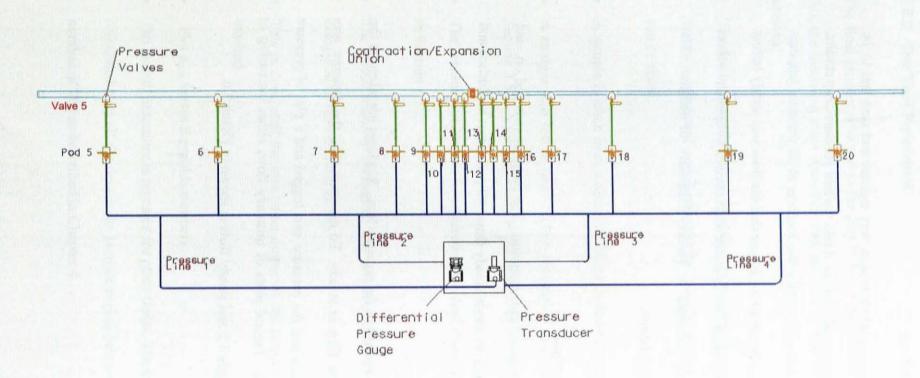
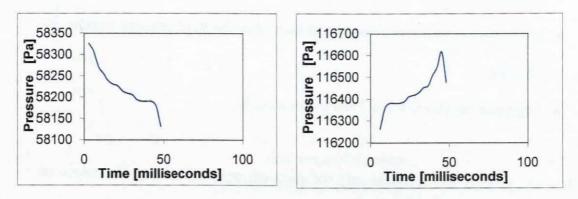




Figure 3.4: Layout of test rig before automation with only one point pressure transducers

74

It was observed that the pressure stabilizes after about five seconds after opening and closing a valve to a pressure pod. This elapse of time is necessary to damp the transient effects generated by the difference of pressure between pressure taps.





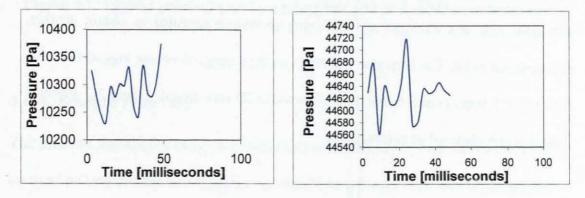



Figure 3.6: "Steady flow" pressure fluctuates evenly with time

# 3.5.3.2 Contraction Test

When the pressure became stable as shown in Figure 3.6, the test could start. The test was carried out as follows:

• Operator (A) on the computer logs the appropriate information such as: date,

test type, material type, relative density, transducer range.

- Operator (A) takes the first pressure reading, on tapping 5.
- Operator (B) closes valve 5 and opens valve 6.
- Operator (A) waits five seconds and than takes the second pressure reading, on tapping 6.
- Operator (B) closes valve 6 and opens valve 7.
- Operator (A) wait five seconds and than takes the third pressure reading, on tapping 7.
- Operator (B) closes valve 7 and opens valve 8.

The same process was repeated until the sixteenth pressure reading was taken, on valve 20. This test run yielded one point on the graph  $k_{con}$  versus Reynolds numbers. The flow rate was changed and the same procedure repeated to obtain another experimental point. The flow rate was taken as the average flow rate logged from the time valve 5 was opened to the time when valve 20 was closed. Figure 3.7 shows a typical graph obtained in contractions.

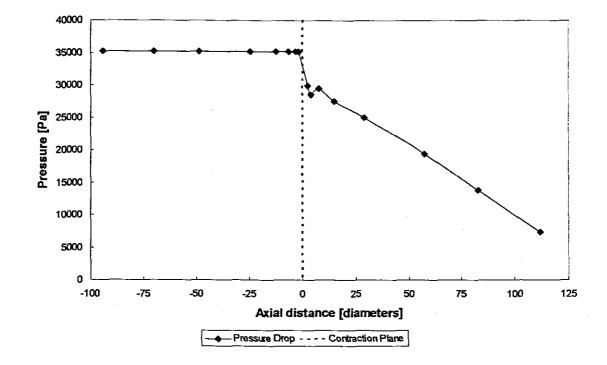



Figure 3.7: Typical graph of pressure grade line test in a sudden contraction

#### 3.5.4 Straight Pipe Test

The pressure line is divided in two parts by closing one of the four valves provided on this line between the two tappings for which the pressure drop will be measured. One half is connected to the high side of the DP cell and the other half to the lower side. The operator increases (or decreases) the flow rates smoothly and takes pressure and flow rate readings at the same time. The same procedure is repeated until the maximum (minimum) flow is reached. One reading yields one point on the graph of shear stress versus pseudo-shear rate.

This test is performed on both pipes. The graphs obtained must be co-linear in the laminar region as shown in Figure 3.8. The rheological constants are then calculated. A sample is also sent for rheological testing on an MCR300 rheometer for

comparison and to be used in cases where unsatisfactory results are obtained in the straight pipes or when the viscosity is sensitive to small changes in temperature. In this case, the relationship between the viscosity and temperature is determined by measuring the viscosity over a range of different temperatures (also known as a temperature sweep) on the rheometer. This enabled the calculation of the viscosity at the specific temperature measured for each test. This procedure was used for the oil tests.

#### 3.6 AUTOMATION OF TEST RIG

The test procedure described above (Section 3.5.3) was time consuming, having an operator opening and closing 16 valves to obtain one value of the k<sub>con</sub> versus Reynolds number chart. Operators had to be extremely careful in opening and closing the valves to avoid discrepancies in pressure reading from one tap to another tap, which often resulted in errors and discarding of results. It was therefore decided to automate the rig by installing nine point pressure transducers, four prior to and five after the contraction. This would allow measuring the complete pressure grade line at once. Four point pressure transducers (PPT) were installed upstream of the contraction and five downstream of the contraction. The only concern was that the number of pressure points measured was reduced to 9 compared to 16 previously. The effect of reducing the number of points for extrapolation of the fully developed friction gradient to the contraction plane had to be evaluated carefully. The position of the point pressure transducers is shown in Figure 3.9.

# 3.6.1 Contraction Test

This test required one operator only as opposed to the manual operation that required two operators. The procedure is as follows:

- 1. The pressures lines must be flushed beforehand to ensure that all the lines and pods are free of any air and are full of water.
- 2. All the pressure valves leading to the PPT must be opened.
- 3. The appropriate information (date, material, density, etc.) is logged.
- 4. A check is conducted (Section 3.5.3.1) to ensure that steady flow is obtained.
- 5. The appropriate range for each PPT is selected.
- 6. The pressure and flow readings is taken (this operation is repeated twice at the same settings).
- 7. The flow rate is changed and steps 5, 6 and 7 repeated until the maximum flow rate is attained on the pump or the maximum pressure on the point pressure transducers is reached.

Note: all the experimental measurements are automatically logged by the PC via the DAU. The data are automatically processed by a spreadsheet, which calculates the Reynolds numbers and the loss coefficients.

# 3.6.2 Straight Pipe Test

Another advantage of the automated system was that straight pipe data could be obtained as a difference between the pressure measurements of two point pressure transducers. As the length between those two point pressure transducers is known, the wall shear stress is obtained using Eq. (2.2),  $\tau_0 = D\Delta P/4L$ . A typical graph of the data is shown in Figure 3.8. Only laminar data were used to obtain rheological parameters (see Figure 3.9).

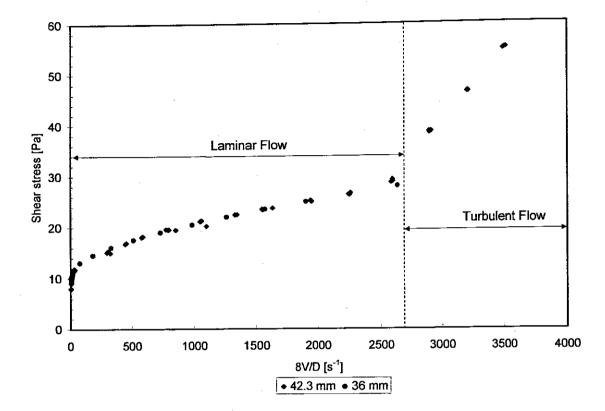



Figure 3.8: Pseudo-shear diagram obtained from the automated rig

# 3.7 Comparison of the Manual and the Automated System

In the manual system, the pressure distribution could be evaluated with 16 points, whereas in the automated system only 9 points were used. Besides this, the automated system has many advantages:

• A test run is completed in a relatively short elapse of time; the loss coefficient is not biased by any changes in the flow rate which could occur in the long time taken to complete one test on the manual system, considering the time to take the readings at 16 points one after the other.

- A better statistical analysis may be performed as the number of data points is increased.
- This system alleviate the operators exhaustion of opening and closing sixteen valves to obtain one experimental data point or the miscommunication between the two operators which could lead to the loss of experimental data.

# 3.8 EXPERIMENTAL ERRORS

When experimental work is carried out, it is important to evaluate the magnitude of uncertainty associated with the measured and computed variables.

# 3.8.1 Errors in Measured Variables

#### 3.8.1.1 Axial Distance

The axial distances of pipes was measured with a tape measure graduated in mm. The absolute error on measurement is  $\pm 0.001$  m. The average tapping distance was 0.533 m resulting in a relative error in length of  $\pm 0.2\%$ .

#### 3.8.1.2 Weight

All samples were measured with an electronic balance, accurate to  $\pm 0.001$  g. Thus a sample of say 50 g would give rise to a relative error of  $\pm 0.002$  %.

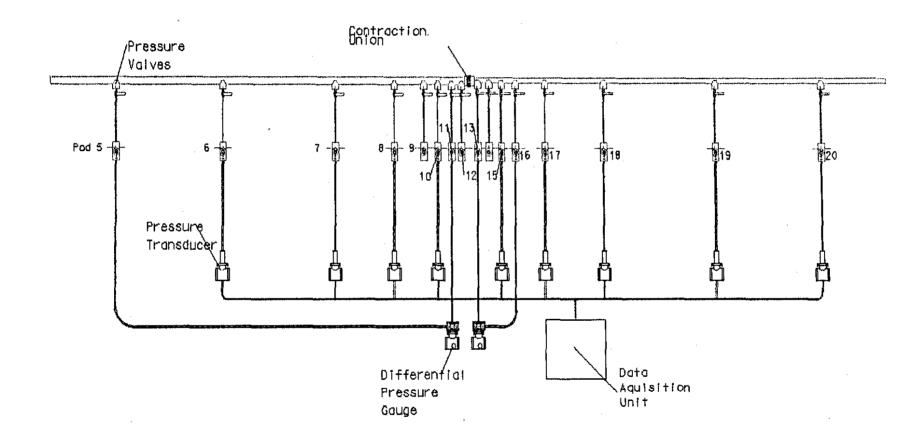



Figure 3.9: Layout of automated test rig with individual point pressure transducers

Experimental Investigation

# 3.8.1.3 Flow Rate

Flow meters used for measurement of flow rate were accurate at  $\pm 0.001$  l/s, which can be assumed as the absolute error. The average of the two instruments was taken as long as they were within  $\pm 1$  % difference. However the repeated measurement of both instruments displayed absolute errors not exceeding 0.5 % at 99.9 % confidence level, thus the overall error can be assumed as 0.71 % (quadratic mean). A cut-off flow rate of 0.02 l/s was established for the mass flow meter and 0.05 l/s for the magnetic flow meter. Below the value of 0.02 l/s, the bucket and stopwatch method was used to measure the flow rate and sufficient time was taken to fill the bucket so that errors were negligible.

#### 3.8.1.4 Pressure

The pressure transducers used were accurate at 0.25 % of the full range. Care was taken in calibrating the transducers so that a correlation coefficient of 0.9999 was attained. Such calibration gave rise to an average error of 0.24 %. Thus the overall error in pressure measurement was 0.35 % (quadratic mean).

# 3.8.2 Calculated and Combined Errors

When a quantity involves more than one independent measurement, then the errors will combine in the following way. Errors are usually assumed to be randomly distributed following the Gaussian distribution and can be quantified using the procedure recommended by Brinkworth (1968). The highest expected error can be determined using a root mean square approach.

If the quantity X is a function of N other quantities i.e,  $X = \phi$  (a, b, c, ...N), the highest expected error  $\Delta X$  can be calculated from Eq. (3.2)

$$\left(\frac{\Delta X}{X}\right)^2 = \sum \left(\frac{\partial X}{\partial N}\right)^2 \left(\frac{N}{X}\right)^2 \left(\frac{\Delta N}{N}\right)^2.$$
(3.2)

This error analysis has been used to quantify the errors for pipe diameter, wall shear stress, pseudo-shear rate and Reynolds numbers. In this section the equations used in the evaluation of the accuracy of principal derived variables are presented. Although typical numerical values are given, true values of accuracy depend on actual measured values.

# 3.8.2.1 Pipe Internal Diameter

The pipe internal diameter is a calculated variable. It is obtained from Eq. (3.1), where the measured parameters are the mass of water ( $M_w$ ) and the length (L). The highest expected error in calculating the diameter is given by Eq.(3.3), which is the combination of Eq. (3.1)and Eq. (3.2):

$$\left(\frac{\Delta D}{D}\right)^{2} = \left(\frac{1}{2}\sqrt{\frac{4}{\pi\rho_{W}M_{W}L}}\right)^{2} \left(\frac{M_{W}}{D}\right)^{2} \left(\frac{\Delta M_{W}}{M_{W}}\right)^{2} + \left(-\frac{1}{2}\sqrt{\frac{4M_{W}}{\pi\rho_{W}L^{3}}}\right)^{2} \left(\frac{L}{D}\right)^{2} \left(\frac{\Delta L}{L}\right)^{2}.$$
 (3.3)

Eq. (3.3) can be further simplified as

$$\left(\frac{\Delta D}{D}\right)^2 = \frac{1}{4} \left(\frac{\Delta M_w}{M_w}\right)^2 + \frac{1}{4} \left(\frac{\Delta L}{L}\right)^2.$$
(3.4)

The highest expected error is

$$\frac{\Delta D}{D} = \pm \frac{1}{2} \sqrt{\left(\frac{\Delta M_{w}}{M_{w}}\right)^{2} + \left(\frac{\Delta L}{L}\right)^{2}}.$$
(3.5)

# 3.8.2.2 Velocity

The velocity is derived from

$$V = \frac{Q}{A} = \frac{Q}{\left(\pi \frac{D^2}{4}\right)}.$$
 (2.14)

Application of Eq. (3.2) to the above equation gives

$$\left(\frac{\Delta V}{V}\right)^2 = \left(\frac{\Delta Q}{Q}\right)^2 + 4\left(\frac{\Delta D}{D}\right)^2.$$
(3.6)

The velocity expected highest error is then given by

$$\frac{\Delta V}{V} = \pm \sqrt{\left(\frac{\Delta Q}{Q}\right)^2 + 4\left(\frac{\Delta D}{D}\right)^2}$$
(3.7)

# 3.8.2.3 Pseudo-Shear Rate

The pseudo-shear rate is calculated as

$$\gamma = \frac{8V}{D}.$$
(3.8)

Application of Eq. (3.2) to the above equation gives

$$\left(\frac{\Delta\gamma}{\gamma}\right)^2 = \left(\frac{\Delta V}{V}\right)^2 + \left(\frac{\Delta D}{D}\right)^2 . \tag{3.9}$$

The expected highest error of the pseudo-shear rate in terms of measured variables can be expressed as follows:

$$\frac{\Delta\gamma}{\gamma} = \pm \sqrt{\left(\frac{\Delta Q}{Q}\right)^2 + 5\left(\frac{\Delta D}{D}\right)^2} . \tag{3.10}$$

# 3.8.2.4 Shear Stress

Shear stress is obtained from the relation

$$\tau_0 = \frac{D\Delta p}{4L}.$$
(2.2)

Application of Eq. (3.2) to the above equation gives

$$\left(\frac{\Delta\tau_0}{\tau_0}\right)^2 = \left(\frac{\Delta(\Delta p)}{\Delta p}\right)^2 + \left(\frac{\Delta D}{D}\right)^2 + \left(\frac{\Delta L}{L}\right)^2.$$
(3.11)

The shear stress expected highest error is then given as

$$\frac{\Delta \tau_0}{\tau_0} = \pm \sqrt{\left(\frac{\Delta(\Delta p)}{\Delta p}\right)^2 + \left(\frac{\Delta D}{D}\right)^2 + \left(\frac{\Delta L}{L}\right)^2} .$$
(3.12)

# 3.8.2.5 Reynolds Number

The Reynolds number errors are evaluated based on the Newtonian Reynolds number error as follows:

$$Re = \frac{\rho VD}{\mu}.$$
 (2.29)

Application of Eq. (3.2) to the above equation gives

$$\left(\frac{\Delta \text{Re}}{\text{Re}}\right)^2 = \left(\frac{\Delta \rho}{\rho}\right)^2 + \left(\frac{\Delta V}{V}\right)^2 + \left(\frac{\Delta D}{D}\right)^2 + \left(\frac{\Delta \mu}{\mu}\right)^2. \quad (3.13)$$

Equation (3.17) gives the Reynolds numbers expected highest error in terms of measured variables as

$$\frac{\Delta \text{Re}}{\text{Re}} = \pm \sqrt{\left(\frac{\Delta \rho}{\rho}\right)^2 + \left(\frac{\Delta Q}{Q}\right)^2 + 5\left(\frac{\Delta D}{D}\right)^2 + \left(\frac{\Delta \mu}{\mu}\right)^2}.$$
 (3.14)

# 3.8.2.6 The Loss Coefficient

The loss coefficient is determined from Eq. (2.57) as

$$k_{fitt} = \frac{\frac{\Delta p_{fitt}}{\rho g} + \frac{\alpha_{1} V_{1}^{2} - \alpha_{2} V_{2}^{2}}{2g}}{\left(\frac{V_{2}^{2}}{2g}\right)}.$$
 (2.57)

As  $V_1$  and  $V_2$  are linked by the area ratio  $\beta^2$ , the above equation can be rewritten as

$$k_{\text{fint}} = \left(\frac{2\Delta p_{\text{fint}}}{\rho V_2^2}\right) + \theta, \qquad (3.15)$$

where

$$\theta = \alpha_1 \beta^4 - \alpha_2. \tag{3.16}$$

Application of Eq. (3.2) to Eq. (3.15) gives

$$\left(\frac{\Delta k_{\text{fit}}}{k_{\text{fit}}}\right)^2 = \left(1 - \frac{\theta}{k_{\text{fit}}}\right)^2 \left[ \left(\frac{\Delta (\Delta p_{\text{fit}})}{\Delta p_{\text{fit}}}\right)^2 + \left(\frac{\Delta \rho}{\rho}\right)^2 + 4\left(\frac{\Delta V}{V}\right)^2 \right].$$
 (3.17)

The loss coefficient expected highest error in term of measured variables could then be given as

$$\frac{\Delta k_{fitt}}{k_{fitt}} = \pm \left(1 - \frac{\theta}{k_{fitt}}\right) \sqrt{\left(\frac{\Delta(\Delta p_{fitt})}{\Delta p_{fitt}}\right)^2 + \left(\frac{\Delta \rho}{\rho}\right)^2 + 4\left(\frac{\Delta Q}{Q}\right)^2 + 16\left(\frac{\Delta D}{D}\right)^2}.$$
 (3.18)

Equation (3.18) suggests that the error in  $k_{fitt}$  increases as  $k_{fitt}$  becomes smaller, and conversely the error decreases, as  $k_{fitt}$  is higher. The factor  $\theta$  highlights both the influence of the velocity profile and the diameter ratio on  $k_{fitt}$ . The highest expected errors on the computed variables are shown in Table 3.3.

|                          | EXPECTED HIGHEST ERROR (± %) |          |                       |                 |                     |
|--------------------------|------------------------------|----------|-----------------------|-----------------|---------------------|
| PIPE<br>DIAMETER<br>[mm] | Internal<br>Diameter         | Velocity | Pseudo-<br>shear rate | Shear<br>stress | Reynolds<br>numbers |
| 9.28                     | 0.43                         | 1.12     | 1.2                   | 0.37            | 1.01                |
| 21.0                     | 0.18                         | 0.8      | 0.82                  | 0.56            | 1.30                |
| 36.0                     | 0.67                         | 1.52     | 1.66                  | 0.78            | 1.94                |
| 42.3                     | 0.63                         | 1.45     | 1.58                  | 0.73            | 1.87                |

#### Table 3.3: Errors of principal computed variables

It can be shown that  $\theta$  is the highest when the pipes run both in laminar flow and for the Newtonian fluids it takes the limiting values presented in Table 3.4.

# Table 3.4: Newtonian values of $\theta$ for fittings tested

| CONTRACTION, B | θ     |
|----------------|-------|
| 0.22           | -2.00 |
| 0.50           | -1.88 |
| 0.85           | -0.95 |

# 3.9 WATER RESULTS IN STRAIGHT PIPES

Water was tested in the straight pipes to establish credibility, accuracy and precision of the experimental apparatus, the Fitting Rig.

The pipe roughness was determined by measuring the pressure drop across a known length of pipe and by comparing it with the Colebrook-White Equation, Eq. (2.10), (King, 2002). The comparison of the experimentally obtained shear stresses ( $\tau_0$ ) with that of the calculated shear stresses using Colebrook-White is shown in Figure 3.10 - Figure 3.13. The values of k determined are given in Table 3.5.

| NOMINAL DIAMETER<br>[mm] | INTERNAL DIAMETER<br>[mm] | PIPE<br>ROUGHNESS<br>[µm] |
|--------------------------|---------------------------|---------------------------|
| 13                       | 9.28                      | 0                         |
| 25                       | 21.0                      | 4.4                       |
| 40                       | 36.0                      | 0                         |
| 50                       | 42.3                      | 19                        |

Table 3.5: Pipe roughness obtained for the straight pipes

Figure 3.10 shows results obtained for the 9.28 mm pipe. It also demonstrates how more accurate results can be obtained in the lower pressure ranges by adjusting the range of the pressure transducer by means of the hand-held communicator. It also demonstrates the repeatability of the results at higher ranges using various lengths of pipe (tapping distances L) and the same transducer set to various pressure ranges. The graph is shown on logarithmic scale so that the data obtained at lower velocities can be seen clearly.

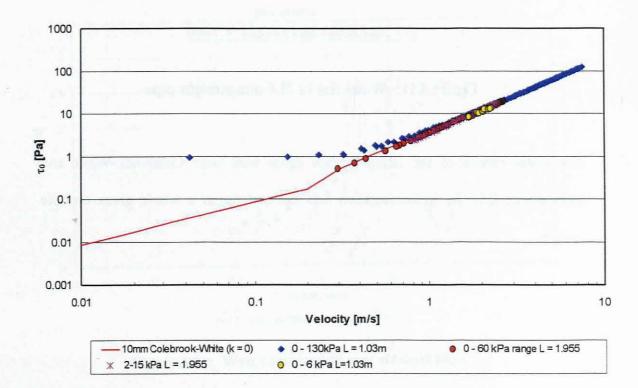



Figure 3.10: Water test in 9.28 mm straight pipe

Figure 3.11 - Figure 3.13 show the water test results in the 21 mm, 36 mm and 42.3 mm pipes. A significant scatter of the results can be seen for data obtained in the 42.3 mm pipe in comparison with the other pipes. The reason for this is that the pressure losses in this pipe are very small.

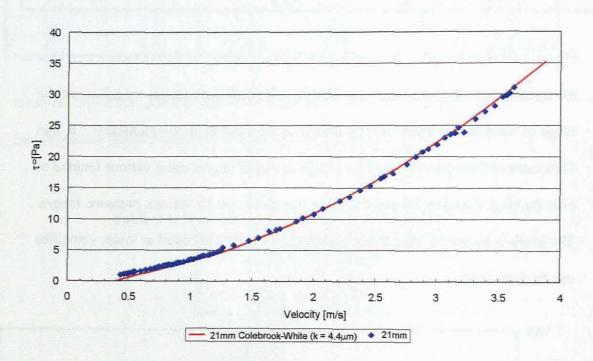



Figure 3.11: Water test in 21.0 mm straight pipe

The water results in the straight pipes agree well with Colebrook-White and demonstrate that the instrumentation and the test rig as a whole gives credible results.

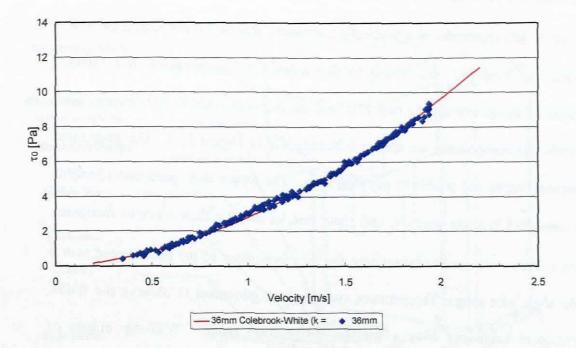



Figure 3.12: Water test in 36.0 mm straight pipe

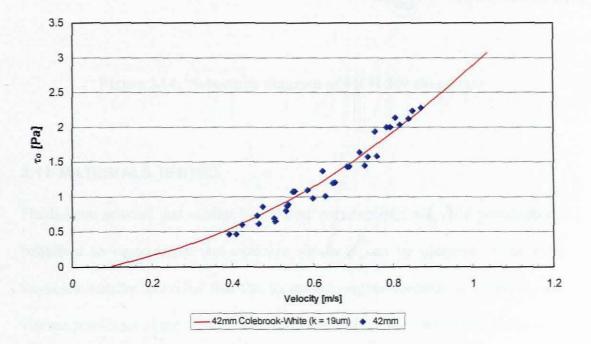



Figure 3.13: Water test in 42.3 mm straight pipe

## 3.10 PAAR-PHYSICA MCR 300 RHEOMETER

The MCR 300 rheometer is a precision instrument that sets measuring gaps with a precision of 1 micron and is able to detect angular displacements of 1 µrad; it consists of the power supply unit PS1 and the rheometer MCR 300. The function controls and components are shown schematically in Figure 3.14. The instrument generates torque and is able to adjust speeds. The torque and speed measurements are converted to shear stress,  $\tau$ , and shear rate,  $\dot{\gamma}$ , called a flow curve or rheogram. Flow curves were used to investigate the flow behaviour of the fluids tested over a wide shear rate range. Temperature sweeps were generated to observe the fluids' rheological behaviour over a specific temperature range. Wall-slip effects of smooth-walled geometries have been reported when testing suspensions at high concentration (Chhabra & Richardson, 1999). A sandblasted bob was used to minimise slip effects when testing kaolin slurries for this work.

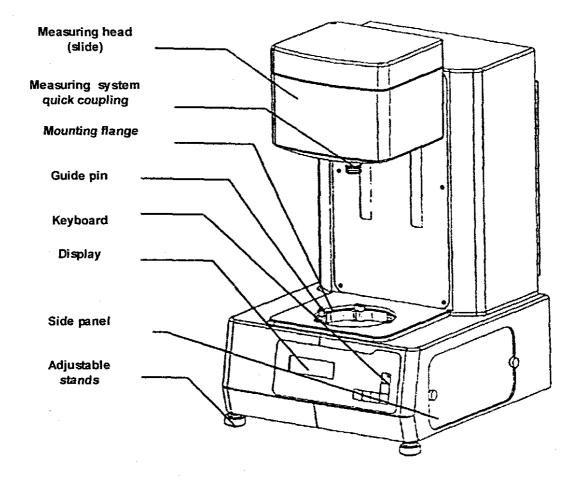



Figure 3.14: Schematic diagram of MCR 300 rheometer

## 3.11 MATERIALS TESTED

Fluids were selected that exhibit Newtonian, pseudoplastic and yield pseudoplastic behaviour to demonstrate that dynamic similarity can be obtained at the same Reynolds number, provided that the Reynolds number correctly accounts for the viscous properties of the fluid. The fluids selected for the tests in this thesis were water, glycerol solutions, SAE Oil (Newtonian behaviour), Carboxy Methyl Cellulose (CMC) (pseudoplastic behaviour) and kaolin slurries (yield pseudoplastic behaviour) as previously shown in literature (Edwards *et al.*, 1985; Slatter & Pienaar, 1998). Glycerol solutions were used initially as the Newtonian fluid, but owing to excessive air entrainment that occurred during pumping, it was decided to replace them with lubricating oil, SAE. A detailed description of these fluids is given in the sections below.

The objective of this thesis is not about rheological characterisation methods of fluids as this is a science on its own. Standard rheological equipment (Paar-Physica MCR 300) and standard methods of rheological characterisation were used to characterise the fluids and to compare them with straight pipe results. Where possible, straight pipe results were used. Results from the rheometer were only used when insufficient laminar flow data were obtained in the tubes.

#### 3.11.1 Glycerol

Pure glycerol was diluted with tap water to obtain 75 % and 90 % concentrations. The viscosity of these solutions was sensitive to temperature variation and care was taken to record the temperature of each test to ensure that the appropriate viscosity is applied to calculate the Reynolds number. A sample of the glycerol purchased for the tests was tested before dilution with the rheometer to obtain the viscosity at 25 °C. The relative density was determined to be 1.258 and the viscosity 0.682 Pa.s as shown in Figure 3.15.

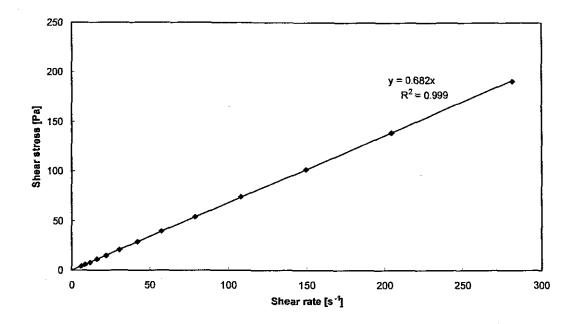



Figure 3.15: Laboratory test of glycerol at 25°C and relative density of 1.2583

Densities and viscosities of glycerol solutions (Perry, 1984) are presented below in Table 3.6. Interpolation of the relative densities and viscosities from this table yield a viscosity of 0.685 Pa.s that is comparable to what was obtained from the rheology laboratory.

|                      | AQUI               | EOUS GLYCI                      | EROL SOLUT                      | IONS  |       |  |  |
|----------------------|--------------------|---------------------------------|---------------------------------|-------|-------|--|--|
|                      |                    |                                 | Viscosity, mN.s.m <sup>-2</sup> |       |       |  |  |
| % Weight<br>glycerol | Grams per<br>Liter | Relative<br>density<br>25°/25°C | 20°C                            | 25°C  | 30°C  |  |  |
| 100                  | 1261               | 1.262 01                        | 1 495                           | 942   | 622   |  |  |
| 99                   | 1246               | 1.259 45                        | 1 194                           | 772   | 509   |  |  |
| 98                   | 1231               | 1.256 85                        | 971                             | 627   | 423   |  |  |
| 97                   | 1216               | 1.254 25                        | 802                             | 521   | 353   |  |  |
| 96                   | 1201               | 1.251 65                        | 659                             | 434   | 296   |  |  |
| 95                   | 1186               | 1.249 10                        | 543.5                           | 365   | 248   |  |  |
| 80                   | 996.8              | 1.209 25                        | 61.8                            | 45.72 | 34.81 |  |  |
| 50                   | 563.2              | 1.127 20                        | 6.032                           | 5.024 | 4.233 |  |  |
| 25                   | 265.0              | 1.061 15                        | 2.089                           | 1.805 | 1.586 |  |  |
| 10                   | 102.2              | 1.023 70                        | 1.307                           | 1.149 | 1.021 |  |  |

 Table 3.6:
 Viscosity of glycerol solutions (Perry, 1984)

The pure glycerol was not tested in the rig because of the hydroscopic nature of the glycerol, which might have led to changes in the viscosity due to absorption of small amounts of water.

The viscosity for the 90 % glycerol solution with a relative density of 1.236 was obtained from the straight pipe tests as shown in Figure 3.16. The viscosity obtained was 0.124 Pa.s.

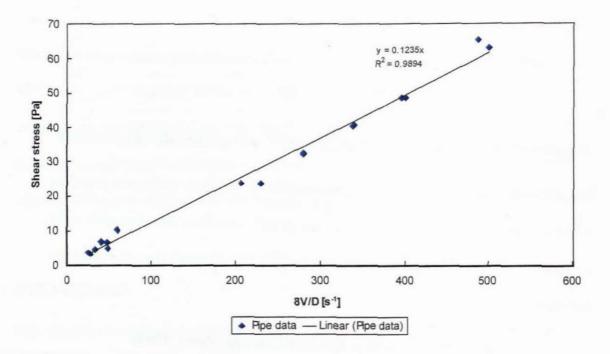



Figure 3.16: Flow curve from pipe tests for 90 % glycerol solution

## 3.11.2 Sugar Solution

Sugar solution was prepared from bags of Huletts sugar mixed with tap water. A weight concentration of 50 % was prepared. The relative density was 1.199 and the viscosity determined from the pipe tests as 0.008 Pa.s as shown in Figure 3.17. There was good agreement between the rheometer and pipe tests.

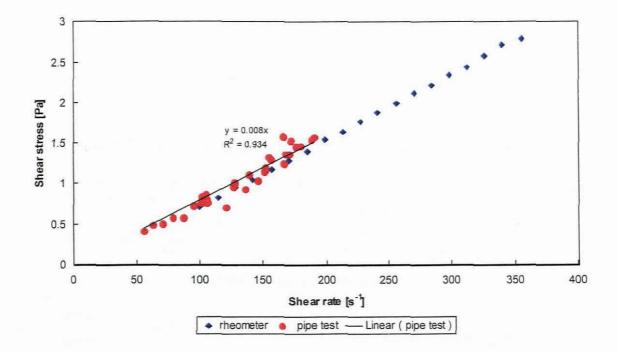



Figure 3.17: Flow curve from pipe tests and rheometer for 50 % sugar solution

## 3.11.3 Oil

Shell Helix lubricant oil was used as the viscous Newtonian fluid. The lubricant oil is based on a blend of high viscosity index mineral oils and additives. The oil was very sensitive to changes in temperature and straight pipe tests were not used to determine the viscosity, as the temperature was not always constant for each test. A temperature sweep was therefore conducted on the MCR 300 rheometer over the range of temperatures measured on the Fittings Rig, the viscosity was calculated for each test point based on the rheometer results and the temperature measured on the rig. The viscosity versus temperature results is shown in Figure 3.18.

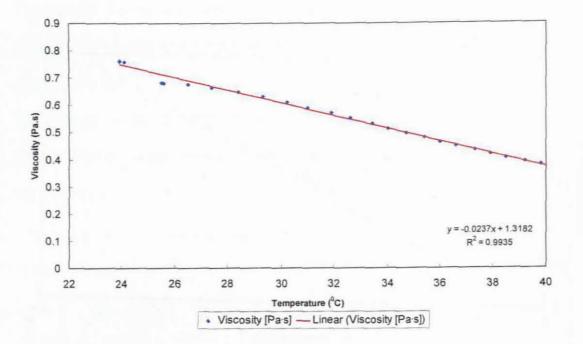



Figure 3.18: Temperature sweep for SAE 20W-50 oil

#### 3.11.4 Carboxyl Methyl Cellulose (CMC)

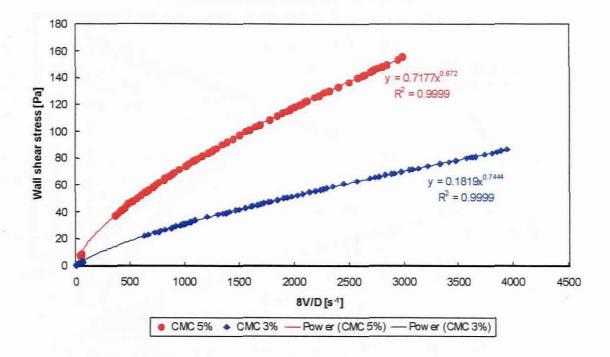
CMC is a versatile material used widely in industries, e.g., paper glue, drilling mud, protective colloid, resin emulsion, paints, etc. The CMC was supplied originally in a powder form. The CMC solutions were made up in a 1 m<sup>3</sup> storage tank by adding the powder into water slowly and agitating the solution with a mechanical mixer. Care was taken to avoid the formation of large lumps. The solution was thoroughly mixed over 48 hours before being transferred into the rig. The rheology of the material was monitored daily to check any variation in the rheological parameters. Concentrations by weight of 3 %, 5 %, 8 % and 10 % were prepared. Although it was attempted to make up the same solution for tests in each contraction, it was not possible and small variations existed in the final concentration. These variations were, however, accounted for by detailed rheological characterisation of the fluid.

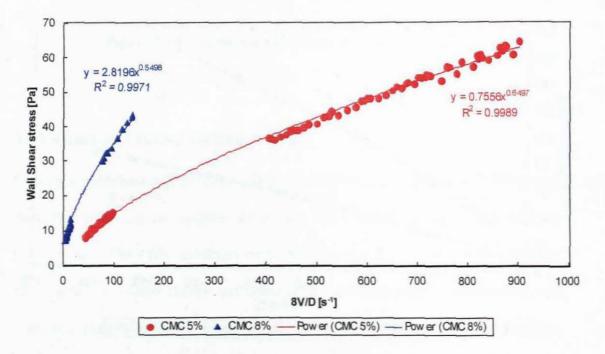
## 3.11.4.1 Contraction Ratio $\beta = 0.22$

The rheological results obtained for the CMC solutions that were tested in the contraction with  $\beta = 0.22$  are given in Table 3.7 and Figure 3.19. The actual concentrations were 3.66% and 4.41% by mass.

| Table 3.7: | Fluid | properties of | f CMC | tested in | contraction B | 3 = 0.22 |
|------------|-------|---------------|-------|-----------|---------------|----------|
|            |       | Properties of |       |           |               |          |

| SAMPLE | DENSITY<br>[kg/m <sup>3</sup> ] | K' [Pa.s <sup>n</sup> ] | n'    |  |
|--------|---------------------------------|-------------------------|-------|--|
| CMC 3% | 1021                            | 0.182                   | 0.744 |  |
| CMC 5% | 1025                            | 0.718                   | 0.672 |  |





Figure 3.19: Flow curves for CMC tested in contraction  $\beta = 0.22$ 

## 3.11.4.2 Contraction Ratio $\beta = 0.5$

The rheological results obtained for the CMC solutions that were tested in the contraction with  $\beta = 0.5$  are given in Table 3.8 and Figure 3.20. The actual concentrations were 4.59% and 7.89% by mass.

Table 3.8: Fluid properties of CMC tested in contraction  $\beta = 0.5$ 

| SAMPLE | DENSITY<br>[kg/m <sup>3</sup> ] | K' [Pa.s <sup>n</sup> ] | n'    |
|--------|---------------------------------|-------------------------|-------|
| CMC 5% | 1026                            | 0.756                   | 0.694 |
| CMC 8% | 1045                            | 2.82                    | 0.550 |





The results in Figure 3.20 were carried out in a 42.3 mm pipe and 21 mm pipe and the results obtained in each pipe are restricted either by the maximum pressure drop that can be measured with the DP cell or the minimum flow rate that can be measured by the flow meter.

