Please use this identifier to cite or link to this item:
https://etd.cput.ac.za/handle/20.500.11838/1102
Title: | High voltage direct current strategy solving power delivery shortages to localized area of national grid | Authors: | Smith, Johan | Keywords: | Electric power distribution -- High tension;High voltages;Electric currents, Alternating;Flexible AC transmission systems;Electrical engineering | Issue Date: | 2009 | Publisher: | Cape Peninsula University of Technology | Abstract: | The industrial and population growth of a nation can cause power delivery problems to localized areas of a national grid through their increased demand for electrical energy. One reason for these power shortages is the insufficient current carrying capacity of existing high voltage alternating current, (HVAC), transmission lines supplying the area. High voltage direct current (HVDC) transmission lines are a possible solution as they provide better power delivery than HVAC lines. New or upgraded HVAC lines, or HVDC lines or combinations of HVAC and HVDC lines are possible solutions to improve power delivery. This research investigates the various line possibilities using theory. and cutting edge frequency and time domain software tools. The challenge is how to approach this problem. What methodology or structure should be used? Thus one of the contributions of this work is the development of a strategy (flow chart), for solving power delivery problems to localized areas of a national grid through individual or combinations (e.g. parallel operation) of HVAC and/or HVDC transmission lines. The main contribution is the evaluation of a HVDC system as a solution to overcoming power delivery shortages to a localized area of a national grid. Three different software packages (two industrial and one academic) namely, PSCAD/EMTDC (time domain), DlgSILENT PowerFactory (frequency domain) and MathCAD software are evaluated for their capability to perform the simulation studies necessary to prove the possible solutions given in the developed flow chart. The PSCAD/EMTDC software package is evaluated for integrated HVAC/HVDC load flow analyses, DlgSILENT for individual and parallel combinations of HVAC lines and MathCAD to prove hand calculations to software results. Five case studies are conducted. The first case study demonstrates a healthy system with no delivery shortcomings, the second case study portrays the delivery shortcoming due to increased localized area demand, and the remaining three case studies explore possible solutions to solve the problem. The first possible solution is to construct an identical HVAC line in parallel to the existing line. | Description: | Thesis (MTech (Electrical Engineering))--Cape Peninsula University of Technology, 2009 | URI: | http://hdl.handle.net/20.500.11838/1102 |
Appears in Collections: | Electrical, Electronic and Computer Engineering - Master's Degree |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
High voltage direct current strategy solving power power delivery shortages.pdf | 9.38 MB | Adobe PDF | View/Open |
Page view(s)
2,298
Last Week
0
0
Last month
0
0
checked on Dec 23, 2024
Download(s)
212
checked on Dec 23, 2024
Google ScholarTM
Check
This item is licensed under a Creative Commons License