Please use this identifier to cite or link to this item: https://etd.cput.ac.za/handle/20.500.11838/915
Title: Synthesis of zeolites from South African coal fly ash: investigation of scale-up conditions
Authors: Mainganye, Dakalo 
Keywords: Zeolites;Fly ash -- Environmental aspects;Coal -- Environmental aspects. -- South Africa;Electric power production;Dissertations, Academic;MTech;Theses, dissertations, etc.
Issue Date: 2012
Publisher: Cape Peninsula University of Technology
Abstract: The generation of electricity from coal in South Africa results in millions of tons of fly ash being produced each year. Less than 10 % of the fly ash generated is being used constructively and the remaining unused ash is currently inducing disposal and environmental problems. Intensive research on the utilisation of fly ash has been conducted either to reduce the cost of disposal or to minimise its impact on the environment. It has been shown that South African fly ash can be used as a feedstock for zeolite synthesis due to its compositional dominance of aluminosilicate and silicate phases. Most of the studies conducted on zeolite synthesis using South African fly ash are performed on small laboratory scale. Therefore, production of zeolites on an industrial/pilot plant scale would, in addition to producing a valuable product, help abate the pollution caused by the disposal of fly ash in the country. This research focuses on the investigation of the scale-up opportunity of zeolite synthesis from South African fly ashes with the view of understanding the effects of some reactor and operational parameters on the quality of the zeolite produced. Two types of zeolites (zeolite Na-P1 and zeolite A) were synthesised via two different routes in this study: (1) a two stage hydrothermal synthesis method (zeolite Na-P1) and (2) alkaline fusion prior to hydrothermal synthesis (zeolite A). The synthesis variables evaluated in this study were; the effect of impeller design and agitation rates during the aging step (zeolite Na-P1) using three different impellers (anchor, 4-flat-blade and Archimedes screw impeller) at three agitation speeds (150, 200 and 300 rpm), the effect of fly ash composition and solvents (water sources) on the phase purity of both zeolite Na-P1 and zeolite A, and the effect of the hydrothermal reaction time during the synthesis of zeolite Na-P1 using low amorphous phase fly ash i.e. aging time (12-48 hours) and hydrothermal treatment time (12-48 hours). The raw materials (fly ashes from Arnot, Hendrina, Tutuka, Lethabo and Matla power stations) and the synthesised zeolite product were characterised chemically, mineralogically and morphologically by X-ray fluorescence spectrometry, X-ray powder diffraction and scanning electron microscopy. Other characterisation techniques used in the study were 1) Fourier transform infrared spectroscopy to provide structural information and also monitor the evolution of the zeolite crystals during synthesis and 2) inductively coupled plasma atomic emission (ICP-AES) and mass spectrometry for multi-elemental analysis of the synthesis solution and the solvents used in this study. The experimental results demonstrated that the phase purity of zeolite Na-P1 was strongly affected by agitation and the type of impeller used during the aging step of the synthesis process. A high crystalline zeolite Na-P1 was obtained with a 4-flat-blade impeller at a low agitation rate of 200 rpm. Although a pure phase of zeolite Na-P1 was obtained at low agitation rates, the variation in the mineralogy of the fly ash was found to affect the quality of the zeolite produced significantly. The results suggested that each batch of fly ash would require a separate optimisation process of the synthesis conditions. Therefore, there is a need to develop a database of the synthesis conditions for zeolite Na-P1 based on the fly ash composition. As a consequence, the scale-up synthesis of zeolite Na-P1 would require step-by-step optimisation of the synthesis conditions, since this zeolite was sensitive to the SiO2/Al2O3 ratio, agitation and the mineralogy of the fly ash. On the other hand, zeolite A synthesis had several advantages over zeolite Na-P1. The results suggested that a pure phase of zeolite A can be produced at very low reaction temperature (i.e. below 100 °C, compared to 140 °C for zeolite Na-P1), shorter reaction times (i.e. less than 8 hours compared to 4 days for zeolite Na-P1), with complete dissolution of fly ash phases and more importantly less sensitive to the SiO2/Al2O3 ratio of the raw materials. The zeolite A synthesis process was found to be more robust and as a result, it would be less rigorous to scale-up despite the energy requirements for fusion. This study showed for the first time that different impeller designs and agitation during the aging step can have a profound impact on the quality of the zeolite produced. Therefore, it is not only the hydrothermal synthesis conditions and the molar regime but also the dissolution kinetics of the feedstock that influence the outcome of the zeolite synthesis process. This study has also shown for the first time that a pure phase of zeolite A can be synthesised from various sources of South African fly ash containing different mineralogical and chemical compositions via the alkali fusion method under the same synthesis conditions. Therefore, the effective zeolitisation of fly ash on a large scale would assist to mitigate the depletion of resources and environmental problems caused by the disposal of fly ash.
Description: Thesis (MTech (Chemical Engineering))--Cape Peninsula University of Technology, 2012
URI: http://hdl.handle.net/20.500.11838/915
Appears in Collections:Chemical Engineering - Masters Degrees

Files in This Item:
File Description SizeFormat 
Mainganye_d_MTech_chem_eng_20125.03 MBAdobe PDFThumbnail
View/Open
Show full item record

Page view(s)

639
Last Week
623
Last month
623
checked on Feb 16, 2022

Download(s)

236
checked on Feb 16, 2022

Google ScholarTM

Check


This item is licensed under a Creative Commons License Creative Commons