Please use this identifier to cite or link to this item: https://etd.cput.ac.za/handle/20.500.11838/760
Title: Adsorption of organotin compounds on nano metal oxide/silica, activated carbon and fly ash composite materials
Authors: Ayanda, Olushola Sunday 
Keywords: Organotin compounds;Organometallic compounds;Metals -- Organic chemistry;Composite materials;Fly ash;Silica;Nanostructured materials;Carbon, Activated
Issue Date: 2013
Publisher: Cape Peninsula University of Technology
Abstract: In this present study, the physicochemical properties, nature and morphology of prepared composite materials involving activated carbon, fly ash, nFe3O4, nSiO2 and nZnO in the 1:1 ratio for two components composite materials and 1:1:1 for three components composite materials were investigated. The nature, morphology and elemental characterizations of these materials were carried out by means of modern analytical methods such as scanning electron and transmission electron microscopy (SEM and TEM), x-ray diffraction (XRD), x-ray fluorescence (XRF), inductively coupled plasma mass spectrometry (ICP-MS), inductively coupled plasma atomic emission spectroscopy (ICP-AES) and Fourier transform infrared spectroscopy (FTIR). Other physicochemical characterizations undertaken were CNH analysis, ash content, pH, point of zero charge and surface area and porosity determination by Brunauer, Emmett and Teller (BET). The precursors and composite materials were then applied to the sorption (remediation) of tributyltin (TBT) and triphenyltin (TPT) from artificial seawater and wastewater and the adsorption efficiencies for the precursors and the composites compared. The adsorption of TBT and TPT onto these materials as a function of adsorbent amount, contact time, pH, stirring speed, initial adsorbate concentration and temperature was investigated. Maximum organotin adsorption was recorded within the pH range of normal saline water (pH 8). Approximately 99.95 %, 95.75 %, 96.78 %, 99.88 %, 96.96 %, 99.98 %, 99.99 %, 99.99 % and 99.99 % TBT were removed from 25 mL of 100 mg/L TBT-contaminated artificial seawater using 0.5 g adsorbents at a contact time of 60 min, pH 8, stirring speed 200 rpm and temperature of 80 oC by activated carbon, fly ash, nFe3O4, nSiO2, nZnO, fly ash/activated carbon, nFe3O4/activated carbon, nSiO2/activated carbon and nZnO/activated carbon composite, respectively and the adsorption of TBT onto these adsorbents was endothermic. Approx. 99.99 %, 96.54 %, 95.50 %, 96.92 %, 97.14 %, 99.99 %, 98.44 %, 98.98 % and 99.66 % TPT were also removed from 25 mL of 100 mg/L TPT-contaminated artificial seawater using 0.5 g adsorbents at a contact time of 60 min, pH 8, stirring speed 200 rpm and a temperature of 20 oC by the activated carbon, fly ash, nFe3O4, nSiO2, nZnO, fly ash/activated carbon, nFe3O4/fly ash, nSiO2/fly ash and nZnO/fly ash composite, respectively. The adsorption of TPT onto activated carbon and fly ash/activated carbon composite from TPT – contaminated artificial seawater was endothermic while TPT adsorption onto fly ash, nFe3O4, nSiO2, nZnO, nFe3O4/fly ash, nSiO2/fly ash and nZnO/fly ash composites from TPT – contaminated artificial seawater was exothermic. The adsorption of TBT and TPT onto nFe3O4/fly ash/activated carbon and nSiO2/fly ash/activated carbon composites from TBT – and TPT – contaminated water, respectively were endothermic and approx. 99.98 % and 99.99 % of TBT and TPT, respectively were removed from the initial concentration of 100 mg/L OTC by the composites at a temperature of 80 oC, 60 min contact time, pH 8 and a stirring speed of 200 rpm. The adsorption kinetics of all the precursors and composite materials fitted well with the pseudo second-order kinetic model while the adsorption isotherm data could be well described by the Freundlich isotherm model except TBT adsorption onto nZnO/activated carbon and nFe3O4/activated carbon composite from TBT contaminated artificial seawater, TPT adsorption onto activated carbon and fly ash/activated carbon from TPT contaminated artificial seawater, and TPT sorption onto nSiO2/fly ash/activated carbon composite from TPT – contaminated water which could be described by both the Freundlich and Dubinin-Radushkevich (D-R) isotherm models. Optimal conditions for the adsorption of TBT and TPT from artificial seawater were further applied to TBT and TPT removal from TBT – and TPT – contaminated natural seawater obtained from Cape Town harbour and the results obtained show that 99.71 %, 79.23 %, 80.11 %, 82.86 %, 80.42 %, 99.75 %, 99.88 %, 99.83 % and 99.88 % TBT were removed from TBT – contaminated natural seawater by activated carbon, fly ash, nFe3O4, nSiO2, nZnO, fly ash/activated carbon, nFe3O4/activated carbon, nSiO2/activated carbon and nZnO/activated carbon composite, respectively while 99.90 %, 96.44 %, 95.37 %, 96.75 %, 97.03 %, 99.92 %, 98.42 %, 98.92 % and 99.58 % TPT were removed from TPT – contaminated natural seawater by activated carbon, fly ash, nFe3O4, nSiO2, nZnO, fly ash/activated carbon, nFe3O4/fly ash, nSiO2/fly ash and nZnO/fly ash composite, respectively. Experimental results therefore show that the composite materials present higher organotin adsorption efficiency than the precursors due to the nature and improved properties of the composite materials and can therefore be utilized for the remediation of organotin contamination from industrial and/or shipyards process wastewater to > 99 % reduction before discharge into the environment.
Description: Thesis (DTech (Chemistry))--Cape Peninsula University of Technology, 2013
URI: http://hdl.handle.net/20.500.11838/760
Appears in Collections:Chemistry - Doctoral Degrees

Files in This Item:
File Description SizeFormat 
Ayanda_OLUSHOLA SUNDAY_DTechChem.pdfThesis10.18 MBAdobe PDFThumbnail
View/Open
Show full item record

Page view(s)

1,645
Last Week
0
Last month
0
checked on Dec 4, 2024

Download(s)

748
checked on Dec 4, 2024

Google ScholarTM

Check


This item is licensed under a Creative Commons License Creative Commons