Please use this identifier to cite or link to this item: https://etd.cput.ac.za/handle/20.500.11838/816
Title: Microbial pollutants in stagnant water in RR section, Khayelitsha, Western Cape, South Africa
Authors: Leuta, Qenehelo Alice 
Keywords: Water -- Pollution -- South Africa;Water -- Microbiology -- South Africa
Issue Date: 2015
Publisher: Cape Peninsula University of Technology
Abstract: Greywater is domestic wastewater from daily kitchen, laundry, bath, shower, hand washing practices and does not include wastewater from the toilet. Greywater from informal settlement has been identified as important environmental pollution sources. Inadequate sanitation and poor drainage in informal settlements result in greywater being stagnant at the base of communal taps. This water has a potential to cause health problems to those who come in contact with it. Studies of greywater quality in informal settlements in South Africa tend to concentrate on physico-chemical analysis and microbial indicator organisms. In order to adequately manage greywater in informal settlements there is a need to understand the microbial pathogens present in such water. Therefore this study is aimed at determining the level of microbial contamination of stagnant greywater in the RR Section of Khayelitsha, Western Cape. Six sampling sites were identified and sampling of stagnant greywater was conducted twice a month (from January to May 2013) from the base of six communal taps, which served as the sampling sites. The microbial enumeration techniques employed in this study were the Most Probable Number (MPN) techniques, the Heterotrophic Plate Count (HPC) technique and the Flow Cytometric (FCM) technique. The API 20E and the RapID™ ONE systems were used to identify possible pathogenic Gram-negative microorganisms, while possible pathogenic Gram-positive microorganisms were identified with the BBL Crystal™ Gram Positive (GP) Identification (ID) system. The highest MPN counts were 1.6 x 108 microorganisms/100mℓ recorded at Site A (weeks 3 and 5) as well as at Site B (week 5). The corresponding highest faecal coliform count was 4.7 x 106 microorganisms/100mℓ obtained at Site B (week 5). The highest E. coli count observed was 1.8 x 106 microorganisms/100mℓ recorded at Site A (week 5) and Site F (week 5). In comparison, the highest HPC count was 2.9 x105 microorganisms/mℓ recorded at Site C in week 4. The results obtained by the MPN and HPC techniques were significantly (p < 0.05) higher than the water quality standards by Department of Water Affairs and Forestry (DWAF) (1996a; 1996b) and the SABS (2011). The highest total FCM and viable FCM counts were 3.4 x 107 microorganisms/mℓ and 3.1 x 107 microorganisms/mℓ, respectively recorded at Site A in week 5. The FCM technique displayed significantly (p < 0.05) higher results than both the MPN and HPC techniques, which highlighted its reliability in obtaining more accurate enumeration results. The RapID™ ONE and the API 20E identification systems mostly identified Escherichia coli, Klebsiella pneumonia, K. oxytoca, Acinetobacter baumannii/calcoaceticus and Enterobacter cloacae, while the organisms more commonly identified by the BBL Crystal™ Gram Positive (GP) Identification (ID) system, were the Corynebacterium species, and Bacillus cereus. The presence of these organisms raises health concern to the community of RR Section, as some are known to cause waterborne diseases, while others are known to cause nosocomial infections.
Description: Thesis (MTech (Environmental Management))--Cape Peninsula University of Technology, 2015
URI: http://hdl.handle.net/20.500.11838/816
Appears in Collections:Environmental Management - Masters Degrees

Files in This Item:
File Description SizeFormat 
198074255_leuta_qa_mtech_env_man_2015.pdfThesis1.78 MBAdobe PDFThumbnail
View/Open
Show full item record

Page view(s)

2,018
Last Week
1,695
Last month
1,695
checked on Feb 16, 2022

Download(s)

1,921
checked on Feb 16, 2022

Google ScholarTM

Check


This item is licensed under a Creative Commons License Creative Commons