## 3.11.4.3 Contraction Ratio $\beta$ = 0.85

The rheological results obtained for CMC solutions tested in the contraction with  $\beta$  = 0.85 are given in Table 3.9 and Figure 3.21. The actual concentrations were 5.33% and 7.89% by mass.

| Table 3.9: | Fluid | properties of | CMC | tested in | contraction ( | 3 = 0.85 |
|------------|-------|---------------|-----|-----------|---------------|----------|
|            |       |               |     |           |               |          |

| SAMPLE | DENSITY<br>[kg/m <sup>3</sup> ] | K' [Pa.s <sup>n</sup> ] |       | n'    |  |
|--------|---------------------------------|-------------------------|-------|-------|--|
| CMC 5% | 1030                            | C                       | 0.300 | 0.683 |  |
| CMC 8% | 1045                            |                         | 1.49  | 0.579 |  |

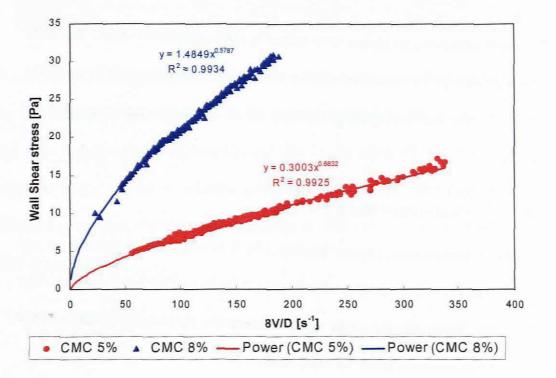



Figure 3.21: Flow curves for CMC tested in contraction  $\beta = 0.85$ 

#### 3.11.5 Kaolin

The kaolin used for this work was obtained from the Fish Hoek area in the Western Cape Province and primarily results from *in situ* weathering of Cape granite. The refining process consists of wet milling, screening and hydro cyclone beneficiation followed by mechanical-thermal drying. The mineralogical composition of kaolin is basically kaolinite with trace mica and quartz.

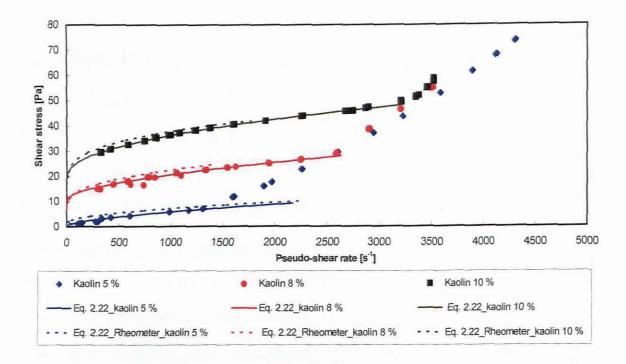
Kaolin slurry was prepared from dry kaolin powder and tap water. The mixture was left to stand for at a few days to allow for full hydration. It was then transferred into the rig. Because the particles settle slowly, the mixer was always running in the storage tank to keep the solution homogeneous.

Different concentrations of kaolin were tested in each contraction ratio. The flow curves obtained with the rheometer and the rheological parameters will be given for each  $\beta = 0.22$  and the rheological parameters for all contraction ratios are given in Table 3.12.

#### 3.11.5.1 Contraction Ratio $\beta = 0.22$

Volumetric concentrations of approximately 5 %, 8 % and 10 % were made up and tested. The actual concentrations were 4.06 %, 8.24 % and 10 % by volume. The density of the fluids was measured using a volumetric flask and is given with the rheological parameters in Table 3.10 and Table 3.11.

Rheological parameters were obtained from both the straight pipe tests and the rheometer for comparison. The values of these parameters are given in Table 3.10 and in Table 3.11 respectively.


| SAMPLE     | DENSITY<br>[kg/m <sup>3</sup> ] | $\tau_{\rm Y}$ [Pa] | K [Pa.s <sup>n</sup> ] | n     |
|------------|---------------------------------|---------------------|------------------------|-------|
| Kaolin 5%  | 1067                            | 0.38                | 0.062                  | 0.634 |
| Kaolin 8%  | 1136                            | 10.17               | 0.088                  | 0.645 |
| Kaolin 10% | 1165                            | 18.50               | 0.37                   | 0.511 |

## Table 3.10: Rheological parameters obtained from pipe tests for kaolin tested in contraction $\beta = 0.22$

| Table 3.11: | Rheological parameters obtained from rheometer for kaolin tested |
|-------------|------------------------------------------------------------------|
|             | in contraction $\beta = 0.22$                                    |

| SAMPLE     | τ <sub>Y</sub> [Pa] | K<br>[Pa.s <sup>n</sup> ] | n     | $\hat{\gamma}$ region (s <sup>-1</sup> ) |
|------------|---------------------|---------------------------|-------|------------------------------------------|
| Kaolin 5%  | 1.23                | 0.147                     | 0.514 | 10 - 632                                 |
| Kaolin 8%  | 6.85                | 0.884                     | 0.386 | 10 - 1262                                |
| Kaolin 10% | 12.1                | 3.30                      | 0.267 | 10 - 1262                                |

A comparison of the results shows excellent agreement between the rheometer and the tubes and is given in Figure 3.22. The reason for this comparison was to ensure that even if there was insufficient laminar data in the pipes, the rheometer results could be used. As far as possible when sufficient laminar flow data could be obtained in the pipe, the rheological parameters obtained from the pipe tests were used for calculations.



# Figure 3.22: Comparison of rheological parameters obtained in pipe loop and rheometer for kaolin tested in contraction $\beta = 0.22$

Rheological parameters for kaolin tested in the contractions with  $\beta = 0.5$  and 0.85 are given in Table 3.12. The actual concentrations were 9.64 %, 11.82 %, 8.48 %, and 13.15 % by volume.

| Table 3.12: | Rheological parameters obtained from pipe tests for kaolin tested |
|-------------|-------------------------------------------------------------------|
|             | in other contractions                                             |

| CONTRACTION    | SAMPLE     | DENSITY<br>[kg/m <sup>3</sup> ] | τ <sub>Y</sub> [Pa] | K [Pa.s <sup>n</sup> ] | n     |
|----------------|------------|---------------------------------|---------------------|------------------------|-------|
| $\beta = 0.5$  | Kaolin 10% | 1159                            | 16.0                | 1.12                   | 0.422 |
| $\beta = 0.5$  | Kaolin 12% | 1195                            | 16.5                | 13.2                   | 0.164 |
| $\beta = 0.85$ | Kaolin 9%  | 1140                            | 7.99                | 10.1                   | 0.183 |
| $\beta = 0.85$ | Kaolin 13% | 1217                            | 33.0                | 1.55                   | 0.506 |

The fluid viscous property range is summarised in Figure 3.23 as a plot of apparent viscosity and shear rate. Apparent viscosities of the fluids tested ranged from 0.01 -

20000 Pa.s over the shear rate range  $0.001 < \gamma < 10000 \text{ s}^{-1}$ .

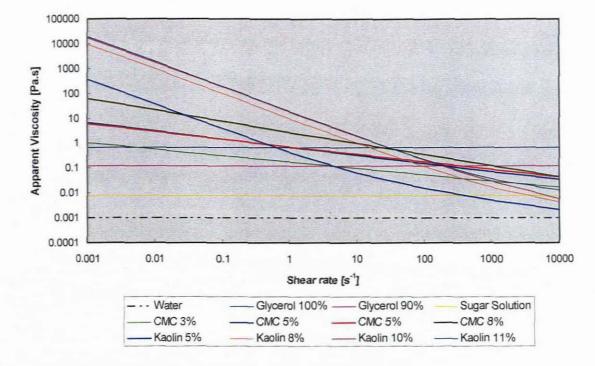



Figure 3.23: Apparent viscosity for all fluids tested

## 3.12 CONCLUSIONS

The conclusions from this work are summarised below.

- A test rig has been constructed for measuring losses in straight pipes and losses due to sudden contractions using a range of Newtonian and non-Newtonian materials.
- 2. The rig has been commissioned using clear water tests.
- The operation of the fitting rig used to collate pressure drop results for losses through sudden contractions has been described.
- The calibration and test procedures for the collection of accurate data were described.

- 5. The automation of the rig has been described and the advantages and disadvantages given.
- 6. The experimental errors have been quantified and are within acceptable limits.
- 7. The materials tested were described and an explanation was given for material choice.
- 8. Water was tested in straight pipes to establish the credibility, accuracy and precision of the test equipment. Straight pipe results correlated well with the Colebrook-White equation.
- The straight pipe tests were verified with a rheometer and the determination of fluid properties was described and discussed. The apparent viscosities of materials tested ranged from 0.001 – 20 000 Pa.s.
- 10. Data were gathered for the evaluation of losses due to sudden contractions using three contraction ratios i.e.,  $\beta = 0.22$ , 0.50 and 0.85.



## **CHAPTER 4**

## ANALYSIS OF EXPERIMENTAL RESULTS

#### 4.1 INTRODUCTION

In this chapter the analysis of the test results is explained in detail. The experimental data were analysed in various ways to evaluate the effect of these analyses on the loss coefficient,  $k_{con}$  and the loss coefficient constant,  $C_{con}$ . This was deemed necessary owing to the differences in results obtained by various researchers (Ma, 1980; Edwards *et al.*, 1985; Pienaar, 1998). The results can be analysed by using two methods. The first method is to extrapolate the fully developed pressure gradient to the contraction plane if the pressure is measured along the length of the two pipes. The second method is to measure the total pressure drop across the system by using two pressure taps only. This is experimentally a cheaper method, as only one pressure transducer is required. The two methods both have challenges in the evaluation of the results that will be discussed later in this chapter. The layout of this chapter is as follows:

- Analysis of experimental results using pressure grade line approach.
- Presentation of k<sub>con</sub> versus Re plots for diameter ratios
  - $\Rightarrow \beta = 0.22$  $\Rightarrow \beta = 0.50$  $\Rightarrow \beta = 0.85.$
- Comparison with previous results.

- Discussion of results obtained and comparison with previous results
- Effect of various methods of analysis on the loss coefficient
  - $\Rightarrow$  Effect of number of points used for extrapolation
  - $\Rightarrow$  Total pressure drop approach
  - $\Rightarrow$  Effect of length of pipe.
- Effect of rheology on the loss coefficient.
- Selection of data for determination of C<sub>con</sub>.
- Conclusions.

## 4.2 ANALYSIS OF RESULTS USING THE PRESSURE GRADELINE APPROACH

The static pressure is measured along the length of the pipes, both upstream and downstream by means of eight pressure taps initially and after automation of the rig four and five either side of the contraction. The convention is to extrapolate the fully developed pressure gradient to the contraction plane, but in practice it is often difficult to determine where the fully developed region is. For the evaluation of the results obtained in this work, points close to the contraction plane were excluded. This is shown in Figure 4.1. The point closest to the contraction plane upstream was 24.4 diameters to avoid distorted flow close to the contraction and downstream more than 100 diameters to allow for fully developed flow after the contraction. This was based on the trends observed from the pressure grade line versus axial distance plots for several fluids.

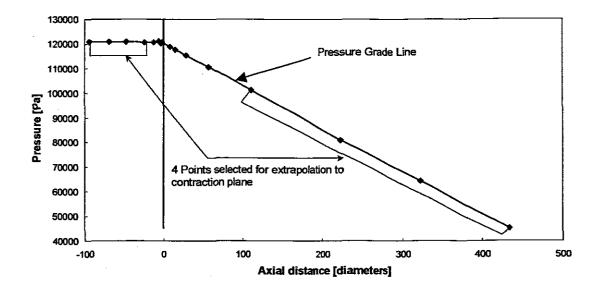



Figure 4.1: Selection of data points for extrapolation

The steps in calculating the loss coefficient were as follows:

- The slope and intercept were determined upstream and downstream using the selected data points as shown in Figure 4.1. These data points were used for all tests.
- The pressure was calculated at the contraction plane both upstream and downstream.
- The pressure drop at the contraction  $(\Delta p_{con})$  was determined by subtracting the downstream pressure from the upstream pressure at the contraction plane.
- The loss coefficient, k<sub>con</sub>, was then calculated as:

$$k_{con} = \frac{\left[\frac{\Delta p_{con}}{\rho g} + \frac{(\alpha_1 V_1^2 - \alpha_2 V_2^2)}{2g}\right]}{\frac{V_2^2}{2g}}$$
(2.57)

For Newtonian fluids, a was taken as 2 for laminar flow, for pseudoplastic

$$\alpha = \frac{3(3n+1)^2}{(2n+1)(5n+3)},$$
(2.51)

and for yield pseudoplastic fluids (Baudouin, 2003)

$$\alpha = 2\tau_0^4 \frac{M(\tau_0 - \tau_y)^2 + B\tau_Y(\tau_0 - \tau_y) + Y\tau_y^2}{\left[\frac{(\tau_0 - \tau_y)^2}{1+3n} + \frac{2\tau_y(\tau_0 - \tau_y)}{1+2n} + \frac{\tau_y^2}{1+n}\right]^3}$$
(2.52)

where  $M = \frac{3}{(3n+1)(4n+2)(5n+3)}$   $B = \frac{6}{(2n+1)(3n+2)(4n+3)}$  $Y = \frac{1}{2(n+1)^3}$ .

The loss coefficient constant, Ccon, is defined as the hyperbolic constant

$$k_{con} = \frac{C_{con}}{Re}.$$
 (2.61)

The loss coefficients were evaluated using the logarithmic least square error.

$$E = \sum \left( \ln \frac{C_{con}}{Re} - \ln k_{con \ obs} \right)^2.$$
(4.1)

Ccon is obtained by minimising E for each contraction ratio.

## 4.3 LOSS COEFICIENT DATA OBTAINED FOR THIS WORK

The loss coefficient data obtained for this work are presented below as plots of  $k_{con}$  versus Reynolds number. For Newtonian fluids the Newtonian Reynolds number [Re<sub>N</sub>] Eq. (2.29) has been used, for pseudoplastic fluids the Metzner-Reed Reynolds number [Re<sub>MR</sub>] Eq. (2.32) and for yield pseudoplastic fluids the Slatter Reynolds

number  $[Re_3]$  Eq. (2.33) (Pienaar, 1998). The effect of the rheology of the fluid and the Reynolds number will be demonstrated in Section 4.6.

### 4.3.1 Contraction $\beta = 0.22$

Water, Newtonian oil, CMC (3% and 5% by mass) and kaolin (8% and 10% by volume) were tested in the contraction of  $\beta = 0.22$ . The laminar loss coefficient constant, C<sub>con</sub>, was obtained by Eq. (4.1) using k<sub>con</sub> results at Reynolds numbers less than 10. Turbulent results were obtained at Reynolds numbers between 6000 and 70 000. An average was calculated to obtain the turbulent loss coefficient for this contraction ratio. The results obtained are given in Table 4.1 and Figure 4.2. The detailed results of the pressure drop along the axial distance across the contraction for all the fluids as well as the calculated variables are given in Appendix A.

Table 4.1: Loss coefficient data for  $\beta = 0.22$ 

| DIAMETER RATIO<br>[D <sub>D</sub> /D <sub>U</sub> ] | AREA RATIO<br>[A <sub>D</sub> /A <sub>U</sub> ] | Ccon | kcon  |  |
|-----------------------------------------------------|-------------------------------------------------|------|-------|--|
| 0.22                                                | 0.048                                           | 364  | 1.003 |  |

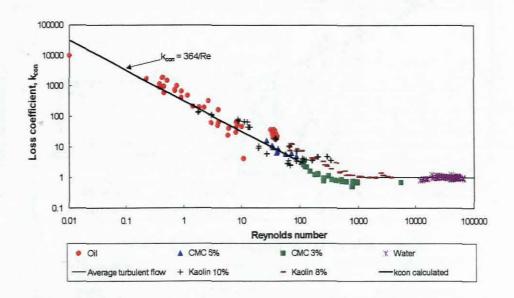



Figure 4.2: Loss coefficient data for  $\beta = 0.22$ 

## 4.3.2 Contraction $\beta = 0.5$

Water, glycerol solutions, sugar solution, CMC at concentrations of 5% and 8% by mass, and kaolin at a volumetric concentration of 13% were tested in the contraction of  $\beta = 0.5$ . The laminar loss coefficient constant, C<sub>con</sub>, was obtained by Eq. (4.1) using k<sub>con</sub> results at Reynolds numbers less than 10. Turbulent results were obtained at Reynolds numbers between 6000 and 70 000. An average was calculated to obtain the turbulent loss coefficient for this contraction ratio. The results obtained are given in Table 4.2 and Figure 4.3. The detailed results of the pressure drop along the axial distance across the contraction for all the different fluids as well as the calculated variables are given in Appendix B.

Table 4.2: Loss coefficient data for  $\beta = 0.5$ 

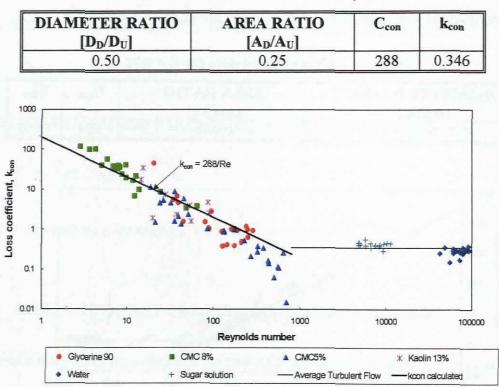



Figure 4.3: Loss coefficient data for  $\beta = 0.5$ 

#### 4.3.3 Contraction β = 0.85

Water, glycerol 100% and glycerol solution of 75%, sugar solution, CMC at concentrations of 5% and 8% by mass and kaolin at a volumetric concentration of 13% were tested in the contraction of  $\beta = 0.85$ . The laminar loss coefficient constant, C<sub>con</sub>, was obtained by Eq. (4.1) using k<sub>con</sub> results at Reynolds numbers less than 10. Turbulent results were obtained at Reynolds numbers between 6000 and 70 000. An average was calculated to obtain the turbulent loss coefficient for this contraction ratio. The results obtained are given in Table 4.3 and Figure 4.4. The detailed results of the pressure drop along the axial distance across the contraction for all the different fluids as well as the calculated variables are given in Appendix C.

Table 4.3: Loss coefficient data for  $\beta = 0.85$ 

| DIAMETER RATIO<br>[D <sub>D</sub> /D <sub>U</sub> ] | AREA RATIO<br>[A <sub>D</sub> /A <sub>U</sub> ] | C <sub>con</sub> | k <sub>con</sub> |
|-----------------------------------------------------|-------------------------------------------------|------------------|------------------|
| 0.85                                                | 0.72                                            | 155              | 0.145            |

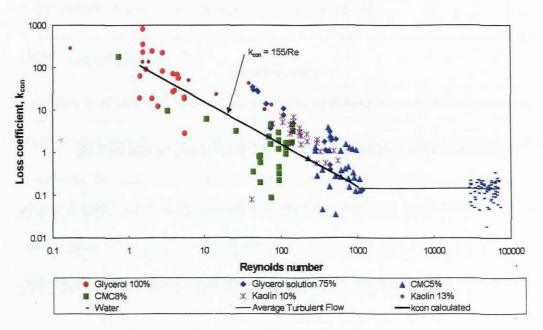



Figure 4.4: Loss coefficient data for  $\beta = 0.85$ 

After the automation of the rig, tests were repeated in the contraction with  $\beta = 0.85$ and the results are presented in Figure 4.5. The results were compared with those obtained previously (Figure 4.4), by plotting the results on the same trend line (k<sub>con</sub> = 155/Re) as shown in Figure 4.5. The scatter of results was reduced significantly. This means that similar results were obtained using a new rig almost one year later. This validated the results obtained previously. The advantage of the automated rig was that the scatter was reduced at larger contraction ratios and that the data in Figure 4.5 were measured in one week, compared with that in Figure 4.4 that took almost four months.

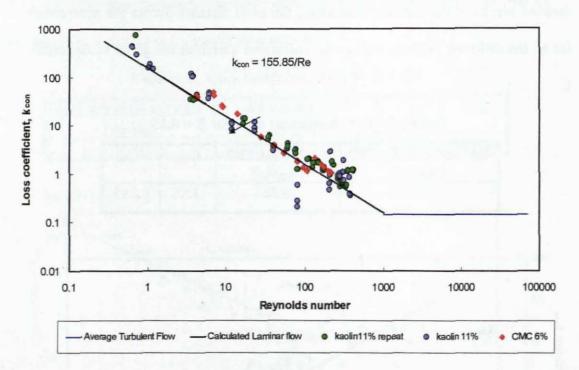



Figure 4.5: Loss coefficient data for  $\beta = 0.85$  using automated rig

In order to compare these two sets of results, the product ( $C_{con} = k_{con}^* Re$ ) for each data point for Re < 100 was examined. The statistical analysis of the data before and after automation of the rig is given in Table 4.4. There was a significant

Analysis of experimental results

reduction in the standard error and standard deviation. The 95% confidence level improved from 87 to 21.

Table 4.4: Statistical analysis of data ( $C_{con} = k_{con}^* Re$ ) obtained in contraction

|                             | BEFORE | AFTER |
|-----------------------------|--------|-------|
| Mean                        | 223.8  | 215.1 |
| Standard Error              | 43.40  | 10.95 |
| Median                      | 116.5  | 197.9 |
| Standard Deviation          | 294.4  | 100.4 |
| Sample Variance             | 86647  | 10074 |
| Kurtosis                    | 9.46   | 1.21  |
| Skewness                    | 2.89   | 1.00  |
| Range                       | 1396   | 517.5 |
| Minimum                     | 3.24   | 16.6  |
| Maximum                     | 1399   | 534.1 |
| Sum                         | 10297  | 18071 |
| Count                       | 46.00  | 84.00 |
| Confidence Level<br>(95.0%) | 87.41  | 21.78 |

 $\beta = 0.85$  before and after automation

#### 4.4 COMPARISON WITH PREVIOUS RESULTS

A comparison of results will be discussed in this section.

#### 4.4.1 Experimental

Comparison of this work with experimental data in literature is given in Table 4.5 in order of increasing  $\beta$ . Contractions are geometrically simple, but it remains difficult to make up fittings with exactly the same contraction ratio, because one has to rely on standard pipe sizes. So although it is attempted to make up a contraction ratio of 0.5, when the true internal diameters are measured, it might range from 0.445 to 0.550 as found in the literature. This makes direct comparison very difficult.

Although  $\beta$  values are not identical, some broad comparisons can be made and no

visible trend was found for work done by various researchers.

| INVESTIGATOR             | β     | Ccon | k <sub>con</sub> |  |
|--------------------------|-------|------|------------------|--|
| Sylvester & Rosen (1970) | 0.125 | 295  | 2.400            |  |
| Pienaar (1998)           | 0.204 | 1298 | 1.650            |  |
| This work                | 0.228 | 364  | 1.003            |  |
| Astarita & Graco (1968)  | 0.402 | 795  | 5.480            |  |
| Jadallah (1980)          | 0.445 | 110  | 0.450            |  |
| Pienaar (1998)           | 0.463 | 641  | 0.414            |  |
| This work                | 0.496 | 240  | 0.346            |  |
| Ma (1987)                | 0.550 | 900  | 0.230            |  |
| Jadallah (1980)          | 0.660 | 59   | 0.330            |  |
| This work                | 0.851 | 155  | 0.145            |  |

# Table 4.5: Comparison of experimentally determined C<sub>con</sub> and k<sub>con</sub> with previous results

## 4.4.2 Empirical and Semi-Empirical Models

The experimental data were compared with other models (ESDU, 1989; McNeil & Morris, 1995) and are given in Figure 4.6 - Figure 4.8. Various aspects of the presented results will be discussed in the following section.

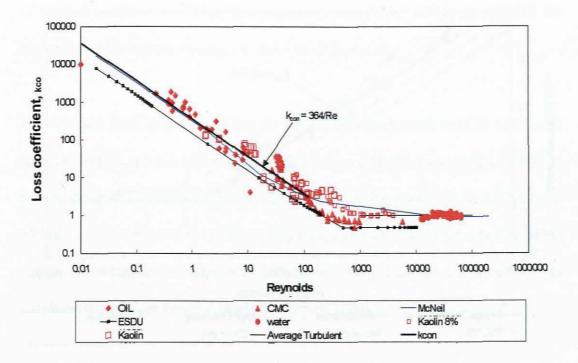



Figure 4.6:  $\beta = 0.22$  comparison with ESDU (1989) and McNeil & Morris (1995)

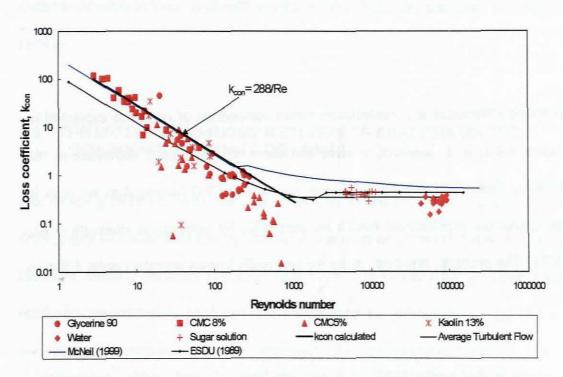



Figure 4.7:  $\beta = 0.5$  comparison with ESDU (1989) and McNeil & Morris (1995)




Figure 4.8:  $\beta = 0.85$  comparison with ESDU (1989) and McNeil & Morris (1995)

Although differences in  $\beta$  complicates direct comparison of results as explained in Section 4.4.1, it is, however, evident that there is a significant difference in the results as shown in Table 4.5 and it may appear that CFD investigators are right in saying that the experimental results are unreliable for comparison (Sisavath *et al.*, 2002). The problem, however, is that no one really knows why the results differ so much.

Using correlations developed for predicting losses through sudden contractions, good correlation was found between the experimental results of this work with that

of McNeil and Morris (1995). The prediction from ESDU (1989) agreed with the higher Reynolds number results, i.e., Re > 10 (Figure 4.6).

For turbulent flow, it was found that for the smallest contraction ratio,  $\beta = 0.22$ , the turbulent results did not agree with the prediction of Holland and Bragg (1995) as for the other two contraction ratios, but rather with the prediction of McNeil and Morris (1995). McNeil and Morris (1995) also predicts an earlier transition from the viscous to inertia driven range with decreasing contraction ratio and a very abrupt transition to turbulent flow for larger contraction ratios.

Having once again confirmed the variation in experimental results obtained, the methods of analysis were evaluated and the results of this are presented in the next section.

## 4.5 THE EFFECT OF VARIOUS METHODS OF ANALYSIS ON THE LOSS COEFFICIENT DATA OBTAINED

One of the greatest concerns that this study tries to understand and address is the discrepancy in results obtained by various researchers as shown in Table 4.5. It is therefore critically important that some light be shed on the discrepancy of published results before any further work can be undertaken on any other pipe fittings. One of the reasons investigated, as being responsible for discrepancies obtained, is the method of analysis.

The first method is to extrapolate the fully developed pressure gradient to the contraction plane if the pressure is measured along the length of the two pipes. The second method is to measure the total pressure drop across the system by using two pressure taps only. This is experimentally a cheaper method, as only one pressure transducer is required. There are difficulties associated with both methods that could influence the results obtained to some extent. For the pressure gradient to be determined, it is required to select the points that are in the fully developed friction gradient region, but this is not always an easy task, as the distance of interference changes with Reynolds number (Pal & Hwang, 1999). For the total pressure drop method on the other hand, one needs to ensure that the additional losses are accounted for by ensuring that there is significant length of straight pipe. The difficulty is often encountered that to determine the loss in the fitting, two large numbers are being subtracted to obtain a very small number, resulting in significant errors or negative results (Sisavath, 2002). In this study the pressure gradient was measured as described in Chapter 3, but results can also be analysed using both methods. In both cases the Bernoulli equation is applied and it should result in the same answer, provided everything else is the same.

In the following section the data obtained for Newtonian lubrication oil flowing through a sudden contraction of  $\beta = 0.22$  will be re-analysed using the pressure grade line approach as well as the total pressure drop approach to obtain values of  $k_{con}$  and  $C_{con}$  based on Newtonian flow. The results will be presented in plots of  $k_{con}$  versus Reynolds number.

#### 4.5.1 Pressure Grade Line Approach

The sensitivity of the pressure drop and  $k_{con}$  on the selection of the data points used for extrapolation of the fully developed friction gradient to the contraction plane were evaluated by excluding some data points and evaluating the results to see the effect of the number of points used for extrapolation. This is illustrated in Figure 4.1. In addition to the earlier analysis where 4 points were used for extrapolation, all the data, 3 and 5 points, will be used to obtain  $k_{con}$  as described above. In all cases the slope and intercept were determined upstream and downstream, the pressure was calculated at the contraction plane and the pressure drop in the contraction ( $\Delta p_{con}$ ) determined by subtracting the downstream pressure drop from the upstream pressure drop. The results are shown in Table 4.6.

 
 Table 4.6: Results obtained when using various numbers of points selected for extrapolation to contraction plane

| RANGE         | NO OF   | SLOPE    | PRESSURE         | SLOPE      | PRESSURE           | ∆p <sub>con</sub> | k <sub>con</sub> |
|---------------|---------|----------|------------------|------------|--------------------|-------------------|------------------|
| NAME          | POINTS  | UPSTREAM | upstream<br>[Pa] | DOWNSTREAM | downstream<br>[Pa] |                   |                  |
| All data      | 8points | -2.61    | 416277           | -741       | 413236             | 3041              | 17.06            |
| Range 4       | 5points | -3.13    | 416241           | -735       | 411282             | 4959              | 29.08            |
| Selected data | 4points | -4.75    | 416121           | -731       | 409893             | 6228              | 37.04            |
| Range 3       | 3points | -3.51    | 416218           | -722       | 406726             | 9492              | 57.50            |
| Calculated    |         | -1.83    |                  | -787       | · · · · · ·        |                   |                  |

It was found that for a single test run, using the same experimental data, the pressure drop across the fitting could change by as much as 67 % depending on the range of data points selected.  $\Delta P_{con}$  is therefore very sensitive to the slope obtained for the extrapolated friction gradient.

The same analysis was done on all the data to obtain the loss coefficient constant,

C<sub>con</sub>. The results are shown in Table 4.7.

## Table 4.7: Values obtained for C<sub>con</sub> when using various numbers of points selected for extrapolation to the contraction plane

| RANGE         | NO OF<br>POINTS | Ccon   |
|---------------|-----------------|--------|
| All data      | 8points         | 301.1  |
| Range 4       | 5points         | 385.85 |
| Selected data | 4points         | 390.45 |
| Range 3       | 3points         | 666.24 |

The results obtained for  $C_{con}$  for all sets of data are shown in Figure 4.9 below. Severe scatter was obtained with range 4, although it gave comparable values of  $C_{con}$  to that of selected data. At low Reynolds number range Re < 1,  $k_{con}$  was very sensitive to the slopes obtained for range 4.

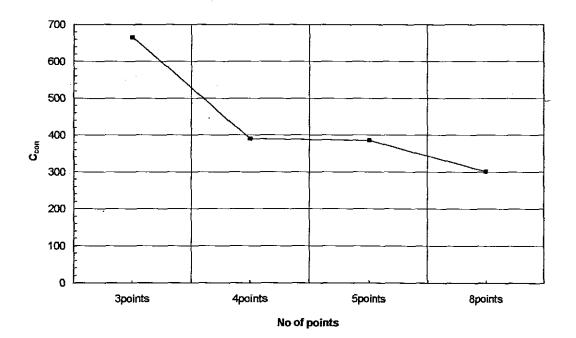



Figure 4.9: C<sub>con</sub> obtained for various number of points used for extrapolation of fully developed pressure gradient

The above analysis indicates the need to be careful when selecting the data for extrapolation to the contraction plane as it could lead to significant errors.

#### 4.5.2 Total Pressure Drop Approach

The same results were then analysed using the total pressure drop approach. In this case only two points were used - one upstream and one downstream. The procedure to calculate the loss coefficient using an energy balance was as follows:

$$\frac{p_1}{\rho g} + \alpha_1 \frac{V_1^2}{2g} + z_1 = \frac{p_2}{\rho g} + \alpha_2 \frac{V_2^2}{2g} + z_2 + \sum h_L, \qquad (2.48)$$

where

$$\sum h_{\rm L} = h_{\rm upstream} + h_{\rm downstream} + h_{\rm fitting} \,. \tag{4.2}$$

To obtain the loss due to the fitting itself, the friction loss in the straight pipe is subtracted from the overall friction loss (Perry, 1984). The above equation then changes to

$$h_{\text{fitt}} = (z_1 - z_2) + \frac{(p_1 - p_2)}{\rho g} + \frac{(\alpha_1 V_1^2 - \alpha_2 V_2^2)}{2g} - h_{\text{upstream}} - h_{\text{downstream}}.$$
(4.3)

In this study the total pressure drop is taken between the upstream and downstream pressure taps that contain the test fitting. To calculate the loss coefficient for each contraction, the following steps are required.

• Calculate  $\tau_0$  for upstream and downstream pipes.

For Newtonian fluids from pipe flow theory,

$$\tau_0 = \frac{f\rho V^2}{2} \tag{2.5}$$

or from experimental data

$$\tau_0 = \frac{D\Delta p}{4L}.$$
(2.2)

• Calculate the head loss due to friction in both pipes using

$$h_{con} = \frac{4L\tau_0}{D\rho g}.$$
 (4.4)

- Calculate the head loss in fitting (h<sub>con</sub>) using Eq. (4.3).
- Calculate the loss coefficient (k<sub>con</sub>)

$$k_{con} = \frac{h_{con}}{\frac{V_2^2}{2g}}.$$
(4.5)

Because the test rig was fitted with multiple pressure taps, this method could be applied using tappings at various distances, i.e., shorter or longer pipe lengths upstream or downstream of the contraction. In this case, the total length of the pipe was used, 50 diameters (50D) upstream and downstream and 25D upstream and downstream as shown in Figure 4.10 below.

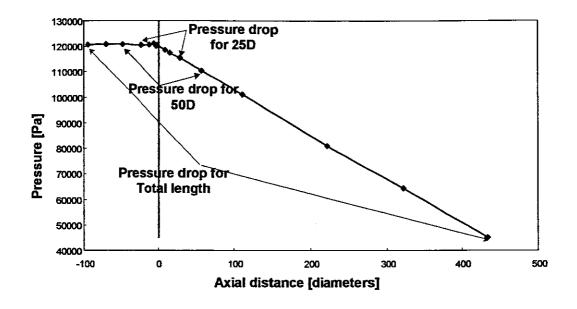



Figure 4.10: Points selected for total pressure drop approach

By reducing the length of straight pipe to 50D upstream and downstream resulted in  $C_{con}$  being similar to that obtained by using selected data from the pressure grade line approach for oil in a contraction with  $\beta = 0.22$ . The results are shown in Table 4.8.

| RANGE       | LENGTH<br>UPSTREAM | LENGTH<br>DOWNSTREAM | C <sub>con</sub> |
|-------------|--------------------|----------------------|------------------|
| Full length | 100 <b>D</b>       | 400D                 | 1184.30          |
| 50D         | 50D                | 50D                  | 393.66           |
| 25D         | 25D                | 25D                  | 207.75           |

 Table 4.8: C<sub>con</sub> obtained using total pressure drop approach

Glycerol solution results obtained from contraction  $\beta = 0.5$  were analysed using the various methods and the results are shown in Figure 4.11 as a plot of k<sub>con</sub> versus Reynolds number. The methods used were the pressure grade line method using all data and selected data as well as the total pressure drop approach using three

different lengths of straight pipe as well as using two methods for obtaining  $\tau_0$ . The results obtained from the total pressure drop method were significantly higher than those obtained from the pressure grade line method using selected data.




Figure 4.11: Analysis of glycerol results using various methods of analysis

When the total length of pipe was used, almost half of the  $k_{con}$  values obtained were negative as a result of two large numbers being subtracted from each other. When the measured friction factor was used, however, the results obtained correlated well with the pressure grade line approach. This clearly indicates that differences in calculated and measured friction factors are magnified when a long section of pipe is used. With this information at hand, a comparison was done using data from the literature. Various analysis techniques were applied to see if any agreement could be found and whether this is indeed a possible reason for the discrepancies found. The contraction ratio tested most frequently in literature is  $\beta = 0.5$  and it was used for comparative purposes in the following section.

A comparison of all results is given in Figure 4.12. In this graph the results are shown for test data analysed in the following ways:

- Results obtained using the pressure gradient approach, but using selected data for extrapolation [\*].
- Results obtained using the pressure gradient approach, but using all data for extrapolation [▲].
- Results obtained using the total pressure drop approach for the total length of pipe using the theoretical friction factor []; ].
- Results obtained using the total pressure drop approach for the total length of pipe using the experimental friction factor [▲;●].

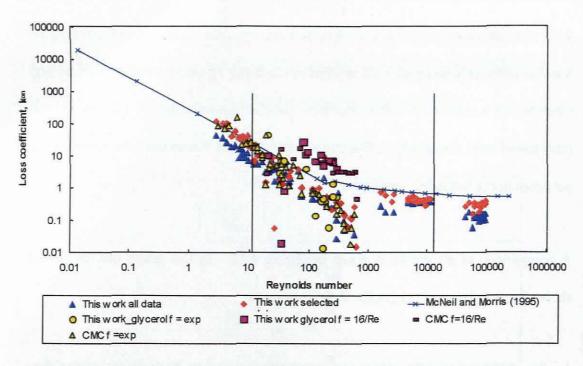
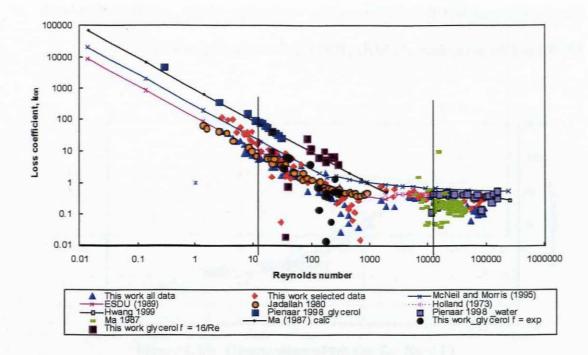




Figure 4.12: Results from various methods of analysis

The results obtained and shown in Figure 4.12 were compared with available models. These results are shown in Figure 4.13.

- 1. Data and results obtained by Jadallah (1980) [.
- 2. Data and results obtained by Ma (1987) [-].
- 3. Results obtained using the BBTV by Pienaar (1998) [■;●].
- This work analysed using total pressure drop approach with theoretical friction factor [I].
- This work analysed using total pressure drop approach with experimental friction factor [•].
- 6. Comparison with McNeil and Morris approximation (1995) [-x-].
- 7. Comparison with ESDU correlation (1989) [-x-].
- 8. Turbulent approximation of Holland (1990) [----]
- 9. Turbulent approximation of Hwang (1999) [---]



## Figure 4.13: Comparison of results from this work and literature

## 4.5.3 Discussion of the Comparison (Figure 4.13)

By using various methods of analysis, results from the same raw data could be obtained that agreed either with Jadallah (1980), Ma (1987), Pienaar (1998) or McNeil and Morris (1995) as shown in Figure 4.13. The importance of the analysis and interpretation of the experimental results are demonstrated in this graph and the important points are listed below.

### 4.5.3.1 Re = 10 -10000

Between  $Re = 10 - 10\ 000$ , the fact that all the data points are used for extrapolation or that some data are selected gives little difference in the loss coefficient calculated. It is clear that the range of data selected for analysis of results has a significant effect at Reynolds numbers less than 10 and greater than 10 000. Good agreement was found between this work using all data and that of Jadallah (1980) and the prediction of ESDU (1989) as shown in Figure 4.14.

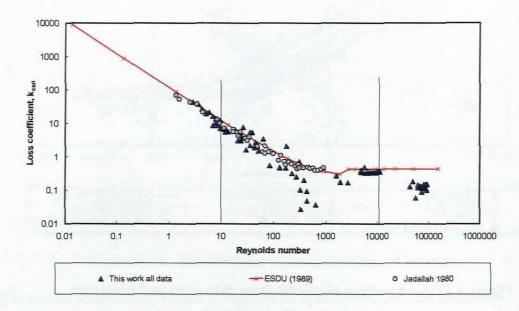



Figure 4.14: Comparison of results for Re = 10 - 10 000

## 4.5.3.2 Re > 10 000

At  $\text{Re} > 10\ 000$ , the results were significantly lower than predicted results and it was obvious that in this range the data closed to the contraction plane had to be excluded from the pressure gradient analysis.

