Please use this identifier to cite or link to this item: https://etd.cput.ac.za/handle/20.500.11838/832
Title: Effect of transglutaminase and cyclodextrinase on the rheological and shelf-life characteristics of oat bread
Authors: Nitcheu Ngemakwe, Patrick Hermaan 
Keywords: Transglutaminases;Cyclodextrins;Dough;Bread
Issue Date: 2014
Publisher: Cape Peninsula University of Technology
Abstract: The aim of this study was to evaluate the effect of transglutaminase (TG) and cyclodextrinase (CG) on the rheological characteristics of oat dough and shelf-life characteristics of oat bread with a view to developing oat bread with improved texture and shelf-life. Firstly, the effects of yeast, carboxylmethylcellulose (CMC), plain yoghurt (YG), transglutaminase (TG) and cyclodextrinase (CG) on the mixing, pasting, thermal, quantification of free amino acid groups and protein crosslinking properties of oat dough were investigated through a 25-2 fractional factorial design resolution III with yeast (1.25, 3.25%), CMC (1, 2%), YG (10.75, 33.75%), TG (0.5, 1.5%) and CG (10, 40 μl) as independent variables. Among all the ingredients, only CMC, YG, and TG exhibited significant (p < 0.05) effects on the mixing properties of oat dough while yeast and CG slightly affected it. TG addition increased water absorption (34.80 - 38.45%) and peak resistance (696.40 - 840.30 FU) but decreased the dough softening (93.20 - 67.75 FU) as its level varied from 0.5 to 1.5 g. CG did not significantly (p > 0.05) affect the mixing properties of oat dough. As its level increased from 10 - 40 μl, the water absorption (38.45 - 34.80%), energy at peak (11.45 - 3.75 Wh/kg), peak resistance (840.30 - 696.40 FU) slightly decreased while the softening of oat dough increased from 67.75 to 93.20 FU. The addition of yeast and YG showed significant (p < 0.05) impacts on the pasting properties of oat dough compared to CMC, TG and CG. The storage modulus of oat dough was slightly (p > 0.05) increased by adding TG (180.37 - 202.78 kPa) and CG (170.75 - 175.71 kPa). TG decreased the loss modulus (65.95 - 62.87 kPa) of oat dough while CG increased it from 62.01 - 64.61 kPa. The thermal properties of oat dough were slightly affected by all the ingredients. The denaturation temperature was increased by incorporation of TG (6.53 - 8.33°C) and CG (6.42 - 8.33°C) but there was a decrease of enthalpy due to addition of TG (from 0.76 to –4.05 J/g) and CG (1.11 to –4.05 J/g). Only CG decreased the number of free amino acid groups (0.94 - 0.62) confirming that it catalysed the protein crosslinking of the oat glutelin while other ingredients increased it. Secondly, as CMC, YG and TG affected the mixing, pasting and thermal properties of oat dough, oat bread was baked with carboxylmethylcellulose (CMC), yoghurt (YG) and transglutaminase (TG) following a 33 Box-Behnken design consisting of CMC (1, 2 g), YG (10.75, 33.75 g) and TG (0.5, 1.5 g) as independent variables. The physical and textural analysis of oat bread showed that CMC, YG and TG addition did affect oat bread. TG decreased the springiness (6.47 - 4.14 mm), specific volume (1.61 - 1.54 ml/g) and increased hardness (537.85 - 692.41 N) of oat bread. No significant effect was observed on the colour parameters of crust and crumb of oat bread. Despite the optimal oat bread exhibited a high desirability, its high hardness and low springiness remain some challenges associated with oat bread production. Since it was well established that TG increased hardness and decreased springiness of the optimal oat bread, improvement was needed for the production of best oat bread. Thirdly, Psyllium husks (PH) and cyclodextrinase (CG) were added in five (05) best oat bread formulations such as (1) PH + CG, (2) CG, (3) TG + CG, (4) TG + PH and (5) TG + PH + CG. The best oat bread formulation with low hardness containing PH and CG was further used for sensory and shelf-life studies. The combination of ingredients psyllium husks and cyclodextrinase significantly (p < 0.05) improved the textural properties of best oat bread. It decreased the hardness (94.88 N) and increased the springiness (10.97 mm) of the best oat bread. Fourthly, the sensory evaluation showed that the consumers highly appreciated the crumb colour and texture of the best oat bread than the ones of wheat bread. In addition, they found that there was a strong correlation in crust and crumb colour between wheat and the best oat bread. However, some differences existed between the wheat and best oat bread. The best oat bread exhibited a less preference in taste than its wheat counterpart. The best oat bread positively received an overall acceptability (4.07) as wheat bread (4.22). Fively, the shelf-life studies of the best oat bread revealed that the pH and TVC of the best oat bread were more affected by the time, temperature and the interaction of both parameters (time and temperature) than Total Titratable Acidity (TTA), yeasts and mould as the storage time passed. The best oat bread could safely be stored up to 21 days at refrigeration temperature (5°C) with a Total Viable Count (TVC) load of 105 cfu/g. Finally, using survival analysis for the shelf-life studies of the best oat bread, the mathematical model revealed that the risk of deteriorating increased with the temperature.
Description: Thesis (MTech (Food Technology))--Cape Peninsula University of Technology, 2014
URI: http://hdl.handle.net/20.500.11838/832
Appears in Collections:Food Technology - Masters Degrees

Files in This Item:
File Description SizeFormat 
Nitcheu Ngemakwe_PH_2014.pdfThesis3.43 MBAdobe PDFThumbnail
View/Open
Show full item record

Page view(s)

2,472
Last Week
1,987
Last month
1,987
checked on Feb 16, 2022

Download(s)

1,287
checked on Feb 16, 2022

Google ScholarTM

Check


This item is licensed under a Creative Commons License Creative Commons