Please use this identifier to cite or link to this item:
https://etd.cput.ac.za/handle/20.500.11838/2763
Title: | The effect of gypsum phase components on the rheokinetics of cement paste | Authors: | Migabo, Willy Mbasha | Keywords: | Portland cement;Rheology;Gypsum;Hydration | Issue Date: | 2018 | Publisher: | Cape Peninsula University of Technology | Abstract: | Rheological properties of most ordinary Portland cements are dictated by the hydration reactions that their different phases experience. Cement clinker has four main phases with aluminate being the most reactive. Once in contact with water, the aluminate phase reacts rapidly and generally impedes the early hydration of other cement compounds such as calcium silicates that are responsible for the strength of cement systems. Consequently, the obtained matrix is stiff without much strength. Alternatively, calcium sulphate bearing materials are added within the clinker as set regulators of the aluminate phase hydration. For this purpose, natural gypsum is moslty gound with cement clinker as a source of sufficient sulphate, thereby keeping the cement paste plastic for a certain amount of time, allowing the hydration of silicate phases that are responsible for the early and later strength. However, the heat generated within the mill during the grinding process of clinker and gypsum causes a partial dehydration of natural gypsum into hemihydrate. The final ground cement product is thus comprised of two unexpected types of calcium sulphate bearing materials in an unpredictable proportion. Due to the difference in their solubility, the hydration of the aluminate phase can variably be altered which consequently affects the rheokinetics of the cement paste. Currently, the effect of the available amount of hemihydrate and natural gypsum in the cement sulphate phase, on both the hydration and rheology of ordinary Portland cements (OPC), are not well-understood. An ordinary Portland cement clinker was sampled during the production process of CEM I under stable kiln operations at a local cement plant. This was ground without any form of calcium sulphate bearing material and the final product was considered as relatively pure cement clinker. The degree of natural gypsum degeneration was achieved by partially replacing fractions of hemihydrate with those of natural gypsum. Firstly, the individual effect of these calcium sulphate bearing materials on the hydration kinetics was studied by varying their concentrations from 2-7% within the cement system. Secondly, the effect of their mix proportions at an optimum calcium sulphate concentration on cement paste rheokinetics was investigated. This research confirmed the findings of previous investigations relative to the effect of calcium sulphate on the hydration kinetic , giving new insight on the rheokinetics of cement paste with mix proportions of various calcium bearing materials. Results showed that the reaction rates of cement systems with hemihydrate were faster than those with natural gypsum and generally tended to decrease with the increase in their concentrations. Cements with hemihydrate experiencing shorter dormant durations than those with natural gypsum, likely due to the fact that the consumption rate of calcium sulphate was higher in cement systems with hemihydrate than those with natural gypsum. Consequently, before the exhaustion of sulphate ions, cement systems with hemihydrate had higher degrees of hydration and became almost similar thereafter. More ettringite and portlandite were formed in cement systems with hemihydrate as compared to those with natural gypsum. The amount of ettringite increased with the increase in calcium sulphate concentration up to 4% and thereafter remained constant. Conversely, the amount of portlandite decreased with the increase in calcium sulphate and also remained unchanged after 4%. The strength development of the cement microstructure depended on the concentration of hemihydrate within the suspension. The rigidification of the newly formed network was affected at higher hemihydrate fractions. Rheological parameters were more pronounced when the concentration of hemihydrate exceeded 50%. Below this hemihydrate concentration, cements had almost similar flow properties as those with only natural gypsum. Large changes in yield stress values and variation in plastic viscosity values of approximately 50% were observed. The trend of mixes dynamic yield stress were similar to their corresponding strength rate developments. This rheological behaviour was primarily attributed to the morphology change of ettringite that was triggered by the presence of a higher hemihydrate concentration. It was also noticed that physical performances of cement systems depended on their respective microstructure developments. | Description: | Thesis (DEng (Civil Engineering))--Cape Peninsula University of Technology, 2018 | URI: | http://hdl.handle.net/20.500.11838/2763 |
Appears in Collections: | Civil Engineering & Surveying - Doctoral Degree |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
212008188-Migabo-Willy Mbasha-DEng-Civil Engineering-Eng-2018.pdf | Thesis | 3.64 MB | Adobe PDF | View/Open |
Page view(s)
767
Last Week
3
3
Last month
1
1
checked on Dec 17, 2024
Download(s)
757
checked on Dec 17, 2024
Google ScholarTM
Check
This item is licensed under a Creative Commons License