## 4.5.3.3 Re < 10

At Re < 10, good agreement was found between this work using selected data and the prediction of McNeil and Morris (1995) as shown in Figure 4.15.

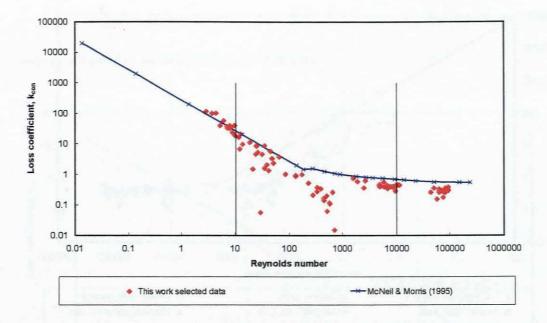



Figure 4.15: Comparison of results for Re < 10

#### 4.5.3.4 Reaching Agreement by Using a Different Method of Analysis

In laminar flow, the results obtained from the BBTV using the total pressure drop approach were six times greater than results obtained in this study and those of others. This result was, however, in agreement with that of Ma (1987). Using the results obtained on the Fitting Rig, similar results were obtained when the total pressure drop approach was used by calculating the total pressure drop as the difference between the furthest tapping upstream and downstream. In this case, the friction factor was calculated as f = 16/Re. If, however, the same data are analysed using the experimentally determined friction factor, the loss coefficients reduce to agree well with the results obtained using either all data or selected data. The reason that they agree with both data sets is because they fall within the Reynolds number range where the loss coefficient obtained is independent of the range of data selected. This is shown in Figure 4.16.



Figure 4.16: Comparison when using different methods of analysis

## Another reason for discrepancies

The reason why Ma's work resulted in high values of  $C_{con}$ , is because he did not test at Reynolds numbers lower than Re = 100. It was demonstrated that results should be extrapolated from low Reynolds numbers to higher Reynolds numbers. This phenomenon is discussed later in this chapter.

## **Turbulent flow**

For turbulent flow, good agreement was found between the results from the Fitting Rig and the Balanced Beam Tube Viscometer (BBTV) (Pienaar, 1998). The prediction of McNeil and Morris (1995) for turbulent flow did not agree with the experimental results or the prediction of others for  $\beta = 0.5$  as demonstrated in Figure 4.17.

#### Chapter 4

It was clear that in the determination of loss coefficient data for pipe fittings, the answer obtained is as important as the analysis.

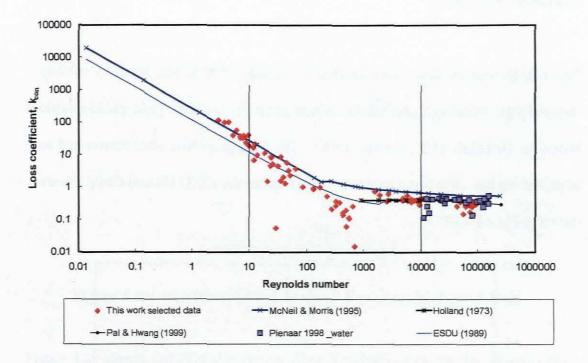



Figure 4.17: Comparison of turbulent flow results

## 4.6 EFFECT OF RHEOLOGY ON THE LOSS COEFFICIENT

The loss coefficient is correlated with the Reynolds number, which is the ratio between viscous and inertial forces. It is therefore ideal to establish dynamic similarity within the fittings and the Reynolds number is the appropriate way to establish this. It was shown previously that the Metzner-Reed Reynolds number could be used to model fluids with pseudoplastic behaviour (Edwards *et al.*, 1985) and that the Slatter Reynolds number could be used to model fluids with yield pseudoplastic behaviour (Slatter & Pienaar, 1999). By ensuring that the rheology is accounted for by the Reynolds number used to model the data the same loss coefficient can be used for both Newtonian and non-Newtonian behaviour.

Two non-Newtonian fluids were selected for testing, CMC which generally exhibits pseudoplastic behaviour and kaolin, which generally exhibits yield pseudoplastic behaviour (Jadallah, 1980; Pienaar 1998). The fluid properties were determined as described earlier. The loss coefficient data obtained for CMC 3% and CMC 5% are shown in Figure 4.18.

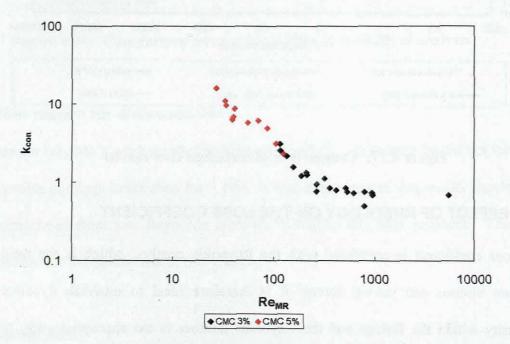



Figure 4.18: Loss coefficient data for CMC

The effect of rheology is demonstrated in Figure 4.19 where the results are compared with those when using the Newtonian Reynolds number and the apparent viscosity at the wall, rather than those Reynolds numbers that account more appropriately for the rheology of the fluid.

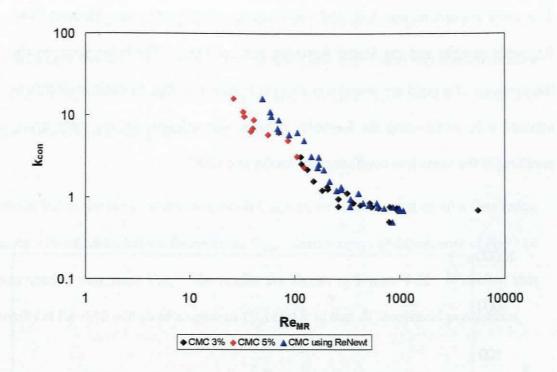



Figure 4.19: Sensitivity of loss coefficient data to rheology of fluid

Figure 4.20 clearly demonstrates that by careful analysis of results (by selecting the right range for extrapolation to the contraction plane) and by accounting for fluid properties, one value of the loss coefficient constant  $C_{con}$ , can be obtained.

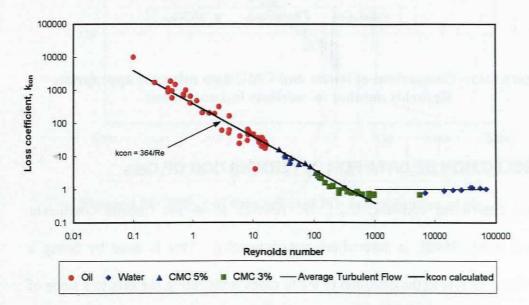



Figure 4.20: Comparison of oil and CMC data using the appropriate Reynolds number to correlate loss coefficient

The same procedure was followed for a kaolin sample using the Metzner-Reed Reynolds number and the Slatter Reynolds number (Re<sub>3</sub>). The latter accounts for the presence of a yield stress and it is clear in Figure 4.21 that dynamic similarity is attained only when using the Reynolds number that accounts for the yield stress, resulting in the same loss coefficient for kaolin and CMC.

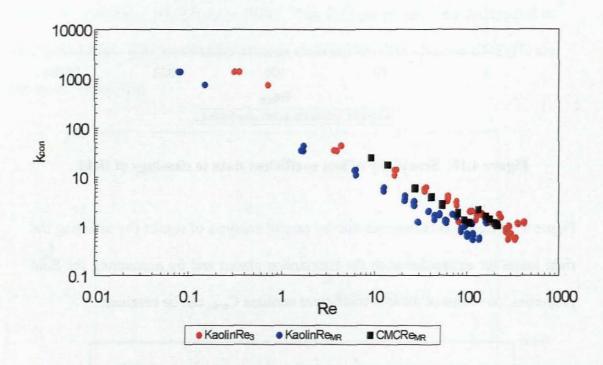



Figure 4.21: Comparison of kaolin and CMC data using the appropriate Reynolds number to correlate loss coefficient

## 4.7 SELECTION OF DATA FOR DETERMINATION OF CCON

The loss coefficient constant,  $C_{con}$ , also referred to as the Couette coefficient (Sisavath *et al.*, 2002), is determined experimentally. This is done by fitting a power-law trendline to the data, and in many cases force fitting the data to a slope of -1. The value of  $C_{con}$  is therefore based on the range of data available. Jadallah

(1980) tested to as low as Re = 1, Pienaar (1998) tested down to Re = 0.1, but Ma (1987) only tested to Re = 100. There is definitely more than one transition zone when a fluid flows through a contraction and it is clear from McNeil's prediction that there is also a change at Re = 10.

The effect of the range of data points on  $C_{con}$  was evaluated. First of all a data range at Re >10 was selected for determining  $C_{con}$ . Then a range of data points of Re < 10 was used to determine  $C_{con}$ . The results are shown in Figure 4.22. It is clear that results at Re < 10 will yield a value of  $C_{con}$  closer to that of theoretical predictions.

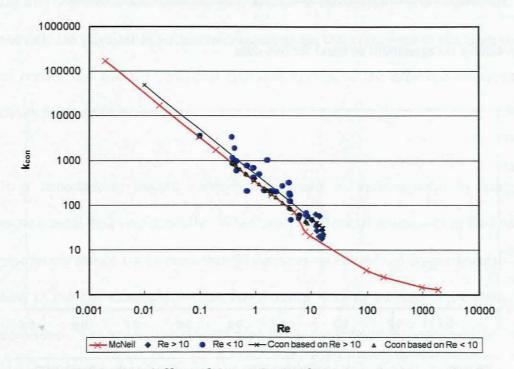



Figure 4.22: Effect of data selected for determination of Ccon

## 4.8 C<sub>CON</sub> VERSUS CONTRACTION RATIO

A comparison of  $C_{con}$  obtained for this work with that summarised in Jadallah (1980) is given in Table 4.9 and Figure 4.23 below.

| β     | Ccon | INVESTIGATOR             |  |
|-------|------|--------------------------|--|
| 0.125 | 295  | Sylvester & Rosen (1970) |  |
| 0.228 | 385  | This work                |  |
| 0.402 | 795  | Astarita & Graco (1968)  |  |
| 0.445 | 110  | Jadallah (1980)          |  |
| 0.496 | 288  | This work                |  |
| 0.5   | 900  | Ma (1987)                |  |
| 0.660 | 59   | Jadallah (1980)          |  |
| 0.851 | 155  | This work                |  |

| Table 4.9: | Ccon | obtained | by various | researchers |
|------------|------|----------|------------|-------------|
|------------|------|----------|------------|-------------|

There is clearly no agreement or trend for this data.

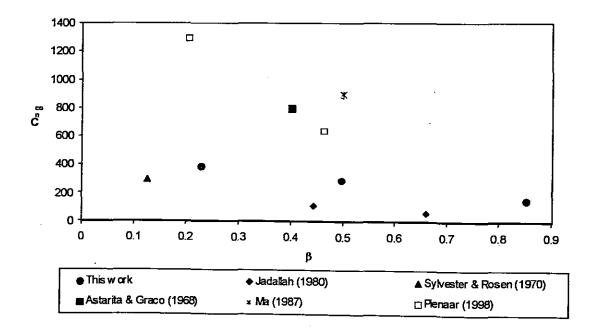



Figure 4.23: C<sub>con</sub> versus contraction ratio for various researchers

## 4.9 CONCLUSIONS

In this chapter, the analysis and the results obtained for three contraction ratios have been presented for both laminar, transitional and turbulent flow. Comparison with previous work showed discrepancies as found in literature. This has been investigated by applying various methods to analyse the same set of raw data and results were obtained that agreed with every other set of data obtained in literature.

Although previous workers (Jadallah, 1980; Ma, 1987; Pienaar, 1998) presented similar plots, this is a study to demonstrate how various results could be obtained for the loss coefficient constant  $C_{con}$ , as was done in this section. It is evident that it is not only the physical experimental measurements that contribute to the large scatter of results, but also the analytical approach applied to the experimental results to obtain loss coefficients.

It is important to analyse experimental results in various ways by assessing experimental data very carefully. When applying the total pressure drop method, the pipe length should not be more than 50 diameters upstream and downstream and it is best to use the measured friction factor rather than to estimate it by theoretical equations. The longer the straight pipe used, the greater the error will be in the estimated friction factor, often resulting in negative values for  $k_{con}$ .

Furthermore, this is the first study to offer a plausible explanation for the discrepancies exposed in the literature. This issue is of fundamental relevance to

this entire field of study because, until it is resolved, there is no basis of credibility for extending similar studies to the more complex geometries found in industrial applications such as valves, bends, etc. This study therefore initiates a credible study of industrial urgency and importance.



## CHAPTER 5 APPLICATION OF CFD TO INVESTIGATE THE FLOW BEHAVIOUR THROUGH A SUDDEN CONTRACTION

### 5.1 INTRODUCTION

To investigate the flow behaviour through a sudden contraction, a commercially available software package for fluid flow calculations, CFX, was used. The objective of this work was to determine the pressure drop across the sudden contraction using the fluid properties of a Newtonian fluid tested in the experimental rig and evaluate the results in exactly the same way as the real experimental results.

This study is important to determine the applicability of Computational Fluid Dynamics (CFD) studies to determine loss coefficient data for fittings. Sisavath *et al.* (2001) investigated creeping flow through a sudden contraction and obtained a correlation  $C_{con}$  based on Sampson's rule as discussed in Chapter 2. They did, however, not compare their results with experimental data because of the discrepancies that existed between the experimental data obtained by various researchers.

In this work it was attempted to do both an experimental and numerical investigation simultaneously and to compare the results obtained. The experimental results were presented in Chapter 4. In this chapter, a description and the operation of the program will be given as well as the pressure drop results and loss coefficient data

141

obtained for the geometry constructed. It was decided to use CFX only for laminar flow of Newtonian fluids to eliminate any debate regarding the ability of the software to handle non-Newtonian fluids and turbulence. As shown in the previous chapters, it is possible to obtain dynamic similarity for Newtonian and non-Newtonian fluids by using the appropriate Reynolds number that best accounts for its viscous behaviour.

## 5.2 DESCRIPTION OF CFX PROGRAM OPERATION

CFX-4 solver is a program for the prediction of laminar and turbulent flow, and heat transfer, together with additional models such as multiphase flows, combustion and particle transport. The first version of the code (originally FLOW3D) was limited to simple Cartesian and cylindrical geometries. The second release of the software overcame this limitation through the use of a body-fitted coordinate system. The third release and the current CFX-4 extend the geometric capabilities of the code by using the facility of multi-block or block-unstructured grids; i.e., the grid may now be constructed by gluing together an arbitrary number of topologically-rectangular grids or blocks.

The suite of CFX-4 programs comprises the following modules:

- the Pre-process Module or Geometry and Grid Generators.
- the Front End Module of the CFX-4 Solver.
- the Solution Module of the CFX-4 Solver.
- the Post-processing or Graphics Modules.

## 5.2.1 The Geometry and Grid Generators

These may be used to define both the geometrical domain of the calculation and the finite difference grid. Details of the topology and the grid coordinates are written to disk in a form readable by the Front End of the solver. The Geometry and Grid Generators include the interactive grid generators, CFX-Meshbuild and CFX-Build, which may also be used to specify some of the topological features of the geometry, and the finite element to multi-block grid converter, CFX-Meshimport.

#### 5.2.2 The Front End

This takes the input specification of the problem and converts it from a form convenient for the design into a form for efficient execution. At the same time, detailed error checking is performed. The Front End also provides simple utilities to help the user specify the problem; for example, a database is provided which provides the physical properties of some common Newtonian fluids. The problem is specified in a single data file using the Command Language. The command language is a set of English-like commands, subcommands and associated keywords. In the Interactive Front End, CFX-Setup, this data file is constructed automatically via a graphical user interface. User-defined Fortran routines may be included for features that are too complex to be described using the command language.

### 5.2.3 The Solution Module

This solves the discretised representation of the problem. It receives the information in a form that permits maximum efficiency to be obtained from different types of computers, including vector and parallel processors. The Solution Module has only a few output facilities; for example, for printing the solution and dumping the solution to disk files.

### 5.2.4 The Graphics Modules

These modules produce the main graphics output. Essentially, the Solution Module writes the results to disk files, and these are then read by the Graphics Modules. Interfaces to other post-processing packages have been constructed, and there are a number of post-processing options available for various workstations.

#### 5.2.5 The Governing Equations

The flow calculations in the software are based on the solution of the Navier-Stokes equations with various extensions. The equations solved in laminar flows in CFX-4 are as follows:

The equations for conservation of mass and momentum

$$\frac{\partial \rho}{\partial t} + \nabla (\rho u) = 0.$$
 (5.1)

$$\frac{\partial \rho \mathbf{u}}{\partial t} + \nabla (\rho \mathbf{u} \otimes \mathbf{u}) - \nabla \boldsymbol{\tau} = -\nabla \mathbf{p} + \mathbf{B}$$
(5.2)

Transient advection diffusion where the shear stress tensor is given by

$$\tau = \mu \left[ \nabla u + (\nabla u)^{\mathrm{T}} \right], \tag{5.3}$$

and possibly other scalar equations such as, in a non-isothermal flow, an equation for conservation of energy where  $\rho$  is the fluid density, u is the fluid velocity, p is the pressure, t is the time,  $\mu$  is the molecular viscosity and B is a body force. The most common type of body force is the gravitational term where  $B = \rho g$  and is only explicitly included for buoyant flows. The tensor product is defined by

$$(\mathbf{a} \otimes \mathbf{b})_{ij} = \mathbf{a}_i \mathbf{b}_j. \tag{5.4}$$

The equations for laminar flow are:

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x^{i}} \left( \rho u^{i} \right) = 0$$
(5.5)

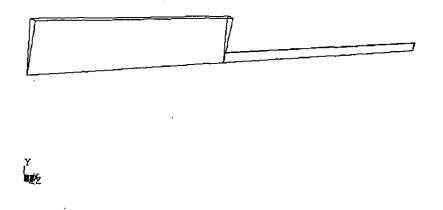
and

$$\frac{\partial \rho U^{k}}{\partial t} + \frac{\partial}{\partial x^{i}} \left( \rho u^{i} u^{k} \right) - \frac{\partial \tau^{ik}}{\partial x^{i}} = -\frac{\partial p}{\partial x^{k}} + B^{k}$$
(5.6)

where

$$\tau^{ik} = \mu \left( \frac{\partial u^{k}}{\partial x^{i}} + \frac{\partial u^{i}}{\partial x^{k}} \right).$$
 (5.7)

The summation convention is used where repeated indices are summed over.


## 5.3 CFD INVESTIGATION

The details of the CFD investigation such as the geometry, grid and grid

optimisation will be presented in this section.

## 5.3.1 Geometry

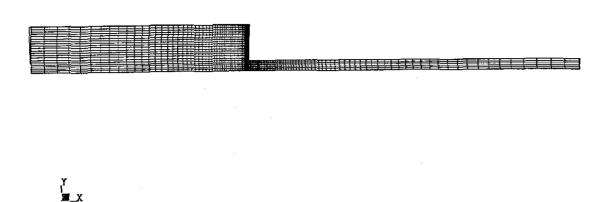
A two-dimensional model was created of a 42.26 mm pipe upstream connected to a 9.28 mm pipe downstream. The upstream length was 100 mm (approximately 2.5D) and the downstream length 150 mm (approximately 15D). These distances were indicated from initial CFX tests done on longer test sections as being sufficient for investigating the distance of interference. Three solid blocks were created by means of extrusion. A 10-degree wedge was specified and is shown in Figure 5.1. Inlet, outlet and symmetry planes were specified. A fully developed velocity profile was specified at the inlet of the upstream pipe. This was done to avoid a long upstream section that would only consume solution time when solved and not give more information about what happens in the region near the contraction plane.



#### CFX

# Figure 5.1: Geometry of sharp-edged contraction using CFX (not to scale)

## 5.3.2 Boundary Conditions


Mass flow boundaries were specified at the inlet and outlet. Mass flow boundaries are used to model inflow and outflow boundaries where the total mass flow rate into or out of the domain is known. This is done by applying a nominal Neumann boundary condition to the velocity field,  $\frac{\partial u^i}{\partial n} = 0$ . The discrepancy between the actual mass flow rate out of the domain and the desired flow rate M is computed. An increment is added to u<sup>i</sup> on the boundary in the direction of the outward going unit normal to n<sup>i</sup> to force the outward mass flow rate to the desired value. This is equivalent to

$$\frac{\partial \mathbf{u}^{i}}{\partial \mathbf{n}} = \lambda \mathbf{n}^{i}, \qquad (5.8)$$

where  $\lambda$  is chosen to force the desired mass flow rates.

## 5.3.3 Grid and Mesh

A one-way biased, body-fitted grid was chosen, concentrating the grid at the outlet of the upstream pipe and the inlet of the downstream pipe as shown in Figure 5.2, where the maximum changes in the pressure gradient were expected owing to changes in the velocity profile.



#### CFX\*

## Figure 5.2: Illustration of one-way biased grid spacing (not actual grid used)

#### 5.3.4 Grid Sensitivity and Optimisation Study

Three grids were constructed to investigate grid dependency. The results of the study are shown in Table 5.1. Grid 2 was selected for all investigations to obtain more detail in the 270 and 90-degree corners of the contraction. In Table 5.1, the results from Grid 3 are taken as the reference pressure from which the difference of the other three grids was calculated. The difference between the total pressure drop obtained from grids 1 - 2 were less than 2 % and for Grid 4 less than 0.1 %, an indication that the solution is grid independent.

| GRID  | NO. OF ELEMENTS | P <sub>tot</sub><br>[Pa] | DIFFERENCE<br>[%] |
|-------|-----------------|--------------------------|-------------------|
| Grid1 | 10 200          | 8.552                    | 1.90              |
| Grid2 | 20,000          | 8.570                    | 1.70              |
| Grid3 | 51 600          | 8.718                    | 0                 |
| Grid4 | 68 000          | 8.713                    | 0.057             |

Table 5.1: Grid optimisation

## 5.3.5 Fluid

The physical properties of lubrication oil at 25°C were specified as per specimen tested in the Flow Process Research Centre and are as shown in Table 5.2.

| Table 5.2: | Fluid pro | perties of lubric | ation oil used in | CFX simulations |
|------------|-----------|-------------------|-------------------|-----------------|
|------------|-----------|-------------------|-------------------|-----------------|

| FLUID<br>PROPERTY            | RESULTS OBTAINED IN THE FLOW PROCESS<br>RESEARCH CENTRE |
|------------------------------|---------------------------------------------------------|
| Density [kg/m <sup>3</sup> ] | 887                                                     |
| Viscosity [Pa.s]             | 0.353                                                   |

## 5.3.6 Simulations

The objective was to determine the pressure drop due to the contraction for Reynolds numbers of 100, 10, 1, 0.1 and 0.01. This was done by specifying the mass flow into the boundary based on the Reynolds number as shown in Table 5.3.

| <b>REYNOLDS NUMBER</b> | MASS FLOW [kg/s] |
|------------------------|------------------|
| 0.01                   | 7.17E-07         |
| 0.1                    | 7.17E-06         |
| 1                      | 7.17E-05         |
| 10                     | 7.17E-04         |
| 100                    | 7.17E-03         |

| Table 5.3: | Mass flow ra | te at various | Reynolds | numbers |
|------------|--------------|---------------|----------|---------|
|------------|--------------|---------------|----------|---------|

## 5.4 ANALYSIS OF RESULTS OBTAINED FROM CFX

From the outset of this work it was decided to analyse the data in exactly the same way one would for physical experiments of this nature, i.e., the evaluation of the pressure grade line (Edwards *et al.*, 1985; Pal & Hwang, 1999). One of the advantages of numerical studies is that more detail can be extracted from the areas of interest – at the exit from the upstream pipe and the entrance of the downstream pipe – because of the fine grid spacing compared with actual pressure tappings mounted around this area. A diagram presented by Boger (1987) shows the factors that influence the pressure drop across the sudden contraction very clearly. This drawing is shown in Figure 2.6 in an attempt to draw a correlation between the flow phenomena and the pressure gradient.

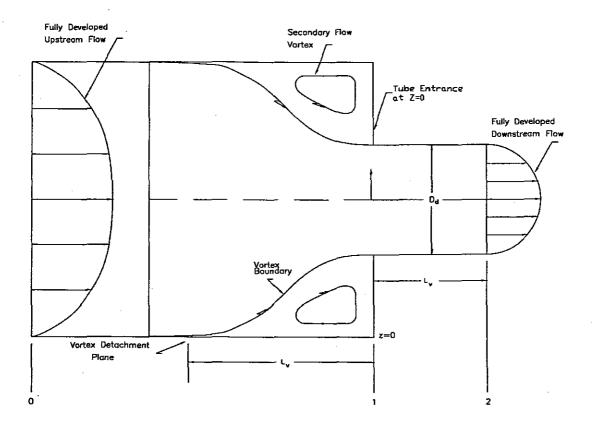
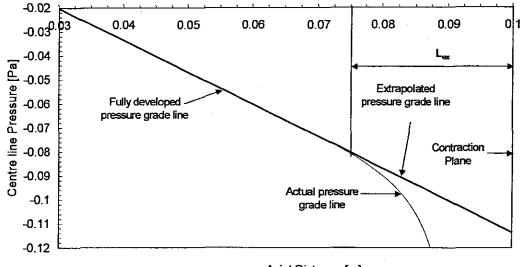
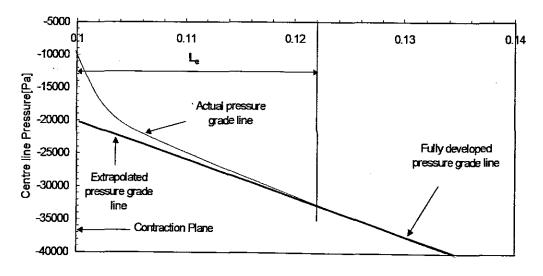




Figure 2.6: Basic elements of laminar flow through a contraction (Boger, 1987)

The fully developed upstream and downstream flow should have a constant pressure gradient. At the vortex detachment plane (as shown in Figure 2.6), the pressure gradient upstream should change significantly, and similarly for the downstream section. The length from the detachment plane to the contraction plane will be referred to as  $L_{ex}$  in this work. The entry length in the smaller tube will be referred to as  $L_{ex}$ .


• L<sub>ex</sub> is defined as the length upstream from the contraction plane to where the pressure grade line starts to deviate from that of the fully developed pressure grade line as shown in Figure 5.3.



Axial Distance [m]

### Figure 5.3: Definition of Lex

• L<sub>e</sub> is defined as the length downstream from the contraction plane to where the actual pressure grade line coincides with the fully developed pressure grade line as shown in Figure 5.4.



Axial Distance [m]

Figure 5.4: Definition of L<sub>e</sub>

The values of  $L_{ex}$  and  $L_e$  are presented in Table 5.4 and Figure 5.5. It is clear that  $L_e$  tends to zero for Re < 1 and that  $L_{ex}$  decreases for Re > 1. The average value of  $L_{ex}$  presented for this work exclude  $L_{ex}$  obtained at Re = 100.

| Re   | L <sub>ex</sub> [m] | Le [m]   |
|------|---------------------|----------|
| 0.01 | 0.0248              | 0.000402 |
| 0.1  | 0.0246              | 0.000402 |
| 1    | 0.0246              | 0.000402 |
| 10   | 0.0232              | 0.602    |
| 100  | 0.0173              | 3.63     |

Table 5.4: Values of Lex and Le

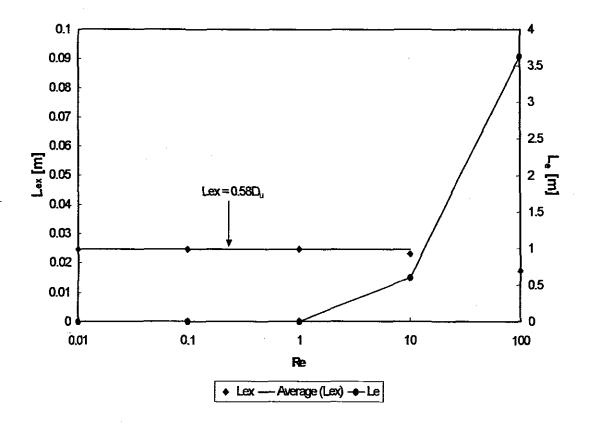
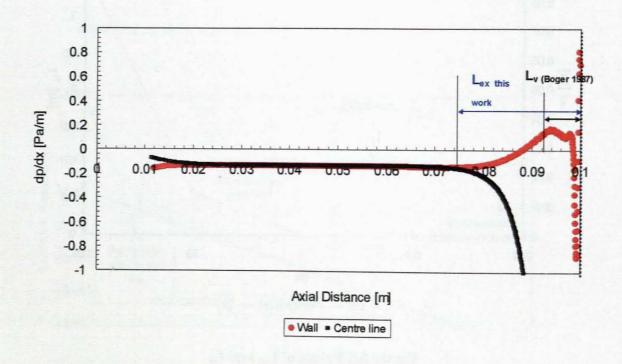
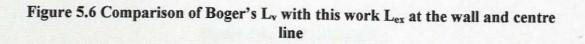





Figure 5.5 Values of Lex and Le

The exit length has previously been defined as  $L_v = 0.17D$  (Boger, 1987). This is also shown in Figure 5.6. In the present work it was found that  $L_{ex} = 0.58D$ . This difference deserves comment. Two different techniques and phenomena were used. Boger used streak photography to determine the value of  $L_v$ . In the present work the pressure grade line was used to determine  $L_{ex}$ . It is clear that the present work identifies the earliest point where steeper centre line pressure gradients are observed than in the fully developed region upstream as shown in Figure 5.6 from the plot of dp/dx versus axial distance. The pressure gradient at the wall is increasing and peaks due to the secondary flow vortex. This increase is not observed at the centre line. This agrees both with Boger's distance  $L_v$  and with Franzini and Finnemore (1998).





Further clarification is therefore required to support the contention that  $L_v$  and  $L_{ex}$  are not the same. This information is directly related to the new approximation that is discussed in the next chapter and it is therefore very important that it be validated. This is done in the sections below.

## 5.5 CONFIRMATION OF THE VALUE OF Lex

The pressure grade line is a very robust method for determining the value of  $L_{ex}$ . It was therefore important to see if it could be verified in any other way. The pressure drop is associated with the change of the velocity profile from being fully developed to entering the smaller tube owing to secondary flow causing the streamline close to the wall to curve. Velocity profile, streamline and contour plots were produced to see if  $L_{ex}$  found in the previous section could be correlated with any of these.

## 5.5.1 Velocity Profile Development

To validate  $L_{ex}$ , the velocity profiles were observed at this distance to see if any deviation from the fully developed profile exists. The value of  $L_{ex}$  was found to be approximately 0.025 m for Re  $\leq$  1. The contraction plane in this study was at 0.1 m, so the velocity profiles were evaluated at planes 0.05 m and 0.075 m before the contraction. Figure 5.7 shows a plot of u/u<sub>max</sub> versus radius at various Reynolds numbers at a distance of 0.075 m compared with a theoretically perfect parabolic profile. The velocity profile was observed at a distance prior to  $L_{ex}$  at 0.05 m where the flow is supposed to be fully developed. At 0.075m, the velocity profile is

significantly different to fully developed flow. This is the point at which the pressure grade line starts to deviate from the fully developed flow as discussed in Section 5.4. Figure 5.7 shows that the velocity profile is indeed distorted at  $L_{ex}$  and also that the velocity profile development is independent of the Reynolds number at Re < 1. The magnitude of the change in velocity profile does not appear to be reflected in the pressure data. The shape of the velocity profile is the same at Re < 1 at a distance of 0.075 m.

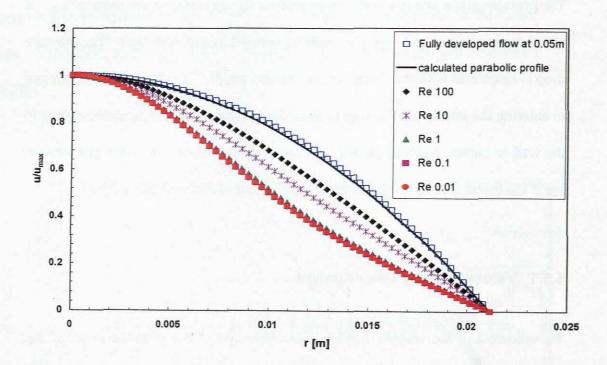
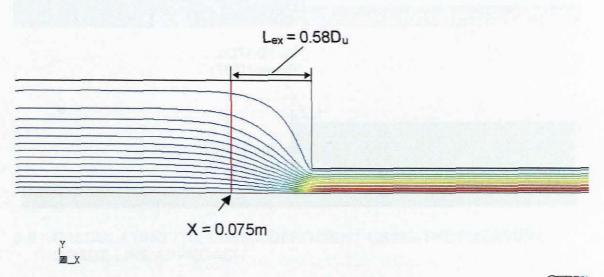




Figure 5.7: Comparison of velocity profiles at 0.05m and 0.075m

## 5.5.2 Streamlines

A plot of streamlines for Re 0.01 is given in Figure 5.8. The distance of  $L_{ex}$  is shown with a vertical line at X =0.075m. It is clear from the streamline shape that negligible curvature exists before this point, validating  $L_{ex}$  obtained in this work.



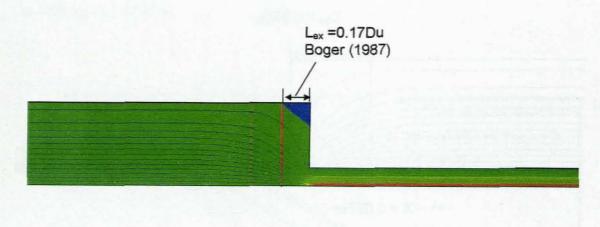

CFX

Figure 5.8: Streamlines at Re = 0.01

## 5.5.3 Contour Plots

A further method of evaluating the data was by means of contour plots. A contour plot of the u velocity in the XY plane is shown in Figure 5.9. The flow vortex can be observed in this case in the corner of the upstream tube. It agrees very well with the observations of Boger and Ramamurthy (1973) and the predictions of Boger (1987).

It is clear that the detachment plane is not at the same point as the start of the secondary flow vortex and that the prediction of Boger (1987) indicates the point at which the secondary flow vortex starts. This present work gives the onset of the detachment plane. In this case the flow detaches at a distance  $0.58D_u$  and the secondary flow vortex can be observed at  $0.17D_u$ .





CFX

## Figure 5.9: Contour plots at Re = 0.01

Figure 5.10 shows the disappearance of the flow vortex with increasing Reynolds number.

X

CIPXC

Figure 5.10: Contour plots at Re = 100

## 5.6 CALCULATING THE LOSS COEFFICIENT USING THE PRESSURE GRADE LINE APPROACH

The loss coefficient can be obtained by applying the Bernoulli equation as described in the previous chapter by extrapolating the pressure grade line to the contraction plane. The results are shown Figure 5.11 along with those of Sisavath *et al.* (2001) who did a similar study and there is good agreement between the results. There was, however, a significant discrepancy between the CFD study and the experimental results.

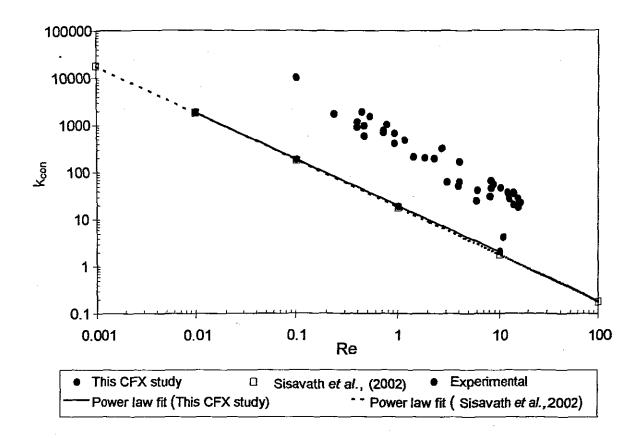



Figure 5.11: Comparison of this CFD work with Sisavath et al. (2001)

#### 5.7 DISCUSSION

This work confirms that for a contraction ratio of  $\beta \le 0.25$ , the flow phenomena at Re < 1 is independent of the Reynolds number and that the velocity profile is almost fully developed as the fluid enters the smaller tube. The size of the secondary flow vortex found in this work agrees with that of Boger (1987). It has been established that this is different from the point of detachment and an estimate for the point of detachment has been determined in this work.

The loss coefficient data obtained from this CFD work agrees with that of Sisavath *et al.* (2002). It did, however, not agree with the experimental work. The experimental work however agreed with the prediction of McNeil and Morris (1995). This work highlights the need for the further development of predictive techniques for the pressure drop as a result of fluids flowing through sudden contractions in laminar flow.

#### 5.8 CONCLUSIONS

The operation of the CFD program, CFX, has been described. The geometry has been described and the details of the fluid properties given. It was shown that the result was grid independent. The analysis of the results was discussed. It was found that the entry length,  $L_{ex} = 0.58D_u$ , was 3.4 times of that given by Boger (1987).  $L_{ex}$  in this case is, in fact, the onset of the vortex detachment, where Boger's correlation describes the length of the secondary vortex flow (cell size) and that is not the full length ( $L_v$ ) as shown in Figure 2.6.  $L_{ex}$  should therefore be used in any pressure drop calculations where the physical length of the vortex area is required, i.e., from the detachment plane.

The final results obtained for this work were within 6% of those obtained by Sisavath *et al.* (2002) even though two different CFD software packages were used. Unfortunately the results obtained using CFD did not agree with the experimental results, and this still needs to be investigated. The purpose of this work was not to determine why the discrepancies exist, but to generate detailed flow data not possible with the available experimental apparatus, to enable the development of an approximation that is based on both the macro view (total pressure drop) and the micro view (detachment length) using both numerical and experimental results. The new approximation will be described in the following chapter.



#### CHAPTER 6

#### PRESENTATION OF NEW ANALYSIS

#### 6.1 INTRODUCTION

This chapter will describe the new approximation for predicting creeping flow through a sudden contraction of contraction ratio  $\beta_{con} \leq 0.25$ . The literature (Chapter 2) and the CFD study (Chapter 5) showed that the flow phenomena for this contraction ratio are simpler than those for larger contraction ratios. The proposed approximation will be based on this contraction ratio, but an attempt will be made to extrapolate it to other contraction ratios after the evaluation of this model in Chapter 7. This chapter will include

- Background to the analysis.
- Derivation of the conical approximation.
- Determination of the shape function,  $\phi$ .
- Conclusions.

#### 6.2 BACKGROUND TO ANALYSIS

Although much work has been done on sudden contractions, including both numerical solutions as well as experimental investigations, the literature shows that discrepancies exist amongst the experimental work of various researchers as well as numerical studies (Pienaar *et al.*, 2001). The focus of this study is strongly

experimental, but because of the scepticism that exists about the reliability of experimental studies (Sisavath *et al.*, 2002), it was decided to, simultaneously with the experimental study, also apply commercially available computational fluid dynamics software to investigate the problem.

The experimental procedure and analysis of results are presented elsewhere (Chapter 3 and 4) and will not be described in this chapter again. The detail of the computational investigation and analysis of results was discussed in Chapter 5, as this was central to determine some parameters required for the conical approximation. The results obtained and the approximation will only be compared with the experimental results that were conducted and analysed as explained in Chapters 3 and 4.

It was demonstrated that non-Newtonian behaviour in fluids could be accounted for by using the appropriate Reynolds number for each fluid (Edwards *et al.*, 1985; Ma, 1987; Pienaar, 1998; Pienaar & Slatter 1999). Based on this information it was decided to conduct the CFD investigations using a Newtonian fluid only, eliminating all questions regarding the ability of the software to accommodate non-Newtonian behaviour. It was also decided that the output data from CFD would be evaluated in the same way as the experimental data.

The experimental procedure is in brief that the pressure drop is measured along the length of the pipes; both upstream and downstream by means of a number of pressure taps either side of the contraction. The fully developed friction gradient is extrapolated to the contraction plane (Edwards *et al.*, 1985) to determine  $\Delta p_{con}$ .

It was shown by Boger (1987) that in general the vortex reattachment length (refer to Fig. 2.6) is dependent on the Reynolds number. However, for  $\beta_{con} \leq 0.25$ , the reattachment length is independent of the Reynolds number for Re  $\leq 1$  (Boger, 1987; Hammad & Vradis, 1996). This clearly suggests one less variable to consider in the analysis of the frictional losses across a sudden contraction.

It was also shown in the early work of Christiansen *et al.* (1972) that the velocity profile is not uniform when the fluid enters the smaller tube as Re tends to 0. Vrentas and Duda (1973) confirmed this work and went further by showing that substantial development of the axial velocity profile towards its final parabolic form occurs by the time the fluid reaches the entrance of the smaller tube. This statement eliminated another variable in the analysis of the frictional losses across a sudden contraction at low Reynolds numbers.

These ideas led to the conclusion that an approximate analytical approach based on creeping flow could be developed because the flow phenomena are simpler. This could provide a basis for deriving a simple correlation needed for engineering design purposes.

#### 6.3 DERIVATION OF THE CONICAL APPROXIMATION

The pressure loss in a sudden contraction is the sum of the upstream and downstream pressure losses and the additional loss due to the presence of the contraction as shown in Eq. (6.1).

$$\Delta p_{tot} = \Delta p_{upstream} + \Delta p_{con} + \Delta p_{downstream}.$$
(6.1)

In the case of flow through the sudden contraction at low Reynolds numbers ( $\text{Re} \leq 1$ ), the downstream pressure losses can be ignored and Eq. (6.1) can be rewritten as

$$\Delta p_{tot} = \Delta p_{upstream} + \Delta p_{con} \tag{6.2}$$

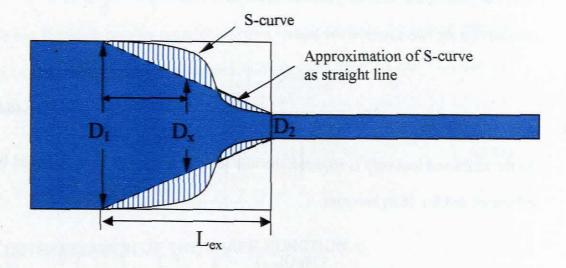
A conical frustrum-shaped solid conduit can approximate the upstream losses if the following assumptions are made that will ultimately have to be accounted for by calibrating the approximation with experimental results:

- The S-curve will be taken as a straight line.
- Since the approximation assumes fully developed flow, the viscous friction losses resulting from the change in the velocity profile as the fluid enters the smaller tube (over the length L<sub>ex</sub>) must also be taken into account.

Equation (6.2) then becomes

$$\Delta p_{\rm con} = \Delta p_{\rm cone} * \phi, \tag{6.3}$$

and  $\phi$  is the factor that accounts principally for simplifications in the approximation.


A schematic diagram is shown in Figure 6.1 and it can be integrated to obtain the

frictional loss in the cone where

$$D_x = D_1$$
 at  $x = 0$ 

and

$$D_x = D_2$$
 at  $x = L_{ex}$ .



## Figure 6.1: Conical approximation of low Reynolds number flows through a sudden contraction

The approximation is derived from the head loss in a straight pipe in laminar flow

from Eq. (2.13) as

$$\frac{\Delta p}{L} = \frac{128\mu Q}{\pi D^4}.$$
(6.4)

For a differential element in the cone, Eq. (6.4) becomes

$$\frac{\mathrm{d}\Delta p}{\mathrm{d}x} = \frac{128\mu Q}{\pi (D_x)^4},\tag{6.5}$$

where

$$D_x = D_1 - \frac{x(D_1 - D_2)}{L_{ex}},$$
 (6.6)

and  $\Delta p$  can be evaluated as

$$\Delta p = \int_{0}^{L_{\infty}} \frac{128\mu Q}{\pi (D_x)^4} dx . \qquad (6.7)$$

After integration, the following explicit equation is obtained, including  $\phi$  that accounts for the two assumptions made,

$$\Delta p_{tot} = \frac{\phi \frac{128\mu QL_{ex}}{3\pi} \left[ \frac{1}{D_2^3} - \frac{1}{D_1^3} \right]}{\left[ D_1 - D_2 \right]}.$$
(6.8)

As the additional loss only is required, the loss in the straight pipe section should be subtracted and Eq. (6.8) becomes

$$\Delta p_{con} = \frac{128\mu QL_{ex}}{\pi} \left[ \frac{\phi}{3(D_1 - D_2)} \left( \frac{1}{D_2^3} - \frac{1}{D_1^3} \right) - \frac{1}{D_1^4} \right].$$
(6.9)

The loss coefficient, k<sub>con</sub>, can then be calculated from:

$$\mathbf{k}_{\rm con} = \left[\frac{2\Delta \mathbf{p}_{\rm con}}{\rho \mathbf{V}_2^2}\right] + \theta, \qquad (3.15)$$

where

 $\theta = \alpha_1 \beta^4 - \alpha_2$ ,

but

$$C_{con} = k_{con} * Re.$$
 (2.61)

Combining Eq. (6.9), Eq. (3.15) and Eq. (2.61) gives

$$C_{con} = \frac{64\beta L_{ex}}{D_2} \left[ \frac{\phi(\beta^2 + \beta + 1)}{3} - \beta^3 \right] + \theta Re.$$
 (6.10)

As explained in Chapter 5,  $L_{ex} = 0.58D_1$  and  $D_2 = \beta D_1$ , Equation (6.10) then becomes

$$C_{con} = 37 \left[ \frac{\phi \left(\beta^2 + \beta + 1\right)}{3} + \beta^3 \right] + \theta \text{ Re.}$$
 (6.11)

For the low Reynolds number range considered for this analysis, the second term in Eq. (6.11) becomes negligible compared with the first term so that  $C_{con}$  can be approximated by

$$C_{con} = 37 \left[ \frac{\phi \left(\beta^2 + \beta + 1\right)}{3} + \beta^3 \right].$$
(6.12)

#### 6.4 DETERMINATION OF THE SHAPE FUNCTION, $\phi$

Experiments were conducted in the Flow Process Research Centre as described in Chapters 3 and 4. The test section was made of an upstream section of 42.263mm and a downstream section of 9.28mm. Newtonian oil with a density of 887 kg/m3 and viscosity of 0.3534 Pa.s was tested. The experimental results were used to determine the value of  $\phi$ . The value of L<sub>ex</sub> used was 0.0246 and the resulting value of  $\phi$  is 20 for  $\beta_{con} = 0.22$ . The results are shown in Figure 6.2.

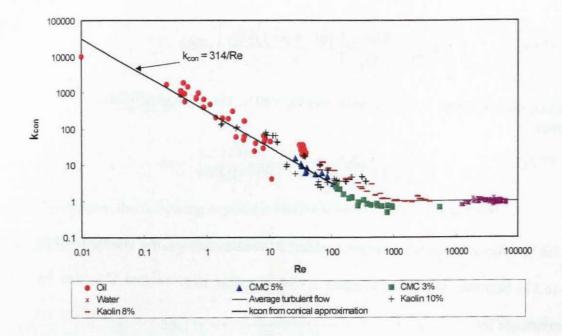



Figure 6.2: Fit of conical approximation to experimental data

#### 6.5 CONCLUSIONS

The new analysis for modelling flow through a sharp-edged contraction of  $\beta \le 0.25$  was presented.

It was demonstrated that CFD, and in this case, the program CFX, was a useful tool to investigate flow through a sharp-edged contraction and allowed the determination of L<sub>ex</sub> and L<sub>e</sub>, not easily possible with experimental studies.

It was confirmed that  $L_e$  tends to zero with decreasing Reynolds number and that  $L_{ex}$  is independent of the Reynolds number at Re < 10.

The approximation was calibrated with experimental results and a value of 20 was determined for  $\phi$ , to account for assumptions made. It was shown that laminar flow through a sharp-edged contraction of  $\beta = 0.25$  can be approximated by this conical model.

# CHAPTER 7

### CHAPTER 7 EVALUATION AND DISCUSSION OF THE NEW ANALYSIS

#### 7.1 INTRODUCTION

The main objective of this chapter is to compare the conical approximation with other engineering design models, more sophisticated fundamental models, as well as previous experimental results of various researchers, if available for  $\beta = 0.25$  or less. If any agreement is obtained, it will not only validate the conical approximation, but also the experimental results obtained in the Flow Process Research Centre.

The second objective is to evaluate the extrapolation of this approximation to larger contraction ratios.

The models that will be used in this comparison are:

- a) The engineering design approximation by ESDU (1989).
- b) The mechanistic model based on the two-stream approach of McNeil and Morris (1995).
- c) Approximation based on Sampson's rule by Sisavath et al., (2002).

Fundamental aspects of these models were described in Chapter 2 and will not be repeated in this section.

#### 7.2 COMPARISON WITH EXISTING MODELS

Three models were selected for comparison with the conical approximation. The models were selected based on the following criteria:

- A model widely used by industry (ESDU, 1989).
- A fundamentally sound and sophisticated model (McNeil and Morris, 1995).
- A model derived on a similar approach taken to that used in this study (Sisavath *et al.*, 2002).

A comparison of these models with the Conical Approximation will be given in this section.

#### 7.2.1 The Engineering Design Approximation by ESDU (1989)

ESDU (1989) derived an expression for the prediction of the loss coefficient in laminar flow for Newtonian fluids that is valid for Re  $< 10^4$ . Equation 2.77 is only valid for Re < 200 for  $\beta_{con} < 0.77$ .

$$k_{con} = \left(0.32 + \frac{159}{Re}\right) \left(1 - \beta_{con}^{2}\right).$$
 (2.77)

For  $\beta = 0.22$  the loss coefficient,  $k_{con}$ , predicted from the Conical Approximation, was approximately 50% higher than that predicted by ESDU Eq. (2.77). The results are plotted on a graph of Reynolds number versus loss coefficient ( $k_{con}$ ). The results and percentage difference in results are shown in Table 7.1.

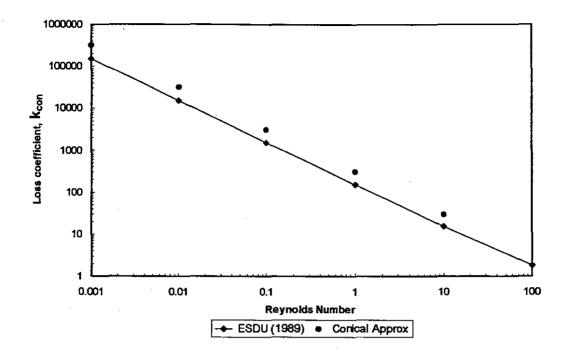


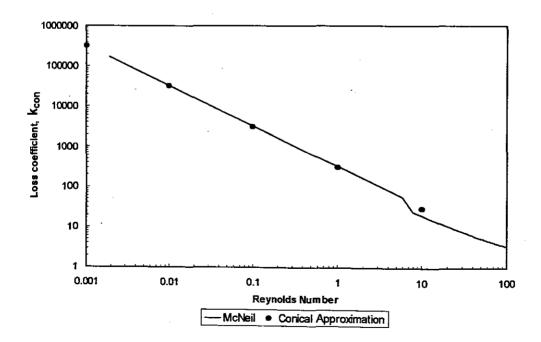

Figure 7.1: Comparison of loss coefficient predictions from ESDU (1989) and Conical Approximation

Table 7.1: Comparison of results for ESDU (1989) and Conical Approximation

| Re    | ESDU (1989) | CONICAL APPROXIMATION | %DIFF |
|-------|-------------|-----------------------|-------|
| 0.001 | 151304      | 314459                | 51.88 |
| 0.01  | 15131       | 31444                 | 51.88 |
| 0.1   | 1513        | 3143                  | 51.84 |
| 1     | 152         | 312                   | 51.48 |
| 10    | 15          | 29.5                  | 47.59 |

This resulted in the following laminar flow loss coefficient constants ( $C_{con}$ ) obtained from a power-law fit to the predicted results as shown in Table 7.2.

Table 7.2: Comparison of C<sub>con</sub> from ESDU (1989) and Conical Approximation


| METHOD                | C <sub>con</sub> |
|-----------------------|------------------|
| ESDU                  | 152              |
| CONICAL APPROXIMATION | 314              |

The differences could lead to errors in final design estimates and are unacceptable.

#### 7.2.2 The Mechanistic Model Based on Two-stream Approach by McNeil and Morris (1995)

This model by McNeil and Morris (1995) is one of the most sophisticated theoretical models developed for predicting flow through sudden contractions or nozzle flow. Originally developed for flows through sudden expansions, this model is based on a two-stream approach where the momentum and kinetic energy stored in the velocity profile of the fluid are altered by an area change of one stream relative to the other. The only problem with this model is that it does not converge to a simple equation for engineering design purposes. Although this work is based on sound theory, a geometry factor is introduced based on the experimental work of Edwards *et al.*, (1985).

Comparison with the conical approximation is shown in Figure 7.2.



# Figure 7.2: Comparison of loss coefficient predictions from McNeil and Morris (1995) and Conical Approximation

The results and percentage difference in results are shown in Table 7.3.

| Table 7.3: Co | omparison of results for McNeil and Morris (1995) and Conical |
|---------------|---------------------------------------------------------------|
|               | Approximation                                                 |

| Re    | McNEIL<br>(1995) | CONICAL<br>APPROXIMATION | %DIF<br>F |
|-------|------------------|--------------------------|-----------|
| 0.001 | 328000           | 314459                   | -4.31     |
| 0.01  | 32800            | 31444                    | -4.31     |
| 0.1   | 3280             | 3143                     | -4.37     |
| 1     | 328              | 312                      | -4.97     |
| 10    | 19               | 29.45                    | 35.49     |

The following laminar flow loss coefficient constants ( $C_{con}$ ) were obtained from a power-law fit to the predicted results as shown in Table 7.4.

 Table 7.4: Comparison of C<sub>con</sub> from McNeil and Morris (1995) and Conical

 Approximation

| METHOD                | Ссоп |
|-----------------------|------|
| McNEIL                | 328  |
| CONICAL APPROXIMATION | 314  |

There is excellent agreement between McNeil and Morris (1995) and the conical approximation with differences less than 5% for Re < 1, although the one model is very sophisticated (McNeil and Morris) and the other very simplistic (Conical Approximation). This is a good indication that the principle for deriving the conical approximation is sound as well as the results obtained in the Flow Process Research Centre.

## 7.2.3 Approximation Based on Sampson's Rule by Sisavath *et al.* (2002)

This study by Sisavath *et al.* (2002) is in many ways similar to the present study. It derives an analytical approximation for Newtonian flow through a sudden

contraction based on the creeping flow regime, i.e., as Re tends to 0. The two major differences are, however:

- A numerical investigation has been used to verify the analytical approximation.
- None of the results was calibrated or compared with experimental data.

Comparison with the conical approximation shows a difference of 95% as can be seen in Figure 7.3 and Table 7.5. The final form of the work of Sisavath *et al.* is an approximation for the calculation of the loss coefficient constant,  $C_{con}$  as described in this work. The results are shown in Table 7.6.

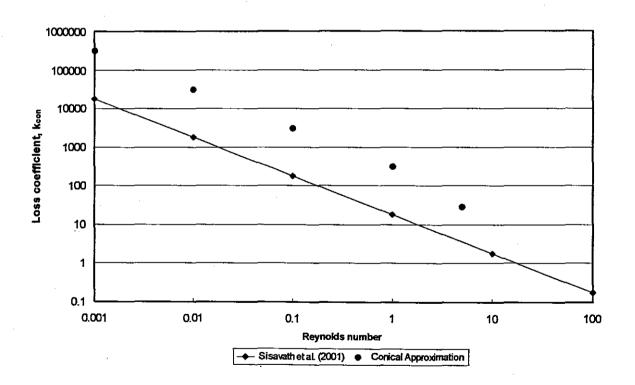



Figure 7.3: Comparison of loss coefficient predictions from Sisavath *et al.* (2002) and Conical Approximation

| Re    | SISAVATH et al. (2002) | CONICAL<br>APPROXIMATION | %DIFF |
|-------|------------------------|--------------------------|-------|
| 0.001 | 17671                  | 314459                   | 94.30 |
| 0.01  | 1767                   | 31444                    | 94.30 |
| 0.1   | 177                    | 3143                     | 94.29 |
| 1     | 18                     | 312                      | 94.26 |
| 10    | 2                      | 29.45                    | 93.91 |

| Table 7.5: Comparison of results for Sisavath et al. (2002) and Conical |  |  |  |
|-------------------------------------------------------------------------|--|--|--|
| Approximation                                                           |  |  |  |

## Table 7.6: Comparison of C<sub>con</sub> from Sisavath et al. (2002) and Conical Approximation

| METHOD                 | Ссоп |
|------------------------|------|
| SISAVATH et al. (2002) | 18   |
| CONICAL APPROXIMATION  | 314  |

If, however, the shape factor,  $\phi$ , is not included, the conical approximation yields results within 10% of Sisavath *et al.*(2002) at the lowest Reynolds numbers. The results are shown in Figure 7.4 and Table 7.7.

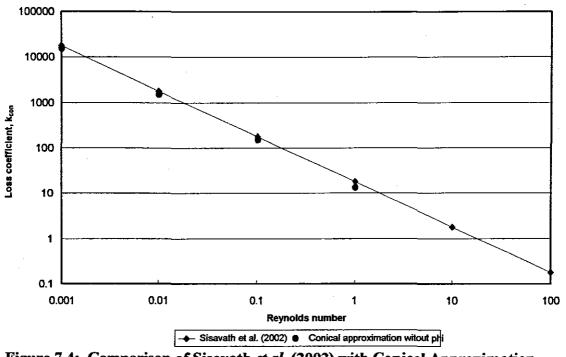
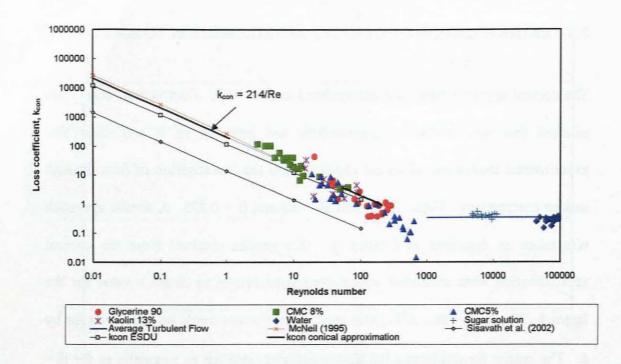



Figure 7.4: Comparison of Sisavath *et al.* (2002) with Conical Approximation without  $\phi$ 

| Table 7.7: Comparison of Sisavath et al. (2002) with Conical Approximation |
|----------------------------------------------------------------------------|
| without $\phi$                                                             |

| Re    | SISAVATH <i>et al.</i><br>(2002) | CONICAL APPROX<br>WITHOUT φ | %DIFF |
|-------|----------------------------------|-----------------------------|-------|
| 0.001 | 17937                            | 17084.88                    | -4.99 |
| 0.01  | 1793                             | 1706.797                    | -5.09 |
| 0.1   | 179                              | 168.9883                    | -6.14 |


The discrepancies found in this work highlight the fact that numerical investigations are better suited to investigation of flow patterns, than actual pressure drop. It has not been established why discrepancies exist between numerical and experimental studies, and this is an issue that still needs to be addressed.

#### 7.3 EXTRAPOLATION OF CONICAL APPROXIMATION TO $\beta > 0.25$

The conical approximation was extrapolated to  $\beta > 0.25$ . Contraction ratios were selected that was similar to experimental test sections, as it was clear that experimental studies are of utmost importance in the investigation of flow through sudden contractions. These ratios were  $\beta = 0.5$  and  $\beta = 0.875$ . A similar approach was taken as described in Chapter 5. The results obtained from the conical approximation were calibrated with experimental results to obtain a value for the factor  $\phi$ . The same value of  $L_{ex}$  was used, as any errors would be accounted for by  $\phi$ . The reason for this is that the flow phenomena are not as simplistic as for  $\beta = 0.25$ , and the variables that were constant, now have to be accounted for. The value of  $\phi$  should decrease with increasing contraction ratio as the S-curve will be less pronounced and the approximation of a straight line will be closer than for  $\beta < 0.25$ .

#### **7.3.1** Contraction Ratio $\beta = 0.5$

The results obtained for  $\beta = 0.5$  are given in this section. The value of  $\phi$  is 10 and was obtained as explained in Section 6.4 using experimental results obtained in the contraction of  $\beta = 0.5$ . Comparison with the main models is given in Figure 7.5. There was good agreement between the conical approximation and the experimental data obtained. Comparison with other models showed differences of less than 30% from McNeil and Morris (1995), 43% difference from ESDU (1989) and 93% from Sisavath *et al.*(2002). The value of C<sub>con</sub> was found to be approximately 214.



## Figure 7.5: Comparison of experimental data for $\beta = 0.5$ with conical approximation and other models

#### 7.3.2 Contraction ratio $\beta = 0.85$

The results obtained for  $\beta = 0.85$  are given in this section. The value of  $\phi$  is 10. Comparison with the main models showed good agreement with McNeil and Morris (43%), 71% difference from ESDU and 94% from Sisavath *et al.* The value of C<sub>con</sub> was found to be approximately 155. These results are presented in Figure 7.6. Except for  $\beta = 0.85$ , very good agreement was found between McNeil's approximation and the conical approximation and experimental results. This could be because the geometry factors developed were based on the work of Kaye and Rosen (1971) and were limited to  $\beta = 0.797$ .

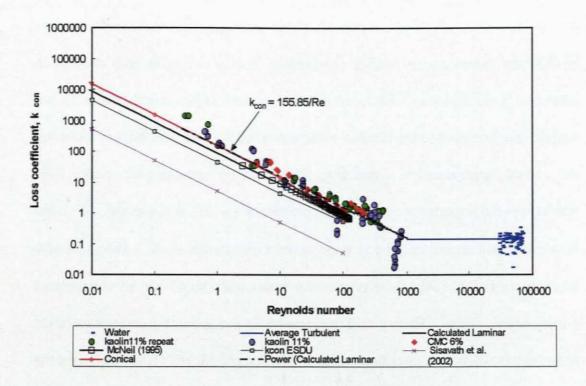



Figure 7.6: Comparison of experimental data for  $\beta = 0.85$  with conical approximation and other models

#### 7.4 DISCUSSION AND CONCLUSIONS

A simple engineering approximation has been developed that agrees with two other models that are based on two different approaches. It agrees with Mc Neil and Morris' (1995) mechanistic model that has a strong fundamental and analytical basis but includes a factor based on experimental results. However, if the shape factor that is determined based on experimental results,  $\phi$ , is excluded, it agrees with the model developed by Sisavath *et al.* (2002) who took a similar approach. The pressure drop results calculated from these models that were not calibrated experimental results in turn agreed well with results obtained from CFD. This work therefore highlights a possible fundamental problem in the understanding of the flow behaviour in sudden contractions that is not taken into account in numerical approaches and that is why numerical and experimental results do not agree. This brings us to the obvious weakness of all the available models including the conical approximation: that they dependent on experimental results. This emphasises the importance of credible experimental results, as the model, no matter how sophisticated, will only be as good as the experimental work. The value of  $\phi$ was determined for only three contraction ratios and should not be extrapolated outside of this range. Having said this, one advantage is that the contraction ratios tested in this work is an extension to that of McNeil and Morris (1995) who used the data from Kaye et al. (1971) to develop geometry factors for contraction ratios  $\beta$  = 0.2 - 0.8. This work extends it to  $\beta = 0.85$ . The fact that approximations should not be extrapolated outside of these ranges of experimental results is clearly demonstrated in Section 7.3.4 where the difference in McNeil and Morris (1995) and the conical approximation increases from less than 5% when used with in the appropriate range, to 43% when extrapolated outside of this range.

In conclusion this work demonstrate the importance of credible experimental results to develop predictive models for losses in sudden pipe contractions in the absence of a definitive understanding of the detailed flow phenomena. It also offers a simple engineering design approximation to determine losses in sudden pipe contractions for contraction ratios between  $\beta = 0.22 - 0.85$ .



### CHAPTER 8 SUMMARY, SIGNIFICANT CONTRIBUTIONS AND RECOMMENDATIONS

#### 8.1 INTRODUCTION

This thesis describes an experimental study of sudden contractions of three diameter ratios ( $\beta = 0.22$ , 0.5 and 0.85) and a numerical study of the flow through a sudden contraction at  $\beta = 0.22$ . It has resulted in the formulation of an approximation for predicting additional pressure losses that will arise from laminar flow through a sudden contraction for Newtonian fluids. It has offered an explanation as why different results were obtained by various researchers by scrutinising the experimental procedure and analysis of results. For the first time, qualitative and quantitative agreement was found among the work of various researchers.

#### 8.2 SUMMARY

Fitting losses are important when total head losses across a pipeline system are to be estimated. The procedure to obtain an estimate of system head requirements is as follows (Miller 1978):

- 1. Define the geometric parameters of the system and fittings.
- 2. Define the flow parameters such as velocity and Reynolds number.
- 3. Select appropriate loss coefficients.
- 4. Calculate individual losses.

5. Add the individual system losses, plus the static or the pressure differential across the system to establish the required pump head.

When geometric and flow parameters are known, the selection of appropriate loss coefficients is the main task. It is thus clear that loss coefficients play an important role in practical design and that the information for non-Newtonian fluids is important.

It was established and confirmed that the loss coefficient is not independent of the Reynolds number in laminar flow as it is for turbulent flow (Edwards *et al.*, 1985). The loss coefficient increases hyperbolically with decreasing Reynolds number where

$$k_{con} = \frac{C_{con}}{Re}$$

Experimentally determined values of  $C_{con}$  varied from researcher to researcher and little agreement was found with other theoretical studies (Edwards *et al.*, 1985; Ma, 1987; ESDU, 1989; McNeil and Morris, 1995; Pienaar, 1998; and Sisavath *et al.*, 2002).

Where agreement was found between theoretical studies and experimental studies, a factor was generally determined for the theoretical study using values from the experimental study (McNeil, 1995).

The only way to determine why variations existed and to ascertain quantitative agreement was to evaluate the various experimental techniques and the analysis of results as well as obtaining results using CFD to evaluate the flow phenomena and compare results obtained.

#### 8.3 SIGNIFICANT CONTRIBUTIONS

A sudden pipe contraction – arguably geometrically the simplest pipe fitting – has been used to establish and validate a protocol for the experimental method and analysis of results for the determination of fitting losses in laminar flow. The main contribution of this work is in the experimental method, analysis of results, and modelling of flow through sudden contractions and actual values for  $C_{con}$  for three contraction ratios.

#### 8.3.1 Reducing the Experimental Scatter

It has been demonstrated that the experimental scatter in results can be reduced by the implementation of multiple transducers.

#### 8.3.2 The Use of Various Methods to Calculate the Loss Coefficient

It was demonstrated how different results could be obtained by evaluating the two methods used in literature, i.e., the extrapolation of the pressure grade line to the contraction plane and the total pressure drop approach. These methods both involved the application of Bernoulli, but it was further shown that different results could be obtained, depending on the method used to estimate the pipe friction losses and the length of straight pipe. In the pressure grade line method, it was demonstrated that the selection of points used for determining the fully developed friction gradient also had a significant effect on the results obtained.

It is argued that these different approaches could explain the discrepancies found in the literature and a sound basis for further experimental investigation has been provided.

#### 8.3.3 The Derivation of a Simple Engineering Design Approximation

A relatively simple engineering design approximation has been derived. The main difference between this method and other methods, is that it is based on the creeping flow regime Re < 1, where there is negligible pressure drop downstream of the contraction plane and only upstream losses need to be accounted for. Also for contraction ratios  $\beta \le 0.25$ , the upstream vortex size is independent of the Reynolds number (Boger, 1987). The length of this vortex was determined using CFD, also termed the exit length, L<sub>ex</sub>. It was also clear from CFD data that there was very little recirculation flow in the vortex area, and that the velocities of fluids in that area tended to zero. This stationary fluid reduced the flow area and acted as a boundary, which left the flow boundary geometry as a distorted conical frustrum, rather than a square as assumed by Sisavath *et al.* (2002). The assumptions were accounted for by a shape function. The shape function was determined as the difference between approximated results and experimental results. The approximation, with the shape function, was in agreement with McNeil and Morris's (1995) much more

sophisticated model. The advantage of the conical approximation is that it converged into a computationally simple equation.

### 8.3.4 Experimental Values of C<sub>con</sub> and k<sub>con</sub>

The actual values of  $C_{con}$  for  $\beta$  of 0.22, 0.50 and 0.85 are presented in Table 8.1.

| β    | Ссон | kcon  |
|------|------|-------|
| 0.22 | 364  | 1.003 |
| 0.50 | 288  | 0.346 |
| 0.85 | 155  | 0.145 |

 Table 8.1: Loss coefficient data obtained in this work

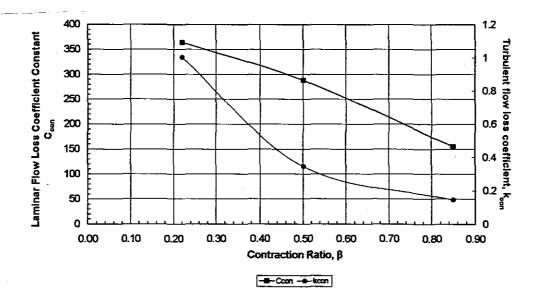



Figure 8.1: Loss coefficient data obtained in this work

#### 8.4 FUTURE RESEARCH RECOMMENDATIONS

One of the greatest concerns raised throughout this work is the difference in pressure results obtained between experimental and numerical investigations. The conical approximation without the shape function yielded results similar to the work of Sisavath *et al.* (2002). Although the numerical studies were carried out on simple Newtonian flow, which the software should be able to handle with ease, the discrepancies in results is a cause for concern. More work should be carried out in this field.

Although several models (ESDU, 1989; McNeil and Morris, 1995) attempt to account for losses in the laminar/turbulent transition, more experimental results are required to improve predictions.

It is believed that a sound basis has been established for the examination of much larger and industrially relevant research projects, evaluating loss coefficients in laminar, transitional and turbulent flow for valves, bends, tees, etc. This project should be pursued with some urgency.

#### 8.5 CONCLUSION

The following conclusions can be made from this study:

- A focused and in-depth experimental study has been conducted on hydraulic energy loss in pipe contractions with the emphasis on low Reynolds number laminar/creeping flow.
- A plausible explanation for the differences in results obtained by various researchers has been offered.
- A method of analysis with the appropriate level of complexity for design engineers has been developed.
- The experimental determination of fitting losses is extremely sensitive to both pressure drop and flow measurements and care should be taken to measure these as accurately as possible.
- When using the extrapolation of the pressure grade line method, care should be taken to ensure that only the points in the fully developed friction gradient are used for extrapolation of the pressure grade line to the contraction plane to obtain the actual pressure drop in the fitting.
- When using the total pressure drop method it is advised that if the full length of straight pipe of 50D or more is used, the experimentally determined friction factor should be used to obtain more accurate values of k<sub>con</sub>. Furthermore, a length of 25D would result in k<sub>con</sub> values that are similar when using either the experimental or calculated friction factor. Care should be taken that the length of pipe used should not fall within the distance of interference, as this can result in negative values of k<sub>con</sub>.
- It was demonstrated that by using the appropriate Reynolds number to account for the rheology of the fluid, the results of both Newtonian and non-Newtonian fluids will collapse onto the same line and the same approximation can be used

to calculate the loss coefficient in laminar flow. It was also demonstrated how the incorrect value of  $C_{con}$  can be obtained when not accounting appropriately for the rheology of the fluid.

- A value of C<sub>con</sub> for contraction ratios was found based on the conical approximation that is in agreement with other studies.
- When determining the loss coefficient constant, it is best to obtain results in the region of Re < 10 and to extrapolate this to Re < 100, than to do measurements in the higher Reynolds number range and extrapolate them to lower Reynolds numbers. Because it is more difficult to do measurements in the higher Reynolds number ranges, or to calculate them due to the number of variables and the complexity of the flow, the errors in extrapolated results will result in higher values of C<sub>con</sub>.
- The experimental procedure should be applied when measuring losses through other types of pipe fittings as this work has laid a foundation for determining and eliminating experimental errors that have resulted in the discrepancies in the work of experimental researchers.
- This method will lend credibility to experimental results that will, it is hoped, be appreciated and trusted by the numerical investigators and that will enable them to understand differences between experimental and numerical studies in order to bring the two together, rather than to believe that the numerical investigation is correct and the experimental results are wrong.

# REFERENCES

#### REFERENCES

Alderman, N.J. 1996. Non-Newtonian fluids: obtaining viscometric data for frictional pressure loss estimation for pipe flow. *ESDU 95012*, September.

Astarita, G. & Greco, G. 1968. Excess pressure drop in laminar flow through sudden contraction. Ind. Eng. Chem. Fundam., 7: 27-31.

Baudouin, M.M. 2003. Contraction and expansion losses for non-Newtonian fluids. Unpublished M Tech thesis, Cape Technikon, Cape Town.

Boger, D.V. 1987. Viscoelastic flows through contractions. Annu. Rev. Fluid Mech., 19: 157-181.

Boger, D.V. & Ramamurthy, A.V. 1970. Experimental measurements of loss coefficients in the entrance region of a pipe for viscous power law and viscoelastic fluids. *AIChE J.*, 1088-1092: November.

Bogue, D.C. 1959. Entrance effects and prediction of turbulence in non-Newtonian flow. *Ind. Eng. Chem.*, 51(7): 874-878, July.

Bojcic, P., Khan, M. M. K. & Broadfoot, R. 1997. Estimating pressure losses in pipe fittings at low Reynolds numbers. *Proc. of Austr. Soc. of Sugar Cane Technologist*, 479–484.

Brinkworth, B.J. 1968. Introduction to experimentation. London: English Universities Press.

Brooks, P.J. 1993. New ASHRAE local loss coefficients for HVAC fittings. ASHRAE Trans. Res., 99(2): 169-193.

Bullen, P.R., Cheeseman, D.J. & Hussain, L.A. 1996. A study of turbulent flow in pipe contractions. *Proc. Inst. Mech. Eng.*, 210: 171-180.

Chadwick, A.J. & Morfett, J.C. 1993. Hydraulics in civil and environmental engineering. London: Taylor & Francis Books Ltd.

Chhabra, R. & Richardson, J.F. 1999. Non-Newtonian flow in the process industries. Oxford: Butterworth-Heinemann.

Christiansen, E.B., Kelsey, S.J. & Carter, T.R. 1972. Laminar tube flow through an abrupt contraction. AIChE J., 18(2): 372-380, March.

Collins, M. & Schowalter, W.R. 1963. Behaviour of non-Newtonian fluids in the inlet region of a pipe. AIChE J., 9(1): 804-809, November.

Coulson, J.M. & Richardson, J.F. 1990. *Chemical engineering, Volume 1.* 4<sup>th</sup> ed. Oxford: Pergamon Press.

Crane Co. 1965. Flow of fluids through valves, fittings and pipe. Technical paper No. 410. Chicago, IL: Crane Co.

Das, S.K., Biswas, M.N. & Mitra, A.K. 1991. Non-Newtonian liquid flow in bends. Chem. Eng. J., 45: 165-171.

Dodge, D.W. & Metzner, A.B. 1959. Turbulent flow of non-Newtonian systems. AIChE J., 5(2): 189-204.

Durst, F. & Loy, T. 1985. Investigations of laminar flow in a pipe with sudden contraction of cross-sectional area. *Computers & Fluids*, 13(1): 15-36.

Edwards, M.F., Jadallah, M.S.M. and Smith, R. 1985. Head losses in pipe fittings at low Reynolds numbers. *Chem. Eng. Res. Des.*, 63: 43-50, January.

Engineering Sciences Data Unit. 1989. Pressure losses in flow through a sudden contraction of duct area. Data Item 89040.

ESDU see Engineering Sciences Data Unit.

Finnemore, E.J. & Franzini, J.B. 2002. Fluids mechanics with engineering applications. 10<sup>th</sup> ed. Boston, MA: McGraw-Hill.

Goldstein, R.J. (ed). 1983. Fluid mechanics measurements. Washington, DC: Hemisphere.

Govier, G.W. & Aziz, K. 1972. The flow of complex mixtures in pipes. Van Nostrand Reinhold Co.

Hammad, K.J. & Vradis, G.C. 1996. Creeping flow of a Bingham plastic through axisymmetric sudden contractions with viscous dissipation. *Int. J. Heat Mass Transf.*, 36(8): 1555-1567.

Hanks, R.W. 1975. Course Notes. Hydraulic design of flow of complex fluids. Orem, UT: Richard W Hanks Assoc. Inc.

Heywood, N. I. 1984. Comparison of methods for predicting head loss in turbulent pipe flow of non-Newtonian fluids. *Trans. Inst. MC.*, 6(1): 33-45.

Holland, F.A. and Bragg, R. 1995. *Fluid Flow for Chemical Engineers*. 2<sup>nd</sup> ed. London: Edward Arnold.

Hooper, W.B. 1981. The two-K method predicts head losses in pipe fittings. Chem. Eng.: 96-100, August.

Hwang, C.J. & Pal, R. 1997. Flow of two-phase oil/water mixtures through sudden expansions and contractions. *Chem. Eng. J.*, 68: 157-163.

Hwang, N.H.C. and Houghtalen, R.J. 1996. Fundamentals of hydraulic engineering systems. 3<sup>nd</sup> ed. New Jersey: Prentice-Hall.

Idelchik, I.E., Barouch, A. & Grunaer, D. 1966. Handbook of hydraulic resistance: Coefficients of local resistance and friction. Israel: Israel program for scientific translations Springfield.

Jacobs, B.E.A. 1993. Laminar/turbulent flow through an annulus with sudden constriction; as found in the Gannet project flow line bundles. *Proc of 12<sup>th</sup> International Conference on Slurry Handling and Pipeline Transport*: Hydrotransport 12, 28-30 September 1993, Brugge, Belgium, edited by C.A. Shook. London: Mechanical Engineering Publications.

Jadallah, M.S.M. 1980. Flow in pipe fittings at low Reynolds numbers. Unpublished PhD thesis, University of Bradford, UK.

Kaye, S.E. & Rosen, S.L. 1971. The dependence of laminar entrance loss coefficients on contraction ratio for Newtonian fluids. *AIChE J.*, 17(5): 1269-1270, September.

Kim-E, M.E., Brown, R.A. & Armstrong, R.C. 1983. The roles of inertia and shear-thinning in flow of an inelastic liquid through an axisymmetric sudden contraction. J. Non Newton. Fluid. Mech., 13: 341-363.

King, R.P. 2002. Introduction to practical fluid flow. Oxford: Butterworth-Heinemann

Kittredge, C. P. & Rowley, D.S. 1957. Resistance coefficients for laminar and turbulent flow through one-half-inch valves and fittings. *Trans. ASME*, 79: 1759-1766.

La Nieve, H.L. 1968. Unpublished MSc Thesis, University of Tennessee, Knoxville.

Ma, T.W. 1987. Stability, rheology and flow in pipes, fittings and venturi meters of concentrated non-Newtonian suspensions. Unpublished PhD thesis, University of Illinois, Chicago.

Massey, B.S. 1970. Mechanics of fluids. 2nd ed. Van Nostrand Reinhold.

McNeil, D.A. & Morris, S.D. 1995. A mechanistic investigation of laminar flow through an abrupt enlargement and nozzle and its application to other pipe fittings. Report EUR 16348 EN.

McNeil, D.A., Addlesee, J. & Stuart, A. 1999. An experimental study of viscous flows in contractions, J. of Loss Prevention in Proc. Ind., 12, 249 – 258.

Metzner, A.B. & Reed, J.C. 1955. Flow of non-Newtonian fluids – correlation of the laminar, transition and turbulent flow regions. *AIChE J.*, 1(9).

Miller, D.S. 1978. Internal flow systems. Cranfield: BHRA Fluid Engineering:

Muhktar, A., Singh, S.N. & Seshadri, V. 1995. Pressure drop in a long radius 90° horizontal bend for the flow of multisized heterogeneous slurries. *Int. J. Multiphas. Flow*, 21(2): 329-334.

Mumma, S.A., Mahank, T.A. & Ke, Yu-Pei. 1998. Analytical determination of duct fitting loss-coefficients. *Appl. Energ.*, 61: 229-247.

Mun, R. 1988. Turbulent pipe flow of yield stress fluids. Unpublished M Eng Science thesis, University of Melbourne.

Pal, R. & Hwang. C-Y. J. 1999. Loss coefficients for flow of surfactant-stabilised emulsions through pipe components. *Trans. IChemE*, 77 (Part A): 685-691.

Perry, R.H. & Chilton, C.H.(eds). 1973. *Chemical engineers' handbook*. 5<sup>th</sup> ed. New York: McGraw-Hill.

Phillippoff, W. & Gaskins, F.H. 1958. The Capillary Experiment in Rheology. *Trans. Soc. Rheology*, 2(1): 263-284, March.

Pienaar, V.G. 1998. Non-Newtonian fitting losses, Unpublished M Tech. thesis, Cape Technikon, Cape Town.

Potter, M.C. & Wiggert, D.C. 1997. *Mechanics of fluids*. Pearson Higher Education.

Ramamurthy, A.V. & Boger, D.V. 1971. Developing velocity profiles on the downstream side of a contraction for inelastic polymer solutions. *Trans. Soc. Rheology*, 15(4): 709-730.

Kasipati-Rao, K.V. 1986. Determine laminar-flow head losses for fittings. *Chem Eng.*, 93: 108-109, February 3.

Riffat, S.B. & Gan, G. 1997. CFD prediction of k-factors of duct elbows. Int. J. Energy Res., 21: 675-681.

Shah, R.K. & London, A.L. 1978. Laminar flow forced convection in ducts: a source book for compact heat exchanger analytical data. New York: Academic Press.

Sisavath, S., Jing, X., Pain, C.C. & Zimmerman, R.W. 2002. Creeping flow through axisymmetric sudden contraction or expansion. J. Fluids Eng. (Trans. ASME), 124(1): 273-278, March.

Slatter, P.T. 1994. Transitional and turbulent flow of non-Newtonian slurries in pipes. Unpublished PhD thesis, University of Cape Town.

Slatter, P.T. 1999. A new friction factor for yield stress fluids. 14<sup>th</sup> International Conference on Slurry Handling and Pipeline Transport Hydrotransport 14, Maastricht, September 1999: 255-265.

Slatter, P.T. & Pienaar, V.G. 1999. Establishing dynamic similarity for non-Newtonian fittings losses. 14<sup>th</sup> International Conference on Shurry Handling and Pipeline Transport Hydrotransport 14, Maastricht, September 1999: 245-254.

Slatter, P.T., Pienaar, V.G., & Petersen, F.W. 1997. Non-Newtonian fittings losses. 9<sup>th</sup> International Conference on Transport and Sedimentation of Solid Particles, Cracow, 2-5 September 1997: 585-596.

Slatter, P. T. & Wasp, E. J. 2000. Laminar/turbulent transition in large pipes. 10<sup>th</sup> International Conference on Transport and Sedimentation of Solid Particles. Wroclaw, 4-7 September 2000: 389-399.

Steffe, J.F., Mohammed, I.O. & Ford, E.W. 1984. Pressure drop across valves and fittings for pseudoplastic fluids in laminar flow. *Trans. ASAE*: 616–619.

Sylvester, N.D. & Rosen, S.L. 1970. Excess pressure drop in laminar flow through sudden contraction. *AIChE J.*, 16: 964-972.

Tanner, R.I. & Walters, K. 1998. *Rheology: an historical perspective*. Amsterdam: Elsevier Science Publishers.

Turian, R.M., Ma, T.W., Hsu, F.L.G., Sung, M.D.J. & Plackmann, G.W. 1998. Flow of concentrated slurries: 2. Friction losses in bends, fittings, valves and venturi meters. *Int. J. Multiphas. Flow*, 24(2): 243-269.

Vradis, G.C. & Hammad, K.J. 1996. Inertia effects on the flow of Bingham plastics through sudden contractions in a pipe. *Can. J. Chem. Eng.*, 74: 457-463, August.

Vrentas, J.S. & Duda, J.L. 1973. Flow of a Newtonian fluid through a sudden contraction. Appl. Sci. Res., 28: 241-260, November.

Ward-Smith, A.J. 1976. Component interactions and their influence on the pressure losses in internal flow systems. *Heat and Fluid Flow @ImechE*, 6(2): 79-88.

White, S.A., Gotsis, A.D. & Baird, D.G. 1987. Review of the entry flow problem: experimental and numerical. J. Non-Newton. Fluid Mech., 24: 121-160.

Wilson, K.C., Addie, G.R. & Clift, R. 1992. Slurry transport using centrifugal pumps. Essex: Elsevier Science Publishers.

# APPENDICES

## **APPENDICES**

#### INTRODUCTION

The experimental data obtained in this work such as the pressure drop along the length of the upstream and downstream pipes are presented in:

- Appendix A for contraction  $\beta = 0.22$ .
- Appendix B for contraction  $\beta = 0.50$ .
- Appendix C for contraction  $\beta = 0.85$ .

The pressure drop is given as measured at each pressure tap. The cumulative distances are given in centimeters [Distance (cm)] with 0 cm being at the first pressure tap (Pod No.5). The distances are also presented as the number of pipe diameters from the contraction plane. The contraction plane is at 397.71 cm.

The calculated variables such as the Reynolds numbers (Eq. 2.29, 2.30 and 2.32) and the loss coefficients (Eq. 2.57) are presented as well for all the pressure data sets. Loss coefficients are presented when all the data points were included for extrapolation to the contraction plane ( $k_{con all data}$ ) and when some data close to the fitting was excluded ( $k_{con selected data}$ ).

The pressure grade line is presented for each fluid at various velocities as plots of the pressure (Pa) versus the axial distance (diameters from the contraction plane).

#### INTRODUCTION

The experimental data obtained in this work such as the pressure drop along the length of the upstream and downstream pipes are presented in:

- Appendix A for contraction  $\beta = 0.22$ .
- Appendix B for contraction  $\beta = 0.50$ .
- Appendix C for contraction  $\beta = 0.85$ .

The pressure drop is given as measured at each pressure tap. The cumulative distances are given in centimeters [Distance (cm)] with 0 cm being at the first pressure tap (Pod No.5). The distances are also presented as the number of pipe diameters from the contraction plane. The contraction plane is at 397.71 cm.

The calculated variables such as the Reynolds numbers (Eq. 2.29, 2.30 and 2.32) and the loss coefficients (Eq. 2.57) are presented as well for all the pressure data sets. Loss coefficients are presented when all the data points were included for extrapolation to the contraction plane ( $k_{con all data}$ ) and when some data close to the fitting was excluded ( $k_{con selected data}$ ).

The pressure grade line is presented for each fluid at various velocities as plots of the pressure (Pa) versus the axial distance (diameters from the contraction plane).

### **APPENDIX A**

#### Contraction $\beta = 0.22$

| Table No   | Pressure Drop Data                                                    | Page |
|------------|-----------------------------------------------------------------------|------|
| Table A-1  | Pressure Drop Data for Water                                          | 200  |
| Table A-2  | Reynolds Number and Loss Coefficient Data for Water                   | 201  |
| Table A-3  | Pressure Drop Data for CMC 3 % and 5 %                                | 202  |
| Table A-4  | Reynolds Number and Loss Coefficient Data for<br>CMC 3% and 5%        | 203  |
| Table A-5  | Pressure Drop Data for Kaolin 5 %                                     | 204  |
| Table A-6  | Reynolds Number and Loss Coefficient Data for<br>Kaolin 5%            | 205  |
| Figure No  | Graphical Presentation of Pressure Drop Data<br>at Various Velocities |      |
| Figure A-1 | Pressure Grade Line for Water                                         | 206  |
| Figure A-2 | Pressure Grade Line for CMC 3 %                                       | 207  |
| Figure A-3 | Pressure Grade Line for CMC 5 %                                       | 208  |
| Figure A-4 | Pressure Grade Line for Kaolin 5 %                                    | 209  |

| Contraction plane    | 397.71 | cm  |        | •      |        |        |                   |        |        |        |        |        |        |        |        |        |        |        |
|----------------------|--------|-----|--------|--------|--------|--------|-------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Pod No.              |        |     | 5      | 6      | 7      | 8      | 9                 | 10     | 11     | 12     | 13     | 14     | 15     | 16     | 17     | 18     | 19     | 20     |
| Distance (dlameters) |        |     | -94    | -70    | -49    | -24    | -12               | -6     | -3     | -2     | 3      | 4      | 8      | 16     | 29     | 57     | 83     | 112    |
| Distance (cm)        |        | 1   | 0      | 102    | 192    | 295    | 346               | 371    | 384    | 391    | 407    | 412    | 424    | 451    | 502    | 604    | 697    | 799    |
| Pressure Drop        |        | 11  | 319130 | 319266 | 319399 | 320193 | 319571            | 319536 | 318871 | 320113 | 255005 | 240309 | 254334 | 233708 | 208085 | 152424 | 105220 | 51333  |
|                      |        | 2   | 208563 | 208029 | 207728 | 207752 | 207953            | 207830 | 207968 | 207668 | 166005 | 155857 | 164852 | 150470 | 134336 | 97436  | 86507  | 31107  |
| Water                |        | 3   | 116821 | 118031 | 117289 | 118115 | 116667            | 117148 | 117901 | 119278 | 94791  | 89235  | 93953  | 86120  | 76937  | 54982  | 37731  | 16729  |
| 10/2/2003 Set 1      |        | 4   | 105554 | 105337 | 105087 | 104919 | 104743            | 104479 | 104299 | 104191 | 84032  | 78713  | 82886  | 76220  | 67087  | 48023  | 31956  | 13740  |
|                      |        | 5   | 56565  | 56467  | 56426  | 56417  | 5636 <del>6</del> | 56464  | 56286  | 56277  | 46514  | 44087  | 45993  | 42548  | 37772  | 28052  | 19568  | 10001  |
|                      |        | 6   | 18622  | 18620  | 18609  | 18588  | 18595             | 18574  | 18582  | 16589  | 16025  | 15372  | 15759  | 14744  | 13266  | 10241  | 7569   | 4666   |
|                      |        | 7   | 8852   | 8829   | 8769   | 8717   | 8802              | 8838   | 8765   | 8738   | 8183   | 8098   | 8095   | 7864   | 7494   | 6730   | 6084   | 5354   |
|                      |        | 181 | 35267  | 35203  | 35190  | 35217  | 35215             | 35192  | 35196  | 35212  | 30033  | 28640  | 29529  | 27617  | 25009  | 19436  | 14573  | 9119   |
|                      |        | 9   | 60808  | 60943  | 60791  | 60822  | 60766             | 60826  | 60816  | 60854  | 51063  | 48443  | 50418  | 46999  | 42492  | 32405  | 23671  | 14377  |
|                      |        | 10  | 379070 | 379029 | 379198 | 379061 | 378875            | 378833 | 378613 | 378411 | 372960 | 371894 | 372897 | 370810 | 368329 | 362821 | 357794 | 352691 |
| 13/3/2002 Set 1      |        | 11  | 496769 | 497078 | 497073 | 496707 | 496831            | 497081 | 496996 | 497100 | 489727 | 488553 | 489764 | 487430 | 484215 | 476622 | 470792 | 464432 |
|                      |        | 12  | 430151 | 430105 | 430390 | 429862 | 429827            | 429855 | 429507 | 429840 | 423570 | 422367 | 423058 | 421143 | 418736 | 412084 | 407123 | 400993 |
|                      |        | 13  | 377870 | 377317 | 377066 | 377010 | 377591            | 377399 | 377203 | 377283 | 371848 | 370883 | 371731 | 369477 | 367105 | 361189 | 357161 | 351941 |

Appendix A : Table A-1

Water

|                         |    | Q (m <sup>3</sup> /s) | Temp *C | Re <sub>downstream</sub> | Vdownalream | Peon all data | Pcon selected data | K <sub>con all data</sub> | Keen selected data |
|-------------------------|----|-----------------------|---------|--------------------------|-------------|---------------|--------------------|---------------------------|--------------------|
|                         | ·  | 5.07E-04              | 31,62   | 69579.44                 | 7.50        | 60854         | 58809              | 1.110                     | 1.045              |
| 4                       |    | 4.06E-04              | 32.04   | 55689.40                 | 8.00        | 39759         | 38838              | 1.162                     | 1.111              |
| Water                   | 3  | 3.03E-04              | 32.42   | 41511.48                 | 4.47        | 22231         | 21871              | 1.175                     | 1.138              |
| 10/2/2003 Set 1         | 4  | 2.83E-04              | 32.57   | 38844.53                 | 4.19        | 19482         | 19260              | 1.176                     | 1.151              |
|                         | 5  | 2.01E-04              | 32.37   | 27601.31                 | 2.97        | 9228          | 8988               | 1.039                     | 0.984              |
|                         | 6  | 1.05E-04              | 32.10   | 14424.67                 | 1.55        | 2369          | 2355               | 0.930                     | 0.902              |
|                         | 7  | 5.04E-05              | 32.07   | 6913.76                  | 0.75        | 528           | 508                | 0.853                     | 0.781              |
|                         | 8  | 1.48E-04              | 32.03   | 20261.54                 | 2.18        | 30292         | 30412              | 1.010                     | 0.959              |
|                         | 9  | 2.01E-04              | 31.86   | 27532.58                 | 2.97        | 51604         | 8837               | 1.045                     | 0.960              |
|                         | 10 | 1.41E-04              | 33.42   | 19314.82                 | 2.08        | 5250          | 5456               | 1.376                     | 1.472              |
| 13/3/2002 Set 1         | 11 | 1.61E-04              | 33.32   | 22080.75                 | 2.38        | 6475          | 6198               | 1.240                     | 1.142              |
| · · · · · · · · · · · · | 12 | 1.50E-04              | 33.42   | 20567.22                 | 2.22        | 6709          | 5372               | 1.277                     | 1.140              |
|                         | 13 | 1.40E-04              | 33.41   | 19261.08                 | 2.08        | 5012          | 4587               | 1.279                     | 1.082              |

...

| Pod No.              |       |    | 6      | 6      | 7      | 8      | 9      | 10     | 11     | 12     | 13     | 14     | Ü 15   | 16     | 17           | 18    | 19    | 20    |
|----------------------|-------|----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------------|-------|-------|-------|
| Distance (diameters) |       | 1  | -94    | -70    | -49    | -24    | -12    | -6     | -3     | -2     | 3      | 4      | 8      | 15     | 29           | 67    | 83    | 112   |
| Distance (cm)        |       |    | 0      | 102    | 192    | 295    | 346    | 371    | 384    | 391    | 407    | 412    | 424    | 461    | 502          | 604   | 697   | 799_  |
| Pressure Drop        |       | 14 | 120752 | 120578 | 120446 | 120098 | 120010 | 119914 | 119877 | 119816 | 111907 | 108417 | 105113 | 98995  | 87213        | 63446 | 43266 | 19343 |
| CMC 3 %              |       | 15 | 111798 | 111564 | 111354 | 111289 | 111065 | 111151 | 111103 | 111142 | 104197 | 101146 | 98102  | 92392  | 81262        | 58649 | 39671 | 17377 |
| 23/10/2002 Set 1     | 1     | 18 | 96741  | 96639  | 96570  | 96554  | 96477  | 96407  | 96360  | 96545  | 81125  | 86599  | 66166  | 81234  | 71376        | 51264 | 34185 | 14202 |
| Density (kg/m³)      | 1021  | 17 | 81558  | 81444  | 81390  | 81331  | 81248  | 81265  | 81225  | 81246  | 77172  | 75189  | 73033  | 68665  | 60198        | 42965 | 28148 | 10992 |
| Viscosity [Pa.s]     |       | 18 | 70353  | 70171  | 70186  | 70094  | 70027  | 69965  | 70013  | 69997  | 66720  | 65153  | 63223  | 59442  | 51933        | 36796 | 23694 | 8593  |
| Ту                   | 0.00  | 19 | 54957  | 54850  | 54770  | 54898  | 54668  | 54865  | 54630  | 54628  | 52560  | 61563  | 60136  | 47165  | 41432        | 28917 | 19792 | 8332  |
| ĸ                    | 0.111 | 20 | 43520  | 43476  | 43451  | 43328  | 43320  | 43321  | 43304  | 43264  | 41798  | 41152  | 40022  | 37527  | 32850        | 23616 | 15259 |       |
| ln                   | 0.805 | 21 | 37192  | 37148  | 37060  | 37070  | 37019  | 37068  | 37125  | 37082  | 35864  | 35341  | 34367  | 32280  | 28167        | 20259 | 13119 | 5144  |
|                      |       | 22 | 33848  | 33844  | 33646  | 33699  | 33664  | 33704  | 33642  | 33592  | 32867  | 32538  | 31768  | 30201  | 27244        | 21552 | 16323 | 10526 |
|                      |       | 23 | 30284  | 30234  | 30260  | 30264  | 30254  | 30139  | 30244  | 30227  | 29557  | 29173  | 28597  | 27189  | 24598        | 19359 | 14728 | 9539  |
| 23/10/2002 Set 2     |       | 24 | 47117  | 47040  | 47048  | 46933  | 46782  | 46946  | 46818  | 46881  | 45679  | 45059  | 44136  | 41873  | 37939        | 29796 | 22582 | 14482 |
|                      | 1     | 25 | 55505  | 55434  | 55375  | 55192  | 55138  | 55244  | 55249  | 55254  | 53731  | 52993  | 51800  | 49241  | 44525        | 35026 | 26515 | 16946 |
|                      |       | 26 | 61847  | 61777  | 61679  | 61681  | 61548  | 61693  | 61591  | 61643  | 59706  | 58787  | 57372  | 54423  | 48776        | 37566 | 27534 | 16315 |
|                      | l l   | 27 | 75773  | 75641  | 75635  | 75597  | 75478  | 75507  | 75453  | 76473  | 72817  | 71651  | 70035  | 66476  | 59748        | 46205 | 34163 | 20550 |
|                      |       | 28 | 89738  | 89690  | 89559  | 89482  | 89324  | 89355  | 89308  | 89328  | 85786  | 84214  | 82233  | 78200  | 70229        | 54329 | 40283 | 24225 |
|                      |       | 29 | 116920 | 118951 | 119067 | 118932 | 118935 | 118891 | 118818 | 118800 | 113164 | 110613 | 107861 | 102512 | 92073        | 71364 | 53130 | 32144 |
|                      |       | 30 | 135919 | 135784 | 135804 | 135628 | 135525 | 135482 | 135482 | 135558 | 128482 | 125155 | 122113 | 115999 | 104256       | 80728 | 60383 | 36821 |
| CMC 5 %              |       | 31 | 131727 | 131439 | 131329 | 131161 | 130941 | 131041 | 131074 | 131146 | 127385 | 125772 | 122580 | 115634 | 102352       | 76144 | 52695 | 26476 |
| 22/10/2002 Set 1     |       | 32 | 118258 | 118137 | 117816 | 117674 | 117550 | 117522 | 117521 | 117590 | 114386 | 112838 | 109967 | 103543 | <b>B1614</b> | 67858 | 46728 | 23091 |
| Density [kg/m³]      | 1025  | 33 | 103993 | 103775 | 103622 | 103401 | 103272 | 103239 | 103270 | 103171 | 100453 | 99222  | 96549  | 90945  | 80155        | 59096 | 40359 | 19469 |
| Viscosity [Pa.s]     |       | 34 | 91854  | 91628  | 91470  | 91279  | 91194  | 91183  | 91103  | 01102  | 88709  | 87601  | 85260  | 80212  | 70611        | 51699 | 35138 | 16472 |
| Ty <sup>11</sup>     | 0.00  | 35 | 77974  | 77919  | 77794  | 77578  | 77635  | 77644  | 77598  | 77788  | 75621  | 74908  | 72730  | 68452  | 60052        | 43752 | 20175 | 13171 |
| ĸ                    | 0.503 | 36 | 63570  | 63527  | 63389  | 63234  | 63275  | 63212  | 63205  | 63263  | 61613  | 60798  | 59164  | 55561  | 48635        | 34863 | 22603 | 9491  |
| n                    | 0.720 | 37 | 57527  | 57381  | 57341  | 57202  | 57228  | 57214  | 57188  | 57152  | 55782  | 55166  | 53645  | 50600  | 44632        | 32708 | 22216 | 10791 |
|                      |       | 38 | 49105  | 49050  | 48946  | 48829  | 48768  | 48731  | 48749  | 48818  | 47646  | 47047  | 45802  | 43105  | 37907        | 27689 | 18938 | 8905  |
| 1                    | 1     | 39 | 57123  | 56947  | 56885  | 56853  | 56769  | 56741  | 56728  | 56794  | 55428  | 54838  | 53410  | 60320  | 44375        | 32677 | 22277 | 11062 |
|                      |       | 40 | 63563  | 63477  | 63300  | 63250  | 63258  | 63236  | 63209  | 63251  | 61651  | 60929  | 59220  | 65672  | 48920        | 35331 | 23304 | 10183 |
| 22/10/2002 Set 2     |       | 41 | 58099  | 58029  | 57941  | 67958  | 57826  | 57849  | 57826  | 57885  | 56660  | 55918  | 54505  | 51515  | 45795        | 34166 | 23695 | 12380 |
|                      | 1     | 42 | 65046  | 64996  | 64966  | 84887  | 64780  | 64818  | 64794  | 64809  | 63310  | 62530  | 60882  | 57338  | 50541        | 37054 | 24999 | 11666 |
|                      | 1     | 43 | 73662  | 73558  | 73359  | 73335  | 73194  | 73227  | 73258  | 73188  | 71512  | 70574  | 68785  | 64860  | 57240        | 42307 | 28760 | 13910 |
|                      |       | 44 | 82561  | 82388  | 82254  | 82189  | 82066  | 82068  | 82074  | 82087  | 80090  | 79100  | 77021  | 72602  | 64278        | 47602 | 32740 | 16144 |
|                      |       | 45 | 89942  | 89761  | 89669  | 89513  | 89513  | 89460  | 89328  | 89327  | 87169  | 86075  | 83822  | 79085  | 70143        | 52156 | 35581 | 17962 |
|                      |       | 46 | 99358  | 99234  | 99133  | 98854  | 98866  | 98885  | 98823  | 98817  | 96372  | 95232  | 92796  | 87514  | 77625        | 57814 | 39490 | 20274 |
|                      |       | 47 | 107603 | 107410 | 107247 | 107083 | 107045 | 106966 | 106904 | 106986 | 104402 | 102979 | 100427 | 94739  | 84018        | 62744 | 43631 | 22274 |

202

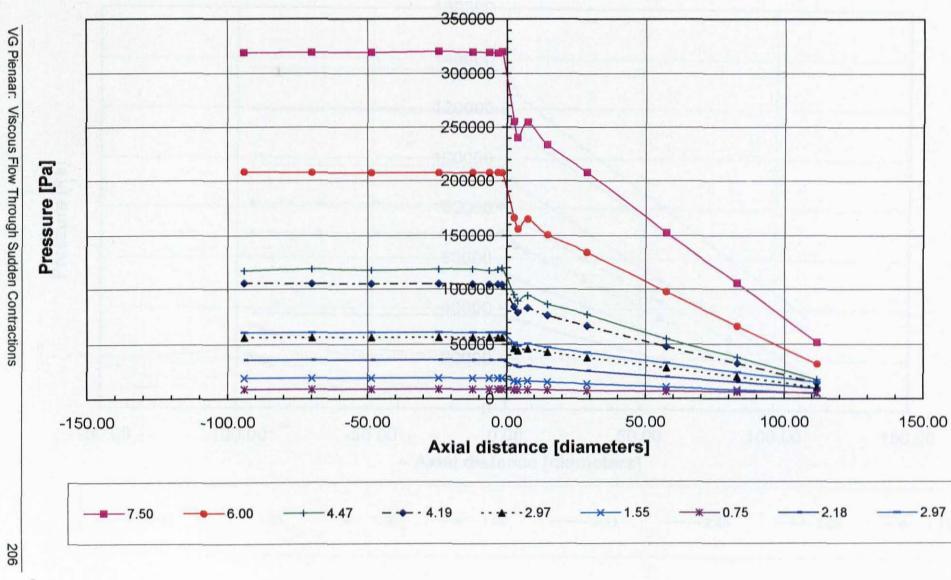
VG Pienaar: Viscous Flow Through Sudden Contractions

|                              |       |    | Q (m³/s) | Temp *C | Redownstream | Vdownetream | Pritt all data | Pret selected data | K <sub>con all data</sub> | K <sub>con</sub> selected data |
|------------------------------|-------|----|----------|---------|--------------|-------------|----------------|--------------------|---------------------------|--------------------------------|
|                              |       | 14 | 1.93E-04 | 24.26   | 1051.90      | 2.64        | 7832           | 9060               | 0.338                     | 0.69                           |
| CMC 3 %                      | }     | 15 | 1.76E-04 | 23.85   | 941.81       | 2.41        | 6559           | 7646               | 0.356                     | 0.73                           |
| 3/10/2002 Set 1              |       | 16 | 1.52E-04 | 23.69   | 789.59       | 2.08        | 4653           | 5197               | 0.250                     | 0.50                           |
| Density [kg/m <sup>3</sup> ] | 1021  | 17 | 1.25E-04 | 23.61   | 628.40       | 1.72        | 3401           | 3895               | 0,403                     | 0.74                           |
| (iscosity [Pa.s]             | ,     | 18 | 1.07E-04 | 23.48   | 618.67       | 1.48        | 2551           | 2946               | 0.482                     | 0.85                           |
| Y                            | 0.00  | 19 | 7.85E-05 | 23.31   | 359.32       | 1.08        | 1364           | 1592               | 0.454                     | 0.85                           |
| Ś                            | 0.111 | 20 | 6.04E-05 | 23.06   | 262.41       | 0.83        | 782            | 977                | 0.383                     | 0.96                           |
|                              | 0.805 | 21 | 4.99E-05 | 22.66   | 208.92       | 0.68        | 580            | 736                | 0.582                     | 1.25                           |
|                              |       | 22 | 3.41E-05 | 22.48   | 132.77       | 0.47        | 321            | 446                | 1.030                     | 2.18                           |
|                              |       | 23 | 3.05E-05 | 22.39   | 116.17       | 0.42        | 267            | 389                | 1.147                     | 2.55                           |
| 23/10/2002 Set 2             |       | 24 | 0.0000   | 22.00   | 207.61       | 0.68        | 597            | 746                | 0.682                     | 1.326                          |
|                              |       | 25 | 0.0001   | 21.98   | 261.18       | 0.82        | 825            | 905                | 0.528                     | 0.765                          |
|                              |       | 26 | 0.0001   | 22.03   | 318.61       | 0.97        | 1183           | 1429               | 0.598                     | 1.116                          |
|                              | 1.    | 27 | 0.0001   | 22.08   | 419.73       | 1.23        | 1778           | 2025               | 0.464                     | 0,795                          |
|                              |       | 28 | 1.10E-04 | 22.13   | 537.28       | 1.51        | 2664           | 3022               | 0.445                     | 0.760                          |
|                              |       | 29 | 1.54E-04 | 22.21   | 803.05       | 2.11        | 5086           | 5905               | 0.384                     | 0.752                          |
|                              |       | 30 | 1.79E-04 | 22.30   | 960.64       | 2.45        | 6672           | 7761               | 0.320                     | 0.683                          |
| CMC 5 %                      |       | 31 | 7.11E-05 | 23.34   | 124.42       | 0.97        | 1507           | 1977               | 1.320                     | 2.310                          |
| 2/10/2002 Set 1              |       | 32 | 6.24E-05 | 23.55   | 105.28       | 0.85        | 1302           | 1831               | 1.706                     | 3.154                          |
| Density (kg/m <sup>3</sup> ) | 1025  | 33 | 5.32E-05 | 23.64   | 85.83        | 0.73        | 1097           | 1805               | 2,274                     | 4,942                          |
| /iscosity [Pa.s]             |       | 34 | 4.57E-05 | 23.68   | 70.58        | 0.63        | 928            | 1574               | 2.885                     | 6,187                          |
| y                            | 0.00  | 35 | 3.78E-05 | 23.72   | 55.47        | 0.52        | 603            | 1034               | 2.633                     | 5.847                          |
| s<br>K                       | 0.503 | 36 | 2.99E-05 | 23.75   | 41.10        | 0.41        | 500            | 895                | 4.094                     | 8.802                          |
| 1                            | 0.720 | 37 | 2.56E-05 | 23,79   | 33.64        | 0.35        | 408            | 714                | 4,780                     | 9.761                          |
| •                            | 1     | 38 | 2.12E-05 | 23.80   | 26.44        | 0.29        | 325            | 761                | 5.863                     | 16,182                         |
|                              |       | 39 | 2.50E-05 | 23.86   | 32.70        | 0.34        | 332            | 762                | 3,794                     | 11.109                         |
|                              |       | 40 | 2.92E-05 | 23.98   | 39.90        | 0.40        | 442            | 708                | 3.658                     | 6.965                          |
| 2/10/2002 Set 2              |       | 41 | 2.55E-05 | 24.06   | 31.30        | 0.35        | 245            | 403                | 2,172                     | 4.763                          |
|                              |       | 42 | 3.00E-05 | 24.11   | 38.58        | 0.41        | 368            | 693                | 2,506                     | 6.350                          |
|                              |       | 43 | 3.48E-05 | 24.18   | 46.66        | 0.48        | 450            | 720                | 2.101                     | 4.474                          |
|                              |       | 44 | 4.01E-05 | 24.25   | 55.90        | 0.55        | 612            | 887                | 2.200                     | 4.026                          |
|                              |       | 45 | 4.50E-05 | 24.29   | 64.82        | 0.62        | 725            | 902                | 1.957                     | 2.890                          |
|                              |       | 46 | 5,11E-05 | 24.33   | 76.19        | 0.70        | 767            | 991                | 1.279                     | 2.196                          |
|                              |       | 47 | 5.66E-05 | 24.41   | 87.02        | 0.78        | 106062         | 105705             | 1.018                     | 2.090                          |

CMC 3 % and CMC 5 %

.

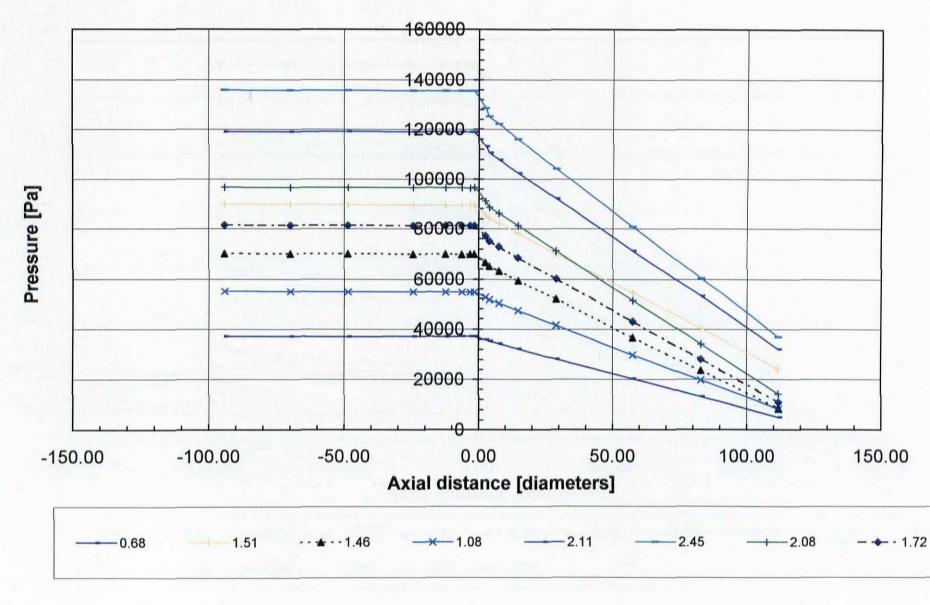
| Pod No.                      |       |    | 6      | 6      | 7                 | 8            | 9      | 10     | 11     | 12     | 13     | 14     | 15     | 16    | 17    | 18    | 19    | 20    |
|------------------------------|-------|----|--------|--------|-------------------|--------------|--------|--------|--------|--------|--------|--------|--------|-------|-------|-------|-------|-------|
| Distance (diameters)         |       |    | -94    | -70    | -49               | -24          | -12    | -6     | -3     | -2     | 3      | 4      | 8      | 15    | 29    | 57    | 83    | 112   |
| Distance (cm)                | 1.1   |    | 0      | 102    | 192               | 295          | 346    | 371    | 384    | 391    | 407    | 412    | 424    | 451   | 502   | 604   | 697   | 799   |
| Pressure Drop                |       | 48 | 125975 | 125837 | 125772            | 125632       | 125128 | 124777 | 124784 | 124844 | 101137 | 106265 | 103632 | 97829 | 85094 | 60803 | 40290 | 13886 |
| Kaolin 6 %                   |       | 49 | 103217 | 102948 | 102941            | 102571       | 102070 | 102003 | 101921 | 102178 | 82783  | 86446  | 84445  | 79550 | 69251 | 48743 | 31402 | 9383  |
| 1/10/2002 Set 1              |       | 50 | 84740  | 84169  | 8408 <del>9</del> | 83878        | 83586  | 83372  | 83462  | 83396  | 67795  | 70342  | 68569  | 64598 | 65798 | 38695 | 24215 | 5830  |
| Density [kg/m <sup>3</sup> ] | 1075  | 51 | 68304  | 67915  | 67669             | 67599        | 67362  | 67002  | 67051  | 67243  | 54449  | 56661  | 55081  | 51800 | 44391 | 30110 | 17987 | 2654  |
| /iscosity [Pa.s]             |       | 52 | 56179  | 65968  | 55843             | 55593        | 55406  | 55280  | 55201  | 55087  | 46173  | 46585  | 45561  | 42790 | 36985 | 25687 | 16091 | 4252  |
| Tv                           | 4.00  | 53 | 42309  | 42075  | 41664             | 41683        | 41089  | 41263  | 41241  | 41261  | 34375  | 34497  | 33564  | 31567 | 27070 | 18292 | 10665 | 1281  |
| ć                            | 0.077 | 54 | 29502  | 29112  | 28881             | 28876        | 28581  | 28341  | 28374  | 28381  | 24352  | 23821  | 22778  | 21248 | 17825 | 11341 | 7154  | 1925  |
| 1                            | 0.586 | 55 | 41749  | 41428  | 41257             | 41131        | 40718  | 40766  | 40726  | 40686  | 34291  | 34305  | 33286  | 31302 | 26822 | 18094 | 12714 | 6381  |
| -                            |       | 56 | 57732  | 57553  | 57435             | <b>57382</b> | 56831  | 56855  | 56795  | 56777  | 47203  | 47925  | 46837  | 44252 | 38148 | 26581 | 16776 | 4734  |
|                              |       | 57 | 68973  | 68492  | 68482             | 68271        | 67995  | 68065  | 68042  | 67914  | 55331  | 56810  | 55614  | 52336 | 44995 | 30524 | 18386 | 3148  |


VG Pienaar: Viscous Flow Through Sudden Contractions

|                              |       |      | Q (m <sup>3</sup> /s) | Temp °C | Re <sub>downstream</sub> | V <sub>downetream</sub> | Pritt all data | Pritt selected data | K <sub>con all data</sub> | K <sub>con</sub> selected data |
|------------------------------|-------|------|-----------------------|---------|--------------------------|-------------------------|----------------|---------------------|---------------------------|--------------------------------|
|                              |       | 48   | 3.00E-04              | 20.67   | 8605.79                  | 4.11                    | 16414          | 15278               | 1.753                     | 1.619                          |
| Kaolin 5 %                   |       | [ 49 | 2.76E-04              | 20.71   | 7300.67                  | 3.78                    | 13416          | 12063               | 1,303                     | 1.113                          |
| 4/10/2002 Set 1              |       | 50   | 2.50E-04              | 20.83   | 6028.08                  | 3.43                    | 11156          | 10114               | 1.101                     | 0.923                          |
| Density (kg/m <sup>3</sup> ) | 1075  | 51   | 2.26E-04              | 20.82   | 4931.30                  | 3.09                    | 8935           | 8155                | 1.228                     | 1.063                          |
| Viscosity [Pa.s]             |       | 52   | 2.028-04              | 21.51   | 4010.04                  | 2.77                    | 7052           | 6933                | 1.330                     | 1.299                          |
| Ту                           | 4.00  | 63   | 1.76E-04              | 21.54   | 3114.97                  | 2.41                    | 5396           | 5163                | 1.298                     | 1.218                          |
| ĸ                            | 0.077 | 54   | 1.50E-04              | 21.56   | 2627.30                  | 2.05                    | 4057           | 5638                | 1.380                     | 2.134                          |
| n                            | 0.586 | 55   | 1.75E-04              | 21.59   | 3260,69                  | 2.40                    | 5773           | 7703                | 1.461                     | 2 131                          |
|                              |       | 56   | 2.06E-04              | 21.69   | 4146.36                  | 2.82                    | 7340           | 7361                | 1.647                     | 1,652                          |
|                              |       | 57   | 2.28E-04              | 21.95   | 5036,54                  | 3.12                    | 9237           | 8331                | 1.252                     | 1.066                          |
| L                            |       | 1    |                       |         |                          |                         |                |                     |                           | ·                              |

Kaolin 5 %

205


.



Pressure Grade Line for Water [Legend = Velocity in m/s]

Appendix A .. Figure A-1

Contraction  $\beta = 0.22$ 



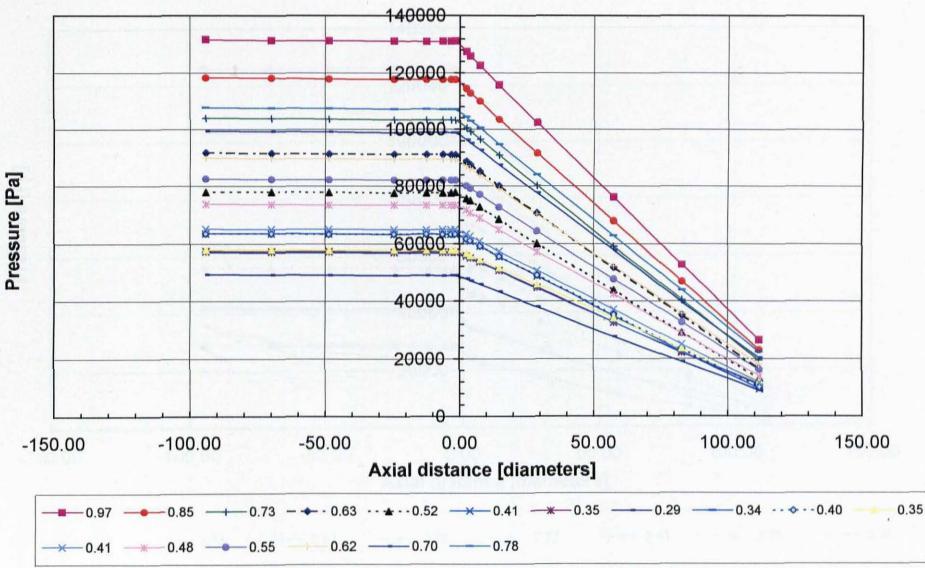
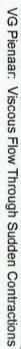

Appendix A :

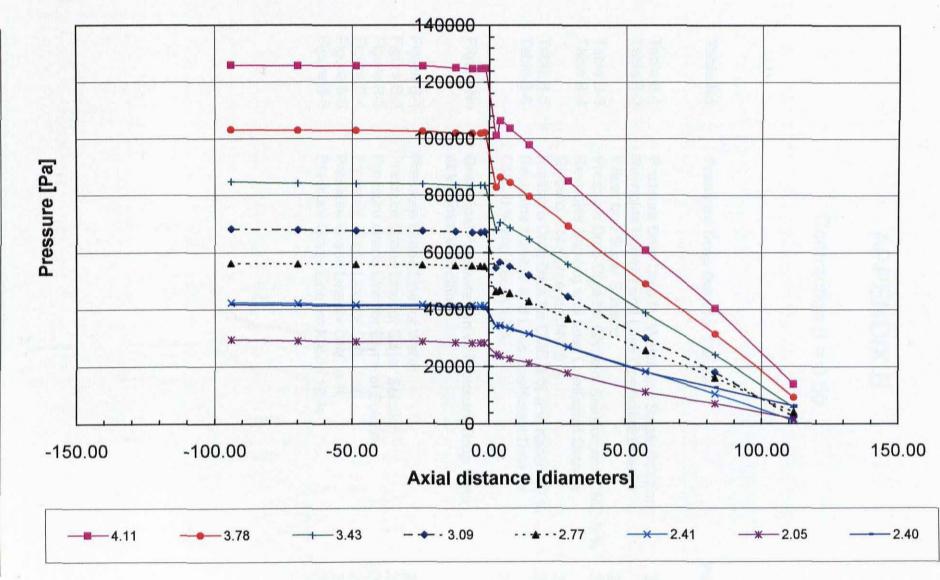
Figure A-2

Contraction  $\beta = 0.22$ 

Pressure Grade Line for CMC 3 % at Various Velocities [Legend = Velocity in m/s]

VG Pienaar: Viscous Flow Through Sudden Contractions





Appendix A : Figure A-3

Contraction  $\beta = 0.22$ 

Pressure Grade Line for CMC 5 % at Various Velocities [Legend = Velocity in m/s]

VG Pienaar: Viscous Flow Through Sudden Contractions





Contraction  $\beta = 0.22$ 

Appendix A : Figure A-4

Pressure Grade Line for Kaolin 5 % at Various Velocities [Legend = Velocity in m/s]

### **APPENDIX B**

#### Contraction $\beta = 0.50$

| Table No   | Pressure Drop Data for Fluids                                         | Page |
|------------|-----------------------------------------------------------------------|------|
| Table B-1  | Pressure Drop Data for Water and Sugar Solution                       | 211  |
| Table B-2  | Reynolds Number and Loss Coefficient Data for                         |      |
|            | Water and Sugar Solution                                              | 212  |
| Table B-3  | Pressure Drop Data for Glycerol Solution and CMC 5 %                  | 213  |
| Table B-4  | Reynolds Number and Loss Coefficient Data for                         |      |
|            | Glycerol Solution and CMC 5 %                                         | 214  |
| Table B-5  | Pressure Drop Data for CMC 8 % and Kaolin 10 %                        | 215  |
| Table B-6  | Reynolds Number and Loss Coefficient Data for                         |      |
|            | CMC 8 % and Kaolin 10 %                                               | 216  |
| Figure No  | Graphical Presentation of Pressure Drop Data<br>at Various Velocities |      |
| Figure B-1 | Pressure Grade Line for Water                                         | 217  |
| Figure B-2 | Pressure Grade Line for Sugar Solution                                | 218  |
| Figure B-3 | Pressure Grade Line for Glycerol Solution                             | 219  |
| Figure B-4 | Pressure Grade Line for CMC 5 %                                       | 220  |
| Figure B-5 | Pressure Grade Line for CMC 8 %                                       | 221  |
| Figure B-6 | Pressure Grade Line for Kaolin 10 %                                   | 222  |

| Contraction plane    | 397.71  | cm |        |                |                |        |                |        |                |                |       |                |                         |                |                |     |
|----------------------|---------|----|--------|----------------|----------------|--------|----------------|--------|----------------|----------------|-------|----------------|-------------------------|----------------|----------------|-----|
| Pod No.              |         |    | 5      | 6              | 7              | 8      | 9              | 10     | 11             | 12             | 13    | 14             | 15                      | 16             | 17             |     |
| Distance (diameters) |         |    | -94    | -70            | -49            | -24    | -12            | -6     | -3             | -2             | 3     | 4              | 8                       | 15             | 29             |     |
| Distance (cm)        |         |    | 0      | 102            | 192            | 295    | 346            | 371    | 384            | 391            | 407   | 412            | 424                     | 451            | 502            |     |
| Pressure Drop        |         |    | 81140  | 80616          | 80322          | 80160  | 79916          | 80163  | 79796          | 79542          | 71190 | 68082          | 66938                   | 65143          | 59905          | 5   |
|                      |         |    | 80539  | 80301          | 79978          | 79653  | 79377          | 79252  | 79430          | 79119          | 68359 | 67462          | 66555                   | 64647          | 59888          | 5   |
| Water                |         | 3  | 71425  | 71239          | 70824          | 70621  | 70387          | 70370  | 70334          | 70217          | 60082 | 59869          | 58972                   | 57205          | 52713          | 4   |
| 8/8/2002 Set 1       | 1       | 4  | 71157  | 70910          | 70714<br>60555 | 70224  | 70234          | 70127  | 70162          | 69783<br>59080 | 59913 | 59717          | 58669                   | 56922          | 52482          | 4   |
|                      |         | 5  | 60758  | 60649<br>60808 | 60358          | 60440  | 60231<br>60090 | 59564  | 59268<br>60286 | 60139          | 50941 | 50921<br>51109 | 50336<br>600 <i>0</i> 7 | 49152<br>48967 | 45391<br>45279 | 4   |
|                      | 1 1     | 6  | 61304  | 49672          | 49265          | 60100  | 48955          | 60205  | 48872          | 48871          | 51688 | 41880          | 50367                   | 48967<br>39857 | 45279          | 4   |
|                      |         | 7  | 49756  | 49656          |                | 48837  |                | 48939  | 49203          | 49298          | 41989 |                | 41164                   |                | 36919          | 3   |
|                      |         |    | 49865  |                | 49498          | 49324  | 49239          | 49182  |                | 32563          | 42201 | 41900          | 41180                   | 39959          |                | . 3 |
|                      | 1 [     | 9  | 33001  | 32924          | 32749          | 32703  | 32627          | 32532  | 32613          | 32379          | 27631 | 27477<br>27321 | 26922<br>26870          | 26054<br>25997 | 23860<br>23749 | . 2 |
|                      |         | 10 | 33176  | 33075          | 32995          | 32861  | 32719          | 32650  | 32404          | 323/8          | 27382 | 27321          | 208/0                   | <b>7048</b> 1  | 23/48          | 2   |
| 8/8/2002 Set 2       |         | 11 | 80394  | 80006          | 79689          | 79427  | 79249          | 79223  | 79327          | 78860          | 67659 | 67286          | 60331                   | 64346          | 59681          | 5   |
|                      | 1 1     | 12 | 68314  | 68102          | 67905          | 87528  | 87493          | 87518  | 67454          | 67402          | 57425 | 57322          | 56452                   | 54619          | 50194          | 4   |
|                      | 1       | 13 | 59135  | 59197          | 58846          | 58635  | 58414          | 58416  | 5835B          | 58414          | 60147 | 49900          | 49164                   | 47730          | 44146          | 4   |
|                      | 4       | 14 | 49462  | 49463          | 49232          | 49206  | 49067          | 48927  | 48827          | 48916          | 41760 | 41680          | 41101                   | 39728          | 36871          | :   |
|                      |         | 15 | 49621  | 49386          | 49302          | 49143  | 49092          | 49043  | 49013          | 48932          | 41948 | 41749          | 41164                   | 39929          | 36736          | 3   |
|                      |         | 16 | 40195  | 40103          | 39891          | 39879  | 39767          | 39688  | 39667          | 39646          | 33672 | 33541          | 33013                   | 31976          | 29325          | :   |
|                      |         | 17 | 32309  | 32197          | 32075          | 31924  | 31914          | 31819  | 31709          | 31657          | 26692 | 26578          | 26162                   | 25281          | 23070          |     |
|                      | 1.      | 18 | 25748  | 25485          | 25354          | 25005  | 24965          | 24946  | 25056          | 25096          | 21030 | 20951          | 20547                   | 19821          | 17956          |     |
|                      |         | 18 | 16466  | 16301          | 16173          | 16128  | 16095          | 16084  | 16031          | 16025          | 12670 | 12623          | 12314                   | 11641          | 10043          |     |
|                      |         | 20 | 9835   | 9760           | 9664           | 9577   | 9530           | 9539   | 9498           | 9508           | 6958  | 8907           | 6778                    | 6260           | 5002           |     |
| Sugar Solution       |         | 21 | 108950 | 108207         | 108377         | 107582 | 107229         | 107088 | 107331         | 107322         | 95876 | 95530          | 93944                   | 91329          | 85412          | 7   |
| 23/8/2002 Set 1      | 1 1     | 22 | 90345  | 89866          | 89670          | 89405  | 88903          | 88874  | 88826          | 88776          | 79626 | 79487          | 78122                   | 75876          | 70762          | - 6 |
| Density [kg/m³]      | 1199.07 | 23 | 74608  | 74446          | 74238          | 73801  | 73352          | 73366  | 73379          | 73485          | 65436 | 65358          | 64429                   | 62442          | 58107          | ŧ   |
| Viscosity [Pa.s]     |         |    | 61113  | 60350          | 60204          | 59995  | 59935          | 59951  | 60025          | 60006          | 53489 | 53420          | 52599                   | 50893          | 47198          | 4   |
|                      |         | 25 | 50555  | 50181          | 49968          | 49735  | 49651          | 49563  | 49579          | 49586          | 44348 | 44289          | 43588                   | 42080          | 39207          | 3   |
|                      | 1       | 28 | 39323  | 39128          | 38985          | 38905  | 38703          | 38682  | 38821          | 38692          | 34557 | 34463          | 34003                   | 32675          | 30369          |     |
|                      | 1 1     | 27 | 28289  | 28099          | 28001          | 27921  | 27705          | 27653  | 27804          | 27738          | 24509 | 24562          | 24063                   | 23079          | 21263          | 1   |
|                      | i l     | 28 | 18339  | 18172          | 18196          | 18175  | 17987          | 17974  | 18135          | 18000          | 15343 | 15368          | 15057                   | 14212          | 12806          |     |
|                      | 1 1     | 29 | 9878   | 9777           | 9768           | 9697   | 9594           | 9562   | 9722           | 9655           | 7848  | 7928           | 7725                    | 7043           | 5969           |     |
| 23/8/2002 Set 2      |         | 30 | 10958  | 10799          | 10753          | 10763  | 10699          | 10628  | 10760          | 10811          | 8904  | 8925           | 8734                    | 8110           | 6971           |     |
|                      |         | 31 | 10873  | 10845          | 10793          | 10734  | 10599          | 10576  | 10717          | 10700          | 8890  | 8958           | 8748                    | 8037           | 6987           |     |
|                      |         | 32 | 13450  | 13386          | 13310          | 13230  | 13095          | 13106  | 13235          | 13248          | 11240 | 11224          | 10987                   | 10319          | 9110           |     |
|                      |         |    | 21524  | 21429          | 21311          | 21259  | 21111          | 21031  | 21209          | 21155          | 18631 | 18659          | 18301                   | 17486          | 16057          | 1   |
|                      |         |    | 30376  | 30141          | 30061          | 29939  | 29762          | 29730  | 29896          | 29802          | 26479 | 26504          | 26009                   | 25081          | 23252          | 1   |
|                      |         |    | 38684  | 38517          | 38354          | 38231  | 38093          | 37988  | 38139          | 38185          | 33950 | 33983          | 33496                   | 32199          | 29943          | 2   |
|                      |         | 36 | 50981  | 50790          | 50542          | 50482  | 50108          | 50106  | 50265          | 50103          | 44934 | 44834          | 44145                   | 42625          | 39940          | 3   |
|                      |         |    | 63657  | 63256          | 63049          | 62865  | 62632          | 62416  | 62521          | 62372          | 55754 | 55696          | 54770                   | 52934          | 49285          | 4   |

Contraction  $\beta = 0.50$ 

Water and Sugar Solution

|                              |         |         | Q (m <sup>3</sup> /s) | Temp °C | Redownstream | Vdownstream | Pcon all data | Pcon selected data | K <sub>con ell data</sub> | K <sub>con aslected data</sub> |
|------------------------------|---------|---------|-----------------------|---------|--------------|-------------|---------------|--------------------|---------------------------|--------------------------------|
|                              |         |         | 1.52E-03              | 20.41   | 92315.71     | 4.41        | 10558         | 12038              | 0.101                     | 0.253                          |
|                              |         | 2 1     | 1.62E-03              | 21.13   | 92252.37     | 4.40        | 11021         | 11907              | 0.150                     | 0.241                          |
| Vater                        |         |         | 1.44E-03              | 22.40   | 87540.68     | 4.18        | 9889          | 10561              | 0.146                     | 0.223                          |
| 3/8/2002 Set 1               |         | 4 1     | 1.44E-03              | 23.68   | 87346.00     | 4.17        | 9892          | 10583              | 0.116                     | 0.231                          |
|                              |         | 5 1     | 1.32E-03              | 24.40   | 80458.30     | 3.84        | 8137          | 9178               | 0.116                     | 0.257                          |
|                              |         | 6 1     | 1.33E-03              | 24.61   | 80604.31     | 3.85        | 8438          | 8599               | 0.153                     | 0.175                          |
|                              |         | 7 1     | 1.21E-03              | 24.75   | 73585.95     | 3.51        | 6639          | 6881               | 0.089                     | 0.129                          |
|                              |         | 8 1     | 1.21E-03              | 24.98   | 73794.65     | 3.52        | 6936          | 7350               | 0.131                     | 0.198                          |
|                              |         | - e   1 | 1.02E-03              | 25.07   | 61940.94     | 2.96        | 4837          | 5152               | 0.120                     | 0.192                          |
|                              |         | 10 1    | 1.02E-03              | 25.09   | 62003.51     | 2.96        | 4946          | 5442               | 0.142                     | 0.256                          |
| /8/2002 Set 2                |         | 11 1    | 1.53E-03              | 25.27   | 92930.50     | 4.44        | 11215         | 11882              | 0.153                     | 0.221                          |
|                              |         | 12      | 1.42E-03              | 25.46   | 86527.30     | 4.13        | 9694          | 10316              | 0.160                     | 0.223                          |
|                              |         | 13      | 1.32E-03              | 25.65   | 80150.48     | 3.83        | 8051          | 8677               | 0.113                     | 0.199                          |
|                              |         | 14      | 1.21E-03              | 25.73   | 73769.85     | 3.52        | 6915          | 7538               | 0.118                     | 0.229                          |
|                              |         | 15      | 1.21E-03              | 25.81   | 73848.79     | 3.53        | 6852          | 7281               | 0.116                     | D.185                          |
|                              |         | 16      | 1.11E-03              | 25,85   | 67433.61     | 3.22        | 5816          | 6208               | 0.136                     | 0.211                          |
|                              |         | 17 1    | 1.01E-03              | 25.85   | 61567.94     | 2.94        | 4886          | 5213               | 0.145                     | 0.220                          |
|                              |         | 18 6    | 9.27E-04              | 25.83   | 56323.39     | 2.69        | 3780          | 3852               | 0.059                     | 0.079                          |
|                              |         | 19 8    | 8.10E-04              | 25.76   | 49226.60     | 2.35        | 3227          | 3400               | 0.182                     | 0.245                          |
|                              |         | 20 7    | 7.10E-04              | 25.67   | 43174.85     | 2.06        | 2370          | 2457               | 0.129                     | 0.170                          |
| Sugar Solution               |         | 21 1    | 1.27E-03              | 22.15   | 11730.52     | 3.69        | 10525         | 10942              | 0.560                     | 0.621                          |
| 23/8/2002 Set 1              |         | 22 1    | 1.22E-03              | 22.51   | 11229.65     | 3.53        | 8403          | 8924               | 0.360                     | 0.444                          |
| Density Ikg/m <sup>3</sup> ] | 1199.07 | 23 1    | 1.11E-03              | 22,83   | 10280.40     | 3.23        | 7146          | 7526               | 0.380                     | 0.453                          |
| Viscosity [Pa.s]             | 0.01    |         | 1.01E-03              | 23.03   | 9339,60      | 2.94        | 5724          | 5506               | 0.340                     | 0.289                          |
| independ in mind             | 0,01    |         | 9.12E-04              | 23.16   | 8413.57      | 2.65        | 4693          | 4783               | 0.354                     | 0.379                          |
|                              |         |         | 8.16E-04              | 23.21   | 7531.17      | 2.37        | 3727          | 3894               | 0.342                     | 0.401                          |
|                              |         |         | 7.08E-04              | 23.22   | 6535.26      | 2.08        | 2840          | 3020               | 0.358                     | 0,443                          |
|                              |         |         | 8.12E-04              | 23.18   | 5647.85      | 1.78        | 2335          | 2437               | 0.493                     | 0.558                          |
|                              |         |         | 5.12E-04              | 23.11   | 4722.17      | 1.49        | 1506          | 1595               | 0.379                     | 0.460                          |
| 23/8/2002 Set 2              |         | 30 8    | 5.17E-04              | 23.32   | 4769.98      | 1.50        | 1558          | 1559               | 0.398                     | 0.399                          |
|                              |         | 31 6    | 5.17E-04              | 23.36   | 4768.20      | 1.60        | 1501          | 1637               | 0.348                     | 0.469                          |
|                              |         | 32 8    | 5.42E-04              | 23.41   | 4999.58      | 1.57        | 1680          | 1738               | 0.372                     | 0.419                          |
|                              |         | 33 6    | 6.28E-04              | 23.40   | 5790.62      | 1.82        | 2178          | 2285               | 0.327                     | 0.391                          |
|                              |         | 34 7    | 7.23E-04              | 23.41   | 6666.71      | 2.10        | 2894          | 2933               | 0.330                     | 0.347                          |
|                              | [ [     |         | 8.05E-04              | 23.42   | 7429.74      | 2.34        | 3651          | 3777               | 0.351                     | 0.397                          |
|                              |         |         | 9.19E-04              | 23.47   | 8480.19      | 2.67        | 4708          | 4977               | 0.337                     | 0.412                          |
|                              |         |         | 1.03E-03              | 23.61   | 9507.51      | 2.99        | 6065          | 6381               | 0.370                     | 0.441                          |

Water and Sugar Solution

| Pienaar: Viscous Flow Through Sudden Contractions | Pod No.                      |         |     | 5      | 6      |
|---------------------------------------------------|------------------------------|---------|-----|--------|--------|
| ဆူ                                                | Distance (diameters)         |         |     | -94    | -70    |
| 51                                                | Distance (cm)                |         |     | 0      | 102    |
|                                                   | Pressure Drop                |         | 38  | 113480 | 112417 |
| 5                                                 |                              |         | 38  | 110136 | 109007 |
| 8 I                                               | Glycerol Solution 90%        |         | 40  | 79898  | 79138  |
| 21                                                | 19/8/2002 Set 1              |         | 41  | 79933  | 79109  |
| 5                                                 | Density [kg/m <sup>3</sup> ] | 1236.00 | 42  | 63180  | 62571  |
| -71                                               | Viscosity [Pa.s]             | 0.140   | 43  | 63650  | 63039  |
|                                                   |                              |         | 44  | 51539  | 51062  |
| ≤                                                 |                              |         | 45  | 51311  | 50874  |
|                                                   |                              |         | 46  | 34185  | 33842  |
| 크                                                 |                              |         | 47  | 34095  | 33740  |
| 2                                                 | 20/8/2002 Set 1              |         | 48  | 63869  | 63294  |
| <u>a</u>                                          | Density (kg/m³)              | 1236.00 | 49  | 38646  | 38197  |
| 2                                                 | Viscosity [Pa.s]             | 0.125   | 50  | 38292  | 37882  |
| 2<br>2                                            |                              |         | 51  | 15380  | 15197  |
| ā                                                 |                              |         | 52  | 15317  | 15060  |
| 문                                                 |                              |         | 53  | 14353  | 14426  |
| ¥                                                 |                              |         | 54  | 7515   | 7521   |
| Ω                                                 | 20/8/2002 Set 2              |         | 55  | 5299   | 5310   |
| 31                                                | Density (kg/m <sup>3</sup> ) | 1236.00 | 56  | 7274   | 7256   |
| Ξ                                                 | Viscosity [Pa.s]             | 0.120   | 57  | 7970   | 7948   |
| a                                                 |                              |         | 58  | 7942   | 7917   |
| 듕                                                 | CMC 5 %                      |         | 59  | 126289 | 124815 |
| 見し                                                | 27/8/2002 Set 1              |         | 60  | 114188 | 112845 |
|                                                   | Density [kg/m <sup>3</sup> ] | 1026.30 | 61  | 104263 | 102945 |
|                                                   | Viscosity (Pa.s)             |         | 62  | 94804  | 93539  |
|                                                   | Ту                           |         | 63  | 85766  | 84770  |
|                                                   | K                            | 0.756   | 64  | 76781  | 75765  |
| 1                                                 | n                            | 0.650   | 65  | 67671  | 66722  |
|                                                   | 1                            |         | 66  | 50759  | 50311  |
| 1                                                 | 1                            |         | 67  | 42605  | 42011  |
|                                                   |                              |         | 68  | 32068  | 31591  |
|                                                   | 27/8/2002 Set 2              |         | 69  | 22832  | 22528  |
|                                                   |                              | 1       | 701 | 20403  | 20283  |

|                     |         | 46 | 34185  | 33842  | 33328  | 35175  | 32930  | 32848  |
|---------------------|---------|----|--------|--------|--------|--------|--------|--------|
|                     |         | 47 | 34095  | 33740  | 33524  | 33195  | 32946  | 32805  |
| 2 Set 1             |         | 48 | 63869  | 63294  | 62732  | 62178  | 61785  | 61604  |
| kg/m <sup>3</sup> ] | 1236.00 | 40 | 38646  | 38197  | 37837  | 37605  | 37341  | 37220  |
| [Pa.s]              | 0.125   | 50 | 38292  | 37882  | 37585  | 37207  | 36974  | 36766  |
| · -····             |         | 51 | 15380  | 15197  | 15046  | 14877  | 14627  | 14713  |
|                     |         | 52 | 15317  | 15060  | 15011  | 14898  | 14665  | 14487  |
|                     |         | 53 | 14353  | 14426  | 14316  | 14372  | 14218  | 14143  |
|                     |         | 54 | 7515   | 7521   | 7451   | 7405   | 7308   | 7242   |
| 2 Set 2             |         | 55 | 5299   | 5310   | 5263   | 5277   | 5164   | 5055   |
| ka/m³]              | 1236.00 | 56 | 7274   | 7256   | 7135   | 7101   | 6971   | 6866   |
| [Pa.s]              | 0.120   | 57 | 7979   | 7948   | 7853   | 7824   | 7689   | 7577   |
|                     |         | 58 | 7942   | 7917   | 7815   | 7776   | 7637   | 7537   |
|                     |         | 59 | 126289 | 124815 | 123562 | 121874 | 121122 | 120598 |
| 2 Set 1             |         | 60 | 114188 | 112845 | 111449 | 110055 | 109118 | 108830 |
| ka/m³1              | 1026.30 | 61 | 104263 | 102945 | 101820 | 100437 | 99641  | 99457  |
| [Pa.s]              |         | 62 | 94804  | 93539  | 92451  | 91225  | 90501  | 90275  |
|                     |         | 63 | 85766  | 84770  | 83679  | 82536  | 82010  | 81705  |
|                     | 0.756   | 64 | 76781  | 75765  | 74811  | 73835  | 73329  | 73003  |
|                     | 0.650   | 65 | 67671  | 66722  | 65977  | 64891  | 64522  | 64323  |
|                     |         | 66 | 50759  | 50311  | 49681  | 48922  | 48596  | 48341  |
|                     |         | 67 | 42605  | 42011  | 41523  | 40955  | 40585  | 40428  |
|                     |         | 68 | 32068  | 31591  | 31228  | 30763  | 30520  | 30404  |
| 2 Set 2             |         | 69 | 22832  | 22528  | 22248  | 21858  | 21676  | 21634  |
|                     |         | 70 | 20403  | 20283  | 20008  | 19655  | 19461  | 19411  |
|                     |         | 71 | 19365  | 19045  | 18783  | 18503  | 18333  | 18271  |
|                     | 1       | 72 | 17111  | 16863  | 16567  | 16281  | 16120  | 16053  |
|                     |         | 73 | 15682  | 15385  | 15127  | 14841  | 14694  | 14612  |
|                     |         | 74 | 14674  | 14370  | 14121  | 13877  | 13729  | 13671  |
|                     |         | 75 | 13601  | 13341  | 13099  | 12821  | 12721  | 12645  |
|                     |         | 76 | 12266  | 12012  | 11792  | 11539  | 11418  | 11369  |
|                     |         | 77 | 11296  | 11064  | 10867  | 10634  | 10511  | 10458  |
|                     |         | 78 | 9744   | 9550   | 9341   | 9132   | 9022   | 9002   |
|                     | 1       |    |        |        |        |        |        |        |

-49

-24

-12

-6

-3

-2

NG I

Appendix B : Table B-3

Glycerol Solution and CMC 5 %

| Givcerol Solution 90%        |               | - 1 |          |       |        |      |      |
|------------------------------|---------------|-----|----------|-------|--------|------|------|
| <b>Olycerol Solution 90%</b> |               |     |          |       |        |      |      |
| Cliscol of Colimnal Asia     |               | 38  | 4.40E-04 | 22.92 | 236.03 | 1.28 | 1999 |
| 19/8/2002 Set 1              | 1 1           | 39  | 4.51E-04 | 23.78 | 242.20 | 1.31 | 2013 |
| Density [kg/m <sup>3</sup> ] | 1238.00       | 40  | 3.58E-04 | 24.19 | 192.00 | 1.04 | 1355 |
| Viscosity [Pa.s]             | 0.14          | 41  | 3.62E-04 | 24.38 | 194.19 | 1.05 | 1209 |
|                              |               | 42  | 3.04E-04 | 24.45 | 163.30 | 0.88 | 862  |
|                              | 1 1           | 43  | 3.05E-04 | 24.53 | 163.91 | 0.89 | 852  |
|                              |               | 44  | 2.52E-04 | 24.61 | 135.32 | 0.73 | 656  |
|                              |               | 45  | 2.53E-04 | 24,66 | 135.65 | 0.73 | 550  |
|                              |               | 46  | 1.86E-04 | 24.76 | 99.91  | 0.54 | 274  |
|                              |               | 47  | 2.07E-04 | 24.81 | 111.25 | 0.60 | 297  |
| 20/8/2002 Set 1              |               | 48  | 3.05E-04 | 24,52 | 183.54 | 0.89 | 1068 |
| Density [kg/m <sup>3</sup> ] | 1236.00       | 49  | 2.05E-04 | 24.96 | 123.57 | 0.60 | 457  |
| Viscosity [Pa.s]             | 0.13          | 50  | 2.11E-04 | 25.29 | 128.68 | 0.61 | 429  |
| Algoratis II. grou           | 1             | 51  | 1.18E-04 | 25.46 | 70.87  | 0.34 | 97   |
|                              |               | 52  | 1.07E-04 | 25.67 | 64.17  | 0.31 | -39  |
|                              |               | 53  | 1.01E-04 | 26.08 | 60.50  | 0.29 | 22   |
|                              |               | 54  | 5.99E-05 | 25.86 | 36.04  | 0.17 | 7293 |
| 20/8/2002 Set 2              |               | 55  | 6.09E-05 | 25.42 | 0.00   | 0.09 | 3575 |
| Density [kg/m <sup>3</sup> ] | 1236.00       | 56  | 5.48E-05 | 25.02 | 0.00   | 0.16 | 5952 |
| Viscosity [Pa.s]             | 0.12          | 57  | 5.98E-05 | 25.13 | 0.00   | 0.17 | 6195 |
| Alecosità [Lers]             | <b>U</b> . 12 | 68  | 6.87E-05 | 25.21 | 0.00   | 0.17 | 6183 |
| CMC 5 %                      |               | 59  | 6.80E-04 | 20.50 | 648.10 | 1.97 | 3369 |
| 27/8/2002 Set 1              |               | 60  | 6.23E-04 | 21.21 | 576.39 | 1.81 | 2581 |
| Density [kg/m <sup>3</sup> ] | 1026.30       | 61  | 5.68E-04 | 21.45 | 506.49 | 1.65 | 2251 |
| Viscosity [Pa.s]             | 1020.00       | 62  | 5.10E-04 | 21.67 | 439.38 | 1.48 | 1919 |
|                              |               | 63  | 4.60E-04 | 21.95 | 382.60 | 1.33 | 1700 |
| Ty<br>K                      | 0,76          | 64  | 4.09E-04 | 22.08 | 326.41 | 1.19 | 1220 |
|                              | 0.65          | 85  | 3.57E-04 | 22.24 | 272.03 | 1.04 | 1052 |
| n                            | 9.65          | 66  | 2.52E-04 | 22.34 | 169.92 | 0.73 | 583  |
|                              |               | 67  | 2.08E-04 | 22.42 | 130.74 | 0.60 | 399  |
|                              |               | 68  | 1.51E-04 | 22.33 | 84.87  | 0.44 | 216  |
| 27/8/2002 Set 2              |               | 69  | 1.06E-04 | 22.57 | 52,79  | 0.31 | 158  |
| ZIIOFEODE OOI E              | 1             | 70  | 9.52E-05 | 22,73 | 45.81  | 0.07 | 171  |
|                              |               | 71  | 9.02E-05 | 22.81 | 42.41  | 0.06 | 125  |
|                              |               | 72  | 8.54E-05 | 22.89 | 39.39  | 0.06 | 219  |
|                              | 1 1           | 73  | 7.93E-05 | 22.95 | 35.62  | 0.06 | 191  |
|                              |               | 74  | 7.33E-05 | 22.98 | 32.07  | 0.05 | 129  |
|                              |               | 75  | 6.92E-05 | 23.01 | 29.65  | 0.05 | 67   |
|                              |               | 78  | 6.36E-05 | 23.05 | 28.47  | 0.05 | 161  |
|                              |               | 77  | 5.94E-05 | 23.08 | 24.10  | 0.04 | 70   |
|                              |               | 78  | 5.40E-05 | 23.15 | 21.20  | 0.04 | 59   |

0.570 1.032 0.165 0.390 0.378 -0.003 -0.235 0.410 0.846 0.931 0.693 0.883 0.418 1.010 -2.685 1.060 -2.685 1.517 -1.366 2.844 1.292 1.548

Kcon selected data

1.183

0.928

0.993

0.627

0.468

0.498

45.000

5.514

4.619

6.700

0.262

0.110

0.063

0.142

0.345

0.379

0.213

0.998

0.942 1.037

2.106

5.831

1.349

2.118

8.893

4.631 0.056 5.422 4.669

1.517

Koon all data

0.578

D.468

0.634

0.331

0.331

0,290

803.124

469.005

409.228

423.965

0.037 -0.127

-0.048

0.049

0.203

0.027

0.251

0.472

0.490 0.549

1.592

2.774

1.944

5.414

5,502

4.001 1.625 7.721

3.040 3,075

Pfilt selected data

2494

2408

1548

1382

**B15** 

934 780

610

32494

414

1101

491 539

172

163

201

7319

208

93

7660

125

3827

2968

2401

2020

1827

1468

1031

724

481 263

181

288

105

117

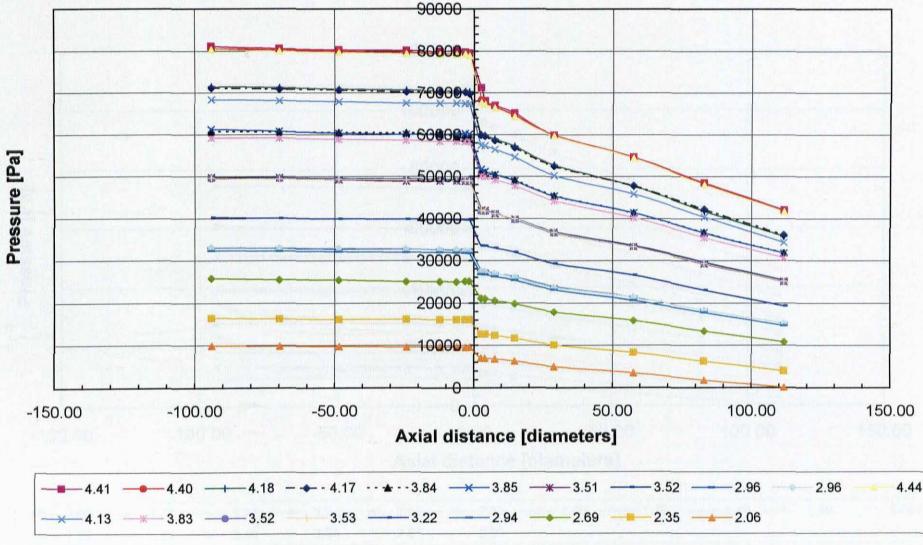
280

| _  |   |
|----|---|
| 79 | Ţ |
| 80 | 1 |
| 81 | J |
| 82 | ł |
| 83 | ł |
| 84 | l |
| 85 | ł |
| 86 | l |
| 87 | l |
| 88 | ſ |
|    | I |
| 89 | l |
| 90 | í |
| 91 | l |
| 92 | l |
| 63 | ſ |
| 94 | L |
| 95 | L |
| 86 | ł |
| 97 | 1 |

| Pod No.                      |         |     | 5      | 6             | 7             | 8      | 9      | 10     | 11     | 12     | 13     | 14     | 15     | 16     | 17     | 18    | 19    |
|------------------------------|---------|-----|--------|---------------|---------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|-------|
| Distance (diameters)         |         | 1   | -94    | -70           | -49           | -24    | -12    | -6     | -3     | -2     | 3      | 4      | 8      | 15     | 29     | 57    | 63    |
| Distance (cm)                |         |     | 0      | 102           | 192           | 295    | 346    | 371    | 384    | 391    | 407    | 412    | 424    | 451    | 502    | 604   | 697   |
| CMC 5 %                      |         | 79  | 122648 | 121098        | 119923        | 118219 | 117796 | 11718B | 117035 | 116608 | 112262 | 111682 | 110141 | 106988 | 101282 | 89424 | 79169 |
| 27/8/2002 Set 3              |         | 80  | 10268  | 10100         | <b>9980</b>   | 9759   | 9720   | 9601   | 9585   | 9588   | 9316   | 9301   | 9088   | 8619   | 7765   | 6081  | 4559  |
| 1                            |         | 81  | 102954 | 101798        | 100747        | 99376  | 98803  | 98427  | 98338  | 98152  | 94750  | 94163  | 92811  | 90053  | 85077  | 74961 | 65814 |
| 1                            |         | 82  | 87053  | 85860         | 84954         | 83748  | 83361  | 82940  | 82701  | 82710  | 80014  | 79520  | 78474  | 76077  | 71616  | 62746 | 64736 |
| l                            |         | 83  | 71079  | 70095         | 69361         | 66388  | 67928  | 67597  | 67553  | 67471  | 65542  | 65176  | 64198  | 62126  | 58402  | 60759 | 43972 |
| I                            |         | 84  | 57676  | 56884         | 56433         | 55587  | 55366  | 54982  | 54875  | 54897  | 53513  | 53245  | 52470  | 50839  | 47868  | 41771 | 36243 |
| 1                            | 1       | 85  | 40625  | 40102         | 39752         | 39206  | 36996  | 38686  | 38652  | 38644  | 37837  | 37594  | 37075  | 35898  | 33853  | 29121 | 24986 |
| -                            |         | 86  | 22387  | 22063         | 21684         | 21475  | 21388  | 21216  | 21174  | 21142  | 20735  | 20658  | 20322  | 19596  | 18253  | 15514 | 13073 |
| t                            |         | 87  | 16417  | 16146         | 15935         | 15653  | 15556  | 15428  | 15420  | 15396  | 15068  | 14969  | 14665  | 14044  | 12893  | 10530 | 8381  |
| [                            | 1       | 88  | 12742  | 12531         | 12450         | 12157  | 12089  | 11928  | 11938  | 11928  | 11663  | 11603  | 11348  | 10811  | 9868   | 7912  | 6161  |
| CMC 8 %                      | ļ       | 89  | 134440 | 132372        | 130794        | 128740 | 127702 | 127132 | 126178 | 126376 | 124319 | 123914 | 118236 | 118280 | 111381 | 97398 | 85033 |
| 3/9/2002 Set 1               |         | 90  |        | 115458        | 114114        | 112234 | 111147 | 110828 | 110556 | 110320 | 108457 | 108138 | 106628 | 103446 | 97294  | 84981 | 73873 |
| Density [kg/m <sup>3</sup> ] | 1045.00 | 91  | 93332  | 92134         | 91267         | 89715  | 89053  | 88427  | 88283  | 8B174  | 86650  | 86396  | 85070  | 82367  | 77658  | 67381 | 58501 |
| Viscosity (Pa.s)             |         | 92  | 71061  | 70093         | 69441         | 68137  | 67754  | 67272  | 67193  | 67202  | 66087  | 65875  | 64787  | 62722  | 56891  | 51108 | 44121 |
| Ty                           | 1       | 63  | 67027  | 65979         | 65240         | 64089  | 83774  | 63368  | 63293  | 63216  | 62250  | 62013  | 61003  | 58971  | 55409  | 48044 | 41433 |
| ĸ                            | 3.819   | 94  | 65643  | 64873         | 64205         | 63074  | 62494  | 62164  | 62077  | 62033  | 61055  | 60889  | 59783  | 67898  | 54363  | 47070 | 40601 |
| 10                           | 0.559   | 95  | 60098  | 59151         | 58547         | 57603  | 56946  | 56654  | 56568  | 56446  | 55663  | 55555  | 64397  | 52642  | 49425  | 42731 | 36795 |
| 1                            |         | 88  | 58735  | 58050         | 57 <b>472</b> | 56530  | 56080  | 55796  | 55698  | 55620  | 54859  | 64750  | 53768  | 52040  | 49006  | 42795 | 37260 |
|                              |         | 97  | 56259  | 55561         | 55138         | 54246  | 53743  | 53356  | 53241  | 53262  | 52463  | 52402  | 51482  | 49881  | 46912  | 40938 | 35613 |
|                              |         | 98  | 52771  | 5209 <b>2</b> | 51709         | 50842  | 50230  | 50082  | 50006  | 49957  | 49236  | 49184  | 48294  | 46772  | 44002  | 38372 | 33359 |
| Kaolin 10 %                  | Í       | 99  | 90634  | 89374         | 87337         | 86048  | 83674  | 82856  | 82192  | 82235  | 75193  | 75558  | 75217  | 72864  | 69466  | 82695 | 56301 |
| 4/10/2002 Set 1              |         | 100 | 93079  | 92043         | 89787         | 88558  | 65893  | 85661  | 85049  | 64828  | 77309  | 77155  | 76119  | 73866  | 70219  | 63435 | 56913 |
| Density [kg/m <sup>3</sup> ] | 1159.00 | 101 | 83650  | 82616         | 80561         | 78728  | 76917  | 76723  | 75998  | 75895  | 70610  | 70286  | 70037  | 67431  | 64151  | 57708 | 51693 |
| Viscosity [Pa.s]             |         | 102 | 59324  | 57545         | 56535         | 53895  | 52532  | 52201  | 51478  | 51344  | 50028  | 49890  | 49691  | 48154  | 45102  | 39778 | 34821 |
| Ty                           | 16.00   | 103 | 53906  | 52943         | 51934         | 49889  | 47963  | 47905  | 47043  | 46920  | 45864  | 45814  | 45734  | 44201  | 41605  | 36744 | 32144 |
| ĸ                            | 1,118   | 304 | 50075  | 49249         | 48237         | 46293  | 44535  | 44589  | 43948  | 43760  | 43089  | 42959  | 42929  | 40973  | 38571  | 33878 | 29722 |
| n                            | 0.422   | 105 | 49353  | 48663         | 47868         | 45717  | 44322  | 44228  | 43510  | 43386  | 42724  | 42550  | 42460  | 41365  | 38541  | 33769 | 30016 |
|                              | 0,422   | 106 | 44232  | 43993         | 42778         | 41493  | 40143  | 40045  | 39382  | 39252  | 38648  | 38615  | 38479  | 37684  | 35048  | 30551 | 27343 |

.

,


CMC 8 % and Kaolin 10 %

|                              |         |            | Q (m <sup>3</sup> /s) | Temp °C | Redownstream | Vdewnstream | Pfitt all date | Pilit selected data | K <sub>con ali data</sub> | K <sub>cort</sub> selected dat |
|------------------------------|---------|------------|-----------------------|---------|--------------|-------------|----------------|---------------------|---------------------------|--------------------------------|
| CMC 5 %                      |         | 79         | 7.23E-04              | 24.58   | 704.07       | 2.10        | 3616           | 3784                | -0.061                    | 0.015                          |
| 27/8/2002 Set 3              | [       | 80         | 4.93E-05              | 25.06   | 18.75        | 0.14        | 83             | 134                 | 6.445                     | 11.388                         |
|                              |         | 61         | 6.12E-04              | 25,18   | 562.40       | 1.78        | 2670           | 2873                | -0.012                    | 0.117                          |
|                              |         | 82         | 5.06E-04              | 25.33   | 434.89       | 1.47        | 1939           | 2016                | 0.095                     | 0.166                          |
|                              |         | 83         | 4.07E-04              | 25.43   | 324.37       | 1.18        | 1262           | 1383                | 0 104                     | 0.277                          |
|                              |         | 84         | 3.10E-04              | 25.55   | 224.69       | 0.90        | 820            | 904                 | 0.320                     | 0.526                          |
|                              |         | 85         | 2.07E-04              | 25.51   | 130.43       | 0.60        | 394            | 467                 | 0.474                     | 0.878                          |
|                              |         | 86         | 1.04E-04              | 25.24   | 51.63        | 0.30        | 148            | 187                 | 1,521                     | 2.372                          |
|                              |         | 87         | 7 91E 05              | 25.14   | 35.51        | 0.23        | 15283          | 15306               | 2,223                     | 1.616                          |
|                              |         | 88         | 6.13E-05              | 25.14   | 25.17        | 0.18        | 11842          | 164                 | 3,736                     | 8.675                          |
| CMC 8 %                      |         | 89         | 2.60E-04              | 21.99   | 64,83        | 0.75        | 1658           | 1328                | 3.422                     | 3.776                          |
| 3/9/2002 Set 1               |         | 90         | 2.14E-04              | 22.03   | 48.91        | 0.61        | 783            | 822                 | 2.058                     | 3.366                          |
| Density (kg/m³)              | 1045.00 | 91         | 1.53E-04              | 22.05   | 24.48        | 0.44        | 589            | 1018                | 4.348                     | 8.712                          |
| Viscosity (Pa.s)             |         | 92         | 1.03E-04              | 22.03   | 13.78        | 0.30        | 321            | 507                 | 5.614                     | 9.625                          |
| Ту                           | 1       | <b>9</b> 3 | 9.41E-05              | 22.02   | 12.18        | 0.27        | 269            | 317                 | 5.554                     | 6.840                          |
| ĸ                            | 3.82    | 94         | 9.16E-05              | 22.11   | 11.71        | 0.27        | 292            | 648                 | 6.635                     | 16.692                         |
| n                            | 0.56    | 95         | 8.08E-05              | 22.18   | 8.77         | 0.23        | 240            | 582                 | 7.090                     | 19.540                         |
|                              |         | 96         | 7.50E-05              | 22.23   | 8.79         | 0.22        | 241            | 605                 | 8.521                     | 23.849                         |
|                              |         | 97         | 6.93E-05              | 22.28   | 7.84         | 0.20        | 234            | 703                 | 9,936                     | 33,105                         |
|                              |         | 98         | 8.41E-05              | 22.34   | 7.01         | 0.19        | 178            | 610                 | 8,609                     | 33.611                         |
| Kaolin 10 %                  |         | 99         | 1.06E-03              | 19.13   | 2477.14      | 3.08        | 6063           | 7803                | -0.005                    | 0.363                          |
| 4/10/2002 Set 1              |         | 100        | 1.09E-03              | 20.68   | 2635.44      | 3.17        | 7319           | 9611                | 0.170                     | 0.627                          |
| Density (kg/m <sup>3</sup> ) | 1159.00 | 101        | 8.91E-04              | 22.21   | 1890.90      | 2.59        | 4835           | 6196                | 0.176                     | 0.584                          |
| Viscosity [Pa.s]             |         | 102        | 2.98E-04              | 22.28   | 307.99       | 0.86        | 718            | 1594                | 0.716                     | 3.061                          |
| Ty                           | 16.00   |            | 2.03E-04              | 22.08   | 175.66       | 0.59        | 570            | 1886                | 2.090                     | 9.650                          |
| ĸ                            | 1.12    | 104        | 9.98E-05              | 21.90   | 52.32        | 0.29        | 355            | 1850                | 7.296                     | 42.918                         |
| n                            | 0.42    |            | 5.94E-05              | 21.78   | 21.40        | 0.17        | 313            | 43038               | 19,910                    | 123.049                        |
|                              |         | 106        | 3.21E-05              | 21.59   | 11.75        | 0.09        | 244            | 1698                | 55.193                    | 390.944                        |

CMC 8 % and Kaolin 10 %

VG Pienaar: Viscous Flow Through Sudden Contractions

,



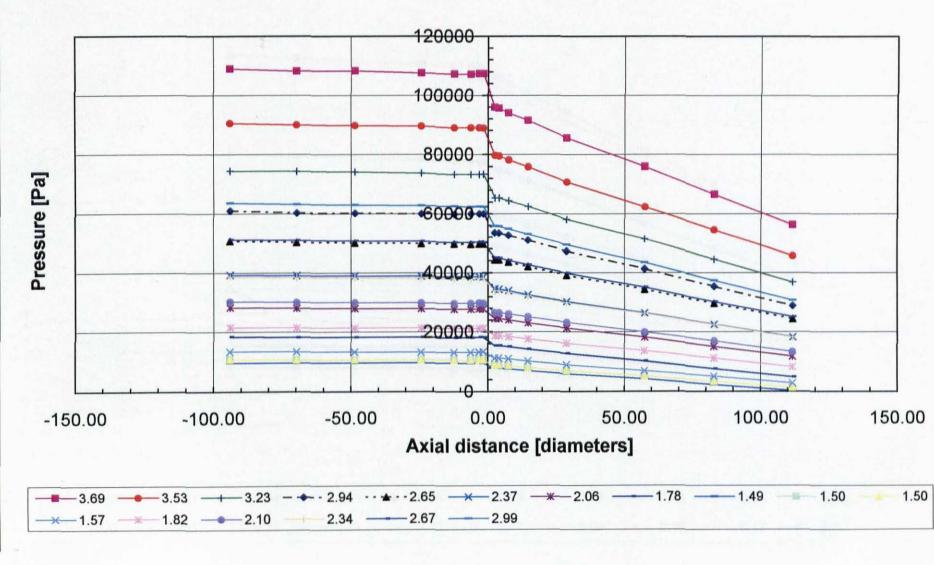
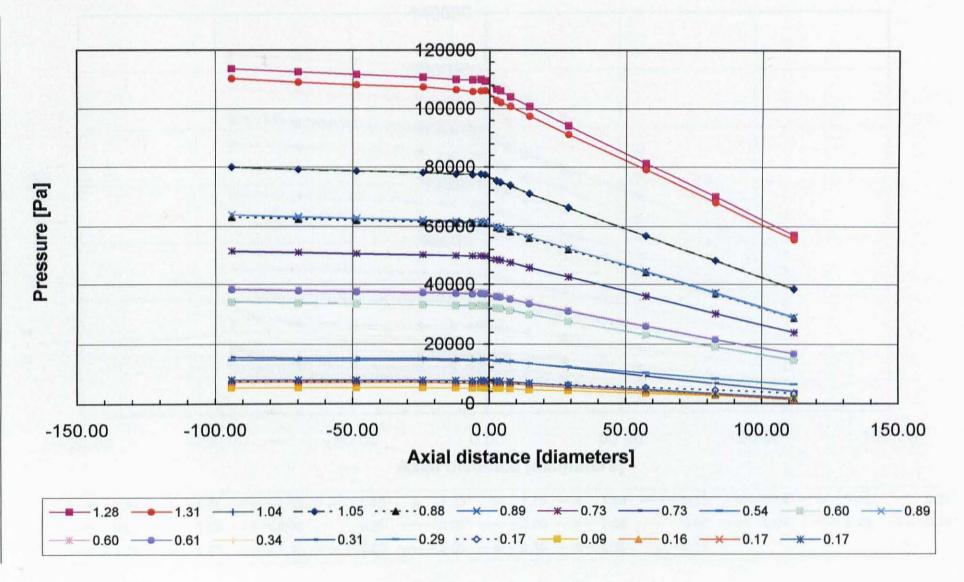
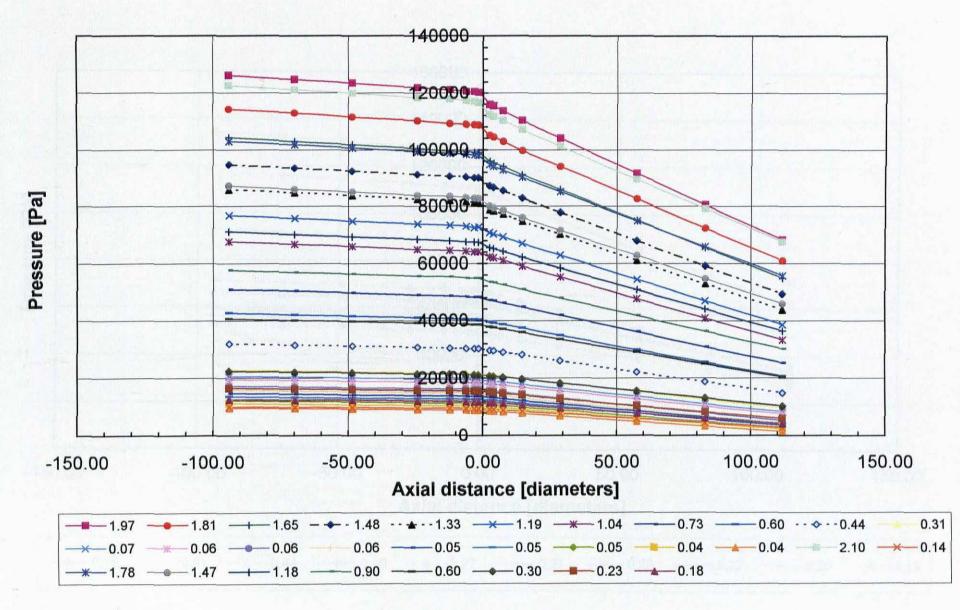

Appendix B :

Figure B-1


Contraction  $\beta = 0.50$ 

Pressure Grade Line for Water [Legend = Velocity in m/s]


VG Pienaar: Viscous Flow Through Sudden Contractions



Pressure Grade Line for Sugar Solution [Legend = Velocity m/s]

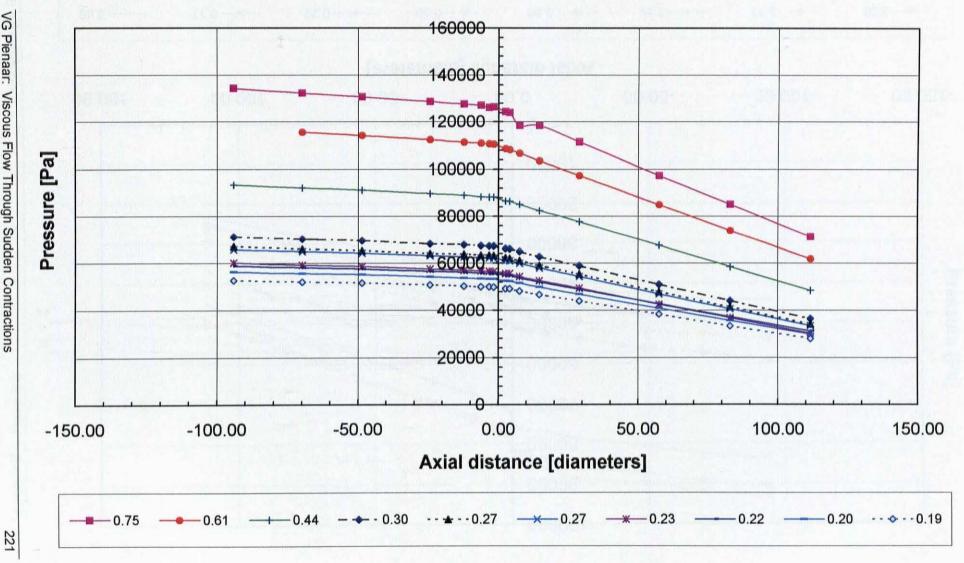


Pressure Grade Line for Glycerol Solution [Legend = Velocity in m/s]



Appendix B

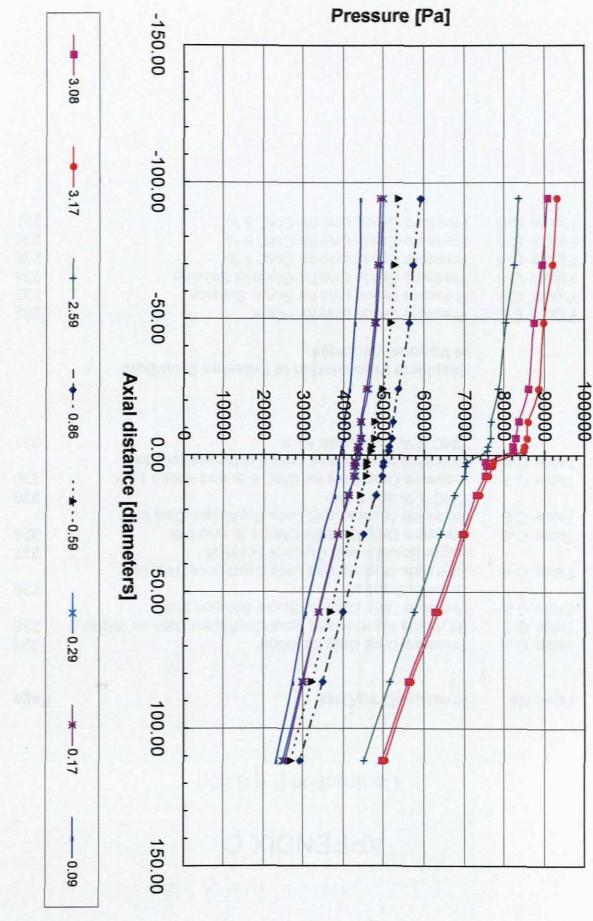
..


Figure B-4

Contraction  $\beta = 0.50$ 

Pressure Grade Line for CMC 5 % at Various Velocities [Legend = Velocity in m/s]

VG Pienaar: Viscous Flow Through Sudden Contractions






Pressure Grade Line for CMC 8 % at Various Velocities [Legend = Velocity in m/s]

Contraction  $\beta = 0.50$ 

Appendix B : Figure B-5



Appendix C

### **APPENDIX C**

#### Contraction $\beta = 0.85$

| l adie No | Pressure Drop Data                                  | Page |
|-----------|-----------------------------------------------------|------|
| Table C-1 | Pressure Drop Data for Water                        | 224  |
| Table C-2 | Reynolds Number and Loss Coefficient Data for Water | 225  |
| Table C-3 | Pressure Drop Data for Sugar Solution and           |      |
|           | Glycerol Solution                                   | 226  |
| Table C-4 | Reynolds Number and Loss Coefficient Data for       |      |
|           | Sugar Solution and Glycerol Solution                | 227  |
| Table C-5 | Pressure Drop Data for CMC 1 % and 5 %              | 228  |
| Table C-6 | Reynolds Number and Loss Coefficient Data for       |      |
| -         | CMC 1 % and 5 %                                     | 229  |
| Table C-7 | Pressure Drop Data for CMC 8 % and Kaolin 13 %      | 230  |
| Table C-8 | Reynolds Number and Loss Coefficient Data for       |      |
| •••       | CMC 8 % and Kaolin 13 %                             | 231  |

#### **Graphical Presentation of Pressure Drop Data** at Various Velocities

| Figure C-1 | Pressure Grade Line for Water             | 232 |
|------------|-------------------------------------------|-----|
| Figure C-2 | Pressure Grade Line for Sugar Solution    | 233 |
| Figure C-3 | Pressure Grade Line for Glycerol Solution | 234 |
| Figure C-4 | Pressure Grade Line for CMC 1 %           | 235 |
| Figure C-5 | Pressure Grade Line for CMC 5 %           | 236 |
| Figure C-6 | Pressure Grade Line for CMC 8 %           | 237 |

|   | ≥    |
|---|------|
|   | 8    |
|   | ā.   |
| J | ā    |
| 1 | Χ.   |
|   | O.   |
|   | • •  |
|   | 1    |
|   | g    |
|   | ē    |
| 1 | 0    |
|   | · •. |

· •

| Contraction plane    | 397.7 |     |       |               |       |       |       |       |       |       |       |       |       |                |                |                |                |                |
|----------------------|-------|-----|-------|---------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----------------|----------------|----------------|----------------|----------------|
| Pod No.              |       |     | 6     | 6             | 7     | 8     | 9     | 10    | 11    | 12    | 13    | 14    | 15    | 16             | 17             | 18             | 19             | 20             |
| Distance (diameters) |       | 1 1 | -94   | -70           | -49   | -24   | -12   | -6    | -3    | -2    | 3     | 4     | 8     | 15             | 29             | 57             | 83             | 112            |
| Distance (cm)        |       |     | 0     | 102           | 192   | 295   | 346   | 371   | 384   | 391   | 407   | 412   | 424   | 451            | 502            | 604            | 697            | 799            |
| Pressure Drop        | · ·   | 1   | 28466 | 28309         | 28004 | 27794 | 27620 | 27518 | 27501 | 27382 | 27083 | 26763 | 26695 | 26476          | 26188          | 25655          | 25158          | 24597          |
|                      |       | 2   | 47043 | 46680         | 46183 | 45898 | 45568 | 46508 | 45486 | 45277 | 44778 | 44515 | 44381 | 44159          | 43687          | 42886          | 42240<br>29495 | 41458          |
| Water                |       | 3   | 33295 | 33013         | 32634 | 32438 | 32215 | 32175 | 32073 | 31967 | 31639 | 31321 | 31256 | 31077          | 30672          | 30051          |                | 28938          |
| 13/3/2002 Set 2      |       | 4   | 46794 | 46460         | 46068 | 45797 | 45557 | 45537 | 45380 | 45209 | 44877 | 44440 | 44379 | 44156<br>50473 | 43704<br>49963 | 43007<br>49046 | 42383<br>48390 | 41636<br>47500 |
|                      |       | 5   | 53651 | 53260         | 52824 | 52490 | 52111 | 52162 | 51992 | 51791 | 51203 | 50642 | 50759 |                |                |                |                |                |
|                      |       | 6   | 60260 | 59945         | 59215 | 58864 | 58492 | 58410 | 58354 | 58218 | 57708 | 57044 | 57044 | 56925          | 56354<br>56969 | 65303          | 54455<br>54860 | 53655<br>53997 |
|                      | 1     | 17  | 61676 | 61148         | 60716 | 60117 | 59671 | 59701 | 59507 | 59274 | 58577 | 58032 | 57872 | 57549          |                | 55790          |                |                |
|                      |       | 8   | 54941 | 54591         | 53988 | 53695 | 53355 | 53372 | 53231 | 52995 | 52277 | 51987 | 51900 | 51582          | 50913          | 50013          | 49256          | 48381          |
|                      |       | 9   | 48634 | 48360         | 47851 | 47593 | 47383 | 47230 | 47233 | 47077 | 46539 | 46160 | 46037 | 45795          | 45333          | 44420          | 43868          | 42904          |
|                      |       | 10  | 41394 | 41157         | 40799 | 40544 | 40207 | 40247 | 40202 | 40079 | 39574 | 39309 | 39252 | 39052          | 38572          | 37780          | 37200          | 36539          |
| 13/3/2002 Set 1      |       | 11  | 3417  | 3354          | 3257  | 3180  | 3133  | 3105  | 3091  | 3082  | 3162  | 3256  | 2886  | 2831           | 2720           | 2523           | 2366           | 2168           |
|                      |       | 12  | 8309  | 6197          | 8071  | 7961  | 7893  | 7868  | 7870  | 7848  | 7865  | 7834  | 7576  | 7491           | 7344           | 7088           | 6854           | 6607           |
|                      |       | 13  | 10399 | 10286         | 10150 | 10048 | 9968  | 9960  | 9904  | 9857  | 9883  | 9819  | 9563  | 9485           | 8315           | 9037           | 8789           | 8499           |
|                      |       | 14  | 12009 | 11871         | 11747 | 11630 | 11526 | 11484 | 11468 | 11433 | 11422 | 11324 | 11099 | 11012          | 10831          | 10524          | 10256          | 9957           |
|                      |       | 15  | 15724 | 1555 <b>1</b> | 15383 | 15242 | 15133 | 15092 | 15088 | 15000 | 14968 | 14796 | 14631 | 14501          | 14305          | 13922          | 13613          | 13256          |
|                      |       | 16  | 20308 | 20090         | 19870 | 19732 | 19578 | 19557 | 19492 | 19402 | 19301 | 19105 | 18958 | 18861          | 18603          | 18169          | 17811          | 17368          |
|                      |       | 17  | 19130 | 18915         | 18651 | 18495 | 18367 | 18306 | 18281 | 18237 | 18028 | 17801 | 17712 | 17623          | 17380          | 16902          | 16492          | 16092          |
|                      |       | 18  | 18878 | 18698         | 18501 | 18340 | 18180 | 18161 | 18113 | 18028 | 17907 | 17670 | 17582 | 17430          | 17184          | 16736          | 16394          | 15919          |
|                      |       | 19  | 23785 | 23556         | 23354 | 23112 | 23002 | 22892 | 22888 | 22738 | 22568 | 22279 | 22167 | 22088          | 21753          | 21217          | 20809          | 20319          |
| 14/3/2002 Set 3      | 1     | 20  | 9702  | 9612          | 9462  | 9317  | 9241  | 9191  | 9174  | 9143  | 9037  | 8982  | 8805  | 8733           | 6547           | 8215           | 8000           | 7661           |
|                      |       | 21  | 13607 | 13481         | 13278 | 13175 | 13058 | 13037 | 12998 | 12978 | 12774 | 12684 | 12528 | 12458          | 12231          | 11886          | 11555          | 11249          |
|                      |       | 22  | 17831 | 17625         | 17418 | 17258 | 17115 | 17073 | 17053 | 16974 | 16799 | 16652 | 16551 | 16427          | 16193          | 15737          | 15414          | 14978          |
|                      |       | 23  | 18123 | 17941         | 17724 | 17547 | 17353 | 17315 | 17285 | 17224 | 16971 | 16821 | 16709 | 16581          | 16327          | 15881          | 15514          | 15079          |
|                      |       | 24  | 21693 | 21466         | 21226 | 21024 | 20874 | 20811 | 20749 | 20670 | 20369 | 20229 | 20092 | 19933          | 19640          | 19169          | 18758          | 18262          |
|                      |       | 25  | 26253 | 26006         | 25673 | 25446 | 25281 | 25255 | 25210 | 25070 | 24737 | 24525 | 24521 | 24264          | 23892          | 23352          | 22851          | 22323          |
|                      |       | 28  | 31160 | 30946         | 30636 | 30354 | 30190 | 30096 | 30037 | 29993 | 29402 | 29350 | 29255 | 29078          | 28701          | 28086          | 27530          | 26886          |
| 14/3/2002 Set 4      |       | 27  | 10103 | 10027         | 9894  | 9805  | 9721  | 9672  | 9678  | 9629  | 9400  | 9372  | 9308  | 9237           | 9059           | 8767           | 8500           | 8205           |
|                      |       | 28  | 10323 | 10209         | 10007 | 9942  | 9850  | 9803  | 9778  | 9735  | 9503  | 9432  | 9388  | 9347           | 9159           | 8834           | 8569           | 8253           |
|                      |       | 29  | 4740  | 4664          | 4547  | 4467  | 4406  | 4393  | 4374  | 4346  | 4170  | 4132  | 4092  | 4043           | 3914           | 3668           | 3460           | 3251           |
|                      |       | 30  | 6704  | 6559          | 6422  | 6293  | 6169  | 6194  | 6164  | 6129  | 5912  | 5773  | 5827  | 5775           | 5620           | 5360           | 5129           | 4868           |
|                      | 1     | 31  | 3118  | 3019          | 2892  | 2822  | 2757  | 2728  | 2702  | 2676  | 2527  | 2382  | 2449  | 2398           | 2267           | 2085           | 1885           | 1677           |
|                      |       | 32  | 3057  | 2966          | 2854  | 2763  | 2711  | 2704  | 2679  | 2664  | 2495  | 2372  | 2423  | 2380           | 2267           | 2038           | 1886           | 1661           |
|                      |       | 33  | 3021  | 2924          | 2809  | 2728  | 2691  | 2661  | 2635  | 2829  | 2447  | 2330  | 2354  | 2323           | 2214           | 1989           | 1813           | 1602           |
|                      |       | 34  | 3114  | 3015          | 2891  | 2848  | 2749  | 2720  | 2709  | 2674  | 2527  | 2386  | 2443  | 2413           | 2261           | 2068           | 1886           | 1644           |
|                      |       | 35  | 3043  | 2935          | 2846  | 2733  | 2704  | 2682  | 2660  | 2632  | 2450  | 2333  | 2369  | 2317           | 2191           | 1992           | 1815           | 1597           |
|                      |       | 36  | 2946  | 2839          | 2767  | 2655  | 2584  | 2590  | 2547  | 2519  | 2362  | 2264  | 2289  | 2225           | 2113           | 1902           | 1686           | 1503           |
|                      |       |     |       |               |       |       |       |       |       |       |       |       |       |                |                |                |                |                |

224

.

|                 |    | Q (m <sup>3</sup> /s) | Temp °C | Re <sub>downstream</sub> | Vdownstream | Pcon all data | Pcon selected data | Kaon all data | K <sub>con selected data</sub> |
|-----------------|----|-----------------------|---------|--------------------------|-------------|---------------|--------------------|---------------|--------------------------------|
|                 | 1  | 1.51E-03              | 27.05   | 53414.01                 | 1.48        | 566           | 793                | 0.016         | 0.222                          |
|                 | 2  | 1.70E-03              | 23.80   | 60292.50                 | 1.68        | 722           | 930                | 0.016         | 0.164                          |
| Water           | 3  | 1.60E-03              | 27.47   | 56620.34                 | 1.57        | 574           | 749                | -0.035        | 0.107                          |
| 13/3/2002 Set 2 | 4  | 1.70E-03              | 28.02   | 60308.52                 | 1.68        | 709           | 924                | 0.008         | 0.159                          |
|                 | 5  | 1.81E-03              | 28.30   | 64031.28                 | 1.78        | 956           | 1190               | 0.106         | 0.253                          |
| ſ               | 8  | 1.91E-03              | 28.67   | 67584.05                 | 1.95        | 1176          | 1580               | 0.119         | 0.331                          |
|                 | 17 | 1.99E-03              | 29.27   | 70248.30                 | 1.88        | 848           | 973                | -0.017        | 0.053                          |
|                 | a  | 1.91E-03              | 29.66   | 67503.82                 | 1.88        | 1007          | 1256               | 0.074         | 0,215                          |
|                 | 9  | 1.82E-03              | 29.93   | 64446.09                 | 1.79        | 812           | 992                | 0.008         | 0.120                          |
|                 | 10 | 1.71E-03              | 30.18   | 60549.37                 | 1.68        | 666           | 884                | -0.028        | 0.126                          |
| 13/3/2002 Set 1 | 11 | 7.71E-04              | 25.79   | 27297.32                 | 0.76        | 8             | 180                | -0.467        | 0.149                          |
|                 | 12 | 9.09E-04              | 25.85   | 32159.87                 | 0.89        | 91            | 235                | -0.271        | 0.089                          |
|                 | 13 | 9.68E-04              | 25.91   | 34246.15                 | 0.95        | 141           | 314                | -0.186        | 0.195                          |
|                 | 14 | 1.01E-03              | 25.98   | 35683,66                 | 0.99        | 166           | 358                | -0.161        | 0.229                          |
|                 | 15 | 1.10E-03              | 26.08   | 42657.52                 | 1.19        | 303           | 470                | -0.066        | 0.171                          |
|                 | 16 | 1.21E-03              | 28.18   | 42657.52                 | 1.09        | 225           | 401                | -0.116        | 0.183                          |
| )               | 17 | 1.31E-03              | 28.38   | 48402.80                 | 1.29        | 343           | 429                | -0.086        | 0.018                          |
|                 | 18 | 1.31E-03              | 20.58   | 46378.32                 | 1.29        | 328           | 518                | -0.103        | 0.128                          |
|                 | 19 | 1.41E-03              | 26.71   | 50023.80                 | 1.39        | 437           | 648                | -0.048        | 0.173                          |
| 14/3/2002 Set 3 | 20 | 1.02E-03              | 30.77   | 35944.62                 | 1.00        | 198           | 318                | -0.101        | 0.140                          |
|                 | 21 | 1.11E-03              | 30.68   | 39362.55                 | 1.09        | 292           | 392                | -0.011        | 0.157                          |
|                 | 22 | 1.21E-03              | 30.62   | 47387.52                 | 1.32        | 381           | 551                | -0.059        | 0.137                          |
| 1               | 23 | 1.34E-03              | 30,82   | 42887.60                 | 1.19        | 302           | 415                | -0.074        | 0.085                          |
|                 | 24 | 1.41E-03              | 30.67   | 50013.01                 | 1.39        | 455           | 619                | -0.027        | 0.142                          |
|                 | 25 | 1.50E-03              | 30.74   | 53220.03                 | 1.4B        | 499           | 635                | -0.042        | 0.082                          |
|                 | 26 | 1.60E-03              | 31.03   | 56652.32                 | 1.57        | 593           | 701                | -0.020        | 0.067                          |
| 14/3/2002 Set 4 | 27 | 1.04E-03              | 33.32   | 36748.42                 | 1.02        | 251           | 318                | -0.016        | 0.111                          |
|                 | 28 | 1.045-03              | 33,18   | 36606.66                 | 1.02        | 264           | 284                | 0.007         | 0.045                          |
|                 | 29 | 8.96E-04              | 33.03   | 31711.91                 | 0.88        | 192           | 213                | -0.003        | 0.051                          |
|                 | 30 | 9.05E-04              | 23.20   | 32028.28                 | 0.89        | 249           | 245                | 0.130         | 0.120                          |
|                 | 31 | 8.04E-04              | 23.32   | 28448.22                 | 0.79        | 202           | 213                | 0.148         | 0.182                          |
|                 | 32 | 8.03E-04              | 23.36   | 28427.42                 | 0.79        | 195           | 177                | 0.125         | 0.068                          |
|                 | 33 | 8.04E-04              | 23.41   | 28432.25                 | 0.79        | 211           | 189                | 0.178         | 0.107                          |
| }               | 34 | 8.09E-04              | 23.51   | 28818.70                 | 0.80        | 195           | 213                | 0.120         | D.174                          |
|                 | 35 | 8.09E-04              | 23,57   | 28618.54                 | 0.80        | 224           | 213                | 0.211         | 0.174                          |
|                 | 36 | 8.09E-04              | 23.65   | 28635.21                 | 0.80        | 200           | 227                | 0.132         | 0.219                          |

.

VG Pienaar: Viscous Flow Through Sudden Contractions

Water

| Pod No.                      |         |    | 5     | 6     | 7     | ₿     | 9     | 10                 | 11    | 12    | 13    | 14    | 15    | 16    | 17    | 18    | 19    | 20    |
|------------------------------|---------|----|-------|-------|-------|-------|-------|--------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Distance (diameters)         |         | 1  | -94   | -70   | -49   | -24   | -12   | -6                 | -3    | -2    | 3     | 4     | 8     | 15    | 29    | 57    | 83    | 112   |
| Distance (cm)                |         |    | 0     | 102   | 192   | 295   | 346   | 371                | 384   | 391   | 407   | 412   | 424   | 451   | 502   | 604   | 697   | 799   |
| Pressure Drop                |         | 37 | 9554  | 9440  | 9324  | 9266  | 9018  | 8944               | 8965  | 8961  | 8901  | 8787  | 8587  | 8465  | 8295  | 7847  | 7500  | 7000  |
| Sugar Solution               |         | 38 | 14994 | 14862 | 14670 | 14551 | 14373 | 14230              | 14269 | 14289 | 14128 | 13945 | 13791 | 13664 | 13440 | 12954 | 12501 | 11953 |
| 19/3/2002 Set 1              |         | 39 | 21822 | 21649 | 21385 | 21207 | 20960 | 20871              | 20917 | 20883 | 20648 | 20463 | 20359 | 20165 | 19906 | 19293 | 18751 | 18179 |
| Density [kg/m³]              | 1200    | 40 | 26544 | 28259 | 27952 | 27719 | 27448 | 27351              | 27461 | 27381 | 27023 | 26773 | 26710 | 26516 | 26131 | 25404 | 24768 | 24347 |
| Viscosity [Pa.s]             | 0.01    | 41 | 35480 | 35136 | 34785 | 34470 | 34183 | 34077              | 34058 | 33988 | 33666 | 33319 | 33259 | 33040 | 32601 | 31800 | 31084 | 30231 |
|                              | 1 1     | 42 | 43224 | 42783 | 42284 | 41870 | 41556 | 41413              | 41415 | 41311 | 40793 | 40431 | 40410 | 40106 | 39667 | 38708 | 37855 | 36958 |
|                              | 1 1     | 43 | 50958 | 50195 | 49635 | 49107 | 48886 | 48696              | 48649 | 48584 | 47991 | 47573 | 47517 | 47194 | 46691 | 45707 | 44669 | 43470 |
|                              |         | 44 | 49284 | 48772 | 48296 | 47908 | 47676 | 47479              | 47493 | 47435 | 46826 | 46498 | 46507 | 46140 | 45617 | 44605 | 43578 | 42524 |
|                              |         | 45 | 58946 | 58222 | 57578 | 57110 | 56788 | 56 <del>5</del> 90 | 56526 | 56458 | 55879 | 55403 | 55154 | 55069 | 54372 | 53196 | 52185 | 50850 |
|                              |         | 46 | 50259 | 49809 | 49278 | 48963 | 48645 | 48428              | 48501 | 46216 | 47642 | 47280 | 47308 | 46972 | 46345 | 45315 | 44436 | 43385 |
| 19/3/2002 Set 2              | 1130    | 47 | 60320 | 60128 | 59503 | 58969 | 58477 | 58432              | 58330 | 58097 | 57458 | 57168 | 57007 | 56550 | 55932 | 54877 | 53946 | 52700 |
|                              | 0.013   | 48 | 58179 | 55577 | 55078 | 54793 | 54347 | 54265              | 54254 | 54104 | 53487 | 53165 | 63025 | 52784 | 52216 | 51140 | 50199 | 49111 |
|                              |         | 49 | 51918 | 51561 | 51025 | 50870 | 50420 | 50305              | 50415 | 50145 | 49768 | 49467 | 49085 | 48920 | 48517 | 47565 | 46550 | 45534 |
|                              |         | 50 | 47880 | 47815 | 47140 | 46886 | 46628 | 46562              | 46599 | 46345 | 46155 | 45669 | 45374 | 45235 | 44715 | 43924 | 43117 | 42181 |
|                              | 1 1     | 51 | 44480 | 44225 | 43881 | 43555 | 43399 | 43302              | 43299 | 43144 | 42534 | 42443 | 42141 | 42032 | 41597 | 40754 | 39960 | 39116 |
|                              |         | 52 | 37669 | 37445 | 37103 | 36883 | 36556 | 36556              | 36530 | 36387 | 36057 | 35815 | 35719 | 35607 | 35160 | 34327 | 33691 | 32949 |
|                              | 1 1     | 53 | 31406 | 31219 | 30902 | 30670 | 30362 | 30267              | 30396 | 30234 | 29920 | 29776 | 20585 | 29427 | 29050 | 28464 | 27831 | 27237 |
|                              |         | 54 | 25139 | 25100 | 24763 | 24666 | 24423 | 24329              | 24477 | 24329 | 24039 | 23926 | 23775 | 23553 | 23299 | 22758 | 22203 | 21633 |
|                              |         | 65 | 18968 | 18765 | 18511 | 18425 | 18166 | 18143              | 18246 | 18099 | 17805 | 17774 | 17560 | 17376 | 17118 | 16684 | 16118 | 15840 |
| Glycerol Solution 98%        |         | 56 | 89899 | 68631 | 67906 | 66925 | 66322 |                    |       |       |       |       | 65244 | 64813 | 63769 | 61735 | 59938 | 57924 |
| 12/7/2002 Set 1              |         | 57 | 69805 | 68803 | 67798 | 66825 | 66274 |                    |       |       |       |       | 65206 | 64702 | 63713 | 61702 | 59936 | 57927 |
| Density (kg/m³)              | 1246.00 | 58 | 48123 | 47471 | 46900 | 46338 | 45977 |                    |       |       |       |       | 45263 | 44954 | 44367 | 43153 | 42056 | 40820 |
| Viscosity [Pa.s]             | 1,000   | 69 | 48667 | 46169 | 47573 | 46973 | 46594 | 46340              |       |       |       |       | 45734 | 45390 | 44743 | 43451 | 42337 | 41042 |
|                              |         | 60 | 30103 | 29712 | 29382 | 29087 | 28854 |                    |       |       |       |       | 28425 | 28239 | 27897 | 27190 | 26560 | 25862 |
|                              |         | 61 | 30318 | 29935 | 29682 | 29417 | 29207 |                    |       |       |       |       | 28843 | 28672 | 28331 | 27624 | 26987 | 26279 |
| 11/7/2002 Set 1              |         | 62 | 80744 | 79435 | 78313 | 77115 | 76482 | 76115              | 75899 | 75748 | 75615 | 75460 | 74916 | 74331 | 73153 | 70838 | 66701 | 66331 |
| Density [kg/m <sup>3</sup> ] | 1235    | 63 | 78184 | 76970 | 75876 | 74527 | 74120 | 73834              |       |       |       |       | 72761 | 72280 | 71118 | 68875 | 66883 | 84558 |
| Viscosity [Pa.s]             | 1,050   | 84 | 54883 | 54109 | 53433 | 52888 | 52263 | 52045              | 51995 | 51909 |       |       | 51416 | 51117 | 50401 | 48927 | 47843 | 48171 |
| 16/7/2002 Set 1              | 0.800   | 65 | 83357 | 82000 | 80815 | 79742 | 79115 | 78590              |       |       |       |       | 77820 | 76617 | 75703 | 73479 | 71251 | 68843 |
| viscosity [Pa.s]             | 0.900   | 66 | 82264 | 81037 | 79861 | 78721 | 78065 | 77865              |       |       |       |       | 78468 | 76017 | 74801 | 72563 | 70401 | 68122 |
|                              | 0.800   | 67 | 66400 | 65487 | 64555 | 63750 | 63228 | 62879              |       |       |       |       | 62205 | 61772 | 60847 | 59030 | 57486 | 55595 |
|                              | 0.800   | 68 | 66504 | 65636 | 64721 | 63841 | 63352 | 63010              |       |       |       |       | 62327 | 61894 | 60924 | 58971 | 57410 | 55569 |
|                              | 1.236   | 69 | 57004 | 56354 | 55537 | 54889 | 54414 | 54127              |       |       |       |       | 53497 | 53107 | 52345 | 50940 | 49676 | 48191 |

Appendix C : Table C-3

|                                       |         |          | Q (m <sup>3</sup> /s) | Temp *C | Redownstream | Vdownstream | Pfitt all data | Pitt neissted data | K <sub>con all deta</sub> | K <sub>COT</sub> selected data |
|---------------------------------------|---------|----------|-----------------------|---------|--------------|-------------|----------------|--------------------|---------------------------|--------------------------------|
| · · · · · · · · · · · · · · · · · · · |         | 37       | 8.06E-04              | 23.94   | 3423.95      | 0.79        | 167            | 432                | 0.033                     | 0.877                          |
| Sugar Solution                        |         | 38       | 9.08E-04              | 24.00   | 3854.08      | 0.89        | 252            | 434                | 0.133                     | 0.592                          |
| 19/3/2002 Set 1                       |         | 39       | 1.01E-03              | 24.00   | 4282.33      | 0.99        | 308            | 493                | 0.127                     | 0.505                          |
|                                       | 1200    | 40       | 1.11E-03              | 24.31   | 4717.92      | 1.09        | 450            | 621                | 0.255                     | 0.543                          |
| Density [kg/m <sup>3</sup> ]          | 0.01    | 40       | 1.11E-03              | 24.51   | 5134.07      | 1.19        | 477            | 850                | 0.176                     | 0.421                          |
| Viscosity [Pa.s]                      | 0.01    | 42       | 1.31E-03              | 24.80   | 5565.32      | 1.29        | 644            | 768                | 0.277                     | 0.427                          |
|                                       |         | 43       | 1.40E-03              | 24.60   | 5965.89      | 1.38        | 879            | 593                | 0.213                     | 0.123                          |
|                                       | 1 1     | 43       | 1.39E-03              | 25.78   | 5916.29      | 1.37        | 639            | 679                | 0.183                     | 0.225                          |
|                                       |         | 44<br>45 | 1.59E-03              | 26.06   | 6400.08      | 1.48        | 751            | 721                | 0.185                     | 0.158                          |
|                                       |         | 48       | 1.81E-03              | 27.09   | 4973.79      | 1.58        | 799            | 994                | 0.142                     | 0.299                          |
| 19/3/2002 Set 2                       | 1130    | 47       | 1.71E-03              | 27.67   | 5297.90      | 1.68        | 928            | 1424               | 0.157                     | 0.507                          |
|                                       | 0.013   | 48       | 1.66E-03              | 28.05   | 5134,54      | 1.63        | 752            | 691                | 0.067                     | 0.171                          |
|                                       |         | 49       | 1.61E-03              | 28.91   | 4989.47      | 1.58        | 663            | 901                | 0.029                     | 0.220                          |
|                                       |         | 50       | 1.56E-03              | 29.11   | 4824.18      | 1.53        | 629            | 837                | 0.036                     | 0.215                          |
|                                       |         | 51       | 1.51E-03              | 29.25   | 4680.64      | 1.49        | 704            | 764                | 0.139                     | 0.193                          |
|                                       |         | 52       | 1.41E-03              | 29.36   | 4377.87      | 1.39        | 468            | 624                | -0.014                    | 0.147                          |
|                                       |         | 53       | 1.32E-03              | 29.45   | 4076.45      | 1.29        | 436            | 669                | 0.021                     | 0.300                          |
|                                       |         | 54       | 1.21E-03              | 29.51   | 3760.43      | 1.19        | 389            | 602                | 0.047                     | 0.345                          |
|                                       | 1 1     | 55       | 1.12E-03              | 29.51   | 3460.91      | 1.10        | 366            | 530                | 0.108                     | 0.379                          |
| <b>Glycerol Solution 98%</b>          |         | 58       | 1.00E-04              | 22.16   | 5.53         | 0.10        | 12             | 61                 | 1.547                     | 11.656                         |
| 12/7/2002 Set 1                       |         | 57       | 1.00E-04              | 22.37   | 5.53         | 0.10        | 19             | 31                 | 2.938                     | 6.334                          |
| Density [kg/m <sup>3</sup> ]          | 1246.00 | 58       | 5.20E-05              | 22.30   | 2.49         | 0.05        | 80             | 78                 | 60.151                    | 57.059                         |
| Viscosity [Pa.s]                      | 1.000   | 59       | 5.20E-05              | 22.34   | 2.29         | 0.05        | 173            | 255                | 131.548                   | 193.990                        |
|                                       | 1 1     | 60       | 2.81E-05              | 22.23   | 1.24         | 0.03        | 80             | 89                 | 208.484                   | 258.260                        |
|                                       |         | 81       | 2.81E-05              | 22.24   | 1.24         | 0.03        | 24             | 31                 | 62,052                    | 79.286                         |
| 11/7/2002 Set 1                       |         | 82       | 9.45E-05              | 21.93   | 3.93         | 0.09        | 88             | 270                | 19.337                    | 61,658                         |
| Density [kg/m³]                       | 1235    | 63       | 9.32E-05              | 22.05   | 3.88         | 0.09        | 51             | -144               | 11.259                    | -35.208                        |
| Viscosity [Pa.s]                      | 1.050   | 64       | 8.07E-05              | 21.84   | 2.52         | 0.08        | 30             | 22                 | 18.196                    | 11.613                         |
| 18/7/2002 Set 1                       | 0.800   | 65       | 9.88E-05              | 20.55   | 4.47         | 0.10        | 216            | 223                | 44.845                    | 48.269                         |
| Viscosity [Pa.s]                      | 0.900   | 66       | 1.02E-04              | 21.01   | 5.05         | 0.10        | 254            | 276                | 49.578                    | 53.990                         |
|                                       | 0.800   | 67       | 8.71E-05              | 22.41   | 4.84         | 0.09        | 19             | 86                 | 4.125                     | 22.444                         |
|                                       | 0.800   | 68       | 9.08E-05              | 22.82   | 5.13         | 0.09        | 28             | 150                | -                         | 36.576                         |
|                                       | 1.236   | 69       | 4.84E-05              | 17.89   | 1.70         | 0.05        | 155            | 300                | 148.062                   | 287.425                        |

Sugar Solution and Glycerol Solution

VG Pienaar: Viscous Flow Through Sudden Contractions

| Pod No.              | [       | (   | 5     | 6     | 7     | 8     | 9              | 10    | 11    | 12    | 13    | 14    | 15            | 16    | 17    | 18    | 19    | 20    |
|----------------------|---------|-----|-------|-------|-------|-------|----------------|-------|-------|-------|-------|-------|---------------|-------|-------|-------|-------|-------|
| Distance (diameters) |         |     | -94   | -70   | -49   | -24   | -12            | -6    | -3    | -2    | 3     | 4     | 8             | 15    | 29    | 67    | 83    | 112   |
| Distance (cm)        |         |     | 0     | 102   | 192   | 295   | 346            | 371   | 384   | 391   | 407   | 412   | 424           | 451   | 502   | 604   | 697   | 799   |
| Pressure Drop        |         | 70  | 33266 | 32945 | 32567 | 32276 | 32093          | 31926 | 31909 | 31845 | 31231 | 31232 | 31146         | 30923 | 30505 | 29686 | 29061 | 2823  |
| CMC1%                |         | 71  | 24826 | 24612 | 24243 | 23988 | 23827          | 23780 | 23742 | 23633 | 23212 | 23183 | 23103         | 22950 | 22552 | 21939 | 21421 | 2078  |
| 28/4/2002 Set 1      |         | 72  | 19670 | 19465 | 19209 | 18948 | 18766          | 18740 | 18698 | 18822 | 18218 | 18265 | 18118         | 17993 | 17692 | 17135 | 16672 | 1614  |
| Density [kg/m³]      | 1007    | 73  | 26446 | 26184 | 25921 | 25680 | 25505          | 25454 | 25397 | 25346 | 24985 | 25006 | 24827         | 24719 | 24416 | 23795 | 23302 |       |
| Viscosity [Ps.s]     | 0.005   | 74  | 21488 | 21229 | 21051 | 20807 | 20679          | 20630 | 20598 | 20546 | 20218 | 20260 | 20141         | 20046 | 19752 | 19222 | 18785 | 1832  |
| Ту                   |         | 75  | 17053 | 16856 | 16619 | 16425 | 16290          | 16211 | 16198 | 16179 | 16197 | 15906 | 15748         | 15631 | 15380 | 14925 | 14491 | 1400  |
| ĸ                    |         | 76  | 17054 | 16873 | 16635 | 16427 | 16312          | 18236 | 16241 | 16203 | 15871 | 15972 | 15771         | 15669 | 15395 | 14924 | 14501 | 1397  |
| n                    |         | 77  | 11514 | 11382 | 11214 | 11061 | 10882          | 10890 | 10843 | 10830 | 10601 | 10669 | 10517         | 10451 | 10237 | 9857  | 9567  | 9170  |
|                      |         | 78  | 7587  | 7465  | 7321  | 7180  | 7118           | 7052  | 7055  | 7008  | 6808  | 6887  | 6756          | 6683  | 6528  | 6184  | 5928  | 581(  |
|                      |         | 79  | 3575  | 3481  | 3344  | 3243  | 3169           | 3151  | 3122  | 3098  | 2957  | 3059  | 2921          | 2858  | 2711  | 2493  | 2275  | 2026  |
| 26/4/2002 Set 2      |         | 80  | 3735  | 3648  | 3541  | 3450  | 3370           | 3353  | 3340  | 331Ø  | 3182  | 3228  | 3134          | 3081  | 2911  | 2686  | 2482  | 2233  |
|                      |         | 81  | 3745  | 3685  | 3583  | 3471  | 3385           | 3374  | 3354  | 3313  | 3204  | 3230  | 3143          | 3054  | 2954  | 2700  | 2481  | 2237  |
|                      |         | 82  | 7459  | 7349  | 7268  | 7103  | 7033           | 8986  | 6979  | 6917  | 6751  | 6771  | 6700          | 6618  | 6450  | 6137  | 5889  | 5542  |
|                      |         | 83  | 11775 | 11610 | 11477 | 11314 | 11210          | 11157 | 11150 | 11082 | 10849 | 10868 | 107 <b>97</b> | 10681 | 10488 | 10108 | 9799  | 9399  |
|                      |         | 84  | 12190 | 12039 | 11920 | 11772 | 11657          | 11834 | 11609 | 11563 | 11335 | 11335 | 11264         | 11173 | 11000 | 10636 | 10394 | 1000  |
|                      |         | 85  | 15953 | 15762 | 15597 | 15419 | 15302          | 15255 | 15241 | 15202 | 14944 | 14923 | 14871         | 14769 | 14539 | 14152 | 13795 | 1340  |
|                      |         | 86  | 21681 | 21435 | 21185 | 20994 | 20880          | 20827 | 20794 | 20719 | 20384 | 20367 | 20272         | 20138 | 19877 | 19393 | 18939 | 1842  |
|                      |         | 87  | 27440 | 27172 | 20871 | 26645 | 26465          | 26379 | 26360 | 26291 | 25843 | 25876 | 25769         | 25623 | 25259 | 24663 | 24198 | 23586 |
| CMC 5 %              |         | 88  | 45842 | 44989 | 44281 | 43443 | 43139          | 42849 | 42759 | 42669 | 42390 | 42787 | 42039         | 41673 | 40981 | 39640 | 38459 | 3707  |
| 6/5/2002 Set 1       | }       | 89  | 39393 | 38583 | 37971 | 37223 | 36850          | 36612 | 36493 | 38420 | 36017 | 36573 | 35784         | 35417 | 34726 | 33547 | 32453 | 3134  |
| Density [kg/m³]      | 1027    | 90  | 39078 | 38456 | 37877 | 37237 | 36891          | 36724 | 36683 | 35940 | 35735 | 35422 | 35367         | 35111 | 34602 | 33428 | 32422 | 3122  |
| Viscosity [Pa.s]     |         | 91  | 31990 | 31407 | 30884 | 30294 | 30111          | 30020 | 29951 | 29785 | 29564 | 29453 | 29295         | 28905 | 28450 | 27543 | 26546 | 2547: |
| Ту                   | 0       | 92  | 26888 | 26562 | 26069 | 25512 | 25331          | 25183 | 25117 | 24928 | 24806 | 24708 | 24820         | 24370 | 23849 | 22942 | 22068 | 2120  |
| K                    | 0.26698 |     | 28503 | 28070 | 27403 | 26968 | 28764          | 26558 | 26507 | 26387 | 26242 | 26076 | 26020         | 25767 | 25244 | 24289 | 23471 | 2252  |
| n                    | 0.684   | 94  | 21795 | 21346 | 20657 | 20494 | 20299          | 20132 | 20061 | 19986 | 19873 | 19750 | 19613         | 19419 | 19058 | 18272 | 17528 | 1673  |
|                      |         | 95  | 51695 | 50922 | 50095 | 49357 | 48970          | 48680 | 48558 | 48443 | 47689 | 47738 | 47915         | 47522 | 46825 | 45358 | 44207 | 4257  |
|                      | 1       | 96  | 57038 | 56201 | 55297 | 54525 | 54101          | 53901 | 53827 | 53677 | 53373 | 53122 | 52843         | 52435 | 51711 | 50308 | 48974 | 4740  |
|                      | -       | 97  | 67853 | 66887 | 65990 | 65169 | 64817          | 64544 | 64359 | 64237 | 63794 | 63504 | 63011         | 62595 | 61881 | 60188 | 56818 | 5740  |
| 10/5/2002 Set 1      |         | 98  | 62374 | 61509 | 60597 | 59816 | 59368          | 59110 | 59053 | 59059 | 56502 | 58442 | 58089         | 57841 | 56889 | 55332 | 53982 | 5259  |
|                      |         | 99  | 62430 | 61484 | 60711 | 60037 | 59383          | 59171 | 59064 | 58873 | 56394 | 58342 | 57954         | 57562 | 58749 | 55326 | 53911 | 5252  |
|                      |         | 100 | 55993 | 55155 | 54394 | 53704 | 53243          | 53087 | 52946 | 52859 | 52400 | 52326 | 52035         | 51715 | 50979 | 49573 | 48448 | 4722  |
|                      |         | 101 | 50191 | 49364 | 48608 | 47788 | 47343          | 47110 | 47007 | 46843 | 46449 | 46410 | 46087         | 45667 | 44981 | 43650 | 42564 | 4118  |
| •                    |         | 102 | 43486 | 42790 | 42205 | 41523 | 41158          | 41017 | 41015 | 40949 | 40824 | 40597 | 40320         | 40003 | 39381 | 38175 | 37100 | 3592  |
|                      | 1       | 103 | 43802 | 43062 | 42509 | 41831 | 41454          | 41223 | 41165 | 41071 | 40749 | 40654 | 40336         | 40105 | 39504 | 38231 | 37214 | 3604  |
|                      |         | 104 | 37457 | 38737 | 36295 | 35605 | 35273          | 35167 | 35095 | 35158 | 34854 | 34840 | 34557         | 34148 | 33569 | 32497 | 31524 | 3039  |
|                      |         | 105 | 37230 | 36555 | 35998 | 35320 | 34989<br>29664 | 34786 | 34740 | 34690 | 34439 | 34334 | 34119         | 33771 | 33216 | 32246 | 31254 | 3022  |
|                      |         | 108 | 31578 | 30969 | 30479 | 29959 | 28004          | 29484 | 29419 | 29352 | 29185 | 29100 | 28904         | 28620 | 28167 | 27198 | 26358 | 2540  |

228

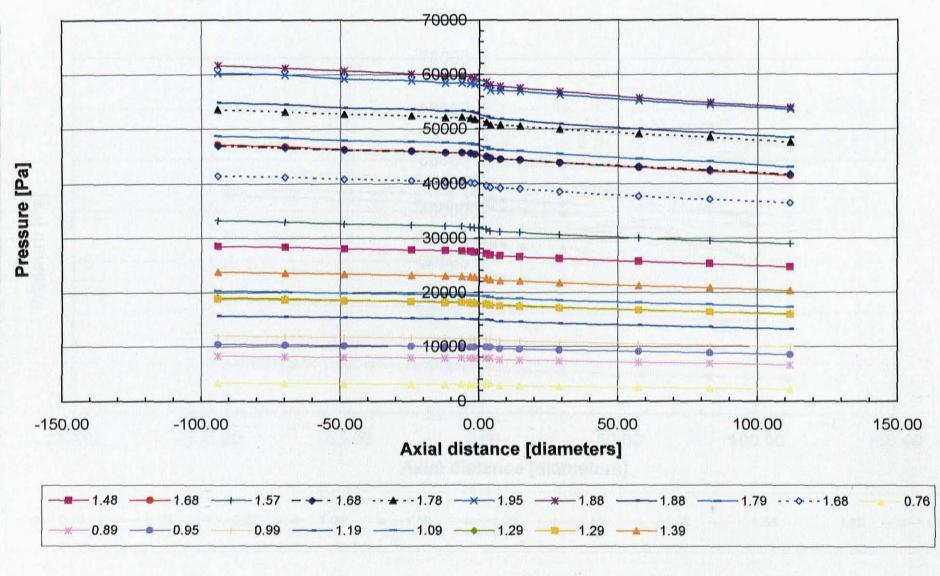
Å

|                              |       | Q (m <sup>3</sup> /s) | Temp *C | Re <sub>downstream</sub> | V <sub>downatream</sub> | Pfitt all data | Prit selected data | K <sub>con all</sub> data | K <sub>con</sub> selected data |
|------------------------------|-------|-----------------------|---------|--------------------------|-------------------------|----------------|--------------------|---------------------------|--------------------------------|
|                              | ┝──┤; | 70 0.0015             | 21.65   | 10022.42                 | 1.44                    | 537            | 599                | 0.020                     | 0.081                          |
| CMC 1 %                      |       | 0.0013                | 21.94   | 8955.24                  | 1.29                    | 413            | 446                | 0.002                     | 0.041                          |
| 26/4/2002 Set 1              |       | 2 0.0012              | 22.14   | 8473.70                  | 1.18                    | 372            | 452                | 0.032                     | 0.146                          |
| Density [kg/m <sup>3</sup> ] |       | 3 0.0012              | 22,30   | 8263.70                  | 1.19                    | 329            | 383                | -0.030                    | 0.046                          |
| Viscosity [Pa.s]             |       | 74 0.0011             | 22.43   | 7584.02                  | 1.09                    | 274            | 302                | -0.036                    | 0.011                          |
| Viscosity (mats)<br>Ty       |       | 75 0.0010             | 22.67   | 7089.64                  | 1.02                    | 181            | 320                | -0.149                    | 0.120                          |
| K                            |       | 78 0.0010             | 22.73   | 7092.12                  | 1.02                    | 254            | 291                | -0.008                    | 0.064                          |
| n                            |       | 77 0.0009             | 22.83   | 6219.68                  | 0.89                    | 179            | 276                | -0.049                    | 0.195                          |
| 11                           |       | 78 0.0006             | 23.12   | 5540.70                  | 0.80                    | 163            | 197                | 0.017                     | 0.125                          |
|                              |       | 79 0.0007             | 23.19   | 5018.25                  | 0.69                    | -959           | 162                | 0.946                     | 0.200                          |
| 26/4/2002 Set 2              |       | 30 0.0007             | 23.26   | 4861.01                  | 0.70                    | 113            | 164                | -0.034                    | 0.174                          |
|                              |       | 0.0007                | 23.27   | 4862.06                  | 0.70                    | 117            | 195                | -0.017                    | 0.303                          |
|                              |       | 32 0.0008             | 23.29   | 5519.23                  | 0.79                    | 166            | 228                | 0.032                     | 0.221                          |
|                              |       | 3 0.0009              | 23.33   | 6239.59                  | 0.90                    | 223            | 284                | 0.058                     | 0.211                          |
|                              |       | 34 1.01E-03           | 23.42   | 6910.60                  | 0.99                    | 225            | 285                | -0.042                    | 0.081                          |
|                              |       | 5 1.11E-03            | 23.59   | 7812.91                  | 1.09                    | 235            | 271                | -0.105                    | -0.045                         |
|                              |       | 58 1.11E-03           | 23.75   | 7608.68                  | 1.09                    | 329            | 335                | 0.053                     | 0.064                          |
|                              |       | 37 1.23E-03           | 23.82   | 8395.30                  | 1.20                    | 394            | 458                | 0.044                     | 0.132                          |
| CMC 5 %                      |       | 88 8.11E-04           | 19.54   | 507.84                   | 0.80                    | 96             | 249                | -0.570                    | -0.089                         |
| 8/5/2002 Set 1               |       | 39 7.10E-04           | 19.54   | 428.59                   | 0.70                    | 192            | 486                | -0.085                    | 1.120                          |
| Density [kg/m <sup>3</sup> ] | 1027  | 0 7.29E-04            | 20.37   | 441.20                   | 0.72                    | 704            | 863                | 1.872                     | 2.488                          |
| Viscosity [Pa.s]             |       | 01 6.04E-04           | 20,44   | 344.67                   | 0.59                    | 245            | 223                | 0.514                     | 0,390                          |
| Ty                           |       | 2 5.16E-04            | 20.45   | 279.94                   | 0.51                    | 173            | 255                | 0.470                     | 1,113                          |
| ĸ                            |       | 3 5,35E-04            | 20.48   | 293,96                   | 0.53                    | 159            | 161                | 0.274                     | 0.289                          |
| n                            |       | 4 4.35E-04            | 20.46   | 223.76                   | 0.43                    | 136            | 146                | 0.614                     | 0.742                          |
|                              |       | 5 9.21E-04            | 20.57   | 600.17                   | 0.91                    | 374            | 221                | 0.041                     | -0.333                         |
|                              |       | 1.01E-03              | 20.77   | 681.89                   | 1,00                    | 339            | 378                | -0.191                    | -0.113                         |
|                              |       | 7 1.30E-03            | 23.18   | 940.46                   | 1.27                    | 646            | 808                | -0.075                    | 0.124                          |
| 10/5/2002 Set 1              |       | 8 1.23E-03            | 23.33   | 877.38                   | 1.21                    | 395            | 521                | -0.331                    | -0.159                         |
|                              | 1 1   | 99 1.23E-03           | 23.51   | 879.54                   | 1.21                    | 515            | 686                | -0.169                    | 0.337                          |
|                              | 1     | 00 1.12E-03           | 23.68   | 773.09                   | 1.10                    | 411            | 618                | -0.190                    | 0,154                          |
|                              | 1     | 01 1.02E-03           | 23.90   | 887.50                   | 1.00                    | 408            | 847                | -0.065                    | 0.412                          |
|                              |       | 02 9.17E-04           | 23.97   | 597.53                   | 0.90                    | 190            | 260                | -0.405                    | -0.234                         |
|                              |       | 03 9.19E-04           | 24.02   | 598.92                   | 0.90                    | 313            | 465                | -0.107                    | 0.266                          |
|                              |       | 04 8.13E-04           | 24.03   | 509.82                   | 0.60                    | 155            | 290                | -0.388                    | 0.035                          |
|                              |       | 05 8.13E-04           | 23.99   | 510.02                   | 0.80                    | 222            | 368                | -0.179                    | 0.277                          |
|                              | 1     | 06 7.11E-04           | 23.90   | 426,85                   | 0.70                    | 156            | 252                | -0.232                    | 0.159                          |

Appendix C : Table C-6

Contraction  $\beta = 0.85$ 

| Pod No.                      | 1       |     | 5      | 6      | 7      | 8      | 9      | 10     | 11     | 12     | 13     | 14     | 15     | 16     | 17     | 18    | 19    | 20    |
|------------------------------|---------|-----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|-------|-------|
| Distance (diameters)         |         | 1   | -94    | -70    | -49    | -24    | -12    | -5     | -3     | -2     | 3      | 4      | 8      | 15     | 29     | 57    | 83    | 112   |
| Distance (cm)                |         |     | 0      | 102    | 192    | 295    | 346    | 371    | 384    | 391    | 407    | 412    | 424    | 451    | 502    | 604   | 697   | 799   |
| Pressure Drop                | 1       | 107 | 103393 | 101612 | 88888  | 97187  | 95603  | 96311  | 85123  | 94896  | 94795  | 84577  | 93344  | 91342  | 90272  | 87169 | 85298 | 80148 |
| CMC 8 %                      | 1       | 108 | 89942  | 67794  | 66214  | 84271  | 83091  | 82629  | 82518  | 82376  | 81712  | 81692  | 81389  | 80598  | 78979  | 75864 | 73123 | 70492 |
| 3/9/2002 Set 1               |         | 109 | 79292  | 77590  | 76152  | 74391  | 73501  | 73172  | 72981  | 72887  | 72355  | 72147  | 71788  | 71163  | 69754  | 66989 | 64576 | 61836 |
| Density (kg/m³)              | 1040.00 | 110 | 78965  | 77351  | 75803  | 74088  | 73290  | 72812  | 72555  | 72326  | 71988  | 71850  | 71448  | 70851  | 69399  | 66764 | 64306 | 61566 |
| Viacosity [Pa.s]             | 1       | 111 | 70720  | 69052  | 67536  | 66396  | 65892  | 65477  | 65151  | 65042  | 64619  | 64470  | 64194  | 63520  | 62327  | 59977 | 57605 | 55432 |
| Ту                           | 0.00    | 112 | 70453  | 68931  | 67681  | 66159  | 65403  | 65056  | 64810  | 64742  | 64346  | 64220  | 63860  | 63316  | 62107  | 59745 | 57518 | 55145 |
| ĸ                            | 1.454   | 113 | 59281  | 58180  | 57137  | 55887  | 55298  | 55011  | 54811  | 54787  | 54484  | 54387  | 54125  | 53702  | 52843  | 50679 | 48889 | 46904 |
| n                            | 0.584   | 114 | 60012  | 58830  | 57804  | 56578  | 55960  | 55659  | 55508  | 55454  | 55126  | 55014  | 54788  | 54300  | 53270  | 51299 | 49540 | 47568 |
| Kaolin 13 %                  |         | 115 | 130538 | 128897 | 128067 | 120475 | 117239 | 116434 | 115355 | 115322 | 113274 | 113048 | 111592 | 108219 | 102859 | 90445 | 80690 | 70922 |
| 4/10/2002 Set 1              | 1       | 116 | 134226 |        |        | 120981 | 116964 | 115898 |        |        |        |        | 111373 | 108092 | 102271 | 90503 | 80718 | 70469 |
| Density (kg/m <sup>3</sup> ) | 1195.00 |     | 128602 |        |        | 118348 | 114075 | 113019 |        |        |        |        | 108542 | 105383 | 99877  | 88763 | 78967 | 68052 |
| Viscosity [Pa.s]             | 1       | 118 | 128181 |        |        | 116077 | 113648 | 112421 |        |        |        |        | 109034 | 105227 | 99662  | 87736 | 78558 | 67718 |
| Ty                           | 16.50   | 119 | 126823 | 120910 | 120910 | 112371 | 109618 | 108445 | 107901 | 107498 | 105648 | 105904 | 104882 | 101267 | 95815  | 84499 | 75509 | 84758 |
| ĸ                            | 13,160  | 120 | 119247 |        | (      | 109820 | 107380 | 106369 |        | (01400 | 100040 | 100004 | 102883 | 99625  | 93811  | 82770 | 73587 | 63041 |
| n                            | 0.164   | 121 | 114818 |        |        | 103343 | 101029 | 99488  |        |        |        |        | 97078  | 93563  | 88744  | 78008 | 69520 | 59748 |
| ••                           |         | 122 | 110905 | 108531 |        | 100915 | 98770  | 97723  |        |        |        |        | 93399  | 91636  | 86881  | 76268 | 68101 | 56247 |
|                              |         | 123 | 109442 |        |        | 101979 | 99647  | 98355  |        |        |        |        | 94483  | 91883  | 86346  | 75672 | 67649 | 58141 |

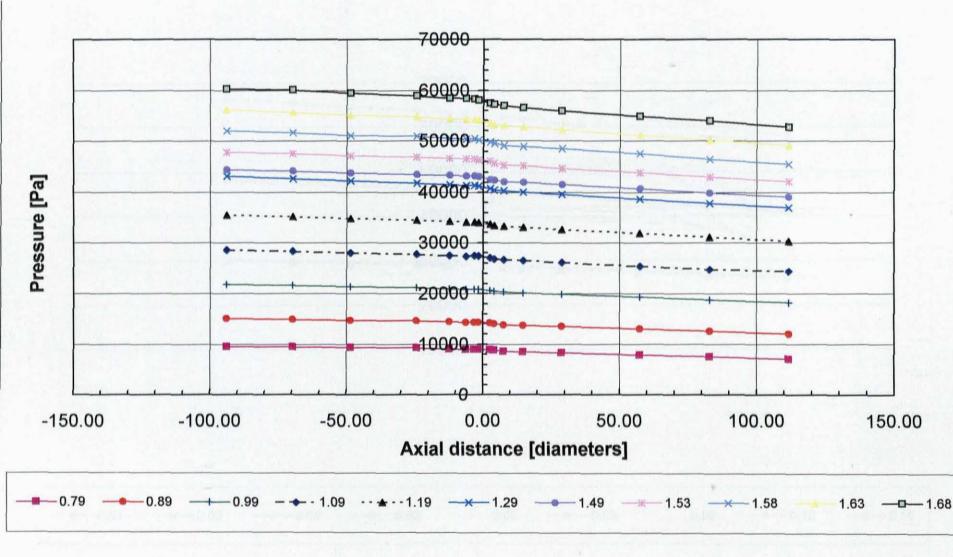

230

.

|                              |         |     | Q (m³/s) | Temp °C | Re <sub>dewnstream</sub> | V <sub>downstream</sub> | Prist all date | Pfitt selected date | K <sub>con ell dete</sub> | K <sub>oon selected data</sub> |
|------------------------------|---------|-----|----------|---------|--------------------------|-------------------------|----------------|---------------------|---------------------------|--------------------------------|
|                              |         | 107 | 8.19E-04 | 19.88   | 162.82                   | 0.81                    | 623            | 1913                | 1.079                     | 5.053                          |
| CMC 8 %                      |         | 108 | 7.04E-04 | 20.07   | 131.45                   | 0.69                    | 128            | 284                 | -0.307                    | 0.262                          |
| 3/9/2002 Set 1               |         | 109 | 6.05E-04 | 20.17   | 105.92                   | 0.59                    | 181            | 166                 | 0.186                     | 0.101                          |
| Density [kg/m <sup>3</sup> ] | 1040.00 | 110 | 6.04E-04 | 20.25   | 105,80                   | 0.59                    | 125            | 182                 | -0.133                    | 0.193                          |
| Viscosity [Pa.s]             | 1       | 111 | 5.11E-04 | 20.28   | 83.48                    | 0.50                    | 193            | -39                 | 0,686                     | -1.147                         |
| Ту                           | 0,00    | 112 | 5.12E-04 | 20.30   | 83.62                    | 0.50                    | 102            | 118                 | -0.034                    | 0.095                          |
| ĸ                            | 1.454   | 113 | 4.08E-04 | 20.25   | 60.63                    | 0.40                    | 20             | 42                  | -0.596                    | -0.321                         |
| n -                          | 0.584   | 114 | 4.09E-04 | 20.25   | 60.83                    | 0.40                    | 63             | 103                 | -0.063                    | 0.438                          |
| Kaolin 13 %                  |         | 115 | 2.39E-04 | 25.64   | 86.07                    | Q.69                    | 1423           | 5849                | 4.790                     | 23.253                         |
| 4/10/2002 Set 1              |         | 118 | 2.43E-04 | 25.97   | 88.78                    | 0.70                    | 1136           | 3339                | 3.442                     | 12.333                         |
| Density (kg/m <sup>3</sup> ) | 1195.00 | 117 | 1.92E-04 | 26.12   | 53.51                    | 0.56                    | 777            | 1108                | 3.874                     | 8.000                          |
| Viscosity [Pa.s]             |         | 118 | 1 08E-04 | 26.79   | 55,70                    | 0.57                    | 288            | 1441                | 0.635                     | 7.754                          |
| Ту                           | 18.50   | 119 | 1.59E-04 | 27.02   | 37.66                    | D.48                    | 379            | 2828                | 2.425                     | 23.570                         |
| ĸ                            | 13,160  | 120 | 1.37E-04 | 27.20   | 27.85                    | 0.40                    | 588            | 2147                | 6.293                     | 25.990                         |
| n                            | 0.164   | 121 | 1.10E-04 | 27.30   | 19.80                    | 0.32                    | -254           | 795                 | -8.156                    | 14.597                         |
|                              |         | 122 | 9.36E-05 | 27.39   | 14.51                    | 0.27                    | 856            | 1046                | 16.658                    | 27.235                         |
|                              | 1       | 123 | 9.45E-05 | 27.57   | 15.35                    | 0.27                    | 1519           | 3613                | 39 315                    | 95,040                         |

VG Pienaar: Viscous Flow Through Sudden Contractions

232




Contraction  $\beta = 0.85$ 

Appendix C : Figure C-1

VG Pienaar: Viscous Flow Through Sudden Contractions

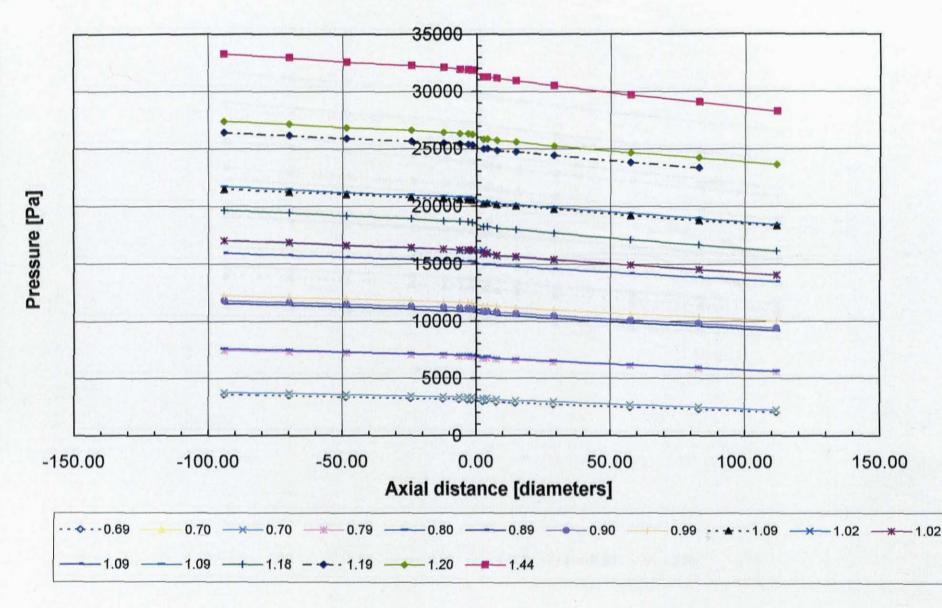
233



Pressure Grade Line for Sugar Solution [Legend = Velocity m/s]

Contraction  $\beta = 0.85$ 

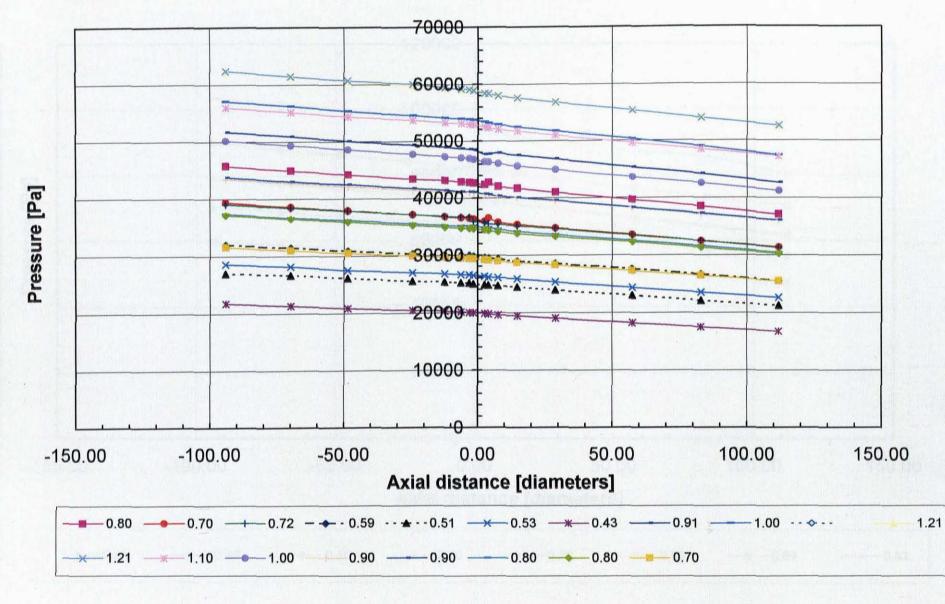
Appendix C : Figure C-2




Appendix C : Figure C-3

Contraction  $\beta = 0.85$ 

Pressure Grade Line for Glycerol Solution [Legend = Velocity in m/s]


VG Pienaar: Viscous Flow Through Sudden Contractions



Appendix C : Figure C-4

Contraction  $\beta = 0.85$ 

VG Pienaar: Viscous Flow Through Sudden Contractions



Appendix C : Figure C-5

Contraction  $\beta = 0.85$ 

Pressure Grade Line for CMC 5 % at Various Velocities [Legend = Velocity in m/s]

Pressure [Pa] -150.00 \* 0.40 -100.00 \* 0.40 ł + - 0.50 -50.00 -- - - 0.50 Axial distance [diameters] 100000 120000 60000 80000 20000 40000 「二日」「二日」 0.00 7-19-1-1 +-- 0.59 50.00 • 0.59 100.00 0.69 150.00 -0.81

Pressure Grade Line for CMC 8 % at Various Velocities [Legend = Velocity in m/s]